WO2015189196A1 - Catalyseur a porosite bimodal, son procede de preparation par comalaxage de la phase active et son utilisation en hydrotraitement de residus d'hydrocarbures - Google Patents

Catalyseur a porosite bimodal, son procede de preparation par comalaxage de la phase active et son utilisation en hydrotraitement de residus d'hydrocarbures Download PDF

Info

Publication number
WO2015189196A1
WO2015189196A1 PCT/EP2015/062822 EP2015062822W WO2015189196A1 WO 2015189196 A1 WO2015189196 A1 WO 2015189196A1 EP 2015062822 W EP2015062822 W EP 2015062822W WO 2015189196 A1 WO2015189196 A1 WO 2015189196A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
volume
aluminum
active phase
alumina
Prior art date
Application number
PCT/EP2015/062822
Other languages
English (en)
Inventor
Malika Boualleg
Bertrand Guichard
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to RU2017100960A priority Critical patent/RU2687084C2/ru
Priority to CN201580043355.1A priority patent/CN106922134B/zh
Priority to EP15729134.5A priority patent/EP3154680A1/fr
Priority to US15/318,561 priority patent/US20170120229A1/en
Publication of WO2015189196A1 publication Critical patent/WO2015189196A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J35/615
    • B01J35/617
    • B01J35/618
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • B01J35/653
    • B01J35/657
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/18Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles according to the "moving-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • the invention relates to hydrotreatment catalysts, especially residues, and relates to the preparation of comalaxed active phase hydrotreating catalysts having a texture and a formulation that are favorable for the hydrotreatment of residues, in particular for hydrodemetallization.
  • the preparation process according to the invention also makes it possible to avoid the impregnation step usually carried out on a previously shaped support.
  • the invention consists in the use of catalysts comprising at least one alumina oxide matrix, at least one group VI B element, optionally at least one group VIII element, and optionally the phosphorus element.
  • the fixed bed residue hydrotreating processes (commonly called "Residual Desulfurization” unit or RDS) lead to high refining performance: typically they can produce a boiling temperature cut above 370 ° C. containing less than 0 ° C. , 5% by weight of sulfur and less than 20 ppm of metals from fillers containing up to 5% by weight of sulfur and up to 250 ppm of metals (Ni + V).
  • the different effluents thus obtained can serve as a basis for the production of good quality heavy fuel oils and / or pretreated feedstocks for other units such as cracking.
  • catalytic Fluid Catalytic Cracking
  • the hydroconversion of the residue into slices lighter than the atmospheric residue is generally low, typically of the order of 10-20% by weight.
  • the feed, premixed with hydrogen circulates through a plurality of fixed bed reactors arranged in series and filled with catalysts.
  • the total pressure is typically between 100 and 200 bar and the temperatures between 340 and 420 ° C.
  • the effluents withdrawn from the last reactor are sent to a fractionation section.
  • the fixed bed hydrotreating process consists of at least two steps (or sections).
  • the first so-called hydrodemetallation (HDM) stage is mainly aimed at eliminating the majority of metals from the feedstock by using one or more hydrodemetallization catalysts.
  • This stage mainly includes vanadium and nickel removal operations and, to a lesser extent, iron.
  • the second step, or so-called hydrodesulfurization (HDS) section consists in passing the product of the first step over one or more hydrodesulfurization catalysts, which are more active in terms of hydrodesulphurization and hydrogenation of the feedstock, but less tolerant to metals.
  • 6,780,817 teaches that it is necessary to use a catalyst support that has at least 0.32 ml / g macroporous volume for stable fixed bed operation.
  • a catalyst further has a median diameter in the mesopores of 8 to 13 nm and a high specific surface area of at least 180 m 2 / g.
  • US Pat. No. 6,919,294 also describes the use of so-called bimodal, therefore mesoporous and macroporous support, with the use of high macroporous volumes, but with a mesoporous volume limited to no more than 0.4 ml / g.
  • US Pat. No. 7,169,294 describes a heavy-weight hydroconversion catalyst comprising between 7 and 20% of Group VI metal and between 0.5 and 6% by weight of Group VIII metal on an aluminum support.
  • the catalyst has a specific surface area of between 100 and 180 m 2 / g, a total pore volume greater than or equal to 0.55 ml / g, and at least 50% of the total pore volume is included in pores larger than 20 nm.
  • At least 5% of the total pore volume is comprised in pores larger than 100 nm, at least 85% of the total pore volume being included in pores between 10 and 120 nm in size, less than 2% of pore volume total being contained in the pores of diameter greater than 400 nm, and less than 1% of the total pore volume being contained in pores with a diameter greater than 1000 nm.
  • Numerous developments include the optimization of the porous distribution of the catalyst or catalyst mixtures by optimizing the catalyst support.
  • US Pat. No. 6,589,908 describes, for example, a process for preparing an alumina characterized by the absence of macropores, less than 5% of the total pore volume constituted by pores with a diameter of greater than 35 nm, and a high pore volume greater than 0.8 ml / g, and a bimodal mesopore distribution in which the two modes are separated by 1 to 20 nm and the primary porous mode being larger than the porous median diameter.
  • the method of preparation described implements two stages of precipitation of alumina precursors under well-controlled conditions of temperature, pH and flow rates. The first step operates at a temperature between 25 and 60 ° C, a pH between 3 and 10.
  • the preparation method described for the preparation of these catalysts implements a step of co-precipitating aluminum sulphate with sodium aluminate, the gel obtained is then dried, extruded and calcined. It is possible to add silica during or after precipitation. Adjusting the layout provides the characteristics of the media.
  • patent application WO 2012/021386 discloses hydrotreatment catalysts comprising a porous refractory oxide support shaped from alumina powder and from 5% to 45% by weight of catalyst fines.
  • the support comprising the fines is then dried, calcined.
  • the support obtained has a specific surface area of between 50 m 2 / g and 450 m 2 / g, a median pore diameter of between 50 and 200 A, and a total pore volume exceeding 0.55 cm 3 / g.
  • the support thus comprises metal incorporated thanks to the metals contained in the catalyst fines.
  • the resulting support can be treated with a chelating agent.
  • the pore volume may be partially filled by means of a polar additive, and may be impregnated with a metal impregnating solution.
  • a catalyst prepared from an alumina resulting from the calcination of a specific alumina gel having a targeted alumina content by comalaxing a hydro-dehydrogenating active phase with the calcined alumina exhibited a porous structure of particular interest for the hydrotreatment of heavy loads, while having a suitable active phase content.
  • the invention also relates to a catalyst preparation process suitable for the hydroconversion / hydrotreatment of residues by comalaxing the active phase with a particular alumina.
  • the invention finally relates to the use of the catalyst in hydrotreating processes, in particular the hydrotreatment of heavy feedstocks.
  • step d) a step of drying said alumina gel obtained in step d) to obtain a powder
  • the alumina concentration of the alumina gel suspension obtained in step c) is preferably between 13 and 35 g / l, very preferably between 15 and 33 g / l, inclusive.
  • the acidic precursor is advantageously chosen from aluminum sulphate, aluminum chloride and aluminum nitrate, preferably aluminum sulphate.
  • the basic precursor is advantageously chosen from sodium aluminate and potassium aluminate, preferably sodium aluminate.
  • the aqueous reaction medium is water and said steps operate with stirring, in the absence of organic additive.
  • the invention also relates to a bimodal porous structure hydroconversion catalyst comprising:
  • said catalyst having a surface area Sbet greater than 100 m 2 / g, a mesoporous median diameter by volume between 12 and 25 nm, limits included, a median macroporous volume diameter between 250 and 1500 nm, limits included, a mesoporous volume such as as measured by mercury porosimeter intrusion greater than or equal to 0.55 ml / g and a total pore volume measured by mercury porosimetry greater than or equal to 0.70 ml / g.
  • the median mesoporous median diameter determined by intrusion into the mercury porosimeter is between 13 and 17 nm, inclusive.
  • the macroporous volume is between 10 and 40% of the total pore volume.
  • the mesoporous volume is greater than 0.70 ml / g.
  • Macroporous median diameter is also defined as a diameter such that all pores smaller than this diameter constitute 50% of the total macroporous volume determined by mercury porosimeter intrusion.
  • the Group VI B metals are advantageously selected from molybdenum and tungsten, and preferably said Group VI B metal is molybdenum.
  • the catalyst has a low microporosity, very preferably no microporosity is detectable in nitrogen porosimetry. If necessary, it is possible to increase the metal content by introducing a second part of the active phase by impregnation on the catalyst already comalaxed with a first part of the active phase. It is important to emphasize that the catalyst according to the invention differs structurally from a catalyst obtained by simply impregnating a precursor on an alumina support in which the alumina forms the support and the active phase is introduced into the pores of this support.
  • step j) Possible heat treatment (preferably under dry air).
  • the solid obtained at the end of steps a) to f) undergoes a g / comalaxing step. It is then shaped in a step h), then can then simply be dried at a temperature of less than or equal to 200 ° C (step i) or dried, and then subjected to a new calcination heat treatment in a step j) optional.
  • the catalyst Prior to its use in a hydrotreatment process, the catalyst is usually subjected to a final sulfurization step. This step consists in activating the catalyst by transforming, at least in part, the oxide phase in a sulpho-reducing medium.
  • a conventional sulphurization method well known to those skilled in the art consists in heating the mixture of solids under a stream of a mixture of hydrogen and hydrogen sulphide or under a stream of a mixture of hydrogen and of hydrocarbons containing sulfur-containing molecules at a temperature of temperature between 150 and 800 ° C, preferably between 250 and 600 ° C, generally in a crossed-bed reaction zone.
  • the comalaxed active phase catalyst according to the invention is prepared from a specific alumina gel, which is dried and undergoes a heat treatment, before comalaxing with the active phase, and then shaped.
  • Step a) is a step of dissolving an aluminum acid precursor in water, carried out at a temperature of between 20 and 80 ° C, preferably between 20 and 75 ° C and more preferred between 30 and 70 ° C.
  • the acid precursor of aluminum is chosen from aluminum sulphate, aluminum chloride and aluminum nitrate, preferably aluminum sulphate.
  • the pH of the suspension obtained is between 0.5 and 5, preferably between 1 and 4, preferably between 1.5 and 3.5.
  • This step advantageously contributes to an amount of alumina introduced relative to the final alumina of between 0.5 and 4%, preferably between 1 and 3%, very preferably between 1.5 and 2.5%.
  • the suspension is left stirring for a period of between 2 and 60 minutes, and preferably 5 to 30 minutes.
  • pH adjustment step is a step of dissolving an aluminum acid precursor in water, carried out at a temperature of between 20 and 80 ° C, preferably between 20 and 75 ° C and more preferred between 30 and 70 ° C.
  • the acid precursor of aluminum is chosen
  • the step of adjusting the pH b) consists in adding to the suspension obtained in step a) at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide.
  • the basic precursor (s) and acid (s) are added in said step of adjusting the pH in aqueous solution.
  • Step b) is carried out at a temperature between 20 and 90 ° C, preferably between 20 and 80 ° C, and more preferably between 30 and 70 ° C and at a pH between 7 and 10, preferably between 8 and 10, preferably between 8.5 and 10 and most preferably between 8.7 and 9.9.
  • the duration of step b) of pH adjustment is between 5 and 30 minutes, preferably between 8 and 25 minutes, and very preferably between 10 and 20 minutes.
  • Step c) is a step of precipitating the suspension obtained after step b) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic precursors or acid comprising aluminum, said precursors being chosen identical or not to the precursors introduced in steps a) and b).
  • at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic precursors or acid comprising aluminum, said precursors being chosen identical or not to the precursors introduced in steps a) and b).
  • the basic precursor (s) and acid (s) are added in said co-precipitation step in aqueous solution.
  • the co-precipitation step is conducted at a temperature between 20 and 90 ° C, and more preferably between 30 and 70 ° C.
  • the co-precipitation step c) is preferably carried out for a period of between 1 and 60 minutes, and preferably of 5 to 45 minutes.
  • said steps a), b) and c) are carried out in the absence of organic additive.
  • the synthesis of the alumina gel (steps a), b) and c)) is carried out with stirring, d) Filtration step
  • the process for preparing the alumina according to the invention also comprises a step of filtration of the suspension obtained at the end of step c).
  • the alumina gel obtained at the end of the precipitation step c), followed by a filtration step d), is dried in a drying step e) to obtain a powder, said drying step being carried out advantageously at a temperature greater than or equal to 120 ° C or by atomization or by any other drying technique known to those skilled in the art.
  • drying step e) is carried out by atomization
  • the atomization is carried out according to the operating protocol described in the publication Asep Bayu Dani Nandiyanto, Kikuo Okuyama, Advanced Powder Technology, 22, 1-19 , 201 1. f) Heat treatment step
  • the raw material obtained at the end of the drying step e) is then subjected to a heat treatment step f) at a temperature of between 500 and 1000 ° C. for a period of between 2 and 10 hours. h, with or without a flow of air containing up to 60% water volume.
  • said heat treatment is carried out in the presence of an air flow containing water.
  • said heat treatment step f) operates at a temperature of between 540 ° C. and 850 ° C.
  • the heat treatment step may be preceded by drying at a temperature between 50 ° C and 120 ° C, according to any technique known to those skilled in the art.
  • the powder obtained after drying step e), after heat treatment in a step f), is comalaxed with the metal precursor (s) of the active phase, in a step g) comalaxing allowing the contact or solutions containing the active phase to come into contact with the powder, and then shaping the resulting material to obtain the catalyst in a step h).
  • the active phase is provided by one or more solutions containing at least one Group VIB metal, optionally at least one Group VIII metal and optionally the phosphorus element.
  • the said solution (s) may be aqueous, consisting of an organic solvent or a mixture of water and at least one organic solvent (for example ethanol or toluene).
  • the solution is aquo-organic and even more preferably aqueous-alcoholic.
  • the pH of this solution may be modified by the possible addition of an acid.
  • the compounds which can be introduced into the solution as sources of group VIII elements advantageously are: citrates, oxalates, carbonates, hydroxycarbonates, hydroxides, phosphates, sulphates, aluminates, molybdates, tungstates, oxides, nitrates, halides for example, chlorides, fluorides, bromides, acetates, or any mixture of the compounds set forth herein.
  • the sources of the group VIB element which are well known to those skilled in the art, there are advantageously, for example, for molybdenum and tungsten: oxides, hydroxides, molybdic and tungstic acids and their salts, in particular sodium salts.
  • said support used according to the invention is shaped by extrusion in the form of extrudates of diameter generally between 0.5 and 10 mm and preferably 0.8 and 3.2 mm. In a preferred embodiment, it will be composed of trilobed or quadrilobed extrudates of size between 1.0 and 2.5 mm in diameter.
  • the catalyst obtained at the end of step g) of comalaxing and shaping h) undergoes drying i) at a temperature of less than or equal to 200 ° C., preferably less than 150 ° C. C, according to any technique known to those skilled in the art, for a period advantageously between 2 and 12 hours.
  • the catalyst thus dried can then undergo a complementary heat treatment or hydrothermal step j) at a temperature of between 200 and 1000 ° C., preferably between 300 and 800 ° C. and even more preferably between 350 and 550 ° C., while a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% by volume of water.
  • a complementary heat treatment or hydrothermal step j) at a temperature of between 200 and 1000 ° C., preferably between 300 and 800 ° C. and even more preferably between 350 and 550 ° C., while a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% by volume of water.
  • Several combined cycles of thermal or hydrothermal treatments can be carried out.
  • the catalyst is only advantageously dried in step i).
  • the contact with the steam can take place at atmospheric pressure (steaming) or autogenous pressure (autoclaving).
  • steaming the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably between 250 and 650 grams per kilogram of dry air. According to the invention, it is possible to envisage introducing all or part of the metals mentioned during the comalaxing of the metal solution (s) with the porous aluminum oxide.
  • a part of the metals remains introduced by impregnating said catalyst from step g / or h /, according to any method known to man of the trade, the most common being that of dry impregnation.
  • the catalyst according to the invention can be used in hydrotreatment processes making it possible to convert heavy hydrocarbon feeds containing sulfur impurities and metallic impurities.
  • One objective sought by the use of the catalysts of the present invention relates to an improvement of the performances, in particular in hydrodemetallation and hydrodesulphurization, while improving the ease of preparation with respect to the catalysts known from the prior art.
  • the catalyst according to the invention makes it possible to improve the performances in hydrodemetallation and in hydrodesulphalate with respect to conventional catalysts, while having a high stability over time.
  • the feedstocks treated in the process according to the invention are advantageously chosen from atmospheric residues, vacuum residues resulting from direct distillation, deasphalted oils, residues resulting from conversion processes such as, for example, those originating from coking, from a hydroconversion in a fixed bed, in a bubbling bed, or in a moving bed, taken alone or as a mixture.
  • These fillers can advantageously be used as they are or else diluted by a hydrocarbon fraction or a mixture of hydrocarbon fractions which may be chosen from the products of the FCC process, a light cutting oil (LCO according to the initials of the English name of Light Cycle Oil), a heavy cutting oil (HCO according to the initials of the English name of Heavy Cycle Oil), a decanted oil (OD according to the initials of the English name of Decanted Oil), a slurry, or From the distillation, gas oil fractions including those obtained by vacuum distillation called according to the English terminology VGO (Vacuum Gas Oil).
  • the heavy charges can thus advantageously comprise cuts resulting from the process of liquefying coal, aromatic extracts, or any other hydrocarbon cut.
  • Said heavy charges generally have more than 1% by weight of molecules having a boiling point greater than 500 ° C., a metal content (Ni + V) of greater than 1 ppm by weight, preferably greater than 20 ppm by weight, so very preferred greater than 50 ppm by weight, an asphaltene content, precipitated in heptane, greater than 0.05% by weight, preferably greater than 1% by weight, very preferably greater than 2%.
  • the heavy fillers can advantageously also be mixed with coal in the form of powder, this mixture being generally called slurry. These fillers can advantageously be by-products from the conversion of the coal and mixed again with fresh coal.
  • the coal content in the heavy load is generally and preferably a 1 ⁇ 4 (Oil / Coal) ratio and may advantageously vary widely between 0.1 and 1.
  • the coal may contain lignite, be a sub-bituminous coal (according to the English terminology), or bituminous. Any other type of coal is suitable for use of the invention, both in fixed bed reactors or in bubbling bed reactors.
  • reactive reactors ie reactors operating alternately, in which hydrodemetallation catalysts according to the invention can preferably be implemented, can be used upstream of the unit.
  • the reactive reactors are then followed by reactors in series, in which hydrodesulphurization catalysts are used which can be prepared according to any method known to those skilled in the art.
  • two permutable reactors are used upstream of the unit, preferably for the hydrodemetallation and containing one or more catalysts according to the invention. They are advantageously monitored by one to four reactors in series, advantageously used for hydrodesulfurization.
  • the method according to the invention can advantageously be implemented in a fixed bed with the objective of eliminating metals and sulfur and lowering the average boiling point of the hydrocarbons.
  • the operating temperature is advantageously between 320 ° C. and 450 ° C., preferably 350 ° C. to 410 ° C., under a partial pressure.
  • in hydrogen advantageously between 3 MPa and 30 MPa, preferably between 10 and 20 MPa, at a space velocity advantageously between 0.05 and 5 volume of charge per volume of catalyst per hour, and with a gaseous hydrogen gas on charge ratio hydrocarbon liquid advantageously between 200 and 5000 normal cubic meters per cubic meter, preferably 500 to 1500 normal cubic meters per cubic meter.
  • the process according to the invention can also advantageously be implemented partly in bubbling bed on the same charges.
  • the catalyst is advantageously used at a temperature of between 320 and 450 ° C. under a hydrogen partial pressure of advantageously between 3 MPa and 30.degree. MPa, preferably between 10 and 20 MPa, at a space velocity advantageously between 0.1 and 10 volumes of filler per volume of catalyst and per hour, preferably between 0.5 and 2 volumes of filler by volume of catalyst and by hour, and with a gaseous hydrogen gas on hydrocarbon liquid charge advantageously between 100 and 3000 normal cubic meters per cubic meter, preferably between 200 to 1200 normal cubic meters per cubic meter.
  • the method according to the invention is implemented in a fixed bed.
  • the catalysts of the present invention are preferably subjected to a sulphurization treatment making it possible, at least in part, to convert the metallic species into sulphides before they come into contact with the charge. treat.
  • This activation treatment by sulphurisation is well known to those skilled in the art and can be performed by any previously known method already described in the literature.
  • a conventional sulphurization method well known to those skilled in the art consists of heating the mixture of solids under a stream of a mixture of hydrogen and hydrogen sulphide or under a stream of a mixture of hydrogen and of hydrocarbons containing sulfur-containing molecules at a temperature of temperature between 150 and 800 ° C, preferably between 250 and 600 ° C, generally in a crossed-bed reaction zone.
  • Solutions A, B, C and D used for the preparation of catalysts A1, A2, A3, B1, C1, D1, D3 were prepared by dissolving in water the precursors of the following phases MoO 3 , Ni (OH) 2 , and optionally H 3 P0 4 . All of these precursors come from Sigma-Aldrich. The concentration of elements of the various solutions is indicated in the following table.
  • a laboratory reactor with a capacity of about 7000 ml is used.
  • Table 2 Characteristics of the gel used for the preparation of alumina.
  • Alumina AI (A1) serving as matrix for the catalyst A1 is obtained.
  • Alumina Al (B1) serving as a matrix for catalyst B1 is prepared in exactly the same manner as the alumina described above.
  • the impregnation solutions A and B were respectively kneaded in the presence of the Al (A1) and Al (B1) aluminas as described below to obtain the catalysts A1 and B1.
  • the comalaxing takes place in a "Brabender" mixer with a tank of 80 cm 3 and a mixing speed of 30 rpm.
  • the calcined powder is placed in the bowl of the kneader.
  • solution A or B MoNi (P)
  • the kneading is maintained 15 minutes after obtaining a paste.
  • the calcined catalysts A1 and B1 have the characteristics reported in Table 4 below.
  • Catalyst E is a catalyst prepared by boehmite extrusion-mixing, followed in the order of calcination and hydrothermal treatment to form an S (E) support before dry impregnation of an aqueous solution so that the metal content is the same as that introduced by the comalaxing on the catalyst A1.
  • aqueous precursor solutions of sodium aluminate and aluminum sulfate are prepared from stock solution.
  • a laboratory reactor with a capacity of about 7000 ml is used.
  • the synthesis is carried out at 70 ° C. and with stirring. We have a foot of water of 1679 ml.
  • the mixture of RA AM / RSV AL feeds is injected and then the temperature of the test is raised. After a stabilization period of 300 hours, the hydrodesulfurization (HDS) and hydrodemetallation (HDM) performances are recorded.
  • HDS hydrodesulfurization
  • HDM hydrodemetallation
  • Example 7 The performances obtained (Table 1 1) confirm the results of Example 7, that is to say the good performance of the catalysts comalaxés according to the invention compared to reference catalyst, prepared according to dry impregnation methods. However, a gain in preparation cost and greater ease of it is presented by the preparation route according to the invention.
  • the boehmite B powder (A3) prepared in Example 5 is comalaxed with the solution D according to the protocol described in Example 5 to obtain the catalyst D3.
  • the reactor is cooled and after a triple stripping of the atmosphere under nitrogen (10 minutes at 1 MPa), the effluent is collected and analyzed by fluorescence X-rays (sulfur and metals) and by simulated distillation (ASTM D7169).
  • HDX 5 4o + (%) ((X540 +) charge- (X540 +) effluent) / (X540 +) load X 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)

Abstract

L'invention concerne un catalyseur d'hydroconversion de structure poreuse bimodale comprenant : une matrice oxyde majoritairement aluminique calcinée; une phase active hydro-déshydrogénante comprenant au moins un métal du Groupe VIII de la classification périodique des éléments, éventuellement au moins un métal du groupe VIB de la classification périodique des éléments, éventuellement du phosphore, ladite phase active étant au moins en partie comalaxée au sein de ladite matrice oxyde majoritairement aluminique calcinée, ledit catalyseur présentant une surface spécifique SBET supérieure à 100 m2/g, un diamètre médian mésoporeux en volume compris entre 12 et 25 nm, bornes incluses, un diamètre médian macroporeux en volume compris entre 250 et 1500 nm, bornes incluses, un volume mésoporeux tel que mesuré par intrusion au porosimètre à mercure, supérieur ou égal à 0,55 ml/g et un volume poreux total mesuré par porosimétrie au mercure supérieur ou égal à 0,70 ml/g. L'invention concerne également un procédé de préparation de catalyseur adapté à l'hydroconversion/hydrotraitement de résidus par comalaxage de la phase active avec une alumine particulière. L'invention concerne enfin l'utilisation du catalyseur dans des procédés d'hydrotraitement, notamment l'hydrotraitement de charges lourdes.

Description

CATALYSEUR A POROSITE BIMODAL, SON PROCEDE DE PREPARATION PAR COMALAXAGE DE LA PHASE ACTIVE ET SON UTILISATION EN HYDROTRAITEMENT
DE RESIDUS D'HYDROCARBURES
Domaine technique de l'invention
L'invention concerne les catalyseurs d'hydrotraitement, notamment de résidus, et a pour objet la préparation de catalyseurs d'hydrotraitement à phase active comalaxée présentant une texture et une formulation favorables à l'hydrotraitement de résidus, notamment pour l'hydrodémétallation. Le procédé de préparation selon l'invention permet également d'éviter l'étape d'imprégnation habituellement réalisée sur un support préalablement mis en forme.
L'invention consiste en l'utilisation de catalyseurs comprenant au moins une matrice oxyde aluminique, au moins un élément du groupe VI B, éventuellement au moins un élément du groupe VIII, ainsi qu'éventuellement l'élément phosphore. L'introduction de ce type de phase active avant l'étape de mise en forme par comalaxage avec une alumine particulière, provenant elle-même de la calcination d'un gel spécifique, permet de manière inattendue, dans des procédés d'hydrotraitement, en particulier de résidus, en lit fixe, mais aussi dans un procédé en lit bouillonnant, d'améliorer significativement l'activité en hydrodésulfuration, mais aussi en hydrodémétallation du catalyseur, tout en en réduisant le coût de fabrication de manière significative.
Art antérieur
Il est connu de l'Homme du métier que l'hydrotraitement catalytique permet, par la mise en contact d'une charge hydrocarbonée avec un catalyseur dont les propriétés, en termes de métaux de la phase active et de porosité, sont préalablement bien ajustées, de réduire sensiblement sa teneur en asphaltènes, métaux, soufre et autres impuretés tout en améliorant le rapport hydrogène sur carbone (H/C) et tout en la transformant plus ou moins partiellement en coupes plus légères.
Les procédés d'hydrotraitement des résidus en lit fixe (couramment appelé "Resid Desulfurization" unit ou RDS) conduisent à des performances en raffinage élevées : typiquement ils permettent de produire une coupe de température d'ébullition supérieure à 370°C contenant moins de 0,5% poids de soufre et moins de 20 ppm de métaux à partir de charges contenant jusqu'à 5% poids de soufre et jusqu'à 250 ppm de métaux (Ni+V). Les différents effluents ainsi obtenus peuvent servir de base pour la production de fiouls lourds de bonne qualité et/ou de charges prétraitée pour d'autres unités telles que le craquage catalytique ("Fluid Catalytic Cracking"). En revanche, l'hydroconversion du résidu en coupes plus légères que le résidu atmosphérique (gazole et essence notamment) est en général faible, typiquement de l'ordre de 10-20 %pds. Dans un tel procédé, la charge, préalablement mélangée à de l'hydrogène, circule à travers plusieurs réacteurs en lit fixe disposés en série et remplis par des catalyseurs. La pression totale est typiquement comprise entre 100 et 200 bar et les températures entre 340 et 420 °C. Les effluents soutirés du dernier réacteur sont envoyés vers une section de fractionnement.
Classiquement, le procédé d'hydrotraitement en lit fixe est constitué d'au moins deux étapes (ou sections). La première étape dite d'hydrodémétallation (HDM) vise principalement à éliminer la majorité des métaux de la charge en utilisant un ou plusieurs catalyseurs d'hydrodémétallation. Cette étape regroupe principalement les opérations d'élimination du vanadium et du nickel et dans une moindre mesure du fer. La seconde étape ou section, dite d'hydrodésulfuration (HDS), consiste à faire passer le produit de la première étape sur un ou plusieurs catalyseurs d'hydrodésulfuration, plus actifs en terme d'hydrodésulfuration et d'hydrogénation de la charge, mais moins tolérants aux métaux. Lorsque la teneur en métaux dans la charge est trop importante (supérieure à 250 ppm) et/ou lorsque une conversion importante (transformation de la fraction lourde 540°C+ (ou 370°C+) en une fraction plus légère 540°C- (ou 370°C-) est recherchée, des procédés d'hydrotraitement en lit bouillonnant sont préférés. Dans ce type de procédé (cf M. S. Rana et al., Fuel 86 (2007), p1216), les performances en purification sont moindres que celles des procédés RDS, mais l'hydroconversion de la fraction résidu est élevée (de l'ordre de 45-85 %vol). Les températures importantes mises en jeu, comprises entre 415 et 440 °C, contribuent à cette hydroconversion élevée. Les réactions de craquage thermique sont en effet favorisées, le catalyseur n'ayant pas en général une fonction d'hydroconversion spécifique. De plus, les effluents formés par ce type de conversion peuvent présenter des problèmes de stabilité (formation de sédiments).
Pour l'hydrotraitement de résidus, le développement de catalyseurs polyvalents, performants et stables est donc indispensable. Pour des procédés en lit bouillonnant, la demande de brevet WO 2010/002699 enseigne notamment qu'il est avantageux d'utiliser un catalyseur dont le support présente un diamètre de pore médian compris entre 10 et 14 nm et dont la distribution est étroite. Il y est précisé que moins de 5% du volume poreux doit être développé dans les pores de taille supérieure à 21 nm et de la même manière, moins de 10 % du volume doit être observé dans les petits pores de taille inférieure à 9 nm. Le brevet US 5 968 348 confirme la préférence d'utiliser un support dont la mésoporosité reste voisine de 1 1 à 13 nm, avec éventuellement la présence de macropores et une surface BET élevée. Pour des procédés en lit fixe, le brevet US 6 780 817 enseigne qu'il est nécessaire d'utiliser un support de catalyseur qui présente au moins 0,32 ml/g de volume macroporeux pour un fonctionnement stable en lit fixe. Un tel catalyseur présente de plus un diamètre médian, dans les mésopores, de 8 à 13 nm et une surface spécifique élevée d' au moins 180 m2/g. Le brevet US6, 919,294 décrit aussi l'utilisation de support dit bimodaux, donc mésoporeux et macroporeux, avec l'utilisation de forts volumes macroporeux, mais avec un volume mésoporeux limité à 0,4 ml/g au plus.
Les brevets US 4 976 848 et US 5 089 463 décrivent un catalyseur d'hydrodémétallation et hydrodésulfuration comprenant une phase active hydrogénante à base de métaux des groupes VI et VIII et un support inorganique oxyde réfractaire, le catalyseur ayant précisément entre 5 et 1 1 % de son volume poreux sous forme de macropores, des mésopores de diamètre médian supérieur à 16,5 nm et son utilisation dans un procédé d'hydrodémétallation et hydrodésulfuration de charges lourdes.
Le brevet US 7 169 294 décrit un catalyseur d'hydroconversion de charges lourdes, comprenant entre 7 et 20% de métal du groupe VI et entre 0,5 et 6% poids de métal du groupe VIII, sur un support aluminique. Le catalyseur a une surface spécifique comprise entre 100 et 180 m2/g , un volume poreux total supérieur ou égal à 0,55 ml/g, au moins 50 % du volume poreux total est compris dans les pores de taille supérieure à 20 nm, au moins 5 % du volume poreux total est compris dans les pores de taille supérieure à 100 nm, au moins 85 % du volume poreux total étant compris dans les pores de taille comprise entre 10 et 120 nm, moins de 2 % du volume poreux total étant contenu dans les pores de diamètre supérieur à 400 nm, et moins de 1 % du volume poreux total étant contenu dans les pores de diamètre supérieur à 1000 nm.
De nombreux développements portent notamment sur l'optimisation de la distribution poreuse du catalyseur ou de mélanges de catalyseurs par l'optimisation du support de catalyseur.
Ainsi le brevet US 6 589 908 décrit par exemple un procédé de préparation d'une alumine caractérisée par une absence de macropores, moins de 5 % du volume poreux total constitué par les pores de diamètre supérieur à 35 nm, un haut volume poreux supérieur à 0,8 ml/g, et une distribution de mésopores bimodale dans laquelle les deux modes sont séparés par 1 à 20 nm et le mode poreux primaire étant plus grand que le diamètre médian poreux. A cet effet, le mode de préparation décrit met en œuvre deux étapes de précipitation de précurseurs d'alumine dans des conditions de température, pH et débits bien contrôlées. La première étape opère à une température comprise entre 25 et 60°C, un pH compris entre 3 et 10. La suspension est ensuite chauffée jusqu'à une température comprise entre 50 et 90°C. Des réactifs sont de nouveau ajoutés à la suspension, qui est ensuite lavée, séchée, mise en forme et calcinée pour former un support de catalyseur. Ledit support est ensuite imprégné par une solution de phase active pour obtenir un catalyseur d'hydrotraitement ; un catalyseur d'hydrotraitement de résidus sur un support monomodal mésoporeux de diamètre médian poreux autour de 20 nm est décrit.
La demande de brevet WO 2004/052534 A1 décrit l'utilisation en hydrotraitement de charges hydrocarbonées lourdes d'un mélange de deux catalyseurs avec des supports ayant des caractéristiques poreuses différentes, le premier catalyseur ayant plus de la moitié du volume poreux dans les pores de diamètre supérieur à 20 nm, 10 à 30 % du volume poreux étant contenu dans les pores de diamètre supérieur à 200 nm, le volume poreux total étant supérieur à 0,55 ml/g, le deuxième ayant plus de 75 % du volume poreux contenu dans les pores de diamètre compris entre 10 et 120 nm, moins de 2 % dans les pores de diamètre supérieur à 400 nm et 0 à 1 % dans les pores de diamètre supérieur à 1000 nm. Le procédé de préparation décrit pour la préparation de ces catalyseurs met en œuvre une étape de co- précipitation de sulfate d'aluminium avec de l'aluminate de sodium, le gel obtenu est ensuite séché, extrudé et calciné. Il est possible d'ajouter de la silice durant ou après la co- précipitation. L'ajustement de la mise en forme permet d'obtenir les caractéristiques du support.
Des métaux des groupes VIB, VII, IA ou V peuvent être incorporés dans le support, par imprégnation et /ou par incorporation dans le support avant sa mise en forme en particules. L'imprégnation est préférée.
Le brevet US 7 790 652 décrit des catalyseurs d'hydroconversion pouvant être obtenus par co-précipitation d'un gel d'alumine, puis introduction de métaux sur le support obtenu par toute méthode connue de l'homme du métier, notamment par imprégnation. Le catalyseur obtenu a une distribution monomodale avec un diamètre médian mésoporeux compris entre 1 1 et 12,6 nm et une largeur de distribution poreuse inférieure à 3,3 nm.
Des approches alternatives à l'introduction conventionnelle de métaux sur des supports aluminiques ont également été développées, comme l'incorporation de fines de catalyseurs dans le support. Ainsi, la demande de brevet WO 2012/021386 décrit des catalyseurs d'hydrotraitement comprenant un support de type oxyde poreux réfractaire mis en forme à partir de poudre d'alumine et de 5% à 45% en poids de fines de catalyseur. Le support comprenant les fines est ensuite séché, calciné. Le support obtenu présente une surface spécifique comprise entre 50 m2/g et 450 m2/g, un diamètre médian poreux compris entre 50 et 200 A, et un volume poreux total dépassant 0,55 cm3/g. Le support comprend ainsi du métal incorporé grâce aux métaux contenus dans les fines de catalyseur. Le support résultant peut être traité au moyen d'un agent chélatant. Le volume poreux peut être partiellement rempli au moyen d'un additif polaire, puis peut être imprégné par une solution métallique d'imprégnation.
Au vu de l'art antérieur, il semble très difficile d'obtenir de manière simple un catalyseur présentant à la fois une porosité bimodale, avec un fort volume mésoporeux couplé à un volume macroporeux conséquent, un diamètre médian des mésopores très élevé, et une phase active hydro-déshydrogénante. Par ailleurs, l'augmentation de la porosité se fait souvent au détriment de la surface spécifique et de la résistance mécanique.
De manière surprenante, la demanderesse a découvert qu'un catalyseur préparé à partir d'une alumine résultant de la calcination d'un gel d'alumine spécifique présentant une teneur en alumine ciblée, par comalaxage d'une phase active hydro-déshydrogénante avec l'alumine calcinée présentait une structure poreuse particulièrement intéressante pour l'hydrotraitement de charges lourdes, tout en ayant une teneur en phase active adaptée. Objets de l'invention
L'invention concerne un catalyseur d'hydroconversion/hydrotraitement de résidu ayant une distribution poreuse optimisée et une phase active comalaxée dans une matrice aluminique calcinée.
L'invention concerne également un procédé de préparation de catalyseur adapté à l'hydroconversion/hydrotraitement de résidus par comalaxage de la phase active avec une alumine particulière. L'invention concerne enfin l'utilisation du catalyseur dans des procédés d'hydrotraitement, notamment l'hydrotraitement de charges lourdes.
Résumé de l'invention
L'invention concerne un procédé de préparation d'un catalyseur à phase active comalaxée, comprenant au moins un métal du groupe VI B de la classification périodique des éléments, éventuellement au moins un métal du groupe VIII de la classification périodique des éléments, éventuellement du phosphore et une matrice oxyde majoritairement aluminique calcinée, comprenant les étapes suivantes : a) Une étape de mise en solution d'un précurseur acide d'aluminium choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium dans l'eau, à une température comprise entre 20 et 90°C, à un pH compris entre 0,5 et 5, pendant une durée comprise entre 2 et 60 minutes ; b) Une étape d'ajustement du pH par ajout dans la suspension obtenue à l'étape a) d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium, à une température comprise entre 20 et 90°C, et à un pH compris entre 7 et 10, pendant une durée comprise entre 5 et 30 minutes ; c) Une étape de co-précipitation de la suspension obtenue à l'issue de l'étape b) par ajout dans la suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, au moins un des précurseurs basique ou acide comprenant de l'aluminium, le débit relatif des précurseurs acide et basique étant choisi de manière à obtenir un pH du milieu réactionnel compris entre 7 et 10 et le débit du ou des précurseurs acide et basique contenant de l'aluminium étant réglé de manière à obtenir une concentration en alumine finale dans la suspension comprise entre 10 et 38 g/L ;
d) une étape de filtration de la suspension obtenue à l'issue de l'étape c) de co- précipitation pour obtenir un gel d'alumine ;
e) une étape de séchage dudit gel d'alumine obtenu à l'étape d) pour obtenir une poudre,
f) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape e) à une température comprise entre 500 et 1000°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% volume d'eau pour obtenir un oxyde poreux aluminique calciné ;
g) une étape de malaxage de l'oxyde poreux aluminique calciné obtenu avec une solution comprenant au moins un précurseur de métal de la phase active pour obtenir une pâte ;
h) une étape de mise en forme de la pâte obtenue ;
i) une étape de séchage de la pâte mise en forme à une température inférieure ou égale à 200°C pour obtenir un catalyseur séché;
j) une étape éventuelle de traitement thermique du catalyseur séché à une température comprise entre 200 et 1000°C en présence ou non d'eau.
La concentration en alumine de la suspension de gel d'alumine obtenue à l'étape c) est de préférence comprise entre 13 et 35 g/l, de manière très préférée comprise entre 15 et 33 g/l, bornes incluses.
Le précurseur acide est avantageusement choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium, de préférence le sulfate d'aluminium. Le précurseur basique est avantageusement choisi parmi l'aluminate de sodium et l'aluminate de potassium, de préférence l'aluminate de sodium. De préférence, dans les étapes a), b), c) le milieu réactionnel aqueux est de l'eau et lesdites étapes opèrent sous agitation, en l'absence d'additif organique.
L'invention concerne également un catalyseur d'hydroconversion de structure poreuse bimodale comprenant :
- une matrice oxyde majoritairement aluminique calcinée
- une phase active hydro-déshydrogénante comprenant au moins un métal du Groupe VIB de la classification périodique des éléments, éventuellement au moins un métal du groupe VIII de la classification périodique des éléments, éventuellement du phosphore, ladite phase active étant au moins en partie comalaxée au sein de ladite matrice oxyde majoritairement aluminique calcinée,
ledit catalyseur présentant une surface spécifique Sbet supérieure à 100 m2/g, un diamètre médian mésoporeux en volume compris entre 12 et 25 nm, bornes incluses, un diamètre médian macroporeux en volume compris entre 250 et 1500 nm, bornes incluses, un volume mésoporeux tel que mesuré par intrusion au porosimètre à mercure, supérieur ou égal à 0,55 ml/g et un volume poreux total mesuré par porosimétrie au mercure supérieur ou égal à 0,70 ml/g.
De préférence, le diamètre médian mésoporeux en volume déterminé par intrusion au porosimètre à mercure est compris entre 13 et 17 nm, bornes incluses.
De préférence, le volume macroporeux est compris entre 10 et 40% du volume poreux total.
De préférence, le volume mésoporeux est supérieur à 0,70 ml/g.
De préférence, le catalyseur d'hydroconversion ne présente pas de micropores.
Avantageusement, la teneur en métal du groupe VI B est comprise entre 2 et 10% poids de trioxyde d'au moins du métal du groupe VI B par rapport à la masse totale du catalyseur, la teneur en métal du groupe VIII est comprise entre 0,0 et 3,6% en poids de l'oxyde d'au moins du métal du groupe VIII par rapport à la masse totale du catalyseur, la teneur en élément phosphore est comprise entre 0 à 5% en poids de pentoxyde de phosphore par rapport à la masse totale du catalyseur.
La phase active hydro-déshydrogénante peut être composée de molybdène ou de nickel et de molybdène ou de cobalt et de molybdène.
La phase active hydrodéshydrogénante peut comprendre également du phosphore.
De préférence, la phase active hydro-déshydrogénante est entièrement comalaxée.
Une partie de la phase active hydro-déshydrogénante peut être imprégnée sur la matrice oxyde majoritairement aluminique calcinée.
L'invention concerne également un procédé d'hydrotraitement d'une charge hydrocarbonée lourde choisie parmi les résidus atmosphériques, les résidus sous vide issus de la distillation directe, les huiles désasphaltées, les résidus issus des procédés de conversions tels que par exemple ceux provenant du coking, d'une hydroconversion en lit fixe, en lit bouillonnant ou encore en lit mobile, pris seuls ou en mélange comprenant la mise en contact de ladite charge avec de l'hydrogène et un catalyseur susceptible d'être préparé selon le procédé de l'invention ou un catalyseur tel que décrit ci-dessus.
Le procédé peut être réalisé en partie en lit bouillonnant à une température comprise entre 320 et 450°C, sous une pression partielle d'hydrogène comprise entre 3 MPa et 30 MPa, à une vitesse spatiale avantageusement comprise entre 0,1 et 10 volumes de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures avantageusement compris entre 100 et 3000 normaux mètres cubes par mètres cubes.
Le procédé peut être réalisé au moins en partie en lit fixe à une température comprise entre 320°C et 450°C, sous une pression partielle en hydrogène comprise entre 3 MPa et 30 MPa, à une vitesse spatiale comprise entre 0,05 et 5 volume de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures compris entre 200 et 5000 normaux mètres cubes par mètres cubes.
Ledit procédé peut être un procédé d'hydrotraitement de charge hydrocarbonée lourde de type résidus en lit fixe comprenant au moins :
a) une étape d'hydrodémétallation
b) une étape d'hydrodésulfuration
dans lequel le catalyseur selon l'invention est utilisé dans au moins une desdites étapes a) et b).
Description détaillée de l'invention
La demanderesse a découvert que le comalaxage d'une alumine issue d'un gel particulier préparé selon un procédé de préparation décrit ci-après avec une formulation métallique contenant au moins un élément du groupe VI B, éventuellement au moins un élément du groupe VIII et éventuellement l'élément phosphore permet l'obtention d'un catalyseur qui présente simultanément un volume poreux élevé (supérieur ou égal à 0,70 ml/g), un diamètre médian des mésopores, correspondant aux pores de diamètre compris entre 2 et 50 nm, élevé (compris entre 12 et 25 nm) et la présence d'une proportion de macropores, correspondant aux pores de diamètre supérieur à 50 nm, élevée (avantageusement un volume macroporeux compris entre 10 et 40% du volume poreux total), mais aussi des caractéristiques de phase active favorables à l'hydrotraitement.
En plus de la réduction du nombre d'étapes et donc du coût de fabrication, l'intérêt d'un comalaxage comparativement à une imprégnation est qu'on évite tout risque de bouchage partiel de la porosité du support lors du dépôt de la phase active et donc l'apparition de problèmes de limitation.
Par ailleurs, un tel catalyseur présente un gain significatif d'hydrodémétallation par rapport aux autres catalyseurs comalaxés, et requiert donc une température de fonctionnement plus faible que ceux-ci pour atteindre le même niveau de conversion des composés métallés. Terminologie et techniques de caractérisation
Le catalyseur mis en œuvre dans la présente invention présente une distribution poreuse spécifique, où les volumes macroporeux et mésoporeux sont mesurés par intrusion de mercure et le volume microporeux est mesuré par adsorption d'azote.
Par « macropores », on entend des pores dont l'ouverture est supérieure à 50 nm.
Par « mésopores », on entend des pores dont l'ouverture est comprise entre 2 nm et 50 nm, bornes incluses.
Par « micropores », on entend des pores dont l'ouverture est inférieure à 2 nm.
Dans l'exposé qui suit de l'invention, on entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society", 60, 309, (1938).
Dans l'exposé qui suit de l'invention, on entend par volume poreux total de l'alumine ou de la matrice majoritairement aluminique ou du catalyseur, le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar, utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage "Techniques de l'ingénieur, traité analyse et caractérisation, P 1050-5, écrits par Jean Charpin et Bernard Rasneur".
Afin d'obtenir une meilleure précision, la valeur du volume poreux total en ml/g donnée dans le texte qui suit correspond à la valeur du volume mercure total (volume poreux total mesuré par intrusion au porosimètre à mercure) en ml/g mesurée sur l'échantillon moins la valeur du volume mercure en ml/g mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Le volume des macropores et des mésopores du catalyseur est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar, utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au delà le mercure pénètre dans les pores de l'échantillon.
Le volume macroporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm. Le volume mésoporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.
Le volume des micropores est mesuré par porosimétrie à l'azote. L'analyse quantitative de la microporosité est effectuée à partir de la méthode "t" (méthode de Lippens-De Boer, 1965) qui correspond à une transformée de l'isotherme d'adsorption de départ comme décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Académie Press, 1999. On définit également le diamètre médian mésoporeux (Dp méso en nm) comme étant un diamètre tel que tous les pores de taille inférieure à ce diamètre constituent 50% du volume mésoporeux total déterminé par intrusion au porosimètre à mercure.
On définit également le diamètre médian macroporeux (Dp macro en nm) comme étant un diamètre tel que tous les pores de taille inférieure à ce diamètre constituent 50% du volume macroporeux total déterminé par intrusion au porosimètre à mercure.
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. Description générale du catalyseur
L'invention porte sur un catalyseur d'hydrotraitement/hydroconversion de résidus à phase active comalaxée, comprenant au moins un métal du groupe VI B de la classification périodique des éléments, éventuellement au moins un métal du groupe VIII de la classification périodique des éléments, éventuellement du phosphore et un support oxyde aluminique, son procédé de préparation et son utilisation dans un procédé d'hydrotraitement de charges lourdes hydrocarbonées telles que les résidus pétroliers (atmosphériques ou sous vide).
Le catalyseur selon l'invention se présente sous la forme d'une matrice comprenant pour sa majeure partie un oxyde réfractaire poreux calciné au sein de laquelle sont répartis les métaux de la phase active. L'invention porte également sur le procédé de préparation du catalyseur qui est conduit par comalaxage d'une alumine particulière avec une solution métallique de formulation adaptée à la cible métallique visée pour le catalyseur final.
Les caractéristiques du gel ayant conduit à l'obtention de l'alumine, ainsi que les propriétés texturales et les caractéristiques de phase active obtenues confèrent au catalyseur selon l'invention ses propriétés spécifiques.
Les métaux du groupe VI B sont avantageusement choisis parmi le molybdène et le tungstène, et de préférence ledit métal du groupe VI B est le molybdène.
Les métaux du groupe VIII sont avantageusement choisis parmi le fer, le nickel ou le cobalt et on préférera le nickel ou le cobalt, ou une combinaison des deux.
Les quantités respectives en métal du groupe VI B et en métal du groupe VIII sont avantageusement telles que le rapport atomique métal(aux) du groupe VIII sur métal(aux) du groupe VI B (VIII :VI B) soit compris entre 0.0:1 et 0,7:1 , de préférence entre 0,05:1 et 0,6:1 et de manière plus préférée entre 0,2:1 et 0,5:1 . Ce rapport peut notamment être ajusté selon le type de charge et le procédé utilisé. Les quantités respectives en métal du groupe VI B et en phosphore sont avantageusement telles que le rapport atomique phosphore sur métal(aux) du groupe VI B (P/VI B) soit compris entre 0,2:1 et 1 ,0:1 , de préférence entre 0,4:1 et 0,9:1 et de manière encore plus préférée entre 0,5:1 .0 et 0,85:1 .
La teneur en métal du groupe VI B est avantageusement comprise entre 2 et 10% poids de trioxyde du métal du groupe VI B par rapport à la masse totale du catalyseur, de préférence entre 3 et 8%, et de manière encore plus préférée entre 4 et 7% poids. La teneur en métal du groupe VIII, lorsqu'au moins un métal du groupe VIII est présent, est avantageusement comprise entre 0,0 et 3,6% en poids de l'oxyde du métal du groupe VIII par rapport à la masse totale du catalyseur, de préférence entre 0,4 et 2,5% et de manière encore plus préférée entre 0,7 et 1 ,8% poids. La teneur en élément phosphore, lorsqu'il est présent, est avantageusement comprise entre 0,0 à 5% en poids de pentoxyde de phosphore par rapport à la masse totale du catalyseur, de préférence entre 0,6 et 3,5% poids et de manière encore plus préférée entre 1 ,0 et 3,0 % poids. La matrice majoritairement aluminique calcinée dudit catalyseur selon l'invention comporte une teneur en alumine supérieure ou égale à 90% et une teneur en silice d'au plus 10% poids en équivalent Si02 par rapport à l'oxyde final, de préférence une teneur en silice inférieure à 5% poids, de manière très préférée une teneur inférieure à 2 % poids. La silice peut être introduite, par toute technique connue de l'homme du métier, lors de la synthèse du gel d'alumine ou lors du comalaxage.
De manière encore plus préférée, la matrice aluminique ne contient rien d'autre que de l'alumine.
Ledit catalyseur à phase active comalaxée selon l'invention est généralement présenté sous toutes les formes connues de l'Homme du métier. De préférence, il est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm. Celui-ci peut-être avantageusement présenté sous la forme d'extrudés cylindriques, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur. Le catalyseur comalaxé selon l'invention présente des propriétés texturales particulières.
Le catalyseur selon l'invention présente un volume poreux total (VPT) d'au moins 0,70 ml/g et de préférence d'au moins 0,80 ml/g. Dans un mode de réalisation préféré, le catalyseur présente un volume poreux total compris entre 0,80 et 1 ,00 ml/g.
Le catalyseur utilisé selon l'invention présente avantageusement un volume macroporeux, Vmacro ou V50nm , défini comme le volume des pores de diamètre supérieur à 50 nm, représentant entre 10 et 40% du volume poreux total, et de préférence entre 20 et 35% du volume poreux total. Dans un mode de réalisation très préféré, le volume macroporeux représente entre 25 et 35 % du volume poreux total.
Le volume mésoporeux (Vméso) du catalyseur est d'au moins 0,55 ml/g, de préférence d'au moins 0,60 ml/g. Dans un mode de réalisation préféré, le volume mésoporeux du catalyseur est compris entre 0,60 ml/g et 0,80 ml/g.
Le diamètre médian mésoporeux est compris entre 12 nm et 25 nm, bornes incluses, et de préférence entre 12 et 18 nm, bornes incluses. De manière très préférée, le diamètre mésoporeux moyen est compris entre 13 et 17 nm. Le catalyseur présente un diamètre médian macroporeux compris entre 250 et 1500 nm, de préférence compris entre 500 et 1000 nm, de manière encore plus préférée compris entre 600 et 800 nm.
Le catalyseur selon la présente invention présente une surface spécifique BET (SBET) d'au moins 100 m2/g, de préférence d'au moins 120 m2/g et de manière encore plus préférée comprise entre 150 et 250 m2/g.
De préférence, le catalyseur présente une faible microporosité, de manière très préférée aucune microporosité n'est décelable en porosimétrie azote. Si besoin, il est possible d'augmenter la teneur en métal en introduisant une deuxième partie de la phase active par imprégnation sur le catalyseur déjà comalaxé avec une première partie de la phase active. II est important de souligner que le catalyseur selon l'invention se distingue structurellement d'un catalyseur obtenu par simple imprégnation d'un précurseur sur un support d'alumine dans lequel l'alumine forme le support et la phase active est introduite dans les pores de ce support. Sans vouloir être lié par une quelconque théorie, il apparaît que le procédé de préparation du catalyseur selon l'invention par comalaxage d'un oxyde poreux aluminique particulier avec un ou plusieurs précurseurs de métaux permet d'obtenir un composite dans lequel les métaux et l'alumine sont intimement mélangés formant ainsi la structure même du catalyseur avec une porosité et une teneur en phase active adaptées aux réactions souhaitées. Procédé de préparation du catalyseur selon l'invention Principales étapes
Le catalyseur selon l'invention est préparé par co-malaxage d'un oxyde aluminique poreux obtenu à partir d'un gel d'alumine spécifique et du ou des précurseur(s) de métaux.
Le procédé de préparation du catalyseur selon l'invention comprend les étapes suivantes : Etapes a) à e) : Synthèse du gel précurseur de l'oxyde poreux
f) Traitement thermique de la poudre obtenue à l'issue de l'étape e);
g) Malaxage de l'oxyde poreux obtenu avec au moins un précurseur de la phase active h) Mise en forme de la pâte obtenue par malaxage, par exemple par extrusion
i) Séchage de la pâte mise en forme obtenue
j) Traitement thermique éventuel (de préférence sous air sec). Le solide obtenu à l'issu des étapes a) à f) subit une étape g/ de comalaxage. Il est ensuite mis en forme dans une étape h), puis peut ensuite être simplement séché à une température inférieure ou égale à 200°C (étape i) ou être séché, puis soumis à un nouveau traitement thermique de calcination dans une étape j) optionnelle. Avant son utilisation dans un procédé d'hydrotraitement, le catalyseur est habituellement soumis à une dernière étape de sulfuration. Cette étape consiste à activer le catalyseur en transformant, au moins en partie, la phase oxyde en milieu sulfo-réducteur. Ce traitement d'activation par sulfuration est bien connu de l'Homme du métier et peut être effectué par toute méthode déjà connue décrite dans la littérature. Une méthode de sulfuration classique bien connue de l'Homme du métier consiste à chauffer le mélange de solides sous flux d'un mélange hydrogène et hydrogène sulfuré ou sous flux d'un mélange d'hydrogène et d'hydrocarbures contenant des molécules soufrées à une température comprise entre 150 et 800°C, de préférence entre 250 et 600°C, généralement dans une zone réactionnelle à lit traversé.
Description détaillée du procédé de préparation
Le catalyseur à phase active comalaxée selon l'invention est préparé à partir d'un gel d'alumine spécifique, qui est séché et subit un traitement thermique, avant comalaxage avec la phase active, puis mise en forme.
Les étapes de préparation du gel d'alumine mis en œuvre lors de la préparation du catalyseur selon l'invention sont détaillées ci-dessous.
La préparation dudit gel d'alumine comprend trois étapes successives : a) étape de mise en solution d'un précurseur acide d'aluminium, b) étape d'ajustement du pH de la suspension au moyen d'un précurseur basique, et c) étape de co-précipitation d'au moins un précurseur acide et d'au moins un précurseur basique, l'un des deux au moins contenant de l'aluminium. A la fin de la synthèse proprement dite du gel d'alumine, c'est à dire à la fin de l'étape c), la concentration en alumine finale dans la suspension de gel d'alumine doit être comprise entre 10 et 38 g/L, préférentiellement entre 13 et 35 g/L et plus préférentiellement entre 15 et 33 g/L. a) Étape de mise en solution
L'étape a) est une étape de mise en solution d'un précurseur acide d'aluminium dans l'eau, réalisée à une température comprise entre 20 et 80°C, de manière préférée entre 20 et 75 °C et de manière plus préférée entre 30 et 70°C. Le précurseur acide d'aluminium est choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium, de préférence le sulfate d'aluminium. Le pH de la suspension obtenue est compris entre 0,5 et 5, de préférence entre 1 et 4, de manière préférée entre 1 ,5 et 3,5. Cette étape contribue avantageusement à une quantité d'alumine introduite par rapport à l'alumine finale comprise entre 0,5 et 4%, de préférence entre 1 et 3%, de manière très préférée entre 1 ,5 et 2,5%. La suspension est laissée sous agitation pendant une durée comprise entre 2 et 60 minutes, et de préférence de 5 à 30 minutes. b) Étape d'ajustement du pH
L'étape d'ajustement du pH b) consiste en l'ajout dans la suspension obtenue à l'étape a) d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium.
De manière préférée, le précurseur basique est un précurseur d'aluminium choisi parmi l'aluminate de sodium et l'aluminate de potassium. De manière très préférée, le précurseur basique est l'aluminate de sodium.
De préférence, le ou les précurseur(s) basique(s) et acide(s) sont ajoutés dans ladite étape d'ajustement du pH en solution aqueuse.
L'étape b) est réalisée à une température comprise entre 20 et 90°C, de manière préférée comprise entre 20 et 80 °C, et de manière plus préférée entre 30 et 70°C et à un pH compris entre 7 et 10, de préférence entre 8 et 10, de manière préférée entre 8,5 et 10 et de manière très préférée entre 8,7 et 9,9. La durée de l'étape b) d'ajustement du pH est comprise entre 5 et 30 minutes, de préférence entre 8 et 25 minutes, et de manière très préférée entre 10 et 20 minutes. c) Étape de co-précipitation (2e précipitation)
L'étape c) est une étape de précipitation de la suspension obtenue à l'issue de l'étape b) par ajout dans la suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, au moins un des précurseurs basique ou acide comprenant de l'aluminium, lesdits précurseurs étant choisis identiques ou non aux précurseurs introduits aux étapes a) et b). Le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 7 et 10 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir une concentration en alumine finale dans la suspension comprise entre 10 et 38 g/l, préférentiellement entre 13 et 35 g/l et plus préférentiellement entre 15 et 33 g/l.
De préférence, le ou les précurseur(s) basique(s) et acide(s) sont ajoutés dans ladite étape de co-précipitation en solution aqueuse. De manière préférée, l'étape de co-précipitation est conduite à une température comprise entre 20 et 90 °C, et de manière plus préférée entre 30 et 70°C.
L'étape c) de co-précipitation est réalisée à un pH compris entre 7 et 10, de préférence entre 8 et 10, de manière préférée entre 8,5 et 10 et de manière très préférée entre 8,7 et 9,9.
L'étape c) de co-précipitation est réalisée de préférence pendant une durée comprise entre 1 et 60 minutes, et de manière préférée de 5 à 45 minutes.
De préférence, lesdites étapes a), b), et c) sont réalisées en l'absence d'additif organique.
De préférence la synthèse du gel d'alumine (étapes a), b) et c)) est opérée sous agitation, d) Étape de filtration Le procédé de préparation de l'alumine selon l'invention comprend également une étape de filtration de la suspension obtenue à l'issue de l'étape c).
Ladite étape de filtration est réalisée selon les méthodes connues de l'homme du métier. Ladite étape de filtration est avantageusement suivie d'au moins une étape de lavage, avec une solution aqueuse, de préférence à l'eau, et de préférence d'une à trois étapes de lavage, avec une quantité d'eau égale à la quantité de précipité filtré. e) Étape de séchage
Conformément à l'invention, le gel d'alumine obtenu à l'issue de l'étape c) de précipitation, suivie d'une étape de filtration d), est séché dans une étape e) de séchage pour obtenir une poudre, ladite étape de séchage étant mise en œuvre avantageusement à une température supérieure ou égale à 120°C ou par atomisation ou par toute autre technique de séchage connue de l'homme du métier.
Dans le cas où ladite étape e) de séchage est mise en œuvre par séchage à une température supérieure à 120°C, ladite étape d) de séchage peut avantageusement être réalisée en étuve fermée et ventilée. De préférence ladite étape de séchage opère à une température comprise entre 120 et 300°C, de manière très préférée à une température comprise entre 150 et 250°C. Dans le cas où ladite étape e) de séchage est mise en œuvre par atomisation, le gâteau obtenu à l'issue de l'étape de deuxième précipitation, suivie d'une étape de filtration, est remis en suspension. Ladite suspension est ensuite pulvérisée en fines gouttelettes, dans une enceinte cylindrique verticale au contact d'un courant d'air chaud afin d'évaporer l'eau selon le principe bien connu de l'homme du métier. La poudre obtenue est entraînée par le flux de chaleur jusqu'à un cyclone ou un filtre à manche qui vont séparer l'air de la poudre.
De préférence, dans le cas où ladite étape e) de séchage est mise en œuvre par atomisation, l'atomisation est réalisée selon le protocole opératoire décrit dans la publication Asep Bayu Dani Nandiyanto, Kikuo Okuyama, Advanced Powder Technology, 22, 1 -19, 201 1 . f) Étape de traitement thermique
Conformément à l'invention, le matériau cru obtenu à l'issue de l'étape e) de séchage subit ensuite une étape f) de traitement thermique à une température comprise entre 500 et 1000°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% volume d'eau. De préférence, ledit traitement thermique est effectué en présence d'un flux d'air contenant de l'eau.
De préférence, ladite étape f) de traitement thermique opère à une température comprise entre 540°C et 850°C.
Ladite étape f) de traitement thermique permet la transition de la boehmite vers l'alumine finale.
L'étape de traitement thermique peut être précédée d'un séchage à une température comprise entre 50°C et 120°C, selon toute technique connue de l'homme du métier.
Conformément à l'invention, la poudre obtenue à l'issue de l'étape e) de séchage, après traitement thermique dans une étape f), est comalaxée avec le ou les précurseurs de métaux de la phase active, dans une étape g) de comalaxage permettant la mise en contact de la ou des solutions contenant la phase active avec la poudre, puis la mise en forme du matériau résultant pour obtenir le catalyseur dans une étape h). étape g) : Etape de comalaxage La phase active est apportée par une ou plusieurs solutions contenant au moins un métal du groupe VIB, éventuellement au moins un métal du groupe VIII et éventuellement l'élément phosphore. La(les)dite(s) solution(s) peu(ven)t être aqueuse(s), constituée(s) d'un solvant organique ou bien d'un mélange d'eau et d'au moins un solvant organique (par exemple l'éthanol ou le toluène). De préférence, la solution est aquo-organique et de manière encore plus préférée aquo-alcoolique. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide.
Parmi les composés qui peuvent être introduits dans la solution en tant que sources d'éléments du groupe VIII, figurent avantageusement : les citrates, oxalates, carbonates, hydroxycarbonates, hydroxydes, phosphates, sulfates, aluminates, molybdates, tungstates, oxydes, nitrates, halogénures, par exemple, chlorures, fluorures, bromures, acétates, ou tout mélange des composés énoncés ici. Concernant les sources de l'élément du groupe VIB qui sont bien connues de l'Homme du métier, figurent avantageusement par exemple pour le molybdène et le tungstène : les oxydes, hydroxydes, acides molybdiques et tungstiques et leurs sels, en particulier les sels d'ammonium, heptamolybdate d'ammonium, tungstate d'ammonium, l'acide phosphomolybdique, l'acide phosphotungstique et leurs sels. On utilise de préférence les oxydes ou les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium ou le tungstate d'ammonium.
La source de phosphore préférée est l'acide orthophosphorique, mais ses sels et esters comme les phosphates alcalins, phosphate d'ammonium, phosphate de gallium ou phosphates d'alkyles conviennent également. Les acides phosphoreux, par exemple l'acide hypophosphoreux, l'acide phosphomolybdique et ses sels, l'acide phosphotungstique et ses sels peuvent être avantageusement employés. Un additif, par exemple un agent chélatant de nature organique, peut avantageusement être introduit dans la solution si l'Homme du métier le juge nécessaire.
Tout autre élément, par exemple de la silice sous forme d'une solution ou émulsion de précurseur silicique, peut être introduit dans la cuve de malaxage au moment de cette étape.
Le comalaxage se déroule avantageusement dans un malaxeur, par exemple un malaxeur de type "Brabender" bien connu de l'homme du métier. La poudre d'alumine calcinée obtenue à l'étape f) et un ou plusieurs additifs ou éléments éventuels sont placés dans la cuve du malaxeur. Ensuite la solution de précurseurs de métaux, par exemple nickel et molybdène, et éventuellement de l'eau permutée sont ajoutées à la seringue pendant une durée de quelques minutes, typiquement environ 2 minutes à une vitesse de malaxage donnée. Après l'obtention d'une pâte, le malaxage peut être maintenu pendant quelques minutes, par exemple environ 15 minutes à 50 tr/min. Etape h) : Mise en forme
La pâte obtenue à l'issue de l'étape de comalaxage g) est ensuite mise en forme selon toute technique connue de l'homme du métier, par exemple les méthodes de mise en forme par extrusion, par pastillage, par la méthode de la goutte d'huile, ou par granulation au plateau tournant.
De préférence, ledit support utilisé selon l'invention est mis en forme par extrusion sous forme d'extrudés de diamètre généralement compris entre 0,5 et 10 mm et de préférence 0,8 et 3,2 mm. Dans un mode de réalisation préféré, il sera composés d'extrudés trilobés ou quadrilobés de taille comprise entre 1 ,0 et 2,5 mm de diamètre.
De manière très préférée, ladite étape g) de comalaxage et ladite étape h) de mise en forme sont réunies en une seule étape de malaxage-extrusion. Dans ce cas, la pâte obtenue à l'issue du malaxage peut être introduite dans un rhéomètre capillaire MTS au travers d'une filière ayant le diamètre souhaité, typiquement entre 0,5 et 10 mm.
Etape i) : Séchage
Conformément à l'invention, le catalyseur obtenu à l'issue de l'étape g) de comalaxage et de mise en forme h) subit un séchage i) à une température inférieure ou égale à 200°C, de préférence inférieure à 150°C, selon toute technique connue de l'homme du métier, pendant une durée avantageusement comprise entre 2 et 12 h.
Etape i) : traitement thermique ou hvdrothermique
Le catalyseur ainsi séché peut ensuite subir une étape complémentaire de traitement thermique ou hydrothermique j) à une température comprise entre 200 et 1000°C, de préférence entre 300 et 800°C et de manière encore plus préférée entre 350 et 550°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau. Plusieurs cycles combinés de traitements thermiques ou hydrothermiques peuvent être réalisés. Dans le cas où le catalyseur ne subit pas d'étape complémentaire de traitement thermique ou hydrothermique, le catalyseur est seulement avantageusement séché dans l'étape i).
Dans le cas où de l'eau serait ajoutée, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique (steaming) ou en pression autogène (autoclavage). En cas de steaming, la teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec. Selon l'invention, on peut envisager d'introduire tout ou partie des métaux cités lors du comalaxage de la(les) solution(s) métalliques avec l'oxyde poreux aluminique.
Dans un mode de réalisation, afin d'augmenter la teneur globale en phase active sur le catalyseur comalaxé, une partie des métaux reste introduite par imprégnation dudit catalyseur issu de l'étape g/ ou h/, selon toute méthode connue de l'Homme du métier, la plus fréquente étant celle de l'imprégnation à sec.
Dans un autre mode de réalisation, la totalité de la phase métallique est introduite au cours de la préparation par comalaxage de l'oxyde poreux aluminique et aucune étape supplémentaire d'imprégnation n'est donc nécessaire. De préférence, la phase active du catalyseur est entièrement comalaxée au sein de l'oxyde aluminique poreux calciné.
Description du procédé d'utilisation du catalyseur selon l'invention Le catalyseur selon l'invention peut être mis en œuvre dans des procédés d'hydrotraitement permettant de convertir des charges hydrocarbonées lourdes, contenant des impuretés soufrées et des impuretés métalliques. Un objectif recherché par l'utilisation des catalyseurs de la présente invention concerne une amélioration des performances, en particulier en hydrodémétallation et hydrodésulfuration, tout en améliorant la facilité de préparation par rapport aux catalyseurs connus de l'art antérieur. Le catalyseur selon l'invention permet une amélioration des performances en hydrodémétallation et en hydrodésasphaltage par rapport aux catalyseurs conventionnels, tout en présentant une grande stabilité dans le temps.
De manière générale, les procédés d'hydrotraitement permettant de convertir des charges hydrocarbonées lourdes, contenant des impuretés soufrées et des impuretés métalliques, opèrent à une température comprise entre 320 et 450°C, sous une pression partielle d'hydrogène comprise entre 3 MPa et 30 MPa, à une vitesse spatiale avantageusement comprise entre 0,05 et 10 volumes de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures avantageusement compris entre 100 et 5000 normaux mètres cubes par mètres cubes.
Charges
Les charges traitées dans le procédé selon l'invention sont avantageusement choisies parmi les résidus atmosphériques, les résidus sous vide issus de la distillation directe, les huiles désasphaltées, les résidus issus des procédés de conversion tels que par exemple ceux provenant du coking, d'une hydroconversion en lit fixe, en lit bouillonnant, ou encore en lit mobile, pris seuls ou en mélange. Ces charges peuvent avantageusement être utilisées telles quelles ou encore diluées par une fraction hydrocarbonée ou un mélange de fractions hydrocarbonées pouvant être choisies parmi les produits issus du procédé FCC, une huile de coupe légère (LCO selon les initiales de la dénomination anglo-saxonne de Light Cycle Oil), une huile de coupe lourde (HCO selon les initiales de la dénomination anglo-saxonne de Heavy Cycle Oil), une huile décantée (DO selon les initiales de la dénomination anglo- saxonne de Decanted Oil), un slurry, ou pouvant venir de la distillation, les fractions gazoles notamment celles obtenues par distillation sous vide dénommées selon la terminologie anglo-saxonne VGO (Vacuum Gas Oil). Les charges lourdes peuvent ainsi avantageusement comprendre des coupes issues du procédé de liquéfaction du charbon, des extraits aromatiques, ou toute autre coupe hydrocarbonée.
Lesdites charges lourdes présentent généralement plus de 1 % en poids de molécules ayant un point d'ébullition supérieur à 500°C, une teneur en métaux (Ni+V) supérieure à 1 ppm poids, de préférence supérieure à 20 ppm poids, de manière très préférée supérieure à 50 ppm poids, une teneur en asphaltènes, précipités dans l'heptane, supérieure à 0,05% en poids, de préférence supérieure à 1 % en poids, de manière très préférée supérieure à 2%.
Les charges lourdes peuvent avantageusement aussi être mélangées avec du charbon sous forme de poudre, ce mélange étant généralement appelé slurry. Ces charges peuvent avantageusement être des sous-produits issus de la conversion du charbon et mélangés de nouveau à du charbon frais. La teneur en charbon dans la charge lourde est généralement et de préférence un ratio ¼ (Oil/Coal) et peut avantageusement varier largement entre 0,1 et 1 . Le charbon peut contenir de la lignite, être un charbon sub-bitumineux (selon la terminologie anglo-saxonne), ou encore bitumineux. Tout autre type de charbon convient pour l'utilisation de l'invention, à la fois dans des réacteurs à lit fixe ou dans des réacteurs fonctionnant en lit bouillonnant.
Mise en œuyre du catalyseur selon l'invention
Conformément à l'invention, le catalyseur à phase active comalaxée est préférentiellement utilisé dans les premiers lits catalytiques d'un procédé comprenant successivement au moins une étape d'hydrodémétallation et au moins une étape d'hydrodésulfuration. Le procédé selon l'invention est avantageusement mis en œuvre dans un à dix réacteurs successifs, le ou les catalyseur(s) selon l'invention pouvant avantageusement être chargé(s) dans un ou plusieurs réacteurs et/ou dans tout ou partie des réacteurs.
Dans un mode de réalisation préféré, des réacteurs permutables, c'est à dire des réacteurs fonctionnant en alternance, dans lequel des catalyseurs d'hydrodémétallation selon l'invention peuvent de préférence être mis en œuvre, peuvent être utilisés en amont de l'unité. Dans ce mode de réalisation préféré, les réacteurs permutables sont suivis ensuite par des réacteurs en série, dans lequel sont mis en œuvre des catalyseurs d'hydrodésulfuration qui peuvent être préparés selon toute méthode connue de l'Homme du métier.
Dans un mode de réalisation très préféré, deux réacteurs permutables sont utilisés en amont de l'unité, avantageusement pour l'hydrodémétallation et contenant un ou plusieurs catalyseurs selon l'invention. Ils sont suivis avantageusement par un à quatre réacteurs en série, avantageusement utilisés pour l'hydrodésulfuration.
Le procédé selon l'invention peut avantageusement être mis en œuvre en lit fixe avec pour objectif l'élimination des métaux et du soufre et l'abaissement du point d'ébullition moyen des hydrocarbures. Dans le cas où le procédé selon l'invention est mis en œuvre en lit fixe, la température de mise en œuvre est avantageusement comprise entre 320°C et 450°C, de préférence 350°C à 410°C, sous une pression partielle en hydrogène avantageusement comprise entre 3 MPa et 30 MPa, de préférence entre 10 et 20 MPa, à une vitesse spatiale avantageusement comprise entre 0,05 et 5 volume de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures avantageusement compris entre 200 et 5000 normaux mètres cubes par mètres cubes, de préférence 500 à 1500 normaux mètres cubes par mètres cubes.
Le procédé selon l'invention peut aussi avantageusement être mis en œuvre pour partie en lit bouillonnant sur les mêmes charges. Dans le cas où le procédé selon l'invention est mis en œuvre en lit bouillonnant, le catalyseur est avantageusement mis en œuvre à une température comprise entre 320 et 450°C, sous une pression partielle d'hydrogène avantageusement comprise entre 3 MPa et 30 MPa, de préférence entre 10 et 20 MPa, à une vitesse spatiale avantageusement comprise entre 0,1 et 10 volumes de charge par volume de catalyseur et par heure, de préférence entre 0,5 et 2 volumes de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures avantageusement compris entre 100 et 3000 normaux mètres cubes par mètres cubes, de préférence entre 200 à 1200 normaux mètres cubes par mètres cubes. Selon un mode de réalisation préféré, le procédé selon l'invention est mis en œuvre en lit fixe.
Avant leur mise en œuvre dans le procédé selon l'invention, les catalyseurs de la présente invention sont de préférence soumis à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfures avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'Homme du métier et peut être effectué par toute méthode déjà connue déjà décrite dans la littérature. Une méthode de sulfuration classique bien connue de l'Homme du métier consiste à chauffer le mélange de solides sous flux d'un mélange hydrogène et hydrogène sulfuré ou sous flux d'un mélange d'hydrogène et d'hydrocarbures contenant des molécules soufrées à une température comprise entre 150 et 800°C, de préférence entre 250 et 600°C, généralement dans une zone réactionnelle à lit traversé.
Le traitement de sulfuration peut être effectué ex situ (avant l'introduction du catalyseur dans le réacteur d'hydrotraitement/hydroconversion) ou in situ au moyen d'un agent organosoufré précurseur d'H2S, par exemple le DMDS (diméthyldisulfure).
Les exemples suivant illustrent l'invention sans toutefois en limiter la portée. EXEMPLES
Exemples
Exemple 1 : Préparation des solutions métalliques A, B, C et D
Les solutions A, B, C et D utilisées pour la préparation des catalyseurs A1 , A2, A3, B1 , C1 , D1 , D3 ont été préparées par dissolution dans l'eau des précurseurs de phases suivants Mo03, Ni(OH)2, et éventuellement H3P04. L'ensemble de ces précurseurs provient de Sigma-Aldrich. La concentration en éléments des différentes solutions est indiquée dans le tableau suivant.
Tableau 1 : Concentration molaire des solution aqueuses préparées (exprimées en mol/l)
Figure imgf000029_0001
Exemple 2 : Préparation des catalyseurs comalaxés A1 , B1 , selon l'invention
Deux catalyseurs A1 et B1 conformes à l'invention sont préparés comme suit :
Préparation de l'alumine : lot AI(A1 )
Un réacteur de laboratoire d'une capacité d'environ 7000 ml est utilisé.
La synthèse se déroule à 70°C et sous agitation. On a un pied d'eau de 1679 ml. On prépare 5 I de solution à une concentration fixée à 27g/l en alumine dans la suspension finale et avec un taux de contribution de la première étape à 2,1 % de l'alumine totale. Étape a) de mise en solution :
On introduit 70 ml de sulfate d'aluminium dans le réacteur contenant le pied d'eau en une fois. L'évolution du pH, qui reste compris entre 2,5 et 3, est suivie pendant 10 min. Cette étape contribue à l'introduction de 2,1 % d'alumine par rapport à la masse totale d'alumine formée à l'issue de la synthèse du gel.
Étape b) d'ajustement du pH :
Après l'étape de mise en solution du sulfate d'aluminium, on ajoute progressivement environ 70 ml d'aluminate de sodium en solution. L'objectif est d'atteindre un pH compris entre 7 et 10 en une durée de 5 à 15 min.
Étape c) de co-précipitation :
Dans la suspension obtenue à l'étape b) sont ajoutés en 30 min :
1020 ml de sulfate d'aluminium, soit un débit de 34 ml/min,
1020 ml d'aluminate de sodium, soit un débit de 34 ml/min,
1 150 ml d'eau distillée, soit un débit de 38,3 ml/min.
Etape d) : A la fin de la synthèse, la suspension est filtrée et lavée plusieurs fois pour obtenir un gel d'alumine.
Etape e) : Le gâteau est sur-séché à l'étuve pendant au minimum une nuit à 200°C. On obtient la poudre que l'on doit mettre en forme.
Les caractéristiques principales du gel d'alumine obtenu à l'issue de l'étape e) sont rappelées tableau 2.
Tableau 2 : Caractéristiques du gel utilisé pour la préparation de l'alumine.
Teneur Teneur
Phase Perte au
en S en Na
détectée feu
(ppm) (ppm)
en DRX (%m/m)
Boehmite 20,7 350 60 Etape f) : La poudre obtenue est ensuite calcinée à 800°C pendant 2 h pour obtenir la transition de la boehmite vers l'alumine.
On obtient l'alumine AI(A1 ) servant de matrice au catalyseur A1 . Alumine : lot AKB1 )
L'alumine AI(B1 ) servant de matrice au catalyseur B1 est préparée de manière strictement identique à l'alumine décrite ci-dessus.
Obtention des catalyseurs A1 et B1
Les solutions d'imprégnations A et B ont respectivement été malaxées en présence des alumines AI(A1 ) et AI(B1 ) comme décrit ci-après pour obtenir les catalyseurs A1 et B1 .
Etape g)
Le comalaxage se déroule dans un malaxeur "Brabender" avec une cuve de 80 cm3 et une vitesse de malaxage de 30 tr/min. La poudre calcinée est placée dans la cuve du malaxeur. Ensuite la solution A ou B (MoNi(P)) est ajoutée à une vitesse de 15 tr/min. Le malaxage est maintenu 15 minutes après l'obtention d'une pâte.
Etape h) : Mise en forme La pâte ainsi obtenue est introduite dans une extrudeuse piston à travers une filière trilobée de diamètre 2,1 mm, avec une vitesse d'extrusion de 50 cm/min.
Etape i) : Séchage Les extrudés de catalyseur ainsi obtenus sont ensuite séchés une nuit à l'étuve à 80°C. Etape j) : Traitement thermique
Les extrudés séchés sont ensuite calcinés à 400°C pendant 2h sous flux d'air (VVH=1 L/h/g). Les catalyseurs ainsi calcinés Al et Bl présentent les caractéristiques reportées dans le Tableau 4 ci-après.
Exemple 3 (comparatif) : Préparation d'un catalyseur E préparé par imprégnation à sec d'un support aluminique mis en forme
Le catalyseur E est un catalyseur préparé par malaxage-extrusion de boehmite, suivi dans l'ordre d'une calcination et d'un traitement hydrothermal pour former un support S(E) avant imprégnation à sec d'une solution aqueuse de telle sorte que la teneur en métaux est la même que celle introduite par comalaxage sur le catalyseur A1 .
Préparation du support S(E)
Les solutions aqueuses précurseurs d'aluminate de sodium et de sulfate d'aluminium sont préparés à partir de solution mère.
Un réacteur de laboratoire d'une capacité d'environ 7000 ml est utilisé.
La synthèse se déroule à 70°C et sous agitation. On a un pied d'eau de 1679 ml.
On prépare 5L de solution à 60 g/l en alumine finale et avec un taux de contribution de la première étape à l'alumine totale fixée à 2,1 %.
Étape a) de mise en solution :
On introduit 156 ml de sulfate d'aluminium dans le réacteur contenant le pied d'eau en une fois. L'évolution du pH, qui reste compris entre 2,5 et 3, est suivie pendant 10 min. Cette étape contribue à l'introduction de 2,1 % d'alumine en poids par rapport à la masse totale d'alumine formée à l'issue de la synthèse du gel. Étape b) d'ajustement du pH :
Après l'étape de mise en solution du sulfate d'aluminium, on ajoute progressivement environ 156 ml d'aluminate de sodium. L'objectif est d'atteindre un pH compris entre 7 et 10 en une durée de 5 à 15 min.
Étape c) de co-précipitation :
Dans la suspension obtenue à l'étape b) sont ajoutés en 30 min :
2270 ml de sulfate d'aluminium, soit un débit de 76 ml/min,
2270 ml d'aluminate de sodium, soit un débit de 76 ml/min,
2600 ml d'eau distillée, soit un débit de 85,5 ml/min.
Le pH de co-précipitation est maintenu entre 7 et 10.
A la fin de la synthèse, la suspension est filtrée et lavée plusieurs fois.
Le gâteau est sur-séché à l'étuve pendant au minimum une nuit à 200°C. On obtient la poudre à mettre en forme. La mise en forme est réalisée sur malaxeur de type Brabender avec un taux d'acide (total, exprimé par rapport à l'alumine sèche) de 1 %, un taux de neutralisation de 20% et des pertes au feu acide et basique respectivement de 62 et 64%.
L'extrusion est effectuée sur une extrudeuse piston à travers une filière trilobée de diamètre 2,1 mm.
Après extrusion, les joncs sont séchés une nuit à 80°C et calcinés 2h à 800°C sous flux d'air humide en four tubulaire (VVH=1 l/h/g avec 30% d'eau). On obtient des extrudés de support S(E) ayant les caractéristiques reportées dans le Tableau 3.
Tableau 3 : exem pie de caractéristiques obtenues pour le support S(E)
Figure imgf000033_0001
Préparation du catalyseur E
Le support S(E) est ensuite imprégné d'une phase métallique NiMoP par la méthode dite à sec en utilisant les mêmes précurseurs que dans l'exemple 1 , soient Mo03, Ni(OH)2, H3P04. La concentration des métaux en solution fixe la teneur, celle-ci ayant été choisie de manière à être comparative avec celle du catalyseur A1 . Après imprégnation, le support imprégné subit une étape de mûrissement de 24 heures en atmosphère saturée en eau avant d'être séché 12 heures à 80°C sous air, puis calciné sous air à 400°C pendant 2 heures. On obtient le catalyseur E. Les teneurs en métaux ont été contrôlées et sont reportées dans le tableau 4.
Exemple 4 (comparatif) : Préparation d'un catalyseur comalaxé A2 non-conforme Pour obtenir le catalyseur A2, la solution A est malaxée en présence d'une alumine AI(A2) préparée de manière non-conforme, en ce que la concentration en alumine finale dans la suspension de l'étape c) est non-conforme à l'invention (60 g/1).
Préparation de l'alumine AI(A2)
Les solutions aqueuses précurseurs d'aluminate de sodium et de sulfate d'aluminium sont préparés à partir de solution mère.
Un réacteur de laboratoire d'une capacité d'environ 7000 ml est utilisé.
La synthèse se déroule à 70°C et sous agitation. On a un pied d'eau de 1679 ml.
On prépare 51 de solution à 60g/l en alumine finale et avec un taux de contribution de la première étape à 2,1 %.
Étape a) de mise en solution :
On introduit 156 ml de sulfate d'aluminium dans le réacteur contenant le pied d'eau en une fois. L'évolution du pH, qui reste compris entre 2,5 et 3, est suivie pendant 10 min. Cette étape contribue à l'introduction de 2,1 % en poids d'alumine par rapport à la masse totale d'alumine formée à l'issue de la synthèse du gel. Étape b) d'ajustement du pH :
Après l'étape de mise en solution du sulfate d'aluminium, on ajoute progressivement environ 156 ml d'aluminate de sodium. L'objectif est d'atteindre un pH compris entre 7 et 10 en une durée de 5 à 15 min.
Étape c) de co-précipitation : Dans la suspension obtenue à l'étape b) sont ajoutés en 30 min :
2270 ml de sulfate d'aluminium, soit un débit de 76 ml/min,
2270 ml d'aluminate de sodium, soit un débit de 76 ml/min,
2600 ml d'eau distillée, soit un débit de 85,5 ml/min. Le pH de co-précipitation est maintenu entre 7 et 10.
A la fin de la synthèse, la suspension est filtrée et lavée plusieurs fois.
Le gâteau est sur-séché à l'étuve pendant au minimum une nuit à 200°C. La poudre obtenue est ensuite calcinée à 800°C pendant 2 h.
Préparation du catalyseur A2
Le comalaxage se déroule dans un malaxeur "Brabender" avec une cuve de 80 cm3 et une vitesse de malaxage de 50 tr/min. La poudre calcinée est placée dans la cuve du malaxeur. Ensuite la solution A de MoNi(P) est ajoutée à une vitesse de 15 tr/min. Le malaxage est maintenu 15 minutes après l'obtention d'une pâte. La pâte ainsi obtenue est introduite dans une extrudeuse piston à travers une filière 2,1 mm. Les extrudés ainsi obtenus sont ensuite séchés une nuit à l'étuve à 80°C puis calcinés à 400°C, 2h sous air (1 l/h/g). Le catalyseur A2 obtenu présente les caractéristiques reportées dans le Tableau 4. Il présente notamment un volume macroporeux exagérément élevé, au détriment du volume mésoporeux qui reste faible et du diamètre médian mésoporeux (Dpméso) qui reste faible (inférieur à 8 nm). Exemple 5 (comparatif) : Préparation de catalyseur comalaxé A3, non conforme
Préparation de la boehmite B(A3)
La préparation de la boehmite est effectuée de manière identique aux étapes a) à e) du procédé de
préparation de l'alumine AI(A1 ), mais aucune étape f) de traitement thermique n'intervient. Un réacteur de laboratoire d'une capacité d'environ 7000 ml est utilisé.
La synthèse se déroule à 70°C et sous agitation. On a un pied d'eau de 1679 ml.
On prépare 5 I de solution à une concentration fixée à 27 g/l en alumine dans la suspension finale et avec un taux de contribution de la première étape à 2,1 % de l'alumine totale.
Étape a) de mise en solution :
On introduit 70 ml de sulfate d'aluminium dans le réacteur contenant le pied d'eau en une fois. L'évolution du pH, qui reste compris entre 2,5 et 3, est suivie pendant 10 min. Cette étape contribue à l'introduction de 2,1 % d'alumine par rapport à la masse totale d'alumine formée à l'issue de la synthèse du gel.
Étape b) d'ajustement du pH :
Après l'étape de mise en solution du sulfate d'aluminium, on ajoute progressivement environ 70 ml d'aluminate de sodium. L'objectif est d'atteindre un pH compris entre 7 et 10 en une durée de 5 à 15 min. Étape c) de co-précipitation :
Dans la suspension obtenue à l'étape b) sont ajoutés en 30 min :
1020 ml de sulfate d'aluminium, soit un débit de 34 ml/min,
1020 ml d'aluminate de sodium, soit un débit de 34 ml/min,
1 150 ml d'eau distillée, soit un débit de 38,3 ml/min.
Le pH de co-précipitation est maintenu entre 7 et 10. A la fin de la synthèse, la suspension est filtrée et lavée plusieurs fois (étape d)).
Le gâteau est séché (étape e)) à l'étuve pendant au minimum une nuit à 200°C. On obtient la poudre B(A3) que l'on doit mettre en forme. Aucune calcination de la poudre n'intervient à ce stade.
Préparation du catalyseur A3
La solution A est ensuite malaxée en présence de la poudre de précurseur d'alumine B(A3)(sous forme AIOOH) préparé ci-avant jusqu'à l'étape e) de séchage. La poudre n'étant pas calcinée, il s'agit donc d'une poudre de boehmite. Les conditions de malaxage-extrusion mise en œuvre sont rigoureusement les mêmes que celles décrites précédemment (exemple 4). Les extrudés ainsi obtenus sont ensuite séchés une nuit à l'étuve à 80°C, puis calcinés à 400°C, 2h sous air (1 l/h/g).
Le catalyseur A3 présente les caractéristiques reportées dans le Tableau 4. Par rapport au catalyseur A2, le volume macroporeux est plus bas, mais il reste élevé, au détriment d'un volume mésoporeux très faible. Le diamètre médian mésoporeux (Dpméso) est inchangé par rapport au catalyseur A2, donc faible (inférieur à 8 nm).
Tableau 4 : Propriétés des catalyseurs préparés
Figure imgf000038_0001
Analyses des teneurs en métaux (par fluorescence des rayons X)
%pds Mo03 imprégné 6,05 6,12 8,17 5,94 5,89
%pds NiO imprégné 1 ,44 1 ,48 1 ,94 1 ,45 1 ,47
%pds P205 imprégné 1 ,68 1 ,63 2,25 1 ,58 1 ,59
Exemple 6 : Évaluation en test molécules modèles des catalyseurs A1 , B1 , A2, A3, et E
Dans les applications telles que l'hydrotraitement en particulier, des distillais sous vide et des résidus, la fonction hydro-déshydrogénante joue un rôle critique compte tenu de la teneur importante en composés aromatiques de ces charges. Le test d'hydrogénation du toluène a donc été utilisé pour connaître l'intérêt de catalyseurs destinés à des applications telles que celles ciblées ici, en particulier l'hydrotraitement de résidus. Les catalyseurs précédemment décrits dans les exemples 2 à 5, sont sulfurés in situ en dynamique dans le réacteur tubulaire à lit fixe traversé d'une unité pilote de type Microcat (constructeur : société Vinci), les fluides circulant de haut en bas. Les mesures d'activité hydrogénante sont effectuées immédiatement après la sulfuration sous pression et sans remise à l'air avec la charge d'hydrocarbures qui a servi à sulfurer les catalyseurs.
La charge de sulfuration et de test est composée de 5,8 % de diméthyldisulfure (DMDS), 20 % de toluène et 74,2 % de cyclohexane (en poids).
La sulfuration est effectuée de température ambiante jusqu'à 350°C, avec une rampe de température de 2°C/min, une VVH = 4 h"1 et H2/HC = 450 Nl/I. Le test catalytique est effectué à 350°C à VVH = 2 h"1 et H2/HC équivalent à celui de la sulfuration, avec prélèvement minimum de 4 recettes qui sont analysées par chromatographie en phase gazeuse.
On mesure ainsi les activités catalytiques stabilisées de volumes égaux de catalyseurs dans la réaction d'hydrogénation du toluène.
Les conditions détaillées de mesure d'activité sont les suivantes :
- Pression totale : 6,0 MPa
- Pression de toluène : 0,37 MPa
- Pression de cyclohexane : 1 ,42 MPa
- Pression de méthane 0,22 MPa
- Pression d'hydrogène : 3,68 MPa
- Pression d'H2S : 0,22 MPa
- Volume de catalyseur : 4 cm3 (extrudés de longueur comprise entre 2 et 4 mm)
- Vitesse spatiale horaire : 2 h" 1
- Température de sulfuration et de test : 350 °C Des prélèvements de l'effluent liquide sont analysés par chromatographie en phase gazeuse. La détermination des concentrations molaires en toluène non converti (T) et des concentrations ses produits d'hydrogénation (le méthylcyclohexane (MCC6), l'éthylcyclopentane (EtCC5) et les diméthylcyclopentanes (DMCC5)) permettent de calculer un taux d'hydrogénation de toluène XHYD défini par : MCC6 + EtCC + DMCC5
%) = 100x- T + MCC6 + EtCCS + DMCC5
La réaction d'hydrogénation du toluène étant d'ordre 1 dans les conditions de test mises en œuvre et le réacteur se comportant comme un réacteur piston idéal, on calcule l'activité hydrogénante Αμγρ des catalyseurs en appliquant la formule :
Figure imgf000040_0001
Le tableau 5 ci-dessous permet de comparer les activités hydrogénantes relatives des catalyseurs.
Tableau 5 : Comparaison des performances en hydrogénation du toluène des catalyseurs selon l'invention (A1 , B1 ) et comparaison avec les catalyseurs non conformes
A2, A3 et E
Figure imgf000040_0002
Ces résultats catalytiques montrent l'effet particulier du comalaxage d'une solution métallique avec une alumine selon le procédé de préparation selon l'invention, à savoir une activité hydrogénante au moins maintenue, par rapport à un catalyseur de référence imprégné par une teneur en phase active équivalente (catalyseur E), et bien meilleures que pour les catalyseurs comalaxés à partir d'alumine calcinée issue de gel d'alumine préparé de manière non-conforme (catalyseur A2) ou à partir de boehmite (catalyseur A3), avec un coût de fabrication moindre et une facilité de préparation améliorée. Exemple 7 : Évaluation en test batch des catalyseurs A1 , B1 , A2, A3, et E
Les catalyseurs A1 et B1 préparés selon l'invention, mais aussi les solides comparatifs A2, A3 et E ont été soumis à un test catalytique en réacteur batch parfaitement agité, sur une charge RSV Arabian Light (dont les caractéristiques sont décrites dans le Tableau 6). Tableau 6 : Caractéristiques de la charge RSV Arabian Light utilisée
Figure imgf000041_0001
Pour ce faire, après une étape de sulfuration ex-situ par circulation d'un mélange gazeux H2S/H2 durant 2 heures à 350°C, 15 ml de catalyseur est chargé à l'abri de l'air dans le réacteur batch puis est recouvert de 90 ml de charge. Les conditions opératoires appliquées sont ensuite les suivantes :
Tableau 7 : Conditions opératoires mises en œuvre en réacteur batch
Figure imgf000041_0002
A la fin de l'essai, le réacteur est refroidi et après un triple strippage de l'atmosphère sous azote (10 minutes à 1 MPa), l'effluent est recueilli et analysé par fluorescence des rayons X (soufre et métaux) Le taux d'HDS est défini de la façon suivante HDS (%) = ((% pds S)charge-(% pds S)recette)/(% pds S)charge x 100
De la même manière, le taux d'HDM est défini de la façon suivante :
HDM (%) = ((ppm pds Ni+V)charge-(ppm pds Ni+V)reCette)/(ppm pds Ni+V)charge x 100
Les performances des catalyseurs sont résumées dans le Tableau 8. On montre clairement qu'en réalisant le comalaxage selon l'invention, en plus de réduire le coût de fabrication du catalyseur, on observe des performances au moins aussi bonnes que pour des catalyseurs préparés par imprégnation à sec, et bien meilleures que pour les catalyseurs comalaxés à partir de supports non-conformes (concentration en alumine du gel non-conforme ou comalaxage à partir de poudre de boehmite non calcinée) ;
Tableau 8 : Performances HDS, HDM des catalyseurs selon l'invention (A1 , B1 ) et comparaison avec les catalyseurs non conformes A2, A3 et E
Figure imgf000042_0001
L'utilisation d'un gel d'alumine spécifique selon le protocole décrit permet d'obtenir des catalyseurs à phase active comalaxée à bas coût et avec des performances en hydrodésulfuration et hydrodémétallation maintenues.
Exemple 8 : Évaluation en hydrotraitement en lit fixe des catalyseurs A1 et B1 selon l'invention et comparaison avec les performances catalytiques du catalyseur E.
Les catalyseurs A1 et B1 préparés selon l'invention ont été comparés en test d'hydrotraitement de résidus pétroliers avec en comparaison les performances du catalyseur E. La charge est constituée d'un mélange entre un résidu atmosphérique (RA) d'origine Moyen Orient (Arabian médium) et un résidu sous vide (Arabian Light). La charge correspondante se caractérise par de fortes teneurs en Carbone Conradson (14,4 % en poids) et asphaltènes (6,1 % en poids) et une quantité élevée de nickel (25 ppm en poids), vanadium (79 ppm en poids) et soufre (3,90 % en poids). Les caractéristiques complètes de ces charges sont reportées dans le Tableau 9. Tableau 9 : Caractéristiques des charges RA AM/RSV AL utilisées pour les essais
Figure imgf000043_0001
Après une étape de sulfuration par circulation dans le réacteur d'une coupe gazole additionnée de DMDS à une température finale de 350°C, on opère l'unité avec le résidu pétrolier décrits ci-dessous dans les conditions opératoires du Tableau 10.
Tableau 10 : Conditions opératoires mises en œuvre en réacteur en lit fixe
Figure imgf000043_0002
On injecte le mélange de charges RA AM/RSV AL, puis on monte à la température de l'essai. Après une période de stabilisation de 300 heures, les performances en hydrodésulfuration (HDS) et en hydrodémétallation (HDM) sont relevées.
Les performances obtenues (Tableau 1 1 ) confirment les résultats de l'exemple 7, c'est-à-dire les bonnes performances des catalyseurs comalaxés selon l'invention par rapport au catalyseur de référence, préparé selon les méthodes d'imprégnation à sec. Toutefois, un gain de coût de préparation et une plus grande facilité de celle-ci est présenté par la voie de préparation selon l'invention.
Tableau 1 1 : Performances HDS, HDM des catalyseurs A1 et B1 par rapport au
catalyseur comparatif E
Figure imgf000044_0001
Exemple 9 : Préparation des catalyseurs comalaxés C1 et D1 (selon l'invention) pour l'hydroconversion et du catalyseur D3 préparé par comalaxage avec une poudre de boehmite (comparatif).
Les solutions d'imprégnations C et D telles que préparées à l'exemple 1 sont malaxées en présence de la première alumine AI(A1 ) utilisée pour la synthèse du catalyseur A1 , conformément au protocole décrit à l'exemple 2, pour obtenir respectivement les catalyseurs C1 et D1 .
Les catalyseurs C1 et D1 présentent les caractéristiques reportées dans le Tableau 12 ci- après.
La poudre de boehmite B(A3) préparée dans l'exemple 5 est comalaxée avec la solution D selon le protocole décrit dans l'exemple 5 pour obtenir le catalyseur D3.
Tableau 12 : Catalyseurs d'hydroconversion préparés
Figure imgf000045_0001
Exemple 10 : Évaluation en test batch dans les conditions de l'hydroconversion des catalyseurs C1 , D1 et D3.
Les catalyseurs C1 , et D1 préparés selon l'invention, mais aussi le catalyseur comparatif D3 ont été soumis à un test catalytique en réacteur batch parfaitement agité, sur une charge de type RSV Safanyia (Arabian Lourd, voir caractéristiques dans le Tableau 13). Tableau 13 : Caractéristiques de la charge RSV Safanyia utilisée
Figure imgf000046_0001
Pour ce faire, après une étape de sulfuration ex-situ par circulation d'un mélange gazeux H2S/H2 durant 2 heures à 350°C, un volume de 15 ml de catalyseur est chargé à l'abri de l'air dans le réacteur batch, puis est recouvert de 90 ml de charge. Les conditions opératoires appliquées sont ensuite les suivantes :
Tableau 14 : Conditions opératoires mises en œuvre en réacteur batch (hydroconversion)
Figure imgf000046_0002
A la fin de l'essai, le réacteur est refroidi et après un triple strippage de l'atmosphère sous azote (10 minutes à 1 MPa), l'effluent est recueilli et analysé par fluorescence des rayons X (soufre et métaux) et par distillation simulée (ASTM D7169).
Le taux d'HDS est défini de la façon suivante :
HDS (%) = ((% pdS S)charge-(% pdS S)reCetie)/(% pdS S)charge X 100 De la même manière, le taux d'HDM est défini de la façon suivante :
HDM (%) = ((ppm pds Ni+V)charge-(ppm pds Ni+V)recette)/(ppm pds Ni+V)charge x 100 Enfin, le taux de conversion de la fraction 540°C+ est défini par la relation suivante :
HDX54o+ (%) = ((X540+)charge-(X540+)effluent)/(X540+)charge X 100
Les performances des catalyseurs sont résumées dans le Tableau 15. On montre clairement qu'en réalisant le comalaxage selon l'invention (catalyseurs C1 et D1 ), en plus de réduire le coût de fabrication du catalyseur, on observe des performances globales au moins aussi bonnes que pour des catalyseurs comalaxés à partir de boehmite (catalyseur D3), et meilleures en ce qui concerne l'hydrotraitement du résidu sous vide (RSV) et la proportion de sédiments formés. Dans la suite, les résultats sont présentés en positionnant par définition le catalyseur comparatif à 100. Les taux d'hydrodésulfuration HDS, hydrodémétallation HDM, conversion et sédiments sont ensuite placés par rapport à ce niveau 100 de référence.
Tableau 15 : Performances HDS, HDM des catalyseurs selon l'invention (C1 , D1 ) et comparaison avec le catalyseur non conforme D3
Figure imgf000047_0001

Claims

REVENDICATIONS
Procédé de préparation d'un catalyseur à phase active comalaxée, comprenant au moins un métal du groupe VI B de la classification périodique des éléments, éventuellement au moins un métal du groupe VIII de la classification périodique des éléments, éventuellement du phosphore et une matrice oxyde majoritairement aluminique calcinée, comprenant les étapes suivantes : a) Une étape de mise en solution d'un précurseur acide d'aluminium choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium dans l'eau, à une température comprise entre 20 et 90°C, à un pH compris entre 0,5 et 5, pendant une durée comprise entre 2 et 60 minutes ; b) Une étape d'ajustement du pH par ajout dans la suspension obtenue à l'étape a) d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium, à une température comprise entre 20 et 90°C, et à un pH compris entre 7 et 10, pendant une durée comprise entre 5 et 30 minutes ; c) Une étape de co-précipitation de la suspension obtenue à l'issue de l'étape b) par ajout dans la suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, au moins un des précurseurs basique ou acide comprenant de l'aluminium, le débit relatif des précurseurs acide et basique étant choisi de manière à obtenir un pH du milieu réactionnel compris entre 7 et 10 et le débit du ou des précurseurs acide et basique contenant de l'aluminium étant réglé de manière à obtenir une concentration en alumine finale dans la suspension comprise entre 10 et 38 g/l ;
d) une étape de filtration de la suspension obtenue à l'issue de l'étape c) de co- précipitation pour obtenir un gel d'alumine ;
e) une étape de séchage dudit gel d'alumine obtenu à l'étape d) pour obtenir une poudre, f) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape e) à une température comprise entre 500 et 1000°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% volume d'eau pour obtenir un oxyde poreux aluminique calciné ;
g) une étape de malaxage de l'oxyde poreux aluminique calciné obtenu avec une solution comprenant au moins un précurseur de métal de la phase active pour obtenir une pâte ;
h) une étape de mise en forme de la pâte obtenue ;
i) une étape de séchage de la pâte mise en forme à une température inférieure ou égale à 200°C pour obtenir un catalyseur séché;
j) une étape éventuelle de traitement thermique du catalyseur séché à une température comprise entre 200 et 1000°C en présence ou non d'eau.
2. Procédé selon la revendication 1 dans lequel la concentration en alumine de la suspension de gel d'alumine obtenue à l'étape c) est comprise entre 13 et 35 g/l.
3. Procédé selon la revendication 2 dans lequel la concentration en alumine de la suspension de gel d'alumine obtenue à l'étape c) est comprise entre 15 et 33 g/l.
4. Procédé selon l'une des revendications 1 à 3 dans lequel le précurseur acide est choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium.
5. Procédé selon l'une des revendications 1 à 4 dans lequel le précurseur basique est choisi parmi l'aluminate de sodium et l'aluminate de potassium.
6. Procédé selon l'une des revendications 1 à 5 dans lequel dans les étapes a), b), c) le milieu réactionnel aqueux est de l'eau et lesdites étapes opèrent sous agitation, en l'absence d'additif organique.
7. Catalyseur d'hydroconversion de structure poreuse bimodale comprenant :
- une matrice oxyde majoritairement aluminique calcinée
- une phase active hydro-déshydrogénante comprenant au moins un métal du Groupe VIB de la classification périodique des éléments, éventuellement au moins un métal du groupe VIII de la classification périodique des éléments, éventuellement du phosphore, ladite phase active étant au moins en partie comalaxée au sein de ladite matrice oxyde majoritairement aluminique calcinée,
ledit catalyseur présentant une surface spécifique SBET supérieure à 100 m2/g, un diamètre médian mésoporeux en volume compris entre 12 et 25 nm, bornes incluses, un diamètre médian macroporeux en volume compris entre 250 et 1500 nm, bornes incluses, un volume mésoporeux tel que mesuré par intrusion au porosimètre à mercure, supérieur ou égal à 0,55 ml/g et un volume poreux total mesuré par porosimétrie au mercure supérieur ou égal à 0,70 ml/g.
8. Catalyseur d'hydroconversion selon la revendication 7 présentant un diamètre médian mésoporeux en volume déterminé par intrusion au porosimètre à mercure compris entre 13 et 17 nm, bornes incluses.
9. Catalyseur d'hydroconversion selon l'une des revendications 7 à 8 présentant un volume macroporeux représentant entre 10 et 40% du volume poreux total.
10. Catalyseur d'hydroconversion selon l'une des revendications 7 à 9 dans lequel le volume mésoporeux est supérieur à 0,70 ml/g.
1 1 . Catalyseur d'hydroconversion selon l'une des revendications 7 à 10 ne présentant pas de micropores.
12. Catalyseur d'hydroconversion selon l'une des revendications 7 à 1 1 dans lequel la teneur en métal du groupe VI B est comprise entre 2 et 10% poids de trioxyde de métal du groupe VI B par rapport à la masse totale du catalyseur, la teneur en métal du groupe VIII est comprise entre 0,0 et 3,6% en poids de l'oxyde de métal du groupe VIII par rapport à la masse totale du catalyseur, la teneur en élément phosphore est comprise entre 0 à 5% en poids de pentoxyde de phosphore par rapport à la masse totale du catalyseur.
13. Catalyseur d'hydroconversion selon l'une des revendications précédentes dans lequel la phase active hydro-déshydrogénante est composée de molybdène ou de nickel et de molybdène ou de cobalt et de molybdène.
14. Catalyseur d'hydroconversion selon la revendication 13 dans lequel la phase active hydrodéshydrogénante comprend également du phosphore.
15. Procédé d'hydrotraitement d'une charge hydrocarbonée lourde choisie parmi les résidus atmosphériques, les résidus sous vide issus de la distillation directe, les huiles désasphaltées, les résidus issus des procédés de conversions d'une hydroconversion en lit fixe, en lit bouillonnant ou encore en lit mobile, pris seuls ou en mélange comprenant la mise en contact de ladite charge avec de l'hydrogène et avec un catalyseur susceptible d'être préparé selon l'une des revendications 1 à 6 ou un catalyseur selon l'une des revendications 7 à 14.
16. Procédé d'hydrotraitement selon la revendication 15 réalisé en partie en lit bouillonnant à une température comprise entre 320 et 450°C, sous une pression partielle d'hydrogène comprise entre 3 MPa et 30 MPa, à une vitesse spatiale comprise entre 0,1 et 10 volumes de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures compris entre 100 et 3000 normaux mètres cubes par mètres cubes.
17. Procédé d'hydrotraitement selon la revendication 15 ou 16 réalisé au moins en partie en lit fixe à une température comprise entre 320°C et 450°C, sous une pression partielle en hydrogène comprise entre 3 MPa et 30 MPa, à une vitesse spatiale comprise entre 0,05 et 5 volume de charge par volume de catalyseur et par heure, et avec un rapport hydrogène gazeux sur charge liquide d'hydrocarbures compris entre 200 et 5000 normaux mètres cubes par mètres cubes.
18. Procédé d'hydrotraitement de charge hydrocarbonée lourde de type résidus en lit fixe selon la revendication 17 comprenant au moins :
a) une étape d'hydrodémétallation
b) une étape d'hydrodésulfuration
dans lequel ledit catalyseur est utilisé dans au moins une desdites étapes a) et b).
PCT/EP2015/062822 2014-06-13 2015-06-09 Catalyseur a porosite bimodal, son procede de preparation par comalaxage de la phase active et son utilisation en hydrotraitement de residus d'hydrocarbures WO2015189196A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017100960A RU2687084C2 (ru) 2014-06-13 2015-06-09 Катализатор с бимодальным распределением пор, способ его получения путем перемешивания с активной фазой и его применение в гидрообработке углеводородных остатков
CN201580043355.1A CN106922134B (zh) 2014-06-13 2015-06-09 具有双峰孔隙度的催化剂,通过共拌和活性相来制备它的方法及其用于烃残余物的加氢的用途
EP15729134.5A EP3154680A1 (fr) 2014-06-13 2015-06-09 Catalyseur a porosite bimodal, son procede de preparation par comalaxage de la phase active et son utilisation en hydrotraitement de residus d'hydrocarbures
US15/318,561 US20170120229A1 (en) 2014-06-13 2015-06-09 Active phase bimodal commixed catalyst, process for its preparation and use in hydrotreating residue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455416A FR3022157B1 (fr) 2014-06-13 2014-06-13 Catalyseur bimodal a phase active comalaxee, son procede de preparation et son utilisation en hydrotraitement de residus
FR1455416 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015189196A1 true WO2015189196A1 (fr) 2015-12-17

Family

ID=51298852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/062822 WO2015189196A1 (fr) 2014-06-13 2015-06-09 Catalyseur a porosite bimodal, son procede de preparation par comalaxage de la phase active et son utilisation en hydrotraitement de residus d'hydrocarbures

Country Status (6)

Country Link
US (1) US20170120229A1 (fr)
EP (1) EP3154680A1 (fr)
CN (1) CN106922134B (fr)
FR (1) FR3022157B1 (fr)
RU (1) RU2687084C2 (fr)
WO (1) WO2015189196A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
WO2021105252A1 (fr) * 2019-11-29 2021-06-03 Rhodia Operations Alumine présentant un profil poreux particulier
CN112892612B (zh) * 2019-12-03 2023-01-17 中国石化集团金陵石油化工有限责任公司 一种用于烃类转化反应的催化剂
CN113559889B (zh) * 2020-04-28 2023-09-05 中国石油化工股份有限公司 改性含磷拟薄水铝石及其制备方法和改性含磷氧化铝及加氢催化剂
CN113562749B (zh) * 2020-04-28 2023-05-05 中国石油化工股份有限公司 一种具有双峰孔结构的含磷氧化铝及其制备方法和应用
CN113559875B (zh) * 2020-04-28 2023-09-05 中国石油化工股份有限公司 加氢催化剂及其制备方法和应用
CN111604074B (zh) * 2020-06-29 2022-12-13 煤炭科学技术研究院有限公司 一种煤焦油双峰孔结构加氢预处理催化剂及其制备方法
CN114425352B (zh) * 2020-10-29 2023-08-08 中国石油化工股份有限公司 一种含卤素的重油加氢催化剂及其制备方法和重油加氢处理方法
CN114425324B (zh) * 2020-10-29 2023-08-08 中国石油化工股份有限公司 一种重油加氢脱金属催化剂及应用
CN114425383B (zh) * 2020-10-29 2023-08-08 中国石油化工股份有限公司 含第vb族金属的重油加氢脱金属催化剂及其制备方法和重油加氢处理方法
CN116020498A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 加氢催化剂的制备方法、由该方法制备的催化剂及应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976848A (en) 1988-10-04 1990-12-11 Chevron Research Company Hydrodemetalation and hydrodesulfurization using a catalyst of specified macroporosity
US5089463A (en) 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
US5478791A (en) * 1993-04-03 1995-12-26 Huels Aktiengesellschaft Nickel/aluminum oxide catalyst, preparation thereof, use thereof and hydrogenation of aromatic hydrocarbons with the aid of the catalyst
US5620592A (en) * 1994-07-29 1997-04-15 Chevron U.S.A. Inc. Low macropore resid conversion catalyst
US5968348A (en) 1994-05-16 1999-10-19 Texaco Inc. Hydroconversion process employing a phosphorus loaded NiMo catalyst with specified pore size distribution
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
WO2004052534A1 (fr) 2002-12-06 2004-06-24 Albemarle Netherlands B.V. Procede d'hydrotraitement de charge lourde reposant sur l'utilisation d'un melange de catalyseurs
US6780817B1 (en) 1998-12-08 2004-08-24 Japan Energy Corporation Catalyst for hydrofining and method for preparation thereof
WO2005028106A1 (fr) * 2003-09-17 2005-03-31 Shell Internationale Research Maatschappij B.V. Procede et catalyseur permettant d'hydroconvertir une charge d'hydrocarbures lourds
US6919294B2 (en) 2002-02-06 2005-07-19 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
US7169294B2 (en) 2001-01-05 2007-01-30 Nippon Ketjen Co., Ltd. Hydroprocessing catalyst and use thereof
WO2010002699A2 (fr) 2008-07-03 2010-01-07 Shell Oil Company Composition de catalyseur et procédé utilisant cette composition de catalyseur pour l'hydroconversion d'hydrocarbure lourd
EP2255873A2 (fr) * 2008-12-18 2010-12-01 IFP Energies nouvelles Catalyseurs d'hydrodémétallation et d'hydrodésulfuration et mise en oeuvre dans un procédé d'enchaînement en formulation unique
WO2012021386A1 (fr) 2010-08-13 2012-02-16 Shell Oil Company Catalyseur d'hydrocraquage élaboré au moyen de fines de catalyseur usé et utilisation de celui-ci
WO2013032628A1 (fr) * 2011-09-01 2013-03-07 Advanced Refining Technologies Llc Support de catalyseur et catalyseurs préparés à partir de celui-ci

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154812A (en) * 1977-03-25 1979-05-15 W. R. Grace & Co. Process for preparing alumina
US4353791A (en) * 1981-02-27 1982-10-12 Standard Oil Company (Indiana) Hydrotreating catalyst and liquefaction of coal
US4941964A (en) * 1988-03-14 1990-07-17 Texaco Inc. Hydrotreatment process employing catalyst with specified pore size distribution
KR970704518A (ko) * 1994-07-29 1997-09-06 더블유. 케이스 터너 저매크로기공 잔유 전화촉매(low macropore resid conversion catalyst)
FR2819430B1 (fr) * 2001-01-15 2003-02-28 Inst Francais Du Petrole Catalyseur comportant une silice-alumine et son utilisation en hydrocraquage de charges hydrocarbonees
FR2888584B1 (fr) * 2005-07-18 2010-12-10 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089463A (en) 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
US4976848A (en) 1988-10-04 1990-12-11 Chevron Research Company Hydrodemetalation and hydrodesulfurization using a catalyst of specified macroporosity
US5478791A (en) * 1993-04-03 1995-12-26 Huels Aktiengesellschaft Nickel/aluminum oxide catalyst, preparation thereof, use thereof and hydrogenation of aromatic hydrocarbons with the aid of the catalyst
US5968348A (en) 1994-05-16 1999-10-19 Texaco Inc. Hydroconversion process employing a phosphorus loaded NiMo catalyst with specified pore size distribution
US5620592A (en) * 1994-07-29 1997-04-15 Chevron U.S.A. Inc. Low macropore resid conversion catalyst
US6780817B1 (en) 1998-12-08 2004-08-24 Japan Energy Corporation Catalyst for hydrofining and method for preparation thereof
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
US7169294B2 (en) 2001-01-05 2007-01-30 Nippon Ketjen Co., Ltd. Hydroprocessing catalyst and use thereof
US6919294B2 (en) 2002-02-06 2005-07-19 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
WO2004052534A1 (fr) 2002-12-06 2004-06-24 Albemarle Netherlands B.V. Procede d'hydrotraitement de charge lourde reposant sur l'utilisation d'un melange de catalyseurs
WO2005028106A1 (fr) * 2003-09-17 2005-03-31 Shell Internationale Research Maatschappij B.V. Procede et catalyseur permettant d'hydroconvertir une charge d'hydrocarbures lourds
US7790652B2 (en) 2003-09-17 2010-09-07 Shell Oil Company Process and catalyst for the hydroconversion of a heavy hydrocarbon feedstock
WO2010002699A2 (fr) 2008-07-03 2010-01-07 Shell Oil Company Composition de catalyseur et procédé utilisant cette composition de catalyseur pour l'hydroconversion d'hydrocarbure lourd
EP2255873A2 (fr) * 2008-12-18 2010-12-01 IFP Energies nouvelles Catalyseurs d'hydrodémétallation et d'hydrodésulfuration et mise en oeuvre dans un procédé d'enchaînement en formulation unique
WO2012021386A1 (fr) 2010-08-13 2012-02-16 Shell Oil Company Catalyseur d'hydrocraquage élaboré au moyen de fines de catalyseur usé et utilisation de celui-ci
WO2013032628A1 (fr) * 2011-09-01 2013-03-07 Advanced Refining Technologies Llc Support de catalyseur et catalyseurs préparés à partir de celui-ci

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASEP BAYU DANI NANDIYANTO; KIKUO OKUYAMA, ADVANCED POWDER TECHNOLOGY, vol. 22, 2011, pages 1 - 19
BRUNAUER; EMMETT; TELLER, THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309
D.R. LIDE: "CRC Handbook of Chemistry and Physics", 2000
F. ROUQUÉROL; J. ROUQUÉROL; K. SING: "Adsorption by powders and porous solids. Principles, methodology and applications", 1999, ACADEMIC PRESS
JEAN CHARPIN; BERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 5
M.S. RANA ET AL., FUEL, vol. 86, 2007, pages 216

Also Published As

Publication number Publication date
RU2017100960A (ru) 2018-07-16
US20170120229A1 (en) 2017-05-04
FR3022157A1 (fr) 2015-12-18
CN106922134A (zh) 2017-07-04
EP3154680A1 (fr) 2017-04-19
CN106922134B (zh) 2020-05-05
RU2687084C2 (ru) 2019-05-07
RU2017100960A3 (fr) 2018-12-21
FR3022157B1 (fr) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2015189196A1 (fr) Catalyseur a porosite bimodal, son procede de preparation par comalaxage de la phase active et son utilisation en hydrotraitement de residus d'hydrocarbures
EP3154681B1 (fr) Catalyseur mesoporeux et macroporeux d'hydroconversion de résidus et méthode de préparation
WO2015189197A1 (fr) Catalyseur mesoporeux et macroporeux a phase active obtenue par comalaxee, son procede de preparation et son utilisation en hydrotraitement de residus
EP3154682B1 (fr) Catalyseur mesoporeux d'hydroconversion de résidus et méthode de préparation
EP2255873B1 (fr) Catalyseurs d'hydrodémétallation et d'hydrodésulfuration et mise en oeuvre dans un procédé d'enchaînement en formulation unique
FR3023184A1 (fr) Catalyseur d'hydrotraitement a densite de molybdene elevee et methode de preparation.
JP2018086656A (ja) 重質炭化水素原料を処理するための自己活性化水素化触媒および方法
EP3155073B1 (fr) Procede d'hydrotraitement de coupes distillats utilisant un catalyseur a base d'une alumine mesoporeuse amorphe ayant une connectivite elevee
EP3155074B1 (fr) Procede d'hydrotraitement de coupes gazoles utilisant un catalyseur a base d'une alumine mesoporeuse amorphe ayant une connectivite elevee
WO2020020740A1 (fr) Catalyseur comalaxe issu de solutions a base d'heteropolyanions, son procede de preparation et son utilisation en hydroconversion de charges hydrocarbonees lourdes
FR3066928A1 (fr) Procede d'hydrotraitement de coupes distillats utilisant un catalyseur a base d'une alumine mesoporeuse amorphe preparee en continu et sans sechage pousse
FR3066929A1 (fr) Procede d'hydrotraitement de coupes distillats utilisant un catalyseur a base d'une alumine mesoporeuse amorphe preparee sans sechage pousse
FR2999454A1 (fr) Catalyseur d'hydrotraitement de residus a teneur controlee en silicium et son utilisation dans un procede d'hydroconversion de residus
WO2022112077A1 (fr) Procede d'hydrodesulfuration mettant en œuvre un catalyseur comprenant un support d'alumine flash

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15729134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15318561

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015729134

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015729134

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017100960

Country of ref document: RU

Kind code of ref document: A