WO2015185005A1 - 电机、其电磁设计结构及其磁钢的加工方法 - Google Patents

电机、其电磁设计结构及其磁钢的加工方法 Download PDF

Info

Publication number
WO2015185005A1
WO2015185005A1 PCT/CN2015/080787 CN2015080787W WO2015185005A1 WO 2015185005 A1 WO2015185005 A1 WO 2015185005A1 CN 2015080787 W CN2015080787 W CN 2015080787W WO 2015185005 A1 WO2015185005 A1 WO 2015185005A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
magnetic
magnetic pole
design structure
electromagnetic design
Prior art date
Application number
PCT/CN2015/080787
Other languages
English (en)
French (fr)
Inventor
陈静
吴振华
陈青
张霞
Original Assignee
舍弗勒技术股份两合公司
陈静
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 陈静 filed Critical 舍弗勒技术股份两合公司
Publication of WO2015185005A1 publication Critical patent/WO2015185005A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the invention relates to electric machines, in particular permanent magnet synchronous machines.
  • the invention also relates to an electromagnetic design structure of an electric machine, in particular an arrangement of magnetic poles of the electric machine within the rotor of the electric machine. Further, the present invention relates to a method of processing a magnetic steel of a motor.
  • Permanent magnet synchronous motors are the best choice for electric power applications due to their high power density, wide speed range and good torque speed characteristics.
  • one magnetic pole of the motor is usually divided into two pieces of magnetic steel.
  • There are generally two ways to design the magnetic steel in the rotor of the motor namely: the magnetic pole structure of the parallel magnetic steel arrangement and the magnetic pole structure of the V-shaped magnetic steel arrangement.
  • Figures 1 and 2 A conventional design of a magnetic pole in a rotor is shown in Figures 1 and 2, wherein Figure 1 shows a parallel magnetic pole structure, Figure 2 shows a V-shaped magnetic pole structure, 1 and 1' are magnetic steel, 2 and 2' For the rotor core, 3 and 3' are magnetization directions, and the magnetization direction is perpendicular to the surface of the magnet steel.
  • a rotor design having a V-shaped magnetic pole structure as shown in FIG. 2 is currently the most popular.
  • the V-shaped magnetic pole structure has greater output torque and output power than the parallel magnetic pole structure.
  • the V-shaped magnetic pole structure also has disadvantages, which perform poorly in rotor space requirements and maximum mechanical speed.
  • Table 1 The item-by-item comparison between the two pole structures is listed in Table 1 below.
  • the stress simulation results of the two magnetic pole structures are shown in Figures 3 and 4. As shown, the maximum stress of the V-shaped magnetic pole structure is 433 MPa, which is much higher than the parallel magnetic pole structure. Therefore, the parallel magnetic pole structure is better in mechanical strength than the V-shaped magnetic pole structure.
  • FIGS. 6 and 7 are as shown in FIGS. 6 and 7.
  • Fig. 6 is a schematic view showing the distribution of magnetic lines of force in the parallel magnetic pole structure of the prior art
  • Fig. 6A is an enlarged schematic view showing the distribution of magnetic lines of force around the magnetic steel
  • Fig. 7 is a schematic view showing the distribution of magnetic lines of force of the V-shaped magnetic pole structure of the prior art
  • Fig. 7A is an enlarged schematic view showing the distribution of magnetic lines of force around the magnetic steel.
  • V-shaped pole structure requires more space from the rotor, which is not ideal. In highly integrated systems, there are very stringent requirements for the thickness of the rotor.
  • the V-shaped magnetic pole structure has a high stress level, which makes the maximum mechanical speed of the motor lower.
  • ⁇ V-shaped magnetic pole structures require high process costs. When magnetizing the entire rotor, more magnetizing energy is required, making the magnetizing device much more expensive.
  • the present invention provides an electromagnetic design structure for an electric machine, particularly a permanent magnet synchronous motor, which has the same mechanical arrangement as a parallel magnetic pole structure, that is, two magnetic steels of the same magnetic pole in the rotor are arranged in parallel alignment.
  • the magnetization direction is not perpendicular to the surface of the magnetic steel as the parallel magnetic pole structure, but forms an oblique angle with the surface of the magnetic steel to form a V-shaped or inverted V-shape, which is the same as the V-shaped magnetic pole structure.
  • the present invention combines two types of transmission The advantages of the magnetic pole structure.
  • the electromagnetic design structure includes a rotor in which a plurality of magnetic poles are circumferentially arranged, each magnetic pole is composed of two magnets, the magnetic steels of the same magnetic pole are preferably aligned parallel to each other, and the magnetization direction of the magnetic steel is inclined to the magnetic Steel surface.
  • the mechanical arrangement of the magnetic steel is the same as that of the parallel magnetic poles, and the magnetization direction of each piece of magnetic steel is not perpendicular to the surface of the magnetic steel, but is inclined to the surface of the magnetic steel so that the magnetization directions of the two magnetic steels of the same magnetic pole Form a V shape or an inverted V shape.
  • the invention provides an electric machine, in particular a permanent magnet synchronous machine, comprising the electromagnetic design structure described above.
  • the mechanical arrangement of the electromagnetic design structure is the same as that of the parallel magnetic pole structure, it performs better in terms of rotor space requirements and stress levels.
  • the magnetization design structure has the same magnetization direction as the V-shaped magnetic pole structure, the magnetic field line distribution is similar to the V-shaped magnetic pole structure, and thus it is superior in performance to the performance of the parallel magnetic pole structure.
  • the present invention provides a method for processing a magnetic steel of a motor, comprising the steps of: providing a magnetic steel billet; in the cutting process, cutting the magnetic steel billet in a diagonal direction to generate a magnetic steel, and tilting the magnetization direction to the magnetic steel surface.
  • V-shaped magnetization arrangement of the present invention can be applied to any design structure in which one magnetic pole in the rotor of the motor is divided into two pieces of magnetic steel. Therefore, even if the two magnets of one magnetic pole are not parallel, V-shaped magnetization can be set to improve the performance of the motor.
  • FIG. 1 is a schematic view showing a prior art design of a rotor of a motor having a parallel magnetic pole structure
  • FIG. 2 is a schematic view showing a design structure of a rotor of a motor having a V-shaped magnetic pole structure in the prior art
  • Figure 5 is a schematic view showing the design structure of the rotor of the motor of the present invention.
  • Figure 6 is a schematic view showing the distribution of magnetic lines of force of a parallel magnetic pole structure of the prior art
  • 6A is an enlarged schematic view showing a distribution of magnetic lines of force around a magnetic steel of a parallel magnetic pole structure of the prior art
  • FIG. 7 is a schematic view showing a magnetic line distribution of a V-shaped magnetic pole structure of the prior art
  • FIG. 7A is an enlarged schematic view showing a distribution of magnetic lines of force around a magnetic steel of a V-shaped magnetic pole structure of the prior art
  • Figure 8 is a schematic view showing the distribution of magnetic lines of force in the electromagnetic design structure of the present invention.
  • Figure 8A is an enlarged schematic view showing the distribution of magnetic lines of force around the magnetic steel of the electromagnetic design structure of the present invention.
  • Figure 9 is a schematic illustration of the processing of a magnetic steel of the electromagnetic design structure of the present invention.
  • Fig. 5 is a schematic view showing the design structure of the rotor of the motor of the present invention.
  • One magnetic pole is composed of two magnets 10, and two magnet steels 10 are arranged in parallel with each other in the rotor core 20, as in the prior art parallel magnetic pole structure.
  • the magnetization direction 30 of the magnetic steel 10 is set to be inclined with respect to the surface of the magnetic steel 10 to form a V shape or an inverted V shape as in the prior art V-shaped magnetic pole structure.
  • Figure 8 is a schematic view showing the distribution of magnetic lines of force in the electromagnetic design structure of the present invention
  • Figure 8A is an enlarged schematic view showing the distribution of magnetic lines of force around the magnetic steel of the electromagnetic design structure.
  • the distribution of magnetic lines of force around the magnetic steel of the present invention is similar to the distribution of magnetic lines around the magnetic steel of the V-shaped magnetic pole structure.
  • Table 2 below shows the simulation results of the prior art parallel magnetic pole structure, V-shaped magnetic pole structure and the V-shaped magnetized electromagnetic design structure of the present invention with peak torque with electrical angle.
  • the electromagnetic design structure of the present invention having a V-shaped magnetization direction is improved by 2.5% in performance compared to the conventional parallel magnetic pole structure, and is substantially equivalent to the conventional V-shaped magnetic pole structure.
  • Fig. 9 shows a method of processing the magnetic steel of the present invention.
  • the magnetic billet 100 is provided, and the magnetization direction 3 (3') at this time is as shown.
  • the magnetic billet 100 is cut in a manner oblique to the magnetic steel billet to produce the magnetic steel 10.
  • the magnetization direction 30 of the generated magnetic steel 10 is inclined to the surface of the magnetic steel.
  • the electromagnetic design structure of the present invention has the following advantages: improved performance compared with the conventional parallel magnetic pole structure; saves rotor space, meets the size requirement of a highly integrated system; and is on the rotor core compared with the conventional V-shaped magnetic pole structure The stress level is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

电磁设计结构及其磁钢的加工方法以及包括该电磁设计结构的电机。电磁设计结构主要为转子磁极设计结构,在转子内沿周向布置多个磁极,每个磁极有两块磁钢(10)组成,同一磁极的磁钢优选彼此平行对齐,磁钢的磁化方向(30)倾斜于磁钢表面。磁钢的加工方法包括提供磁钢坯(100),和沿与磁钢坯斜交的方向切削磁钢坯以产生磁钢,使磁钢的磁化方向倾斜于磁钢表面。

Description

电机、其电磁设计结构及其磁钢的加工方法 技术领域
本发明涉及电机,特别是永磁同步电机。本发明还涉及电机的电磁设计结构,特别是电机的磁极在电机转子内的布置结构。此外,本发明涉及电机的磁钢的加工方法。
背景技术
永磁同步电机(PMSM)由于高功率密度、宽调速范围和良好的转矩转速特性而成为电动力系应用中最佳的电机选择。为了保持高速,通常将电机的一个磁极分成两块磁钢。针对磁钢在电机转子内的设计一般存在两种方式,即:平行磁钢布置的磁极结构和V形磁钢布置的磁极结构。一个磁极在转子内的传统设计结构如图1和2所示,其中图1显示的是平行的磁极结构,图2显示的是V形磁极结构,1和1’为磁钢,2和2’为转子铁芯,3和3’为磁化方向,磁化方向与磁钢的表面垂直。
现有技术中,如图2所示的具有V形磁极结构的转子设计目前最为流行。与平行磁极结构相比,V形磁极结构具有更大的输出扭矩和输出功率。不过,V形磁极结构也有缺点,其在转子空间需求和最大机械速度上表现较差。下表1中列出了两种磁极结构之间的逐项比较结果。
表1
  平行磁极结构 V形磁极结构
性能 较差 较好
转子空间要求 需要较少空间 需要较多空间
转子应力水平 较低 较高
工艺成本 较低 较高
两种磁极结构的应力仿真结果如图3和图4所示。如图所示,V形磁极结构的最大应力是433MPa,比平行磁极结构高得多。因此,平行磁极结构在机械强度方面要比V形磁极结构好。
另外,现有的这两种磁极结构的磁力线分布如图6和7所示。图6是现有技术的平行磁极结构的磁力线分布的示意图,图6A是其磁钢周围的磁力线分布的放大示意图。图7是现有技术的V形磁极结构的磁力线分布的示意图,图7A是其磁钢周围的磁力线分布的放大示意图。
现有技术的磁极结构具有以下缺点:
●对于电机,平行磁极结构具有较差的性能。
● V形磁极结构需要转子提供更多的空间,这是不理想的。在高度集成系统中,对于转子的厚度有非常严格的要求。
● V形磁极结构具有较高的应力水平,这使电机的最大机械速度变得较低。
● V形磁极结构需要较高的工艺成本。当针对整个转子进行磁化时,需要更多的磁化能量,使得磁化设备要贵得多。
发明内容
本发明的目的是克服现有技术的上述缺点。这一目的通过以下方式实现:结合现有技术的V形磁极结构和平行磁极结构的优点,即:在平行磁极结构的基础上应用V形磁化,以获得较好的性能。
在第一方面,本发明提供一种用于电机、特别是永磁同步电机的电磁设计结构,其机械布置与平行磁极结构相同,即:转子内同一个磁极的两块磁钢平行对齐布置,而磁化方向则不像平行磁极结构的那样与磁钢表面垂直,而是与磁钢表面形成一个倾斜角度,以形成V形或倒V形,这与V形磁极结构效果相同。由此,本发明结合了两种传 统磁极结构的优点。
根据本发明,电磁设计结构包括转子,在转子内沿周向布置多个磁极,每个磁极由两块磁钢组成,同一磁极的磁钢优选彼此平行对齐,并且磁钢的磁化方向倾斜于磁钢表面。以此方式,磁钢的机械布置与平行磁极结构相同,而每一块磁钢的磁化方向与磁钢表面不垂直,而是倾斜于磁钢表面,使得同一个磁极的两块磁钢的磁化方向形成V形或倒V形。
在第二方面,本发明提供一种电机,特别是永磁同步电机,其包括上述的电磁设计结构。
由于电磁设计结构的机械布置与平行磁极结构相同,所以其在转子空间要求和应力水平方面都表现得较好。另一方面,由于电磁设计结构的磁化方向与V形磁极结构相同,所以磁力线分布与V形磁极结构相类似,且因此其在性能上要优于平行磁极结构的性能。
在第三方面,本发明提供一种电机磁钢的加工方法,其包括以下步骤:提供磁钢坯;在切削加工中,沿斜交方向切削磁钢坯以产生磁钢,使磁化方向倾斜于磁钢表面。
本发明的V形磁化布置可以应用于电机转子内的一个磁极分成两块磁钢的任何设计结构。因此,即便一个磁极的两块磁钢不平行,仍能设置V形磁化以提高电机的性能。
附图说明
图1是现有技术的具有平行磁极结构的电机转子设计结构的示意图;
图2是现有技术的具有V形磁极结构的电机转子设计结构的示意图;
图3是现有技术的平行磁极结构的应力仿真结果;
图4是现有技术的V形磁极结构的应力仿真结果;
图5是本发明的电机转子设计结构的示意图;
图6是现有技术的平行磁极结构的磁力线分布的示意图;
图6A是现有技术的平行磁极结构的磁钢周围的磁力线分布的放大示意图;
图7是现有技术的V形磁极结构的磁力线分布的示意图;
图7A是现有技术的V形磁极结构的磁钢周围的磁力线分布的放大示意图;
图8是本发明的电磁设计结构的磁力线分布的示意图;
图8A是本发明的电磁设计结构的磁钢周围的磁力线分布的放大示意图;
图9是本发明的电磁设计结构的磁钢的加工的示意图。
附图标记列表
1 磁钢
2 转子铁芯
3 磁化方向
1’ 磁钢
2’ 转子铁芯
3’ 磁化方向
10 磁钢
20 转子铁芯
30 磁化方向
100 磁钢坯
具体实施方式
下面参照附图描述本发明的实施例。
图5显示了本发明的电机转子设计结构的示意图。如图5所示, 一个磁极由两块磁钢10组成,两块磁钢10彼此平行对齐地布置在转子铁芯20内,与现有技术的平行磁极结构一样。另一方面,磁钢10的磁化方向30设置成相对于磁钢10的表面倾斜,形成V形或倒V形,如现有技术的V形磁极结构那样。
图8是本发明的电磁设计结构的磁力线分布的示意图,图8A是电磁设计结构的磁钢周围的磁力线分布的放大示意图。如图8A所示,本发明的磁钢周围的磁力线分布与V形磁极结构的磁钢周围的磁力线分布类似。
下表2分别列出了现有技术的平行磁极结构、V形磁极结构和本发明的V形磁化的电磁设计结构随电角度的峰值扭矩的仿真结果。
表2
Figure PCTCN2015080787-appb-000001
从表2中可以看到,本发明的具有V形磁化方向的电磁设计结构在性能上比传统的平行磁极结构提高了2.5%,与传统的V形磁极结构基本相当。
图9示出了本发明的磁钢的加工方法。首先,提供磁钢坯100,此时的磁化方向3(3’)如图所示。然后,以与磁钢坯斜交的方式切削磁钢坯100以产生磁钢10。以此方式,所产生的磁钢10的磁化方向30倾斜于磁钢表面。
本发明的电磁设计结构具有以下优点:与传统的平行磁极结构相比在性能上得到提高;节省转子空间,符合高度集成系统的尺寸要求;与传统的V形磁极结构相比在转子铁芯上的应力水平较低。
本发明不限于以上描述,而是可以在权利要求书的范围内对本发明作出修改和变化。除了平行的机械布置之外,本发明也可以适用于电机的其它非平行磁极结构。

Claims (6)

  1. 电磁设计结构,所述电磁设计结构包括转子,在转子内沿周向布置多个磁极,每个磁极由两块磁钢组成,其特征在于,所述磁钢的磁化方向倾斜于磁钢表面。
  2. 权利要求1所述的电磁设计结构,其特征在于,所述电机为永磁同步电机。
  3. 权利要求1或2所述的电磁设计结构,其特征在于,同一磁极的磁钢彼此平行对齐。
  4. 权利要求1或2所述的电磁设计结构,其特征在于,同一磁极的两块磁钢的磁化方向形成V形或倒V形。
  5. 电机,其特征在于,所述电机包括权利要求1-4中任一项所述的电磁设计结构。
  6. 用于电机磁钢的加工方法,其特征在于,所述方法包括:提供磁钢坯;和沿与磁钢坯斜交的方向切削磁钢坯以产生磁钢,使磁钢的磁化方向倾斜于磁钢表面。
PCT/CN2015/080787 2014-06-06 2015-06-04 电机、其电磁设计结构及其磁钢的加工方法 WO2015185005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410249844.X 2014-06-06
CN201410249844.XA CN105186739A (zh) 2014-06-06 2014-06-06 电机、其电磁设计结构及其磁钢的加工方法

Publications (1)

Publication Number Publication Date
WO2015185005A1 true WO2015185005A1 (zh) 2015-12-10

Family

ID=54766177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080787 WO2015185005A1 (zh) 2014-06-06 2015-06-04 电机、其电磁设计结构及其磁钢的加工方法

Country Status (2)

Country Link
CN (1) CN105186739A (zh)
WO (1) WO2015185005A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872109A (zh) * 2016-09-27 2018-04-03 台州优松机电科技有限公司 一种电机用转子
CN109302026A (zh) * 2018-10-30 2019-02-01 中国船舶重工集团公司第七0七研究所 一种径向磁化双环磁钢永磁电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217929A (ja) * 2002-01-25 2003-07-31 Hiyoshi Techno:Kk プラスチック極配向磁石の成形金型およびこれを用いたプラスチック極配向磁石の製造装置並びに製造方法
JP2010142082A (ja) * 2008-12-15 2010-06-24 Seiko Epson Corp ブラシレス電気機械
JP2010246301A (ja) * 2009-04-08 2010-10-28 Nissan Motor Co Ltd 永久磁石式電動機の回転子
JP2012080718A (ja) * 2010-10-05 2012-04-19 Honda Motor Co Ltd スキューロータとその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217929A (ja) * 2002-01-25 2003-07-31 Hiyoshi Techno:Kk プラスチック極配向磁石の成形金型およびこれを用いたプラスチック極配向磁石の製造装置並びに製造方法
JP2010142082A (ja) * 2008-12-15 2010-06-24 Seiko Epson Corp ブラシレス電気機械
JP2010246301A (ja) * 2009-04-08 2010-10-28 Nissan Motor Co Ltd 永久磁石式電動機の回転子
JP2012080718A (ja) * 2010-10-05 2012-04-19 Honda Motor Co Ltd スキューロータとその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872109A (zh) * 2016-09-27 2018-04-03 台州优松机电科技有限公司 一种电机用转子
CN109302026A (zh) * 2018-10-30 2019-02-01 中国船舶重工集团公司第七0七研究所 一种径向磁化双环磁钢永磁电机

Also Published As

Publication number Publication date
CN105186739A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
US9444295B2 (en) Rotor of permanent magnet motor
JP2006014457A (ja) 同期電動機
US11456634B2 (en) Rotor structure, permanent magnet assisted synchronous reluctance motor and electric car
CN105048671A (zh) 一种不对称v型转子冲片以及使用其的内置式永磁电机
CN104767338B (zh) 一种矩角逼近型永磁电机
WO2013020312A1 (zh) 电动机转子及具有其的电动机
CN106169822A (zh) 电机及其转子结构
US20170077771A1 (en) Steel-magnet embedded mixed excitation motor
JPWO2010116921A1 (ja) 磁気回路構造体
EP2824812A3 (en) Axial gap type permanent magnet electric rotating apparatus and method of manufacturing the same
WO2015185005A1 (zh) 电机、其电磁设计结构及其磁钢的加工方法
CN101944787B (zh) 磁钢内嵌式转子的外表面结构
CN202940657U (zh) 一种人字形式永磁斜极的永磁同步电机转子
US20160155567A1 (en) Manufacturing method of split type and incomplete split type non-magnetized permanent magnets and incomplete split type non-magnetized permanent magnet
CN207868887U (zh) 一种高速永磁体同步电机转子结构
Lee et al. Effects of V-skew on the cogging torque in permanent magnet synchronous motor
CN105896772A (zh) 一种变磁通永磁同步电机的转子铁心
CN205610360U (zh) 一种拼接式定子及电机
TWM551376U (zh) 永磁電機轉子結構
KR20170128458A (ko) 영구 자석들 사이에 끼워진 smc 블록들을 구비한 외부 로터 전기 머신
CN207368770U (zh) 一种电机转子
CN106300705A (zh) 电磁装置
US10756609B2 (en) Distributed electromagnetic apparatus
TW201929384A (zh) 混合激磁爪極發電機
CN204465187U (zh) 永磁同步曳引机的电机转子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802483

Country of ref document: EP

Kind code of ref document: A1