WO2015186514A1 - イオン発生型加湿器 - Google Patents

イオン発生型加湿器 Download PDF

Info

Publication number
WO2015186514A1
WO2015186514A1 PCT/JP2015/064430 JP2015064430W WO2015186514A1 WO 2015186514 A1 WO2015186514 A1 WO 2015186514A1 JP 2015064430 W JP2015064430 W JP 2015064430W WO 2015186514 A1 WO2015186514 A1 WO 2015186514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
water
ion
ions
tank
Prior art date
Application number
PCT/JP2015/064430
Other languages
English (en)
French (fr)
Inventor
寺島 健太郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015186514A1 publication Critical patent/WO2015186514A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0082Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • A61L2/035Electrolysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • A61L2209/213Use of electrochemically treated water, e.g. electrolysed water or water treated by electrical discharge

Definitions

  • the present invention includes an ion generation unit, an electrolysis unit, and an atomization unit, and performs electrolysis at the time of initial start-up and discharges ions from the ion generation unit to the atmosphere to perform electrolysis. It is related with the ion generation type humidifier comprised so that ion discharge
  • humidifiers and face steamers using tap water are (1) heating vaporization method using a heater, (2) spraying method using atomization using an ultrasonic vibrator, and (3) water contained in a nonwoven fabric.
  • Three types of vaporization methods by vaporizing were adopted. Among these, since the spraying method using an ultrasonic vibrator is effective as a method for increasing the humidification amount with low power consumption, many products using the method are on the market.
  • a humidifier ion-generating humidifier
  • a humidifying mechanism including a water supply unit, an atomization unit that supplies moisture in the water supply unit to the space, and an ion generation unit.
  • the humidification mechanism with an ion generation function is disclosed in which the atomization flow discharged from the atomization unit and the ion flow discharged from the ion generation unit do not intersect with each other.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-168428 includes both a humidification unit and an ion generation unit, further includes a human sensor (human body detection sensor), and when it is determined that there is a person, An air conditioner having a skin care mode in which the wind direction is controlled in the direction of a predetermined region so that electrostatic mist reaches the predetermined region is disclosed.
  • the wind direction of the ion mist is controlled by a human sensor so that the electrostatic mist reaches a predetermined region.
  • the air conditioner disclosed in Patent Document 2 does not assume a case where the ion concentration is high, and there remains a problem that the total ion amount decreases when the atomized flow and the ion flow are mixed.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to reduce the amount of atomized electrolyzed water and ions without reducing the total ion amount. It is an object of the present invention to provide an ion generation type humidifier that can be performed smoothly.
  • the ion generation type humidifier of the present invention includes an ion generation unit that generates ions, an electrolysis unit that electrolyzes water to generate functional water, and an atomization that atomizes functional water generated by the electrolysis unit
  • An ion generating humidifier comprising an ion generating port that discharges ions generated in the ion generating unit to the atmosphere, and an atomizing port that discharges atomized functional water to the atmosphere.
  • the ion generation type humidifier of the present invention releases the ions from the ion generation port when not detected by the human sensor, and atomizes from the atomization port only when detected by the human sensor. It is preferably configured to release water.
  • the ion generating humidifier according to the present invention includes an electrolysis tank in which the electrolysis unit performs electrolysis, a water supply tank capable of supplying water to the electrolysis tank, and discarding water from the electrolysis tank.
  • a desorption tank, and the electrolysis tank has an electrode pair consisting of an ion adsorption electrode and a metal electrode, and water supplied from the water replenishment tank is converted into a cation by the ion adsorption electrode as an adsorption step. It is preferable that, after adsorbing the components and atomizing the functional water after adjusting the pH, the cation component desorbed in water by polarity reversal as a desorption step is discarded in the desorption tank. In this case, it is more preferable that the atomization is stopped during the desorption step and ions are released from the ion generation port.
  • the human sensor further has a distance measuring sensor function and adjusts an atomization amount or an air blowing amount according to a distance.
  • atomized electrolytic water and ions can be discharged smoothly without decreasing the total ion amount.
  • ions are released to the skin before spraying to remove the charge on the skin in advance to charge the epidermis. Relieves and improves the wettability of the skin by mist.
  • FIG. 1 and FIG. 2 are views schematically showing the ion generating humidifier 1 of the first embodiment.
  • the ion generation type humidifier 1 of the example shown in FIGS. 1 and 2 is generated by an ion generation unit 2 that generates ions, an electrolysis unit 3 that electrolyzes water to generate functional water, and an electrolysis unit 3
  • An atomizing unit 4 for atomizing the functional water thus generated, an ion generating port 5 for discharging the ions generated by the ion generating unit 2 into the atmosphere, and an atomizing port for discharging the atomized functional water into the air 6 is basically provided.
  • the ion generating humidifier 1 of the present invention releases ions from the ion generating port 5 until the electrolysis in the electrolysis unit 3 is completed at the time of initial startup (FIG. 1), and the electrolysis is completed. After that, the release of ions is stopped, the functional water generated by electrolysis is atomized, and the mist (mist) 8 is discharged from the atomization port 6 (FIG. 2).
  • “functional water” refers to water obtained by electrolyzing raw water and having an arbitrary function added to the raw water.
  • the electrolysis unit 3 of the ion generating humidifier 1 of the present invention Includes acidic water and alkaline water produced.
  • the atomized electrolytic water and ions can be discharged smoothly without reducing the total ion amount.
  • ions are released to the skin before spraying to remove the charge on the skin in advance to charge the epidermis. Relieves and improves the wettability of the skin by mist.
  • a conventionally known appropriate ion generating element is used for the ion generator 2 in the present invention.
  • molecules such as oxygen (O 2 ) and water (H 2 O) in the air are energized by the discharge phenomenon of the ion generating element.
  • positive ions composed of H + (H 2 O) m (m is an arbitrary integer) and negative ions composed of O 2 ⁇ (H 2 O) n (n is an arbitrary integer) are generated as ions. be able to.
  • positive ions and negative ions can be simultaneously generated and discharged into the air by alternately applying positive and negative voltages.
  • the method of generating ions in the ion generator 2 used in the present invention is not limited to this, and only one of positive and negative voltages is applied, and only one of positive ions and negative ions is applied.
  • a reverse voltage can be applied next to generate ions having a charge opposite to that of ions already delivered.
  • the applied voltage necessary for generating these positive ions and negative ions is preferably in the range of 1.1 to 2.0 kV depending on the structure of the electrode.
  • the composition of the positive ions and negative ions generated by the discharge phenomenon using oxygen molecules and / or water molecules present on the surface of the discharge element as the raw material is mainly the ionization of water molecules in the air by plasma discharge as hydrogen ions.
  • H + is generated and clustered with water molecules in the air by solvation energy to form H + (H 2 O) m (m is an arbitrary integer).
  • oxygen molecules or water molecules in the air are ionized by plasma discharge to generate oxygen ions O 2 ⁇ , which are clustered with water molecules in the air by solvation energy, thereby O 2 ⁇ (H 2 O) n (n is an arbitrary integer).
  • both of these can react to easily generate more active active species such as hydrogen peroxide H 2 O 2 , hydrogen dioxide O 2 H, and hydroxy radical / OH.
  • the concentration of positive ions and negative ions generated by discharge is 200,000 / cm 3 or more, respectively. This is because when the concentrations of positive ions and negative ions are each less than 200,000 / cm 3 , the effect of preventing and treating atopy tends to be reduced.
  • the number of ions is defined by counting small ions, and the critical mobility in air is 1 cm 2 / V ⁇ sec.
  • the electrolysis unit 3 includes an electrolysis tank (electrolysis tank) 11 separated into two tanks, an anode tank 12 and a cathode tank 13, with a diaphragm 14 interposed therebetween.
  • the cathode chamber 13 is provided with a pair of metal electrodes 15 and 16 that serve as an anode and a cathode, respectively.
  • a water replenishing tank 17 is provided above the electrolytic tank 11 via a pipe line 18 provided with a valve 19 in the middle so that raw water can be supplied to the electrolytic tank 11.
  • the raw water (for example, tap water) is supplied from the water replenishing tank 17 to the electrolytic tank 11 and electrolyzed, whereby acidic water is generated in the anode tank 12 and alkaline water is generated in the cathode tank 13, respectively.
  • the electrolytic cell 11 is provided with a drain 20 so that water in the electrolytic cell 11 can be appropriately drained.
  • the metal electrodes 15 and 16 are any one selected from the group consisting of metals that easily perform electrolysis of water efficiently, such as platinum, gold, palladium, rhodium, and iridium.
  • a metal or an alloy thereof is suitable, and for example, the surface of an electrode made of titanium may be coated with platinum.
  • the shape of the metal electrodes 15 and 16 is not particularly limited, and may be a flat plate shape, a lath (expander) shape, a rod shape, or the like. From the viewpoint of the efficiency of electrolysis, as shown in the examples shown in FIGS. 1 and 2, the metal electrodes 15 and 16 formed in a flat plate shape are arranged in parallel to each other in parallel and spaced apart from each other.
  • the provided configuration (vertical type) is preferable, but of course not limited to this.
  • a metal electrode 15 and 16 formed of a pair of platinum-coated titanium having an electrode size of 90 mm ⁇ 70 mm is used for 2 L of tank water, and the current value is 500 mA and the distance between the electrodes is 15 mm through the diaphragm 14. Then, current is applied (voltage value: 25 to 50 V) and electrolysis is performed for about 30 to 40 minutes.
  • the anode tank 12 generates 1 L of half of acidic water by the reaction described in the following formula (1).
  • 1L of alkali water is produced in half by the reaction described in the following formula (2).
  • a part of the anode tank 12 is configured to work as the atomizing unit 4.
  • the atomization unit 4 is provided with an atomization device 21, which sequentially discharges acidic water from the generated functional water into the atmosphere (mist).
  • an atomization device 21 for example, a low temperature atomization method generated by a venturi method using an ultrasonic element (ultrasonic vibrator), an air pump or the like is preferable because it does not change the pH after spraying.
  • a high-temperature atomization method such as a sheathed heater may be employed for sterilization.
  • a commercially available product may be used as the atomizing device 21.
  • TU-20A-0 manufactured by TDK
  • TU-20A-0 is a preferred example of the ultrasonic element.
  • the ventilation fan 22 is provided above the anode tank 12, and the atomized functional water is discharge
  • the blower fan 22 a conventionally known appropriate blower fan can be used without particular limitation.
  • the ion generating port 5 and the atomizing port 6 are preferably provided close to each other, and the ions are blown from the ion generating port 5 by air blowing by the same blower fan 22. It is preferable that the atomized functional water is discharged from the atomizing port 6.
  • Such an ion generation type humidifier 1 of the present invention is suitably used for skin or hair cosmetic use or skin treatment use.
  • FIG. 3 is a graph showing the efficacy of mist spraying, where the vertical axis represents pH and the horizontal axis represents spraying time (minutes).
  • plot A is a healthy control (no spray)
  • plot B is a patient control (no spray)
  • plot C is sprayed from a distance of 30 cm to the patient
  • plot D is sprayed from a distance of 15 cm to the patient.
  • FIG. 3 it becomes possible to quickly return the skin pH by continuous mist spraying, and by spraying from a distance of 30 cm, the skin pH of a subject with atopic symptoms is reduced to about pH 5 at a speed similar to that of a healthy person. I can see that
  • Staphylococcus epidermidis there are three types of bacteria on the skin, Staphylococcus epidermidis, Staphylococcus aureus, and Acnes, but patients with atopic skin have fewer good staphylococcus epidermidis than healthy skin, and bad bacterium yellow grapes It is known that the number of cocci is relatively large. Staphylococcus aureus is known to have an optimum pH in the neutral range of 6-8, whereas Staphylococcus epidermidis is known to be in the acidic range of optimum pH 4.5-5.5. Therefore, by atomizing and spraying acidic water to atopic skin, it becomes possible to quickly adjust to a skin state in which bad bacteria are less likely to live while good bacteria are more likely to live.
  • the pH of the acidic water used for atomization is desirably 2.5 to 4, and the pH is preferably 3.5 to 4 in order to ensure the moisture retention performance of the skin.
  • electrolysis may be performed by adding an electrolyte such as sodium chloride as appropriate as necessary.
  • the ion generating humidifier 1 of the present invention discharges ions from the ion generating port 5 during the initial start-up until the electrolysis in the electrolysis unit 3 is completed, and releases ions after the electrolysis is completed.
  • the functional water generated by the electrolysis is atomized and discharged from the atomizing port 6. That is, when the ion generation type humidifier 1 is turned on (initial start-up), as shown in FIG. 1, the electrolysis in the electrolysis unit 3 is started, and the ions are generated in the ion generation unit 2 until the electrolysis is completed. Are generated, and ions 7 are released from the ion generation port 5 into the atmosphere (the ion generation unit 2 is ON and the atomization device 21 is OFF).
  • the electrolysis unit 3 is intermittently operated, the ion generation unit 2 is stopped, the functional water (acidic water) is atomized by the atomization device 21, and the atomization port 6.
  • the atomized functional water is discharged (sprayed) into the atmosphere (the ion generator 2 is OFF and the atomizer 21 is ON).
  • the ion generation type humidifier 1 of the present invention includes means for detecting whether or not the supply of functional water is insufficient (for example, an appropriate publicly known water level sensor), and detects the supply of functional water. Thus, the atomized functional water may be stopped from being released and switched to the generation of ions from the ion generation port 5.
  • FIGS. 4 and 5 are diagrams schematically showing an ion generating humidifier 31 according to the second embodiment.
  • the ion generating humidifier 31 of the example shown in FIGS. 4 and 5 is the same as the ion generating humidifier 1 of the example shown in FIGS. 1 and 2 except for a part, and has a similar configuration. Are denoted by the same reference numerals, and description thereof is omitted.
  • the ion generation type humidifier 31 of the example shown in FIGS. 4 and 5 includes a human sensor 32 and, when not detected by the human sensor 32, emits ions 7 from the ion generation port 5 (FIG.
  • the human sensor 32 is OFF, the ion generator 2 is ON, and the atomizer 21 is OFF). Only when the human sensor 32 detects it, the atomized functional water (fog 8) is discharged from the atomization port 6. (FIG. 4: the human sensor 32 is ON, the ion generator 2 is OFF, and the atomizer 21 is ON).
  • the human sensor 32 a conventionally known appropriate human sensor capable of detecting the presence of a human can be used without particular limitation.
  • the ion generating port 5 and the atomizing port 6 are preferably provided close to each other as shown in the examples shown in FIGS. It is preferable to be provided in the vicinity of the ion generation port 5 and the atomization port 6 (on the side where the ion generation port 5 and the atomization port 6 of the ion generation type humidifier are provided).
  • the electrolysis unit 33 includes a metal electrode 35 and an ion adsorption electrode 36 in a single tank type electrolysis tank (electrolysis tank) 34.
  • Acid water can be generated by batch-type electrolysis of the raw water supplied into the electrolytic cell 34 using the metal electrode 35 as an anode and the ion adsorption electrode 36 as a cathode.
  • Alkaline water can be generated by electrolysis using 35 as a cathode and the ion adsorption electrode 36 as an anode.
  • the “batch method” refers to a configuration in which electrolysis is performed without adding or removing water in the electrolytic cell after adding a predetermined amount of raw water to the electrolytic cell.
  • the water replenishing tank 17 containing raw water is disposed above the electrolytic tank 34 and the valve 19 provided in the middle of the pipe 18 interposed therebetween is opened, The raw water is supplied from the replenishing tank 17 into the electrolytic tank 34.
  • the metal electrode 35 is preferably a metal that can easily electrolyze water, such as platinum, gold, palladium, rhodium, or iridium (or an alloy thereof), such as an electrode made of titanium.
  • a metal that can easily electrolyze water such as platinum, gold, palladium, rhodium, or iridium (or an alloy thereof), such as an electrode made of titanium.
  • the surface coated with platinum (platinum-coated titanium electrode) may be used.
  • a carbon electrode made of a conductive carbon material for example, carbon fiber, activated carbon, etc.
  • activated carbon having a large specific surface area that adsorbs ions is used as at least a part of the carbon electrode. Is preferred.
  • M 2+ hardness ion components
  • the shapes of the metal electrode 35 and the ion adsorption electrode 36 are not particularly limited, but both are preferably formed in a flat plate shape, and are opposed to each other in the vertical direction in parallel to each other (in the examples of FIGS. 4 and 5).
  • a configuration (horizontal type) in which the metal electrode 35 on the upper side and the ion adsorption electrode 36 on the lower side are arranged with an interval is particularly preferable.
  • the metal electrode 35 When the metal electrode 35 is arranged on the upper side as in the examples shown in FIGS. 4 and 5, the metal electrode 35 has an expander shape in order to efficiently mix with the raw water supplied from the water supply tank 17. It may be a shape that allows easy passage of water such as a lattice shape.
  • a constant current generating source is electrically connected to the metal electrode 35 and the ion adsorption electrode 36 through a switching circuit (not shown).
  • the direction of the current supplied to the metal electrode 35 and the ion adsorption electrode 36 is switched and controlled by a control device (not shown).
  • the control device is composed of a known CPU, microcomputer, etc., and controls the amount of current supplied to the electrolysis unit and the direction of the current, as well as the opening and closing of the valve.
  • raw water is supplied from the water replenishing tank 17 through the valve 19 into the electrolytic tank 34.
  • Ordinary tap water can be used as raw water to be used.
  • current value 500 mA
  • electrode size 150 mm ⁇ 100 mm
  • distance between electrodes When a current is applied at 15 mm, electrolysis can be performed at a relatively low voltage value of 30 to 35 V to generate acidic water.
  • both the metal electrode and the ion adsorption electrode are formed in a flat plate shape (the metal electrode is specifically a strip shape with a pitch of 5 mm), and the metal electrode 35 and the ion adsorption electrode 36 are in the vertical direction. , And are arranged in parallel and spaced apart from each other.
  • Electrolysis is first performed using the metal electrode 35 as an anode and the ion adsorption electrode 36 as a cathode.
  • acidification is performed by electrolysis. Specifically, when water to be electrolyzed is 500 mL, acidic water having a pH of about 3 to 3.2 can be obtained by electrolysis at 500 mA for about 5 minutes. .
  • the ion adsorption electrode which is the cathode, uses the porous adsorption surface of the carbon electrode as shown in the following reaction formula (3) for hardness components such as Mg ions and Ca ions dissolved in raw water such as tap water. Thus, it is effectively adsorbed as electric double layer ions.
  • alkaline water can be generated by carrying out electrolysis by supplying a current with the polarity reversed. Specifically, electrolysis is performed using the ion adsorption electrode 36 as an anode and the metal electrode 35 as a cathode. As a result, hydrogen gas is released from the metal electrode 35 which is a cathode as in the above formula (2), and the remaining hydroxide ions are liberated into water, thereby making it alkaline.
  • the ion adsorption electrode 36 which is an anode the hardness component M adhering to the electrode surface is re-released (desorbed) into water as hardness ions (M 2+ ) as shown in the following reaction formula (4).
  • the water in the sealed container is shifted to the alkali side.
  • the electrolysis is performed at 500 mA for about 3 minutes, so that the pH is about 10.5 to 11 Of alkaline water is obtained.
  • a desorption tank 41 is provided in the electrolytic cell 34 via a pipe line 43 provided with a valve 44 in the middle.
  • the hardness component adsorbed on the ion adsorption electrode 36 is released (desorbed) into the water as cations.
  • the water after the cation has been desorbed can be appropriately disposed of as waste water in the desorption tank 41 by opening the valve 44.
  • the water after the reverse electrolysis is alkaline and water from which hardness components are eluted, but since the hardness in water gradually increases upon vaporization, it is necessary to appropriately replace the water by the user.
  • the replacement time may be notified by providing a hardness sensor in the desorption tank 41.
  • the ion generating humidifier 31 of the present invention includes an electrolysis tank (electrolysis tank) 34 for the electrolysis unit 33 to perform electrolysis, and a water supply tank 17 that can supply water to the electrolysis tank 34. And a desorption tank 41 that can discard water from the electrolysis tank 34, and the electrolysis tank 34 has an electrode pair composed of an ion adsorption electrode 36 and a metal electrode 35, and is supplied from the water replenishment tank 17.
  • Cation component is adsorbed by ion adsorbing electrode 36 as an adsorption step, and functional water after pH adjustment is atomized, and then the cation component desorbed into water by polarity reversal as a desorption step It is preferable that it is configured to be disposed of. Further, in this case, it is more preferable that the atomization is stopped during the desorption step and ions are released from the ion generation port 5.
  • FIG. 6 is a diagram schematically illustrating an ion generating humidifier 51 according to the third embodiment.
  • the ion generation type humidifier 51 of the example shown in FIG. 6 is the ion generation type humidifier 1 of the example shown in FIG. 1 and FIG. 2 except for a part, and the ion generation type of the example shown in FIG. 4 and FIG. It is the same as the humidifier 31, and the part which has the same structure attaches
  • the ion generating humidifier 51 of the example shown in FIG. 6 includes a human / range sensor 52 instead of the human sensor 32.
  • the human sensor / ranging sensor 52 any appropriate publicly known human sensor / ranging sensor capable of sensing the presence of a person and measuring the distance can be used without particular limitation.
  • the ion generating port 5 and the atomizing port 6 are preferably provided close to each other as in the example shown in FIGS. 4 and 5. These are preferably provided in the vicinity of the ion generation port 5 and the atomization port 6 (on the side where the ion generation port 5 and the atomization port 6 of the ion generation type humidifier are provided).
  • the human sensor further has a distance sensor function (that is, provided with the human sensor / ranging sensor 52), and adjusts the atomization amount or the air blowing amount according to the distance. It is preferable that it is comprised. For example, when the distance to the detected person is small (the distance from the atomization opening 6 to the face is short), the amount of atomization is reduced and the distance to the detected person is large (from the atomization opening 6 to the face). In the case where the distance is long), an example in which control is performed by a control device (not shown) to increase the amount of atomization is given. As a result, it is possible to keep the amount of atomization on the skin constant regardless of the distance, and it is possible to avoid the risk of weakly acidic water entering the eyes vigorously even when the distance is close. Become.
  • 1 ion generation type humidifier 1 ion generation type humidifier, 2 ion generation unit, 3 electrolysis unit, 4 atomization unit, 5 ion generation port, 6 atomization port, 7 ions, 8 fog, 11 electrolysis tank, 12 anode tank, 13 cathode tank , 14 diaphragm, 15 metal electrode, 16 metal electrode, 17 water supply tank, 18 pipe, 19 valve, 20 drain, 21 atomizer, 22 blower fan, 31 ion generation type humidifier, 32 human sensor, 33 electricity Decomposition part, 34 Electrolysis tank, 35 Metal electrode, 36 Ion adsorption electrode, 41 Desorption tank, 42 Pipe line, 43 Valve, 51 Ion generating humidifier, 52 Human sensor / ranging sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Air Humidification (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Special Spraying Apparatus (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

 イオンを発生するイオン発生部と、水を電気分解して機能水を生成する電気分解部と、電気分解部で生成された機能水を霧化する霧化部と、イオン発生部で発生されたイオンを大気中に放出するイオン発生口と、霧化された機能水を大気中に放出する霧化口とを備えるイオン発生型加湿器であって、初期起動時において前記電気分解部における電気分解が完了するまでの間に、イオン発生口からイオンを放出し、電気分解が完了した後にイオンの放出を停止し、電気分解により生成された機能水を霧化し、霧化口から放出するように構成されているイオン発生型加湿器によって、総イオン量を減少させてしまうことなく、霧化された電解水の放出とイオンの放出とを円滑に行なうことができるイオン発生型加湿器を提供することができる。

Description

イオン発生型加湿器
 本発明は、イオン発生部、電気分解部および霧化部を備え、初期起動時において電気分解を行ない霧化を行なうまでの間に、イオン発生部からのイオンを大気中に放出し、電気分解が完了した後に、イオン放出を停止し、電気分解により生成された機能水を霧化部で霧化し、大気中に放出するように構成されたイオン発生型加湿器に関する。
 従来、水道水を利用した加湿器、フェイススチーマなどは、(1)ヒーターによる加熱気化方式、(2)超音波振動子による霧化を利用した噴霧方式、(3)不織布などに含ませた水を気化することによる気化方式、の3種類の方式が採用されていた。このうち、超音波振動子による噴霧方式は、低消費電力で加湿量を増やす手法として有効であるため、当該方式を利用した多くの製品が販売されている。
 一方、加湿と同時に空気中の除菌を行なう場合、コロナ放電などにより発生させたイオンを送風して大気中に放出することで、大気中の雑菌、アレルゲンなどの有害物質の除菌、除去をしていた。
 しかしながら、超音波振動子による霧化を利用した加湿部と、イオンを発生させるイオン発生部とを共に備える加湿器(イオン発生型加湿器)は、霧化量を増加しようとする場合、霧化させた水分を含む空気流(霧化流)とイオンを含む空気流(イオン流)とが混合(混流)すると、放出される総イオン量が減少することが知られている。この問題を解決するために、たとえば特開2013-238385号公報(特許文献1)には、給水部と前記給水部の水分を空間に供給する霧化部とイオン発生部とを備えた加湿機構において、前記霧化部から放出される霧化流と前記イオン発生部から放出されるイオン流とが交差しない方式としたことを特徴とするイオン発生機能付き加湿機構が開示されている。
 また特開2009-168428号公報(特許文献2)には、加湿部とイオン発生部を共に備え、人感センサ(人体検知センサ)をさらに有し、人がいると判定された場合に、前記所定の領域の方向に風向制御して前記所定の領域に静電ミストを到達させるようにする肌ケアモードを有する空気調和機が開示されている。
特開2013-238385号公報 特開2009-168428号公報
 しかしながら、特許文献1に開示されたイオン発生機能付き加湿機構では、霧化とイオン発生を時間分割で切り分けを行なっている。このため、当該加湿機構を卓上に配置して顔に対して連続的に霧化加湿を行なっている途中で、突然イオン発生に切り替わるなど、利用者にストレスとなる場合があった。
 また、特許技術2に開示された空気調和機では、人感センサによりイオンミストの風向制御し、所定の領域に静電ミストを到達させるようにするものである。しかしながら、特許文献2に開示された空気調和機は、イオン濃度の高いケースを想定しておらず、霧化流とイオン流を混流した場合、総イオン量が減少するという問題は残っていた。
 本発明は、上記課題を解決するためになされたものであって、その目的とするところは、総イオン量を減少させてしまうことなく、霧化された電解水の放出とイオンの放出とを円滑に行なうことができるイオン発生型加湿器を提供することである。
 本発明のイオン発生型加湿器は、イオンを発生するイオン発生部と、水を電気分解して機能水を生成する電気分解部と、電気分解部で生成された機能水を霧化する霧化部と、イオン発生部で発生されたイオンを大気中に放出するイオン発生口と、霧化された機能水を大気中に放出する霧化口とを備えるイオン発生型加湿器であって、初期起動時において前記電気分解部における電気分解が完了するまでの間に、イオン発生口からイオンを放出し、電気分解が完了した後にイオンの放出を停止し、電気分解により生成された機能水を霧化し、霧化口から放出するように構成されていることを特徴とする。
 本発明のイオン発生型加湿器は、前記人感センサで感知しない場合には、前記イオン発生口からイオンを放出し、前記人感センサで感知した場合のみ、霧化口から霧化させた機能水を放出するように構成されていることが好ましい。
 本発明のイオン発生型加湿器は、前記電気分解部が、電気分解を行なうための電気分解槽と、前記電気分解槽に水を供給し得る水補給槽と、前記電気分解槽から水を廃棄し得る脱着槽とをさらに備え、前記電気分解槽は、イオン吸着電極と金属電極からなる電極対を有し、前記水補給槽から供給された水を、吸着工程として前記イオン吸着電極で陽イオン成分の吸着を行ない、pH調整を行なった後の機能水を霧化した後、脱着工程として極性反転により水中に脱着した陽イオン成分を脱着槽に廃棄するように構成されていることが好ましい。この場合、前記脱着工程の間、霧化を停止し、前記イオン発生口からイオンを放出するように構成されていることが、より好ましい。
 本発明のイオン発生型加湿器は、前記人感センサが測距センサ機能をさらに有し、距離に応じて霧化量または送風量を調整することが好ましい。
 本発明のイオン発生型加湿器によれば、総イオン量を減少させてしまうことなく、霧化された電解水の放出とイオンの放出とを円滑に行なうことができる。また、顔などへのミスト噴霧の連続性を妨げることなく、電気分解の待ち時間を利用して噴霧前に肌に対してイオン放出を行ない肌上の帯電を予め除去することで表皮の帯電を緩和し、ミストによる肌の濡れ性を向上させる。これにより、機能水の肌への浸透が短時間で行なわれるため、肌のpHを本来の弱酸性に素早く整え、肌上のpH調整をより効果的に行なうことができる。
第1の実施形態のイオン発生型加湿器1を模式的に示す図である。 第1の実施形態のイオン発生型加湿器1を模式的に示す図である。 ミスト噴霧の効能を示すグラフである。 第2の実施形態のイオン発生型加湿器31を模式的に示す図である。 第2の実施形態のイオン発生型加湿器31を模式的に示す図である。 第3の実施形態のイオン発生型加湿器51を模式的に示す図である。
 (第1の実施形態)
 図1および図2は、第1の実施形態のイオン発生型加湿器1を模式的に示す図である。図1および図2に示す例のイオン発生型加湿器1は、イオンを発生するイオン発生部2と、水を電気分解して機能水を生成する電気分解部3と、電気分解部3で生成された機能水を霧化する霧化部4と、イオン発生部2で発生されたイオンを大気中に放出するイオン発生口5と、霧化された機能水を大気中に放出する霧化口6とを基本的に備える。本発明のイオン発生型加湿器1は、初期起動時において前記電気分解部3における電気分解が完了するまでの間に、イオン発生口5からイオンを放出し(図1)、電気分解が完了した後にイオンの放出を停止し、電気分解により生成された機能水を霧化し、霧化口6から霧(ミスト)8を放出する(図2)ように構成されている。なお、本発明において、「機能水」は、原水を電気分解することで得られる、原水に任意の機能が付与された水を指し、本発明のイオン発生型加湿器1の電気分解部3で生成される酸性水、アルカリ水を包含する。このような本発明のイオン発生型加湿器1によれば、総イオン量を減少させてしまうことなく、霧化された電解水の放出とイオンの放出とを円滑に行なうことができる。また、顔などへのミスト噴霧の連続性を妨げることなく、電気分解の待ち時間を利用して噴霧前に肌に対してイオン放出を行ない肌上の帯電を予め除去することで表皮の帯電を緩和し、ミストによる肌の濡れ性を向上させる。これにより、機能水の肌への浸透が短時間で行なわれるため、肌のpHを本来の弱酸性に素早く整え、肌上のpH調整をより効果的に行なうことができる。
 本発明におけるイオン発生部2は、従来公知の適宜のイオン発生素子が用いられ、たとえば、イオン発生素子の放電現象により空気中の酸素(O)および水(HO)などの分子がエネルギーを受けることで、イオンとしてH(H2O)(mは任意の整数)からなるプラスイオンおよびO (HO)(nは任意の整数)からなるマイナスイオンを発生させることができる。通常、正負の電圧を交互に印加させることによりプラスイオンおよびマイナスイオンを同時に発生させ空気中に放出することができる。しかしながら、本発明において用いられるイオン発生部2におけるイオンの発生方法はこれに限定されるものではなく、正負いずれかの一方の電圧のみを印加しプラスイオンおよびマイナスイオンのいずれか一方のみのイオンを先に発生させた後、次に逆の電圧を印加し既に送出されたイオンとは逆の電荷をもったイオンを発生させることもできる。なお、これらのプラスイオンおよびマイナスイオンの発生に必要な印加電圧は、電極の構造にもよるが1.1~2.0kVの範囲が好ましい。
 放電素子の表面に存在する酸素分子および/または水分子を原料として放電現象により発生したプラスイオンおよびマイナスイオンの組成は、主としてプラスイオンとしてはプラズマ放電により空気中の水分子が電離して水素イオンHが生成し、これが溶媒和エネルギーにより空気中の水分子とクラスタリングすることによりH(HO)(mは任意の整数)を形成する。一方、マイナスイオンとしてはプラズマ放電により空気中の酸素分子または水分子が電離して酸素イオンO2 が生成し、これが溶媒和エネルギーにより空気中の水分子とクラスタリングすることによりO (HO)(nは任意の整数)を形成する。またこれらの両者が反応して過酸化水素H、二酸化水素OH、ヒドロキシラジカル・OHなどのさらに活性な活性種を容易に生成することができる。
 本発明においては、放電により発生させるプラスイオンおよびマイナスイオンの濃度がそれぞれ200000個/cm以上であることが好ましい。プラスイオンおよびマイナスイオンの濃度がそれぞれ200000個/cm未満である場合には、アトピーの予防・治療の効果が薄れる傾向にあるためである。なお、ここでイオン数の定義としては、小イオンを対象として計数したものであり、空気中の臨界移動度として、1cm/V・秒としたものである。
 図1および図2に示す例では、電気分解部3は、隔膜14を隔てて陽極槽12と陰極槽13との2槽に別れた電気分解槽(電解槽)11を備え、陽極槽12、陰極槽13には、それぞれ、陽極、陰極としての役割を果たす一対の金属電極15,16がそれぞれ設けられている。図1および図2に示す例では、電解槽11の上方には、電解槽11に原水を供給し得るように中途に弁19が設けられた管路18を介して水補給槽17が設けられており、この水補給槽17から電解槽11に原水(たとえば水道水など)を供給し、電気分解することで、陽極槽12に酸性水、陰極槽13にアルカリ水がそれぞれ生成される。また、電解槽11には、ドレイン20が設けられており、適宜、電解槽11内の水を排水し得るように構成されている。
 図1および図2に示す例において、金属電極15,16としては、水の電気分解を効率的に行ないやすい金属、たとえば白金、金、パラジウム、ロジウムおよびイリジウムからなる群から選ばれるいずれか1つの金属(またはその合金)が好適であり、たとえばチタンからなる電極の表面を白金でコートしたものでもよい。
 金属電極15,16は、その形状は特に制限されるものではなく、平板状、ラス(エキスパンダ)形状、棒状などであってよい。電気分解の効率の観点からは、図1および図2に示す例のように、平板状にそれぞれ形成された金属電極15,16が、水平方向に、互いに平行に対向して間隔をおいて配設された構成(縦型)が好ましいが、これに限定されるものでは勿論ない。
 具体例を挙げると、2Lのタンク水に対し、電極サイズ90mm×70mmの一対の白金コートチタンで形成された金属電極15,16を用い、電流値500mA、隔膜14を介して電極間距離15mmにて電流を印加し(電圧値:25~50V)、30~40分間程度の電気分解を行なう。陽極槽12は下記式(1)に記載される反応により酸性水が半量の1L生成する。また、陰極槽13では下記式(2)に記載の反応によりアルカリ水が半量の1L生成する。
2HO→O↑+4H+4e   …式(1)
2HO+2e→H↑+2OH  …式(2)
 図1および図2に示す例のイオン発生型加湿器1では、陽極槽12の一部が霧化部4として働くように構成される。霧化部4には、霧化装置21が設けられ、生成した機能水のうち、酸性水について逐次、大気中に霧化(ミスト化)して放出を行なう。霧化装置21としては、たとえば、超音波素子(超音波振動子)、エアーポンプなどによるベンチュリ方式にて発生させる低温霧化方式が噴霧後のpHを変えないため好適であるが、機能水の殺菌を兼ねてシーズヒータなどの高温霧化方式を採用してもよい。霧化装置21は、市販品を用いても勿論よく、たとえば超音波素子としてはTU-20A-0(TDK社製)が好適な例として挙げられる。
 また、図1および図2に示す例では、陽極槽12の上方に送風ファン22が設けられており、連続的に送風することで、霧化した機能水を霧化口6から大気中に放出するように構成される。送風ファン22は、従来公知の適宜の送風ファンを特に制限なく用いることができる。なお、本発明のイオン発生型加湿器1において、イオン発生口5と霧化口6とが互いに近くに設けられることが好ましく、同一の送風ファン22による送風で、イオンをイオン発生口5から、霧化した機能水を霧化口6から、それぞれ放出するように構成されていることが好ましい。
 このように酸性水を霧化(ミスト化)して、霧化口6から大気中に放出(噴霧)することで、ミスト化前後のpHを変動させることなく、噴射することが可能となるため、肌や髪に噴射した際は、アストリンゼン効果による皮膚などの活性化、肌の引き締め効果を奏することができる。このような本発明のイオン発生型加湿器1は、皮膚または髪の美容用途、若しくは、皮膚の治療用途に好適に用いられる。
 ここで、図3は、ミスト噴霧の効能を示すグラフであり、縦軸はpH、横軸は噴霧時間(分)である。図3において、プロットAは健常者のコントロール(噴霧なし)、プロットBは患者のコントロール(噴霧なし)、プロットCは患者に30cmの距離から噴霧した場合、プロットDは患者に15cmの距離から噴霧した場合をそれぞれ示している。図3から、連続的なミスト噴霧により肌のpHを素早く戻すことが可能となり、30cmの距離からの噴霧により、アトピー症状を有する被験者の肌pHを健常者並みの速さでpH5程度に減少させることができることが分かる。
 肌上には表皮ブドウ球菌、黄色ブドウ球菌、アクネス菌といった大きく3種の細菌が存在するが、アトピー性肌の患者では健常肌に比べて善玉菌の表皮ブドウ球菌が少なく、悪玉菌の黄色ブドウ球菌の菌数が相対的に多いことが知られている。黄色ブドウ球菌は至適pHが6~8の中性域にあり、一方、表皮ブドウ球菌は至適pHが4.5~5.5の酸性域にあることが知られている。したがって、アトピー性肌に対して酸性水を霧化噴霧することで、悪玉菌が棲息しづらく、一方で善玉菌が棲息しやすい肌の状態に素早く整えることが可能となる。
 また、本発明において霧化に供される酸性水のpHは2.5~4であることが望ましく、肌の保湿性能も担保するため、pH3.5~4とするのがより好適である。なお、pH2.5~3の酸性水を生成する場合などにおいて必要に応じて適宜、食塩などの電解質を添加して電気分解を行なってもよい。
 本発明のイオン発生型加湿器1は、初期起動時において前記電気分解部3における電気分解が完了するまでの間に、イオン発生口5からイオンを放出し、電気分解が完了した後にイオンの放出を停止し、電気分解により生成された機能水を霧化し、霧化口6から放出するように構成されている。すなわち、イオン発生型加湿器1の電源をON(初期起動)にすると、図1に示すように、電気分解部3における電気分解が開始され、電気分解が完了するまで、イオン発生部2においてイオンが生成され、イオン発生口5からイオン7が大気中に放出される(イオン発生部2はON、霧化装置21はOFF)。初期起動時に電気分解を開始し、その後霧化するため、また、吸着した硬度イオン分を脱着する際に噴霧できない時間ができる。このような時間は連続的に噴霧を行なうことができず、利用者に待ち時間になると想定される。本発明では、このような待ち時間を利用して噴霧前に肌に対してイオン放出を行なうことで肌上の帯電を予め除去し、肌の濡れ性を向上させる。これにより、機能水の肌への浸透が短時間で行なわれるため、肌上のpH調整をより効果的に行なうことができる。電気分解が完了後、図2に示すように、電気分解部3は間欠運転され、イオン発生部2は停止し、霧化装置21により機能水(酸性水)が霧化され、霧化口6から霧化された機能水が大気中に放出(噴霧)される(イオン発生部2はOFF、霧化装置21はON)。
 また本発明のイオン発生型加湿器1は、機能水の供給が不足しているか否かを検知する手段(たとえば適宜の公知の水位センサなど)を備え、機能水の供給の不足を感知した段階で、霧化した機能水の放出を停止し、イオン発生口5からのイオンの発生に切り替わるように構成されていてもよい。
 (第2の実施形態)
 図4および図5は、第2の実施形態のイオン発生型加湿器31を模式的に示す図である。図4および図5に示す例のイオン発生型加湿器31は、一部を除いては図1および図2に示した例のイオン発生型加湿器1と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。図4および図5に示す例のイオン発生型加湿器31は、人感センサ32を備え、人感センサ32で感知しない場合には、前記イオン発生口5からイオン7を放出し(図5:人感センサ32はOFF、イオン発生部2はON、霧化装置21はOFF)、前記人感センサ32で感知した場合のみ、霧化口6から霧化させた機能水(霧8)を放出する(図4:人感センサ32はON、イオン発生部2はOFF、霧化装置21はON)ように構成されている。
 これにより、初期起動時以外には、使用時以外には加湿をせず、大気中にイオン放出のみを行なうことができるため、不在時には空間のイオン濃度をできるだけ高めることができる。これにより、ミストとイオンを同時に出すことによるイオン量の減少を防ぐことも可能となる。一方、ミストについては、人を検知した場合のみ噴霧するものとすることで、生成した機能水を肌pHの調整のみに使うことができる他、弱酸性水をむやみに大気中に噴霧しないため、弱酸性水が室内にある金属に付着することによる腐食の危険性を最小限に留めることができる。
 人感センサ32としては、人間の存在を感知し得る従来公知の適宜の人感センサを特に制限なく用いることができる。本発明のイオン発生型加湿器において、イオン発生口5および霧化口6は、図1、2、4、5に示す例のように互いに近くに設けられることが好ましく、人感センサ32は、これらイオン発生口5および霧化口6の近傍(イオン発生型加湿器のイオン発生口5および霧化口6が設けられる側)に設けられることが好ましい。
 図4および図5に示す例のイオン発生型加湿器31は、電気分解部33が、一槽式の無隔膜の電気分解槽(電解槽)34内に金属電極35およびイオン吸着電極36を備え、電解槽34内に供給された原水に対し、金属電極35を陽極に、イオン吸着電極36を陰極にしてバッチ式で電気分解することにより酸性水を生成することができ、逆に、金属電極35を陰極に、イオン吸着電極36を陽極にして電気分解することによりアルカリ水を生成することができる。なお、「バッチ方式」とは、電解槽に所定量の原水を加えた後は実質的に電解槽内の水の出し入れを行なうことなく、電気分解を実行する構成を意味する。図4および図5に示す例では、電解槽34の上方に、原水を収容した水補給槽17が配置され、その間に介された管路18の中途に設けられた弁19を開けると、水補給槽17から原水が電解槽34内に供給されるように構成されている。
 金属電極35としては、水の電気分解を効率的に行ないやすい金属、たとえば白金、金、パラジウム、ロジウム、イリジウムのうちいずれか1つの金属(またはその合金)が好適であり、たとえばチタンからなる電極の表面を白金でコートしたもの(白金コートチタン電極)でもよい。
 イオン吸着電極36としては、導電性の炭素材料(たとえばカーボン繊維、活性炭など)からなる炭素電極を用いることができ、中でもイオンを吸着する比表面積の大きい活性炭を炭素電極の少なくとも一部に用いるのが好ましい。特に活性炭電極では水道水などの水中に溶存しているMgイオン、Caイオンなどの硬度イオン成分(M2+)を活性炭電極の有する多孔質吸着面を利用して効果的に吸着させることが可能であり、好適である。
 金属電極35およびイオン吸着電極36は、その形状については特に制限されないが、共に平板状に形成されるのが好ましく、垂直方向に、互いに平行に対向して(図4および図5の例では、上側に金属電極35、下側にイオン吸着電極36)間隔をおいて配設された構成(横型)が特に好ましい。なお、図4および図5に示す例のように金属電極35が上側に配置される場合、水補給槽17から供給される原水との混和を効率的にするため、金属電極35はエキスパンダ形状や格子形状といった通水しやすい形状であってもよい。
 金属電極35およびイオン吸着電極36には、スイッチング回路(図示せず)を介して定電流発生源が電気的に接続される。金属電極35およびイオン吸着電極36に供給される電流の向きは、制御装置(図示せず)において切り替え制御される。制御装置は、公知のCPU、マイコンなどで構成され、電気分解部に供給する電流量および電流の向きを制御するほか、弁の開閉などを制御する。
 電気分解の具体例を挙げると、たとえば、先ず、水補給槽17から、弁19を介して原水が電解槽34内に供給される。使用する原水としては、普通の水道水を用いることができる。具体的には、大阪府八尾市の水道水(pH=7.6、硬度45mg/L)を用いた場合、水500mLに対し、電流値:500mA、電極サイズ:150mm×100mm、電極間距離:15mmにて電流を印加したとき、電圧値:30~35Vという比較的低い電圧値で電気分解を行ない、酸性水を生成することができる。金属電極およびイオン吸着電極は、具体的には、共に平板状に形成され(金属電極は、具体的には、5mmピッチの短冊形状)、金属電極35とイオン吸着電極36とは、垂直方向に、間隔をおいて平行に対向配置される。
 電気分解は、先ず、金属電極35を陽極、イオン吸着電極36を陰極として実行される。電気分解によりまず酸性化するが、具体的には、電気分解を行なう水が500mLの場合、500mAで5分間程度電気分解を行なうことで、pH=3~3.2程度の酸性水が得られる。
 電気分解時は、上記式(1)と同様に陽極である金属電極から酸素ガスを放出し、残った水素イオンが水中に遊離することで、酸性化する。一方、陰極であるイオン吸着電極では水道水などの原水中に溶存しているMgイオン、Caイオンなどの硬度成分を下記反応式(3)で示すように炭素電極の有する多孔質吸着面を利用して電気二重層イオンとして効果的に吸着させている。
2++2e→M   …式(3)
 したがって、酸性水生成時において水の電気分解はほぼ白金電極上のみで行なわれるため、陽極である白金電極で生成される水素イオン(H)によって酸性化し、また、陰極で硬度成分が吸着されるため軟水化する。
 一方、上記とは極性を反転させた電流を流して電気分解を実行することでアルカリ水の生成が可能である。具体的には、イオン吸着電極36を陽極、金属電極35を陰極として電気分解を実行する。これにより、上記式(2)と同様に陰極である金属電極35から水素ガスが放出し、残った水酸化物イオンが水中に遊離することで、アルカリ性化する。一方、陽極であるイオン吸着電極36では電極表面に付着した硬度成分Mが下記反応式(4)に示すように硬度イオン(M2+)となって水中に再放出(脱着)される。
M→M2++2e   …式(4)
 これにより、密閉容器内の水はアルカリ側にシフトし、具体的には、電気分解を行なう水が500mLの場合、500mAで3分間程度電気分解を行なうことで、pH=10.5~11程度のアルカリ水が得られる。
 図4および図5に示す例のイオン発生型加湿器31は、電解槽34に、中途に弁44が設けられた管路43を介して脱着槽41が設けられている。上述のように、極性を反転させて電気分解を行なうことでアルカリ水を生成する場合、イオン吸着電極36に吸着していた硬度成分が陽イオンとして水中に放出(脱着)される。このように陽イオンが脱着した後の水は、弁44を開くことで、脱着槽41に廃棄用水として適宜廃棄することができる。
 また、上記逆電解後の水はアルカリ性、且つ硬度成分の溶出した水になっているが、気化することにより次第に水中の硬度が上昇するため、適宜使用者による水の交換が必要になる。たとえば、脱着槽41に硬度センサを設けるなどして、交換時期を知らせるなどしてもよい。
 このように本発明のイオン発生型加湿器31は、電気分解部33が、電気分解を行なうための電気分解槽(電解槽)34と、電気分解槽34に水を供給し得る水補給槽17と、電気分解槽34から水を廃棄し得る脱着槽41とをさらに備え、電気分解槽34は、イオン吸着電極36と金属電極35からなる電極対を有し、水補給槽17から供給された水を、吸着工程としてイオン吸着電極36で陽イオン成分の吸着を行ない、pH調整を行なった後の機能水を霧化した後、脱着工程として極性反転により水中に脱着した陽イオン成分を脱着槽に廃棄するように構成されていることが、好ましい。またこの場合、脱着工程の間、霧化を停止し、イオン発生口5からイオンを放出するように構成されていることが、より好ましい。
 (第3の実施形態)
 図6は、第3の実施形態のイオン発生型加湿器51を模式的に示す図である。図6に示す例のイオン発生型加湿器51は、一部を除いては図1および図2に示した例のイオン発生型加湿器1、図4および図5に示した例のイオン発生型加湿器31と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。図6に示す例のイオン発生型加湿器51は、人感センサ32の代わりに、人感・測距センサ52を備える。人感・測距センサ52としては、人間の存在を感知し得ると共に、距離を測定できる従来公知の適宜の人感・測距センサを特に制限なく用いることができる。本発明のイオン発生型加湿器において、図4および図5に示した例と同様に、イオン発生口5および霧化口6は互いに近くに設けられることが好ましく、人感・測距センサ52は、これらイオン発生口5および霧化口6の近傍(イオン発生型加湿器のイオン発生口5および霧化口6が設けられる側)に設けられることが好ましい。
 本発明のイオン発生型加湿器51は、人感センサが測距センサ機能をさらに有し(すなわち、人感・測距センサ52を備え)、距離に応じて霧化量または送風量を調整するように構成されていることが好ましい。たとえば、検知した人間との距離が小さい(霧化口6から顔までの距離が近い)場合には、霧化量を小さくし、検知した人間との距離が大きい(霧化口6から顔までの距離が遠い)場合には、霧化量を大きくするように、制御装置(図示せず)にて制御されるように構成された例が挙げられる。これにより、距離に依らず肌への霧化量を一定に保つことが可能となり、さらに、距離が近い場合にあっても弱酸性水が勢い良く目などに入るリスクを回避することが可能となる。
 1 イオン発生型加湿器、2 イオン発生部、3 電気分解部、4 霧化部、5 イオン発生口、6 霧化口、7 イオン、8 霧、11 電気分解槽、12 陽極槽、13 陰極槽、14 隔膜、15 金属電極、16 金属電極、17 水補給槽、18 管路、19 弁、20 ドレイン、21 霧化装置、22 送風ファン、31 イオン発生型加湿器、32 人感センサ、33 電気分解部、34 電気分解槽、35 金属電極、36 イオン吸着電極、41 脱着槽、42 管路、43 弁、51 イオン発生型加湿器、52 人感・測距センサ。

Claims (5)

  1.  イオンを発生するイオン発生部と、
     水を電気分解して機能水を生成する電気分解部と、
     電気分解部で生成された機能水を霧化する霧化部と、
     イオン発生部で発生されたイオンを大気中に放出するイオン発生口と、
     霧化された機能水を大気中に放出する霧化口とを備えるイオン発生型加湿器であって、
     初期起動時において前記電気分解部における電気分解が完了するまでの間に、イオン発生口からイオンを放出し、電気分解が完了した後にイオンの放出を停止し、電気分解により生成された機能水を霧化し、霧化口から放出するように構成されている、イオン発生型加湿器。
  2.  人感センサをさらに備え、
     前記人感センサで感知しない場合には、前記イオン発生口からイオンを放出し、
     前記人感センサで感知した場合のみ、霧化口から霧化させた機能水を放出するように構成されている、請求項1に記載のイオン発生型加湿器。
  3.  前記電気分解部が、電気分解を行うための電気分解槽と、前記電気分解槽に水を供給し得る水補給槽と、前記電気分解槽から水を廃棄し得る脱着槽とをさらに備え、
     前記電気分解槽は、イオン吸着電極と金属電極からなる電極対を有し、前記水補給槽から供給された水を、吸着工程として前記イオン吸着電極で陽イオン成分の吸着を行い、pH調整を行った後の機能水を霧化した後、脱着工程として極性反転により水中に脱着した陽イオン成分を脱着槽に廃棄するように構成されている、請求項1または2に記載のイオン発生型加湿器。
  4.  前記脱着工程の間、霧化を停止し、前記イオン発生口からイオンを放出するように構成されている、請求項3に記載のイオン発生型加湿器。
  5.  前記人感センサが測距センサ機能をさらに有し、距離に応じて霧化量または送風量を調整することを特徴とする、請求項2~4のいずれか1項に記載のイオン発生型加湿器。
PCT/JP2015/064430 2014-06-03 2015-05-20 イオン発生型加湿器 WO2015186514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115086 2014-06-03
JP2014115086A JP2015230108A (ja) 2014-06-03 2014-06-03 イオン発生型加湿器

Publications (1)

Publication Number Publication Date
WO2015186514A1 true WO2015186514A1 (ja) 2015-12-10

Family

ID=54766589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064430 WO2015186514A1 (ja) 2014-06-03 2015-05-20 イオン発生型加湿器

Country Status (2)

Country Link
JP (1) JP2015230108A (ja)
WO (1) WO2015186514A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121532A1 (ja) * 2018-12-14 2020-06-18 株式会社 ゴーダ水処理技研 ラジカル水の製造方法、製造装置及びラジカル水
WO2022123248A1 (en) * 2020-12-09 2022-06-16 Vapourtec Limited Sprayers and methods of disinfection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021045023A1 (ja) * 2019-09-05 2021-03-11

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236576A (ja) * 2006-03-08 2007-09-20 Sanyo Electric Co Ltd 空気除菌装置
JP2013238385A (ja) * 2012-04-20 2013-11-28 Iris Ohyama Inc 加湿機構
JP2014065966A (ja) * 2012-09-07 2014-04-17 Sharp Corp 機能水発生器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236576A (ja) * 2006-03-08 2007-09-20 Sanyo Electric Co Ltd 空気除菌装置
JP2013238385A (ja) * 2012-04-20 2013-11-28 Iris Ohyama Inc 加湿機構
JP2014065966A (ja) * 2012-09-07 2014-04-17 Sharp Corp 機能水発生器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121532A1 (ja) * 2018-12-14 2020-06-18 株式会社 ゴーダ水処理技研 ラジカル水の製造方法、製造装置及びラジカル水
WO2020122258A1 (ja) * 2018-12-14 2020-06-18 株式会社 ゴーダ水処理技研 ラジカル水の製造方法、製造装置及びラジカル水
JPWO2020122258A1 (ja) * 2018-12-14 2021-10-21 株式会社 ゴーダ水処理技研 ラジカル水の製造方法、製造装置及びラジカル水
WO2022123248A1 (en) * 2020-12-09 2022-06-16 Vapourtec Limited Sprayers and methods of disinfection

Also Published As

Publication number Publication date
JP2015230108A (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
US7156962B2 (en) Electrolyzing electrode and production method therefor and electrolysis method using electrolyzing electrode and electrolysis solution producing device
JP6254759B2 (ja) 消臭除菌装置
KR20130114311A (ko) 살균 가습기
WO2019123999A1 (ja) 携帯用電解水噴霧器
WO2015154702A1 (zh) 空气加湿器
KR20130085098A (ko) 가습기
WO2010008089A1 (ja) 空気清浄機能を有する電気機器
WO2015186514A1 (ja) イオン発生型加湿器
JP2000257913A (ja) 中性水を用いた除菌空調システム
JP2000334240A (ja) 湿式空気清浄機
JP2009208021A (ja) 吸水装置及び霧化装置
WO2012043230A1 (ja) 機能ミスト発生装置
WO2015005505A1 (ko) 살균 가습기
US20100200398A1 (en) Alkaline humidifier
JP2019063054A5 (ja)
KR200435409Y1 (ko) 수산기 생성장치를 구비한 가습기
JP2001252521A (ja) 空気清浄機
KR102179715B1 (ko) 플라즈마 방전으로 생성된 살균수와 레이저 광에 따른 2차적 멸균이 가능한 질 세정 기기
JP2016083600A (ja) 機能水生成装置
JP2015226598A (ja) 除菌性空気清浄機
JPH07204653A (ja) 噴霧用殺菌水及び噴霧用殺菌水を用いた殺菌方法
WO2014199849A1 (ja) 機能水を生成する方法ならびに機能水生成装置およびそれを用いた機器
JP7122512B2 (ja) 携帯用電解水噴霧器
KR100538722B1 (ko) 가습 장치
KR20120085355A (ko) 알칼리 수 생성 기능을 겸비한 살균력을 갖는 가습기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803415

Country of ref document: EP

Kind code of ref document: A1