WO2015184977A1 - 随机接入信道的zc序列产生方法和装置 - Google Patents

随机接入信道的zc序列产生方法和装置 Download PDF

Info

Publication number
WO2015184977A1
WO2015184977A1 PCT/CN2015/080600 CN2015080600W WO2015184977A1 WO 2015184977 A1 WO2015184977 A1 WO 2015184977A1 CN 2015080600 W CN2015080600 W CN 2015080600W WO 2015184977 A1 WO2015184977 A1 WO 2015184977A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
random access
shift
base station
cyclic shift
Prior art date
Application number
PCT/CN2015/080600
Other languages
English (en)
French (fr)
Inventor
吴强
郭志恒
刘建琴
刘江华
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2016151755A priority Critical patent/RU2658551C1/ru
Priority to EP18177149.4A priority patent/EP3404860B1/en
Priority to CN201580003093.6A priority patent/CN105830521B/zh
Priority to EP15803394.4A priority patent/EP3142448B1/en
Priority to JP2016571278A priority patent/JP6302097B2/ja
Publication of WO2015184977A1 publication Critical patent/WO2015184977A1/zh
Priority to US15/367,545 priority patent/US10524292B2/en
Priority to US16/705,979 priority patent/US11013039B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/14Generation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • the present invention relates to communication technologies, and in particular, to a ZC sequence generation method and apparatus for a random access channel.
  • the existing Long Term Evolution (LTE) system when the vehicle speed is 350km/h and the carrier frequency is 2.6GHz, the corresponding Doppler shift is:
  • the 843 Hz is smaller than one physical random access channel (PRACH) subcarrier spacing (ie, 1.25 KHz).
  • PRACH physical random access channel
  • the existing LTE system has been designed in a targeted manner, and the premise of the design is based on the Doppler frequency shift is smaller than 1 times the PRACH subcarrier spacing.
  • the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier spacing with a Doppler shift greater than 1 time.
  • Embodiments of the present invention provide a ZC sequence generation method and apparatus for a random access channel.
  • An embodiment of the present invention provides a method for generating a ZC sequence of a random access channel, including:
  • the base station generates the notification signaling, where the notification signaling is used to indicate that the user equipment UE generates the random access ZC sequence by using the second restricted set in the random access set;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value, and the first predetermined value is greater than 1 times of physical random access.
  • Channel PRACH subcarrier spacing is a random access set that the UE needs to use when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value, and the first predetermined value is greater than 1 times of physical random access.
  • the embodiment of the present invention further provides a method for generating a ZC sequence of a random access channel, including:
  • the user equipment UE receives the notification signaling from the base station, where the notification signaling is used to instruct the UE to generate a random access ZC sequence by using the second restricted set in the random access set.
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set; and the second restricted set is when the Doppler shift of the UE is greater than or equal to a first predetermined value, The random access set that the UE needs to use; the first predetermined value is greater than 1 times the physical random access channel PRACH subcarrier spacing.
  • the embodiment of the present invention further provides a method for generating a ZC sequence of a random access channel, including:
  • the base station acquires the cyclic shift value C v according to the shift sequence number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups.
  • N CS is the number of cyclic shifts occupied by one user
  • An embodiment of the present invention further provides a method for generating a ZC sequence of a random access channel, including:
  • User equipment UE is at Select the shift number v in the range, where v is a positive integer, The number of sequence shifts for a set of intra-UE candidates, For the number of groups, The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the UE acquires the cyclic shift value C v according to the shift sequence number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups.
  • N CS is the number of cyclic shifts occupied by one user
  • the UE generates a random access ZC sequence according to the cyclic shift value C v by using the following formula (14).
  • N ZC is the sequence length and the ZC sequence whose root is u is defined as:
  • An embodiment of the present invention provides a base station, including:
  • a generating module configured to generate notification signaling, where the notification signaling is used to indicate that the user equipment UE generates a random access ZC sequence by using a second restricted set in the random access set;
  • a sending module configured to send the notification signaling to the UE, to enable the UE to generate a random access ZC sequence by using the second restricted set;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value, and the first predetermined value is greater than 1 times of physical random access.
  • Channel PRACH subcarrier spacing is a random access set that the UE needs to use when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value, and the first predetermined value is greater than 1 times of physical random access.
  • An embodiment of the present invention provides a user equipment UE, including:
  • a receiving module configured to receive notification signaling from a base station, where the notification signaling is used to indicate that the UE generates a random access ZC sequence by using a second restricted set in the random access set;
  • a generating module configured to generate a random access ZC sequence according to the second restricted set
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set; and the second restricted set is when the Doppler shift of the UE is greater than or equal to a first predetermined value, The random access set that the UE needs to use; the first predetermined value is greater than 1 times the physical random access channel PRACH subcarrier spacing.
  • the embodiment of the invention further provides a base station, including:
  • Shift sequence number determination module for Select the shift number v in the range, where v is a positive integer, The number of sequence shifts for a set of user equipment UE candidates, For the number of groups, The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the cyclic shift value determining module is configured to obtain the cyclic shift value C v according to the shift sequence number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups.
  • N CS is the number of cyclic shifts occupied by one user
  • An embodiment of the present invention further provides a user equipment UE, including:
  • Shift sequence number determination module for Select the shift number v in the range, where v is a positive integer, The number of sequence shifts for a set of intra-UE candidates, For the number of groups, The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the cyclic shift value determining module obtains the cyclic shift value C v according to the shift number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups.
  • N CS is the number of cyclic shifts occupied by one user
  • a random access ZC sequence generating module configured to generate a random access ZC sequence according to the cyclic shift value C v by using the following formula (14)
  • N ZC is the sequence length and the ZC sequence whose root is u is defined as:
  • An embodiment of the present invention provides a ZC sequence generation method and apparatus for a random access channel, where the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (wherein the first predetermined value is greater than 1 times the PRACH subcarrier spacing)
  • the base station informs the UE that the random access set to be used is the second restricted set, to instruct the UE to generate the random access ZC sequence by using the second restricted set, and solves the PRACH subcarrier spacing when the Doppler frequency shift is greater than 1 time.
  • the PRACH subcarrier spacing is less than 2 times, the interference between multiple UE random access sequences avoids mutual interference between multiple UE random access sequences, and improves the accuracy of the base station decoding random access sequences. .
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 3 of a method for generating a ZC sequence of a random access channel according to the present invention
  • FIG. 3 is a schematic structural diagram of a scenario 1 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a scenario 2 according to an embodiment of the present invention.
  • 5A is a schematic structural diagram 1 of a scenario 3 according to an embodiment of the present invention.
  • FIG. 5B is a second schematic structural diagram of a third embodiment of the present invention.
  • Embodiment 6 is a flowchart of Embodiment 4 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 7 is a flowchart of Embodiment 5 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 8 is a flowchart of Embodiment 6 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 9 is a flowchart of Embodiment 7 of a method for generating a ZC sequence of a random access channel according to the present invention.
  • Embodiment 8 is a flowchart of Embodiment 8 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 9 is a flowchart of Embodiment 9 of a method for generating a ZC sequence of a random access channel according to the present invention.
  • Embodiment 12 is a flowchart of Embodiment 10 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 13 is a flowchart of Embodiment 11 of a method for generating a ZC sequence of a random access channel according to the present invention
  • Embodiment 1 of a base station is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 15 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • FIG. 16 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 17 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • Embodiment 5 of a base station according to the present invention is a schematic structural diagram of Embodiment 5 of a base station according to the present invention.
  • Embodiment 6 of a base station is a schematic structural diagram of Embodiment 6 of a base station according to the present invention.
  • Embodiment 1 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • FIG. 21 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • FIG. 22 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • Embodiment 4 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 4 of a user equipment according to the present invention.
  • FIG. 24 is a schematic structural diagram of Embodiment 5 of a user equipment according to the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 1 , the method in this embodiment may include:
  • Step 101 The base station generates the notification signaling, where the notification signaling is used to indicate that the user equipment UE generates the random access ZC sequence by using the second restriction set in the random access set.
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set; and the second restricted set is that the Doppler shift of the UE is greater than or equal to a first predetermined
  • the value of the random access set to be used by the UE, the first predetermined value is greater than 1 time of the physical random access channel PRACH subcarrier spacing.
  • the unrestricted set is the UE.
  • the random access set that the UE needs to use when the Doppler shift is less than or equal to the third predetermined value; wherein the second predetermined value is less than the first predetermined value, and the third predetermined value is less than the second predetermined value.
  • Step 102 The base station sends the notification signaling to the UE, so that the UE generates a random access ZC sequence by using the second restricted set.
  • the existing LTE system has been designed in a targeted manner, and the premise of the design is based on the Doppler frequency shift is less than 1 Multiple PRACH subcarrier spacing; in the present invention, when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station notifies the UE of the random use
  • the access set is a second set of restrictions to instruct the UE to generate a random access ZC sequence using the second set of restrictions.
  • the existing LTE system in order to avoid mutual interference between multiple UE random access sequences caused by Doppler frequency shift, the existing LTE system has been designed in a targeted manner, and the premise of the design is based on the Doppler frequency shift is less than 1 Multiple PRACH subcarrier spacing; as the demand for wireless communication continues to increase, when the LTE system communicates at a higher operating frequency, there will be a PRACH subcarrier spacing greater than 1 times the Doppler shift is less than 2 times.
  • the base station When the Doppler shift of the UE is greater than or equal to the first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station notifies the UE that the random access set to be used is the second Limiting the set to instruct the UE to generate the random access ZC sequence by using the second set of restrictions, and implementing the LTE system that the PRACH subcarrier spacing of the PRACH subcarrier spacing greater than 1 times the Doppler frequency shift is less than 2 times is targeted.
  • the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier spacing, mutual interference between multiple UE random access sequences is avoided, and the accuracy of decoding the random access sequence by the base station is improved. Sex.
  • the base station when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station notifies the UE that the random use is needed.
  • the access set is a second set of restrictions, to indicate that the UE generates the random access ZC sequence by using the second restricted set, and solves the PRACH subcarrier spacing when the Doppler frequency shift is greater than 1 times, and the PRACH subcarrier spacing is less than 2 times.
  • the problem of mutual interference between multiple UE random access sequences avoids mutual interference between multiple UE random access sequences, and improves the accuracy of the base station decoding random access sequences.
  • the method further includes: acquiring, by the base station, a Doppler frequency shift of the UE; if the Doppler frequency shift of the UE is greater than or equal to The first predetermined value is performed in step 101.
  • the first predetermined value is greater than 1 times the PRACH subcarrier spacing
  • the first predetermined value may be 1.5 times the PRACH subcarrier spacing
  • the base station acquires a moving speed of the UE, and determines a Doppler frequency shift according to the moving speed;
  • the Doppler shift f D fv / c, where f is the carrier frequency, v is the moving speed, and c is the speed of light.
  • the base station by acquiring the Doppler shift of the UE, and when the Doppler shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station notifies The random access set that the UE needs to use is a second restricted set, to indicate that the UE uses the second restricted set to generate a random access ZC sequence, and solves the PRACH when the Doppler frequency shift is greater than 1 times, and the PRACH subcarrier spacing is less than 2 times.
  • the subcarrier spacing is used, the problem of mutual interference between multiple UE random access sequences avoids mutual interference between multiple UE random access sequences, and improves the accuracy of the base station decoding random access sequences.
  • Embodiment 3 is a flowchart of Embodiment 3 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • Step 201 The base station generates the notification signaling, where the notification signaling includes the indication indication information, where the indication indication information is used to indicate that the UE generates the random access ZC sequence by using the second restriction set in the random access set.
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler shift of the UE is greater than or equal to a first predetermined value
  • Step 202 The base station sends the notification signaling to the UE, so that the UE generates a random access ZC sequence by using the second restricted set.
  • Step 203 The base station determines a shift sequence number according to the second restriction set.
  • the base station is Select the shift number v in the range, and v is a positive integer;
  • the number of sequence shifts for a set of intra-UE candidates The number of groups; The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the base station since the base station cannot learn the shift sequence number used when the UE sends the random access ZC sequence, when detecting the random access ZC sequence sent by the UE, the base station is Selecting to traverse each shift sequence in sequence; or, the base station sequentially selects and traverses each shift sequence in a range of 0 to X, where X is less than The integer.
  • Step 204 The base station acquires a cyclic shift value according to the second restriction set and the shift sequence number.
  • the base station acquires the cyclic shift value C v of the UE according to the shift sequence number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups
  • v is the shift sequence number
  • N CS is the number of cyclic shifts occupied by one user
  • Step 205 The base station generates a ZC sequence according to the cyclic shift value, and uses the ZC sequence to detect a random access ZC sequence sent by the UE, where the random access ZC sequence is used by the UE. A second set of restrictions is generated.
  • the ZC sequence x u (n) whose root is u can be defined as: Where N ZC is the length of the ZC sequence and u is the root of the ZC sequence.
  • the base station cyclically shifts the ZC sequence x u (n) whose root is u. If the cyclic shift value is K, the ZC sequence generated according to the cyclic shift value is x u ((n+ K) modN ZC ), where N ZC is the ZC sequence length.
  • the base station uses the cyclic shift value to generate a ZC sequence to perform correlation detection on the random access ZC sequence sent by the UE.
  • the correlation detection may be performed in the time domain, or may be performed in the frequency domain according to the frequency domain detection mode corresponding to the time domain correlation detection mode.
  • the base station when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station sends the group indication information to the UE to indicate the UE.
  • the second restricted set is used to generate a random access ZC sequence, which solves the problem that multiple UE random access sequences interfere with each other when the Doppler frequency shift is greater than 1 times the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier spacing.
  • the problem is that mutual interference between multiple UE random access sequences is avoided, and the accuracy of decoding the random access sequence by the base station is improved.
  • the signal transmitted by the UE is r(t)e j2 ⁇ ft , where r(t) is the baseband signal and e j2 ⁇ ft is the carrier frequency, then the signal obtained by the Doppler shift of m ⁇ f is r(t)e j2 ⁇ (f+ m ⁇ f)t , where m is a positive integer and ⁇ f is 1 times the PRACH subcarrier spacing;
  • IFFT Inverse Fast Fourier Transform
  • ⁇ f the subcarrier spacing
  • ⁇ t the time domain sampling interval
  • N the size of Discrete Fourier Transformation (DFT) or Inverse Discrete Fourier Transform (IDFT).
  • DFT Discrete Fourier Transformation
  • IDFT Inverse Discrete Fourier Transform
  • the UE sends a random access ZC sequence to the base station. If there is a Doppler shift of ⁇ m ⁇ f between the UE and the base station receiving end, the random access ZC sequence received by the base station receiving end is the random access ZC sequence sent by the UE. The sequence is shifted and there is a fixed phase offset between the two sequences.
  • x u (n) represents the ZC sequence whose root is u
  • ie x u (n+m(1/u)) represents a shift sequence of the ZC sequence whose root is u, that is, the ZC sequence whose root is u is cyclically shifted to the right by m (1/u) bits.
  • u -1 is a cyclic shift corresponding to the ZC sequence when the Doppler shift is 1 times the PRACH subcarrier spacing, that is, the Doppler shift is 1 times the PRACH subcarrier.
  • the cyclic shift length between the ZC sequence received by the base station and the ZC sequence transmitted by the UE At intervals, the cyclic shift length between the ZC sequence received by the base station and the ZC sequence transmitted by the UE.
  • the ZC sequence sent by the UE is x u (n) and the Doppler frequency is 1 times the PRACH subcarrier spacing
  • the ZC sequence received by the base station is x u ((n+u -1 ) modN ZC ) or x u ((nu -1 ) modN ZC ).
  • the random access ZC sequence received by the base station in the time domain is the shift of the random access ZC sequence transmitted by the UE.
  • the +m ⁇ f Doppler shift, the random access ZC sequence received by the base station in the time domain is also the shift sequence of the random access ZC sequence sent by the UE, and details are not described herein again.
  • the sequence correlation may be in the sequence shift u -1 , 0, -u - A correlation peak appears in 1 position.
  • the base station receiving end uses the ZC sequence x u (n), x u ((n+u -1 ) modN ZC ) or x u ((nu -1 ) modN ZC ) to correlate with the random access ZC sequence sent by the UE.
  • the base station receiving end uses the ZC sequence x u (n), x u ((n+u -1 ) modN ZC ) or x u ((nu -1 ) modN ZC ) to correlate with the random access ZC sequence sent by the UE.
  • the base station receiver uses the ZC sequence x u (n), x u ((nu -1 ) modN ZC ) or x u ((n-2u -1 ) modN ZC ) and the random access sent by the UE When the ZC sequence is correlated, a peak occurs.
  • the base station receiver uses the ZC sequence x u (n), x u ((n+u -1 ) modN ZC ) or x u ((n+2u -1 ) modN ZC ) to be transmitted by the UE.
  • a peak occurs when a random access ZC sequence is correlated.
  • the base station receiver uses the ZC sequence x u ((n-2u -1 ) modN ZC ), x u ((nu -1 ) modN ZC ), x u (n), x u ((n) When +u -1 ) modN ZC ) or x u ((n+2u -1 ) modN ZC ) is correlated with the random access ZC sequence transmitted by the UE, a peak may occur.
  • d start The purpose of satisfying formulas (2) to (5), formulas (6) to (9), or equations (10) to (13) is to avoid that the base station receiving end is less than twice the PRACH subcarrier spacing greater than 1 time.
  • the ZC sequence corresponding to the five peak points generated by the Doppler shift of the PRACH subcarrier spacing is allocated to other users to avoid interference between users caused by Doppler shift.
  • d u u -1 , that is, d u is a cyclic shift corresponding to the ZC sequence when the Doppler shift is 1 times the PRACH subcarrier spacing.
  • N N ZC and satisfying N CS ⁇ d u ⁇ N ZC /5, as shown in FIG. 3, the sequence occupied by the left diagonal stripe and the right diagonal stripe Shifting as the first group, shifting the sequence occupied by the horizontal stripes and vertical stripes as the second group; the number of sequence shifts of the UE candidates within a group
  • N CS represents the number of cyclic shifts occupied by a user, for example, the sequence length is N ZC , and one user accounts for N CS shifts.
  • Doppler shift is not considered, at most simultaneous support Each user simultaneously sends a random access signal. As shown in FIG.
  • the number of sequence shifts of UE candidates in the first group is 2, wherein the left diagonal stripe corresponds to one UE candidate sequence shift, and the right diagonal stripe corresponds to another UE candidate sequence shift;
  • the number of shift sequences of UE candidates is 2, wherein the horizontal stripes correspond to one UE candidate sequence shift, and the vertical stripes correspond to another UE candidate sequence shift.
  • a group can distinguish Users, from the UE side, one UE has up to one group Sequence shifts are available for selection.
  • ZC -1 For example, if the ZC sequence whose root is u is denoted as x u (n), when the cyclic shift value is 0, the generated ZC sequence is x u (n), when the cyclic shift value is 1 At the time, the ZC sequence it generates is x u (n+1).
  • the first user equipment sends a random access ZC sequence to the base station by using the first cyclic shift value to generate a random access ZC sequence, and the base station uses 5, when the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier spacing.
  • the ZC sequence corresponding to the cyclic shift value detects the random access ZC sequence sent by the first user equipment, a peak may occur, and the difference between the cyclic shift value and the first cyclic shift value is 0 respectively. , d u , -d u , 2d u , -2d u .
  • the candidate sequence shifts corresponding to the five cyclic shift values cannot be allocated to other user equipments, and for the base station side, this is equivalent to 5
  • the candidate sequence shift corresponding to the cyclic shift value is allocated to the first user equipment, that is, as shown in FIG. 3, the fill pattern is shifted by 5 candidate sequences corresponding to the left diagonal stripe as a new candidate sequence shift.
  • the fill pattern is the 5 candidate sequence shifts corresponding to the right diagonal stripe as a new candidate sequence shift
  • the bit is allocated to the UE2, and the five candidate sequence shifts corresponding to the horizontal stripes are assigned as a new candidate sequence shift to the UE3, and the padding pattern is the five candidate sequence shifts corresponding to the vertical stripes as a new candidate sequence shift allocation.
  • the cyclic shift value used when generating the random access ZC sequence is the cyclic shift value corresponding to the arrow indicated by the UE1 in FIG. 3; for UE2, the cyclic shift value used when generating the random access ZC sequence is a graph The cyclic shift value corresponding to the arrow indicated by the UE2 in 3; for UE3, the cyclic shift value used when generating the random access ZC sequence is the cyclic shift value corresponding to the arrow indication of UE3 in FIG. 3; for UE4 The cyclic shift value used when generating the random access ZC sequence is the cyclic shift value corresponding to the arrow indicated by the UE4 in FIG.
  • N CS corresponds to the portion in Fig. 3 in which the filling pattern is a lattice pattern.
  • the number of sequence shifts of the UE candidate in the length of the last one group is one, that is, the pad pattern is the five candidate sequence shift corresponding to the dot pattern as a new candidate sequence shift allocation.
  • the pad pattern is the five candidate sequence shift corresponding to the dot pattern as a new candidate sequence shift allocation.
  • FIG. 3 only gives an example of the N CS ⁇ d u ⁇ N ZC /5 scene.
  • N CS , d u , N ZC that satisfy this scenario, d start .
  • the principle that satisfies the formulas (2) to (5) is the same as the example given in FIG.
  • the number of sequence shifts of a group of intra-UE candidates is 2; that is, one group can distinguish two users;
  • the cyclic shift value obtained according to the shift sequence number may be: 10, 12, 34, 36, 58 (that is, the five UE corresponding arrow signs in FIG. 3) . It should be noted that when the base station side and the UE side agree that d offset is another value, the corresponding cyclic shift value also changes.
  • N N ZC and satisfying N ZC /5 ⁇ d u ⁇ (N ZC -N CS )/4, as shown in FIG. 4, the left diagonal stripe and The sequence shift occupied by the right diagonal stripe is taken as the first group, and the sequence occupied by the horizontal stripe and the vertical stripe is shifted as the second group; the number of sequence shifts of the UE candidates within a group
  • N CS represents the number of cyclic shifts occupied by a user, for example, the sequence length is N ZC , and one user accounts for N CS shifts.
  • the number of sequence shifts of UE candidates in the first group is 2, wherein the left diagonal stripe corresponds to one UE candidate sequence shift, and the right diagonal stripe corresponds to another UE candidate sequence shift;
  • the number of shift sequences of UE candidates is 2, wherein the horizontal stripes correspond to one UE candidate sequence shift, and the vertical stripes correspond to another UE candidate sequence shift.
  • a group can distinguish Users, from the UE side, one UE has up to one group Sequence shifts are available for selection.
  • the number of sequence shifts of the UE candidates in the length of the last one group is one, that is, the pad pattern is a candidate sequence shift corresponding to the five candidate sequences as a new candidate sequence shift allocation.
  • the pad pattern is a candidate sequence shift corresponding to the five candidate sequences as a new candidate sequence shift allocation.
  • the portion of the lattice filling pattern in FIG. 4 is for synchronously indicating that the filling pattern is occupied by the corresponding group of the left diagonal stripes and the right diagonal stripes, so as to explain how to assign the groups more easily.
  • FIG. 4 only gives an example of the N ZC /5 ⁇ d u ⁇ (N ZC - N CS ) / 4 scene.
  • N CS , d u , N ZC that satisfy this scenario, d start .
  • the principle that needs to satisfy the formulas (6) to (9) is the same as the example given in FIG.
  • the number of sequence shifts of a group of intra-UE candidates is 2; that is, one group can distinguish two users;
  • the cyclic shift value obtained according to the shift sequence number may be: 5, 7, 14, 16, 23 (that is, the five UEs corresponding to the arrow indications in FIG. 4). It should be noted that when the base station side and the UE side agree that d offset is another value, the corresponding cyclic shift value also changes.
  • N CS represents the number of cyclic shifts occupied by a user, for example, the sequence length is N ZC , and one user accounts for N CS shifts.
  • Doppler shift is not considered, at most simultaneous support Each user simultaneously sends a random access signal.
  • the number of sequence shifts of UE candidates in the first group is 1, and the left diagonal stripe corresponds to one UE candidate sequence shift; the number of shift sequences of UE candidates in the second group is 1, right oblique The stripes correspond to a UE candidate sequence shift.
  • a group can distinguish Users, from the UE side, one UE has up to one group Sequence shifts are available for selection.
  • the portion of the lattice filling pattern in FIG. 5A is for synchronously indicating that the filling pattern is occupied by the corresponding group of the left diagonal stripes, so as to explain how to assign the groups more easily.
  • FIG. 5A only gives an example of the (N ZC + N CS ) / 4 ⁇ d u ⁇ (N ZC - N CS ) / 3 scene, for other N CS , d u , which satisfy this scenario, N ZC , d start ,
  • N ZC , d start The principle that the equations (10) to (13) need to be satisfied is the same as the example given in Fig. 5A.
  • the number of sequence shifts of a group of intra UE candidates is one; that is, one group can distinguish one user;
  • the cyclic shift value obtained according to the shift sequence number may be: 3, 8 (that is, the two UE corresponding arrow signs in FIG. 5A). It should be noted that when the base station side and the UE side agree that d offset is another value, the corresponding cyclic shift value also changes.
  • the ZC sequence obtained according to the cyclic shift value is a random access ZC sequence.
  • FIG. 5B is a schematic diagram 2 of the structure of the third embodiment of the present invention.
  • the condition that d u ⁇ N zc -3d u +N cs needs to be satisfied can be realized as At least one UE allocates a candidate shift sequence. That is, It is a condition that must be satisfied to be able to allocate a candidate shift sequence to the UE.
  • the base station needs to detect N CS shifts for one peak; one sub-candidate sequence shift includes N CS shift positions, and one candidate sequence shift allocated to the UE includes 5N CS shift positions. .
  • FIG. 6 is a flowchart of Embodiment 4 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • Step 601 The base station generates first notification signaling and second notification signaling, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE uses the second in the random access set.
  • the restriction set generates a random access ZC sequence;
  • the second notification signaling includes a shift sequence number, where the shift sequence number is used to indicate that the UE uses the second restriction set indicated by the set indication information and the shift sequence number Generating a random access ZC sequence;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler shift of the UE is greater than or equal to a first predetermined value
  • the method may further include: determining, by the base station, the shift sequence number according to the second restriction set, so that the base station is configured according to the shift sequence number Generating the second notification signaling.
  • the base station acquires the shift sequence number according to the second restriction set, including: the base station is Select the shift number v in the range, v is a positive integer; where: The number of sequence shifts for a set of intra-UE candidates; The number of groups; The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the base station may also send the set indication information and the shift sequence number to the UE by using one signaling.
  • Step 602 The base station sends the first notification signaling and the second notification signaling to the UE, so that the UE generates a random access ZC sequence by using the second restriction set and the mobile sequence number. ;
  • Step 603 The base station acquires a cyclic shift value according to the second restriction set and the shift sequence number.
  • the method for the base station to obtain the cyclic shift value according to the shift sequence number is the same as step 206, and details are not described herein again.
  • step 601 the base station sends the sequence number to the UE, so that the UE generates the random access ZC sequence by using the shift sequence number and the second restriction set. Therefore, in step 203, the base station in this embodiment is compared with step 203.
  • the base station in this embodiment is compared with step 203.
  • Step 604 The base station generates a ZC sequence according to the cyclic shift value, and uses the ZC sequence to detect a random access ZC sequence sent by the UE, where the random access ZC sequence is used by the UE. A second set of restrictions is generated.
  • Step 604 is the same as step 205, and details are not described herein again.
  • the base station when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station sends the set indication information and the shift sequence number to the UE. Instructing the UE to use the second restricted set and the shift sequence number to generate a random connection
  • the ZC sequence is used to solve the problem that multiple UE random access sequences interfere with each other when the Doppler frequency shift is greater than 1 times, and the PRACH subcarrier spacing is less than 2 times. Mutual interference between access sequences improves the accuracy of the base station decoding random access sequences.
  • FIG. 7 is a flowchart of Embodiment 5 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 7, the method in this embodiment may include:
  • Step 701 The base station generates first notification signaling and second notification signaling, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE uses the second in the random access set. Restricting the set to generate a random access ZC sequence; the second notification signaling includes a cyclic shift value, the cyclic shift value is used to indicate that the UE uses the second restricted set indicated by the set indication information, and the loop The shift value generates a random access ZC sequence;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler shift of the UE is greater than or equal to a first predetermined value
  • the base station may further include: Select the shift number v in the range, v is a positive integer; where: The number of sequence shifts for a set of intra-UE candidates; The number of groups; The number of sequence shifts of UE candidates within the length of the last one group; then the base station acquires the cyclic shift value C v of the UE according to the shift sequence number v according to the shift sequence number v, so that the base station according to the base station The cyclic shift value generates the second notification signaling.
  • the base station may also send the set indication information and the cyclic shift value to the UE by using one signaling.
  • Step 702 The base station sends the first notification signaling and the second notification signaling to the UE, so that the UE generates random access by using the second restriction set and the cyclic shift value.
  • ZC sequence
  • Step 703 The base station generates a ZC sequence according to the cyclic shift value, and uses the ZC sequence to detect a random access ZC sequence sent by the UE, where the random access ZC sequence is The UE is generated using the second set of restrictions.
  • Step 703 is the same as step 205, and details are not described herein again.
  • the base station when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the base station sends the set indication information and the cyclic shift to the UE. a value, to indicate that the UE uses the second restricted set and the cyclic shift value to generate a random access ZC sequence, and solves the problem that when the Doppler frequency shift is greater than 1 times, the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier interval, The problem that the UE random access sequences interfere with each other avoids mutual interference between multiple UE random access sequences, and improves the accuracy of the base station decoding random access sequences.
  • FIG. 8 is a flowchart of Embodiment 6 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 8, the method in this embodiment may include:
  • Step 801 The user equipment UE receives the notification signaling from the base station, where the notification signaling is used to instruct the UE to generate a random access ZC sequence by using the second restriction set in the random access set.
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set; and the second restricted set is when the Doppler shift of the UE is greater than or equal to a first predetermined value, The random access set that the UE needs to use; the first predetermined value is greater than 1 times the physical random access channel PRACH subcarrier spacing.
  • the unrestricted set is the UE.
  • the random access set that the UE needs to use when the Doppler shift is less than or equal to the third predetermined value; wherein the second predetermined value is less than the first predetermined value, and the third predetermined value is less than the second predetermined value.
  • Step 802 The UE generates a random access ZC sequence according to the second restriction set.
  • the existing LTE system in order to avoid mutual interference between multiple UE random access sequences caused by Doppler frequency shift, the existing LTE system has been designed in a targeted manner, and the premise of the design is based on the Doppler frequency shift is less than 1 Multiple PRACH subcarrier spacing; in the present invention, when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the UE uses the second according to the base station indication The restricted set produces a random access ZC sequence.
  • the existing LTE system has been designed in a targeted manner, and the premise of the design is based on the PRACH subcarrier spacing of less than 1 times the Doppler shift; as the demand for wireless communication continues to grow, when the LTE system is more When communicating at a high working frequency, there may be a case where the PRACH subcarrier spacing of the PRACH subcarrier spacing greater than 1 times is less than 2 times, and the existing LTE system has a Doppler frequency shift greater than 1 times the PRACH subcarrier.
  • the carrier interval is less than 2 times the PRACH subcarrier interval
  • the case of multiple PRACH subcarrier spacing is designed in a targeted manner.
  • the Doppler shift is greater than 1 times, the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier spacing, avoiding multiple UE random access sequences.
  • Mutual interference Improved the accuracy of the base station decodes a random access sequence.
  • the UE when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the UE generates a random connection according to the base station indication using the second restricted set.
  • the ZC sequence is used to solve the problem that multiple UE random access sequences interfere with each other when the Doppler frequency shift is greater than 1 times, and the PRACH subcarrier spacing is less than 2 times. Mutual interference between access sequences improves the accuracy of the base station decoding random access sequences.
  • FIG. 9 is a flowchart of Embodiment 7 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 9, the method in this embodiment may include:
  • Step 901 The UE receives the notification signaling from the base station, where the notification signaling includes the indication indication information, where the indication indication information is used to indicate that the UE generates the random access ZC sequence by using the second restriction set in the random access set.
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler shift of the UE is greater than or equal to a first predetermined value
  • Step 902 The UE determines a shift sequence number according to the second restriction set.
  • the UE is in Within the scope of the selection to obtain the shift number v, v is a positive integer;
  • the number of sequence shifts for a set of intra-UE candidates The number of groups; The number of sequence shifts for UE candidates within the length of the last one that is less than one group.
  • the UE is in Selecting a shift sequence number randomly within the range; or, the UE sequentially selects and traverses each shift sequence in a range of 0 to X, where X is less than The integer.
  • Step 903 The UE acquires a cyclic shift value according to the second restriction set and the shift sequence number.
  • the UE acquires a cyclic shift value C v according to the shift sequence number v by using formula (1).
  • Step 904 The UE generates a random access ZC sequence according to the cyclic shift value.
  • the UE generates a random access ZC sequence according to the cyclic shift value by using the following formula (14).
  • N ZC is the sequence length;
  • C v is the cyclic shift value;
  • the ZC sequence whose root is u is defined as:
  • the UE uses the second restriction according to the set indication information sent by the base station.
  • the set generates a random access ZC sequence, and solves the problem that multiple UE random access sequences interfere with each other when the Doppler frequency shift is greater than 1 times the PRACH subcarrier spacing is less than 2 times the PRACH subcarrier spacing.
  • Mutual interference between multiple UE random access sequences improves the accuracy of the base station decoding random access sequences.
  • FIG. 10 is a flowchart of Embodiment 8 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 10, the method in this embodiment may include:
  • Step 1001 The UE receives the first notification signaling and the second notification signaling from the base station, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE uses the first part in the random access set.
  • the second restricted set generates a random access ZC sequence; in the second notification signaling And including a shift sequence number, where the shift sequence number is used to indicate that the UE uses the second limit set indicated by the set indication information and the shift sequence number to generate a random access ZC sequence;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler shift of the UE is greater than or equal to a first predetermined value
  • the UE may also receive the set indication information and the shift sequence number from the base station by using one signaling.
  • Step 1002 The UE acquires a cyclic shift value according to the second restriction set and the shift sequence number;
  • the method for the base station to obtain the cyclic shift value according to the shift sequence number is the same as step 903, and details are not described herein again.
  • the UE has received the shift sequence number from the base station, and therefore, the method for generating the ZC sequence of the random access channel is the sixth embodiment.
  • the UE generates the random access ZC sequence. The UE does not need to determine the shift sequence number, and the shift sequence number sent by the base station in the second notification signaling may be directly used.
  • Step 1003 The UE generates a random access ZC sequence according to the cyclic shift value.
  • Step 1003 is the same as step 904, and details are not described herein again.
  • the UE when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the UE according to the set indication information and the shift sequence number sent by the base station The second restricted set and the shift sequence number are used to generate a random access ZC sequence, and the multiple UEs are randomly accessed when the PRACH subcarrier spacing of the PRACH subcarrier spacing greater than 1 times the Doppler frequency shift is less than 2 times.
  • the problem of mutual interference between sequences avoids mutual interference between multiple UE random access sequences, and improves the accuracy of the base station decoding random access sequences.
  • FIG. 11 is a flowchart of Embodiment 9 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 11, the method in this embodiment may include:
  • Step 1101 The UE receives the first notification signaling and the second notification signaling from the base station, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE uses the first part in the random access set.
  • the second set of restrictions generates a random access ZC sequence;
  • the second notification signaling includes a cyclic shift value, where the cyclic shift value is used to indicate that the UE uses the second restricted set indicated by the set indication information, and the The cyclic shift value produces a random access ZC sequence;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler shift of the UE is greater than or equal to a first predetermined value
  • the UE may also receive the set indication information and the cyclic shift value from the base station by using one signaling.
  • Step 1102 The UE generates a random access ZC sequence according to the cyclic shift value.
  • the method for generating the ZC sequence of the random access channel is the seventh embodiment.
  • the UE since the UE has received the cyclic shift value from the base station in step 1101, the method for generating the ZC sequence of the random access channel is the seventh embodiment.
  • the UE generates the random access ZC sequence.
  • the cyclic shift value sent by the base station in the second notification signaling may be directly used.
  • Step 1102 is the same as step 904, and details are not described herein again.
  • the UE when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value (where the first predetermined value is greater than 1 times the PRACH subcarrier spacing), the UE according to the set indication information sent by the base station and the cyclic shift a value, using the second set of limits and the cyclic shift value to generate a random access ZC sequence, which solves multiple randomities when the PRACH subcarrier spacing of the PRACH subcarrier spacing greater than 1 times the Doppler shift is less than 2 times.
  • the problem of mutual interference between access sequences avoids mutual interference between multiple UE random access sequences, and improves the accuracy of the base station decoding random access sequences.
  • FIG. 12 is a flowchart of Embodiment 10 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 12, the method in this embodiment may include:
  • Step 1201 The base station selects a shift sequence number
  • the base station is Select the shift number v in the range, where v is a positive integer, The number of sequence shifts for a set of intra-UE candidates, For the number of groups, The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • Step 1202 The base station acquires a cyclic shift value according to the shift sequence number.
  • the base station acquires the cyclic shift value C v according to the shift sequence number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups.
  • N CS is the number of cyclic shifts occupied by one user
  • equations (2) to (5), or equations (6) to (9), or equations (10) to (13) d start in Select the shift sequence number within the range, and use the formula (1) to obtain the cyclic shift value according to the shift sequence number, so that the base station uses the acquired cyclic shift value to shift the ZC sequence whose root is u and randomly transmits the UE
  • the ZC sequence is accessed for detection, thereby improving the accuracy of the base station decoding the random access ZC sequence sent by the UE.
  • FIG. 13 is a flowchart of Embodiment 11 of a method for generating a ZC sequence of a random access channel according to the present invention. As shown in FIG. 13, the method in this embodiment may include:
  • Step 1301 The user equipment UE selects a shift sequence number.
  • the UE is Select the shift sequence number v within the range
  • v is a positive integer
  • the number of sequence shifts for a set of intra-UE candidates For the number of groups, The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • Step 1302 The UE acquires a cyclic shift value according to the shift sequence number.
  • the UE acquires the cyclic shift value C v according to the shift sequence number v by using the following formula (1):
  • d offset is the shift offset
  • d start is the cyclic shift distance between adjacent groups.
  • N CS is the number of cyclic shifts occupied by one user
  • Step 1303 The UE generates a random access ZC sequence according to the cyclic shift value.
  • the UE generates a random access ZC sequence according to the cyclic shift value C v by using the following formula (14).
  • N ZC is the sequence length and the ZC sequence whose root is u is defined as:
  • equations (2) to (5), or equations (6) to (9), or equations (10) to (13) d start in Select the shift sequence number within the range, use the formula (1) to obtain the cyclic shift value according to the shift sequence number, and generate a random access ZC sequence according to the cyclic shift value, so as to avoid the base station receiving end being separated by more than 1 times the PRACH subcarrier.
  • the ZC sequence corresponding to the 5 peak points generated by the Doppler shift of the PRACH subcarrier spacing less than 2 times is allocated to other users, thereby avoiding the problem of mutual interference between the random access ZC sequences generated by multiple UEs. The accuracy of the base station decoding random access sequence is improved.
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station in this embodiment may include: a generating module 1401 and a sending module 1402. Wherein, the generating module 1401 is used And generating the notification signaling, the notification signaling is used to indicate that the UE generates a random access ZC sequence by using the second restriction set in the random access set, and the sending module 1402 is configured to send the notification signaling to the UE, So that the UE generates the random access ZC sequence by using the second restricted set;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set;
  • the second set of restrictions is a random access set that the UE needs to use when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value, and the first predetermined value is greater than 1 times of physical random access.
  • Channel PRACH subcarrier spacing is a random access set that the UE needs to use when the Doppler frequency shift of the UE is greater than or equal to a first predetermined value, and the first predetermined value is greater than 1 times of physical random access.
  • the base station in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station of the present embodiment further includes: an obtaining module 1403, the acquiring module 1403, based on the structure of the base station shown in FIG. a generating module 1401, configured to: generate notification signaling if the Doppler frequency shift of the UE is greater than or equal to the first predetermined value, The notification signaling is used to instruct the UE to generate a random access ZC sequence using the second restricted set in the random access set.
  • the base station of this embodiment may be used to implement the technical solution of the second embodiment of the method for generating a ZC sequence of a random access channel, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base station of the present embodiment further generates a module 1401, which is specifically configured to: generate notification signaling, based on the structure of the base station shown in FIG.
  • the notification signaling includes set indication information, where the set indication information is used to indicate that the UE generates a random access ZC sequence by using a second restricted set in the random access set.
  • the method further includes: a shift sequence number determining module 1404, configured to determine a shift sequence number according to the second limit set; a cyclic shift value determining module 1405, configured to use the second limit set and the shift The bit number is used to obtain a cyclic shift value; the random access ZC sequence detecting module 1406 is configured to generate a ZC sequence according to the cyclic shift value, and use the ZC sequence to detect a random access ZC sequence sent by the UE, where The random access ZC sequence is generated by the UE using the second restricted set.
  • a shift sequence number determining module 1404 configured to determine a shift sequence number according to the second limit set
  • a cyclic shift value determining module 1405, configured to use the second limit set and the shift The bit number is used to obtain a cyclic shift value
  • the random access ZC sequence detecting module 1406 is configured to generate a ZC sequence according to the cyclic shift value, and use the ZC sequence to detect a random access ZC sequence sent by the UE, where The
  • the shift sequence number determining module 1404 is specifically configured to: Select the shift number v in the range, v is a positive integer; where: The number of sequence shifts for a set of intra-UE candidates; The number of groups; The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the cyclic shift value determining module 1405 is specifically configured to: acquire, according to the shift sequence number v, the cyclic shift value C v of the UE by using a formula (1).
  • the base station of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • the base station in this embodiment further generates a module 1401, which is specifically configured to: generate a first notification, based on the structure of the base station shown in FIG. And the second notification signaling, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE generates a random access ZC sequence by using a second restricted set in the random access set;
  • the second notification signaling includes a shift sequence number, where the shift sequence number is used to instruct the UE to generate a random access ZC sequence by using the second restriction set indicated by the set indication information and the shift sequence number.
  • the method further includes: a shift sequence number determining module 1404, configured to determine the shift sequence number according to the second limit set, so that the generating module generates the second notification signal according to the shift sequence number make.
  • a shift sequence number determining module 1404 configured to determine the shift sequence number according to the second limit set, so that the generating module generates the second notification signal according to the shift sequence number make.
  • the method further includes: a cyclic shift value determining module 1405, configured to acquire a cyclic shift value according to the second restricted set and the shift sequence number; and a random access ZC sequence detecting module 1406, configured to The cyclic shift value generates a ZC sequence, and uses the ZC sequence to detect a random access ZC sequence sent by the UE, where the random access ZC sequence is generated by the UE by using the second restricted set.
  • a random access ZC sequence detecting module 1406 configured to The cyclic shift value generates a ZC sequence, and uses the ZC sequence to detect a random access ZC sequence sent by the UE, where the random access ZC sequence is generated by the UE by using the second restricted set.
  • the shift sequence number determining module 1404 is specifically configured to: Select the shift number v in the range, v is a positive integer; where: The number of sequence shifts for a set of intra-UE candidates; The number of groups; The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the cyclic shift value determining module 1405 is specifically configured to: acquire, according to the shift sequence number v, the cyclic shift value C v of the UE by using a formula (1).
  • the base station of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 6.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of Embodiment 5 of a base station according to the present invention.
  • the embodiment is The base station is further configured to: generate a first notification signaling and a second notification signaling, where the first notification signaling includes a set indication information, where the base station is configured by the base station.
  • the set indication information is used to indicate that the UE generates a random access ZC sequence by using a second restriction set in the random access set;
  • the second notification signaling includes a cyclic shift value, where the cyclic shift value is used to indicate the UE A random access ZC sequence is generated using the second set of limits indicated by the set indication information and the cyclic shift value.
  • the method further includes: a shift sequence number determining module 1404, configured to determine a shift sequence number according to the second limit set; a cyclic shift value determining module 1405, configured to use the second limit set and the shift The bit sequence number obtains the cyclic shift value, so that the generating module generates the second notification signaling according to the cyclic shift value.
  • a shift sequence number determining module 1404 configured to determine a shift sequence number according to the second limit set
  • a cyclic shift value determining module 1405 configured to use the second limit set and the shift The bit sequence number obtains the cyclic shift value, so that the generating module generates the second notification signaling according to the cyclic shift value.
  • the method further includes: a random access ZC sequence detecting module 1406, configured to generate a ZC sequence according to the cyclic shift value, and use the ZC sequence to detect a random access ZC sequence sent by the UE, The random access ZC sequence is generated by the UE using the second restricted set.
  • a random access ZC sequence detecting module 1406 configured to generate a ZC sequence according to the cyclic shift value, and use the ZC sequence to detect a random access ZC sequence sent by the UE, The random access ZC sequence is generated by the UE using the second restricted set.
  • the shift sequence number determining module 1404 is specifically configured to: Select the shift number v in the range, v is a positive integer; where: The number of sequence shifts for a set of intra-UE candidates; The number of groups; The number of sequence shifts of UE candidates within the length of the last dissatisfaction group;
  • the cyclic shift value determining module 1405 is specifically configured to: acquire, according to the shift sequence number v, the cyclic shift value C v of the UE by using a formula (1).
  • the base station of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 7.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of Embodiment 6 of a base station according to the present invention.
  • the base station in this embodiment may include: a shift sequence number determining module 1901 and a cyclic shift value determining module 1902.
  • the shift sequence number determining module 1901 is configured to be used in Select the shift number v in the range, where v is a positive integer, The number of sequence shifts for a set of intra-UE candidates, For the number of groups, The number of sequence shifts of UE candidates within the length of the last one group;
  • the cyclic shift value determining module 1902 is configured to obtain the cyclic shift value C v according to the shift sequence number v using formula (1);
  • the base station in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 12, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 20 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the user equipment in this embodiment may include: a receiving module 2001 and a generating module 2002.
  • the receiving module 2001 is configured to receive the notification signaling from the base station, where the notification signaling is used to indicate that the user equipment UE generates a random access ZC sequence by using the second restricted set in the random access set; and the generating module 2002 And generating a random access ZC sequence according to the second restricted set;
  • the random access set includes: a non-restricted set, a first restricted set, and a second restricted set; and the second restricted set is when the Doppler shift of the UE is greater than or equal to a first predetermined value, The random access set that the UE needs to use; the first predetermined value is greater than 1 times the physical random access channel PRACH subcarrier spacing.
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 8.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 21 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the user equipment in this embodiment is based on the structure of the base station shown in FIG. 20, and further, the receiving module 2001 is specifically configured to: receive from The notification signaling of the base station, where the notification signaling includes a set indication information, where the set indication information is used to indicate that the UE generates a random access ZC sequence by using the second restricted set in the random access set; and the generating module 2002 includes: a shift sequence number determining module 20021, configured to determine a shift sequence number according to the second limit set; a cyclic shift value determining module 20022, configured to acquire a cyclic shift value according to the second limit set and the shift sequence number;
  • the random access ZC sequence generating module 20023 is configured to generate a random access ZC sequence according to the cyclic shift value.
  • the shift sequence number determining module 20021 is specifically configured to: Within the scope of the selection to obtain the shift number v, v is a positive integer; where: The number of sequence shifts for a set of intra-UE candidates; The number of groups; The number of sequence shifts for UE candidates within the length of the last one that is less than one group.
  • the cyclic shift value determining module 20022 is configured to: obtain the cyclic shift value C v according to the shift sequence number v by using formula (1).
  • the random access ZC sequence generating module 20023 is configured to generate a random access ZC sequence by using the formula (14) according to the cyclic shift value.
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 9.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 22 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • the user equipment in this embodiment is based on the structure of the base station shown in FIG. 20, and further, the receiving module 2001 is specifically configured to: receive from The first notification signaling of the base station and the second notification signaling, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE generates the random connection by using the second restricted set in the random access set.
  • the ZC sequence is included; the second notification signaling includes a shift sequence number, where the shift sequence number is used to indicate that the UE uses the second restriction set indicated by the set indication information and the shift sequence number to generate a random access ZC a sequence; a generating module 2002, comprising: a cyclic shift value determining module 20022, configured to acquire a cyclic shift value according to the second restricted set and the shift sequence number; and a random access ZC sequence generating module 20023, configured to The cyclic shift value produces a random access ZC sequence.
  • the cyclic shift value determining module 20022 is configured to: obtain the cyclic shift value C v according to the shift sequence number v by using formula (1).
  • the random access ZC sequence generating module 20023 is configured to generate a random access ZC sequence by using the formula (14) according to the cyclic shift value.
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 10, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 23 is a schematic structural diagram of Embodiment 4 of the user equipment according to the present invention.
  • the user equipment in this embodiment is based on the structure of the base station shown in FIG. 20, and further, the receiving module 2001 is specifically configured to: receive from The first notification signaling of the base station and the second notification signaling, where the first notification signaling includes set indication information, where the set indication information is used to indicate that the UE generates the random connection by using the second restricted set in the random access set.
  • the second notification signaling includes a cyclic shift value, where the cyclic shift value is used to indicate that the UE uses the second restricted set indicated by the set indication information and the cyclic shift value to generate a random
  • the ZC sequence is generated.
  • the generating module 2002 includes: a random access ZC sequence generating module 20023, configured to generate a random access ZC sequence according to the cyclic shift value.
  • the random access ZC sequence generating module 20023 is configured to generate a random access ZC sequence by using the formula (14) according to the cyclic shift value.
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 11.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 24 is a schematic structural diagram of Embodiment 5 of the user equipment according to the present invention.
  • the user equipment in this embodiment may include: a shift sequence number determining module 2401, a cyclic shift value determining module 2402, and a random access ZC sequence. Module 2403.
  • the shift sequence number determining module 2401 is configured to be used in Select the shift number v in the range, where v is a positive integer, The number of sequence shifts for a set of intra-UE candidates, For the number of groups, The number of sequence shifts of UE candidates within the length of the last one group; the cyclic shift value determining module 2402 is configured to obtain the cyclic shift value C v according to the shift sequence number v using the formula (1);
  • the ZC sequence generating module 2403 is configured to generate a random access ZC sequence by using equation (14) according to the cyclic shift value C v
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 13 , and the implementation principle and technical effects are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种随机接入信道的ZC序列产生方法和装置。一种随机接入信道的ZC序列产生方法,包括:基站生成通知信令,所述通知信令用于指示用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述基站向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。

Description

随机接入信道的ZC序列产生方法和装置
本申请要求于2014年6月3日提交中国专利局,申请号为PCT/CN2014/079086的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术,尤其涉及一种随机接入信道的ZC序列产生方法和装置。
背景技术
用户设备(UE,User Equipment)在高速移动的情况下与基站进行通信,UE和基站接收端的信号频率会发生变化,称为多普勒频移fD,且fD=fv/c,其中,f为载波频率,v为移动速度,c为光速。
现有长期演进(LTE,Long Term Evolution)系统中,当车速为350km/h,载频为2.6GHz时,对应的多普勒偏移为:
Figure PCTCN2015080600-appb-000001
其中,843Hz小于一个物理随机接入信道(PRACH,Physical Random Access Channel)子载波间隔(即1.25KHz)。针对高速移动的终端,为了避免多普勒频移引起多个UE随机接入序列之间相互干扰,现有LTE系统做了针对性的设计,且设计的前提都是基于多普勒频移小于1倍的PRACH子载波间隔。但是,随着无线通信的需求的不断增长,当LTE系统在更高工作频率上进行通信时,会出现多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的情况。
但是,现有LTE系统中,当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,存在多个UE随机接入序列之间互相干扰的问题。
发明内容
本发明实施例提供一种随机接入信道的ZC序列产生方法和装置。
本发明实施例提供一种随机接入信道的ZC序列产生方法,包括:
基站生成通知信令,所述通知信令用于指示用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
所述基站向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
本发明实施例又提供一种随机接入信道的ZC序列产生方法,包括:
用户设备UE接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
所述UE根据所述第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
本发明实施例又提供一种随机接入信道的ZC序列产生方法,包括:
基站在
Figure PCTCN2015080600-appb-000002
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000003
为一组内用户设备UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000004
为组的数目,
Figure PCTCN2015080600-appb-000005
为最后一个不满一个组的长度内UE候选的序列移位的数目;
所述基站根据移位序号v,采用如下公式(1),获取循环移位值Cv
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
Figure PCTCN2015080600-appb-000007
为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
其中,所述
Figure PCTCN2015080600-appb-000008
dstart
Figure PCTCN2015080600-appb-000009
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000010
dstart
Figure PCTCN2015080600-appb-000011
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000012
dstart
Figure PCTCN2015080600-appb-000013
满足公式(10)~(13);
Figure PCTCN2015080600-appb-000014
Figure PCTCN2015080600-appb-000015
Figure PCTCN2015080600-appb-000016
Figure PCTCN2015080600-appb-000017
Figure PCTCN2015080600-appb-000018
Figure PCTCN2015080600-appb-000019
Figure PCTCN2015080600-appb-000020
Figure PCTCN2015080600-appb-000021
Figure PCTCN2015080600-appb-000022
Figure PCTCN2015080600-appb-000023
Figure PCTCN2015080600-appb-000024
Figure PCTCN2015080600-appb-000025
本发明实施例还提供一种随机接入信道的ZC序列产生方法,包括:
用户设备UE在
Figure PCTCN2015080600-appb-000026
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000027
为一组内UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000028
为组的数目,
Figure PCTCN2015080600-appb-000029
为最后一个不满一个组的长度内UE候选的序列移位的数目;
所述UE根据移位序号v,采用如下公式(1),获取循环移位值Cv
Figure PCTCN2015080600-appb-000030
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
Figure PCTCN2015080600-appb-000031
为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
所述UE根据所述循环移位值Cv,采用如下公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000032
Figure PCTCN2015080600-appb-000033
其中,NZC为序列长度,根为u的ZC序列定义为:
Figure PCTCN2015080600-appb-000034
其中,所述
Figure PCTCN2015080600-appb-000035
dstart
Figure PCTCN2015080600-appb-000036
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000037
dstart
Figure PCTCN2015080600-appb-000038
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000039
dstart
Figure PCTCN2015080600-appb-000040
满足公式(10)~(13);
Figure PCTCN2015080600-appb-000041
Figure PCTCN2015080600-appb-000042
Figure PCTCN2015080600-appb-000043
Figure PCTCN2015080600-appb-000044
Figure PCTCN2015080600-appb-000045
Figure PCTCN2015080600-appb-000046
Figure PCTCN2015080600-appb-000047
Figure PCTCN2015080600-appb-000048
Figure PCTCN2015080600-appb-000049
Figure PCTCN2015080600-appb-000050
Figure PCTCN2015080600-appb-000051
Figure PCTCN2015080600-appb-000052
本发明实施例提供一种基站,包括:
生成模块,用于生成通知信令,所述通知信令用于指示用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
发送模块,用于向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
本发明实施例提供一种用户设备UE,包括:
接收模块,用于接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
生成模块,用于根据所述第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
本发明实施例还提供一种基站,包括:
移位序号确定模块,用于在
Figure PCTCN2015080600-appb-000053
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000054
为一组内用户设备UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000055
为组的数目,
Figure PCTCN2015080600-appb-000056
为最后一个不满一个组的长度内UE候选的序列移位的数目;
循环移位值确定模块,用于根据移位序号v,采用如下公式(1),获取循环移位值Cv
Figure PCTCN2015080600-appb-000057
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
Figure PCTCN2015080600-appb-000058
为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
其中,所述
Figure PCTCN2015080600-appb-000059
dstart
Figure PCTCN2015080600-appb-000060
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000061
dstart
Figure PCTCN2015080600-appb-000062
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000063
dstart
Figure PCTCN2015080600-appb-000064
满足公式(10)~(13);
Figure PCTCN2015080600-appb-000065
Figure PCTCN2015080600-appb-000066
Figure PCTCN2015080600-appb-000067
Figure PCTCN2015080600-appb-000068
Figure PCTCN2015080600-appb-000069
Figure PCTCN2015080600-appb-000070
Figure PCTCN2015080600-appb-000071
Figure PCTCN2015080600-appb-000072
Figure PCTCN2015080600-appb-000073
Figure PCTCN2015080600-appb-000074
Figure PCTCN2015080600-appb-000075
Figure PCTCN2015080600-appb-000076
本发明实施例还提供一种用户设备UE,包括:
移位序号确定模块,用于在
Figure PCTCN2015080600-appb-000077
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000078
为一组内UE候选的序列移位的数目,为组的数目,
Figure PCTCN2015080600-appb-000080
为最后一个不满一个组的长度内UE候选的序列移位的数目;
循环移位值确定模块,根据移位序号v,采用如下公式(1),获取循环移位值Cv
Figure PCTCN2015080600-appb-000081
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
Figure PCTCN2015080600-appb-000082
为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
随机接入ZC序列产生模块,用于根据所述循环移位值Cv,采用如下公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000083
Figure PCTCN2015080600-appb-000084
其中,NZC为序列长度,根为u的ZC序列定义为:
Figure PCTCN2015080600-appb-000085
其中,所述
Figure PCTCN2015080600-appb-000086
dstart
Figure PCTCN2015080600-appb-000087
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000088
dstart
Figure PCTCN2015080600-appb-000089
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000090
dstart
Figure PCTCN2015080600-appb-000091
满足公式(10)~(13);
Figure PCTCN2015080600-appb-000092
Figure PCTCN2015080600-appb-000093
Figure PCTCN2015080600-appb-000094
Figure PCTCN2015080600-appb-000095
Figure PCTCN2015080600-appb-000096
Figure PCTCN2015080600-appb-000097
Figure PCTCN2015080600-appb-000098
Figure PCTCN2015080600-appb-000099
Figure PCTCN2015080600-appb-000100
Figure PCTCN2015080600-appb-000101
Figure PCTCN2015080600-appb-000102
Figure PCTCN2015080600-appb-000103
本发明实施例提供一种随机接入信道的ZC序列产生方法和装置,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站通知UE需要使用的随机接入集合为第二限制集合,以指示UE使用第二限制集合产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
附图说明
图1为本发明随机接入信道的ZC序列产生方法实施例一的流程图;
图2为本发明随机接入信道的ZC序列产生方法实施例三的流程图;
图3为本发明实施例场景一结构示意图;
图4为本发明实施例场景二结构示意图;
图5A为本发明实施例场景三的结构示意图一;
图5B为本发明实施例场景三的结构示意图二;
图6为本发明随机接入信道的ZC序列产生方法实施例四的流程图;
图7为本发明随机接入信道的ZC序列产生方法实施例五的流程图;
图8为本发明随机接入信道的ZC序列产生方法实施例六的流程图;
图9为本发明随机接入信道的ZC序列产生方法实施例七的流程图;
图10为本发明随机接入信道的ZC序列产生方法实施例八的流程图;
图11为本发明随机接入信道的ZC序列产生方法实施例九的流程图;
图12为本发明随机接入信道的ZC序列产生方法实施例十的流程图;
图13为本发明随机接入信道的ZC序列产生方法实施例十一的流程图;
图14为本发明基站实施例一的结构示意图;
图15为本发明基站实施例二的结构示意图;
图16为本发明基站实施例三的结构示意图;
图17为本发明基站实施例四的结构示意图;
图18为本发明基站实施例五的结构示意图;
图19为本发明基站实施例六的结构示意图;
图20为本发明用户设备实施例一的结构示意图;
图21为本发明用户设备实施例二的结构示意图;
图22为本发明用户设备实施例三的结构示意图;
图23为本发明用户设备实施例四的结构示意图;
图24为本发明用户设备实施例五的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明随机接入信道的ZC序列产生方法实施例一的流程图,如图1所示,本实施例的方法可以包括:
步骤101、基站生成通知信令,所述通知信令用于指示用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定 值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
需要说明的是,所述第一限制集合为所述UE的多普勒频移大于或等于第二预定值时,所述UE需要使用的随机接入集合;所述非限制集合为所述UE的多普勒频移小于或等于第三预定值时,所述UE需要使用的随机接入集合;其中,第二预定值小于第一预定值,第三预定值小于第二预定值。
步骤102、所述基站向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列。
现有技术中,为了避免多普勒频移引起多个UE随机接入序列之间相互干扰,现有LTE系统做了针对性的设计,且设计的前提都是基于多普勒频移小于1倍的PRACH子载波间隔;本发明中当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站通知UE需要使用的随机接入集合为第二限制集合,以指示UE使用第二限制集合产生随机接入ZC序列。
现有技术中,为了避免多普勒频移引起多个UE随机接入序列之间相互干扰,现有LTE系统做了针对性的设计,且设计的前提都是基于多普勒频移小于1倍的PRACH子载波间隔;由于随着无线通信的需求的不断增长,当LTE系统在更高工作频率上进行通信时,会出现多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的情况,现有LTE系统当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,存在多个UE随机接入序列之间相互干扰的问题;通过本发明中当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站通知UE需要使用的随机接入集合为第二限制集合,以指示UE使用第二限制集合产生随机接入ZC序列,实现了LTE系统对多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的情况进行了针对性设计,当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
本实施例,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站通知UE需要使用的随机 接入集合为第二限制集合,以指示UE使用第二限制集合产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
随机接入信道的ZC序列产生方法实施例二
在如图1所示的随机接入信道的ZC序列产生方法实施例一步骤101之前,还可以包括:基站获取UE的多普勒频移;若所述UE的多普勒频移大于或等于所述第一预定值,则执行步骤101。
其中,所述第一预定值大于1倍的PRACH子载波间隔;
例如,所述第一预定值可以为1.5倍的PRACH子载波间隔;
可选的,基站获取UE的移动速度,并根据移动速度确定多普勒频移;
多普勒频移fD=fv/c,其中,f为载波频率,v为移动速度,c为光速。
本实施例,通过获取UE的多普勒频移,并且当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站通知UE需要使用的随机接入集合为第二限制集合,以指示UE使用第二限制集合产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图2为本发明随机接入信道的ZC序列产生方法实施例三的流程图,如图2所示,本实施例的方法可以包括:
步骤201、基站生成通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;
需要说明的是,非限制集合、第一限制集合以及第二限制集合之间的关系同步骤101,在此不再赘述。
步骤202、所述基站向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;
步骤203、所述基站根据所述第二限制集合确定移位序号;
可选的,所述基站在
Figure PCTCN2015080600-appb-000104
的范围内选择移位序号v,v为正整数;
其中:
Figure PCTCN2015080600-appb-000105
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000106
为组的数目;
Figure PCTCN2015080600-appb-000107
为最后一个不满一个组的长度内UE候选的序列移位的数目;
可选的,由于基站无法获知UE发送随机接入ZC序列时所使用的移位序号,因此在对UE发送的随机接入ZC序列进行检测时,基站在
Figure PCTCN2015080600-appb-000108
的范围内依次选择遍历各移位序号;或者,所述基站在0~X的范围内依次选择遍历各移位序号,其中,X为小于
Figure PCTCN2015080600-appb-000109
的整数。
步骤204、所述基站根据所述第二限制集合以及所述移位序号获取循环移位值;
可选的,所述基站根据移位序号v,采用如下公式(1),获取所述UE的循环移位值Cv
Figure PCTCN2015080600-appb-000110
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离;v为移位序号;
Figure PCTCN2015080600-appb-000111
为一组可以区分的用户数;NCS为一个用户所占的循环移位的数目;
需要说明的是,doffset为一整数(通常为常整数),且基站侧和UE侧使用的doffset需要相同,可选的,可以通过预先约定的方式来实现基站侧和UE侧使用相同大小的doffset。比如,doffset=0。
需要说明的是,本发明中
Figure PCTCN2015080600-appb-000112
表示对Y进行下取整,即若Y等于2.5,则
Figure PCTCN2015080600-appb-000113
等于2例如,例如,
Figure PCTCN2015080600-appb-000114
表示对
Figure PCTCN2015080600-appb-000115
进行下取整。
需要说明的是,本发明中mod表示取模运算,例如4mod2=0,5mod2=1。
步骤205、所述基站根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
根为u的ZC序列xu(n)可以定义为:
Figure PCTCN2015080600-appb-000116
其中,NZC为ZC序列的长度,u为ZC序列的根。
具体的,所述基站对根为u的ZC序列xu(n),进行循环移位,若循环移位 值为K,则根据该循环移位值产生的ZC序列为xu((n+K)modNZC),其中,NZC为ZC序列长度。
可选的,基站使用所述循环移位值产生ZC序列对UE发送的随机接入ZC序列进行相关检测。其中,可以在时域进行相关检测,或者也可以根据时域相关检测方式对应的频域检测方式,在频域进行检测。
可选的,本实施例步骤203、204中
Figure PCTCN2015080600-appb-000117
dstart
Figure PCTCN2015080600-appb-000118
满足公式(2)~(5):
Figure PCTCN2015080600-appb-000119
Figure PCTCN2015080600-appb-000120
Figure PCTCN2015080600-appb-000121
Figure PCTCN2015080600-appb-000122
或者,本实施例步骤203、204中
Figure PCTCN2015080600-appb-000123
dstart
Figure PCTCN2015080600-appb-000124
满足公式(6)~(9):
Figure PCTCN2015080600-appb-000125
Figure PCTCN2015080600-appb-000126
Figure PCTCN2015080600-appb-000127
Figure PCTCN2015080600-appb-000128
或者,本实施例步骤203、204中
Figure PCTCN2015080600-appb-000129
dstart
Figure PCTCN2015080600-appb-000130
满足公式(10)~(13):
Figure PCTCN2015080600-appb-000131
Figure PCTCN2015080600-appb-000132
Figure PCTCN2015080600-appb-000133
Figure PCTCN2015080600-appb-000134
可选的,当NCS≤du<NZC/5时,
Figure PCTCN2015080600-appb-000135
dstart
Figure PCTCN2015080600-appb-000136
满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
Figure PCTCN2015080600-appb-000137
dstart
Figure PCTCN2015080600-appb-000138
满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
Figure PCTCN2015080600-appb-000139
dstart
Figure PCTCN2015080600-appb-000140
满足公式(10)~(13);其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
需要说明的是,本发明中max表示取最大值,例如max(0,1)=1,max(4,5)=5;min表示取最小值,例如min(0,1)=0,min(4,5)=4。
需要说明的是,虽然在此仅给出了三种不同场景,但是任何满足公式(2)~(5)、或公式(6)~(9)、或公式(10)~(13)的
Figure PCTCN2015080600-appb-000141
dstart
Figure PCTCN2015080600-appb-000142
都属于本发明的保护范围。
本实施例中,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站向UE发送集合指示信息,以指示UE使用第二限制集合产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
以下对本实施例中
Figure PCTCN2015080600-appb-000143
dstart
Figure PCTCN2015080600-appb-000144
满足公式(2)~(5)、或公式(6)~(9)、或公式(10)~(13)能够实现当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,避免多个UE随机接入序列之间相互干扰的原因进行说明。
假设UE发送的信号为r(t)ej2πft,其中,r(t)为基带信号,ej2πft为载频,则mΔf的多普勒频移得到的信号为r(t)ej2π(f+mΔf)t,其中,m为正整数,Δf为1倍的PRACH子载波间隔;
根据快速傅立叶逆变换(IFFT,Inverse Fast Fourier Transform)的性质,频域的间隔倒数等于时域周期,则相当于
Figure PCTCN2015080600-appb-000145
其中Δf为子载波间隔,Δt为时域采样间隔,N为离散傅里叶变换(DFT,Discrete Fourier Transformation)或离散傅里叶逆变换(IDFT,Inverse Discrete Fourier Transform)的大小。
令t=nΔt,则r(t)ej2π(f+mΔf)t=(r(t)ej2π(mn)/N)ej2πft。其中(r(t)ej2π(mn)/N)为等效的基带信号。
性质1:
UE向基站发送随机接入ZC序列,若UE和基站接收端之间存在±mΔf的多普勒频移,则基站接收端接收到的随机接入ZC序列为UE所发送随机接入ZC序列的移位序列,且两个序列之间存在固定相位的偏移。
证明:以多普勒频移为-mΔf为例,将时域t=nΔt的基带采样信号记为r(n),对于等效基带信号(r(t)e-j2π(mn)/N),令N=NZC,则ZC序列的等效基带信号的基带采样信号
Figure PCTCN2015080600-appb-000146
其中,
Figure PCTCN2015080600-appb-000147
Figure PCTCN2015080600-appb-000148
其中,xu(n)表示根为u的ZC序列,也即
Figure PCTCN2015080600-appb-000149
xu(n+m(1/u))表示根为u的ZC序列的移位序列,也即将根为u的ZC序列向右循环移位m(1/u)位。
将公式(15)中,u-1定义为满足((1/u)×u)modNZC=1的最小非负整数。
由公式(15)可以看出:u-1为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位,也即,多普勒频移为1倍的PRACH子载波间隔时,基站接收到的ZC序列与UE发送的ZC序列之间的循环移位长度。
例如,若UE发送的ZC序列为xu(n),且多普勒频移为1倍的PRACH子载波间隔时,则基站接收到的ZC序列为xu((n+u-1)modNZC)或xu((n-u-1)modNZC)。
从公式(15)可以看出,若UE和基站接收端之间存在-mΔf的多普勒频移,则时域上基站接收的随机接入ZC序列为UE发送的随机接入ZC序列的移位序列,且两个序列之间存在固定相位的偏移
Figure PCTCN2015080600-appb-000150
(与n无关)。同理,+mΔf多普勒频移,则时域上基站接收的随机接入ZC序列也为UE发送的随机接入ZC序列的移位序列,在此不再赘述。
性质2:当多普勒频移较大,且多普勒频移foff小于1倍的PRACH子载波间隔Δf时,则序列的相关有可能在序列移位u-1,0,-u-1三个位置出现相关峰值。
即,对于根为u的ZC序列xu(n),当多普勒频移foff小于1倍的PRACH子载波间隔Δf,且UE发送的随机接入ZC序列为xu(n)时,则基站接收端使用ZC序列xu(n)、xu((n+u-1)modNZC)或xu((n-u-1)modNZC)与UE所发送的随机接入ZC序列进行相关时,会出现峰值。
需要说明的是,性质2通过实验确定。
由性质1和性质2可以看出:
1)当多普勒频移foff=Δf+x,且0<x<Δf,基站接收时,会在移位为-u-1、-2u-1、0的3个位置产生峰值;
即,对于根为u的ZC序列xu(n),当多普勒频移foff=Δf+x(其中,0<x<Δf),且UE发送的随机接入ZC序列为xu(n)时,则基站接收端使用ZC序列xu(n)、xu((n-u-1)modNZC)或xu((n-2u-1)modNZC)与UE所发送的随机接入ZC序列进行相关时,会出现峰值。
2)当多普勒频移foff=-Δf-x,且x<Δf,基站接收时,会在移位为u-1、2u-1、0的3个位置产生峰值;
即,对于根为u的ZC序列xu(n),当多普勒频移foff=-Δf-x(其中,0<x<Δf),且UE发送的随机接入ZC序列为xu(n)时,则基站接收端使用ZC序列xu(n)、xu((n+u-1)modNZC)或xu((n+2u-1)modNZC)与UE所发送的随机接入ZC序列进行相关时,会出现峰值。
因此,当多普勒频移大于1倍的PRACH子载波间隔Δf小于2倍的PRACH子载波间隔时,则基站接收时,有可能在-u-1、-2u-1、0、u-1、2u-1的5个移位位置产生峰值。
即,对于根为u的ZC序列xu(n),当多普勒频移大于1倍的PRACH子载波间隔Δf小于2倍的PRACH子载波间隔,且UE发送的随机接入ZC序列为xu(n)时,则基站接收端使用ZC序列xu((n-2u-1)modNZC)、xu((n-u-1)modNZC)、xu(n)、xu((n+u-1)modNZC)或xu((n+2u-1)modNZC)与UE所发送的随机接入ZC序列进行相关时,可能会出现峰值。
本实施例中,
Figure PCTCN2015080600-appb-000151
dstart
Figure PCTCN2015080600-appb-000152
满足公式(2)~(5)、公式(6)~(9)、或公式(10)~(13)的目的就是为了避免将基站接收端由大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的多普勒频移所产生的5个峰值点对应的ZC序列分配给其他用户,以避免由多普勒频移所引起的各用户之间的干扰。
本发明中,du=u-1,即du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
图3为本发明实施例场景一结构示意图,图中N=NZC,且满足 NCS≤du<NZC/5,如图3所示,将左斜条纹和右斜条纹所占的序列移位作为第1组,将横条纹和竖条纹所占的序列移位作为第2组;一组内UE候选的序列移位的数目
Figure PCTCN2015080600-appb-000153
其中,NCS表示一个用户所占的循环移位的数目,比如,序列长度为NZC,一个用户占NCS个移位,当不考虑多普勒频移时,则最多同时支持
Figure PCTCN2015080600-appb-000154
个用户同时发送随机接入信号。如图3所示,第1组内UE候选的序列移位的数目为2,其中,左斜条纹对应一个UE候选序列移位,右斜条纹对应另一个UE候选序列移位;第2组内UE候选的移位序列的数目为2,其中,横条纹对应一个UE候选序列移位,竖条纹对应另一个UE候选序列移位。
Figure PCTCN2015080600-appb-000155
也表示一组可以区分的用户数,从整个系统看,一组可以区分
Figure PCTCN2015080600-appb-000156
个用户,从UE侧看,一个UE在一组内最多有
Figure PCTCN2015080600-appb-000157
个序列移位可供选择。
需要说明的是,对于序列长度为NZC的ZC序列,当不考虑多普勒频移且NCS=0时,其可以有NZC个候选序列移位,分别对应循环移位值0~NZC-1;例如,若将根为u的ZC序列记为xu(n),当循环移位值为0时,其生成的ZC序列为xu(n),当循环移位值为1时,其生成的ZC序列为xu(n+1)。当不考虑多普勒频移,NCS大于0时,则可以有
Figure PCTCN2015080600-appb-000158
个候选序列移位,分别对应循环移位值Y*NCS,其中,Y为大于等于0小于
Figure PCTCN2015080600-appb-000159
的整数。
由于当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,第一用户设备以第一循环移位值生成随机接入ZC序列发送至基站,基站使用5个循环移位值对应的ZC序列对第一用户设备所发送的随机接入ZC序列进行检测时可能会出现峰值,且这些循环移位值与第一循环移位值之间的差值分别为0、du、-du、2du、-2du。为了避免第一用户设备与其他用户设备之间的干扰,因此这5个循环移位值对应的候选序列移位都不能再分配给其他用户设备,同时对于基站侧来说,也相当于这5个循环移位值对应的候选序列移位都分配给了第一用户设备,也即,如图3所示,填充图案为左斜条纹对应的5个候选序列移位作为一个新候选序列移位分配给UE1(其中,可以将该5个候选序列移位称为新候选序列移位的子候选序列移位),填充图案为右斜条纹对应的5个候选序列移位作为一个新候选序列移位分配给UE2,填充图案为横条纹对应的5个候选序列移位作为一个新候选序列移位分配给UE3,填充图案为竖条纹对应的5个候选序列移位作为一 个新候选序列移位分配给UE4。
并且,由于5个循环移位值与第一循环移位值之间的差值分别为0、du、-du、2du、-2du,因此,也可以看出对于UE1来说,产生随机接入ZC序列时所使用的循环移位值为图3中UE1箭头标示处对应的循环移位值;对于UE2来说,产生随机接入ZC序列时所使用的循环移位值为图3中UE2箭头标示处对应的循环移位值;对于UE3来说,产生随机接入ZC序列时所使用的循环移位值为图3中UE3箭头标示处对应的循环移位值;对于UE4来说,产生随机接入ZC序列时所使用的循环移位值为图3中UE4箭头标示处对应的循环移位值。
Figure PCTCN2015080600-appb-000160
表示的是相邻的组和组之间的循环移位距离;其中,
Figure PCTCN2015080600-appb-000161
NCS对应图3中填充图案为格状图案的部分。
Figure PCTCN2015080600-appb-000162
表示的是在序列长度为NZC的序列上,组的数目,如图3中所示,组的数目为2。
Figure PCTCN2015080600-appb-000163
表示最后一个不满一个组的长度内UE候选的序列移位的数目。如图3中所示,最后一个不满一组的长度内UE候选的序列移位的数目为1,也即填充图案为点状图案对应的5个候选序列移位作为一个新候选序列移位分配给UE5。
需要说明的是,图3仅给出了NCS≤du<NZC/5场景的一个例子,对于其他满足此场景的NCS、du、NZC
Figure PCTCN2015080600-appb-000164
dstart
Figure PCTCN2015080600-appb-000165
满足公式(2)~(5)的原理与图3给出的例子相同。
举例1(参照图3)
以NZC=70、NCS=2、du=5为例
1)根据
Figure PCTCN2015080600-appb-000166
可知,
Figure PCTCN2015080600-appb-000167
即,一组内UE候选的序列移位的数目为2;也即,一组可以区分两个用户;
2)根据
Figure PCTCN2015080600-appb-000168
可知,dstart=24;即,相邻组和组之间的循环移位距离为24;
3)根据
Figure PCTCN2015080600-appb-000169
可知,
Figure PCTCN2015080600-appb-000170
即,组的数目为2;
4)根据
Figure PCTCN2015080600-appb-000171
可知,
Figure PCTCN2015080600-appb-000172
即,最后一个不满一组内UE候选的序列移位的数目为1;也即,最后一个不满一组内还可以区分一个用户;
5)在
Figure PCTCN2015080600-appb-000173
的范围内选择移位序号v,则v的取值范围为0~4;
6)根据公式
Figure PCTCN2015080600-appb-000174
且基站侧和UE侧约定doffset=2du时,根据移位序号获得的循环移位值可以为:10、12、34、36、58(也即图3中5个UE对应箭头标示处)。需要说明的是,当基站侧和UE侧约定doffset为其他值时,对应的循环移位值也会发生变化。
7)根据循环移位值10,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+10)mod70);根据循环移位值12,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+12)mod70);根据循环移位值34,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+34)mod70);根据循环移位值36,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+36)mod70);根据循环移位值58,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+58)mod70)。需要说明的是,若对应UE侧来说,则循环移位得到的序列即为随机接入ZC序列。
图4为本发明实施例场景二结构示意图,图中N=NZC,且满足NZC/5≤du≤(NZC-NCS)/4,如图4所示,将左斜条纹和右斜条纹所占的序列移位作为第1组,将横条纹和竖条纹所占的序列移位作为第2组;一组内UE候选的序列移位的数目
Figure PCTCN2015080600-appb-000175
其中,NCS表示一个用户所占的循环移位的数目,比如,序列长度为NZC,一个用户占NCS个移位,当不考虑多普勒频移时,则最多同时支持
Figure PCTCN2015080600-appb-000176
个用户同时发送随机接入信号。如图4所示,第1组内UE候选的序列移位的数目为2,其中,左斜条纹对应一个UE候选序列移位,右斜条纹对应另一个UE候选序列移位;第2组内UE候选的移位序列的数目为2,其中,横条纹对应一个UE候选序列移位,竖条纹对应另一个UE候选序列移位。
Figure PCTCN2015080600-appb-000177
也表示一组可以区分的用户数,从整个系统看,一组可以区分
Figure PCTCN2015080600-appb-000178
个用户,从UE侧看,一个UE在一组内最多有
Figure PCTCN2015080600-appb-000179
个序列移位可供选择。
需要说明的是,图4与图3中,
Figure PCTCN2015080600-appb-000180
dstart
Figure PCTCN2015080600-appb-000181
的物理含义相同,仅其需要满足的公式不同,分析过程同图3中类似,在此不再赘述。
Figure PCTCN2015080600-appb-000182
表示的是相邻的组和组之间的循环移位距离。
Figure PCTCN2015080600-appb-000183
表示的是在序列长度为NZC的序列上,组的数目,如图4中所示,组的数目为2。
Figure PCTCN2015080600-appb-000184
表示的是最后一个不满一组的长度内UE候选的序列移位的数目。如图4中所示,最后一个不满一组的长 度内UE候选的序列移位的数目为1,也即填充图案为点状图案对应的5个候选序列移位作为一个新候选序列移位分配给UE5。
需要说明的是,图4中格子填充图案的部分是为了同步表示填充图案为左斜条纹和右斜条纹对应组所占的部分,以更易说明如何分配各组。
需要说明的是,图4仅给出了NZC/5≤du≤(NZC-NCS)/4场景的一个例子,对于其他满足此场景的NCS、du、NZC
Figure PCTCN2015080600-appb-000185
dstart
Figure PCTCN2015080600-appb-000186
需要满足公式(6)~(9)的原理与图4给出的例子相同。
举例2(参照图4)
以NZC=85、NCS=2、du=20为例
1)根据
Figure PCTCN2015080600-appb-000187
可知,
Figure PCTCN2015080600-appb-000188
即,一组内UE候选的序列移位的数目为2;也即,一组可以区分两个用户;
2)根据
Figure PCTCN2015080600-appb-000189
可知,dstart=9;即,相邻组和组之间的循环移位距离为9;
3)根据
Figure PCTCN2015080600-appb-000190
可知,
Figure PCTCN2015080600-appb-000191
即,组的数目为2;
4)根据
Figure PCTCN2015080600-appb-000192
可知,
Figure PCTCN2015080600-appb-000193
即,最后一个不满一组内UE候选的序列移位的数目为1;也即,最后一个不满一组内还可以区分一个用户;
5)在
Figure PCTCN2015080600-appb-000194
的范围内选择移位序号v,则v的取值范围为0~4;
6)根据公式
Figure PCTCN2015080600-appb-000195
且基站侧和UE侧约定doffset=5时,根据移位序号获得的循环移位值可以为:5、7、14、16、23(也即图4中5个UE对应箭头标示处)。需要说明的是,当基站侧和UE侧约定doffset为其他值时,对应的循环移位值也会发生变化。
7)根据循环移位值5,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+5)mod85);根据循环移位值7,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+7)mod85);根据循环移位值14,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+14)mod85);根据循环移位值16,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+16)mod85);根据循环移位值23,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+23)mod85)。需要说明的是,若对应UE侧来说,则根据循环移位值得到的ZC序列即为随机接入ZC序列。
图5A为本发明实施例场景三的结构示意图一,图中N=NZC,且满足(NZC+NCS)/4≤du≤(NZC-NCS)/3,如图5A所示,将左斜条纹所占的序列移位作为第1组,将右斜条纹所占的序列移位作为第2组;一组内UE候选的序列移位的数目
Figure PCTCN2015080600-appb-000196
其中,NCS表示一个用户所占的循环移位的数目,比如,序列长度为NZC,一个用户占NCS个移位,当不考虑多普勒频移时,则最多同时支持个用户同时发送随机接入信号。如图5A所示,第1组内UE候选的序列移位的数目为1,左斜条纹对应了一UE候选序列移位;第2组内UE候选的移位序列的数目为1,右斜条纹对应了一UE候选序列移位。
Figure PCTCN2015080600-appb-000198
也表示一组可以区分的用户数,从整个系统看,一组可以区分
Figure PCTCN2015080600-appb-000199
个用户,从UE侧看,一个UE在一组内最多有
Figure PCTCN2015080600-appb-000200
个序列移位可供选择。
需要说明的是,图5A与图3中,
Figure PCTCN2015080600-appb-000201
dstart
Figure PCTCN2015080600-appb-000202
的物理含义相同,仅其需要满足的公式不同,分析过程同图3中类似,在此不再赘述。
Figure PCTCN2015080600-appb-000203
表示的是相邻的组和组之间的循环移位距离。
Figure PCTCN2015080600-appb-000204
表示的是序列长度为NZC的序列上,组的数目。如图5A中所示,组的数目为2。
Figure PCTCN2015080600-appb-000205
最后一个不满一组的长度内已不可能再分配给其他用户设备。
需要说明的是,图5A中格子填充图案的部分是为了同步表示填充图案为左斜条纹对应组所占的部分,以更易说明如何分配各组。
需要说明的是,图5A仅给出了(NZC+NCS)/4≤du≤(NZC-NCS)/3场景的一个例子,对于其他满足此场景的NCS、du、NZC
Figure PCTCN2015080600-appb-000206
dstart
Figure PCTCN2015080600-appb-000207
需要满足公式(10)~(13)的原理与图5A给出的例子相同。
举例3(参照图5A)
以NZC=33、NCS=2、du=10为例
1)根据
Figure PCTCN2015080600-appb-000208
可知,
Figure PCTCN2015080600-appb-000209
即,一组内UE候选的序列移位的数目为1;也即,一组可以区分一个用户;
2)根据
Figure PCTCN2015080600-appb-000210
可知,dstart=5;即,相邻组和组之间的循环移位距离为5;
3)根据
Figure PCTCN2015080600-appb-000211
可知,
Figure PCTCN2015080600-appb-000212
即,组的数目为2;
4)
Figure PCTCN2015080600-appb-000213
5)在
Figure PCTCN2015080600-appb-000214
的范围内选择移位序号v,v的取值范围为0~1;
6)根据
Figure PCTCN2015080600-appb-000215
且基站侧和UE侧约定doffset=3时, 根据移位序号获得的循环移位值可以为:3、8(也即图5A中2个UE对应箭头标示处)。需要说明的是,当基站侧和UE侧约定doffset为其他值时,对应的循环移位值也会发生变化。
7)根据循环移位值3,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+3)mod33);根据循环移位值8,对根为u的ZC序列xu(n)进行循环移位,则得到的ZC序列为xu((n+8)mod33)。需要说明的是,若对于UE侧来说,则根据循环移位值得到的ZC序列即为随机接入ZC序列。
图5B为本发明实施例场景三的结构示意图二,如图5B所示,当3du<NZC<4du时,需要满足du≥Nzc-3du+Ncs的条件,才能实现为至少一个UE分配候选移位序列。也即,
Figure PCTCN2015080600-appb-000216
是能够为UE分配候选移位序列必须满足的条件。
需要说明的是,当(NZC-NCS)/4≤du≤(NZC+NCS)/4时,会出现分配给一个UE的候选序列移位中的两个子候选序列移位部分(或全部)重叠的情况;同一UE子候选序列移位的重叠会降低基站对上行信道进行频偏估计及同步的性能。因此,当(NZC-NCS)/4≤du≤(NZC+NCS)/4时不能为任何UE分配候选序列移位。
需要说明的是,本发明中基站检测出一个峰值需要NCS个移位;一个子候选序列移位包括NCS个移位位置,分配给UE的一个候选序列移位包括5NCS个移位位置。
图6为本发明随机接入信道的ZC序列产生方法实施例四的流程图,如图6所示,本实施例的方法可以包括:
步骤601、所述基站生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;
可选的,所述基站生成所述第二通知信令之前,还可以包括:所述基站根据所述第二限制集合确定所述移位序号,以使所述基站根据所述移位序号 生成所述第二通知信令。
具体的,基站根据第二限制集合获取移位序号,包括:基站在
Figure PCTCN2015080600-appb-000217
的范围内选择移位序号v,v为正整数;其中:
Figure PCTCN2015080600-appb-000218
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000219
为组的数目;
Figure PCTCN2015080600-appb-000220
为最后一个不满一个组的长度内UE候选的序列移位的数目;
需要说明的是,非限制集合、第一限制集合以及第二限制集合之间的关系同步骤101,在此不再赘述。
需要说明的是,本步骤中基站也可以通过一条信令将集合指示信息和移位序号发送至UE。
步骤602、所述基站向所述UE发送所述第一通知信令以及所述第二通知信令,以使所述UE使用所述第二限制集合以及所述移动序号产生随机接入ZC序列;
步骤603、所述基站根据所述第二限制集合以及所述移位序号获取循环移位值;
基站根据移位序号来获取循环移位值的方法,同步骤206,在此不再赘述。
需要说明的是,由于在步骤601中基站将移位序号发送给UE,以使UE使用此移位序号以及第二限制集合产生随机接入ZC序列,因此,对比步骤203,本实施例中基站接收到UE发送的随机接入ZC序列时,不再需要遍历各移位序号进行检测,直接使用在第二通知信令中发送给UE的移位序号进行检测即可。
步骤604、所述基站根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
步骤604同步骤205,在此不再赘述。
本实施例中关于
Figure PCTCN2015080600-appb-000221
dstart
Figure PCTCN2015080600-appb-000222
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
本实施例中,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站向UE发送集合指示信息以及移位序号,以指示UE使用第二限制集合以及该移位序号产生随机接 入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图7为本发明随机接入信道的ZC序列产生方法实施例五的流程图,如图7所示,本实施例的方法可以包括:
步骤701、所述基站生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;
可选的,所述基站生成所述第二通知信令之前,还可以包括:首先基站在
Figure PCTCN2015080600-appb-000223
的范围内选择移位序号v,v为正整数;其中:
Figure PCTCN2015080600-appb-000224
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000225
为组的数目;
Figure PCTCN2015080600-appb-000226
为最后一个不满一个组的长度内UE候选的序列移位的数目;然后基站根据移位序号v,采用公式(1),获取所述UE的循环移位值Cv,以使所述基站根据所述循环移位值生成所述第二通知信令。
需要说明的是,非限制集合、第一限制集合以及第二限制集合之间的关系同步骤101,在此不再赘述。
需要说明的是,本步骤中基站也可以通过一条信令将集合指示信息和循环移位值发送至UE。
步骤702、所述基站向所述UE发送所述第一通知信令以及所述第二通知信令,以使所述UE使用所述第二限制集合以及所述循环移位值产生随机接入ZC序列;
步骤703、所述基站根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所 述UE使用所述第二限制集合产生。
步骤703同步骤205,在此不再赘述。
本实施例中关于
Figure PCTCN2015080600-appb-000227
dstart
Figure PCTCN2015080600-appb-000228
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
本实施例中,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,基站向UE发送集合指示信息以及循环移位值,以指示UE使用第二限制集合以及该循环移位值产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图8为本发明随机接入信道的ZC序列产生方法实施例六的流程图,如图8所示,本实施例的方法可以包括:
步骤801、用户设备UE接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
需要说明的是,所述第一限制集合为所述UE的多普勒频移大于或等于第二预定值时,所述UE需要使用的随机接入集合;所述非限制集合为所述UE的多普勒频移小于或等于第三预定值时,所述UE需要使用的随机接入集合;其中,第二预定值小于第一预定值,第三预定值小于第二预定值。
步骤802、所述UE根据所述第二限制集合产生随机接入ZC序列。
现有技术中,为了避免多普勒频移引起多个UE随机接入序列之间相互干扰,现有LTE系统做了针对性的设计,且设计的前提都是基于多普勒频移小于1倍的PRACH子载波间隔;本发明中当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,UE根据基站指示使用第二限制集合产生随机接入ZC序列。
现有技术中,为了避免多普勒频移引起多个UE随机接入序列之间相互 干扰,现有LTE系统做了针对性的设计,且设计的前提都是基于多普勒频移小于1倍的PRACH子载波间隔;由于随着无线通信的需求的不断增长,当LTE系统在更高工作频率上进行通信时,会出现多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的情况,现有LTE系统当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,存在多个UE随机接入序列之间相互干扰的问题;通过本发明中当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,UE根据基站指示使用第二限制集合产生随机接入ZC序列,实现了LTE系统对多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的情况进行了针对性设计,当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
本实施例,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,UE根据基站指示使用第二限制集合产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图9为本发明随机接入信道的ZC序列产生方法实施例七的流程图,如图9所示,本实施例的方法可以包括:
步骤901、UE接收来自基站的通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;
需要说明的是,非限制集合、第一限制集合以及第二限制集合之间的关系同步骤801,在此不再赘述。
步骤902、所述UE根据所述第二限制集合确定移位序号;
可选的,所述UE在
Figure PCTCN2015080600-appb-000229
的范围内选择获取移位序号v,v为正整数;
其中:
Figure PCTCN2015080600-appb-000230
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000231
为组的数目;
Figure PCTCN2015080600-appb-000232
为最后一个不满一个组的长度内UE候选的序列移位的数目。
可选的,所述UE在
Figure PCTCN2015080600-appb-000233
的范围内随机选择一个移位序号;或者,所述UE在0~X的范围内依次选择遍历各移位序号,其中X为小于
Figure PCTCN2015080600-appb-000234
的整数。
步骤903、所述UE根据所述第二限制集合以及所述移位序号获取循环移位值;
可选的,所述UE根据所述移位序号v,采用公式(1),获取循环移位值Cv
步骤904、所述UE根据所述循环移位值产生随机接入ZC序列。
可选的,所述UE根据所述循环移位值,采用如下公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000235
Figure PCTCN2015080600-appb-000236
其中,NZC为序列长度;Cv为循环移位值;根为u的ZC序列定义为:
Figure PCTCN2015080600-appb-000237
本实施例中关于
Figure PCTCN2015080600-appb-000238
dstart
Figure PCTCN2015080600-appb-000239
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
本实施例,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,UE根据基站发送的集合指示信息使用第二限制集合产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图10为本发明随机接入信道的ZC序列产生方法实施例八的流程图,如图10所示,本实施例的方法可以包括:
步骤1001、UE接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中 包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;
需要说明的是,非限制集合、第一限制集合以及第二限制集合之间的关系同步骤801,在此不再赘述。
需要说明的是,本步骤中UE也可以通过一条信令来接收来自基站的集合指示信息和移位序号。
步骤1002、所述UE根据所述第二限制集合以及所述移位序号获取循环移位值;
基站根据移位序号来获取循环移位值的方法,同步骤903,在此不再赘述。
需要说明的是,由于在步骤1001中UE已经接收到来自基站的移位序号,因此,对比随机接入信道的ZC序列产生方法实施例六,本实施例中UE在产生随机接入ZC序列时,不再需要UE确定移位序号,直接使用在第二通知信令中基站发送的移位序号即可。
步骤1003、所述UE根据所述循环移位值产生随机接入ZC序列。
步骤1003同步骤904,在此不再赘述。
本实施例中关于
Figure PCTCN2015080600-appb-000240
dstart
Figure PCTCN2015080600-appb-000241
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
本实施例,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,UE根据基站发送的集合指示信息以及移位序号,使用第二限制集合以及该移位序号产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图11为本发明随机接入信道的ZC序列产生方法实施例九的流程图,如图11所示,本实施例的方法可以包括:
步骤1101、UE接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;
需要说明的是,非限制集合、第一限制集合以及第二限制集合之间的关系同步骤801,在此不再赘述。
需要说明的是,本步骤中UE也可以通过一条信令来接收来自基站的集合指示信息和循环移位值。
步骤1102、所述UE根据所述循环移位值产生随机接入ZC序列。
需要说明的是,由于在步骤1101中UE已经接收到来自基站的循环移位值,因此,对比随机接入信道的ZC序列产生方法实施例七,本实施例中UE在产生随机接入ZC序列时,不再需要UE确定循环移位值,直接使用在第二通知信令中基站发送的循环移位值即可。
步骤1102同步骤904,在此不再赘述。
本实施例中关于
Figure PCTCN2015080600-appb-000242
dstart
Figure PCTCN2015080600-appb-000243
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
本实施例,通过当UE的多普勒频移大于或等于第一预定值(其中,第一预定值大于1倍的PRACH子载波间隔)时,UE根据基站发送的集合指示信息以及循环移位值,使用第二限制集合以及该循环移位值产生随机接入ZC序列,解决了当多普勒频移大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔时,多个UE随机接入序列之间互相干扰的问题,避免了多个UE随机接入序列之间的相互干扰,提高了基站解码随机接入序列的准确性。
图12为本发明随机接入信道的ZC序列产生方法实施例十的流程图,如图12所示,本实施例的方法可以包括:
步骤1201、基站选择移位序号;
具体的,基站在
Figure PCTCN2015080600-appb-000244
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000245
为一组内UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000246
为组的数目,
Figure PCTCN2015080600-appb-000247
为最后一个不满一个组的长度内UE候选的序列移位的数目;
步骤1202、所述基站根据移位序号,获取循环移位值。
具体的,基站根据移位序号v,采用如下公式(1),获取循环移位值Cv
Figure PCTCN2015080600-appb-000248
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
Figure PCTCN2015080600-appb-000249
为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
本实施例中,所述
Figure PCTCN2015080600-appb-000250
dstart
Figure PCTCN2015080600-appb-000251
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000252
dstart
Figure PCTCN2015080600-appb-000253
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000254
dstart
Figure PCTCN2015080600-appb-000255
Figure PCTCN2015080600-appb-000256
满足公式(10)~(13);
需要说明的是,本实施例中关于
Figure PCTCN2015080600-appb-000257
dstart
Figure PCTCN2015080600-appb-000258
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
可选的,当NCS≤du<NZC/5时,
Figure PCTCN2015080600-appb-000259
dstart
Figure PCTCN2015080600-appb-000260
满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
Figure PCTCN2015080600-appb-000261
dstart
Figure PCTCN2015080600-appb-000262
满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
Figure PCTCN2015080600-appb-000263
dstart
Figure PCTCN2015080600-appb-000264
满足公式(10)~(13)。
本实施例中,通过使用满足公式(2)~(5)、或公式(6)~(9)、或公式(10)~(13)的
Figure PCTCN2015080600-appb-000265
dstart
Figure PCTCN2015080600-appb-000266
Figure PCTCN2015080600-appb-000267
的范围内选择移位序号,并根据移位序号采用公式(1)获取循环移位值,使得基站使用获取到的循环移位值对根为u的ZC序列进行移位并对UE发送的随机接入ZC序列进行检测,从而提高了基站解码UE发送的随机接入ZC序列的准确性。
图13为本发明随机接入信道的ZC序列产生方法实施例十一的流程图,如图13所示,本实施例的方法可以包括:
步骤1301、用户设备UE选择移位序号;
具体的,UE在
Figure PCTCN2015080600-appb-000268
的范围内选择移位序号v;
其中,v为正整数,
Figure PCTCN2015080600-appb-000269
为一组内UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000270
为组的数目,
Figure PCTCN2015080600-appb-000271
为最后一个不满一个组的长度内UE候选的序列移位的数目;
步骤1302、所述UE根据移位序号,获取循环移位值;
具体的,所述UE根据移位序号v,采用如下公式(1),获取循环移位值Cv
Figure PCTCN2015080600-appb-000272
其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
Figure PCTCN2015080600-appb-000273
为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
步骤1303、所述UE根据所述循环移位值,产生随机接入ZC序列。
具体的,所述UE根据所述循环移位值Cv,采用如下公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000274
Figure PCTCN2015080600-appb-000275
其中,NZC为序列长度,根为u的ZC序列定义为:
Figure PCTCN2015080600-appb-000276
本实施例中,所述
Figure PCTCN2015080600-appb-000277
dstart
Figure PCTCN2015080600-appb-000278
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000279
dstart
Figure PCTCN2015080600-appb-000280
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000281
dstart
Figure PCTCN2015080600-appb-000282
Figure PCTCN2015080600-appb-000283
满足公式(10)~(13);
需要说明的是,本实施例中关于
Figure PCTCN2015080600-appb-000284
dstart
Figure PCTCN2015080600-appb-000285
的具体说明,与随机接入信道的ZC序列产生方实施例三中相同,在此不再赘述。
可选的,当NCS≤du<NZC/5时,
Figure PCTCN2015080600-appb-000286
dstart
Figure PCTCN2015080600-appb-000287
满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
Figure PCTCN2015080600-appb-000288
dstart
Figure PCTCN2015080600-appb-000289
满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
Figure PCTCN2015080600-appb-000290
dstart
Figure PCTCN2015080600-appb-000291
满足公式(10)~(13)。
本实施例中,通过使用满足公式(2)~(5)、或公式(6)~(9)、或公式(10)~(13)的dstart
Figure PCTCN2015080600-appb-000293
Figure PCTCN2015080600-appb-000294
的范围内选择移位序号,根据移位序号采用公式(1)获取循环移位值,并根据循环移位值生成随机接入ZC序列,避免将基站接收端由大于1倍的PRACH子载波间隔小于2倍的PRACH子载波间隔的多普勒频移所产生的5个峰值点对应的ZC序列分配给其他用户,从而避免了多个UE所产生的随机接入ZC序列之间相互干扰的问题,提高了基站解码随机接入序列的准确性。
图14为本发明基站实施例一的结构示意图,如图14所示,本实施例的基站可以包括:生成模块1401和发送模块1402。其中,生成模块1401,用 于生成通知信令,所述通知信令用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;发送模块1402,用于向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
本实施例的基站,可以用于执行图1所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图15为本发明基站实施例二的结构示意图,如图15所示,本实施例的基站在图14所示基站结构的基础上,进一步地,还可以包括:获取模块1403,该获取模块1403,用于获取所述UE的多普勒频移;生成模块1401,具体用于:若所述UE的多普勒频移大于或等于所述第一预定值,则生成通知信令,所述通知信令用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列。
本实施例的基站,可以用于执行随机接入信道的ZC序列产生方法实施例二的技术方案,其实现原理和技术效果类似,此处不再赘述。
图16为本发明基站实施例三的结构示意图,如图16所示,本实施例的基站在图14所示基站结构的基础上,进一步地,生成模块1401,具体用于:生成通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列。
可选的,还可以包括:移位序号确定模块1404,用于根据所述第二限制集合确定移位序号;循环移位值确定模块1405,用于根据所述第二限制集合以及所述移位序号获取循环移位值;随机接入ZC序列检测模块1406,用于根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
可选的,移位序号确定模块1404,具体用于:
Figure PCTCN2015080600-appb-000295
的范围内选择移位序号v,v为正整数;其中:
Figure PCTCN2015080600-appb-000296
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000297
为组的数目;
Figure PCTCN2015080600-appb-000298
为最后一个不满一个组的长度内UE候选的序列移位的数目;
可选的,循环移位值确定模块1405,具体用于:根据移位序号v,采用公式(1),获取所述UE的循环移位值Cv
本实施例的基站,可以用于执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图17为本发明基站实施例四的结构示意图,如图17所示,本实施例的基站在图14所示基站结构的基础上,进一步地,生成模块1401,具体用于:生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列。
可选的,还可以包括:移位序号确定模块1404,用于根据所述第二限制集合确定所述移位序号,以使所述生成模块根据所述移位序号生成所述第二通知信令。
进一步可选的,还可以包括:循环移位值确定模块1405,用于根据所述第二限制集合以及所述移位序号获取循环移位值;随机接入ZC序列检测模块1406,用于根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
可选的,移位序号确定模块1404,具体用于:
Figure PCTCN2015080600-appb-000299
的范围内选择移位序号v,v为正整数;其中:
Figure PCTCN2015080600-appb-000300
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000301
为组的数目;
Figure PCTCN2015080600-appb-000302
为最后一个不满一个组的长度内UE候选的序列移位的数目;
可选的,循环移位值确定模块1405,具体用于:根据移位序号v,采用公式(1),获取所述UE的循环移位值Cv
本实施例的基站,可以用于执行图6所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图18为本发明基站实施例五的结构示意图,如图18所示,本实施例的 基站在图14所示基站结构的基础上,进一步地,生成模块1401,具体用于:生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列。
可选的,还可以包括:移位序号确定模块1404,用于根据所述第二限制集合确定移位序号;循环移位值确定模块1405,用于根据所述第二限制集合以及所述移位序号获取所述循环移位值,以使所述生成模块根据所述循环移位值生成所述第二通知信令。
进一步可选的,还可以包括:随机接入ZC序列检测模块1406,用于根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
可选的,移位序号确定模块1404,具体用于:
Figure PCTCN2015080600-appb-000303
的范围内选择移位序号v,v为正整数;其中:
Figure PCTCN2015080600-appb-000304
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000305
为组的数目;
Figure PCTCN2015080600-appb-000306
为最后一个不满一个组的长度内UE候选的序列移位的数目;
可选的,循环移位值确定模块1405,具体用于:根据移位序号v,采用公式(1),获取所述UE的循环移位值Cv
本实施例的基站,可以用于执行图7所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图19为本发明基站实施例六的结构示意图,如图19所示,本实施例的基站可以包括:移位序号确定模块1901和循环移位值确定模块1902。其中,移位序号确定模块1901,用于在
Figure PCTCN2015080600-appb-000307
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000308
为一组内UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000309
为组的数目,
Figure PCTCN2015080600-appb-000310
为最后一个不满一个组的长度内UE候选的序列移位的数目;循环移位值确定模块1902,用于根据移位序号v,采用公式(1),获取循环移位值Cv
其中,所述
Figure PCTCN2015080600-appb-000311
dstart
Figure PCTCN2015080600-appb-000312
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000313
dstart
Figure PCTCN2015080600-appb-000314
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000315
dstart
Figure PCTCN2015080600-appb-000316
满 足公式(10)~(13);
可选的,当NCS≤du<NZC/5时,
Figure PCTCN2015080600-appb-000317
dstart
Figure PCTCN2015080600-appb-000318
满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
Figure PCTCN2015080600-appb-000319
dstart
Figure PCTCN2015080600-appb-000320
满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
Figure PCTCN2015080600-appb-000321
dstart
Figure PCTCN2015080600-appb-000322
满足公式(10)~(13)。
本实施例的基站,可以用于执行图12所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图20为本发明用户设备实施例一的结构示意图,如图20所示,本实施例的用户设备可以包括:接收模块2001和生成模块2002。其中,接收模块2001,用于接收来自基站的通知信令,所述通知信令用于指示所述用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;生成模块2002,用于根据所述第二限制集合产生随机接入ZC序列;
其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
本实施例的用户设备,可以用于执行图8所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图21为本发明用户设备实施例二的结构示意图,如图21所示,本实施例的用户设备在图20所示基站结构的基础上,进一步地,接收模块2001,具体用于:接收来自基站的通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;生成模块2002,包括:移位序号确定模块20021,用于根据所述第二限制集合确定移位序号;循环移位值确定模块20022,用于根据所述第二限制集合以及所述移位序号获取循环移位值;随机接入ZC序列产生模块20023,用于根据所述循环移位值产生随机接入ZC序列。
可选的,移位序号确定模块20021,具体用于:在
Figure PCTCN2015080600-appb-000323
的范围内选择获取移位序号v,v为正整数;其中:
Figure PCTCN2015080600-appb-000324
为一组内UE候选的序列移位的数目;
Figure PCTCN2015080600-appb-000325
为组的数目;
Figure PCTCN2015080600-appb-000326
为最后一个不满一个组的长度内UE候选的序列移位的数目。
可选的,循环移位值确定模块20022,具体用于:根据所述移位序号v,采用公式(1),获取循环移位值Cv
可选的,随机接入ZC序列产生模块20023,具体用于:根据所述循环移位值,采用公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000327
本实施例的用户设备,可以用于执行图9所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图22为本发明用户设备实施例三的结构示意图,如图22所示,本实施例的用户设备在图20所示基站结构的基础上,进一步地,接收模块2001,具体用于:接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列;生成模块2002,包括:循环移位值确定模块20022,用于根据所述第二限制集合以及所述移位序号获取循环移位值;随机接入ZC序列产生模块20023,用于根据所述循环移位值产生随机接入ZC序列。
可选的,循环移位值确定模块20022,具体用于:根据所述移位序号v,采用公式(1),获取循环移位值Cv
可选的,随机接入ZC序列产生模块20023,具体用于:根据所述循环移位值,采用公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000328
本实施例的用户设备,可以用于执行图10所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图23为本发明用户设备实施例四的结构示意图,如图23所示,本实施例的用户设备在图20所示基站结构的基础上,进一步地,接收模块2001,具体用于:接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列;生成模块2002,包括:随机接入ZC序列产生模块20023,用于根据所述循环移位值产生随机接入ZC序列。
可选的,随机接入ZC序列产生模块20023,具体用于:根据所述循环移位值,采用公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000329
本实施例的用户设备,可以用于执行图11所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图24为本发明用户设备实施例五的结构示意图,如图24所示,本实施例的用户设备可以包括:移位序号确定模块2401、循环移位值确定模块2402和随机接入ZC序列产生模块2403。其中,移位序号确定模块2401,用于在
Figure PCTCN2015080600-appb-000330
的范围内选择移位序号v,其中,v为正整数,
Figure PCTCN2015080600-appb-000331
为一组内UE候选的序列移位的数目,
Figure PCTCN2015080600-appb-000332
为组的数目,
Figure PCTCN2015080600-appb-000333
为最后一个不满一个组的长度内UE候选的序列移位的数目;循环移位值确定模块2402,用于根据移位序号v,采用公式(1),获取循环移位值Cv;随机接入ZC序列产生模块2403,用于根据所述循环移位值Cv,采用公式(14)产生随机接入ZC序列
Figure PCTCN2015080600-appb-000334
其中,所述
Figure PCTCN2015080600-appb-000335
dstart
Figure PCTCN2015080600-appb-000336
满足公式(2)~(5);或者,所述
Figure PCTCN2015080600-appb-000337
dstart
Figure PCTCN2015080600-appb-000338
满足公式(6)~(9);或者,所述
Figure PCTCN2015080600-appb-000339
dstart
Figure PCTCN2015080600-appb-000340
满足公式(10)~(13);
可选的,当NCS≤du<NZC/5时,
Figure PCTCN2015080600-appb-000341
dstart
Figure PCTCN2015080600-appb-000342
满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
Figure PCTCN2015080600-appb-000343
dstart
Figure PCTCN2015080600-appb-000344
满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
Figure PCTCN2015080600-appb-000345
dstart
Figure PCTCN2015080600-appb-000346
满足公式(10)~(13)。
本实施例的用户设备,可以用于执行图13所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (62)

  1. 一种随机接入信道的ZC序列产生方法,其特征在于,包括:
    基站生成通知信令,所述通知信令用于指示用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
    所述基站向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;
    其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
    所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述基站生成通知信令之前,还包括:
    基站获取所述UE的多普勒频移;
    若所述UE的多普勒频移大于或等于所述第一预定值,则执行所述基站生成所述通知信令的步骤。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基站生成通知信令,所述通知信令用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列,包括:
    所述基站生成通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列。
  4. 根据权利要求3所述的方法,其特征在于,所述基站向所述UE发送所述通知信令之后,还包括:
    所述基站根据所述第二限制集合确定移位序号;
    所述基站根据所述第二限制集合以及所述移位序号获取循环移位值;
    所述基站根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
  5. 根据权利要求1或2所述的方法,其特征在于,所述基站生成通知信 令,所述通知信令用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列,包括:
    所述基站生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列。
  6. 根据权利要求5所述的方法,其特征在于,所述基站生成第二通知信令之前,还包括:
    所述基站根据所述第二限制集合确定所述移位序号,以使所述基站根据所述移位序号生成所述第二通知信令。
  7. 根据权利要求6所述的方法,其特征在于,所述基站向所述UE发送所述通知信令之后,还包括:
    所述基站根据所述第二限制集合以及所述移位序号获取循环移位值;
    所述基站根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
  8. 根据权利要求1或2所述的方法,其特征在于,所述基站生成通知信令,所述通知信令用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列,包括:
    所述基站生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列。
  9. 根据权利要求8所述的方法,其特征在于,所述基站生成第二通知信令之前,还包括:
    所述基站根据所述第二限制集合确定所述移位序号;
    所述基站根据所述第二限制集合以及所述移位序号获取所述循环移位值,以使所述基站根据所述循环移位值生成所述第二通知信令。
  10. 根据权利要求9所述的方法,其特征在于,所述基站向所述UE发送所述通知信令之后,还包括:
    所述基站根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
  11. 根据权利要求4、7或9任一项所述的方法,其特征在于,所述基站获取所述循环移位值,包括:
    所述基站根据移位序号v,采用如下公式(1),获取所述UE的循环移位值Cv
    Figure PCTCN2015080600-appb-100001
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离;v为移位序号;
    Figure PCTCN2015080600-appb-100002
    为一组内UE候选的序列移位的数目;NCS为一个用户所占的循环移位的数目。
  12. 根据权利要求4、6或9任一项所述的方法,其特征在于,所述基站获取所述移位序号,包括:
    所述基站在
    Figure PCTCN2015080600-appb-100003
    的范围内选择移位序号v,v为正整数;
    其中:
    Figure PCTCN2015080600-appb-100004
    为一组内UE候选的序列移位的数目;
    Figure PCTCN2015080600-appb-100005
    为组的数目;
    Figure PCTCN2015080600-appb-100006
    为最后一个不满一个组的长度内UE候选的序列移位的数目。
  13. 根据权利要求11或12所述的方法,其特征在于,所述
    Figure PCTCN2015080600-appb-100007
    dstart
    Figure PCTCN2015080600-appb-100008
    Figure PCTCN2015080600-appb-100009
    满足公式(2)~(5);
    其中,公式(2)~(5)分别为:
    Figure PCTCN2015080600-appb-100010
    Figure PCTCN2015080600-appb-100011
    Figure PCTCN2015080600-appb-100012
    Figure PCTCN2015080600-appb-100013
  14. 根据权利要求11或12所述的方法,其特征在于,所述
    Figure PCTCN2015080600-appb-100014
    dstart
    Figure PCTCN2015080600-appb-100015
    Figure PCTCN2015080600-appb-100016
    满足公式(6)~(9);
    其中,公式(6)~(9)分别为:
    Figure PCTCN2015080600-appb-100017
    Figure PCTCN2015080600-appb-100018
    Figure PCTCN2015080600-appb-100019
    Figure PCTCN2015080600-appb-100020
  15. 根据权利要求11或12所述的方法,其特征在于,所述
    Figure PCTCN2015080600-appb-100021
    dstart
    Figure PCTCN2015080600-appb-100022
    Figure PCTCN2015080600-appb-100023
    满足公式(10)~(13);
    其中,公式(10)~(13)分别为:
    Figure PCTCN2015080600-appb-100024
    Figure PCTCN2015080600-appb-100025
    Figure PCTCN2015080600-appb-100026
    Figure PCTCN2015080600-appb-100027
  16. 根据权利要求13~15任一项所述的方法,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100028
    dstart
    Figure PCTCN2015080600-appb-100029
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100030
    dstart
    Figure PCTCN2015080600-appb-100031
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100032
    dstart
    Figure PCTCN2015080600-appb-100033
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  17. 一种随机接入信道的ZC序列产生方法,其特征在于,包括:
    用户设备UE接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
    所述UE根据所述第二限制集合产生随机接入ZC序列;
    其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
  18. 根据权利要求17所述的方法,其特征在于,所述UE接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列,包括:
    所述UE接收来自基站的通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
    相应的,所述UE根据所述第二限制集合产生随机接入ZC序列,包括:
    所述UE根据所述第二限制集合确定移位序号;
    所述UE根据所述第二限制集合以及所述移位序号获取循环移位值;
    所述UE根据所述循环移位值产生随机接入ZC序列。
  19. 根据权利要求18所述的方法,其特征在于,所述UE根据所述第二限制集合确定移位序号,包括:
    所述UE在
    Figure PCTCN2015080600-appb-100034
    的范围内选择获取移位序号v,v为正整数;
    其中:
    Figure PCTCN2015080600-appb-100035
    为一组内UE候选的序列移位的数目;
    Figure PCTCN2015080600-appb-100036
    为组的数目;
    Figure PCTCN2015080600-appb-100037
    为最后一个不满一个组的长度内UE候选的序列移位的数目。
  20. 根据权利要求17所述的方法,其特征在于,所述UE接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列,包括:
    所述UE接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列;
    相应的,所述UE根据所述第二限制集合产生随机接入ZC序列,包括:
    所述UE根据所述第二限制集合以及所述移位序号获取循环移位值;
    所述UE根据所述循环移位值产生随机接入ZC序列。
  21. 根据权利要求18或20述的方法,其特征在于,所述UE根据所述第二限制集合以及所述移位序号获取循环移位值,包括:
    所述UE根据所述移位序号v,采用如下公式(1),获取循环移位值Cv
    Figure PCTCN2015080600-appb-100038
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离;v为移位序号;
    Figure PCTCN2015080600-appb-100039
    为一组内UE候选的序列移位的数目;NCS为一个用户所占的循环移位的数目。
  22. 根据权利要求17所述的方法,其特征在于,所述UE接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列,包括:
    所述UE接收来自基站的第一通知信令以及第二通知信令,所述第一通 知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列;
    相应的,所述UE根据所述第二限制集合产生随机接入ZC序列,包括:
    所述UE根据所述循环移位值产生随机接入ZC序列。
  23. 根据权利要求18、20或22任一项所述的方法,其特征在于,所述UE根据所述循环移位值产生随机接入ZC序列,包括:
    所述UE根据所述循环移位值,采用如下公式(14)产生随机接入ZC序列
    Figure PCTCN2015080600-appb-100040
    Figure PCTCN2015080600-appb-100041
    其中,NZC为序列长度;Cv为循环移位值;根为u的ZC序列定义为:
    Figure PCTCN2015080600-appb-100042
  24. 根据权利要求19或21所述的方法,其特征在于,所述
    Figure PCTCN2015080600-appb-100043
    dstart
    Figure PCTCN2015080600-appb-100044
    Figure PCTCN2015080600-appb-100045
    满足公式(2)~(5);
    其中,公式(2)~(5)分别为:
    Figure PCTCN2015080600-appb-100046
    Figure PCTCN2015080600-appb-100047
    Figure PCTCN2015080600-appb-100048
    Figure PCTCN2015080600-appb-100049
  25. 根据权利要求19或21所述的方法,其特征在于,所述
    Figure PCTCN2015080600-appb-100050
    dstart
    Figure PCTCN2015080600-appb-100051
    Figure PCTCN2015080600-appb-100052
    满足公式(6)~(9);
    其中,公式(6)~(9)分别为:
    Figure PCTCN2015080600-appb-100053
    Figure PCTCN2015080600-appb-100054
    Figure PCTCN2015080600-appb-100055
    Figure PCTCN2015080600-appb-100056
  26. 根据权利要求19或21所述的方法,其特征在于,所述
    Figure PCTCN2015080600-appb-100057
    dstart
    Figure PCTCN2015080600-appb-100058
    Figure PCTCN2015080600-appb-100059
    满足公式(10)~(13);
    其中,公式(10)~(13)分别为:
    Figure PCTCN2015080600-appb-100060
    Figure PCTCN2015080600-appb-100061
    Figure PCTCN2015080600-appb-100062
    Figure PCTCN2015080600-appb-100063
  27. 根据权利要求24~26任一项所述的方法,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100064
    dstart
    Figure PCTCN2015080600-appb-100065
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100066
    dstart
    Figure PCTCN2015080600-appb-100067
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100068
    dstart
    Figure PCTCN2015080600-appb-100069
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  28. 一种随机接入信道的ZC序列产生方法,其特征在于,包括:
    基站在
    Figure PCTCN2015080600-appb-100070
    的范围内选择移位序号v,其中,v为正整数,
    Figure PCTCN2015080600-appb-100071
    为一组内用户设备UE候选的序列移位的数目,
    Figure PCTCN2015080600-appb-100072
    为组的数目,
    Figure PCTCN2015080600-appb-100073
    为最后一个不满一个组的长度内UE候选的序列移位的数目;
    所述基站根据移位序号v,采用如下公式(1),获取循环移位值Cv
    Figure PCTCN2015080600-appb-100074
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
    Figure PCTCN2015080600-appb-100075
    为一组内UE候选的序列移位的数目,NCS为一个用户所占的循环移位的数目;
    其中,所述
    Figure PCTCN2015080600-appb-100076
    dstart
    Figure PCTCN2015080600-appb-100077
    满足公式(2)~(5);或者,所述
    Figure PCTCN2015080600-appb-100078
    dstart
    Figure PCTCN2015080600-appb-100079
    满足公式(6)~(9);或者,所述
    Figure PCTCN2015080600-appb-100080
    dstart
    Figure PCTCN2015080600-appb-100081
    满足公式(10)~(13);
    Figure PCTCN2015080600-appb-100082
    Figure PCTCN2015080600-appb-100083
    Figure PCTCN2015080600-appb-100084
    Figure PCTCN2015080600-appb-100085
    Figure PCTCN2015080600-appb-100086
    Figure PCTCN2015080600-appb-100087
    Figure PCTCN2015080600-appb-100088
    Figure PCTCN2015080600-appb-100089
    Figure PCTCN2015080600-appb-100090
    Figure PCTCN2015080600-appb-100091
    Figure PCTCN2015080600-appb-100092
    Figure PCTCN2015080600-appb-100093
  29. 根据权利要求28所述的方法,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100094
    dstart
    Figure PCTCN2015080600-appb-100095
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100096
    dstart
    Figure PCTCN2015080600-appb-100097
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100098
    dstart
    Figure PCTCN2015080600-appb-100099
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  30. 一种随机接入信道的ZC序列产生方法,其特征在于,包括:
    用户设备UE在
    Figure PCTCN2015080600-appb-100100
    的范围内选择移位序号v,其中,v为正整数,
    Figure PCTCN2015080600-appb-100101
    为一组内UE候选的序列移位的数目,
    Figure PCTCN2015080600-appb-100102
    为组的数目,
    Figure PCTCN2015080600-appb-100103
    为最后一个不满一个组的长度内UE候选的序列移位的数目;
    所述UE根据移位序号v,采用如下公式(1),获取循环移位值Cv
    Figure PCTCN2015080600-appb-100104
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
    Figure PCTCN2015080600-appb-100105
    为一组内UE候选的序列移位的数目,NCS为一个用户所占的循环移位的数目;
    所述UE根据所述循环移位值Cv,采用如下公式(14)产生随机接入ZC序列
    Figure PCTCN2015080600-appb-100106
    Figure PCTCN2015080600-appb-100107
    其中,NZC为序列长度,根为u的ZC序列定义为:
    Figure PCTCN2015080600-appb-100108
    其中,所述
    Figure PCTCN2015080600-appb-100109
    dstart
    Figure PCTCN2015080600-appb-100110
    满足公式(2)~(5);或者,所述
    Figure PCTCN2015080600-appb-100111
    dstart
    Figure PCTCN2015080600-appb-100112
    满足公式(6)~(9);或者,所述
    Figure PCTCN2015080600-appb-100113
    dstart
    Figure PCTCN2015080600-appb-100114
    满足公式(10)~(13);
    Figure PCTCN2015080600-appb-100115
    Figure PCTCN2015080600-appb-100116
    Figure PCTCN2015080600-appb-100117
    Figure PCTCN2015080600-appb-100118
    Figure PCTCN2015080600-appb-100119
    Figure PCTCN2015080600-appb-100120
    Figure PCTCN2015080600-appb-100121
    Figure PCTCN2015080600-appb-100122
    Figure PCTCN2015080600-appb-100123
    Figure PCTCN2015080600-appb-100124
    Figure PCTCN2015080600-appb-100125
    Figure PCTCN2015080600-appb-100126
  31. 根据权利要求30所述的方法,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100127
    dstart
    Figure PCTCN2015080600-appb-100128
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100129
    dstart
    Figure PCTCN2015080600-appb-100130
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100131
    dstart
    Figure PCTCN2015080600-appb-100132
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  32. 一种基站,其特征在于,包括:
    生成模块,用于生成通知信令,所述通知信令用于指示用户设备UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
    发送模块,用于向所述UE发送所述通知信令,以使所述UE使用所述第二限制集合产生随机接入ZC序列;
    其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;
    所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合,所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
  33. 根据权利要求32所述的基站,其特征在于,还包括:
    获取模块,用于获取所述UE的多普勒频移;
    所述生成模块,具体用于:若所述UE的多普勒频移大于或等于所述第一预定值,则生成通知信令,所述通知信令用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列。
  34. 根据权利要求32或33所述的基站,其特征在于,所述生成模块, 具体用于:
    生成通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列。
  35. 根据权利要求34所述的基站,其特征在于,还包括:
    移位序号确定模块,用于根据所述第二限制集合确定移位序号;
    循环移位值确定模块,用于根据所述第二限制集合以及所述移位序号获取循环移位值;
    随机接入ZC序列检测模块,用于根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
  36. 根据权利要求32或33所述的基站,其特征在于,所述生成模块,具体用于:
    生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列。
  37. 根据权利要求36所述的基站,其特征在于,还包括:
    移位序号确定模块,用于根据所述第二限制集合确定所述移位序号,以使所述生成模块根据所述移位序号生成所述第二通知信令。
  38. 根据权利要求37所述的基站,其特征在于,还包括:
    循环移位值确定模块,用于根据所述第二限制集合以及所述移位序号获取循环移位值;
    随机接入ZC序列检测模块,用于根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
  39. 根据权利要求32或33所述的基站,其特征在于,所述生成模块,具体用于:
    生成第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集 合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列。
  40. 根据权利要求39所述的基站,其特征在于,还包括:
    移位序号确定模块,用于根据所述第二限制集合确定移位序号;
    循环移位值确定模块,用于根据所述第二限制集合以及所述移位序号获取所述循环移位值,以使所述生成模块根据所述循环移位值生成所述第二通知信令。
  41. 根据权利要求40所述的基站,其特征在于,还包括:
    随机接入ZC序列检测模块,用于根据所述循环移位值产生ZC序列,使用所述ZC序列对所述UE发送的随机接入ZC序列进行检测,所述随机接入ZC序列为所述UE使用所述第二限制集合产生。
  42. 根据权利要求35、38或40任一项所述的基站,其特征在于,所述循环移位值确定模块,具体用于:
    根据移位序号v,采用如下公式(1),获取所述UE的循环移位值Cv
    Figure PCTCN2015080600-appb-100133
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离;v为移位序号;
    Figure PCTCN2015080600-appb-100134
    为一组内UE候选的序列移位的数目;NCS为一个用户所占的循环移位的数目。
  43. 根据权利要求35、37或40任一项所述的基站,其特征在于,所述移位序号确定模块,具体用于:
    Figure PCTCN2015080600-appb-100135
    的范围内选择移位序号v,v为正整数;
    其中:
    Figure PCTCN2015080600-appb-100136
    为一组内UE候选的序列移位的数目;
    Figure PCTCN2015080600-appb-100137
    为组的数目;
    Figure PCTCN2015080600-appb-100138
    为最后一个不满一个组的长度内UE候选的序列移位的数目。
  44. 根据权利要求42或43所述的基站,其特征在于,所述
    Figure PCTCN2015080600-appb-100139
    dstart
    Figure PCTCN2015080600-appb-100140
    Figure PCTCN2015080600-appb-100141
    满足公式(2)~(5);
    其中,公式(2)~(5)分别为:
    Figure PCTCN2015080600-appb-100142
    Figure PCTCN2015080600-appb-100143
    Figure PCTCN2015080600-appb-100144
    Figure PCTCN2015080600-appb-100145
  45. 根据权利要求42或43所述的基站,其特征在于,所述
    Figure PCTCN2015080600-appb-100146
    dstart
    Figure PCTCN2015080600-appb-100147
    Figure PCTCN2015080600-appb-100148
    满足公式(6)~(9);
    其中,公式(6)~(9)分别为:
    Figure PCTCN2015080600-appb-100149
    Figure PCTCN2015080600-appb-100150
    Figure PCTCN2015080600-appb-100151
    Figure PCTCN2015080600-appb-100152
  46. 根据权利要求42或43所述的基站,其特征在于,所述
    Figure PCTCN2015080600-appb-100153
    dstart
    Figure PCTCN2015080600-appb-100154
    Figure PCTCN2015080600-appb-100155
    满足公式(10)~(13);
    其中,公式(10)~(13)分别为:
    Figure PCTCN2015080600-appb-100156
    Figure PCTCN2015080600-appb-100157
    Figure PCTCN2015080600-appb-100158
    Figure PCTCN2015080600-appb-100159
  47. 根据权利要求44~46任一项所述的基站,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100160
    dstart
    Figure PCTCN2015080600-appb-100161
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100162
    dstart
    Figure PCTCN2015080600-appb-100163
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100164
    dstart
    Figure PCTCN2015080600-appb-100165
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  48. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收来自基站的通知信令,所述通知信令用于指示所述UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
    生成模块,用于根据所述第二限制集合产生随机接入ZC序列;
    其中,所述随机接入集合,包括:非限制集合、第一限制集合以及第二限制集合;所述第二限制集合为所述UE的多普勒频移大于或等于第一预定值时,所述UE需要使用的随机接入集合;所述第一预定值大于1倍的物理随机接入信道PRACH子载波间隔。
  49. 根据权利要求48所述的UE,其特征在于,所述接收模块,具体用 于:
    接收来自基站的通知信令,所述通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;
    所述生成模块,包括:
    移位序号确定模块,用于根据所述第二限制集合确定移位序号;
    循环移位值确定模块,用于根据所述第二限制集合以及所述移位序号获取循环移位值;
    随机接入ZC序列产生模块,用于根据所述循环移位值产生随机接入ZC序列。
  50. 根据权利要求49所述的UE,其特征在于,所述移位序号确定模块,具体用于:
    Figure PCTCN2015080600-appb-100166
    的范围内选择获取移位序号v,v为正整数;
    其中:
    Figure PCTCN2015080600-appb-100167
    为一组内UE候选的序列移位的数目;
    Figure PCTCN2015080600-appb-100168
    为组的数目;
    Figure PCTCN2015080600-appb-100169
    为最后一个不满一个组的长度内UE候选的序列移位的数目。
  51. 根据权利要求48所述的UE,其特征在于,所述接收模块,具体用于:
    接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含移位序号,所述移位序号用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述移位序号产生随机接入ZC序列;
    所述生成模块,包括:
    循环移位值确定模块,用于根据所述第二限制集合以及所述移位序号获取循环移位值;
    随机接入ZC序列产生模块,用于根据所述循环移位值产生随机接入ZC序列。
  52. 根据权利要求49或51所述的UE,其特征在于,所述循环移位值确定模块,具体用于:
    根据所述移位序号v,采用如下公式(1),获取循环移位值Cv
    Figure PCTCN2015080600-appb-100170
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离;v为移位序号;
    Figure PCTCN2015080600-appb-100171
    为一组可以区分的用户数;NCS为一个用户所占的循环移位的数目。
  53. 根据权利要求49所述的UE,其特征在于,所述接收模块,具体用于:
    接收来自基站的第一通知信令以及第二通知信令,所述第一通知信令中包含集合指示信息,所述集合指示信息用于指示UE使用随机接入集合中的第二限制集合产生随机接入ZC序列;所述第二通知信令中包含循环移位值,所述循环移位值用于指示UE使用所述集合指示信息所指示的第二限制集合以及所述循环移位值产生随机接入ZC序列;
    所述生成模块,包括:
    随机接入ZC序列产生模块,用于根据所述循环移位值产生随机接入ZC序列。
  54. 根据权利要求49、51或53任一项所述的UE,其特征在于,所述随机接入ZC序列产生模块,具体用于:
    根据所述循环移位值,采用如下公式(14)产生随机接入ZC序列
    Figure PCTCN2015080600-appb-100172
    Figure PCTCN2015080600-appb-100173
    其中,NZC为序列长度;Cv为循环移位值;根为u的ZC序列定义为:
    Figure PCTCN2015080600-appb-100174
  55. 根据权利要求50或52所述的UE,其特征在于,所述
    Figure PCTCN2015080600-appb-100175
    dstart
    Figure PCTCN2015080600-appb-100176
    Figure PCTCN2015080600-appb-100177
    满足公式(2)~(5);
    其中,公式(2)~(5)分别为:
    Figure PCTCN2015080600-appb-100178
    Figure PCTCN2015080600-appb-100179
    Figure PCTCN2015080600-appb-100180
    Figure PCTCN2015080600-appb-100181
  56. 根据权利要求50或52所述的UE,其特征在于,所述
    Figure PCTCN2015080600-appb-100182
    dstart
    Figure PCTCN2015080600-appb-100183
    Figure PCTCN2015080600-appb-100184
    满足公式(6)~(9);
    其中,公式(6)~(9)分别为:
    Figure PCTCN2015080600-appb-100185
    Figure PCTCN2015080600-appb-100186
    Figure PCTCN2015080600-appb-100187
    Figure PCTCN2015080600-appb-100188
  57. 根据权利要求50或52所述的UE,其特征在于,所述
    Figure PCTCN2015080600-appb-100189
    dstart
    Figure PCTCN2015080600-appb-100190
    Figure PCTCN2015080600-appb-100191
    满足公式(10)~(13);
    其中,公式(10)~(13)分别为:
    Figure PCTCN2015080600-appb-100192
    Figure PCTCN2015080600-appb-100193
    Figure PCTCN2015080600-appb-100194
    Figure PCTCN2015080600-appb-100195
  58. 根据权利要求55~57任一项所述的UE,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100196
    dstart
    Figure PCTCN2015080600-appb-100197
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100198
    dstart
    Figure PCTCN2015080600-appb-100199
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100200
    dstart
    Figure PCTCN2015080600-appb-100201
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  59. 一种基站,其特征在于,包括:
    移位序号确定模块,用于在
    Figure PCTCN2015080600-appb-100202
    的范围内选择移位序号v,其中,v为正整数,
    Figure PCTCN2015080600-appb-100203
    为一组内用户设备UE候选的序列移位的数目,
    Figure PCTCN2015080600-appb-100204
    为组的数目,
    Figure PCTCN2015080600-appb-100205
    为最后一个不满一个组的长度内UE候选的序列移位的数目;
    循环移位值确定模块,用于根据移位序号v,采用如下公式(1),获取循环移位值Cv
    Figure PCTCN2015080600-appb-100206
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
    Figure PCTCN2015080600-appb-100207
    为一组可以区分的用户数,NCS为一个用户所占的循环移位的数目;
    其中,所述
    Figure PCTCN2015080600-appb-100208
    dstart
    Figure PCTCN2015080600-appb-100209
    满足公式(2)~(5);或者,所述
    Figure PCTCN2015080600-appb-100210
    dstart
    Figure PCTCN2015080600-appb-100211
    满足公式(6)~(9);或者,所述
    Figure PCTCN2015080600-appb-100212
    dstart
    Figure PCTCN2015080600-appb-100213
    满足公式(10)~(13);
    Figure PCTCN2015080600-appb-100214
    Figure PCTCN2015080600-appb-100215
    Figure PCTCN2015080600-appb-100216
    Figure PCTCN2015080600-appb-100217
    Figure PCTCN2015080600-appb-100218
    Figure PCTCN2015080600-appb-100219
    Figure PCTCN2015080600-appb-100220
    Figure PCTCN2015080600-appb-100221
    Figure PCTCN2015080600-appb-100222
    Figure PCTCN2015080600-appb-100223
    Figure PCTCN2015080600-appb-100224
    Figure PCTCN2015080600-appb-100225
  60. 根据权利要求59所述的基站,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100226
    dstart
    Figure PCTCN2015080600-appb-100227
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100228
    dstart
    Figure PCTCN2015080600-appb-100229
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100230
    dstart
    Figure PCTCN2015080600-appb-100231
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
  61. 一种用户设备UE,其特征在于,包括:
    移位序号确定模块,用于在
    Figure PCTCN2015080600-appb-100232
    的范围内选择移位序号v,其中,v为正整数,
    Figure PCTCN2015080600-appb-100233
    为一组内UE候选的序列移位的数目,
    Figure PCTCN2015080600-appb-100234
    为组的数目,
    Figure PCTCN2015080600-appb-100235
    为最后一个不满一个组的长度内UE候选的序列移位的数目;
    循环移位值确定模块,根据移位序号v,采用如下公式(1),获取循环移位值Cv
    Figure PCTCN2015080600-appb-100236
    其中,doffset为移位偏移;dstart为相邻组之间的循环移位距离,
    Figure PCTCN2015080600-appb-100237
    为一组内UE候选的序列移位的数目,NCS为一个用户所占的循环移位的数目;
    随机接入ZC序列产生模块,用于根据所述循环移位值Cv,采用如下公式(14)产生随机接入ZC序列
    Figure PCTCN2015080600-appb-100238
    Figure PCTCN2015080600-appb-100239
    其中,NZC为序列长度,根为u的ZC序列定义为:
    Figure PCTCN2015080600-appb-100240
    其中,所述
    Figure PCTCN2015080600-appb-100241
    dstart
    Figure PCTCN2015080600-appb-100242
    满足公式(2)~(5);或者,所述
    Figure PCTCN2015080600-appb-100243
    dstart
    Figure PCTCN2015080600-appb-100244
    满足公式(6)~(9);或者,所述
    Figure PCTCN2015080600-appb-100245
    dstart
    Figure PCTCN2015080600-appb-100246
    满足公式(10)~(13);
    Figure PCTCN2015080600-appb-100247
    Figure PCTCN2015080600-appb-100248
    Figure PCTCN2015080600-appb-100249
    Figure PCTCN2015080600-appb-100250
    Figure PCTCN2015080600-appb-100251
    Figure PCTCN2015080600-appb-100252
    Figure PCTCN2015080600-appb-100253
    Figure PCTCN2015080600-appb-100254
    Figure PCTCN2015080600-appb-100255
    Figure PCTCN2015080600-appb-100256
    Figure PCTCN2015080600-appb-100257
    Figure PCTCN2015080600-appb-100258
  62. 根据权利要求61所述的UE,其特征在于,当NCS≤du<NZC/5时,
    Figure PCTCN2015080600-appb-100259
    dstart
    Figure PCTCN2015080600-appb-100260
    满足公式(2)~(5);当NZC/5≤du≤(NZC-NCS)/4时,
    Figure PCTCN2015080600-appb-100261
    dstart
    Figure PCTCN2015080600-appb-100262
    满足公式(6)~(9);当(NZC+NCS)/4≤du≤(NZC-NCS)/3时,
    Figure PCTCN2015080600-appb-100263
    dstart
    Figure PCTCN2015080600-appb-100264
    满足公式(10)~(13);
    其中,du为多普勒频移为1倍的PRACH子载波间隔时ZC序列对应的循环移位。
PCT/CN2015/080600 2014-06-03 2015-06-02 随机接入信道的zc序列产生方法和装置 WO2015184977A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2016151755A RU2658551C1 (ru) 2014-06-03 2015-06-02 Способ и устройство для генерирования последовательности zc канала случайного доступа
EP18177149.4A EP3404860B1 (en) 2014-06-03 2015-06-02 Method for generating random access channel zc sequence, and apparatus
CN201580003093.6A CN105830521B (zh) 2014-06-03 2015-06-02 随机接入信道的zc序列产生方法和装置
EP15803394.4A EP3142448B1 (en) 2014-06-03 2015-06-02 Method and device for generating zc sequence of random access channel
JP2016571278A JP6302097B2 (ja) 2014-06-03 2015-06-02 ランダム・アクセス・チャネル・zcシーケンスを生成するための方法、および装置
US15/367,545 US10524292B2 (en) 2014-06-03 2016-12-02 Method for generating random access channel ZC sequence, and apparatus
US16/705,979 US11013039B2 (en) 2014-06-03 2019-12-06 Method for generating random access channel ZC sequence, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2014/079086 2014-06-03
CNPCT/CN2014/079086 2014-06-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNPCT/CN2014/079086 Continuation 2014-06-03 2014-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/367,545 Continuation US10524292B2 (en) 2014-06-03 2016-12-02 Method for generating random access channel ZC sequence, and apparatus

Publications (1)

Publication Number Publication Date
WO2015184977A1 true WO2015184977A1 (zh) 2015-12-10

Family

ID=54766163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080600 WO2015184977A1 (zh) 2014-06-03 2015-06-02 随机接入信道的zc序列产生方法和装置

Country Status (6)

Country Link
US (2) US10524292B2 (zh)
EP (2) EP3404860B1 (zh)
JP (2) JP6302097B2 (zh)
CN (4) CN112235875A (zh)
RU (2) RU2693317C2 (zh)
WO (1) WO2015184977A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058478A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 一种随机接入前导序列的生成方法及用户设备
US10499437B2 (en) 2015-09-25 2019-12-03 Huawei Technologies Co., Ltd. Random access sequence generation method, device, and system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404860B1 (en) 2014-06-03 2023-08-02 Huawei Technologies Co., Ltd. Method for generating random access channel zc sequence, and apparatus
US10582545B2 (en) * 2015-08-17 2020-03-03 Alcatel Lucent System and method for controlling network traffic by restricting a set of cyclic shifts for long-term evolution (LTE) physical random access channel (PRACH) preambles
CN108141295B (zh) * 2015-10-19 2020-03-10 华为技术有限公司 通过基于网络的贪婪序列选择和交换减轻小区间导频干扰
US10973055B2 (en) * 2016-10-20 2021-04-06 Alcatel Lucent System and method for preamble sequence transmission and reception to control network traffic
CN109714826A (zh) * 2017-10-26 2019-05-03 珠海市魅族科技有限公司 随机接入信道子载波带宽的配置或接收方法及装置
CN111465099B (zh) * 2019-01-18 2023-05-02 中国信息通信研究院 一种上行接入共享方法和设备
CN112822786A (zh) * 2019-10-31 2021-05-18 华为技术有限公司 一种数据处理方法及其装置
CN111988258B (zh) * 2020-09-02 2021-05-04 南京林业大学 一种基于Zadoff-Chu序列的随机接入信号集合设计方法
WO2024032562A1 (zh) * 2022-08-09 2024-02-15 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036408A (zh) * 2009-09-30 2011-04-27 意法-爱立信公司 用于传输和接收随机接入前导的设备和方法
CN102119577A (zh) * 2008-06-12 2011-07-06 爱立信电话股份有限公司 随机接入模式控制方法和实体
CN102611673A (zh) * 2007-01-05 2012-07-25 Lg电子株式会社 在考虑了频率偏移的情况下设定循环移位的方法
CN103634926A (zh) * 2012-08-29 2014-03-12 中兴通讯股份有限公司 一种高速移动环境下终端的随机接入方法及随机接入系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944935B1 (en) * 2007-01-05 2012-05-23 LG Electronics Inc. Method for setting cyclic shift considering frequency offset
WO2008100009A1 (en) 2007-02-12 2008-08-21 Lg Electronics Inc. Methods and procedures for high speed ue access
JP5114502B2 (ja) 2007-03-16 2013-01-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてランダムアクセスプリアンブル生成方法
US8773968B2 (en) * 2007-08-06 2014-07-08 Texas Instruments Incorporated Signaling of random access preamble sequences in wireless networks
US20090073944A1 (en) * 2007-09-17 2009-03-19 Jing Jiang Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
CN101466153A (zh) 2009-01-07 2009-06-24 中兴通讯股份有限公司 一种无线通信系统中完成随机接入响应发送的方法及基站
CN101651986B (zh) * 2009-06-22 2015-08-12 中兴通讯股份有限公司 多天线系统物理上行控制信道资源分配映射方法和系统
CN102340472B (zh) * 2010-07-23 2015-01-14 普天信息技术研究院有限公司 生成频域zc序列的方法及基于zc序列的随机接入方法
CN102469466B (zh) * 2010-11-11 2015-05-06 华为技术有限公司 一种干扰处理方法与装置
CN102307054B (zh) * 2011-09-20 2014-04-09 电子科技大学 一种直接序列扩频信号的捕获方法
CN103200694B (zh) * 2012-01-09 2017-04-12 华为技术有限公司 一种通信系统中的随机接入方法及装置
WO2014092411A1 (ko) * 2012-12-11 2014-06-19 엘지전자 주식회사 반송파 결합을 지원하는 무선접속 시스템에서 상향링크 동기 획득 방법 및 장치
JP5982584B2 (ja) * 2013-01-24 2016-08-31 エルジー エレクトロニクス インコーポレイティド 搬送波結合を支援する無線接続システムにおいてセカンダリセルを追加するための方法及びそれを支援する装置
US10225811B2 (en) * 2013-01-28 2019-03-05 Lg Electronics Inc. Method for obtaining synchronization between devices in wireless access system supporting device-to-device communication, and device supporting same
CN103079227B (zh) 2013-02-05 2015-04-29 武汉邮电科学研究院 一种用于lte系统的随机接入检测方法和系统
CN103259755B (zh) * 2013-04-08 2016-02-10 东南大学 一种全域覆盖多波束卫星lte的主同步序列设计方法
EP3404860B1 (en) * 2014-06-03 2023-08-02 Huawei Technologies Co., Ltd. Method for generating random access channel zc sequence, and apparatus
WO2016048003A1 (ko) * 2014-09-22 2016-03-31 엘지전자 주식회사 Prach 자원 상의 d2d 신호 송수신을 위한 방법 및 장치
CN107006034A (zh) * 2015-04-24 2017-08-01 华为技术有限公司 上行随机接入的方法及相关设备
US10582545B2 (en) * 2015-08-17 2020-03-03 Alcatel Lucent System and method for controlling network traffic by restricting a set of cyclic shifts for long-term evolution (LTE) physical random access channel (PRACH) preambles
RU2677640C1 (ru) * 2015-09-25 2019-01-18 Хуавей Текнолоджиз Ко., Лтд. Способ, устройство и система для генерирования последовательности произвольного доступа
US10499434B2 (en) * 2015-09-25 2019-12-03 Intel Corporation Mobile terminal device and method for processing signals
KR102622879B1 (ko) * 2016-02-03 2024-01-09 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
EP4346116A3 (en) * 2016-06-15 2024-05-08 InterDigital Patent Holdings, Inc. Random access procedures in next generation networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611673A (zh) * 2007-01-05 2012-07-25 Lg电子株式会社 在考虑了频率偏移的情况下设定循环移位的方法
CN102119577A (zh) * 2008-06-12 2011-07-06 爱立信电话股份有限公司 随机接入模式控制方法和实体
CN102036408A (zh) * 2009-09-30 2011-04-27 意法-爱立信公司 用于传输和接收随机接入前导的设备和方法
CN103634926A (zh) * 2012-08-29 2014-03-12 中兴通讯股份有限公司 一种高速移动环境下终端的随机接入方法及随机接入系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499437B2 (en) 2015-09-25 2019-12-03 Huawei Technologies Co., Ltd. Random access sequence generation method, device, and system
US11395342B2 (en) 2015-09-25 2022-07-19 Huawei Technologies Co., Ltd. Random access sequence generation method, device, and system
WO2018058478A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 一种随机接入前导序列的生成方法及用户设备
US10932299B2 (en) 2016-09-29 2021-02-23 Huawei Technologies Co., Ltd. Random access preamble sequence generation method and user equipment
US11678377B2 (en) 2016-09-29 2023-06-13 Huawei Technologies Co., Ltd. Random access preamble sequence generation method and user equipment

Also Published As

Publication number Publication date
CN111314013B (zh) 2021-04-13
RU2018119714A (ru) 2018-11-09
JP6799023B2 (ja) 2020-12-09
US11013039B2 (en) 2021-05-18
RU2693317C2 (ru) 2019-07-02
US20170086228A1 (en) 2017-03-23
CN111314013A (zh) 2020-06-19
CN109167646A (zh) 2019-01-08
CN112235875A (zh) 2021-01-15
EP3404860B1 (en) 2023-08-02
JP6302097B2 (ja) 2018-03-28
US10524292B2 (en) 2019-12-31
EP3142448B1 (en) 2018-08-15
EP3142448A1 (en) 2017-03-15
RU2018119714A3 (zh) 2019-02-05
EP3404860A1 (en) 2018-11-21
JP2017523653A (ja) 2017-08-17
CN105830521A (zh) 2016-08-03
JP2018088718A (ja) 2018-06-07
CN109167646B (zh) 2020-01-03
US20200112998A1 (en) 2020-04-09
CN105830521B (zh) 2020-03-20
RU2658551C1 (ru) 2018-06-22
EP3142448A4 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2015184977A1 (zh) 随机接入信道的zc序列产生方法和装置
US10212680B2 (en) Synchronization signal sending and receiving method, apparatus, and device
CN106535351B (zh) 传输数据的方法和装置
WO2017049639A1 (zh) 随机接入序列的产生方法、设备及系统
CN111769927B (zh) 传输导频序列的方法和装置
TWI764919B (zh) 傳輸信號的方法和裝置
EP3226638A1 (en) Message transmission method and apparatus
CN111757503A (zh) 一种资源确定方法和装置
RU2020114223A (ru) Канал и растр синхронизации
WO2017132967A1 (zh) 数据发送方法、数据接收方法、用户设备及基站
TWI733933B (zh) 傳輸上行訊號的方法、終端設備和網路側設備
CN114208311B (zh) 终端装置、基站装置以及通信方法
JP7322213B2 (ja) ランダムアクセス系列生成方法、デバイス及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015803394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803394

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016151755

Country of ref document: RU

Kind code of ref document: A