WO2015186866A1 - 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치 - Google Patents

마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치 Download PDF

Info

Publication number
WO2015186866A1
WO2015186866A1 PCT/KR2014/009690 KR2014009690W WO2015186866A1 WO 2015186866 A1 WO2015186866 A1 WO 2015186866A1 KR 2014009690 W KR2014009690 W KR 2014009690W WO 2015186866 A1 WO2015186866 A1 WO 2015186866A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
dielectric heating
pyrolysis
space
waste
Prior art date
Application number
PCT/KR2014/009690
Other languages
English (en)
French (fr)
Inventor
김필성
Original Assignee
김필성
정중기
하우혹 쿤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김필성, 정중기, 하우혹 쿤 filed Critical 김필성
Publication of WO2015186866A1 publication Critical patent/WO2015186866A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage

Definitions

  • the present invention relates to a dry gas gas-bed pyrolysis gasification combustion apparatus using microwaves, and more particularly to incineration, carbonization, carbonization, gasification of waste such as radioactive waste and PCB by a dielectric heating element heated by microwaves. It relates to a dry gas gas-bed pyrolysis gasification combustion apparatus using microwave to melt or gas fuel.
  • waste is a generic term for materials that become obsolete. According to the conventional concept or waste management law, 'waste, combustible sludge, waste oil, waste acid, waste alkali, animal carcass, synthetic resin, etc. are not needed for human life or industrial activities. Substance '.
  • waste treatment methods include weight loss, recycling, recycling, landfilling, and incineration.
  • reduction, recycling, and regeneration are not the final waste disposal methods, and landfilling is a strong regulation subject in each country because it causes serious soil and water pollution over a long period of time. Therefore, incineration, carbonization, distillation gasification, gasification melting, and gas fuelization methods are mainly used, which are methods for incineration, carbonization, distillation gasification, gasification melting, and gasification to remove wastes by energy.
  • incineration waste treatment is an incineration method in which the flame is directly applied to the waste, and it is practically impossible to burn completely due to various factors such as waste load, density, moisture content, incinerator size, and heating temperature, and soot from incomplete combustion. There is a problem in that a large amount of dust, air pollution pollution emissions occur.
  • Korean Patent Registration No. 0019679 discloses a pyrolysis method of waste using a pyrolysis device
  • Patent Registration No. 077616 discloses a low temperature pyrolysis device of high carbonaceous industrial waste
  • Patent No. 0375569 discloses a pyrolysis device for polymer waste.
  • the waste treatment apparatus using such pyrolysis requires a process of forming / maintaining the inside of the pyrolysis in a vacuum during the pyrolysis process, and thus, the overall apparatus is excessively complicated by having a temperature control apparatus for pyrolysis heated to a high temperature. There is this.
  • waste carbonization incinerator is published in the patent publication No. 194-06872, and the patent registration No. 787948 is an external rotary carbonization furnace for organic waste carbonization. Waste carbon incinerators are published in 0372775.
  • the carbonization device uses gas, fossil fuel, etc. as a heat source, so it requires a relatively high maintenance cost, and the structure is relatively complicated.
  • the present invention has been made to solve the above problems, by using the dielectric heating element to generate heat by microwave, it is possible to continuously incineration, carbonization, dry gasification, gasification melting, gas fuelization of waste, waste as well as waste It is an object of the present invention to provide a dry gas gas-bed pyrolysis gasification combustion apparatus using a microwave capable of combusting the flow gas generated from.
  • Drying gas fluidized-bed pyrolysis gasification combustion apparatus using a microwave for achieving the above object is a pyrolysis space for pyrolysis by waste is introduced into the first dielectric heating element, and generates heat by microwaves; Installed in the pyrolysis space to be spaced apart from each other in the vertical direction so that the waste is seated on the upper surface, a plurality of fixed chaeban formed with a plurality of exhaust holes to pass the flow gas generated during the pyrolysis of the waste, and the first A stirring unit installed inside the dielectric heating element and agitating the waste seated on the upper surface of the fixed channel, and installed adjacent to the first dielectric heating element, the first dielectric heating element to thermally decompose the waste and the flowing gas.
  • the stirring unit extends in the vertical direction to penetrate the fixed channel plates, and is formed on a rotary shaft rotatably coupled to the first dielectric heating element, and a rotation axis adjacent to the upper surfaces of the fixed channel plates, and the center of rotation of the rotary shaft. It is preferred to have a stirring member extending in a direction away from the stirring shaft and installed on the rotary shaft to rotate the rotary shaft.
  • the rotary shaft is rotatably inserted into the discharge hole formed in the dielectric heating element to discharge the ash generated when the pyrolysis of the waste is completed, the stirring unit is formed on the outer peripheral surface of the rotary shaft adjacent to the discharge hole,
  • the ash contained in the pyrolysis space when rotated in the general direction is transferred to the outside of the first dielectric heating element, and when the rotation axis rotates in the other direction, the conveyance of the ash to the outside of the first dielectric heating element is stopped along the longitudinal direction of the rotary shaft. And spirally extending spiral blades.
  • the rotating shaft is formed with a hollow so that air can be introduced into the inside
  • the stirring unit is formed on the rotating shaft of the lower side of the fixed channel is located at the lowest side, extending in a direction away from the rotating shaft, and communicates with the hollow inside
  • a communication path is provided, and an air nozzle having a plurality of injection holes formed therein so that the air supplied through the communication path on the outer circumferential surface is injected into the pyrolysis space, and an air supply installed on the rotary shaft to supply air to the hollow of the rotary shaft. It is preferable to further provide a part.
  • dry gas flow bed pyrolysis gasification combustion apparatus using a microwave is a first insulating member formed to surround the outer peripheral surface of the first dielectric heating element to block the outside air contact with the outer peripheral surface of the first dielectric heating element And a first antioxidant coating layer formed on an inner circumferential surface of the first dielectric heating element in order to block external air from contacting the inner circumferential surface of the first dielectric heating element.
  • the dry gas flow bed pyrolysis gasification combustion apparatus using a microwave further comprises a gas combustion unit connected to the first dielectric heating element to combust the flow gas in communication with the pyrolysis space.
  • the gas combustion unit is connected to the pyrolysis space by an exhaust pipe, a combustion space into which the flow gas supplied through the exhaust pipe flows is provided, and a second dielectric heating element that generates heat by the microwaves;
  • a second microwave oscillator installed adjacent to the second dielectric heating element to oscillate the microwave to generate heat of the second dielectric heating element, an oxygen supply unit supplying oxygen to a combustion space of the second dielectric heating element, and the combustion
  • the oxygen supply unit is installed in the second dielectric heating element so that one end thereof is exposed in the combustion space, and a flow path through which the oxygen flows is provided therein, and at one end, oxygen passing through the flow path is discharged into the combustion space.
  • An injection pipe provided with a discharge port so as to be provided, and an oxygen supply member installed in the injection pipe to supply oxygen into the injection pipe, and the vortex generator is introduced into the flow path through the discharge port and rotates in the injection pipe.
  • At least one of the vortex which is possibly installed and the vortex of the outer side of the injection tube the oxygen discharged through the outlet flows toward the inner peripheral surface side of the heat-resistant tube to induce the vortex of the oxygen in the combustion space
  • a vortex cone and a vortex drive unit provided on the vortex shaft to rotate the vortex shaft.
  • the gas combustion unit has a second heat insulating member formed to surround the outer circumferential surface of the second dielectric heating element in order to block the outside air contacting the outer circumferential surface of the second dielectric heating element, and the outside air on the inner circumferential surface of the second dielectric heating element
  • a second anti-oxidation coating layer is further provided on the inner circumferential surface of the second dielectric heating element to block contact.
  • the combustion space is preferably formed in a waveform along the longitudinal direction.
  • the dry gas flow bed pyrolysis gasification combustion apparatus using a microwave according to the present invention is installed in the first dielectric heating element, and further comprises a fire extinguishing unit that can be extinguished when the waste put into the pyrolysis space ignites.
  • the fire extinguishing unit is installed in the first dielectric heating element, a sand input unit for injecting sand into the pyrolysis space to extinguish the ignited waste, and is installed inside the first dielectric heating element to adjust the temperature of the pyrolysis space.
  • a sand input unit for injecting sand into the pyrolysis space to extinguish the ignited waste
  • combustion space of the second dielectric heating element is preferably extended in a zigzag form to increase the moving distance of the flow gas in order to extend the residence time of the flow gas.
  • Microwave dry gas flow bed pyrolysis gasification combustion apparatus using a microwave heats the first dielectric heating element using a microwave to use a heat source to burn a large amount of waste, carbonization, distillation gasification, gasification melting, gas fuelization It can be carried out continuously, there is an advantage that can burn not only waste but also the flow gas generated from the waste.
  • the microwave-based dry gas gas bed pyrolysis gasification combustion apparatus generates a high temperature instantaneously safer to high-risk waste such as radioactive waste or polychlorinated Biphenyl (PCBs) used as a raw material of the defoliant There is an advantage to handle.
  • a high temperature instantaneously safer to high-risk waste such as radioactive waste or polychlorinated Biphenyl (PCBs) used as a raw material of the defoliant
  • FIG. 1 is a cross-sectional view of a dry gas gas-bed pyrolysis gasification combustion apparatus using a microwave according to the present invention
  • FIG. 2 is a perspective view of the stirring unit of the dry gas gas bed pyrolysis gasification combustion apparatus using the microwave of FIG.
  • FIG. 3 is a perspective view of a gas combustion unit of the dry gas gas-bed pyrolysis gasification combustion apparatus using the microwave of FIG.
  • FIG. 4 is a cross-sectional view of a giant wheel gas fluidized bed gasification combustion apparatus using microwaves according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a dry gas gas-bed pyrolysis gasification combustion apparatus using a microwave according to another embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a dry gas gas-bed pyrolysis gasification combustion apparatus using a microwave according to another embodiment of the present invention.
  • the dry gas flow bed pyrolysis gasification combustion apparatus 100 using a microwave the pyrolysis space 111 is formed therein, the first dielectric heating element 110 to generate heat by microwaves, the first In order to block external air from contacting the outer circumferential surface of the dielectric heating element 110, a first insulating member formed to surround the outer circumferential surface of the first dielectric heating element 110, and the waste is seated on the upper surface, the pyrolysis space 111 And a plurality of fixed channel boards 180 installed in the first dielectric heating element 110 and adjacent to the first dielectric heating element 110 so as to be divided into a plurality of unit spaces in the vertical direction.
  • the first microwave oscillator 170 for injecting microwaves into the first dielectric heating element 110 so that the first dielectric heating element 110 generates heat, and a waste ball for supplying waste for pyrolysis combustion in the pyrolysis space 111. It is installed in the unit 210 and the first dielectric heating element 110, and agitates the waste introduced into the pyrolysis space 111, and the ash generated by pyrolysis gasification combustion to the outside of the pyrolysis space (111).
  • a gas combustion unit 400 connected to the first dielectric heating element 110 to communicate with the stirring unit 300 to discharge and the pyrolysis space 111 to burn the exhaust gas generated during pyrolysis gasification combustion of the waste; It is provided.
  • the first dielectric heating element 110 is formed in a cylindrical shape with an open top surface, and a discharge hole is formed in the center of the bottom surface so that ash generated by pyrolysis gasification combustion in the pyrolysis space 111 can be discharged to the outside.
  • the first dielectric heating element 110 is preferably formed such that the inner diameter thereof becomes smaller toward the lower side so that the ash can be easily discharged to the discharge hole.
  • the first dielectric heating element 110 is heated by a microwave oscillated from the first microwave oscillator 170 to be described later to increase the temperature of the pyrolysis space 111 to 500 ⁇ 1600 °C, to the first dielectric heating element 110 As the temperature increases, the waste introduced into the pyrolysis space 111 is pyrolyzed and then discharged in the state of flowing gas to gas fuel.
  • a first heat resistant ring 112 is formed at an upper end of the first dielectric heating element 110.
  • the first heat resistant ring 112 is formed in an annular shape along the upper edge of the first dielectric heating element 110, and is preferably formed of a heat resistant castable having excellent heat resistance.
  • the first antioxidant coating layer 113 is disposed on the inner circumferential surface of the first dielectric heating element 110 to block external air from contacting the inner circumferential surface of the first dielectric heating element 110 on the inner circumferential surface of the first dielectric heating element 110. Is formed.
  • the first antioxidant coating layer 113 is also formed on the inner circumferential surface of the first heat resistant ring 112 corresponding to the pyrolysis space 111.
  • the first antioxidant coating layer 113 is preferably formed by mixing at least one of silicon dioxide, alumina or zirconia and sodium sodium silicate.
  • the first dielectric heating element 110 has a discharge pipe 145 is installed in the discharge hole is discharged ash.
  • the discharge pipe 145 extends downward from the first dielectric heating element 110 and has an outlet path through which ash generated by pyrolysis gasification combustion flows out. At this time, the discharge pipe 145 extends downward longer than the length of the first dielectric heating element 110 so that the lower end is located below the lower surface of the first dielectric heating element 110.
  • a first outer coating layer 114 is formed on an outer circumferential surface of the first dielectric heating element 110 to prevent the first dielectric heating element 110 from being oxidized.
  • the first outer coating layer 114 is preferably formed by mixing at least one of silicon dioxide, alumina or zirconia and sodium sodium silicate so that microwaves can be transmitted therethrough.
  • the heat resistant cover 142 is installed on the first dielectric heating element 110 to open and close the pyrolysis space 111.
  • a heat resistant plate formed of a heat resistant metal material having excellent heat resistance is provided on the bottom surface of the heat resistant cover 142 exposed to the pyrolysis space 111.
  • the first insulation member includes a lower insulation portion 121 formed to surround the outer circumferential surface of the first dielectric heating element 110, an upper insulation portion 122 formed to cover the upper surface of the heat resistant cover 142, and the lower insulation portion ( 121 and a gas tank 130 for providing an inert gas to the upper insulation 122.
  • the lower insulation portion 121 includes a first insulation 123 formed to surround the outer circumferential surface of the first dielectric heating element 110 and a first insulation cover 124 formed to surround the outer circumference of the first insulation 123. Equipped.
  • the first heat insulating body 123 is formed of a heat insulating material such as glass fiber provided with a plurality of pores so that the inert gas supplied from the gas tank 130 is filled.
  • the first insulation cover 124 is formed to surround the outer circumferential surface of the first insulation 123 exposed to the outside to prevent the inert gas supplied to the first insulation 123 from leaking out. At this time, one side of the first heat insulating cover 124 is provided with a first pressure side 129 to adjust the pressure inside the first heat insulating body (123).
  • a plurality of first microwave oscillators 170 are installed on the outer circumferential surface of the first insulation cover 124.
  • the upper insulation portion 122 includes a second insulation 126 formed to surround the top surface of the heat resistant cover 142 exposed to the outside, and a second insulation cover 127 formed to surround the outer circumferential surface of the second insulation 126. ).
  • the second insulator 126 is formed of a heat insulating material such as glass fiber provided with a plurality of supplies to fill the inert gas supplied from the gas tank 130.
  • the second insulation cover 127 is formed to surround the outer circumferential surface of the second insulation 126 exposed to the outside to prevent the inert gas supplied to the second insulation 126 from flowing out.
  • one side of the second heat insulating cover 127 is provided with a second pressure valve (not shown) to adjust the pressure inside the second heat insulating body 126.
  • the gas tank 130 is connected to the first and second heat insulating bodies 123 and 126 by a plurality of gas supply pipes, and is filled with an inert gas such as nitrogen or argon.
  • the first dielectric heating element 110 is prevented from being oxidized by contact with oxygen by an inert gas filled in the first and second heat insulating bodies 123 and 126.
  • the first and second packing parts are installed at the upper end of the first heat-resistant ring 112 and the lower end of the discharge pipe 145, respectively.
  • the first packing part includes a first packing ring (not shown) and a first metal ring 151.
  • the first packing ring is formed of a heat resistant material, and are respectively installed on the upper end of the first heat resistant ring 112.
  • the first packing ring is formed in an annular shape corresponding to the upper edge of the first heat resistant ring 112, the entrance groove is formed so that the top of the first heat resistant ring 112 and the bottom of the heat resistant cover 142 can enter the interior. Formed. Therefore, the first packing ring has a shape surrounding the upper end of the first heat resistant ring 112.
  • the first metal ring 151 is made of a metal material surrounding the top surface and the outer circumferential surface of the first packing ring installed in the first heat resistant ring (112).
  • the first metal ring 151 configured as described above is installed in the form of pressing the upper surface of the first insulating body 123.
  • the first packing ring and the first metal ring 151 are pressurized and installed at the upper end of the first heat resistant ring 112 and the first heat insulating body 123, the first heat resistant ring 112 and the first heat insulating body are provided. External air flows in between the 123 to prevent the outside of the first dielectric heating element 110 from being oxidized.
  • the first packing ring is not shown in the drawing, it is preferable to form a water jacket in which water can circulate to increase heat resistance of the first dielectric heating element 110 heated to a high temperature.
  • the second packing part includes a second packing ring 155 and a second metal ring 152.
  • the second packing ring 155 is formed of a heat resistant material and is installed at the lower end of the discharge pipe 145.
  • the second packing ring 155 is formed in an annular shape corresponding to the lower edge of the discharge pipe 145, the entry groove is formed so that the lower end of the discharge pipe 145 can enter. Therefore, the second packing ring 155 has a form surrounding the lower end of the discharge pipe 145.
  • the second metal ring 152 is made of a metal material surrounding the lower surface and the outer circumferential surface of the second packing ring 155, the installation is made in the form of pressing the lower surface and the discharge pipe 145 of the first heat insulating body (123).
  • the second packing ring 155 and the second metal ring 152 pressurize the lower end of the discharge pipe 145 and the lower portion of the first heat insulating body 123, and thus the discharge pipe 145 and the first heat insulating body 123. Outside air is introduced into the through to prevent the outside of the first dielectric heating element 110 is oxidized.
  • the second packing ring 155 is formed in the shape of a water jacket through which water can circulate to increase heat resistance of the first dielectric heating element 110 and the discharge pipe 145 which are heated at a high temperature. It is preferable.
  • a collecting hopper 160 is installed under the first dielectric heating element 110 to collect ash generated by pyrolytic gasification combustion of waste.
  • the collection hopper 160 is installed so that the upper surface is open, it is preferably installed in a position opposite to the discharge hole.
  • first dielectric heating element 110 a structure in which one first dielectric heating element 110 is provided has been described.
  • the number of installations of the first dielectric heating element 110 is not limited to the illustrated example, but two or more may be installed. .
  • the waste supply unit 210 has a waste supply pipe 211 installed to penetrate the upper insulation portion 122 and the heat-resistant cover 142 so that the lower end portion can be introduced into the pyrolysis space 111, and on the upper end of the waste supply pipe 211. It is installed in communication with the supply tank 219 provided with a receiving space therein to accommodate the waste so that the waste can be supplied to the pyrolysis space 111 through the waste supply pipe 211, and installed through the supply pipe 211 And a screw 212 provided with a spiral spiral feather on an outer circumferential surface thereof so as to supply waste in the supply tank 219 to the pyrolysis space 111, and a rotating part 213 for rotating the screw 212.
  • the rotating unit 213 may include an operation motor 214, a first sprocket 215 installed on a drive shaft of the operation motor 341, a second sprocket 216 installed on an upper end of the screw 212, and first and second operations.
  • a first connecting chain 217 connected to the two sprockets 215 and 216 is provided.
  • the fixed channel board 180 is installed to be spaced apart from each other in the vertical direction inside the first dielectric heating element 110 so as to divide the pyrolysis space 111 into a plurality of unit spaces in the vertical direction.
  • the fixed tray 180 has a waste material supplied from the waste supply unit 210 on the upper surface is seated, a plurality of exhaust holes are formed so that the flow gas (dry gas or combustion gas) generated during the thermal decomposition of the waste can pass through have.
  • the fixed channel plate 180 has a discharge portion 181 is formed so that the waste seated on the upper surface can be discharged downward.
  • the discharge part 181 penetrates in the vertical direction and extends from the center of the fixed channel plate 180 to the edge.
  • the waste introduced into the pyrolysis space 111 is pyrolyzed to generate a flow gas.
  • the waste is carbonized to generate dry gas, and when oxygen is supplied, the waste is burned to generate combustion gas.
  • the flow gas is sequentially heated and thermally decomposed through a plurality of unit spaces divided by the fixed channel boards 180.
  • the stirring unit 300 includes a rotating shaft 310, a plurality of stirring members 320, a spiral blade 330, a stirring drive unit 340, an air nozzle 361, and an air supply unit 350.
  • the rotating shaft 310 is installed to penetrate the discharge pipe 145 and is formed in an annular bar shape extending in the vertical direction.
  • the rotary shaft 310 is formed to extend in the vertical direction longer than the length of the discharge pipe 145 so that the upper end is introduced into the pyrolysis space 111, the lower end is drawn into the collection hopper 160.
  • the rotation shaft 310 is preferably rotatably installed through the center of the fixed channel (180).
  • the rotary shaft 310 is rotatably installed at the lower end of the collecting hopper 160 by a support unit (not shown).
  • the rotating shaft 310 is preferably formed of alumina or zirconia having excellent heat resistance.
  • the rotary shaft 310 has a hollow 311 extending in the vertical direction so that the air supplied from the air supply unit 350 flows in the lower side.
  • the stirring member 320 is formed on each of the rotation shafts 310 at positions adjacent to the upper surface of the fixed channel plate 180, and extends in a direction away from the rotation center of the rotation shaft 310.
  • the stirring member 320 agitates the waste seated on the upper surface of the fixed tray (180) by the rotation of the rotary shaft 310, or discharges some of the waste downward through the discharge unit 181 of the fixed tray (180). Let's do it.
  • the spiral blade 330 is formed on the outer circumferential surface of the lower end of the rotary shaft 310 opposite to the discharge pipe 145, and when the rotary shaft 310 rotates in one direction, the ash of the pyrolysis space 111 is moved out of the first dielectric heating element 110. It is conveyed, and is formed spirally extending along the longitudinal direction of the rotary shaft 310 to stop the transfer of waste to the outside of the first dielectric heating element 110 when the rotary shaft 310 rotates in the other direction.
  • the stirring drive unit 340 includes a drive motor 341 fixed in the collection hopper 160, a drive sprocket 342 installed on a drive shaft of the drive motor 341, and a driven sprocket installed at a lower end of the rotary shaft 310. 343 and a transmission chain 344 installed on the driving sprocket 342 and the driven sprocket 343 to transmit the rotational force of the driving motor 341 to the rotation shaft 310.
  • the driving motor 341 is operated such that the rotation shaft 310 rotates in one direction, the ashes in the pyrolysis space 111 are forced to the collection hopper 160 by the spiral blade 330 formed on the rotation shaft 310.
  • the air nozzle 361 is formed on the rotary shaft 310 under the fixed channel plate 180 located at the lowermost side, extends in a direction away from the rotary shaft 310, and communicates with the hollow 311 therein.
  • a furnace 362 is provided, and a plurality of injection holes 363 are formed on an outer circumferential surface of the air so that the air supplied through the communication path is injected into the pyrolysis space 111.
  • the injection hole is preferably formed in the upper and lower outer peripheral surface of the air nozzle (361).
  • the air supply unit 350 supplies air into the rotating shaft 310, and is provided in the air supply pipe 351 installed in communication with the hollow 311 by a rotary joint, and is installed in the air supply pipe 351 to open the hollow 311.
  • An air supply device 352 for supplying air to the air is provided.
  • the air supply device 352 may be any device for injecting outside air into the pyrolysis space 111 such as a compressor.
  • the air is supplied to the hollow of the rotary shaft 310 to the air supply unit 350 so that the air is supplied to the pyrolysis space 111 through the air nozzle (361), and dry the waste
  • the operation of the air supply unit 350 is stopped so that the air supply to the pyrolysis space 111 is blocked.
  • the microwave-based dry gas gas-bed pyrolysis gasification combustion apparatus 100 configured as mentioned above is pyrolysis gasification combustion of wastes, and incinerates, carbonizes, dry gasification, gasification melting or gas fueling the wastes.
  • the dry gas flow bed pyrolysis gasification combustion apparatus 100 using the microwave heats the first dielectric heating element 110 by using a microwave to use the heat source, and injects waste through the waste supply unit 210.
  • the pyrolysis gasification combustion operation of a large amount of waste can be continuously performed, and the first dielectric heating element 110 is prevented from being oxidized through the first antioxidant coating layer 113 to increase the service life of the apparatus.
  • the gas combustion unit 400 includes a second dielectric heating element 411, a second insulation member 412, a second microwave oscillator 430, an oxygen supply unit 440, and a vortex generation unit 450.
  • the second dielectric heating element 411 is provided with a combustion space 413 therein, the upper and lower surfaces are opened, it is formed in a cylindrical shape extending a predetermined length in the vertical direction.
  • the second dielectric heating element 411 is heated by microwaves oscillating from the second microwave oscillator 430 to increase the temperature of the combustion space 413 to 1100 ⁇ 1800 °C, the temperature by the second dielectric heating element 411 As it rises, the flowing gas introduced into the combustion space 413 is discharged after pyrolytic combustion.
  • the second antioxidant coating layer 431 is attached to the inner circumferential surface of the second dielectric heating element 411. Is formed.
  • the second antioxidant coating layer 431 is preferably formed by mixing at least one of silicon dioxide, alumina or zirconia and sodium sodium silicate.
  • a second outer coating layer 432 is formed on an outer circumferential surface of the second dielectric heating element 411 to prevent the first dielectric heating element 411 from being oxidized.
  • the second outer coating layer 432 is preferably formed by mixing at least one of silicon dioxide, alumina or zirconia and sodium sodium silicate so that microwaves can be transmitted.
  • the second insulation member 412 includes a third insulation body 414 formed to surround the outer circumferential surface and the upper surface of the second dielectric heating element 411 and a third insulation cover formed to surround the outer surface of the third insulation body 414. 415, and an auxiliary tank 416 for supplying an inert gas to the third heat insulating body 414.
  • the third heat insulating body 414 is formed of a heat insulating material such as ceramic fiber provided with a plurality of pores so that the inert gas supplied from the auxiliary tank 416 is filled.
  • the third insulation cover 415 is formed to surround the side surface of the third insulation 414 exposed to the outside to prevent the inert gas supplied to the third insulation 414 from flowing out. At this time, one side of the third insulation cover 415 is provided with a third pressure side to adjust the pressure inside the third insulation 414.
  • an exhaust pipe 401 communicating with the pyrolysis space 111 is provided inside the third heat insulating body 414.
  • One end of the exhaust pipe 401 communicates with the combustion space 413, and the other end thereof is installed in the first dielectric heating element 110 so as to communicate with the pyrolysis space 111 through the second insulation 126.
  • Exhaust gas in the pyrolysis space 111 is introduced into the combustion space 413 inside the second dielectric heating element 411 through the exhaust pipe 401.
  • the auxiliary tank 416 is connected to the third insulator 414 by an auxiliary supply pipe, and is filled with an inert gas such as nitrogen or argon.
  • the second dielectric heating element 411 and the third insulation element 414 are prevented from being oxidized in contact with oxygen by the inert gas filled in the third insulation 414.
  • a third packing ring (not shown) and a third metal ring 421 are provided between the upper and lower ends of the second dielectric heating element 411 and the third insulating element 414.
  • the third packing ring is formed of a heat resistant material, is formed in an annular shape corresponding to the upper and lower edges of the second dielectric heating element 411, the entry groove is formed so that the upper and lower ends of the second dielectric heating element 411 can enter the inside. have. Therefore, the third packing ring is shaped to surround the upper and lower ends of the second dielectric heating element 411.
  • the third metal ring 421 is made of a metal material surrounding the outer circumferential surface of the third packing ring, and the third metal ring 421 is installed to press the rear ends of the third heat insulating body 414 and the second dielectric heating element 411.
  • the third packing ring and the third metal ring 421 are pressurized to install the rear ends of the second dielectric heating element 411 and the third insulation element 414, and thus, between the second dielectric heating element and the third insulation element 414. External air is introduced to prevent the outside of the second dielectric heating element 411 from being oxidized.
  • the third packing ring is not shown in the drawing, it is preferable to form a water jacket in which water can be circulated to increase heat resistance of the second dielectric heating element 411 which is heated to a high temperature.
  • a discharge hopper 417 is installed below the second dielectric heating element 411 to collect ash contained in the flow gas.
  • the oxygen supply unit 440 is installed in the second dielectric heating element 411 so that a front end portion is exposed in the combustion space 413, and a flow path through which the oxygen flows is provided, and a lower surface passes through the flow path.
  • An injection pipe 441 provided with a discharge port to discharge oxygen into the combustion space 413 and an oxygen supply installed in the injection pipe 441 so as to communicate with the flow path to supply the oxygen to the injection pipe 441.
  • a member 442 is provided.
  • the injection pipe 441 extends in the vertical direction and is installed to penetrate the upper portion of the third heat insulating body 414 so that the lower end portion is led into the combustion space 413.
  • the oxygen supply member 442 is installed in communication with the flow path of the injection pipe 441 by the oxygen supply pipe 443, and is preferably filled with oxygen. Oxygen supplied from the oxygen supply member 442 is supplied to the combustion space 413 of the second dielectric heating element 411 to combust the exhaust gas heated to a high temperature.
  • the vortex generating unit 450 is introduced into the flow path through the discharge port, and is provided on the vortex shaft 451 rotatably installed in the injection tube 441 and the vortex shaft 451 outside the injection tube 441. Installed, the plurality of vortex cones 452 and the vortex shaft 451 is searched in the vortex shaft 451 to flow the oxygen discharged through the outlet to the inner peripheral surface side of the heat-resistant tube to induce the vortex of oxygen in the combustion space 413
  • the vortex drive part 453 which rotates the vortex shaft 451 is provided.
  • the vortex shaft 451 extends in the vertical direction and is installed to penetrate the inside of the injection tube 441.
  • the vortex cones 452 are respectively installed on the vortex shafts 451 at positions spaced apart from each other along the vertical direction, and are formed in a conical shape in which an outer diameter thereof is extended downward to induce oxygen easily.
  • the vortex cone 452 has a plurality of diverging protrusions 454 formed on the outer circumferential surface thereof.
  • the diverging protrusions 454 are spaced apart from each other along the circumferential direction of the vortex cone 452 and protrude upward from the outer circumferential surface of the vortex cone 452. At this time, the diverging protrusion 454 is formed to extend from the center of the vortex cone to the edge.
  • the vortex drive unit 453 includes a third sprocket 455 fastened to an upper end of the vortex shaft 451, a rotation motor 456 installed on an upper surface of the third insulation cover 415 to generate rotational force, and the rotation motor.
  • a second sprocket 457 installed on the drive shaft of the 456 and a second connection chain connected to the third and fourth sprockets 455 and 457 to transmit the rotational force of the rotary motor 456 to the vortex shaft 451; 458.
  • the vortex cone 452 is rotated by the vortex drive unit 453 to generate vortices in the oxygen discharged from the outlet, thereby improving the mixing efficiency of the flow gas and oxygen introduced into the combustion space 413.
  • FIG. 4 illustrates a second dielectric heating element 522 according to another embodiment of the present invention.
  • the second dielectric heating element 522 has the combustion space 413 is formed in a waveform along the longitudinal direction. At this time, one vortex cone 452 is installed in the vortex shaft 451, and a rod 523 in which a plurality of vortex cones 452 are installed is provided in the combustion space 413.
  • the rod 523 extends in the vertical direction, is formed to be curved in a waveform corresponding to the combustion space 413, and a plurality of vortex cones 452 are spaced apart from each other in the vertical direction. Although not shown in the figure, the rod 523 is preferably located at the center of the combustion space 413 by a support unit (not shown).
  • the oxygen induced by the vortex cone 452 collides with the inner side surface of the curved second dielectric heating element 522 to more easily generate vortex.
  • FIG. 5 shows a dry gas gas bed pyrolysis gasification combustion apparatus 500 using microwaves according to another embodiment of the present invention.
  • the dry gas flow bed pyrolysis gasification combustion apparatus 500 using the microwave is installed in the first dielectric heating element 110, the waste injected into the pyrolysis space 111 can be extinguished when fired.
  • a fire extinguishing unit 510 is further provided.
  • Fire extinguishing unit 510 is installed in the first dielectric heating element 110, the sand input unit 511 for injecting sand into the pyrolysis space 111 to extinguish the ignited waste, and the first dielectric
  • a temperature measuring sensor 512 installed inside the heating element 110 to measure the temperature of the pyrolysis space and a temperature of the pyrolysis space 111 based on the temperature data measured by the temperature measuring sensor 512 is preset. When the temperature is higher than or equal to, it is determined that the waste is in the ignition state and the control unit 513 to operate the sand input unit 511 to insert the sand into the pyrolysis space 111.
  • the sand input unit 511 is installed on the first dielectric heating element 110 to communicate with the pyrolysis space 111 through an input pipe 516, the sand is provided with an internal space that accommodates a large amount of sand therein It is provided with a storage hopper 514 and the opening and closing member 515 which is installed in the inlet duct 516 to open and close the internal flow path of the inlet duct 516.
  • the opening and closing member 515 is not shown in the figure, the opening and closing plate which is slidably installed in a direction crossing with respect to the longitudinal direction of the injection pipe 516 to open and close the internal flow path of the injection pipe 516 and And a moving member installed at an end of the opening and closing plate to move the opening and closing plate.
  • the moving member is operated by the control unit 513 to move the opening and closing plate.
  • the fire extinguishing unit 510 configured as described above, when the temperature data measured by the temperature measuring sensor 512 is greater than or equal to a predetermined value, determines the fire state of the waste and injects sand into the pyrolysis space 111. At this time, the sand does not evaporate like water in a high temperature state, and covers the waste to block the oxygen supply to the waste to more stably extinguish the waste.
  • the microwave-based dry gas flow bed pyrolysis gasification combustion apparatus generates a high temperature of more than 1250 °C instantaneously high-risk waste such as polychlorinated Biphenyl (PCBs) used as a raw material of radioactive waste or defoliant
  • PCBs polychlorinated Biphenyl
  • FIG. 6 illustrates a second dielectric heating element 611 according to another embodiment of the present invention.
  • the second dielectric heating element 611 has a first inside therein to be formed in a zigzag form so that the combustion space 413 can increase the moving distance of the flow gas to extend the residence time of the flow gas.
  • the guide plate 612 and the second guide plate 613 are provided.
  • the second dielectric heating element 611 is closed on the upper and lower surfaces, a communication hole communicating with the end of the exhaust pipe 401 is formed on the upper side, the discharge hole communicated to the discharge hopper is formed on the lower side.
  • the first guide plate 612 is formed on the ceiling surface of the second dielectric heating element 611 at an upper end adjacent to the discharge hole so as to partition the combustion space 413, and the width of the combustion space 413. It is formed to have a corresponding width.
  • the first guide plate 612 extends in the up and down direction, and preferably has a lower end spaced above the bottom of the second dielectric heating element 611 to form a passage passage through which the flow gas passes.
  • the second guide plate 613 is formed on the bottom surface of the second dielectric heating element 611 at a position spaced apart from the discharge hole with respect to the first guide plate 612, and partitions the combustion space 413. It is formed to have a width corresponding to the width of the combustion space 413 so as to be.
  • the second guide plate 613 extends in the vertical direction, and the upper end portion is preferably formed to be spaced apart below the ceiling surface of the second dielectric heating element 611 so that the flow path through which the flow gas passes.
  • the first and second guide plates 612 and 613 may be formed of heat resistant castable, alumina, and zirconia having excellent heat resistance to prevent oxidation due to high temperature, and at least one of alumina and zirconia and sodium sodium silicate. It may be formed by mixing.
  • the combustion space 413 is formed in a zigzag form by the first guide plate 612 and the second guide plate 613, the flow of the second dielectric heating element 611 flows into the combustion space 413.
  • the residence time of the gas is extended to provide sufficient time for the combustion of toxic substances such as PCBs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

본 발명은 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 내부에 폐기물이 투입되어 열분해되기 위한 열분해공간이 형성되며, 마이크로 웨이브에 의해 발열하는 제1유전발열체와, 상면에 폐기물이 안착되되, 열분해공간을 상하방향으로 다수의 단위공간으로 분할할 수 있도록 제1유전발열체의 내부에 설치되는 것으로서, 폐기물의 열분해시 발생되는 유동가스가 통과될 수 있도록 다수의 배기공이 형성되며, 하방으로 폐기물이 배출될 수 있도록 배출부가 마련된 다수의 고정채반과, 제1유전발열체의 내부에 설치되어 고정채반의 상면에 안착된 폐기물을 교반하는 교반유닛과, 제1유전발열체에 인접되게 설치되며, 상기 제1유전발열체에 마이크로파를 주사하는 제1마이크로파 발진기를 구비한다.

Description

마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치
본 발명은 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치에 관한 것으로서, 더욱 상세하게는 마이크로 웨이브에 의해 가열되는 유전발열체에 의해 방사능 폐기물과 피씨비에스와 같은 폐기물을 소각, 탄화, 건류가스화, 가스화용융 또는 가스 연료화시키는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치에 관한 것이다.
일반적으로 폐기물이란 쓸모없게 되어 버리는 물질을 총칭하며, 통상적 관념 내지는 폐기물 관리법에 따르면 '쓰레기, 연소재 오니, 폐유, 폐산, 폐알칼리, 동물 사체, 합성수지 등 사람의 생활이나 산업활동에 필요 없게 되어버리는 물질'로 정의된다.
한편, 현재 사용되고 있는 폐기물 처리방안에는 감량, 재활용, 재생, 매립, 소각 등이 있다. 이 중에서 감량, 재활용, 재생 등은 최종적인 폐기물 처리방안이 되지 못하며, 매립은 장기간에 걸쳐 심각한 토질 및 수질오염을 초래하므로 각국의 강력한 규제대상이 되고 있다. 따라서, 소각, 탄화, 건류가스화, 가스화용융, 가스연료화 방법이 주로 사용되는 데, 이는 소각, 탄화, 건류가스화, 가스화용융, 가스연료화를 이용하여 폐기물을 에너지화해서 제거하는 방법이다.
그러나 소각에 의한 폐기물 처리방법은 폐기물에 직접적인 화염을 가하는 소각 방법으로 폐기물의 적재량, 밀도, 수분 함유량, 소각로 크기, 가열 온도와 같은 여러 요인으로 인해 완전연소가 실질적으로 불가능하고, 불완전 연소에 따른 그을음, 먼지, 대기오염 공해 배출가스 등이 다량 발생하는 문제점이 있다.
이러한 점을 감안하여 고온 및 진공환경에서 폐기물을 열분해(pyrolysis) 하거나 탄화시키는 방법이 제안되었다. 상기 제안된 방법을 이용한 폐기물 처리장치로서, 대한민국 특허등록 제0019679호에는 열분해 장치를 이용한 폐기물의 열분해 방법이 게시되어 있으며, 특허등록 제0777616호에는 고탄소성 산업폐기물의 저온 열분해장치가 게시되어 있으며, 특허등록 제0375569호에는 고분자 폐기물을 위한 열분해장치가 게시되어 있다.
이러한 열분해를 이용하여 폐기물 처리장치는 열분해 과정에서 열분해로 내부를 진공으로 조성/유지시키는 과정이 필요하고, 이로 인해 상기 고온으로 가열된 열분해의 온도관리 장치를 구비함으로써 전체적인 장치가 과다하게 복잡해지는 문제점이 있다.
한편, 산업폐기물의 탄화장치가 특허공고 제1994-06872호에 폐기물 탄화 처리 소각장치가 게시되어 있으며, 특허등록 제787948호에는 유기성 폐기물 탄화를 위한 외열식 로타리 탄화로 장치가 게시되어 있으며, 특허 등록 제0372775호에는 폐기물 탄화 소각장치가 게시되어 있다.
이러한 탄화장치는 열원으로 가스, 화석연료 등을 사용하고 있으므로 상대적으로 많은 유지비가 소요되며, 구조가 상대적으로 복잡하다.
본 발명은 상기 문제점을 해결하기 위해 창출된 것으로서, 마이크로 웨이브에 의해 발열하는 유전발열체를 이용하여 폐기물의 소각, 탄화, 건류가스화, 가스화용융, 가스연료화를 연속적으로 수행할 수 있으며, 폐기물뿐 아니라 폐기물로부터 발생되는 유동가스를 연소시킬 수 있는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치를 제공하는 데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 내부에 폐기물이 투입되어 열분해되기 위한 열분해공간이 형성되며, 마이크로 웨이브에 의해 발열하는 제1유전발열체와, 상면에 상기 폐기물이 안착 될 수 있도록 상기 열분해공간에 상하방향으로 상호 이격되게 설치되며, 상기 폐기물의 열분해 시 발생되는 유동가스가 통과될 수 있도록 다수의 배기공이 형성된 다수의 고정채반과, 상기 제1유전발열체의 내부에 설치되어 상기 고정채반의 상면에 안착된 상기 폐기물을 교반하는 교반유닛과, 상기 제1유전발열체에 인접되게 설치되며, 상기 폐기물 및 유동가스를 열분해할 수 있도록 상기 제1유전발열체가 발열되게 상기 제1유전발열체에 마이크로파를 주사하는 제1마이크로파 발진기를 구비한다.
상기 교반유닛은 상기 고정채반들을 관통하도록 상하방향으로 연장되며, 상기 제1유전발열체에 회전가능하게 결합된 회전축과, 상기 고정채반들의 상면에 인접된 위치의 회전축에 형성되며, 상기 회전축의 회전중심으로부터 멀어지는 방향으로 연장된 교반부재와, 상기 회전축에 설치되어 상기 회전축을 회전시키는 교반 구동부를 구비하는 것이 바람직하다.
상기 회전축은 상기 폐기물의 열분해 완료시 발생되는 재가 배출되기 위해 상기 유전발열체에 형성된 배출공에 회전가능하게 삽입되고, 상기 교반유닛은 상기 배출공에 인접된 상기 회전축 외주면에 형성되는 것으로서, 상기 회전축이 일반향으로 회전시 상기 열분해 공간에 수용된 재를 상기 제1유전발열체 외부로 이송시키고, 상기 회전축이 타방향으로 회전시 상기 제1유전발열체 외부로 상기 재의 이송이 중단되도록 상기 회전축의 길이방향을 따라 나선형으로 연장된 나선블레이드를 더 구비한다.
상기 회전축은 내부에 에어가 유입될 수 있도록 중공이 형성되고, 상기 교반유닛은 최하측에 위치한 상기 고정채반 하측의 상기 회전축에 형성되며, 상기 회전축으로부터 멀어지는 방향으로 연장되고, 내부에 상기 중공에 연통되는 연통로가 마련되며, 외주면에 상기 연통로를 통해 공급된 상기 에어가 상기 열분해 공간으로 분사되도록 다수의 분사공이 형성된 에어노즐과, 상기 회전축의 중공으로 에어를 공급할 수 있도록 상기 회전축에 설치된 에어공급부를 더 구비하는 것이 바람직하다.
한편, 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 상기 제1유전발열체의 외주면에 외기가 접촉하는 것을 차단하기 위해 상기 제1유전발열체의 외주면을 감싸도록 형성된 제1단열부재와, 상기 제1유전발열체의 내주면에 외기가 접촉하는 것을 차단하기 위해 상기 제1유전발열체의 내주면에 형성된 제1산화방지코팅층을 더 구비할 수도 있다.
또한, 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 상기 열분해 공간에 연통되게 상기 제1유전발열체에 연결되어 상기 유동가스를 연소시키는 가스연소유닛을 더 구비한다.
상기 가스연소유닛은 배기관에 의해 상기 열분해 공간에 연통되게 연결되며, 내부에 상기 배기관을 통해 공급된 상기 유동가스가 유입되는 연소공간이 마련되고, 상기 마이크로 웨이브에 의해 발열하는 제2유전발열체와, 상기 제2유전발열체와 인접하게 설치되어 상기 제2유전발열체를 발열시키도록 상기 마이크로 웨이브를 발진시키는 제2마이크로파 발진기와, 상기 제2유전발열체의 연소공간으로 산소를 공급하는 산소공급부와, 상기 연소공간 내에서 상기 산소 및 유동가스를 교반시키기 위해 상기 산소 및 유동가스의 와류 및 난류 유동을 유도하는 와류발생부를 구비하는 것이 바람직하다.
상기 산소공급부는 일단이 상기 연소공간 내에 노출되도록 상기 제2유전발열체에 설치되고, 내부에 상기 산소가 유동하는 유동로가 마련되며, 일단면에는 상기 유동로를 통과하느 산소가 상기 연소공간으로 배출되도록 배출구가 마련된 주입관과, 상기 주입관에 설치되어 상기 주입관의 내부로 산소를 공급하는 산소공급부재를 구비하고, 상기 와류발생부는 상기 배출구를 통해 상기 유동로로 인입되어 상기 주입관에 회전가능하게 설치되는 와류축과, 상기 주입관 외측의 상기 와류축에 설치되며, 상기 배출구를 통해 배출되는 상기 산소를 상기 내열튜브의 내주면 측으로 유동하여 상기 연소공간 내에 상기 산소의 와류를 유도하는 적어도 하나의 와류콘과, 상기 와류축에 설치되어 상기 와류축을 회전시키는 와류 구동부를 구비한다.
한편, 상기 가스연소유닛은 상기 제2유전발열체의 외주면에 외기가 접촉하는 것을 차단하기 위해 상기 제2유전발열체의 외주면을 감싸도록 형성된 제2단열부재와, 상기 제2유전발열체의 내주면에 외기가 접촉하는 것을 차단하기 위해 상기 제2유전발열체의 내주면에 형성된 제2산화방지코팅층을 더 구비한다.
상기 제2유전발열체는 상기 연소공간이 길이방향을 따라 파형으로 형성된 것이 바람직하다.
한편, 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 상기 제1유전발열체에 설치되며, 상기 열분해공간에 투입된 상기 폐기물이 발화시 소화시킬 수 있는 소화유닛을 더 구비한다.
상기 소화유닛은 상기 제1유전발열체에 설치되며, 발화된 상기 폐기물을 소화할 수 있도록 상기 열분해공간으로 모래를 투입하는 모래투입부와, 상기 제1유전발열체 내부에 설치되어 상기 열분해공간의 온도를 측정하는 온도측정센서와, 상기 온도측정센서를 통해 측정된 온도 데이터를 토대로 상기 열분해공간의 온도가 기설정된 온도 이상일 경우, 상기 폐기물이 발화상태로 판단하여 상기 열분해공간으로 상기 모래가 투입되도록 상기 모래투입부를 작동시키는 제어부를 구비하는 것이 바람직하다.
한편, 상기 제2유전발열체의 연소공간은 상기 유동가스의 체류시간을 연장시키기 위해 상기 유동가스의 이동거리를 증가시킬 수 있도록 지그재그 형태로 연장형성된 것이 바람직하다.
본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 마이크로 웨이브를 이용하여 제1유전발열체를 발열시켜 이를 열원을 이용하므로 다량의 폐기물을 소각, 탄화, 건류가스화, 가스화용융, 가스연료화를 연속적으로 수행할 수 있으며, 폐기물 뿐만 아니라 폐기물로부터 발생되는 유동가스를 연소시킬 수 있는 장점이 있다.
특히, 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 순간적으로 고열을 발생시키므로 방사능 폐기물이나 고엽제의 원료로 사용되는 피씨비에스(Polychlorinated Biphenyl: PCBs) 등과 같은 고위험성 폐기물을 보다 안전하게 처리할 수 있는 장점이 있다.
도 1은 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치에 대한 단면도이고,
도 2는 도 1의 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치의 교반유닛에 대한 사시도이고,
도 3은 도 1의 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치의 가스연소유닛에 대한 사시도이고,
도 4는 본 발명의 또 다른 실시 예에 따른 마이크로 웨이브를 이용한 거륜가스 유동상 가스화 연소장치에 대한 단면도이고,
도 5는 본 발명의 또 다른 실시 예에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치에 대한 단면도이고,
도 6은 본 발명의 또 다른 실시 예에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치에 대한 단면도이다.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치를 더욱 상세하게 설명한다.
도 1 내지 도 3에는 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치(100)가 도시되어 있다.
도면을 참조하면, 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치(100)는 내부에 열분해 공간(111)이 형성되며, 마이크로 웨이브에 의해 발열하는 제1유전발열체(110)와,상기 제1유전발열체(110)의 외주면에 외기가 접촉하는 것을 차단하기 위해 상기 제1유전발열체(110)의 외주면을 감싸도록 형성된 제1단열부재와, 상면에 상기 폐기물이 안착되되, 상기 열분해공간(111)을 상하방향으로 다수의 단위공간으로 분할할 수 있도록 상기 제1유전발열체(110)의 내부에 설치되는 다수의 고정채반(180)과, 상기 제1유전발열체(110)와 인접되게 설치되어 상기 제1유전발열체(110)가 발열되도록 상기 제1유전발열체(110)에 마이크로파를 주사하는 제1마이크로파 발진기(170)와, 상기 열분해 공간(111)에 열분해 연소화시키기 위한 폐기물을 공급하는 폐기물 공급유닛(210)과, 상기 제1유전발열체(110)에 설치되며, 상기 열분해 공간(111)으로 유입된 상기 폐기물을 교반시킴과 아울러 열분해 가스화 연소로 발생된 재를 상기 열분해 공간(111) 외부로 배출하는 교반유닛(300)과, 상기 열분해 공간(111)에 연통되게 상기 제1유전발열체(110)에 연결되며, 상기 폐기물의 열분해 가스화 연소시 발생하는 배기가스를 연소시키는 가스연소유닛(400)을 구비한다.
제1유전발열체(110)는 상면이 개방된 원통형으로 형성되며, 바닥면 중앙에는 열분해 공간(111)에서 열분해 가스화 연소로 발생된 재가 외부로 배출될 수 있도록 배출공이 형성되어 있다. 또한, 제1유전발열체(110)는 상기 재가 배출공으로 용이하게 배출될 수 있도록 하부가 하방으로 갈수록 내경이 작아지도록 형성되는 것이 바람직하다. 제1유전발열체(110)는 후술되는 제1마이크로파 발진기(170)로부터 발진되는 마이크로 웨이브에 의해 가열되어 열분해 공간(111)의 온도를 500~1600℃로 높이며, 제1유전가열체(110)에 의해 온도가 높아지면서 열분해 공간(111)으로 유입된 폐기물은 열분해된 후 유동가스 내지 가스연료 상태로 배출된다.
또한, 제1유전발열체(110)의 상단에는 제1내열링(112)이 형성된다. 상기 제1내열링(112)은 제1유전발열체(110)의 상단 가장자리를 따라 환형으로 형성되며, 내열성이 우수한 내열 캐스타블로 형성되는 것이 바람직하다.
그리고, 제1유전발열체(110)의 내주면에는 상기 제1유전발열체(110)의 내주면에 외기가 접촉하는 것을 차단하기 위해 상기 제1유전발열체(110)의 내주면에 제1산화방지코팅층(113)이 형성되어 있다. 상기 제1산화방지코팅층(113)은 열분해 공간(111)에 대응되는 제1내열링(112)의 내주면에도 형성된다. 상기 제1산화방지코팅층(113)은 이산화규소, 알루미나 또는 지르코니아 중 적어도 어느 하나와 규산소다나트륨을 혼합하여 형성하는 것이 바람직하다.
또한, 제1유전발열체(110)는 재가 배출되는 배출공에 배출관(145)이 설치된다. 상기 배출관(145)은 제1유전발열체(110)로부터 하방으로 연장되며, 내부에 열분해 가스화 연소로 발생된 재가 유출되는 유출경로가 마련되어 있다. 이때, 배출관(145)은 하단이 제1유전발열체(110)의 하면보다 하방에 위치하도록 제1유전발열체(110)의 길이 보다 더 길게 하방으로 연장된다.
그리고, 제1유전발열체(110)의 외주면에는 제1유전발열체(110)가 산화되는 것을 방지할 수 있도록 제1외부코팅층(114)이 형성되어 있다. 상기 제1외부코팅층(114)은 마이크로파가 투과될 수 있도록 이산화규소, 알루미나 또는 지르코니아 중 적어도 어느 하나와 규산소다나트륨이 혼합되어 형성되는 것이 바람직하다.
그리고, 제1유전발열체(110)의 상부에는 열분해 공간(111)을 개폐할 수 있도록 내열덮개(142)가 설치된다. 열분해 공간(111)에 노출되는 상기 내열덮개(142)의 하면에는 내열성이 우수한 내열금속소재로 형성된 내열판이 마련되어 있다.
제1단열부재는 제1유전발열체(110)의 외주면을 감싸도록 형성된 하부단열부(121)와, 내열덮개(142)의 상면을 감싸도록 형성된 상부단열부(122)와, 상기 하부단열부(121) 및 상부단열부(122)에 불활성 가스를 제공하는 가스탱크(130)를 구비한다.
하부단열부(121)는 제1유전발열체(110)의 외주면을 감싸도록 형성된 제1단열체(123)와, 제1단열체(123)의 외주면을 감싸도록 형성된 제1단열커버(124)를 구비한다. 제1단열체(123)는 가스탱크(130)로부터 공급된 불활성 가스가 충진될 수 있도록 다수의 공극이 마련된 유리섬유와 같은 단열소재로 형성된다. 제1단열커버(124)는 외부로 노출된 제1단열체(123)의 외주면을 감싸도록 형성되어 제1단열체(123)에 공급된 불활성 가스가 외부로 유출되는 것을 방지한다. 이때, 제1단열커버(124) 일측에는 제1단열체(123) 내부의 압력을 조절할 수 있도록 제1압력변(129)이 설치되어 있다.
이때, 제1단열커버(124)의 외주면에는 다수의 제1마이크로파 발진기(170)가 설치되는 것이 바람직하다.
상부단열부(122)는 외부로 노출된 내열덮개(142)의 상면을 감싸도록 형성된 제2단열체(126)와, 제2단열체(126)의 외주면을 감싸도록 형성된 제2단열커버(127)를 구비한다. 제2단열체(126)는 가스탱크(130)로부터 공급된 불활성 가스가 충진될 수 있도록 다수의 공급이 마련된 유리섬유와 같은 단열소재로 형성된다. 제2단열커버(127)는 외부로 노출된 제2단열체(126)의 외주면을 감싸도록 형성되어 제2단열체(126)에 공급된 불활성 가스가 외부로 유출되는 것을 방지한다. 이때, 제2단열커버(127) 일측에는 제2단열체(126) 내부의 압력을 조절할 수 있도록 제2압력변(미도시)이 설치되어 있다.
가스탱크(130)는 복수의 가스공급관에 의해 제1 및 제2단열체(123,126)에 연결되어 있고, 내부에 질소 또는 아르곤과 같은 불활성 가스가 충진되어 있다. 제1 및 제2단열체(123,126) 내부에 충진된 불활성 가스에 의해 제1유전발열체(110)가 산소와 접촉하여 산화되는 것을 방지한다.
한편, 제1내열링(112)의 상단 및 배출관(145)의 하단에는 각각 제1 및 제2패킹부가 설치되어 있다. 상기 제1패킹부는 제1패킹링(미도시)과 제1금속링(151)을 구비한다.
제1패킹링은 내열재로 형성되며, 제1내열링(112)의 상단에 각각 설치된다. 제1패킹링은 제1내열링(112)의 상단 가장자리에 대응되는 환형으로 형성되며, 제1내열링(112)의 상단 및 내열덮개(142)의 하단이 내부로 진입할 수 있게 진입홈이 형성되어 있다. 따라서, 제1패킹링은 제1내열링(112)의 상단을 감싸는 형태가 된다.
상기 제1금속링(151)은 제1내열링(112)에 설치된 제1패킹링의 상단면과 외주면을 감싸는 금속재로 이루어진다. 상기 언급된 바와 같이 구성된 제1금속링(151)은 제1단열체(123)의 상면을 가압하는 형태로 설치가 이루어진다.
이렇게 제1패킹링과 제1금속링(151)이 제1내열링(112)의 상단부와 제1단열체(123)의 상단부를 가압 설치됨에 따라 제1내열링(112) 및 제1단열체(123)의 사이로 외부공기가 유입되어 제1유전발열체(110)의 외측이 산화되는 것을 방지하게 된다.
그리고 제1패킹링은 도면에 도시되진 않았지만, 물이 순환할 수 있는 워터자켓 형태로 형성하여 고온으로 승온하는 제1유전발열체(110)에 대한 내열성을 증가시키도록 하는 것이 바람직하다.
상기 제2패킹부는 제2패킹링(155)과 제2금속링(152)을 구비한다.
제2패킹링(155)은 내열재로 형성되며, 배출관(145)의 하단에 설치된다. 제2패킹링(155)은 배출관(145)의 하단 가장자리에 대응되는 환형으로 형성되며, 배출관(145)의 하단이 내부로 진입할 수 있게 진입홈이 형성되어 있다. 따라서, 제2패킹링(155)은 배출관(145)의 하단을 감싸는 형태가 된다.
제2금속링(152)은 제2패킹링(155)의 하단면과 외주면을 감싸는 금속재로 이루어지며, 제1단열체(123)의 하면과 배출관(145)을 가압하는 형태로 설치가 이루어진다.
이렇게 제2패킹링(155)과, 제2금속링(152)이 배출관(145)의 하단부와 제1단열체(123)의 하부를 가압 설치됨에 따라 배출관(145) 및 제1단열체(123)의 사이로 외부공기가 유입되어 제1유전발열체(110)의 외측이 산화되는 것을 방지하게 된다.
그리고 제2패킹링(155)은 도면에 도시되진 않았지만 물이 순환할 수 있는 워터자켓 형태로 형성하여 고온으로 승온하는 제1유전발열체(110)와 배출관(145)에 대한 내열성을 증가시키도록 하는 것이 바람직하다.
제1유전발열체(110)의 하부에는 폐기물을 열분해 가스화 연소하여 발생된 재가 수집될 수 있도록 수집호퍼(160)가 설치되어 있다. 상기 수집호퍼(160)는 상면이 개방되게 설치되며, 배출공에 대향되는 위치에 설치되는 것이 바람직하다.
한편, 도시된 예에서는 1개의 제1유전발열체(110)가 마련된 구조를 설명하였으나, 제1유전발열체(110)의 설치개수는 도시된 예에 한정하는 것이 아니라 2개 또는 다수개가 설치될 수도 있다.
폐기물 공급유닛(210)은 하단부가 열분해 공간(111)으로 인입될 수 있도록 상부단열부(122) 및 내열덮개(142)를 관통되게 설치된 폐기물 공급관(211)과, 폐기물 공급관(211)의 상단에 연통되게 설치되며, 폐기물 공급관(211)을 통해 상기 열분해 공간(111)으로 폐기물을 공급할 수 있도록 내부에 폐기물이 수용되는 수용공간이 마련된 공급탱크(219)와, 상기 공급관(211)에 관통되게 설치되며, 상기 공급탱크(219) 내의 폐기물을 열분해 공간(111)으로 공급할 수 있도록 외주면에 나선형의 나선깃이 마련된 스크류(212)와, 상기 스크류(212)를 회전시키는 회전부(213)를 구비한다. 상기 회전부(213)는 작동모터(214)와, 작동모터(341)의 구동축에 설치된 제1스프로켓(215)과, 스크류(212)의 상단에 설치된 제2스프로켓(216)과, 제1 및 제2스프로켓(215,216)에 연결된 제1연결체인(217)을 구비한다.
고정채반(180)은 상기 열분해공간(111)을 상하방향으로 다수의 단위공간으로 분할할 수 있도록 다수개가 제1유전발열체(110) 내부에 상하방향으로 상호 이격되게 설치된다. 상기 고정채반(180)은 상면에 폐기물 공급유닛(210)으로부터 공급된 폐기물이 안착되며, 상기 폐기물의 열분해시 발생되는 유동가스(건류가스 또는 연소가스)가 통과될 수 있도록 다수의 배기공이 형성되어 있다.
또한, 고정채반(180)은 상면에 안착된 폐기물이 하방으로 배출될 수 있도록 배출부(181)가 형성되어 있다. 상기 배출부(181)는 상하방향으로 관통되며, 고정채반(180)의 중심으로부터 가장자리까지 연장되게 형성된다.
마이크로파에 의해 제1유전발열체(110)가 고온으로 가열되면, 열분해공간(111)에 투입된 폐기물은 열분해되어 유동가스가 발생된다. 이때, 열분해공간(111)이 밀폐되어 산소공급이 차단되면, 폐기물이 건류되어 건류가스가 발생되고, 산소가 공급되면 폐기물이 연소되어 연소가스가 발생된다. 상기 유동가스는 고정채반(180)들에 의해 분할된 다수의 단위공간들을 통과하여 순차적으로 가열되어 열분해된다.
교반유닛(300)은 회전축(310), 다수의 교반부재(320), 나선블레이드(330), 교반 구동부(340), 에어노즐(361) 및 에어공급부(350)를 구비한다.
회전축(310)은 상기 배출관(145) 내에 관통되게 설치되며, 상하방향으로 연장된 환봉형으로 형성된다. 회전축(310)은 상단이 열분해 공간(111) 내로 인입되고, 하단은 수집호퍼(160) 내에 인입되도록 배출관(145)의 길이보다 더 길게 상하방향으로 연장되게 형성된다. 이때, 회전축(310)은 고정채반(180)들의 중심을 관통하여 회전가능하게 설치되는 것이 바람직하다.
도면에 도시되진 않았지만, 회전축(310)은 지지유닛(미도시)에 의해 하단이 수집호퍼(160)에 회전가능하게 설치된다. 상기 회전축(310)은 내열성이 우수한 알루미나 또는 지르코니아로 형성되는 것이 바람직하다.
회전축(310)은 하측 내부에 에어공급부(350)로부터 공급된 에어가 유동할 수 있도록 상하방향으로 연장된 중공(311)이 형성된다.
교반부재(320)는 고정채반(180)의 상면에 인접된 위치의 회전축(310)에 각각 형성되며, 회전축(310)의 회전중심으로부터 멀어지는 방향으로 연장된다. 상기 교반부재(320)는 회전축(310)의 회전에 의해 고정채반(180) 상면에 안착된 폐기물을 교반하거나, 상기 폐기물 중 일부를 고정채반(180)의 배출부(181)를 통해 하방으로 배출시킨다.
나선블레이드(330)는 배출관(145)에 대향되는 회전축(310)의 하단부 외주면에 형성되며, 회전축(310)이 일방향으로 회전시 열분해 공간(111)의 재를 제1유전발열체(110) 외부로 이송시키고, 상기 회전축(310)이 타방향으로 회전시 제1유전발열체(110) 외부로의 폐기물 이송을 중단하도록 회전축(310)의 길이방향을 따라 나선형으로 연장형성된다.
교반 구동부(340)는 수집호퍼(160) 내에 고정된 구동모터(341)와, 상기 구동모터(341)의 구동축에 설치된 구동스프로켓(342)과, 상기 회전축(310)의 하단부에 설치된 피동스프로켓(343)과, 구동스프로켓(342) 및 피동스프로켓(343)에 설치되어 구동모터(341)의 회전력을 상기 회전축(310)에 전달하는 전달체인(344)을 구비한다. 회전축(310)이 일방향으로 회전하도록 구동모터(341)를 작동시키면 회전축(310)에 형성된 나선블레이드(330)에 의해 열분해 공간(111) 내의 재가 수집호퍼(160)로 강제이송된다. 한편, 회전축(310)이 타방향으로 회전하도록 구동모터(341)를 역방향으로 작동시키면 회전축(310)에 형성된 나선블레이드(330)는 열분해 공간(111) 내로 인입되도록 재를 이송시키므로 재의 배출이 중단되고, 교반부재(320)에 의한 폐기물의 교반작업이 수행된다.
에어노즐(361)은 최하측에 위치한 상기 고정채반(180) 하측의 상기 회전축(310)에 형성되며, 상기 회전축(310)으로부터 멀어지는 방향으로 연장되고, 내부에 상기 중공(311)에 연통되는 연통로(362)가 마련되며, 외주면에 상기 연통로를 통해 공급된 상기 에어가 상기 열분해 공간(111)으로 분사되도록 다수의 분사공(363)이 형성되어 있다. 상기 분사공은 에어노즐(361)의 상측 및 하측 외주면에 형성되는 것이 바람직하다.
에어공급부(350)는 회전축(310) 내부에 에어를 공급하는 것으로서, 로터리 조인트에 의해 중공(311)에 연통되게 설치된 에어공급관(351)과, 상기 에어공급관(351)에 설치되어 중공(311)으로 에어를 공급하는 에어공급장치(352)를 구비한다. 에어공급장치(352)는 콤프레셔와 같이 외기를 열분해 공간(111) 내로 주입하는 장치는 무엇이든 가능하다.
이때, 관리자는 폐기물을 연소시킬 경우, 에어노즐(361)을 통해 열분해공간(111)으로 에어가 공급되도록 에어공급부(350)로 회전축(310)의 중공에 에어를 공급하고, 폐기물을 건류시킬 경우, 열분해공간(111)으로 에어공급이 차단되도록 에어공급부(350)의 작동을 정지시킨다.
상기 언급된 바와 같이 구성된 상기 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치(100)는 폐기물을 열분해 가스화 연소시키는 것으로서, 폐기물을 소각, 탄화, 건류가스화, 가스화용융 또는 가스 연료화시킨다. 상기 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치(100)는 마이크로 웨이브를 이용하여 제1유전발열체(110)를 발열시켜 이를 열원을 이용하고, 폐기물 공급유닛(210)을 통해 폐기물을 주입하므로 다량의 폐기물의 열분해 가스화 연소작업을 연속적으로 수행할 수 있으며, 제1산화방지코팅층(113)을 통해 제1유전발열체(110)가 산화되는 것을 방지하여 장치의 사용수명을 증가시키는 장점이 있다.
한편, 가스연소유닛(400)을 상세히 설명하면 다음과 같다.
가스연소유닛(400)은 제2유전발열체(411), 제2단열부재(412), 제2마이크로파 발진기(430), 산소공급부(440) 및 와류발생부(450)를 구비한다.
제2유전발열체(411)는 내부에 연소공간(413)이 마련되며, 상하면이 개방되되, 상하방향으로 소정길이 연장된 원통형으로 형성된다. 제2유전발열체(411)는 제2마이크로파 발진기(430)로부터 발진되는 마이크로 웨이브에 의해 가열되어 연소공간(413)의 온도를 1100~1800℃로 높이며, 제2유전발열체(411)에 의해 온도가 높아지면서 연소공간(413)으로 유입된 유동가스는 열분해 연소된 후 배출된다.
그리고, 제2유전발열체(411)의 내주면에는 상기 제2유전발열체(411)의 내주면에 외기가 접촉하는 것을 차단하기 위해 상기 제2유전발열체(411)의 내주면에 제2산화방지코팅층(431)이 형성되어 있다. 상기 제2산화방지코팅층(431)은 이산화규소, 알루미나 또는 지르코니아 중 적어도 어느 하나와 규산소다나트륨을 혼합하여 형성하는 것이 바람직하다.
또한, 제2유전발열체(411)의 외주면에는 제1유전발열체(411)가 산화되는 것을 방지할 수 있도록 제2외부코팅층(432)이 형성되어 있다. 상기 제2외부코팅층(432)은 마이크로파가 투과될 수 있도록 이산화규소, 알루미나 또는 지르코니아 중 적어도 어느 하나와 규산소다나트륨이 혼합되어 형성되는 것이 바람직하다.
제2단열부재(412)는 제2유전발열체(411)의 외주면 및 상면을 감싸도록 형성된 제3단열체(414)와, 제3단열체(414)의 외측면을 감싸도록 형성된 제3단열커버(415)와, 제3단열체(414)에 불활성 가스를 공급하는 보조탱크(416)를 구비한다.
제3단열체(414)는 보조탱크(416)로부터 공급된 불활성 가스가 충진될 수 있도록 다수의 공극이 마련된 세라믹 섬유와 같은 단열소재로 형성된다. 제3단열커버(415)는 외부로 노출된 제3단열체(414)의 측면을 감싸도록 형성되어 제3단열체(414)에 공급된 불활성 가스가 외부로 유출되는 것을 방지한다. 이때, 제3단열커버(415) 일측에는 제3단열체(414) 내부의 압력을 조절할 수 있도록 제3압력변이 설치되어 있다.
이때, 제3단열체(414)의 상측 내부에는 열분해 공간(111)에 연통되는 배기관(401)이 설치되어 있다. 상기 배기관(401)은 일단이 상기 연소공간(413)에 연통되고, 타단은 제2단열체(126)를 관통하여 열분해공간(111)에 연통되게 제1유전발열체(110)에 설치된다. 배기관(401)을 통해 열분해 공간(111) 내의 배기가스가 제2유전발열체(411) 내부의 연소공간(413)으로 유입된다.
보조탱크(416)는 보조공급관에 의해 제3단열체(414)에 연결되어 있고, 내부에 질소 또는 아르곤과 같은 불활성 가스가 충진되어 있다. 제3단열체(414) 내부에 충진된 불활성 가스에 의해 제2유전발열체(411) 및 제3단열체(414)가 산소와 접촉하여 산화되는 것을 방지한다.
한편, 제2유전발열체(411)의 상하단 및 제3단열체(414) 사이에는 제3패킹링(미도시) 및 제3금속링(421)이 설치되어 있다. 제3패킹링은 내열재로 형성되고, 제2유전발열체(411)의 상하단 가장자리에 대응되는 환형으로 형성되며, 제2유전발열체(411)의 상하단이 내부로 진입할 수 있게 진입홈이 형성되어 있다. 따라서, 제3패킹링은 제2유전발열체(411)의 상하단을 감싸는 형태가 된다.
제3금속링(421)은 제3패킹링의 외주면을 감싸는 금속재로 이루어지며, 제3단열체(414)와 제2유전발열체(411)의 후단을 가압하는 형태로 설치가 이루어진다. 이렇게 제3패킹링과 제3금속링(421)은 제2유전발열체(411) 및 제3단열체(414)의 후단부를 가압 설치됨에 따라 제2유전발열체 및 제3단열체(414)의 사이로 외부공기가 유입되어 제2유전발열체(411)의 외측이 산화되는 것을 방지하게 된다.
그리고 제3패킹링은 도면에 도시되진 않았지만, 물이 순환될 수 있는 워터자켓 형태로 형성하여 고온으로 승온하는 제2유전발열체(411)에 대한 내열성을 증가시키도록 하는 것이 바람직하다.
또한, 제2유전발열체(411)의 하부에는 유동가스 중에 포함된 재를 수집할 수 있도록 배출호퍼(417)가 설치되어 있다.
산소공급부(440)는 전단부가 상기 연소공간(413) 내에 노출되도록 상기 제2유전발열체(411)에 설치되며, 내부에 상기 산소가 유동하는 유동로가 마련되고, 하면에는 상기 유동로를 통과하는 산소가 상기 연소공간(413)으로 배출되도록 배출구가 마련된 주입관(441)과, 상기 유동로에 연통되게 상기 주입관(441)에 설치되어 상기 주입관(441)으로 상기 산소를 공급하는 산소공급부재(442)를 구비한다.
주입관(441)은 상하방향으로 연장되며, 하단부가 연소공간(413)으로 인입되도록 제3단열체(414)의 상부를 관통되게 설치된다.
산소공급부재(442)는 산소공급관(443)에 의해 주입관(441)의 유동로에 연통되게 설치되며, 내부에 산소가 충진된 것이 바람직하다. 상기 산소공급부재(442)로부터 공급된 산소는 제2유전발열체(411)의 연소공간(413)으로 공급되어 고온으로 가열된 배기가스를 연소시킨다.
와류발생부(450)는 상기 배출구를 통해 상기 유동로로 인입되며, 상기 주입관(441)에 회전가능하게 설치되는 와류축(451)과, 주입관(441) 외측의 와류축(451)에 설치되며, 배출구를 통해 배출되는 상기 산소를 상기 내열튜브의 내주면 측으로 유동하여 연소공간(413) 내에 산소의 와류를 유도하는 다수의 와류콘(452)과, 상기 와류축(451)에 서치되어 상기 와류축(451)을 회전시키는 와류 구동부(453)를 구비한다.
와류축(451)은 상하방향으로 연장형성되며, 주입관(441) 내부를 관통하도록 설치된다.
와류콘(452)은 다수개가 상하방향을 따라 상호 이격된 위치의 와류축(451)에 각각 설치되며, 용이하게 산소를 유도할 수 있도록 하방으로 갈수록 외경이 확장되는 원뿔형으로 형성된다.
또한, 와류콘(452)은 외주면에 다수의 발산돌기(454)가 형성되어 있다. 상기 발산돌기(454)는 다수개가 와류콘(452)의 원주방향을 따라 상호 이격되고, 와류콘(452)의 외주면으로부터 상방으로 돌출된다. 이때, 발산돌기(454)는 와류콘의 중심으로부터 가장자리까지 만곡되게 연장형성된다.
와류 구동부(453)는 와류축(451)의 상단부에 체결된 제3스프로켓(455)과, 제3단열커버(415)의 상면에 설치되어 회전력을 발생시키는 회전모터(456)와, 상기 회전모터(456)의 구동축에 설치되는 제4스프로켓(457)과, 상기 제3 및 제4스프로켓(455,457)에 연결되어 회전모터(456)의 회전력을 와류축(451)에 전달하는 제2연결체인(458)을 구비한다.
와류 구동부(453)에 의해 와류콘(452)은 회전하여 배출구로부터 배출되는 산소에 와류를 발생시키므로 연소공간(413)으로 유입된 유동가스와 산소와의 혼합효율을 향상시킨다.
한편, 도 4에는 본 발명의 또 다른 실시 예에 따른 제2유전발열체(522)가 도시되어 있다.
앞서 도시된 도면에서와 동일한 기능을 하는 요소는 동일 참조부호로 표기한다.
도면을 참조하면, 제2유전발열체(522)는 상기 연소공간(413)이 길이방향을 따라 파형으로 형성된다. 이때, 와류축(451)에는 1개의 와류콘(452)이 설치되며, 연소공간(413)에는 다수의 와류콘(452)이 설치되는 로드(523)가 마련된다.
상기 로드(523)는 상하방향으로 연장되되, 연소공간(413)에 대응되게 파형으로 만곡되게 형성되며, 상하방향을 따라 다수의 와류콘(452)이 상호 이격되게 설치된다. 상기 로드(523)는 도면에 도시되진 않았지만, 지지유닛(미도시)에 의해 연소공간(413)의 중앙부에 위치하는 것이 바람직하다.
상기 언급된 바와 같이 연소공간(413)이 파형으로 형성되므로 와류콘(452)에 의해 유도된 산소가 만곡된 제2유전발열체(522)의 내측면에 충돌하여 보다 용이하게 와류가 발생된다.
한편, 도 5에는 본 발명의 또 다른 실시 예에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치(500)가 도시되어 있다.
도면을 참조하면, 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치(500)는 상기 제1유전발열체(110)에 설치되며, 상기 열분해공간(111)에 투입된 상기 폐기물이 발화시 소화시킬 수 있는 소화유닛(510)을 더 구비한다.
소화유닛(510)은 상기 제1유전발열체(110)에 설치되며, 발화된 상기 폐기물을 소화할 수 있도록 상기 열분해공간(111)으로 모래를 투입하는 모래투입부(511)와, 상기 제1유전발열체(110) 내부에 설치되어 상기 열분해공간의 온도를 측정하는 온도측정센서(512)와, 상기 온도측정센서(512)를 통해 측정된 온도 데이터를 토대로 상기 열분해공간(111)의 온도가 기설정된 온도 이상일 경우, 상기 폐기물이 발화상태로 판단하여 상기 열분해공간(111)으로 상기 모래가 투입되도록 상기 모래투입부(511)를 작동시키는 제어부(513)를 구비한다.
상기 모래투입부(511)는 투입관(516)을 통해 상기 열분해공간(111)에 연통되게 상기 제1유전발열체(110) 상부에 설치되며, 내부에 다량의 모래가 수용되는 내부공간이 마련된 모래저장호퍼(514)와, 상기 투입관(516)에 설치되어 상기 투입관(516)의 내부유로를 개폐하는 개폐부재(515)를 구비한다.
상기 개폐부재(515)는 도면에 도시되진 않았지만, 상기 투입관(516)의 내부유로를 개폐할 수 있도록 상기 투입관(516)의 길이방향에 대해 교차하는 방향으로 슬라이딩 가능하게 설치되는 개폐판과, 상기 개폐판의 단부에 설치되어 상기 개폐판을 이동시키는 이동부재를 구비한다. 상기 이동부재는 제어부(513)에 의해 작동되어 개폐판을 이동시킨다.
상기 언급된 바와 같이 구성된 소화유닛(510)은 온도측정센서(512)를 통해 측정된 온도 데이터가 기설정된 값 이상일 경우, 폐기물의 발화상태로 판단하여 열분해공간(111)으로 모래를 투입한다. 이때, 모래는 고온상태에서 물과 같이 증발하지 않고, 폐기물을 덮어 폐기물로의 산소 공급을 차단하여 보다 안정적으로 폐기물을 소화시킨다.
또한, 본 발명에 따른 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치는 순간적으로 1250℃ 이상의 고열을 발생시키므로 방사능 폐기물이나 고엽제의 원료로 사용되는 피씨비에스(Polychlorinated Biphenyl: PCBs) 등과 같은 고위험성 폐기물을 보다 안전하게 처리할 수 있는 장점이 있다.
한편, 도 6에는 본 발명의 또 다른 실시 예에 따른 제2유전발열체(611)가 도시되어 있다.
도면을 참조하면, 제2유전발열체(611)는 연소공간(413)이 상기 유동가스의 체류시간을 연장시키기 위해 상기 유동가스의 이동거리를 증가시킬 수 있도록 지그재그 형태로 형성되기 위해 내부에 제1가이드판(612) 및 제2가이드판(613)이 설치되어 있다.
이때, 제2유전발열체(611)는 상하면은 폐쇄되되, 상측면에 상기 배기관(401)의 단부에 연통되는 연통공이 형성되고, 하측면에는 배출호퍼에 연통되는 배출공이 형성되어 있다.
상기 제1가이드판(612)은 연소공간(413)을 구획할 수 있도록 상단이 배출공에 인접된 위치의 제2유전발열체(611)의 천장면에 형성되며, 연소공간(413)의 폭에 대응되는 폭을 갖도록 형성된다. 상기 제1가이드판(612)은 상하방향으로 연장되되, 하측으로 유동가스가 통과되는 통과유로가 형성되도록 하단부가 제2유전발열체(611)의 바닥면보다 상측으로 이격되게 형성되는 것이 바람직하다.
제2가이드판(613)은 제1가이드판(612)에 대해 상기 배출공으로부터 멀어지는 방향으로 이격된 위치의 상기 제2유전발열체(611)의 바닥면에 형성되며, 연소공간(413)을 구획할 수 있도록 연소공간(413)의 폭에 대응되는 폭을 갖도록 형성된다. 상기 제2가이드판(613)은 상하방향으로 연장되되, 상측으로 유동가스가 통과되는 유로가 형성될 수 있도록 상단부가 제2유전발열체(611)의 천장면보다 하측으로 이격되게 형성되는 것이 바람직하다.
이때, 상기 제1 및 제2가이드판(612,613)은 고온에 의한 산화를 방지하기 위해 내열성이 우수한 내열캐스타블, 알루미나, 지르코니아로 형성될 수 있고, 알루미나 및 지르코니아 중 적어도 어느 하나와 규산소다나트륨을 혼합하여 형성될 수도 있다.
상기 언급된 바와 같이 제2유전발열체(611)는 제1가이드판(612) 및 제2가이드판(613)에 의해 연소공간(413)이 지그재그형태로 형성되므로 연소공간(413)으로 유입된 유동가스의 체류시간이 연장되어 피씨비에스(PCBs)와 같은 유독물질이 연소되는 데 충분한 시간을 제공한다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다.
따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다.

Claims (13)

  1. 내부에 폐기물이 투입되어 열분해되기 위한 열분해공간이 형성되며, 마이크로 웨이브에 의해 발열하는 제1유전발열체와;
    상면에 상기 폐기물이 안착될 수 있도록 상기 열분해공간에 상하방향으로 상호 이격되게 설치되며, 상기 폐기물의 열분해시 발생되는 유동가스가 통과될 수 있도록 다수의 배기공이 형성된 다수의 고정채반과,
    상기 제1유전발열체의 내부에 설치되어 상기 고정채반의 상면에 안착된 상기 폐기물을 교반하는 교반유닛과;
    상기 제1유전발열체에 인접되게 설치되며, 상기 폐기물 및 유동가스를 열분해할 수 있도록 상기 제1유전발열체가 발열되게 상기 제1유전발열체에 마이크로파를 주사하는 제1마이크로파 발진기;를 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  2. 제1항에 있어서,
    상기 교반유닛은
    상기 고정채반들을 관통하도록 상하방향으로 연장되며, 상기 제1유전발열체에 회전가능하게 결합된 회전축과,
    상기 고정채반들의 상면에 인접된 위치의 회전축에 형성되며, 상기 회전축의 회전중심으로부터 멀어지는 방향으로 연장된 교반부재와,
    상기 회전축에 설치되어 상기 회전축을 회전시키는 교반 구동부를 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  3. 제2항에 있어서,
    상기 회전축은 상기 폐기물의 열분해 완료시 발생되는 재가 배출되기 위해 상기 유전발열체에 형성된 배출공에 회전가능하게 삽입되고,
    상기 교반유닛은 상기 배출공에 인접된 상기 회전축 외주면에 형성되는 것으로서, 상기 회전축이 일반향으로 회전시 상기 열분해 공간에 수용된 재를 상기 제1유전발열체 외부로 이송시키고, 상기 회전축이 타방향으로 회전시 상기 제1유전발열체 외부로 상기 재의 이송이 중단되도록 상기 회전축의 길이방향을 따라 나선형으로 연장된 나선블레이드를 더 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  4. 제3항에 있어서,
    상기 회전축은 내부에 에어가 유입될 수 있도록 중공이 형성되고,
    상기 교반유닛은
    최하측에 위치한 상기 고정채반 하측의 상기 회전축에 형성되며, 상기 회전축으로부터 멀어지는 방향으로 연장되고, 내부에 상기 중공에 연통되는 연통로가 마련되며, 외주면에 상기 연통로를 통해 공급된 상기 에어가 상기 열분해 공간으로 분사되도록 다수의 분사공이 형성된 에어노즐과,
    상기 회전축의 중공으로 에어를 공급할 수 있도록 상기 회전축에 설치된 에어공급부를 더 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  5. 제1항 또는 제2항에 있어서,
    상기 제1유전발열체의 외주면에 외기가 접촉하는 것을 차단하기 위해 상기 제1유전발열체의 외주면을 감싸도록 형성된 제1단열부재와;
    상기 제1유전발열체의 내주면에 외기가 접촉하는 것을 차단하기 위해 상기 제1유전발열체의 내주면에 형성된 제1산화방지코팅층;을 더 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  6. 제1항 또는 제2항에 있어서,
    상기 열분해 공간에 연통되게 상기 제1유전발열체에 연결되어 상기 유동가스를 연소시키는 가스연소유닛;을 더 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  7. 제6항에 있어서,
    상기 가스연소유닛은
    배기관에 의해 상기 열분해 공간에 연통되게 연결되며, 내부에 상기 배기관을 통해 공급된 상기 유동가스가 유입되는 연소공간이 마련되고, 상기 마이크로 웨이브에 의해 발열하는 제2유전발열체와,
    상기 제2유전발열체와 인접하게 설치되어 상기 제2유전발열체를 발열시키도록 상기 마이크로 웨이브를 발진시키는 제2마이크로파 발진기와,
    상기 제2유전발열체의 연소공간으로 산소를 공급하는 산소공급부와,
    상기 연소공간 내에서 상기 산소 및 유동가스를 교반시키기 위해 상기 산소 및 유동가스의 와류 및 난류 유동을 유도하는 와류발생부를 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  8. 제7항에 있어서,
    상기 산소공급부는
    일단이 상기 연소공간 내에 노출되도록 상기 제2유전발열체에 설치되고, 내부에 상기 산소가 유동하는 유동로가 마련되며, 일단면에는 상기 유동로를 통과하는 산소가 상기 연소공간으로 배출되도록 배출구가 마련된 주입관과,
    상기 주입관에 설치되어 상기 주입관의 내부로 산소를 공급하는 산소공급부재를 구비하고,
    상기 와류발생부는
    상기 배출구를 통해 상기 유동로로 인입되어 상기 주입관에 회전가능하게 설치되는 와류축과,
    상기 주입관 외측의 상기 와류축에 설치되며, 상기 배출구를 통해 배출되는 상기 산소를 상기 내열튜브의 내주면 측으로 유동하여 상기 연소공간 내에 상기 산소의 와류를 유도하는 적어도 하나의 와류콘과,
    상기 와류축에 설치되어 상기 와류축을 회전시키는 와류 구동부를 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  9. 제7항에 있어서,
    상기 가스연소유닛은
    상기 제2유전발열체의 외주면에 외기가 접촉하는 것을 차단하기 위해 상기 제2유전발열체의 외주면을 감싸도록 형성된 제2단열부재와,
    상기 제2유전발열체의 내주면에 외기가 접촉하는 것을 차단하기 위해 상기 제2유전발열체의 내주면에 형성된 제2산화방지코팅층을 더 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  10. 제9항에 있어서,
    상기 제2유전발열체는 상기 연소공간이 길이방향을 따라 파형으로 형성된 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  11. 제1항에 있어서,
    상기 제1유전발열체에 설치되며, 상기 열분해공간에 투입된 상기 폐기물이 발화시 소화시킬 수 있는 소화유닛;을 더 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  12. 제11항에 있어서,
    상기 소화유닛은
    상기 제1유전발열체에 설치되며, 발화된 상기 폐기물을 소화할 수 있도록 상기 열분해공간으로 모래를 투입하는 모래투입부와,
    상기 제1유전발열체 내부에 설치되어 상기 열분해공간의 온도를 측정하는 온도측정센서와,
    상기 온도측정센서를 통해 측정된 온도 데이터를 토대로 상기 열분해공간의 온도가 기설정된 온도 이상일 경우, 상기 폐기물이 발화상태로 판단하여 상기 열분해공간으로 상기 모래가 투입되도록 상기 모래투입부를 작동시키는 제어부를 구비하는 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
  13. 제7항에 있어서,
    상기 제2유전발열체의 연소공간은 상기 유동가스의 체류시간을 연장시키기 위해 상기 유동가스의 이동거리를 증가시킬 수 있도록 지그재그 형태로 연장형성된 것을 특징으로 하는 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치.
PCT/KR2014/009690 2014-06-05 2014-10-15 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치 WO2015186866A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140068661A KR101498260B1 (ko) 2014-06-05 2014-06-05 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치
KR10-2014-0068661 2014-06-05

Publications (1)

Publication Number Publication Date
WO2015186866A1 true WO2015186866A1 (ko) 2015-12-10

Family

ID=53026121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009690 WO2015186866A1 (ko) 2014-06-05 2014-10-15 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치

Country Status (2)

Country Link
KR (1) KR101498260B1 (ko)
WO (1) WO2015186866A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402738A (zh) * 2015-12-30 2016-03-16 重庆科技学院 双层机械炉排式垃圾气化焚烧炉及其双锅炉系统
CN110194958A (zh) * 2019-05-21 2019-09-03 江苏大学 一种立式微波热解反应炉
EP3819358A1 (de) * 2019-11-06 2021-05-12 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Entsorgungsverfahren

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338067B (zh) * 2016-03-14 2018-12-07 四川宏图普新微波科技有限公司 一种固体有机材料裂解系统
CN106338066B (zh) * 2016-03-14 2018-12-07 四川宏图普新微波科技有限公司 一种固体有机材料的裂解方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976770B1 (ko) * 2010-03-17 2010-08-18 황창성 마이크로웨이브를 이용한 가연성 방사성 폐기물 처리장치
KR20110133773A (ko) * 2010-06-07 2011-12-14 김교윤 유해가스 제거장치
KR20120000940A (ko) * 2010-06-28 2012-01-04 오세유 온실가스 연소장치
KR101285868B1 (ko) * 2012-04-13 2013-07-12 김필성 배기가스 연소장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299170A (ja) * 1992-04-18 1993-11-12 Ryoji Watabe 誘電発熱体を用いた熱風燃焼装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976770B1 (ko) * 2010-03-17 2010-08-18 황창성 마이크로웨이브를 이용한 가연성 방사성 폐기물 처리장치
KR20110133773A (ko) * 2010-06-07 2011-12-14 김교윤 유해가스 제거장치
KR20120000940A (ko) * 2010-06-28 2012-01-04 오세유 온실가스 연소장치
KR101285868B1 (ko) * 2012-04-13 2013-07-12 김필성 배기가스 연소장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402738A (zh) * 2015-12-30 2016-03-16 重庆科技学院 双层机械炉排式垃圾气化焚烧炉及其双锅炉系统
CN110194958A (zh) * 2019-05-21 2019-09-03 江苏大学 一种立式微波热解反应炉
EP3819358A1 (de) * 2019-11-06 2021-05-12 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Entsorgungsverfahren
WO2021089432A1 (de) 2019-11-06 2021-05-14 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Entsorgungsverfahren

Also Published As

Publication number Publication date
KR101498260B1 (ko) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2015186866A1 (ko) 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치
WO2018128347A1 (ko) 자동 재 처리기를 포함하는 열분해 가스화로
WO2015174604A1 (ko) 폐 플라스틱 고형연료 소각로
WO2014077574A1 (ko) 연소 공기 흐름을 이용한 영역별 원심분리 연소장치
WO2013094878A1 (ko) 액체금속을 이용한 열분해 장치
KR100330814B1 (ko) 모든 가연성 물질을 초 고온, 고속으로 연소시키는 연소방법
JP3034467B2 (ja) 直結型焼却灰溶融処理設備及びその処理方法
KR100312137B1 (ko) 열분해식 폐기물 자동 소각장치
WO2011071222A1 (ko) 소각장치
WO2010085099A2 (ko) 가연성 폐물질을 연료로 활용하는 열회수 소각 연소로
WO2009157737A2 (ko) 연소장치
WO2019098537A1 (ko) 친환경 다층고온 소각장치
KR101469172B1 (ko) 마이크로 웨이브를 이용한 환원 유전가열장치
WO2018128443A1 (ko) 해양폐기물 처리시스템 및 이를 이용한 해양폐기물 처리방법
KR101536277B1 (ko) 마이크로 웨이브를 이용한 건류가스 유동상 열분해 가스화 연소장치
WO2014204198A1 (ko) 가연성 분말용 연소장치
WO2018066786A1 (ko) 녹스 저감용 쓰레기 소각 장치
WO2013125928A1 (ko) 폐기물의 탄화 및 열분해 가스화 연소장치
KR101004765B1 (ko) 폐기물 탄화 처리장치
WO2018038563A2 (ko) 폐기물 소각용 보일러장치
KR100249104B1 (ko) 산업폐기물 소각방법 및 그 장치
KR100564881B1 (ko) 연소로의 공기흐름을 이용한 원심분리 연소장치
KR100230188B1 (ko) 복합형 소각장치
KR200218488Y1 (ko) 폐고무재 소각장치를 이용한 건류가스 버너
JP2707210B2 (ja) 廃棄物処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894055

Country of ref document: EP

Kind code of ref document: A1