WO2015184869A1 - 逆变器的控制方法及逆变器 - Google Patents

逆变器的控制方法及逆变器 Download PDF

Info

Publication number
WO2015184869A1
WO2015184869A1 PCT/CN2015/073300 CN2015073300W WO2015184869A1 WO 2015184869 A1 WO2015184869 A1 WO 2015184869A1 CN 2015073300 W CN2015073300 W CN 2015073300W WO 2015184869 A1 WO2015184869 A1 WO 2015184869A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
inverter module
grid
module
power
Prior art date
Application number
PCT/CN2015/073300
Other languages
English (en)
French (fr)
Inventor
陈景熙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015184869A1 publication Critical patent/WO2015184869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to the field of inverter technologies, and in particular, to a method and a inverter for controlling an inverter in a power grid system.
  • a power grid system such as a solar photovoltaic power generation system
  • a solar cell array power supply device
  • a photovoltaic grid-connected inverter inverter
  • the grid inverter is used to convert the direct current generated by the solar array into alternating current to the grid or directly to the alternating current load.
  • the solar cell array when the light intensity is low, the solar cell array outputs lower power, and the photovoltaic grid-connected inverter is in light-load operation, and its power conversion
  • the efficiency is relatively low, so the efficiency of the entire solar photovoltaic grid-connected system is relatively low, and the photovoltaic photovoltaic grid-connected inverter (that is, the photovoltaic grid-connected inverter is formed by parallel connection of multiple inverter modules)
  • the system can improve the operating efficiency of the system by reasonably controlling the number of modules connected to the grid, thereby improving the economic benefits of the solar photovoltaic grid-connected system.
  • the current common control method is to detect the maximum power output of the solar photovoltaic array by the maximum power point tracking (MPPT) algorithm.
  • MPPT maximum power point tracking
  • the maximum efficiency point of the inverter module is generally not full, and most of the inverter modules working in the line are fully loaded, so the efficiency of the inverter does not reach the maximum;
  • the full load operation state some inverter modules are in light load/shutdown state, resulting in a large difference in working time and state of each inverter module, and the life of each inverter module will be greatly different, which leads to the life of the inverter. too short.
  • the invention provides a control method and an inverter for an inverter in a power grid system, and enhances the efficiency of the inverter by controlling the inverter module in the inverter.
  • the present invention provides a method for controlling an inverter in a power grid system.
  • the inverter includes a main inverter module and at least one slave inverter module.
  • the control method includes: acquiring the main inverter module in real time. Network power; when the grid-connected power is increased to the first power threshold, a slave inverter module is activated; the slave inverter module and the master inverter module that control the new activation are operated in the grid-connected current mode, and the grid-connected current mode is The current sharing algorithm realizes the grid-connected current sharing of the newly activated slave inverter module and the main inverter module.
  • control method in the foregoing embodiment further includes: when the grid-connected power is reduced to the second power threshold, according to the activation sequence of the slave inverter module, The sleep rule is determined and hibernates from the inverter module.
  • control method in the foregoing embodiment further includes: obtaining a correspondence between the grid-connected efficiency of the inverter module and the grid-connected power, and determining the first power threshold according to the maximum grid-connected efficiency and the corresponding relationship.
  • control method in the foregoing embodiment further includes: obtaining a real-time maximum output power of the power supply device, and adjusting a grid-connected power of the main inverter module according to the real-time maximum output power.
  • the step of obtaining the real-time maximum output power of the power supply device in the foregoing embodiment includes: controlling the main inverter module to obtain the real-time power supply voltage and the power supply current of the power supply device, and tracking the real-time maximum output power by using the maximum power point tracking algorithm MPPT.
  • control method in the foregoing embodiment further includes: transmitting, by the main inversion module, the tracking result of the real-time maximum output power by using the maximum power point tracking algorithm MPPT to the newly activated slave inverter module.
  • control method in the foregoing embodiment further includes: selecting one of all the inverter modules of the inverter as the main inverter module according to the rotation order, and the others functioning as the slave inverter module.
  • the invention also provides an inverter, in one embodiment, the inverter comprises a main inverter module, At least one slave inverter module, and a controller, the controller is configured to acquire the grid-connected power of the main inverter module in real time, and when the grid-connected power increases to the first power threshold, activate a slave inverter module and control the newly activated
  • the inverter module and the main inverter module work in the grid-connected current sharing mode; the grid-connected current sharing mode realizes the grid-connected current equalization and current sharing of the newly activated slave inverter module and the main inverter module through the current sharing algorithm;
  • the variable module and at least one slave inverter module operate under the control of the controller.
  • the controller in the foregoing embodiment is further configured to: when the at least one slave inverter module is activated, if the grid-connected power is reduced to the second power threshold, according to the activation sequence of the slave inverter module, the first sleep is activated according to the first activation.
  • the rules are determined and hibernate from the inverter module.
  • controller in the foregoing embodiment is further configured to select one of all the inverter modules of the inverter as the main inverter module according to the rotation order, and the rest serve as the slave inverter module.
  • the solution provided by the present invention activates a new slave inverter module when the grid-connected power of the main inverter module is increased to the first power threshold, and causes the master-slave inverter module to operate in the grid-connected current mode.
  • the active and slave master-slave inverter modules are not fully loaded.
  • the inverter has greater efficiency.
  • the activated master-slave inverter module is connected to the grid. Work, at work, the state of each inverter module is the same, which can extend the service life of the inverter; optionally, the inverter module is controlled by first activating the rules of sleep first, which alleviates the work of the inverter module to a certain extent.
  • Different time conditions can extend the service life of the inverter; optionally, since the main inverter module works all the time, after the inverter is turned on, one of all the inverter modules in the inverter is selected by rotation.
  • the operating time of the inverter module can be optionally alleviated; optionally, multiple inverters are implemented by transmitting the MPPT tracking result of the main inverter module to the slave inverter module. Simultaneous tracking of the module enhances tracking and reduces energy loss.
  • Figure 1 is a corresponding diagram of the grid-connected efficiency of the inverter module and the grid-connected power
  • FIG. 2 is a schematic structural diagram of an inverter according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of a control method according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a control method according to a third embodiment of the present invention.
  • Figure 5a is a schematic view of a power grid system in a third embodiment of the present invention.
  • Figure 5b is a schematic diagram of the workflow in the third embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an inverter according to a first embodiment of the present invention.
  • the inverter 2 provided by the present invention includes: a main inverter module 21 and at least one slave inverter. Module 22, and controller 23, wherein
  • the controller 23 is configured to: acquire the grid-connected power of the main inverter module 21 in real time, activate a slave inverter module 22, and control the newly activated slave inverter module 22 when the grid-connected power is increased to the first power threshold.
  • the main inverter module 21 operates in the grid-connected current sharing mode; the grid-connected power refers to the power input by the inverter module to the power supply grid, and can be calculated by detecting the output current of the inverter module (the output voltage is generally a fixed value).
  • the grid-connected current sharing mode is a parallel current sharing of the grid-connected current from the inverter module 22 and the main inverter module 21 that is newly activated by the current sharing algorithm;
  • the main inverter module 21 and at least one slave inverter module 22 operate under the control of the controller 23.
  • the controller 23 in the embodiment shown in FIG. 2 is further configured to: when the at least one slave inverter module activates 22, if the grid-connected power is reduced to the second power threshold, according to the slave inverter module 22 The activation sequence is determined and suspended from the inverter module 22 in accordance with the rule of first activating sleep first.
  • the controller 23 in the embodiment shown in FIG. 2 is further configured to select one of all inverter modules of the inverter as the main inverter module 21 in the order of rotation, and the rest as the slave inverter module 22 .
  • the inverter module involved in the present application can be either a module in a modular photovoltaic inverter or a power unit capable of performing an independent inverter function in a centralized photovoltaic inverter.
  • FIG. 3 is a flowchart of a control method according to a second embodiment of the present invention.
  • the control method provided by the present invention includes the following steps:
  • S302 activate a slave inverter module when the grid-connected power increases to a first power threshold.
  • S303 controlling the newly activated slave inverter module and the main inverter module to operate in the grid-connected current sharing mode, and the grid-connected current mode is a grid-connected current of the newly activated slave inverter module and the main inverter module by the current sharing algorithm. Equalize the current.
  • the control method shown in FIG. 3 further includes: when the grid-connected power is reduced to the second power threshold, according to the activation sequence from the inverter module, according to the Activating the first sleep rule determines and sleeps the slave inverter module; in this embodiment, the inverter module is controlled by first activating the sleep-ahead rule, thereby alleviating the different working conditions of the inverter module to a certain extent, and the inverter can be extended. Service life.
  • control method shown in FIG. 3 further includes: obtaining a correspondence between the grid-connected efficiency of the inverter module and the grid-connected power, and determining the first power threshold according to the maximum grid-connected efficiency and the corresponding relationship; A power threshold corresponds to the best grid-connected efficiency in the correspondence, and the first power threshold is set to 85% of the rated power as follows.
  • the inverter module refers to all the inverter modules because the first power threshold is determined by determining the master-slave inverter module.
  • the maximum grid efficiency may be the maximum efficiency point as shown in FIG.
  • the method for determining the first power threshold according to the maximum grid connection efficiency and the corresponding relationship is many in the related art, for example, according to the efficiency curve of FIG. 1, if the inverter module is inefficient between 60% and 80% of the grid-connected power. Then, 80% and 60% can be set as the first power threshold and the second power threshold, respectively.
  • 80% and 60% can be set as the first power threshold and the second power threshold, respectively.
  • control method shown in FIG. 3 further includes: obtaining a real-time maximum output power of the power supply device, and adjusting a grid-connected power of the main inverter module according to the real-time maximum output power; specifically, taking the photovoltaic power generation system as an example, when The lighting conditions continue to increase, and the inverter module host tracks the maximum power point of the PV module through the MPPT algorithm, and gradually increases the grid-connected current to enhance the grid-connected power.
  • the real-time maximum output power of the power supply device is obtained in the above embodiment.
  • the steps include: controlling the main inverter module to obtain the real-time power supply voltage and the supply current of the power supply device, and tracking the real-time maximum output power by using the maximum power point tracking algorithm MPPT.
  • control method shown in FIG. 3 further includes transmitting, by the main inverter module, the tracking result of the maximum power point tracking algorithm MPPT tracking real-time maximum output power to the newly activated slave inverter module;
  • the MPPT tracking result of the main inverter module is sent to the slave inverter module, and multiple inverter modules are simultaneously tracked, which avoids the related technology. Because only one inverter module performs the MPPT algorithm, the solar photovoltaic array is relatively large, and the solar energy is relatively large.
  • the tracking effect of the maximum power point of the photovoltaic array is not ideal, which causes the loss of the output energy of the solar photovoltaic array, enhances the tracking effect, and reduces the energy loss.
  • control method shown in FIG. 3 further includes: selecting one of all the inverter modules of the inverter as the main inverter module according to the rotation order, and the rest as the slave inverter module; After the device is turned on, one of all the inverter modules in the inverter is selected as the main inverter module by rotation, and the operation time of the inverter module can be optionally alleviated.
  • the present invention is optionally explained in conjunction with specific application examples.
  • the grid system is a solar photovoltaic grid-connected system
  • the first power threshold is 85% of the rated power.
  • the second power threshold is 40% of the rated power
  • the inverter includes four inverter modules a, b, c, and d (as shown in FIG. 5a).
  • the following is an example of the work of the solar photovoltaic grid-connected system in a typical working day.
  • the control method provided by the present invention includes the following steps:
  • the inverter is powered on, and the inverter module a is selected as the main inverter module.
  • the inverter module a When there is no light at night, all the inverter modules are in standby state, and the solar photovoltaic modules are open. In the morning, the lighting conditions are gradually weakened. Strong, the open circuit voltage of the photovoltaic module is gradually increased, and the main inverter module a continuously detects the open circuit voltage of the photovoltaic component. When the open circuit voltage satisfies the grid connection condition and is maintained for a period of time, the main inverter module a is activated and turned into a grid connection operation. Feeding electrical energy into the grid;
  • the main inverter module a is chased by the MPPT algorithm. Trace the maximum power point of the PV module, gradually increase the grid-connected current to increase the grid-connected power. When the grid-connected power is greater than 85% of the rated power of the inverter module, send an activation command to the slave inverter module (inverter module b). After receiving the activation command, the inverter module b activates the grid-connected operation, and the main inverter module host a and the inverter module b implement the grid-connected current sharing by the current sharing algorithm;
  • the inverter module d is activated, and the inverter module, d is activated, and the grid-connected current is equalized between the four inverter modules;
  • the afternoon light condition is gradually weakened, and the grid-connected power of the four inverter modules is gradually decreased;
  • the sleep command is sent to the slave inverter module (inverter module b); after the inverter module b receives the sleep command, the sleep enters the standby state.
  • the other three inverter modules continue to work in parallel and achieve parallel current sharing.
  • the sleep command is sent to the inverter module c, and the inverter module c enters the standby state after receiving the sleep command.
  • the other two inverter modules continue to work in parallel and achieve parallel current sharing;
  • the inverter module d sleeps into the standby state.
  • the inverter module when the illumination condition continues to decrease and the grid-connected power of the main inverter module is less than the minimum power required for the operation of the inverter module, the inverter module considers that the power of the photovoltaic module is insufficient to maintain the grid-connected operation and automatically sleeps. Enter the standby state and wait for the next day when the lighting conditions are enhanced.
  • the rotation mechanism of the main inverter module and the first activation first sleep mechanism from the inverter module are as follows:
  • the inverter module a is the main inverter module, and the other three inverter modules are the slave inverter modules;
  • the inverter module activation sequence is the inverter module a, the inverter module b, the inverter module c, and the inverse Variable module d;
  • sleep sequence is inverter module b, inverter module c, inverter module d, inverter module a;
  • the inverter module b is the main inverter module, and the other three inverter modules are the slave inverter modules;
  • the inverter module activation sequence is the inverter module b, the inverter module c, the inverter module d, and the inverse Variable module a;
  • sleep sequence is inverter module c, inverter module d, inverter module a, inverter module b;
  • the inverter module c is the main inverter module, and the other three inverter modules are the slave inverter modules;
  • the inverter module activation sequence is the inverter module c, the inverter module d, the inverter module a, and the inverse Variable module b;
  • sleep sequence is inverter module d, inverter module a, inverter module b, inverter module c;
  • the inverter module d is the main inverter module, and the other three inverter modules are the slave inverter modules;
  • the inverter module activation sequence is the inverter module d, the inverter module a, the inverter module b, and the inverse Variable module c;
  • sleep sequence is inverter module a, inverter module b, inverter module c, inverter module d;
  • the inverter module a is the main inverter module, and the other three inverter modules are the slave inverter modules;
  • the inverter module activation sequence is the inverter module a, the inverter module b, the inverter module c, and the inverse Variable module d;
  • sleep sequence is inverter module b, inverter module c, inverter module d, inverter module a;
  • the solution provided by the present invention activates the slave inverter module when the grid-connected power of the main inverter module is increased to the first power threshold, and causes the master-slave inverter module to operate in the grid-connected current mode.
  • the active master-slave inverter module will not be fully loaded.
  • the inverter has greater efficiency.
  • the activated master-slave inverter module works in the grid-connected current mode.
  • the state of each inverter module is the same, which can extend the service life of the inverter;
  • the operation of the inverter module is controlled by first activating the first sleep rule, which alleviates the different working conditions of the inverter module to a certain extent, and the service life of the inverter can be prolonged;
  • the main inverter module works all the time, after the inverter is powered on, one of all the inverter modules in the inverter is selected as the main inverter module by rotating, and the inverter module can be optionally alleviated. Different working hours;
  • the method and device of the embodiments of the present invention can be applied to a power grid system, and can also be applied to His system, as long as the above technical solutions can be achieved.
  • the embodiment of the invention also discloses a computer program, comprising program instructions, when the program instruction is executed by the controller, so that the controller can execute the control method of any of the above-mentioned inverters.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • the solution provided by the present invention activates a new slave inverter module when the grid-connected power of the main inverter module is increased to the first power threshold, and causes the master-slave inverter module to operate in the grid-connected current mode.
  • the active and slave master-slave inverter modules are not fully loaded.
  • the inverter has greater efficiency.
  • the activated master-slave inverter module is connected to the grid. Work, at work, the state of each inverter module is the same, which can extend the service life of the inverter; optionally, the inverter module is controlled by first activating the rules of sleep first, which alleviates the work of the inverter module to a certain extent.
  • Different time conditions can extend the service life of the inverter; optionally, since the main inverter module works all the time, after the inverter is turned on, one of all the inverter modules in the inverter is selected by rotation.
  • the operating time of the inverter module can be optionally alleviated; optionally, multiple inverters are implemented by transmitting the MPPT tracking result of the main inverter module to the slave inverter module. Simultaneous tracking of the module enhances tracking and reduces energy loss. Therefore, the present invention has strong industrial applicability.

Abstract

一种电网系统中逆变器的控制方法及逆变器,该控制方法包括:实时获取主逆变模块的并网功率;当并网功率增大至第一功率阈值时,激活一个从逆变模块;控制新激活的从逆变模块与主逆变模块以并网均流模式工作,并网均流模式为通过均流算法实现新激活的从逆变模块与主逆变模块的并网电流平分均流。通过本发明的实施,在检测到主逆变模块的并网功率增大到第一功率阈值时,激活从逆变模块,并使得主从逆变模块以并网均流模式工作,在此基础上,激活的主从逆变模块都不会满载运行,与相关技术相比,逆变器具备较大的效率,在工作时,各逆变模块的状态相同,可以延长逆变器的使用寿命。

Description

逆变器的控制方法及逆变器 技术领域
本发明涉及逆变器技术领域,特别地涉及一种电网系统中逆变器的控制方法及逆变器。
背景技术
在电网系统中,如太阳能光伏发电系统,主要包括太阳能电池阵列(供电装置)、光伏并网逆变器(逆变器)及供电电网,其中,太阳能电池阵列将光能转换为电能,光伏并网逆变器用于将太阳能电池阵列发出的直流转换为交流电送入电网或直接为交流负载供电。在采用一体化光伏并网逆变器的集中式太阳能光伏并网系统中,当光照强度较低,太阳能电池阵列输出的电能较低,光伏并网逆变器处于轻载运行中,其电能转换效率比较低,因此整个太阳能光伏并网系统的效率也比较低,而采用模块化光伏并网逆变器(即将光伏并网逆变器当做是多个逆变模块并联形成)的太阳能光伏并网系统,则可以通过合理的控制并网运行的模块数量来提高系统的运行效率,从而提高太阳能光伏并网系统的经济效益。
针对太阳能供电系统,目前常用的控制方法是通过最大功率点跟踪(MPPT)算法来检测太阳能光伏阵列输出的最大功率,当光伏阵列输出的最大功率超过在线的逆变模块时,启动一个新的模块,其中在线的N个逆变模块中,N-1个模块处于满载运行状态,一个模块则运行MPPT算法,跟踪太阳能光伏阵列的最大功率点。
上述方法存在以下问题:由图1可知,逆变模块的最大效率点一般不在满载,而在线工作的逆变模块大部分运行于满载,因此逆变器的效率没有达到最大;由于部分逆变模块处于满载运行状态,部分逆变模块处于轻载/关机状态,导致各个逆变模块的工作时间及状态差异比较大,各个逆变模块的寿命会有较大的差异,进而导致逆变器的寿命过短。
因此,如何提供一种可增强逆变器效率的逆变器控制方法,是本领域技 术人员亟待解决的技术问题。
发明内容
本发明提供了一种电网系统中逆变器的控制方法及逆变器,通过对逆变器中逆变模块的控制增强了逆变器效率。
为解决上述技术问题,采用如下技术方案:
本发明提供了一种电网系统中逆变器的控制方法,逆变器包括主逆变模块及至少一个从逆变模块,在一个实施例中,控制方法包括:实时获取主逆变模块的并网功率;当并网功率增大至第一功率阈值时,激活一个从逆变模块;控制新激活的从逆变模块与主逆变模块以并网均流模式工作,并网均流模式为通过均流算法实现新激活的从逆变模块与主逆变模块的并网电流平分均流。
可选地,当至少一个从逆变模块激活时,上述实施例中的控制方法还包括:当并网功率减小至第二功率阈值时,根据从逆变模块的激活顺序,按照先激活先休眠的规则确定并休眠从逆变模块。
可选地,上述实施例中的控制方法还包括:获取逆变模块的并网效率与并网功率的对应关系,根据最大并网效率及对应关系确定第一功率阈值。
可选地,上述实施例中的控制方法还包括:获取供电装置的实时最大输出功率,根据实时最大输出功率调整主逆变模块的并网功率。
可选地,上述实施例中的获取供电装置的实时最大输出功率的步骤包括:控制主逆变模块获取供电装置的实时供电电压及供电电流,利用最大功率点跟踪算法MPPT跟踪实时最大输出功率。
可选地,上述实施例中的控制方法还包括将主逆变模块利用最大功率点跟踪算法MPPT跟踪实时最大输出功率的跟踪结果传送至新激活的从逆变模块。
可选地,上述实施例中的控制方法还包括:按照轮换顺序从逆变器所有的逆变模块中选择一个作为主逆变模块,其余作为从逆变模块。
本发明也提供了一种逆变器,在一个实施例中,逆变器包括主逆变模块、 至少一个从逆变模块、及控制器,控制器用于实时获取主逆变模块的并网功率,当并网功率增大至第一功率阈值时,激活一个从逆变模块,并控制新激活的从逆变模块与主逆变模块以并网均流模式工作;并网均流模式为通过均流算法实现新激活的从逆变模块与主逆变模块的并网电流平分均流;主逆变模块及至少一个从逆变模块在控制器的控制下工作。
可选地,上述实施例中的控制器还用于当至少一个从逆变模块激活时,若并网功率减小至第二功率阈值,根据从逆变模块的激活顺序,按照先激活先休眠的规则确定并休眠从逆变模块。
可选地,上述实施例中的控制器还用于按照轮换顺序从逆变器所有的逆变模块中选择一个作为主逆变模块,其余作为从逆变模块。
本发明技术方案的有益效果:
本发明提供的方案,在检测到主逆变模块的并网功率增大到第一功率阈值时,激活一个新的从逆变模块,并使得主从逆变模块以并网均流模式工作,在此基础上,处于激活状态的主从逆变模块都不会满载运行,与相关技术相比,逆变器具备较大的效率,同时,激活的主从逆变模块以并网均流模式工作,在工作时,各逆变模块的状态相同,可以延长逆变器的使用寿命;可选地,通过先激活先休眠的规则控制逆变模块工作,在一定程度上缓解了逆变模块工作时间不同的状况,可以延长逆变器的使用寿命;可选地,由于主逆变模块一直工作,因此,在逆变器开机后,通过轮换来选择逆变器中所有逆变模块中的一个作为主逆变模块,可以可选地缓解逆变模块工作时间不同的状况;可选地,通过将主逆变模块的MPPT跟踪结果发送至从逆变模块,实现了多个逆变模块同时跟踪,增强了跟踪效果,减少了能量损失。
附图概述
图1为逆变模块并网效率与并网功率的对应关系图;
图2为本发明第一实施例提供的逆变器的结构示意图;
图3为本发明第二实施例提供的控制方法的流程图;
图4为本发明第三实施例提供的控制方法的示意图;
图5a为本发明第三实施例中电网系统的示意图;
图5b为本发明第三实施例中工作流程的示意图。
本发明的较佳实施方式
现通过具体实施方式结合附图的方式对本发明做出可选地诠释说明。
第一实施例:
图2为本发明第一实施例提供的逆变器的结构示意图,由图2可知,在本实施例中,本发明提供的逆变器2包括:主逆变模块21、至少一个从逆变模块22、及控制器23,其中,
控制器23设置成:实时获取主逆变模块21的并网功率,当并网功率增大至第一功率阈值时,激活一个从逆变模块22,并控制新激活的从逆变模块22与主逆变模块21以并网均流模式工作;并网功率是指逆变模块向供电电网输入电能的功率,可以通过检测逆变模块的输出电流(输出电压一般为定值)来计算获的,并网均流模式为通过均流算法实现新激活的从逆变模块22与主逆变模块21的并网电流平分均流;
主逆变模块21及至少一个从逆变模块22在控制器23的控制下工作。
在一些实施例中,图2所示实施例中的控制器23还设置成:当至少一个从逆变模块激活22时,若并网功率减小至第二功率阈值,根据从逆变模块22的激活顺序,按照先激活先休眠的规则确定并休眠从逆变模块22。
在一些实施例中,图2所示实施例中的控制器23还设置成:按照轮换顺序从逆变器所有的逆变模块中选择一个作为主逆变模块21,其余作为从逆变模块22。
本申请所涉及的逆变模块既可以是模块化光伏逆变器中的一个模块,也可以是集中式光伏逆变器中一个能够完成独立逆变功能的功率单元。
第二实施例:
图3为本发明第二实施例提供的控制方法的流程图,由图3可知,在本 实施例中,本发明提供的控制方法包括以下步骤:
S301:实时获取主逆变模块的并网功率;
S302:当并网功率增大至第一功率阈值时,激活一个从逆变模块;
S303:控制新激活的从逆变模块与主逆变模块以并网均流模式工作,并网均流模式为通过均流算法实现新激活的从逆变模块与主逆变模块的并网电流平分均流。
在一些实施例中,当至少一个从逆变模块激活时,图3所示的控制方法还包括:当并网功率减小至第二功率阈值时,根据从逆变模块的激活顺序,按照先激活先休眠的规则确定并休眠从逆变模块;本实施例通过先激活先休眠的规则控制逆变模块工作,在一定程度上缓解了逆变模块工作时间不同的状况,可以延长逆变器的使用寿命。
在一些实施例中,图3所示的控制方法还包括:获取逆变模块的并网效率与并网功率的对应关系,根据最大并网效率及对应关系确定第一功率阈值;一般的,第一功率阈值在对应关系中对应最佳的并网效率,如下文中将第一功率阈值设定为额定功率的85%。
其中的逆变模块泛指所有的逆变模块,因为第一功率阈值是在确定主从逆变模块确定的。
最大并网效率可以是如附图1所示的最大效率点。
根据最大并网效率及对应关系确定第一功率阈值的方法在相关技术中有很多,例如根据附图1的效率曲线,假如逆变模块在并网功率为60%~80%之间效率较高,那么80%和60%就可分别设置为第一功率阈值和第二功率阈值。当然,其他的确定这两个功率阈值的方法都可以适用于本发明,在此不再赘述。
在一些实施例中,图3所示的控制方法还包括:获取供电装置的实时最大输出功率,根据实时最大输出功率调整主逆变模块的并网功率;具体的以光发电系统为例,当光照条件继续增强,逆变模块主机通过MPPT算法追踪光伏组件的最大功率点,逐渐增大并网电流以增强并网功率。
在一些实施例中,上述实施例中的获取供电装置的实时最大输出功率的 步骤包括:控制主逆变模块获取供电装置的实时供电电压及供电电流,利用最大功率点跟踪算法MPPT跟踪实时最大输出功率。
在一些实施例中,图3所示的控制方法还包括将主逆变模块利用最大功率点跟踪算法MPPT跟踪实时最大输出功率的跟踪结果传送至新激活的从逆变模块;本实施例通过将主逆变模块的MPPT跟踪结果发送至从逆变模块,实现了多个逆变模块同时跟踪,避免了相关技术存在的因只有一个逆变模块进行MPPT算法,而太阳能光伏阵列比较大,对太阳能光伏阵列最大功率点的跟踪效果不理想,造成太阳能光伏阵列输出能量的损失的问题,增强了跟踪效果,减少了能量损失。
在一些实施例中,图3所示的控制方法还包括:按照轮换顺序从逆变器所有的逆变模块中选择一个作为主逆变模块,其余作为从逆变模块;本实施例在逆变器开机后,通过轮换来选择逆变器中所有逆变模块中的一个作为主逆变模块,可以可选地缓解逆变模块工作时间不同的状况。
第三实施例:
现结合具体应用实例对本发明做可选地诠释说明,在本实施例中,如图5a及b所示,假定电网系统是太阳能光伏并网系统、第一功率阈值为额定功率的85%、第二功率阈值为额定功率的40%、逆变器包括4个逆变模块a、b、c、d(如图5a所示)。以下为一个典型工作日中本太阳能光伏并网系统的工作为例,如图4,在本实施例中,本发明提供的控制方法包括以下步骤:
S401、逆变器开机,确定主逆变模块;
如图5b中所示,逆变器开机,选择逆变模块a作为主逆变模块,夜晚无光照时,所有逆变模块均处于待机状态,太阳能光伏组件开路,早晨,光照条件逐渐由弱变强,光伏组件的开路电压逐渐升高,主逆变模块a不断检测光伏组件的开路电压,当开路电压满足并网条件且维持一段时间后,主逆变模块a激活,转为并网工作,将电能馈入电网;
S402、主逆变模块a的并网功率增大至第一功率阈值时,激活一个从逆变模块;
如图5b中所示,当光照条件继续增强,主逆变模块a通过MPPT算法追 踪光伏组件的最大功率点,逐渐增大并网电流来增大并网功率,当并网功率大于逆变模块额定功率的85%时,发送激活命令给从逆变模块(逆变模块b);逆变模块b接收到激活命令后,激活并网工作,主逆变模块主机a及逆变模块b通过均流算法实现模块并网电流均流;
当光照条件继续增强,检测主逆变模块a的并网功率再次大于逆变模块额定功率的85%时,发送激活命令给逆变模块c,逆变模块c激活后,三个模块间实现并网电流均流;
同理,光照继续增强后,激活逆变模块d,逆变模块,d激活后,四个逆变模块间实现并网电流均流;
S403、主逆变模块a的并网功率减少至第二功率阈值时,休眠一个从逆变模块;
如图5b中所示,下午光照条件逐渐减弱,四个逆变模块的并网功率逐渐减小;
当检测主逆变模块的并网功率小于逆变模块额定功率的40%时,发送休眠命令给从逆变模块(逆变模块b);逆变模块b接收到休眠命令后,休眠进入待机状态,其它三个逆变模块继续并网工作,并实现并网电流均流。
当光照条件继续减弱,再次检测主逆变模块机并网功率小于逆变模块额定功率的40%时,发送休眠命令给逆变模块c,逆变模块c接收到休眠命令后,休眠进入待机状态,其它二个逆变模块继续并网工作,并实现并网电流均流;
同理,光照条件继续减弱后,逆变模块d休眠进入待机状态。
S404、主逆变模块休眠,流程结束;
如图5b中所示,当光照条件继续减弱,主逆变模块的并网功率小于逆变模块运行所需的最小功率时,逆变模块认为光伏组件的功率不足以维持并网工作,自动休眠进入待机状态,等待第二天光照条件增强时再激活。
结合上述实施例,在一些实施例中,主逆变模块的轮换机制及从逆变模块的先激活先休眠机制具体如下:
第一天开机时,逆变模块a为主逆变模块,其它三个逆变模块为从逆变模块;逆变模块激活顺序为逆变模块a,逆变模块b,逆变模块c,逆变模块 d;休眠顺序为逆变模块b,逆变模块c,逆变模块d,逆变模块a;
第二天开机时,逆变模块b为主逆变模块,其它三个逆变模块为从逆变模块;逆变模块激活顺序为逆变模块b,逆变模块c,逆变模块d,逆变模块a;休眠顺序为逆变模块c,逆变模块d,逆变模块a,逆变模块b;
第三天开机时,逆变模块c为主逆变模块,其它三个逆变模块为从逆变模块;逆变模块激活顺序为逆变模块c,逆变模块d,逆变模块a,逆变模块b;休眠顺序为逆变模块d,逆变模块a,逆变模块b,逆变模块c;
第四天开机时,逆变模块d为主逆变模块,其它三个逆变模块为从逆变模块;逆变模块激活顺序为逆变模块d,逆变模块a,逆变模块b,逆变模块c;休眠顺序为逆变模块a,逆变模块b,逆变模块c,逆变模块d;
第五天开机时,逆变模块a为主逆变模块,其它三个逆变模块为从逆变模块;逆变模块激活顺序为逆变模块a,逆变模块b,逆变模块c,逆变模块d;休眠顺序为逆变模块b,逆变模块c,逆变模块d,逆变模块a;
不断循环;
综上可知,通过本发明的实施,至少存在以下有益效果:
本发明提供的方案,在检测到主逆变模块的并网功率增大到第一功率阈值时,激活从逆变模块,并使得主从逆变模块以并网均流模式工作,在此基础上,激活的主从逆变模块都不会满载运行,与相关技术相比,逆变器具备较大的效率,同时,激活的主从逆变模块以并网均流模式工作,在工作时,各逆变模块的状态相同,可以延长逆变器的使用寿命;
可选地,通过先激活先休眠的规则控制逆变模块工作,在一定程度上缓解了逆变模块工作时间不同的状况,可以延长逆变器的使用寿命;
可选地,由于主逆变模块一直工作,因此,在逆变器开机后,通过轮换来选择逆变器中所有逆变模块中的一个作为主逆变模块,可以可选地缓解逆变模块工作时间不同的状况;
可选地,通过将主逆变模块的MPPT跟踪结果发送至从逆变模块,实现了多个逆变模块同时跟踪,增强了跟踪效果,减少了能量损失。
本发明实施例的方法和装置均可以应用于电网系统中,也可以应用于其 他系统,只要能实现上述技术方案即可。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被控制器执行时,使得该控制器可执行上述任意的逆变器的控制方法。
本发明实施例还公开了一种载有所述的计算机程序的载体。
以上仅是本发明的具体实施方式而已,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任意简单修改、等同变化、结合或修饰,均仍属于本发明技术方案的保护范围。
工业实用性
本发明提供的方案,在检测到主逆变模块的并网功率增大到第一功率阈值时,激活一个新的从逆变模块,并使得主从逆变模块以并网均流模式工作,在此基础上,处于激活状态的主从逆变模块都不会满载运行,与相关技术相比,逆变器具备较大的效率,同时,激活的主从逆变模块以并网均流模式工作,在工作时,各逆变模块的状态相同,可以延长逆变器的使用寿命;可选地,通过先激活先休眠的规则控制逆变模块工作,在一定程度上缓解了逆变模块工作时间不同的状况,可以延长逆变器的使用寿命;可选地,由于主逆变模块一直工作,因此,在逆变器开机后,通过轮换来选择逆变器中所有逆变模块中的一个作为主逆变模块,可以可选地缓解逆变模块工作时间不同的状况;可选地,通过将主逆变模块的MPPT跟踪结果发送至从逆变模块,实现了多个逆变模块同时跟踪,增强了跟踪效果,减少了能量损失。因此本发明具有很强的工业实用性。

Claims (12)

  1. 一种逆变器的控制方法,所述逆变器包括主逆变模块及至少一个从逆变模块,所述控制方法包括:
    实时获取所述主逆变模块的并网功率;
    当所述并网功率增大至第一功率阈值时,激活一个从逆变模块;
    控制新激活的从逆变模块与所述主逆变模块以并网均流模式工作,其中,所述并网均流模式为通过均流算法实现新激活的从逆变模块与所述主逆变模块的并网电流平分均流。
  2. 如权利要求1所述的逆变器的控制方法,其中,当多个从逆变模块激活时,所述控制方法还包括:
    当所述并网功率减小至第二功率阈值时,根据从逆变模块的激活顺序,按照先激活先休眠的规则确定需要休眠的从逆变模块并使得确定的从逆变模块休眠。
  3. 如权利要求1所述的逆变器的控制方法,该方法还包括:获取逆变模块的并网效率与并网功率的对应关系,根据最大并网效率及所述对应关系确定所述第一功率阈值。
  4. 如权利要求1至3中任一项所述的逆变器的控制方法,该方法还包括:
    获取供电装置的实时最大输出功率,根据所述实时最大输出功率调整所述主逆变模块的并网功率。
  5. 如权利要求4所述的逆变器的控制方法,其中,所述获取供电装置的实时最大输出功率的步骤包括:
    控制所述主逆变模块获取供电装置的实时供电电压及供电电流,利用最大功率点跟踪算法MPPT跟踪所述实时最大输出功率。
  6. 如权利要求5所述的逆变器的控制方法,该方法还包括:
    将所述主逆变模块利用所述最大功率点跟踪算法MPPT跟踪所述实时最大输出功率的跟踪结果传送至所述新激活的从逆变模块。
  7. 如权利要求1至3中任一项所述的逆变器的控制方法,其中,所述主 逆变模块及至少一个从逆变模块是按照轮换顺序从所述逆变器所有的逆变模块中选出的。
  8. 一种逆变器,包括控制器、主逆变模块及至少一个从逆变模块,其中,
    所述控制器设置成:实时获取所述主逆变模块的并网功率,当所述并网功率增大至第一功率阈值时,激活一个从逆变模块,并控制新激活的从逆变模块与所述主逆变模块以并网均流模式工作,其中,所述并网均流模式为通过均流算法实现新激活的从逆变模块与所述主逆变模块的并网电流平分均流;
    所述主逆变模块及至少一个所述从逆变模块在所述控制器的控制下工作。
  9. 如权利要求8所述的逆变器,其中,所述控制器还设置成:当多个从逆变模块激活时,若所述并网功率减小至第二功率阈值,根据多个所述从逆变模块的激活顺序,按照先激活先休眠的规则确定需要休眠的从逆变模块并使得确定的从逆变模块休眠。
  10. 如权利要求8或9所述的逆变器,其中,所述控制器还设置成:按照轮换顺序从所有的逆变模块中选择一个作为主逆变模块,其余作为从逆变模块。
  11. 一种计算机程序,包括程序指令,当该程序指令被控制器执行时,使得该控制器可执行权利要求1-7中任一项所述的逆变器的控制方法。
  12. 一种载有如权利要求11所述的计算机程序的载体。
PCT/CN2015/073300 2014-10-23 2015-02-26 逆变器的控制方法及逆变器 WO2015184869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410571324.0A CN105591399A (zh) 2014-10-23 2014-10-23 逆变器的控制方法及逆变器
CN201410571324.0 2014-10-23

Publications (1)

Publication Number Publication Date
WO2015184869A1 true WO2015184869A1 (zh) 2015-12-10

Family

ID=54766095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073300 WO2015184869A1 (zh) 2014-10-23 2015-02-26 逆变器的控制方法及逆变器

Country Status (2)

Country Link
CN (1) CN105591399A (zh)
WO (1) WO2015184869A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021301A (zh) * 2022-08-08 2022-09-06 深圳国瑞协创储能技术有限公司 储能系统充放电控制方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888819B (zh) * 2019-01-08 2021-02-05 许继集团有限公司 一种光伏发电系统及其控制方法和装置
CN111953192A (zh) * 2020-08-11 2020-11-17 珠海万力达电气自动化有限公司 一种大功率逆变电源及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254191A1 (en) * 2004-05-11 2005-11-17 Bashaw Travis B Inverter control methodology for distributed generation sources connected to a utility grid
CN102882227A (zh) * 2012-09-14 2013-01-16 江苏兆伏新能源有限公司 高功率光伏并网逆变器
CN103928940A (zh) * 2014-03-31 2014-07-16 国家电网公司 一种分布式光伏电站有功功率控制装置及控制方法
CN104025409A (zh) * 2011-12-23 2014-09-03 株式会社Kd动力 多逆变器光伏发电系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285572B1 (en) * 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254191A1 (en) * 2004-05-11 2005-11-17 Bashaw Travis B Inverter control methodology for distributed generation sources connected to a utility grid
CN104025409A (zh) * 2011-12-23 2014-09-03 株式会社Kd动力 多逆变器光伏发电系统
CN102882227A (zh) * 2012-09-14 2013-01-16 江苏兆伏新能源有限公司 高功率光伏并网逆变器
CN103928940A (zh) * 2014-03-31 2014-07-16 国家电网公司 一种分布式光伏电站有功功率控制装置及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021301A (zh) * 2022-08-08 2022-09-06 深圳国瑞协创储能技术有限公司 储能系统充放电控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN105591399A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5940946B2 (ja) パワーコンディショナ及びその制御方法
WO2013128947A1 (ja) 電力制御システム、電力制御装置、及び電力制御方法
US20110227411A1 (en) Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system
CN108258718B (zh) 逆变器、集散式汇流箱、限功率控制系统和方法
US10693297B2 (en) Centralized MPPT exiting and switching method and application thereof
US20150115714A1 (en) Method and system for powering a load
CN103795233A (zh) 一种智能启停轮询机制的模块化逆变器电源控制方法
CN104158218A (zh) 一种光伏逆变器启动控制方法、系统及光伏发电系统
WO2015035727A1 (zh) 一种多能源供电电机驱动系统
WO2015184869A1 (zh) 逆变器的控制方法及逆变器
WO2021088491A1 (zh) 一种光伏控制装置、方法及系统
US11128142B2 (en) Photovoltaic power generation system and method for controlling the same
CN105549713A (zh) 一种基于numa的多物理层分区计算机电源热冗余控制方法
US9817424B2 (en) Method and apparatus for maximum power point tracking for multi-input power converter
JP6242128B2 (ja) 電力変換装置
JP5890372B2 (ja) ハイブリッド電力システムの電力制御装置
CN209402169U (zh) 一种太阳能发电的逆变器交流多机并联系统
CN102200825A (zh) Cpu供电控制的方法、装置及计算机
WO2018126551A1 (zh) 光伏阵列的最大功率点跟踪控制系统及光伏空调系统
JP5893995B2 (ja) 電力供給システム、制御装置、及び電力供給方法
JP2013230005A (ja) 制御装置、及び電力供給方法
JP6625469B2 (ja) 電力制御装置
JP6271638B2 (ja) パワーコンディショナ及びその制御方法
TWI674724B (zh) 發電系統和升壓單元
JP6917543B2 (ja) 制御装置、電力変換システム、及び発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802479

Country of ref document: EP

Kind code of ref document: A1