WO2015185855A1 - Dispositif photovoltaïque et procédé de fabrication associé - Google Patents

Dispositif photovoltaïque et procédé de fabrication associé Download PDF

Info

Publication number
WO2015185855A1
WO2015185855A1 PCT/FR2015/051460 FR2015051460W WO2015185855A1 WO 2015185855 A1 WO2015185855 A1 WO 2015185855A1 FR 2015051460 W FR2015051460 W FR 2015051460W WO 2015185855 A1 WO2015185855 A1 WO 2015185855A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
photovoltaic
support
guide
primary guide
Prior art date
Application number
PCT/FR2015/051460
Other languages
English (en)
Inventor
Myriam Paire
Florian PROISE
Daniel Lincot
Jean-François GUILLEMOLES
Jean-Luc Pelouard
Sébastien JUTTEAU
Original Assignee
Electricite De France
Centre National De La Recherche Scientifique - Cnrs -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France, Centre National De La Recherche Scientifique - Cnrs - filed Critical Electricite De France
Priority to US15/316,265 priority Critical patent/US10770611B2/en
Priority to EP15732840.2A priority patent/EP3152787B1/fr
Priority to JP2016571008A priority patent/JP6321219B2/ja
Priority to CN201580033047.0A priority patent/CN106463560B/zh
Publication of WO2015185855A1 publication Critical patent/WO2015185855A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic device.
  • This type of device is widely used and is intended to convert solar energy into electrical energy.
  • these devices are provided with photovoltaic cells designed to be illuminated by sunlight and to convert this light into electrical energy by photoelectric effect.
  • the cells can be coupled to a light guide provided to receive the photons and to promote their guidance to the surface of the photovoltaic cells.
  • the cells are arranged on a reflector configured to reflect the photons and allow their recapture by the waveguide.
  • the waveguide is then placed in contact with this reflector.
  • each reflector has a non-ideal reflection coefficient, which results in losses at each reflection.
  • each reflector generally has local roughnesses, for example because of the roughness of the support on which it is deposited, the aging of the reflector or manufacturing imperfections. Under certain conditions, notably of dimensions of non-negligible roughnesses in front of the wavelength of the photons, these roughnesses generate a local phenomenon of diffusion of the light resulting in an uncontrolled variation of the angle of reflection of the photons, and therefore an overall decrease in the guiding effect provided by the waveguide.
  • the present invention improves the situation.
  • the invention is directed to a photovoltaic device comprising:
  • a light guide in contact with said cells and comprising a primary guide having a face that is proximal to the cells, the proximal face being oriented towards the cells and the support.
  • the device comprises, between the cells, zones located between the support and the primary guide and comprising a material of refractive index lower than that of the proximal face, the material being in contact with said proximal face.
  • this material is simply air, a gap then being provided between the cells.
  • the support is a reflector having a reflecting face oriented towards the proximal face of the primary guide.
  • the primary guide is a fluorescent concentrator. This allows in particular to maximize the guiding effect of the light guide to the cells and improve the efficiency of the device.
  • the support and the proximal face of the primary guide are spaced apart by a distance of between 1 ⁇ and 20 ⁇ . This makes it possible in particular to limit the effects of non-linearity of light that may occur, which would limit the reflection performance.
  • the distance between the proximal face of the primary guide and the support is substantially equal to a multiple greater than or equal to two of a characteristic wavelength corresponding to a preferred wavelength. emission of the primary guide. This makes it possible to further limit the aforementioned non-linear effects.
  • one or more cells are arranged projecting relative to the support in the direction of the primary guide, the primary guide being in contact with said cells and kept at a distance from the support at least by said cells.
  • the cells themselves contribute to forming the areas comprising the material.
  • the light guide comprises a plurality of secondary guides separated from each other by said material, each secondary guide being interposed between the proximal face of the primary guide and a photovoltaic cell.
  • These guides allow in particular to finely choose the geometry of the device while improving the guide effect of the light guide, allowing a good optical coupling between the cell and the primary guide, even if the surface of the cells is rough.
  • the secondary guides maintain the proximal face of the primary guide away from the support at least in said areas.
  • each secondary guide has a face disposed in contact with the surface of the corresponding photovoltaic cell and having dimensions substantially equal to the dimensions of the surface of said cell, said face of a given secondary guide being disposed substantially edge to edge opposite the surface of the corresponding photovoltaic cell. This improves the exposure of cells to photons from the primary guide.
  • At least one of the secondary guides is in the form of a generally cylindrical stud whose base is of dimensions substantially equal to those of the surface of the corresponding photovoltaic cell. This has the effect of improving the transfer of photons from the primary guide to the cells.
  • the or each secondary guide has a refractive index between the refractive index of the primary guide and the refractive index of the surface of the corresponding photovoltaic cell.
  • the photon transfers to the cells are further improved because the reflections at the different interfaces between the primary guide, the secondary guide and the cells are minimized.
  • the invention relates to a method for manufacturing a photovoltaic device comprising: a plurality of photovoltaic cells, distant from one another,
  • a light guide in contact with said cells and having a primary guide having a face proximal to the cells, the proximal face being directed towards the cells and the support.
  • the photovoltaic cells are arranged at the level of the support and the light guide is arranged in contact with the photovoltaic cells by providing, between the photovoltaic cells, zones situated between the primary guide and the support and comprising a material having a refractive index lower than that of the proximal face, said material being arranged in contact with said proximal face.
  • one or more transparent secondary guides are obtained which are interposed each between the primary guide and a photo voltaic cell. This makes it possible in particular to precisely control the geometry of the device and to limit the phenomena of non-linearity.
  • each secondary guide is formed by deposit directly in contact with the corresponding photovoltaic cell. This makes it possible, for example, to facilitate the manufacture of the device and to simplify the management of the related stocks.
  • all or some of the photovoltaic cells are formed by deposition, at the support, in such a way that the corresponding photovoltaic cells are protruding with respect to the support, and the primary guide is placed in contact with said photovoltaic cells. protruding cells.
  • this makes it possible to limit the storage constraints of the parts required for the manufacture of the device. Moreover, it simplifies the manufacturing process by reducing the number of necessary steps.
  • Figure 1 is a schematic illustration of a photovoltaic device according to the invention.
  • Figure 2 is a sectional view of the device of Figure 1;
  • Figure 3 is a sectional view of a device according to a first variant of the invention.
  • Figure 4 is a sectional view of a device according to a second variant of the invention.
  • Figure 1 illustrates a photovoltaic device 2 according to the invention, configured to transform light into electrical energy.
  • the device 2 comprises a substrate 4, a support 6, photo voltaic cells 8, and a light guide 10.
  • the device 2 operates over a range of wavelengths called useful.
  • This range of useful wavelengths is defined as the spectral range of photons that cells 8 are able to convert into electricity.
  • the upper limit of this range therefore depends on the nature of the photovoltaic cells 8, and more specifically on the material constituting the absorbers of these cells.
  • the lower limit of this range is commonly set at 350 nm because there are hardly any photons of wavelength lower than 350 nm arriving on Earth. This range is for example from 350 nm to 1200 nm.
  • the substrate 4 has a general shape of rectangular plate. It is for example realized by known methods.
  • the substrate 4 is in contact with the support 6 and supports the support 6.
  • the substrate 4 is provided with electrical contacts (not shown) configured to individually or network connect all the photovoltaic cells 8 to an external circuit.
  • the support 6 has a general shape of rectangular plate. It has lateral and transverse dimensions corresponding substantially to those of the substrate.
  • the support 6 is disposed on the substrate 4 and substantially parallel to the substrate 4.
  • the substrate 4 and the support 6 are arranged substantially edge to edge.
  • the support 6 receives the cells 8.
  • the support 6 is provided with open-ended cavities 12 whose respective openings are oriented away from the substrate 4.
  • Each cavity 12 receives a photovoltaic cell 8
  • the cavities 12 have dimensions substantially complementary to those of the photovoltaic cells 8.
  • the cavities 12, and therefore the cells 8, are spaced from each other on the support. It is optimal for the performance of the device 2 that the spacing between the cells is regular.
  • the cavities 12, and therefore the cells 8 are arranged in a matrix arrangement on the surface of the support 6, that is to say in rows and columns regularly distributed on this surface. Nevertheless, in certain embodiments, this spacing is not regular or even random. This makes it possible in particular to facilitate the manufacture of the device 2.
  • the cells are arranged directly on the surface of the support, the support having no cavity 12. The invention is subsequently described in a nonlimiting manner for embodiments in which the support has cavities 12. Moreover, several embodiments of the support 6 are conceivable.
  • the support 6 is a reflector.
  • the reflector 6 has an upper face (in the direction of the orientation of the Figures). This upper face is a reflecting face 14 oriented away from the substrate 4. More specifically, the reflecting face 14 is oriented towards the light guide 10.
  • the cavities 12 open through the reflecting face 14.
  • the reflector 6 is example made in a conventional manner.
  • the reflective surface 14 comprises a layer of silver Ag, or Al aluminum formed before or after the placement of the cells 8 and on which is optionally deposited a layer of ZnO oxide doped or not doped with zinc. 'Aluminum.
  • the reflecting face 14 is configured to reflect only a portion of the visible range.
  • the range of wavelengths that the reflecting face 14 is then configured to reflect includes all or part of a range of emission wavelengths of a primary guide of the light guide 10. For example, it is chosen to include all of this range of emission wavelengths.
  • This primary guide and its range of emission wavelengths are described below. This is advantageous in certain types of applications, particularly in the production of glazing, and in particular makes it possible to obtain a device with low optical losses in the context of these applications.
  • the substrate 4 is itself transparent to the wavelengths that are not reflected by the support 6.
  • the support 6 is alternately or in parallel reflecting in a selected wavelength range of the wavelength. visible range, so that the device has an external appearance having a hue dependent on said range of wavelengths chosen.
  • the chosen range associated with the hue in question is for example chosen for be disjoint from the emission wavelength range of the primary guide.
  • the reflecting face 14 is configured to reflect the entire visible range.
  • the support 6 has the same geometry as before.
  • the support 6 is devoid of reflective surface, that is to say that the upper face of the support is not reflective.
  • the support 6 is for example made of a transparent material in the visible range. It is for example made from glass.
  • the substrate 4 is itself transparent, which makes the entire device as transparent as possible. This is particularly advantageous for certain applications, such as glazing for the building, in which this transparency is an important criterion.
  • the description which follows is given in a non-limiting manner in the case where the support 6 is a reflector, the transposition to a support of another type, for example a transparent support, being immediate.
  • the cells 8 are respectively arranged in one of the cavities 12 of the reflector 6.
  • Each cell 8 has an upper face 16 facing the light guide 10 and at which the photons that the cell is intended to transform electrical energy is received from the light guide 10.
  • the cells 8 are arranged in the cavities 12.
  • the faces 16 of the cells 8 are substantially coplanar with each other, and / or coplanar with the reflective face 14 of the reflector 6
  • the cells are arranged in the reflector in a so-called "flush" arrangement.
  • the upper faces 16 of the cells are flush with the reflecting face 14.
  • the faces 16 of the cells 8 are not coplanar with each other.
  • the cells protrude from their cavity and the reflector.
  • the upper face 16 of the cells 8 is substantially flat.
  • the upper face 16 of the cells 8 has a refractive index n c .
  • the refractive index nc is for example substantially equal to 1.9.
  • the upper face 16 comprises for example a conductive transparent oxide layer. This oxide may be zinc oxide ZnO, transparent, doped with Al aluminum, or indium tin oxide ITO, or tin oxide SnO 2
  • the cells 8 are microcells.
  • the cells 8 have a generally cylindrical shape, and their respective upper face 16 is circular.
  • the diameter of the cells is then for example between 10 ⁇ and 500 ⁇ .
  • cylinder means a surface defined by a generator passing through a variable point describing a closed planar curve, or directional curve, while maintaining a fixed direction. In fact, a cylindrical shape is not necessarily symmetrical of revolution.
  • the cells have a generally cylindrical shape with a rectangular section as seen in FIG. 1.
  • the cells 8 then have a width and / or a length measured in the plane of their upper face. between 10 ⁇ and 500 ⁇ .
  • the cells have respective shapes and top faces 16 of any shape.
  • the cells are for example inscribed in a cylinder of circular section and of diameter between 10 ⁇ to 500 ⁇ .
  • the cells 8 are for example thin-film cells, which may have advantages in terms of ease of manufacture. They are for example of the type called "CIGS” (for Cu, In, Ga, Se) and of composition, Cu (In, Ga) Se 2 , that is to say that they are made from copper, of indium, gallium and selenium. They can also be CdTe or CZTS, which are other thin-layer cells.
  • CGS for Cu, In, Ga, Se
  • Cu (In, Ga) Se 2 Cu (In, Ga) Se 2
  • CdTe or CZTS which are other thin-layer cells.
  • the invention is not limited to a particular type of cells.
  • the cells can be chosen in any way from existing cells.
  • the cells may be crystalline, polycrystalline or amorphous silicon, the cells from type III-V semiconductor, such as GaAs, GalnP or GalnAs.
  • the light guide 10 is configured to receive photons and guide them to the cells 8.
  • the light guide 10 is common to the cells 8. In addition, it is in contact with all the cells 8.
  • the light guide is configured to guide the photons therein to the upper face 16 of the cells 8.
  • the light guide 10 comprises a primary guide 18 and a plurality of secondary guides 20.
  • the primary guide 18 is a fluorescent concentrator. It is configured to absorb photons and re-emit, in response, photons at another wavelength. This is described in more detail below.
  • the primary guide 18 has a general shape of rectangular flat plate. This configuration makes assembly of the device easy and reduces the size of the device.
  • the primary guide 18 has for example a thickness of the order of a millimeter or centimeter.
  • the primary guide 18 is disposed substantially parallel to the reflecting face 14 of the reflector 6.
  • the primary guide 18 has a proximal face 22 with respect to the cells 8 which is oriented towards the reflector 6.
  • the proximal face 22 corresponds to the lower face of the primary guide 18.
  • the reflecting surface 14 of the reflector 6 is oriented towards the proximal face 22.
  • the proximal face 22 and the reflecting face 14 of the reflector 6 are substantially parallel.
  • the primary guide 18 has longitudinal and transverse dimensions substantially equal to those of the reflector 6. More specifically, the dimensions of the primary guide, the reflector and the substrate are conditioned by the application of the device 2. For example, the area of the proximal surface 22 of the primary guide (and therefore the area of the reflector and the substrate) is of the order of ten square centimeters for certain applications, or of the order of one square meter for other applications.
  • the ratio between the area of the proximal surface 22 and the sum of the areas of the upper surfaces 16 of the cells 8, also known as the geometric gain of the device 2, is for example between 2 and 100, and is for example 20 .
  • the cells 8 are facing the central part of the primary guide 18. This makes it possible to adjust the dimensions of the primary guide 18 without having to modify the arrangement of the cells 8 at the level of the support 6.
  • the cells 8 are thus arranged at the support 6 opposite the primary guide 18 and so that their upper face 16 is not opposite a lateral end of the primary guide 18, that is to say edges delimiting the lateral faces 23 (Figure 2) of the primary guide 18.
  • the primary guide 18 comprises at least one dye and a material forming the bulk of the primary guide and wherein the or each dye is embedded and homogeneously distributed.
  • the dye is a phosphor or fluorophore, that is to say a material that absorbs light in a first wavelength range, called the absorption range of the device 2. In response, it re-transmits within it and primarily isotropic way of photons in a second wavelength range, or range of emission wavelengths. This range is centered on a characteristic wavelength ⁇ of the device 2
  • the absorption wavelength range designates the spectral range of the photons that the dye is capable of absorbing. Ideally, its lower bound corresponds to the lower bound of the useful wavelength range, and its upper bound is slightly lower than that of the useful wavelength range.
  • the range of emission wavelengths refers to the spectral range of the photons emitted by the dye. This is shifted towards the long wavelengths with respect to the absorption range. It should ideally have an upper bound coinciding with that of the range of useful wavelengths. In addition, this range is generally narrow, so that we can associate a particular wavelength around which this range is centered -the characteristic wavelength ⁇ -. As will be seen later, this characteristic wavelength ⁇ is used to define the height of secondary guides that comprises the device 2, as well as the spacing between the primary guide and the reflector.
  • the characteristic wavelength ⁇ of the device 2 is a function of the primary guide 18 and the dye (s) it contains. It is chosen to be included in a spectral range where the photovoltaic cells 8 have good performance.
  • the range of absorption wavelengths and the range of emission wavelengths generally have a common frequency range. However, preferentially, this common range is as narrow as possible. This makes it possible to limit the reabsorption phenomena by the primary guide 18 of the photons emitted by the primary guide 18 itself, these reabsorbing generating losses.
  • the reflecting face 14 of the reflector 6 is chosen to optimally reflect the photons having a wavelength in the range of emission wavelengths of the primary guide.
  • the luminescence yield of the dye that is to say the ratio between the number of photons reemitted by the dye on the number of photons absorbed, is greater than 90% and advantageously 95%.
  • the primary waveguide is composed of one or more polymers doped with one or more dyes.
  • the primary guide is made from polymethyl methacrylate, or PMMA.
  • the dye is made from organic molecules such as for example Lumogen®, marketed by BASF, and is for example Lumogen® RED 305.
  • the dye is made from rhodamine, perylene, 4-butylamino-N-allyl-1,8-naphthalimide, Poly (9,9-di- (2-ethylhexyl) -9H-fluorene-2,7-vinylene, poly (9,9 di- (2-ethylhexyl) -9H-fluorene-2,7-vinylene) -co- (1-methoxy-4- (2-ethylhexyloxy) -2,5 or lanthanide ion chelates.
  • the dye is produced from nano-crystals of semiconductors (known under the English name of "Quantum dots"), such as, for example, nanoparticles of PbS, PbSe or CdSe / core-shell structures. ZnS, CdSe / CdS, CdSe / CdS / CdZnS / ZnS, CdTe / CdSe.
  • the dye is made from organic / inorganic hybrid compounds.
  • the dye is made from more than one of the elements described above, thereby expanding the absorption range of the concentrator.
  • the primary guide is an oxide doped with luminescent elements.
  • the dye is made from rare earth doped oxide nanoparticles, such as Europium doped Yttrium Othovanadate, or neodymium (Nd3 +) doped oxides. Ytterbium (Yb 3+) or doped with other rare earths, for example with lanthanides.
  • the primary guide 18, and therefore its proximal face 22, has a refractive index n gi .
  • the refractive index n g i is for example substantially equal to 1.5.
  • the proximal face 22 of the primary guide 18 is away from the reflector 6.
  • the device 2 comprises one or more zones 23 located between the cells and having a material 24 of refractive index lower than that of the proximal surface 22 of the primary guide 18.
  • the material 24 fills the space defined between the reflector 6 and the primary guide 18 and extending between the cells 8.
  • the zone or zones 23 are located between two portions respectively belonging to the primary guide 18 and the reflector 6 and which are opposite one another.
  • the material 24 has the lowest refractive index possible.
  • the preferred material 24 is therefore air (refractive index equal to 1).
  • the presence of the material 24 has the effect of inducing a Fresnel reflection at the interface between the primary guide 18 and the material 24, that is to say at the proximal face 22.
  • This reflection is specular and d efficiency substantially equal to 100% for photons having an angle of incidence greater than or equal to a critical angle.
  • This is called total internal reflection, the TIR English acronym for Total Internal Reflection.
  • the value of this angle depends only on the refractive indices of the materials forming the interface, that is to say the primary guide 18 and the material 24. In order for the phenomenon of total internal reflection to take place, it is necessary that the light from a high index medium to a lower refractive index medium, which explains the addition of the material 24 below the primary guide.
  • the critical angle is then substantially 42 °, which corresponds to 75% of the photons consequently incidents reflected by TIR and 25% of non-reflected photons for isotropic emission, which is the case here.
  • the material 24 has a refractive index equal to or substantially equal to one. This has the effect of minimizing the value of the critical angle and thus maximizing the proportion of photons reflected by total internal reflection.
  • the material 24 is a porous material, for example made from nanostructures of SiO 2 or TiO 2 , so as to minimize the effective refractive index.
  • the material 24 is made from a polymer of refractive index less than 1, 4, and is for example 1, 3.
  • the material 24 is made from magnesium fluoride MgF 2 , or silica oxide S1O 2 .
  • the distance d between the proximal face 22 of the primary guide 18 and the support 6 is greater than or equal to the characteristic wavelength ⁇ of the device 2.
  • the distance d between the proximal face 22 and the reflector 6 is greater than or equal to one multiple strictly greater than one of the characteristic wavelength ⁇ . This further minimizes the aforementioned nonlinearity effects.
  • the characteristic wavelength of the device 2 may be about 1 ⁇ and the distance between the proximal face 22 and the reflector 6 is for example greater than or equal to two, three or four times this length, and is worth for example 5 ⁇ .
  • the distance between the proximal face 22 and the reflector 6 is less than or equal to a few multiples of the characteristic wavelength ⁇ of the device 2, for example at twenty times this wavelength. This makes it possible in particular to limit the phenomena of loss of photons by the flanks of the secondary guides 20, as well as to minimize the probability of occurrence of reflections at the side faces of the secondary guides 20, as will be seen later.
  • the distance between the proximal face 22 and the reflector 6 is taken less than or equal to 20 ⁇ , and is for example between 5 ⁇ and 10 ⁇ .
  • the zones 23 form a single continuous zone 23 and in contact with the proximal face 22 over substantially the entire surface of the proximal face 22 which is not facing a secondary guide 20. This has the effect of improving the efficiency of the reflections on a surface of maximum area.
  • the secondary guides 20 are transparent. They are respectively associated with one of the cells 8. Preferably, the secondary guides 20 are identical to each other. This facilitates their manufacture and therefore that of the device 2 generally.
  • Each secondary guide 20 is in the form of a stud.
  • Each secondary guide 20 is interposed between the proximal face 22 of the primary guide 18 and the upper face 16 of a cell 8.
  • the secondary guides 20 maintain the proximal face 22 of the primary guide 18 away from the reflector 6.
  • the secondary guides 20 are separated from each other laterally by the material 24.
  • each secondary guide 20 has a face, or base, in contact with the associated cell 8 which has a shape substantially identical to that of the upper face 16 of the cell 8. This has the effect of maximizing the percentage of photons that pass from the primary guide 18 to the secondary guides 20 and secondary guides 20 to the cells 8.
  • each secondary guide has a generally cylindrical or prismatic shape of any section and whose base has a shape substantially identical to that of the upper face 16 of the associated cell 8.
  • each secondary guide 20 has a rectangular prismatic shape of rectangular cross-section having dimensions substantially identical to those of the upper face 16 of the cells.
  • the secondary guides 20 have a generally cylindrical shape also of circular section.
  • the secondary guides 20 may have curved or curved flanks, a trapezoidal shape or the like. Each secondary guide 20 is arranged in contact with the upper face 16 of the associated cell 8, the base of the secondary guide 20 being arranged in contact with the upper face 16 and edge to edge, as shown in Figures 1 and 2.
  • the secondary guides 20 are for example made from photoresist.
  • the photoresist is the resin sold under the name AZ® nLOF TM 2070 by the company Microchemicals, or the resin 40XT, or the resin SU8.
  • the secondary guides 20 have a refractive index n g2 .
  • the refractive index n g2 is greater than the refractive index n gi of the primary guide 18.
  • the refractive index n g2 of the secondary guides 20 is smaller than the refractive index n c of the upper faces 16 8. This has the effect of promoting the transfer of photons to the cells 8, the secondary guides providing an anti-reflection for the cells because of their intermediate index between that of the primary guide and that of the cells.
  • the refractive index n g2 of the secondary guides 20 is substantially equal to the geometric mean of the refractive index n gi of the primary guide 18 and of the refractive index n c of the upper faces 16 of the cells 8. has the effect of simultaneously promoting the transfer of photons from the primary guide 18 to the secondary guides 20 and the transfer of photons from the secondary guides 20 to the cells 8. In other words, preferentially, there is the relationship:
  • the index n gi is substantially 1.5 and the index n c is substantially 1.9.
  • the index n g2 is then substantially 1.69.
  • the primary guide 18 is illuminated by photons coming from its environment.
  • the photons surrounding the device 2 penetrate the primary guide 18. As indicated above, they are absorbed by the primary guide 18. Some photons are for example absorbed at the level of A point A in the thickness of the primary guide 18. In response, the primary guide 18 emits, from the point A, isotropic photons in the primary guide 18, that is to say in all directions. These photons are emitted at a wavelength belonging to the emission range of the primary guide 18.
  • the photons arriving at an area of the proximal face 22 facing a secondary guide 20 pass therethrough and then, for all or part of them, reach the upper face 16 of the associated cell 8, as described below.
  • the photons arriving at an interface of the primary guide 18 in an area which is not facing a secondary guide 20 are reflected. More precisely, in a known manner, at each reflection, only a part of the photons is reflected, the other part of these photons escaping from the primary guide 18. For the reflections taking place at the level of the proximal face 22, the photons which are not reflected propagate towards the reflector 6, where they are reflected towards the primary guide 18. They penetrate and propagate there again.
  • the proportion of photons effectively reflected at the proximal face 22 is increased because of the presence of the zones 23 comprising the material 24.
  • all the rays would be reflected with the reflection coefficient of the reflector, which is not perfect.
  • the presence of the material 24 a large part of the rays is perfectly reflected by total internal reflection. Those who escape meet the reflector 6 and are therefore reflected with the rate of its reflective face and return back into the primary guide.
  • the displacement in the primary guide 18 of the photons continues until they arrive within the primary guide 18 at the level of the proximal face 22 in a zone next to a secondary guide 20. Due to the values of the refractive indices n gi , n g2 and 3 ⁇ 4, the photons then enter the secondary guide 20 in question in which they move in the direction of the corresponding cell 8. Depending on the angle at which a photon enters a secondary guide 20, it may be subject to one or more reflections at the lateral edge of the secondary guide 20. As before, only a portion of the photons undergoing these reflections is actually reflected , another part passing through the material 24.
  • photons whose wavelength is in the wavelength range reflected by carrier 6 behave as described above. Photons having a wavelength that is not reflected by the support are then not reflected by the support and escape the device during operation of the latter. In the embodiments in which the support 6 is transparent, the photons are not reflected by the support 6 during operation of the device.
  • the substrate 4, the support 6 and the cells 8 are manufactured by any known method and are arranged as described above.
  • the support 6 is arranged on the substrate 4 and the cells 8 are placed at the level of the support 6.
  • the upper face 16 of the cells 8 comprises a ZnO zinc oxide layer doped with Al aluminum. Also, in the corresponding embodiments, this layer is deposited on the cells 8 arranged at the support, either selectively only on the cells 8, or both on the cells 8 and on the reflecting face 14 of the reflector 6.
  • the secondary guides 20 are manufactured, for example by optical photolithography. The positioning of the secondary guides is then performed during the photolithography. Finally, the proximal face 22 of the primary guide 18 is brought into contact with the free end of the secondary guides 20. Optionally, annealing is also performed in order to secure the secondary guides 20 to the primary guide 18, which improves the mechanical strength of the device 2.
  • the secondary guides 20 are formed directly in contact with the cells 8 electrochemically. More particularly, after arrangement of the cells 8 on the reflector 6, the secondary guides 20 are made by zinc oxide electrodeposition ZnO, which is deposited selectively on the surface of the cells 8.
  • the secondary guides 20 formed directly on the cells 8 are made from zinc oxide ZnO.
  • the device 2 according to the invention has been implemented with a geometric gain of the order of 20. It has thus been observed a three-fold increase in the concentration factor of the device compared to a device of the state of the art. .
  • concentration factor of a device of the state of the art in which the primary guide is attached to the reflector was measured at 1.8
  • the concentration factor of the device 2 according to the invention was measured at 5.3. This is explained by the direct efficiency gain resulting from the improvement of the efficiency of the reflections at the proximal face 22 of the primary guide 18, but also from an indirect efficiency gain at the upper face.
  • primary guide 18 resulting from the specularity of the reflections at the proximal face 22, for photons arriving with an angle of incidence sufficient to be reflected by total internal reflection.
  • the cells 8 project from the reflector 6 towards the primary guide 18.
  • the proximal surface 22 is arranged directly in contact with the cells 8.
  • the device 2 is devoid of secondary guide 20.
  • the cells 8 keep the primary guide 18 away from the reflector 6.
  • the cells 8 are for example formed directly in the cavities 12 of the reflector 6, for example by deposit. Alternatively, they are formed directly on the reflector 6 which is devoid of cavity 12.
  • the reflecting surface 14 of the reflector 6 is formed, for example, after the formation of the cells 8 by deposition. This makes it possible to minimize the impact of the formation of the cells 8 on the quality of the reflecting surface 14 of the reflector 6.
  • the device 2 according to this variant is less expensive and easier to manufacture.
  • the cells 8 protrude from the reflector 6 and the device 2 includes secondary guides 20 as previously described.
  • This embodiment makes it possible to benefit from the protrusion of the cells 8 to limit the dimensions of the secondary guides 20 and thus also to simplify the manufacture of the device 2.
  • the embodiments described above are combined.
  • the upper face of some cells 8 is flush with the reflective face of the reflector 6 as shown in Figure 2, while other cells protrude out of the reflector.
  • the device 2 then comprises secondary guides 20 of a first size interposed between the cells 8 whose upper face is flush with the proximal surface 22 of the primary guide, and secondary guides 20 of a second size interposed between the protruding cells and the proximal surface.
  • the vertices of all the secondary guides are then substantially at the same height, the primary guide being in contact with each of them.
  • the primary guide 18 is arranged in direct contact with the cells protruding from the reflector.
  • the cells 8 whose upper surface is flush are then each coupled to a secondary guide 20 as described above and interposed between the cell 8 in question and the proximal surface 22.
  • Other embodiments of the device 2 according to the invention are also conceivable.
  • the upper face of the primary guide 18 is covered with a notch filter (dashed in FIG. 2) configured to let the surrounding photons pass as far as possible into the primary guide 18 but to prevent the photon output from the upper face of the primary guide 18, in particular photons reemitted by the primary guide 18 and having a wavelength located in the emission range of the primary guide.
  • the filter has good photon reflection properties having lengths around the characteristic wavelength, and strong transmission for other wavelengths.
  • optical devices for focusing light on photovoltaic devices there are imaging devices, which allow to obtain an image of an object through its optical system, and therefore in this case an image of sun on the cell, and non-imaging devices, which concentrate the light without forming an image.
  • Imaging devices have the particularity of concentrating sunlight only if it arrives directly on the device under consideration, that is to say if it is oriented along the axis formed by the sun and the optics of the device, and can not use the diffuse light, which arrives in any directions, for example due to diffusion phenomena generated by the clouds.
  • the non-imaging devices are not very sensitive to the direction of incident solar light and therefore have the advantage of not having to follow precisely the solar path by special systems.
  • the device 2 is a non-imaging device. He is then fixed on his support immobile. This frees the device from an orientation mechanism configured to orient the latter as a function of the path of the sun, which is necessary for the imaging devices. The cost of the device 2 is therefore substantially reduced compared to an imaging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Un dispositif photovoltaïque comprenant: -une pluralité de cellules photovoltaïques, distantes les unes des autres, -un support(6) recevant les cellules, et -un guide de lumière (10) au contact desdites cellules et comportant un guide primaire (18) ayant une face proximale (22) par rapport aux cellules, la face proximale (22) étant orientée vers les cellules (8) et le support (6). Le dispositif photovoltaïque comporte, entre les cellules, des zones situées entre le support et le guide primaire et comprenant un matériau (24) d'indice de réfraction inférieur à celui de la face proximale, le matériau étant au contact de ladite face proximale.

Description

Dispositif photovoltaïque et procédé de fabrication associé
La présente invention concerne un dispositif photovoltaïque.
Ce type de dispositif est largement répandu et a vocation à convertir de l'énergie solaire en énergie électrique.
Pour ce faire, ces dispositifs sont pourvus de cellules photovoltaïques prévues pour être illuminées par la lumière du soleil et pour convertir cette lumière en énergie électrique par effet photoélectrique.
Afin d'améliorer le rendement de ce type de dispositif, il est connu d'utiliser de la lumière concentrée, ce qui a aussi pour avantage de diminuer la consommation de matière première photovoltaïque. Pour ce faire, les cellules peuvent être couplées à un guide de lumière prévu pour recevoir les photons et pour favoriser leur guidage jusqu'à la surface des cellules photovoltaïques.
Dans certains de ces dispositifs, les cellules sont agencées sur un réflecteur configuré pour réfléchir les photons et permettre leur recapture par le guide d'onde. Le guide d'onde est alors disposé au contact de ce réflecteur.
Toutefois, il a été constaté que les dispositifs de ce type présentaient des inconvénients. En effet, les réflecteurs présentent un coefficient de réflexion non idéal, ce qui se traduit par des pertes à chaque réflexion. En outre, chaque réflecteur présente généralement des rugosités locales, par exemple du fait de la rugosité du support sur lequel il est déposé, du vieillissement du réflecteur ou d'imperfections de fabrication. Sous certaines conditions, notamment de dimensions des rugosités non-négligeables devant la longueur d'onde des photons, ces rugosités engendrent un phénomène local de diffusion de la lumière se traduisant par une variation non contrôlée de l'angle de réflexion des photons, et donc une diminution globale de l'effet de guidage fourni par le guide d'onde.
La présente invention vient améliorer la situation.
A cet effet, l'invention vise un dispositif photovoltaïque comprenant :
- une pluralité de cellules photovoltaïques, distantes les unes des autres, - un support recevant les cellules, et
- un guide de lumière au contact desdites cellules et comportant un guide primaire ayant une face proximale par rapport aux cellules, la face proximale étant orientée vers les cellules et le support.
En particulier, le dispositif comporte, entre les cellules, des zones situées entre le support et le guide primaire et comprenant un matériau d'indice de réfraction inférieur à celui de la face proximale, le matériau étant au contact de ladite face proximale.
Dans une réalisation simple de mise en œuvre, ce matériau est simplement de l'air, un espacement étant alors prévu entre les cellules. Selon un aspect de l'invention, le support est un réflecteur présentant une face réfléchissante orientée vers la face proximale du guide primaire.
Selon un aspect particulier de l'invention, le guide primaire est un concentrateur fluorescent. Ceci permet notamment de maximiser l'effet de guidage du guide de lumière vers les cellules et d'améliorer l'efficacité du dispositif. Selon un autre aspect de l'invention, le support et la face proximale du guide primaire sont espacés d'une distance comprise entre 1 μιη et 20 μιη. Ceci permet notamment de limiter les effets de non-linéarité de la lumière pouvant survenir, qui limiteraient les performances de réflexion.
Dans une mise en œuvre particulière de l'invention, la distance entre la face proximale du guide primaire et le support est sensiblement égale à un multiple supérieur ou égal à deux d'une longueur d'onde caractéristique correspondant à une longueur d'onde privilégiée d'émission du guide primaire. Ceci permet de limiter plus avant les effets de non-linéarité précités.
Selon un aspect particulier de l'invention, une ou plusieurs cellules sont agencées en saillie par rapport au support en direction du guide primaire, le guide primaire étant au contact desdites cellules et maintenu à l'écart du support au moins par lesdites cellules. Ainsi, les cellules contribuent elles-mêmes à former les zones comportant le matériau.
Dans un mode de réalisation, le guide de lumière comprend une pluralité de guides secondaires séparés les uns des autres par ledit matériau, chaque guide secondaire étant interposé entre la face proximale du guide primaire et une cellule photovoltaïque. Ces guides permettent notamment de choisir finement la géométrie du dispositif tout en améliorant l'effet de guidage du guide de lumière, en permettant un bon couplage optique entre la cellule et le guide primaire, et ce même si la surface des cellules est rugueuse.
Selon un autre aspect de l'invention, les guides secondaires maintiennent la face proximale du guide primaire à l'écart du support au moins dans lesdites zones.
Dans une réalisation particulière de l'invention, chaque guide secondaire présente une face disposée au contact de la surface de la cellule photovoltaïque correspondante et présentant des dimensions sensiblement égales aux dimensions de la surface de ladite cellule, ladite face d'un guide secondaire donné étant disposée sensiblement bord à bord en regard de la surface de la cellule photovoltaïque correspondante. Ceci permet d'améliorer l'exposition des cellules aux photons provenant du guide primaire.
Selon un autre aspect de l'invention, l'un au moins des guides secondaires se présente sous la forme d'un plot de forme générale cylindrique dont la base est de dimensions sensiblement égales à celles de la surface de la cellule photovoltaïque correspondante. Ceci a notamment pour effet d'améliorer le transfert des photons depuis le guide primaire vers les cellules.
Dans une réalisation particulière de l'invention, le ou chaque guide secondaire présente un indice de réfraction compris entre l'indice de réfraction du guide primaire et l'indice de réfraction de la surface de la cellule photovoltaïque correspondante. Ainsi, les transferts de photons jusqu'aux cellules sont encore améliorés, car les réflexions aux différentes interfaces entre le guide primaire, le guide secondaire et les cellules, sont minimisées.
Par ailleurs, l'invention concerne un procédé de fabrication d'un dispositif photovoltaïque comprenant : - une pluralité de cellules photovoltaïques, distantes les unes des autres,
un support au niveau duquel les cellules sont agencées, et
un guide de lumière au contact desdites cellules et comportant un guide primaire ayant une face proximale par rapport aux cellules, la face proximale étant orientée vers les cellules et le support.
En particulier :
- on agence les cellules photovoltaïques au niveau du support et - on agence le guide de lumière au contact des cellules photovoltaïques en ménageant, entre les cellules photovoltaïques, des zones situées entre le guide primaire et le support et comprenant un matériau d'indice de réfraction inférieur à celui de la face proximale, ledit matériau étant agencé au contact de ladite face proximale. Selon un aspect du procédé selon l'invention, on obtient un ou plusieurs guides secondaires transparents qu'on interpose chacun entre le guide primaire et une cellule photo voltaïque. Ceci permet notamment de contrôler de façon précise la géométrie du dispositif et de limiter les phénomènes de non-linéarité. Dans un mode de réalisation particulier, chaque guide secondaire est formé par dépôt directement au contact de la cellule photovoltaïque correspondante. Ceci permet par exemple de faciliter la fabrication du dispositif et de simplifier la gestion des stocks afférents.
Selon un autre aspect de l'invention, on forme par dépôt, au niveau du support, tout ou partie des cellules photovoltaïques de telle sorte que les cellules photovoltaïques correspondantes soient en saillie par rapport au support, et on dispose le guide primaire au contact desdits cellules en saillie. De la même manière, ceci permet de limiter les contraintes de stockage des pièces requises pour la fabrication du dispositif. Par ailleurs, cela simplifie la fabrication du fait de la diminution du nombre d'étapes nécessaires.
L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre, donnée uniquement à titre d'exemple et faite en référence aux Figures annexées, sur lesquelles :
La Figure 1 est une illustration schématique d'un dispositif photovoltaïque selon l'invention ;
La Figure 2 est une vue en coupe du dispositif de la Figure 1 ;
La Figure 3 est une vue en coupe d'un dispositif selon une première variante de l'invention, et
La Figure 4 est une vue en coupe d'un dispositif selon une deuxième variante de l'invention.
La Figure 1 illustre un dispositif photovoltaïque 2 selon l'invention, configuré pour transformer la lumière en énergie électrique. En référence aux Figures 1 et 2, le dispositif 2 comprend un substrat 4, un support 6, des cellules photo voltaïques 8, et un guide de lumière 10.
Le dispositif 2 fonctionne sur une plage de longueurs d'onde dite utiles. Cette plage de longueurs d'onde utiles est définie comme la plage spectrale des photons que les cellules 8 sont capables de convertir en électricité. La borne supérieure de cette plage dépend donc de la nature des cellules photovoltaïques 8, et plus précisément du matériau constituant les absorbeurs de ces cellules. La borne inférieure de cette plage est communément fixée à 350 nm car il n'y a quasiment pas de photons de longueur d'onde inférieure à 350 nm arrivant sur Terre. Cette plage est par exemple de 350 nm à 1200 nm.
Le substrat 4 présente une forme générale de plaque rectangulaire. Il est par exemple réalisé par des méthodes connues. Le substrat 4 est au contact du support 6 et soutient le support 6.
Dans un mode de réalisation, le substrat 4 est pourvu de contacts électriques (non représentés) configurés pour connecter individuellement ou en réseau l'ensemble des cellules photovoltaïques 8 à un circuit extérieur.
Le support 6 présente une forme générale de plaque rectangulaire. Il présente des dimensions latérales et transverses correspondant sensiblement à celles du substrat. Le support 6 est disposé sur le substrat 4 et sensiblement parallèlement au substrat 4. Le substrat 4 et le support 6 sont disposés sensiblement bord à bord. Le support 6 reçoit les cellules 8. Dans le mode de réalisation des Figures 1 et 2, le support 6 est pourvu de cavités 12 débouchantes dont les ouvertures respectives sont orientées à l'écart du substrat 4. Chaque cavité 12 reçoit une cellule photovoltaïque 8. Les cavités 12 présentent des dimensions sensiblement complémentaires de celles des cellules photovoltaïques 8. Les cavités 12, et donc les cellules 8, sont espacées les uns des autres sur le support. Il est optimal pour les performances du dispositif 2 que l'espacement entre les cellules soit régulier. Par exemple, les cavités 12, et donc les cellules 8, sont agencées selon une disposition matricielle sur la surface du support 6, c'est-à-dire en lignes et en colonnes régulièrement distribuées sur cette surface. Néanmoins, dans certains modes de réalisation, cet espacement est peu régulier, voire aléatoire. Ceci permet notamment de faciliter la fabrication du dispositif 2. Selon une variante de réalisation, les cellules sont disposées directement sur la surface du support, le support ne présentant pas de cavité 12. L'invention est par la suite décrite de manière non limitative pour des modes de réalisation dans lesquels le support présente des cavités 12. Par ailleurs, plusieurs réalisations du support 6 sont envisageables.
Dans une réalisation, le support 6 est un réflecteur. Le réflecteur 6 présente une face supérieure (au sens de l'orientation des Figures). Cette face supérieure est une face réfléchissante 14 orientée à l'écart du substrat 4. Plus précisément, la face réfléchissante 14 est orientée en direction du guide de lumière 10. Les cavités 12 débouchent à travers la face réfléchissante 14. Le réflecteur 6 est par exemple réalisé de manière classique. Par exemple, la surface réfléchissante 14 comprend une couche d'argent Ag, ou d'aluminium Al formée avant ou après la mise en place des cellules 8 et sur laquelle est optionnellement déposée une couche d'oxyde de zinc ZnO dopée ou non à l'Aluminium.
Dans certains modes de réalisation, la face réfléchissante 14 est configurée pour réfléchir une partie seulement du domaine visible. Avantageusement, la plage de longueurs d'onde que la face réfléchissante 14 est alors configurée pour réfléchir, inclut tout ou partie d'une plage de longueurs d'onde d'émission d'un guide primaire du guide de lumière 10. Par exemple, elle est choisie pour inclure la totalité de cette plage de longueurs d'onde d'émission.
Ce guide primaire et sa plage de longueurs d'onde d'émission sont décrits ci-après. Ceci est avantageux dans certains types d'applications, notamment dans la réalisation de vitrages, et permet notamment d'obtenir un dispositif ayant de faibles pertes optiques dans le cadre de ces applications.
Dans certaines réalisations, le substrat 4 est lui-même transparent aux longueurs d'onde qui ne sont pas réfléchies par le support 6. Dans certaines réalisations particulières, le support 6 est alternativement ou parallèlement réfléchissant dans une plage de longueurs d'onde choisie du domaine visible, de sorte que le dispositif présente un aspect extérieur ayant une teinte dépendant de ladite plage de longueurs d'onde choisie. Dans les réalisations dans lesquelles le support 14 est réfléchissant dans une partie du domaine visible incluant tout ou partie d'une plage de longueurs d'onde d'émission du guide primaire, la plage choisie associée à la teinte en question est par exemple choisie pour être disjointe de la plage de longueurs d'onde d'émission du guide primaire. Dans certains modes de réalisation, la face réfléchissante 14 est configurée pour réfléchir la totalité du domaine visible.
Dans une autre réalisation, le support 6 présente la même géométrie que précédemment. Toutefois, le support 6 est dépourvu de surface réfléchissante, c'est-à-dire que la face supérieure du support n'est pas réfléchissante. Le support 6 est par exemple constitué d'un matériau transparent dans le domaine visible. Il est par exemple réalisé à partir de verre. Avantageusement, le substrat 4 est lui-même transparent, ce qui permet de rendre l'ensemble du dispositif le plus transparent possible. Ceci est particulièrement avantageux pour certaines applications, comme le vitrage pour le bâtiment, dans lesquelles cette transparence est un critère important. La description qui suit est donnée de manière non limitative dans le cas où le support 6 est un réflecteur, la transposition à un support d'un autre type, par exemple un support transparent, étant immédiate.
Comme indiqué précédemment, les cellules 8 sont respectivement agencées dans l'une des cavités 12 du réflecteur 6. Chaque cellule 8 présente une face supérieure 16 orientée vers le guide de lumière 10 et au niveau de laquelle les photons que la cellule a vocation à transformer en énergie électrique sont reçus en provenance du guide de lumière 10. Les cellules 8 sont agencées dans les cavités 12. Par exemple, les faces 16 des cellules 8 sont sensiblement coplanaires entre elles, et/ou coplanaires avec la face réfléchissante 14 du réflecteur 6. Par exemple, les cellules sont agencées dans le réflecteur selon un montage dit « flush ». Ainsi, les faces supérieures 16 des cellules affleurent au niveau de la face réfléchissante 14. Alternativement, les faces 16 des cellules 8 ne sont pas coplanaires entre elles. En outre, dans certains modes de réalisation, elles sont encaissées dans leur cavité 12 respective, c'est-à-dire que leur face 16 est à un niveau inférieur à celui de l'embouchure de la cavité 12 associée. Dans d'autres modes de réalisation décrits ci-après, les cellules sont en saillie par rapport à leur cavité et au réflecteur. La face supérieure 16 des cellules 8 est sensiblement plane. La face supérieure 16 des cellules 8 présente un indice de réfraction nc. L'indice de réfraction nc est par exemple sensiblement égal à 1,9. La face supérieure 16 comprend par exemple une couche d'oxyde transparent conducteur. Cette oxyde peut être de l'oxyde de zinc ZnO, transparent, dopé avec de l'aluminium Al, ou de l'oxyde d'indium et d'étain ITO, ou de l'oxyde d'étain Sn02
Dans un exemple de réalisation, les cellules 8 sont des microcellules.
Avantageusement, les cellules 8 présentent une forme générale cylindrique, et leur face supérieure 16 respective est circulaire. Le diamètre des cellules est alors par exemple compris entre 10 μιη et 500 μιη. A noter que par « cylindre », on entend une surface définie par une génératrice passant par un point variable décrivant une courbe plane fermée, ou courbe directrice, tout en gardant une direction fixe. De fait, une forme cylindrique n'est pas nécessairement symétrique de révolution.
Dans certains modes de réalisation tel celui de la Figure 1 , les cellules présentent une forme générale cylindrique à section rectangulaire comme visualisé sur la Figure 1. Les cellules 8 présentent alors une largeur et/ou une longueur mesurées dans le plan de leur face supérieure 16 comprise(s) entre 10 μιη et 500 μιη.
Alternativement, les cellules présentent des formes et des faces supérieures 16 respectives de forme quelconque. Les cellules sont par exemple inscrites dans un cylindre de section circulaire et de diamètre compris entre 10 μιη à 500 μιη.
Les cellules 8 sont par exemple des cellules en couches minces, ce qui peut présenter des avantages en termes de facilité de fabrication. Elles sont par exemple de type dit « CIGS » (pour Cu, In, Ga, Se) et de composition, Cu(In, Ga)Se2, c'est-à-dire qu'elles sont réalisées à partir de Cuivre, d'indium, de Gallium et de Sélénium. Elles peuvent également être de type CdTe ou CZTS, qui sont d'autres cellules en couches minces.
Néanmoins, l'invention n'est pas limitée à un type particulier de cellules. Les cellules peuvent être choisies de façon quelconque parmi les cellules existantes. Par exemple, les cellules pourront être en Silicium cristallin, polycristallin ou amorphe, les cellules à partir de semiconducteur de type III-V, comme par exemple le GaAs, le GalnP ou le GalnAs. Le guide de lumière 10 est configuré pour recevoir des photons et les guider vers les cellules 8. Le guide de lumière 10 est commun aux cellules 8. En outre, il est au contact de toutes les cellules 8. Le guide de lumière est configuré pour guider les photons en son sein jusqu'à la face supérieure 16 des cellules 8. Le guide de lumière 10 comprend un guide primaire 18 et une pluralité de guides secondaires 20.
Le guide primaire 18 est un concentrateur fluorescent. Il est configuré pour absorber les photons et réémettre, en réponse, des photons à une autre longueur d'onde. Ceci est décrit plus en détail ci-après. Le guide primaire 18 présente une forme générale de plaque plane rectangulaire. Cette configuration rend aisée l'assemblage du dispositif et réduit l'encombrement du dispositif.
Le guide primaire 18 présente par exemple une épaisseur de l'ordre du millimètre, ou encore du centimètre.
Le guide primaire 18 est disposé sensiblement parallèlement à la face réfléchissante 14 du réflecteur 6.
Le guide primaire 18 présente une face proximale 22 par rapport aux cellules 8 qui est orientée vers le réflecteur 6. Au vu de l'orientation des Figures 1 et 2, la face proximale 22 correspond à la face inférieure du guide primaire 18. Comme illustré sur les Figures 1 et 2, la face réfléchissante 14 du réflecteur 6 est orientée en direction de la face proximale 22. La face proximale 22 et la face réfléchissante 14 du réflecteur 6 sont sensiblement parallèles.
Le guide primaire 18 présente des dimensions longitudinales et transverses sensiblement égales à celles du réflecteur 6. Plus précisément, les dimensions du guide primaire, du réflecteur et du substrat sont conditionnées par l'application du dispositif 2. Par exemple, l'aire de la surface proximale 22 du guide primaire (et donc l'aire du réflecteur et du substrat) est de l'ordre de la dizaine de centimètres carrés pour certaines applications, ou de l'ordre du mètre carré pour d'autres applications. Le rapport entre l'aire de la surface proximale 22 et la somme des aires des surfaces supérieures 16 des cellules 8, également connu sous le nom de gain géométrique du dispositif 2, est par exemple compris entre 2 et 100, et vaut par exemple 20. Avantageusement, les cellules 8 sont en regard de la partie centrale du guide primaire 18. Ceci permet de pouvoir ajuster les dimensions du guide primaire 18 sans avoir à modifier la disposition des cellules 8 au niveau du support 6.
Avantageusement, les cellules 8 sont ainsi agencées au niveau du support 6 en face du guide primaire 18 et de sorte que leur face supérieure 16 ne soit pas en regard d'une extrémité latérale du guide primaire 18, c'est-à-dire des arêtes délimitant les faces latérales 23 (Figure 2) du guide primaire 18.
Le guide primaire 18 comprend au moins un colorant ainsi qu'un matériau formant l'essentiel du guide primaire et dans lequel le ou chaque colorant est noyé et distribué de manière homogène. Le colorant est un luminophore ou fluorophore, c'est-à-dire un matériau qui absorbe la lumière dans une première plage de longueurs d'onde, dite plage d'absorption du dispositif 2. En réponse, il réémet en son sein et de manière principalement isotrope des photons dans une deuxième plage de longueurs d'onde, ou plage de longueurs d'onde d'émission. Cette plage est centrée sur une longueur d'onde caractéristique λ du dispositif 2 La plage de longueurs d'onde d'absorption désigne la gamme spectrale des photons que le colorant est capable d'absorber. Idéalement, sa borne inférieure correspond à la borne inférieure de la plage de longueurs d'onde utiles, et sa borne supérieure est légèrement plus faible que celle de la plage de longueurs d'onde utiles. La plage de longueurs d'onde d'émission désigne la gamme spectrale des photons émis par le colorant. Celle-ci est décalée vers les grandes longueurs d'onde par rapport à la plage d'absorption. Elle doit idéalement avoir une borne supérieure coïncidant avec celle de la plage de longueurs d'onde utiles. De plus, cette plage est généralement étroite, de sorte qu'on peut y associer une longueur d'onde particulière autour de laquelle cette plage est centrée -la longueur d'onde caractéristique λ -. Comme on le verra par la suite, cette longueur d'onde caractéristique λ est utilisée pour définir la hauteur de guides secondaires que comprend le dispositif 2, ainsi que l'espacement entre le guide primaire et le réflecteur. La longueur d'onde caractéristique λ du dispositif 2 est fonction du guide primaire 18 et du ou des colorants qu'il contient. Elle est choisie pour être comprise dans une gamme spectrale où les cellules photovoltaïques 8 ont de bonnes performances. La plage de longueurs d'onde d'absorption et la plage de longueurs d'onde d'émission présentent généralement une gamme de fréquences commune. Toutefois, préférentiellement, cette gamme commune est aussi étroite que possible. Ceci permet de limiter les phénomènes de réabsorption par le guide primaire 18 des photons émis par le guide primaire 18 lui-même, ces réabsorptions engendrant des pertes.
La face réfléchissante 14 du réflecteur 6 est choisie pour réfléchir de manière optimale les photons présentant une longueur d'onde comprise dans la plage de longueurs d'onde d'émission du guide primaire. Préférentiellement, le rendement de luminescence du colorant, c'est à dire le rapport entre le nombre de photons réémis par le colorant sur le nombre de photons absorbés, est supérieur à 90% et avantageusement à 95%.
Selon une première variante, le guide d'onde primaire est composé d'un ou plusieurs polymères dopé(s) par un ou plusieurs colorants. Par exemple, le guide primaire est réalisé à partir de Polyméthacrylate de Méthyle, ou PMMA. Dans certains modes de réalisation, le colorant est réalisé à partir de molécules organiques telles que par exemple du Lumogen®, commercialisé par la société BASF, et est par exemple du Lumogen® RED 305. Alternativement, le colorant est réalisé à partir de rhodamine, de pérylène, de 4-butylamino-N- allyl-l,8-naphthalimide, de Poly(9,9-di-(2-ethylhexyl)-9H-fluorene-2,7-vinylene, de poly((9,9- di-(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(l-methoxy-4-(2-ethylhexyloxy)-2,5 ou de chélates d'ions lanthanides.
Alternativement, le colorant est réalisé à partir de nano-cristaux de semi-conducteurs (connus sous le nom anglophone de « Quantum dots »), tels que par exemple des nanoparticules de PbS, PbSe ou des structures de type cœur/coquille de CdSe/ZnS, CdSe/CdS, CdSe/CdS/CdZnS/ZnS, CdTe/CdSe.
Alternativement, le colorant est réalisé à partir de composés hybrides organiques/inorganiques.
Dans certains modes de réalisation, le colorant est réalisé à partir de plusieurs des éléments décrits ci-dessus, ce qui permet d'élargir la plage d'absorption du concentrateur.
Selon une autre variante, le guide primaire est un oxyde dopé par des éléments luminescents. Dans d'autres modes de réalisation, le colorant est réalisé à partir de nanoparticules d'oxydes dopées par des terres rares, comme l'Othovanadate d'Yttrium dopé par de l'Europium, ou des oxydes dopés au Néodyme (Nd3+) ou à l'Ytterbium (Yb 3+) ou dopés à d'autres terres rares, par exemple aux lanthanides. Le guide primaire 18, et donc sa face proximale 22, présente un indice de réfraction ngi. L'indice de réfraction ngi est par exemple sensiblement égal à 1,5.
Selon l'invention, la face proximale 22 du guide primaire 18 est à l'écart du réflecteur 6. Le dispositif 2 comporte une ou plusieurs zones 23 situées entre les cellules et comportant un matériau 24 d'indice de réfraction inférieur à celui de la surface proximale 22 du guide primaire 18. Le matériau 24 remplit l'espace délimité entre le réflecteur 6 et le guide primaire 18 et s 'étendant entre les cellules 8. La ou les zones 23 sont situées entre deux portions appartenant respectivement au guide primaire 18 et au réflecteur 6 et qui sont en regard l'une de l'autre.
Préférentiellement, le matériau 24 à l'indice de réfraction le plus faible possible. Le matériau 24 préférentiel est donc de l'air (indice de réfraction égal à 1).
La présence du matériau 24 a pour effet d'induire une réflexion de Fresnel à l'interface entre le guide primaire 18 et le matériau 24, c'est-à-dire au niveau de la face proximale 22. Cette réflexion est spéculaire et d'efficacité sensiblement égale à 100% pour les photons ayant un angle d'incidence supérieur ou égal à un angle dit critique. On parle alors de réflexion interne totale, d'acronyme anglophone TIR pour « Total Internai Reflection ». La valeur de cet angle ne dépend que des indices de réfraction des matériaux formant l'interface, c'est-à-dire du guide primaire 18 et du matériau 24. Pour que le phénomène de réflexion interne total ait lieu il faut que la lumière passe d'un milieu d'indice élevé à un milieu d'indice de réfraction plus faible, ce qui explique l'ajout du matériau 24 en dessous du guide primaire. Dans les modes de réalisation où le matériau 24 est de l'air, et le matériau du guide d'onde primaire a un indice de réfraction de 1.5, l'angle critique vaut alors sensiblement 42°, ce qui correspond à 75% des photons incidents par suite réfléchis par TIR et 25% de photons non réfléchis pour une émission isotrope, ce qui est le cas ici.
Préférentiellement, le matériau 24 présente un indice de réfraction égal ou sensiblement égal à un. Ceci a pour effet de minimiser la valeur de l'angle critique et donc maximiser la proportion des photons réfléchis par réflexion interne totale. En variante, le matériau 24 est un matériau poreux, par exemple réalisé à partir de nanostructures de S1O2 ou de T1O2, de façon à minimiser l'indice de réfraction effectif. Alternativement, le matériau 24 est réalisé à partir d'un polymère d'indice de réfraction inférieur à 1 ,4, et valant par exemple 1 ,3. En variante encore, le matériau 24 est réalisé à partir de Fluorure de Magnésium MgF2, ou encore d'oxyde de silice S1O2.
Préférentiellement, la distance d entre la face proximale 22 du guide primaire 18 et le support 6 est supérieure ou égale à la longueur d'onde caractéristique λ du dispositif 2. Ceci a pour effet de minimiser les effets non-linéaires du comportement des photons induits par le fait que cette distance puisse ne pas être négligeable par rapport à la longueur d'onde des photons après leur émission par le guide primaire 18. Préférentiellement, la distance d entre la face proximale 22 et le réflecteur 6 est supérieure ou égale à un multiple strictement supérieur à un de la longueur d'onde caractéristique λ. Ceci permet de minimiser plus avant les effets de non-linéarité précités. Par exemple, la longueur d'onde caractéristique du dispositif 2 peut être d'environ 1 μιη et la distance entre la face proximale 22 et le réflecteur 6 est par exemple prise supérieure ou égale à deux, trois ou quatre fois cette longueur, et vaut par exemple 5 μιη.
En outre, préférentiellement, la distance entre la face proximale 22 et le réflecteur 6 est inférieure ou égale à quelques multiples de la longueur d'onde caractéristique λ du dispositif 2, par exemple à vingt fois cette longueur d'onde. Ceci permet notamment de limiter les phénomènes de déperdition des photons par les flancs des guides secondaires 20, ainsi que de minimiser la probabilité d'occurrence de réflexions au niveau des faces latérales des guides secondaires 20, comme on le verra par la suite. Ainsi, par exemple, la distance entre la face proximale 22 et le réflecteur 6 est prise inférieure ou égale à 20 μιη, et est par exemple comprise entre 5 μιη et 10 μιη.
Préférentiellement, les zones 23 forment une unique zone 23 continue et au contact de la face proximale 22 sur sensiblement toute la surface de la face proximale 22 qui n'est pas en regard d'un guide secondaire 20. Ceci a pour effet d'améliorer l'efficacité des réflexions sur une surface d'aire maximale.
Les guides secondaires 20 sont transparents. Ils sont respectivement associés à l'une des cellules 8. Préférentiellement, les guides secondaires 20 sont identiques les uns aux autres. Ceci facilite leur fabrication et donc celle du dispositif 2 de façon générale. Chaque guide secondaire 20 se présente sous la forme d'un plot. Chaque guide secondaire 20 est interposé entre la face proximale 22 du guide primaire 18 et la face supérieure 16 d'une cellule 8. Les guides secondaires 20 maintiennent la face proximale 22 du guide primaire 18 à l'écart du réflecteur 6. Les guides secondaires 20 sont séparés les uns des autres latéralement par le matériau 24.
Préférentiellement, chaque guide secondaire 20 présente une face, ou base, au contact de la cellule 8 associée qui présente une forme sensiblement identique à celle de la face supérieure 16 de la cellule 8. Ceci a pour effet de maximiser le pourcentage des photons qui passent du guide primaire 18 vers les guides secondaires 20 et des guides secondaires 20 vers les cellules 8. Par exemple, chaque guide secondaire présente une forme générale cylindrique ou prismatique de section quelconque et dont la base présente une forme sensiblement identique à celle de la face supérieure 16 de la cellule 8 associée. Par exemple, comme illustré sur la Figure 2, pour des cellules 8 à face supérieure 16 rectangulaire, chaque guide secondaire 20 présente une forme prismatique droite de section rectangulaire présentant des dimensions sensiblement identiques à celles de la face supérieure 16 des cellules. Alternativement, pour ces cellules 8 de forme cylindrique et de section circulaire, les guides secondaires 20 présentent une forme générale cylindrique également de section circulaire.
Alternativement, les guides secondaires 20 peuvent présenter des flancs incurvés ou bombés, une forme trapézoïdale ou autre. Chaque guide secondaire 20 est agencé au contact de la face supérieure 16 de la cellule 8 associée, la base du guide secondaire 20 étant agencée au contact de la face supérieure 16 et bord à bord, comme illustré sur les Figures 1 et 2.
Les guides secondaires 20 sont par exemple réalisés à partir de résine photosensible. Par exemple, la résine photosensible est la résine commercialisée sous le nom AZ® nLOF™ 2070 par la société Microchemicals, ou la résine 40XT, ou la résine SU8.
Les guides secondaires 20 présentent un indice de réfraction ng2. L'indice de réfraction ng2 est supérieur à l'indice de réfraction ngi du guide primaire 18. En outre, l'indice de réfraction ng2 des guides secondaires 20 est inférieur à l'indice de réfraction nc des faces supérieures 16 des cellules 8. Ceci a pour effet de favoriser le transfert de photons vers les cellules 8, les guides secondaires fournissant un anti-reflet pour les cellules du fait de leur indice intermédiaire entre celui du guide primaire et celui des cellules. Préférentiellement, l'indice de réfraction ng2 des guides secondaires 20 est sensiblement égal à la moyenne géométrique de l'indice de réfraction ngi du guide primaire 18 et de l'indice de réfraction nc des faces supérieures 16 des cellules 8. Ceci a pour effet de simultanément favoriser le transfert des photons depuis le guide primaire 18 vers les guides secondaires 20 et le transfert des photons depuis les guides secondaires 20 vers les cellules 8. En d'autres termes, préférentiellement, on a la relation :
Figure imgf000017_0001
Par exemple, l'indice ngi vaut sensiblement 1,5 et l'indice nc vaut sensiblement 1,9. Préférentiellement, l'indice ng2 vaut alors sensiblement 1,69.
Le principe de fonctionnement du dispositif 2 va maintenant être décrit en référence aux Figures 1 et 2.
Lors du fonctionnement du dispositif 2, le guide primaire 18 est illuminé par des photons provenant de son environnement.
En référence à la Figure 2 qui illustre un exemple de trajet optique T, les photons environnant le dispositif 2 pénètrent dans le guide primaire 18. Comme indiqué précédemment, ils sont absorbés par le guide primaire 18. Certains photons sont par exemple absorbés au niveau d'un point A dans l'épaisseur du guide primaire 18. En réponse, le guide primaire 18 émet, depuis le point A, des photons de manière isotrope dans le guide primaire 18, c'est-à-dire dans toutes les directions. Ces photons sont émis à une longueur d'onde appartenant à la plage d'émission du guide primaire 18.
Une fois émis au sein du guide primaire 18, ces photons s'y déplacent en direction d'une interface du guide primaire 18.
Les photons arrivant au niveau d'une zone de la face proximale 22 en regard d'un guide secondaire 20 passent dans celui-ci puis parviennent, pour tout ou partie d'entre eux, à la face supérieure 16 de la cellule 8 associée, comme décrit ci-après.
Comme illustré par le trajet optique T, les photons arrivant au niveau d'une interface du guide primaire 18 dans une zone qui n'est pas en regard d'un guide secondaire 20 sont réfléchis. Plus précisément, de manière connue, à chaque réflexion, seule une partie des photons est réfléchie, l'autre partie de ces photons s'échappant du guide primaire 18. Pour les réflexions ayant lieu au niveau de la face proximale 22, les photons qui ne sont pas réfléchis se propagent en direction du réflecteur 6, où ils sont réfléchis en direction du guide primaire 18. Ils y pénètrent et s'y propagent de nouveau.
Selon l'invention, comme indiqué précédemment, la proportion des photons effectivement réfléchis au niveau de la face proximale 22 est augmentée du fait de la présence des zones 23 comprenant le matériau 24. En effet, dans un cas de figure avec le réflecteur positionné directement sous le guide primaire 18, tous les rayons seraient réfléchis avec le coefficient de réflexion du réflecteur, qui est non parfait. Avec la présence du matériau 24, une grande partie des rayons est parfaitement réfléchie par réflexion interne totale. Ceux qui s'échappent rencontrent le réflecteur 6 et sont donc réfléchis avec le taux de sa face réfléchissante et rentrent de nouveau dans le guide primaire.
Le déplacement dans le guide primaire 18 des photons, issus ou non d'une ou plusieurs réflexions sur la face réfléchissante 14 du réflecteur, se poursuit jusqu'à leur arrivée au sein du guide primaire 18 au niveau de la face proximale 22 dans une zone située en regard d'un guide secondaire 20. Du fait des valeurs des indices de réfraction ngi, ng2 et ¾, les photons pénètrent alors dans le guide secondaire 20 en question dans lequel ils se déplacent en direction de la cellule 8 correspondante. En fonction de l'angle sous lequel un photon pénètre dans un guide secondaire 20, il peut être sujet à une ou plusieurs réflexions au niveau du bord latéral du guide secondaire 20. Comme précédemment, seule une partie des photons subissant ces réflexions se réfléchit effectivement, une autre partie passant dans le matériau 24. En fonction de leur trajectoire et de leur position dans le dispositif 2, notamment de leur proximité avec un bord du dispositif 2, une fois sortis du guide secondaire 20, ces photons pénètrent dans un autre guide secondaire 20 (avec ou sans réflexion par le réflecteur 6), pénètrent de nouveau dans le guide primaire 18 (après réflexion sur le réflecteur 6) ou s'échappent du dispositif 2 (avec ou sans réflexion sur le réflecteur 6). Les photons parvenant à la face supérieure 16 d'une cellule 8 sont alors convertis en énergie électrique par la cellule 8.
Dans les modes de réalisation dans lesquels le support 6 est réfléchissant seulement pour une partie du spectre, les photons dont la longueur d'onde se trouve dans la plage de longueurs d'onde réfléchies par le support 6 se comportent comme décrit ci-dessus. Les photons ayant une longueur d'onde qui n'est pas réfléchie par le support ne sont alors pas réfléchis par le support et s'échappent du dispositif lors du fonctionnement de ce dernier. Dans les modes de réalisation dans lesquels le support 6 est transparent, les photons ne sont pas réfléchis par le support 6 lors du fonctionnement du dispositif.
La fabrication du dispositif 2 va maintenant être décrite en référence aux Figures 1 et 2.
Dans un premier temps, on fabrique le substrat 4, le support 6 et les cellules 8 par tout procédé connu et on les agence comme décrit précédemment. En d'autres termes, on agence le support 6 sur le substrat 4 et on dispose les cellules 8 au niveau du support 6.
Dans certains modes de réalisation, la face supérieure 16 des cellules 8 comprend une couche d'oxyde de zinc ZnO dopée à l'Aluminium Al. Aussi, dans les modes de réalisation correspondants, on dépose cette couche sur les cellules 8 une fois celles-ci agencées au niveau du support, soit sélectivement uniquement sur les cellules 8, soit aussi bien sur les cellules 8 que sur la face réfléchissante 14 du réflecteur 6.
En outre, on fabrique les guides secondaires 20, par exemple par photolithographie optique. Le positionnement des guides secondaires est alors réalisé pendant la photolithographie. Enfin, on agence la face proximale 22 du guide primaire 18 au contact de l'extrémité libre des guides secondaires 20. Optionnellement, on réalise également un recuit afin de solidariser les guides secondaires 20 au guide primaire 18, ce qui améliore la tenue mécanique du dispositif 2.
En variante, on forme tout ou partie des guides secondaires 20 directement au contact des cellules 8 par voie électrochimique. Plus particulièrement, après agencement des cellules 8 sur le réflecteur 6, on réalise les guides secondaires 20 par électrodépôt d'oxyde de zinc ZnO, qu'on dépose sélectivement sur la surface des cellules 8.
Dans les modes de réalisation correspondants, les guides secondaires 20 formés directement sur les cellules 8 sont réalisées à partir d'oxyde de zinc ZnO.
Le dispositif 2 selon l'invention a été mis en œuvre avec un gain géométrique de l'ordre de 20. Il a ainsi été observé une multiplication par trois du facteur de concentration du dispositif par rapport à un dispositif de l'état de la technique. Par exemple, le facteur de concentration d'un dispositif de l'état de la technique dans lequel le guide primaire est accolé au réflecteur a été mesuré à 1,8, tandis que le facteur de concentration du dispositif 2 selon l'invention a été mesuré à 5,3. Ceci s'explique par le gain d'efficacité direct découlant de l'amélioration de l'efficacité des réflexions au niveau de la face proximale 22 du guide primaire 18, mais aussi d'un gain d'efficacité indirect au niveau de la face supérieure du guide primaire 18 résultant du caractère spéculaire des réflexions au niveau de la face proximale 22, pour des photons arrivant avec un angle d'incidence suffisant pour être réfléchis par réflexion interne totale.
En référence à la Figure 3, dans une variante de l'invention, les cellules 8 font saillie du réflecteur 6 en direction du guide primaire 18. La surface proximale 22 est agencée directement au contact des cellules 8. En d'autres termes, le dispositif 2 est dépourvu de guide secondaire 20. Les cellules 8 maintiennent le guide primaire 18 à l'écart du réflecteur 6. Dans ce mode de réalisation, les cellules 8 sont par exemple formées directement dans les cavités 12 du réflecteur 6, par exemple par dépôt. Alternativement, elles sont formées directement sur le réflecteur 6 qui est dépourvu de cavité 12. Lors de la fabrication du dispositif 2, la face réfléchissante 14 du réflecteur 6 est par exemple formée après la formation des cellules 8 par dépôt. Ceci permet de minimiser l'impact de la formation des cellules 8 sur la qualité de la face réfléchissante 14 du réflecteur 6.
Du fait qu'il ne comprend pas de guide secondaire 20, le dispositif 2 selon cette variante est moins coûteux et plus aisé à fabriquer.
En référence à la Figure 4, dans un autre mode de réalisation, les cellules 8 sont en saillie par rapport au réflecteur 6 et le dispositif 2 comprend des guides secondaires 20 tels que décrit précédemment. Ce mode de réalisation permet de bénéficier de la saillie des cellules 8 pour limiter les dimensions des guides secondaires 20 et donc d'également simplifier la fabrication du dispositif 2.
Dans une autre variante (non représentée), les modes de réalisation décrits ci-dessus sont combinés. Par exemple, la face supérieure de certaines cellules 8 affleure au niveau de la face réfléchissante du réflecteur 6 tel qu'illustré sur la Figure 2, tandis que d'autres cellules font saillie hors de réflecteur. Le dispositif 2 comprend alors des guides secondaires 20 d'une première taille interposés entre les cellules 8 dont la face supérieure affleure et la surface proximale 22 du guide primaire, et des guides secondaires 20 d'une deuxième taille interposés entre les cellules faisant saillie et la surface proximale. Les sommets de tous les guides secondaires sont alors sensiblement à la même hauteur, le guide primaire étant au contact de chacun d'entre eux. Dans un autre exemple de cette variante, le guide primaire 18 est agencé au contact direct des cellules faisant saillie hors du réflecteur. En outre, les cellules 8 dont la face supérieure affleure sont alors chacune couplées à un guide secondaire 20 tel que décrit précédemment et interposé entre la cellule 8 en question et la surface proximale 22. D'autres modes de réalisation du dispositif 2 selon l'invention sont également envisageables.
Par exemple, dans certains modes de réalisation, la face supérieure du guide primaire 18 est recouverte d'un filtre coupe-bande (en pointillés sur la Figure 2) configuré pour laisser passer au maximum les photons environnants dans le guide primaire 18 mais pour empêcher la sortie des photons par la face supérieure du guide primaire 18, en particulier des photons réémis par le guide primaire 18 et ayant une longueur d'onde située dans la plage d'émission du guide primaire. Aussi, le filtre présente de bonnes propriétés de réflexion des photons présentant des longueurs situées autour de la longueur d'onde caractéristique, et une forte transmission pour les autres longueurs d'onde.
En outre, parmi les dispositifs optiques permettant de concentrer la lumière sur des dispositifs photovoltaïques, on distingue les dispositifs imageants, qui permettent l'obtention d'une image d'un objet à travers son système optique, et donc dans ce cas une image du soleil sur la cellule, et les dispositifs non imageants, qui concentrent quant à eux la lumière sans former d'image.
Les dispositifs imageants ont la particularité de ne concentrer la lumière solaire que si elle arrive de façon directe sur le dispositif considéré, c'est-à-dire si elle est orientée selon l'axe formé par le soleil et l'optique du dispositif, et ne peuvent pas utiliser la lumière diffuse, qui elle arrive selon des directions quelconques, par exemple à cause de phénomènes de diffusion générés par les nuages.
Les dispositifs non imageants sont peu sensibles à la direction de la lumière solaire incidente et présentent donc l'avantage de ne pas avoir à suivre précisément la course du soleil par des systèmes spéciaux.
Aussi, préférentiellement, le dispositif 2 est un dispositif non imageant. Il est alors fixé sur son support de manière immobile. Ceci permet d'affranchir le dispositif d'un mécanisme d'orientation configuré pour orienter ce dernier en fonction de la course du Soleil, ce qui est nécessaire pour les dispositifs imageants. Le coût du dispositif 2 est donc substantiellement diminué comparativement à un dispositif imageant.

Claims

REVENDICATIONS
1. - Dispositif photovoltaïque comprenant :
- une pluralité de cellules photovoltaïques (8), distantes les unes des autres,
- un support (6) recevant les cellules, et
- un guide de lumière (10) au contact desdites cellules et comportant un guide primaire (18) ayant une face proximale (22) par rapport aux cellules, la face proximale (22) étant orientée vers les cellules (8) et le support (6),
caractérisé en ce que le dispositif photovoltaïque comporte, entre les cellules, des zones (23) situées entre le support et le guide primaire et comprenant un matériau (24) d'indice de réfraction inférieur à celui de la face proximale, le matériau étant au contact de ladite face proximale.
2. Dispositif photovoltaïque selon la revendication 1, caractérisé en ce que le support (6) est un réflecteur présentant une face réfléchissante (14) orientée vers la face proximale (22) du guide primaire (18).
3. - Dispositif photovoltaïque selon la revendication 1 ou 2, caractérisé en ce que le guide primaire (18) est un concentrateur fluorescent.
4. - Dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce que le support (6) et la face proximale (22) du guide primaire sont espacés d'une distance (d) comprise entre 1 μιη et 20 μιη.
5.- Dispositif photovoltaïque selon la revendication 4, caractérisé en ce que la distance (d) entre la face proximale (22) et le support (6) est sensiblement égale à un multiple supérieur ou égal à deux d'une longueur d'onde caractéristique (λ) du dispositif et correspondant à une longueur d'onde privilégiée d'émission du guide primaire (18).
6.- Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'une ou plusieurs cellules photovoltaïques (8) sont agencées en saillie par rapport au support (6) en direction du guide primaire (18), le guide primaire étant au contact desdites cellules et maintenu à l'écart du support au moins par lesdites cellules.
7. Dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce que ledit matériau (24) est de l'air.
8.- Dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce que le guide de lumière (10) comprend une pluralité de guides secondaires (20) séparés les uns des autres par ledit matériau (24), chaque guide secondaire (20) étant interposé entre la face proximale (22) du guide primaire et une cellule photovoltaïque (8).
9. Dispositif photovoltaïque selon la revendication 8, caractérisé en ce que les guides secondaires (20) maintiennent la face proximale du guide primaire à l'écart du support (6) au moins dans lesdites zones.
10. - Dispositif photovoltaïque selon la revendication 8 ou 9, caractérisé en ce que chaque guide secondaire (20) présente une face disposée au contact de la surface (16) de la cellule photovoltaïque correspondante et présentant des dimensions sensiblement égales aux dimensions de la surface de ladite cellule, ladite face d'un guide secondaire (20) donné étant disposée sensiblement bord à bord en regard de la surface (16) de la cellule photovoltaïque correspondante.
11. - Dispositif photovoltaïque selon l'une des revendications 8 à 10, caractérisé en ce que l'un au moins des guides secondaires (20) se présente sous la forme d'un plot de forme générale prismatique droite dont la base est de dimensions sensiblement égales à celles de la surface de la cellule photovoltaïque correspondante.
12. - Dispositif photovoltaïque selon l'une des revendications 8 à 11, caractérisé en ce que le ou chaque guide secondaire présente un indice de réfraction compris entre l'indice de réfraction du guide primaire et l'indice de réfraction de la surface de la cellule photovoltaïque correspondante.
13. - Procédé de fabrication d'un dispositif photovoltaïque comprenant :
une pluralité de cellules photovoltaïques (8), distantes les unes des autres,
un support (6) au niveau duquel les cellules photovoltaïques (8) sont agencées, et un guide de lumière (10) au contact desdites cellules photovoltaïques et comportant un guide primaire (18) ayant une face proximale (22) par rapport aux cellules, la face proximale étant orientée vers les cellules et le support (6),
dans lequel :
- on agence les cellules photovoltaïques (8) au niveau du support (6), et
- on agence le guide de lumière (10) au contact des cellules photovoltaïques (8) en ménageant, entre les cellules photovoltaïques (8), des zones (23) situées entre le guide primaire (18) et le support (6) et comprenant un matériau (24) d'indice de réfraction inférieur à celui de la face proximale (22), ledit matériau étant agencé au contact de ladite face proximale.
14.- Procédé de fabrication d'un dispositif photovoltaïque selon la revendication 13, caractérisé en ce qu'on obtient un ou plusieurs guides secondaires (20) transparents qu'on interpose chacun entre le guide primaire (18) et une cellule photovoltaïque (8).
15.- Procédé de fabrication d'un dispositif photovoltaïque selon la revendication 14, caractérisé en ce que chaque guide secondaire (20) est formé par dépôt directement au contact de la cellule photovoltaïque (8) correspondante.
16.- Procédé de fabrication d'un dispositif photovoltaïque selon l'une des revendications 13 à 15, caractérisé en ce qu'on forme par dépôt, au niveau du support (6), tout ou partie des cellules photovoltaïques (8) de telle sorte que les cellules photovoltaïques correspondantes soient en saillie par rapport au support, et en ce qu'on dispose le guide primaire (18) au contact desdites cellules en saillie.
PCT/FR2015/051460 2014-06-05 2015-06-02 Dispositif photovoltaïque et procédé de fabrication associé WO2015185855A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/316,265 US10770611B2 (en) 2014-06-05 2015-06-02 Photovoltaic device and associated fabrication method
EP15732840.2A EP3152787B1 (fr) 2014-06-05 2015-06-02 Dispositif photovoltaïque et procédé de fabrication associé
JP2016571008A JP6321219B2 (ja) 2014-06-05 2015-06-02 光起電装置及びその製造方法
CN201580033047.0A CN106463560B (zh) 2014-06-05 2015-06-02 光伏器件及相关制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455122 2014-06-05
FR1455122A FR3022073B1 (fr) 2014-06-05 2014-06-05 Dispositif photovoltaique a concentrateur fluorescent et procede de fabrication associe

Publications (1)

Publication Number Publication Date
WO2015185855A1 true WO2015185855A1 (fr) 2015-12-10

Family

ID=51659760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051460 WO2015185855A1 (fr) 2014-06-05 2015-06-02 Dispositif photovoltaïque et procédé de fabrication associé

Country Status (6)

Country Link
US (1) US10770611B2 (fr)
EP (1) EP3152787B1 (fr)
JP (1) JP6321219B2 (fr)
CN (1) CN106463560B (fr)
FR (1) FR3022073B1 (fr)
WO (1) WO2015185855A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351312A1 (en) * 2018-09-24 2021-11-11 Board Of Trustees Of Michigan State University Transparent luminescent solar concentrator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11677038B2 (en) * 2011-05-28 2023-06-13 Banpil Photonics, Inc. Perpetual energy harvester and method of fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035698A1 (fr) * 2004-09-27 2006-04-06 Dueller Corporation Concentrateur en feuille et feuille de cellule solaire utilisant ce concentrateur
US20090126778A1 (en) * 2007-11-20 2009-05-21 Sabic Innovative Plastics Ip B.V. Luminescent solar concentrators
US20110011449A1 (en) * 2007-05-01 2011-01-20 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
WO2013183752A1 (fr) * 2012-06-07 2013-12-12 シャープ株式会社 Module de cellule solaire et dispositif de génération d'énergie photovoltaïque

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136559U (fr) * 1985-02-13 1986-08-25
JPH1051020A (ja) * 1996-08-01 1998-02-20 Hitachi Ltd 集光集積型光発電装置
JP3185719B2 (ja) * 1997-07-25 2001-07-11 トヨタ自動車株式会社 太陽光集光器
JP2004111742A (ja) * 2002-09-19 2004-04-08 Sharp Corp 太陽電池
AU2009293000A1 (en) * 2008-09-19 2010-03-25 The Regents Of The University Of California System and method for solar energy capture and related method of manufacturing
WO2011065084A1 (fr) * 2009-11-25 2011-06-03 シャープ株式会社 Module de cellules solaires et dispositif de génération d'énergie solaire
JP2011165755A (ja) * 2010-02-05 2011-08-25 Denso Corp 太陽電池モジュール
GB201014024D0 (en) * 2010-08-20 2010-10-06 Oxford Energy Technologies Ltd Optical coating
US8791355B2 (en) * 2011-04-20 2014-07-29 International Business Machines Corporation Homogenizing light-pipe for solar concentrators
JP5569484B2 (ja) * 2011-07-27 2014-08-13 三菱電機株式会社 集光器および集光器を備えた太陽電池
JP5573797B2 (ja) * 2011-08-10 2014-08-20 株式会社デンソー 太陽電池モジュール
CN102800730A (zh) * 2012-07-09 2012-11-28 友达光电股份有限公司 光伏装置
JP5929578B2 (ja) * 2012-07-13 2016-06-08 株式会社デンソー 太陽電池モジュール及び太陽電池モジュール集合体
JP2015216138A (ja) * 2012-09-10 2015-12-03 シャープ株式会社 太陽電池モジュール及び太陽光発電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035698A1 (fr) * 2004-09-27 2006-04-06 Dueller Corporation Concentrateur en feuille et feuille de cellule solaire utilisant ce concentrateur
US20110011449A1 (en) * 2007-05-01 2011-01-20 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US20090126778A1 (en) * 2007-11-20 2009-05-21 Sabic Innovative Plastics Ip B.V. Luminescent solar concentrators
WO2013183752A1 (fr) * 2012-06-07 2013-12-12 シャープ株式会社 Module de cellule solaire et dispositif de génération d'énergie photovoltaïque

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351312A1 (en) * 2018-09-24 2021-11-11 Board Of Trustees Of Michigan State University Transparent luminescent solar concentrator

Also Published As

Publication number Publication date
JP6321219B2 (ja) 2018-05-09
US20180182910A1 (en) 2018-06-28
FR3022073B1 (fr) 2018-02-23
JP2017517155A (ja) 2017-06-22
CN106463560A (zh) 2017-02-22
CN106463560B (zh) 2019-10-18
US10770611B2 (en) 2020-09-08
FR3022073A1 (fr) 2015-12-11
EP3152787A1 (fr) 2017-04-12
EP3152787B1 (fr) 2021-08-18

Similar Documents

Publication Publication Date Title
EP2826076B1 (fr) Module photovoltaïque comprenant un élément de conversion spectrale localisé et procédé de réalisation.
EP2901496B1 (fr) Composant photovoltaique a fort rendement de conversion
US20240055543A1 (en) Visibly transparent, luminescent solar concentrator
EP2132786B1 (fr) Dispositif de concentration de lumiere plan a epaisseur reduite
FR2832706A1 (fr) Substrat transparent muni d'une electrode
WO2018100205A1 (fr) Composant optoéléctronique à absorption améliorée
FR2961022A1 (fr) Cellule photovoltaïque pour application sous flux solaire concentre
EP3152787B1 (fr) Dispositif photovoltaïque et procédé de fabrication associé
WO2012080989A2 (fr) Dispositif de photodetection
EP2396829B1 (fr) Double vitrage a haut rendement photovoltaique
EP3271948B1 (fr) Systeme photovoltaïque bifacial muni de fibres optiques pour l'eclairement de la face arriere de cellules photovoltaïques
EP2389691B1 (fr) Convertisseur photovoltaïque à durée de vie augmentée
EP2801115A2 (fr) Dispositif de photodétection
EP3000136A1 (fr) Procédé de fabrication d'un système photovoltaïque à concentration de lumière
WO2013030482A1 (fr) Dispositif reflecteur pour face arriere de dispositifs optiques
FR3032304A1 (fr) Structure semiconductrice a deux cavites resonantes couplees optiquement et procede de fabrication d'une telle structure
EP2396830A2 (fr) Generateur photovoltaique a trois dimensions
WO2019081520A1 (fr) Dispositif de stockage d'énergie
GB2483445A (en) Solar cell with luminescent material
FR3077679A1 (fr) Cellule photovoltaique avec proteines luminescentes
WO2013098204A2 (fr) Panneau photovoltaîque a diodes montees en parallele a structure centrale diffusante et structure arriere reflechissante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15732840

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015732840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015732840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016571008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15316265

Country of ref document: US