WO2015182209A1 - 光学ガラス及び光学素子 - Google Patents

光学ガラス及び光学素子 Download PDF

Info

Publication number
WO2015182209A1
WO2015182209A1 PCT/JP2015/056784 JP2015056784W WO2015182209A1 WO 2015182209 A1 WO2015182209 A1 WO 2015182209A1 JP 2015056784 W JP2015056784 W JP 2015056784W WO 2015182209 A1 WO2015182209 A1 WO 2015182209A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical
mold
optical glass
temperature
Prior art date
Application number
PCT/JP2015/056784
Other languages
English (en)
French (fr)
Inventor
拓也 小倉
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016523185A priority Critical patent/JP6540693B2/ja
Publication of WO2015182209A1 publication Critical patent/WO2015182209A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass and an optical element. More specifically, the present invention relates to an optical glass suitable for mold press molding and an optical element made of the optical glass.
  • a mold press molding method is known as a method for obtaining a product with high surface accuracy.
  • the mold press molding method also has a problem that the surface accuracy is impaired due to fusion of the mold and the glass. There are the following two reasons for the fusion between the mold and the glass.
  • the first cause is the basicity of the glass. Glass components penetrate into the mold during molding, and the glass component concentration in the mold phase near the interface increases. This is thought to reduce the compositional difference between the glass phase and the mold phase, thereby increasing the affinity and fusing the glass to the mold.
  • Basicity is used as an index of the degree of ease of penetration of the glass component into the mold. A low basicity means that fusion is unlikely to occur. Therefore, by lowering the basicity, the releasability of the glass can be improved.
  • the second cause is the glass dripping temperature.
  • the higher the dropping temperature of the glass the more the mold surface is further deteriorated and the glass is easily fused.
  • a reheat press molding method is performed by pressing with a pair of heated upper and lower molds to obtain a final product shape.
  • a direct press molding method in which molten glass droplets are directly dropped onto a mold from a glass melting furnace and pressed to form a final product shape.
  • the dropping temperature of the molten glass needs to be higher than the liquidus temperature (LT), which is the temperature at which crystallization starts, and the liquidus temperature (LT) needs to be lowered to lower the dropping temperature. There is. Therefore, if the liquidus temperature (LT) is lowered, the dropping temperature can be lowered and deterioration of the mold surface can be suppressed, so that the releasability of the glass can be improved.
  • LT liquidus temperature
  • Patent Documents 1 and 2 propose a phosphate glass having a medium refractive index and a low dispersion range.
  • the glass described in Patent Document 1 has a problem that the liquidus temperature (LT) is high.
  • the temperature of the nozzle is set to a liquidus temperature (LT) or higher in order to prevent the glass from devitrifying through the nozzle and being unable to drop stably.
  • the temperature of the nozzle also increases, and the temperature of the glass that is dropped onto the mold (that is, the dropping temperature) increases.
  • the surface oxidation of the mold and the change of the metal composition are likely to occur, not only the surface accuracy of the lens is impaired, but also the life of the molding mold is shortened, leading to an increase in production cost.
  • the glass described in Patent Document 1 also has a problem that the glass transition point (Tg) is high.
  • the glass transition point (Tg) of the optical glass to be molded the higher the glass transition point (Tg) of the optical glass to be molded, the more easily the surface oxidation of the molding die and the change in the metal composition occur, and the life of the molding die is shortened, leading to an increase in production cost. become. Accordingly, it is desirable that the optical glass used for mold press molding has a glass transition point (Tg) and a liquidus temperature (LT) as low as possible.
  • the glass having a medium refractive index and a low dispersion range described in Patent Document 2 has a low glass transition point (Tg), and all of them have a component ratio that places importance on lowering the glass transition point (Tg). It has become. For this reason, there exists a problem that basicity is high and the releasability from a metal mold
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an optical element with good releasability in which fusion with a mold is suppressed by low basicity and liquidus temperature (LT).
  • An object of the present invention is to provide glass and an optical element made of the optical glass.
  • the optical glass of the first invention is represented by mol%, P 2 O 5 : 10 to 25%, Al 2 O 3 : 2 to 5%, B 2 O 3 : 15-30% Li 2 O: 0 to 8% (excluding 0%), Na 2 O: 0-8%, K 2 O: 0-7%, R 2 O: 1 to 15% (provided that R 2 O is the total of Li 2 O, Na 2 O and K 2 O, and includes two or more).
  • the optical glass of the second invention has a liquidus temperature (LT) of 840 ° C. or lower and a basicity of 3 or lower in the first invention.
  • LT liquidus temperature
  • the optical glass of the third invention has a glass transition point (Tg) of 470 ° C. or lower in the first or second invention.
  • the optical glass of the fourth invention is the optical glass according to any one of the first to third inventions, wherein the refractive index (nd) for d-line is 1.55 to 1.63, and the Abbe number ( ⁇ d) is 53 to 62. Has a range of optical constants.
  • the Vickers hardness is Hv ⁇ 450.
  • the optical element of the seventh invention is made of the optical glass according to any one of the first to sixth inventions.
  • Examples of such an optical element include a lens, a prism, and a mirror.
  • the optical element of the eighth invention is obtained by mold press molding the optical glass according to any one of the first to seventh inventions.
  • the optical element of the present invention can be produced by mold press molding of the optical glass, it is possible to achieve high production efficiency, low cost, etc. while having the characteristics of the optical glass. That is, since it is possible to produce a precise surface by stable press molding, improvement in product quality and mass productivity can be achieved.
  • the optical glass according to the present invention is expressed in mol%, P 2 O 5 : 10 to 25%, Al 2 O 3 : 2 to 5%, B 2 O 3 : 15 to 30%, Li 2 O: 0 to 8 % (Excluding 0%), Na 2 O: 0 to 8%, K 2 O: 0 to 7%, R 2 O: 1 to 15% (where R 2 O is Li 2 O and Na the sum of the 2 O and K 2 O, including two or more), ZnO:. 25 ⁇ 40 %, BaO: 0 ⁇ 10%, SrO: 0 ⁇ 10% (although, BaO + SrO is a maximum of 15% And CaO: having a composition determined in the range of 5 to 15%.
  • the present inventor has obtained P 2 O 5 , B 2 O 3 , ZnO, R 2 O () in an optical glass having a predetermined refractive index and an optical constant of dispersion.
  • R is any element of Na, K, and Li, and has at least one of them.
  • an optical glass having good releasability and an optical element composed of the optical glass, in which fusion with the mold is suppressed due to low basicity and liquidus temperature (LT). can be realized.
  • the optical element of the present invention can be produced by mold press molding of the optical glass, it is possible to achieve high production efficiency, low cost, etc. while having the characteristics of the optical glass. That is, since it is possible to produce a precise surface by stable press molding, improvement in product quality and mass productivity can be achieved.
  • the Vickers hardness (Hv) is 450 or less, cracks, cracks, cracks, etc. occur. There is a fear. Therefore, the Vickers hardness (Hv) is preferably 450 or more.
  • the molding die needs to be heated to a predetermined temperature so that a good optical surface can be transferred to the optical element.
  • a predetermined temperature such as the shape and size of the optical element to be manufactured
  • it is generally set to a temperature near the glass transition point (Tg) of the optical glass. Therefore, it is necessary to raise the temperature of the molding die as the glass transition point (Tg) becomes higher.
  • the glass transition point (Tg) is preferably 470 ° C. or less, more preferably 460 ° C. or less, and most preferably 450 ° C. or less.
  • content of each component of the optical glass according to the present invention shall represent content (mol% notation) with respect to the whole glass component.
  • P 2 O 5 is a main component constituting the glass, and has a large effect of making the glass have a manufacturable stability and reducing the glass transition point (Tg) and the liquidus temperature (LT).
  • Tg glass transition point
  • LT liquidus temperature
  • the content of P 2 O 5 is in the range of 10 to 25%.
  • Al 2 O 3 has the effect of reducing the linear thermal expansion coefficient and improving the weather resistance of the glass. However, if the content is less than 2%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 5%, the glass becomes unstable, the liquidus temperature (LT) rises rapidly, and the devitrification resistance also deteriorates. Therefore, the content of Al 2 O 3 is in the range of 2 to 5%.
  • B 2 O 3 is a main component constituting the glass, and is a very effective component for improving the melting property of the glass and homogenizing the glass. At the same time, it is also a component that lowers the basicity, improves the releasability, and improves the Vickers hardness (Hv). However, if the content is less than 15%, a sufficient effect cannot be obtained. Moreover, when it contains more than 30% and an excess, glass will become unstable and devitrification resistance will fall. For this reason, the B 2 O 3 content is in the range of 15 to 30%.
  • the Vickers hardness is preferably Hv ⁇ 450.
  • the Li 2 O component is a component introduced to lower the glass transition point (Tg) and yield point (At) and lower the press molding temperature. Moreover, there exists an effect which accelerates
  • Na 2 O is introduced to improve the devitrification resistance of the glass, lower the glass transition point (Tg), yield point (At), and liquidus temperature (LT), and improve the high-temperature melting property of the glass. It is a component.
  • Tg glass transition point
  • At yield point
  • LT liquidus temperature
  • Na 2 O is introduced in excess of 8%, if Na 2 O is introduced in excess of 8%, the weather resistance deteriorates and the stability of the glass also decreases. For this reason, the content of Na 2 O is in the range of 0 to 8%.
  • K 2 O is introduced to improve the devitrification resistance of the glass, lower the glass transition point (Tg), yield point (At), and liquidus temperature (LT), and improve the high-temperature melting property of the glass. It is a component. However, if it is introduced excessively exceeding 7%, not only the stability of the glass is deteriorated, but also the chemical durability is deteriorated and the refractive index is also lowered. For this reason, the content of K 2 O is in the range of 0 to 7%.
  • the introduction of two or more alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O reduces the liquidus temperature (LT) and the glass transition point (Tg) due to the mixed alkali effect. Improve formability.
  • R 2 O where R 2 O is the total of Li 2 O, Na 2 O and K 2 O, including two or more
  • the liquidus temperature (LT) and glass transition The point (Tg) increases.
  • the content of R2O exceeds 15%, the stability of the glass is deteriorated and devitrification may occur. For this reason, the content of R 2 O is in the range of 1 to 15%.
  • ZnO has the effect of lowering the glass transition point (Tg) and the liquidus temperature (LT) without significantly reducing the Vickers hardness (Hv). Further, the linear expansion coefficient ( ⁇ ) is not increased. However, the durability of the glass may deteriorate due to the introduction of excess ZnO. However, if the content is less than 20%, a sufficient effect cannot be obtained. For this reason, the content of ZnO is in the range of 25 to 40%. In view of lowering the liquidus temperature (LT), the ZnO content is preferably 30 to 40%, more preferably 30 to 35%.
  • the BaO component has the effect of increasing the refractive index of the glass and decreasing the liquidus temperature (LT). However, if the amount is too large, the devitrification resistance tends to deteriorate. For this reason, the content of BaO is in the range of 0 to 10%.
  • SrO is an effective component that increases the refractive index of the glass without impairing the low dispersion characteristics of the glass. In particular, it is effective as a component that enhances the weather resistance of glass. However, when excessive SrO is introduced, the stability of the glass deteriorates and the liquidus temperature (LT) also increases. Therefore, the SrO content is in the range of 0 to 10%.
  • BaO and SrO components enable stable press molding by rapidly lowering the liquidus temperature (LT) and further increasing the viscosity.
  • LT liquidus temperature
  • excessive introduction not only deteriorates the chemical durability of the glass, but may lead to devitrification.
  • the total content of BaO and SrO components (BaO + SrO) is 15% as the upper limit.
  • CaO improves the chemical durability of the glass in an appropriate amount and lowers the liquidus temperature (LT). However, if it is less than 5%, a sufficient effect cannot be obtained. Moreover, when it contains excessively exceeding 15%, there exists a possibility of not only deteriorating the chemical durability of glass but leading to devitrification. For this reason, the content of CaO is in the range of 5 to 15%.
  • the contact angle between the molten glass formed by melting and the noble metal is preferably 67 ° or more, and more preferably 70 ° or more. This increases the contact angle between the release film and the optical glass when pressing the optical glass with a mold coated with a release film made of noble metal, thus reducing the fusion between the release film and the optical glass. In addition, it is possible to extend the life of the mold and improve the product quality.
  • the refractive index (nd) for d-line 1.55 to 1.63
  • the Abbe number ( ⁇ d) 53 to 62.
  • the optical glass according to the present invention is used as a material for an optical element (lens, prism, mirror, etc.) mounted on an optical device such as a digital camera or a camera-equipped mobile phone, the optical property is improved by improving weather resistance and precision press formability. Since it is possible to improve the productivity of the element and reduce the cost, it is possible to contribute to the cost reduction of the optical device.
  • the optical element of the present invention is produced by mold-pressing the optical glass.
  • the mold press molding method includes, as described above, a direct press molding method in which molten glass is dropped from a nozzle onto a mold heated to a predetermined temperature and press molded, and a preform material is placed on the mold.
  • a reheating press molding method in which press molding is performed by heating above the glass softening point. According to such a method, a grinding / polishing step is not required, productivity is improved, and an optical element having a difficult shape such as a free curved surface or an aspherical surface can be obtained. Therefore, cost reduction can be achieved.
  • glass raw materials such as carbonates, nitrates and oxides
  • glass raw materials were prepared so as to achieve the target compositions (mol%) shown in Tables 1 to 3, and mixed thoroughly with powders to prepare the raw materials. . These were put into a melting furnace heated to 1000 to 1250 ° C., melted and clarified, homogenized with stirring, cast into a pre-heated metal mold, gradually cooled to room temperature, and each sample (Examples 1 to 15). Comparative Examples 1 to 8) were produced.
  • the measurement results are shown in Tables 1 to 3.
  • the liquid phase temperature (LT) is obtained by putting 50 g of a glass sample in a platinum crucible and melting at 1150 ° C. for 1 hour, and then at 920 ° C., 910 ° C., 900 ° C., 890 ° C., 880 ° C., 870 ° C., 860 ° C., respectively.
  • the ones kept at 850 ° C., 840 ° C., 830 ° C., 820 ° C., 810 ° C., 800 ° C., 790 ° C., 780 ° C., 770 ° C., 760 ° C. for 12 hours were cooled, and the presence or absence of crystal precipitation was observed with a microscope.
  • the lowest temperature at which no crystal was observed was defined as the liquidus temperature (LT).
  • Vickers hardness was measured using a Vickers hardness tester (trade name: HM-113, manufactured by Akashi) under conditions of a load of 100 g and a load time of 15 sec. In the weather resistance test, the temperature was maintained at 60 ° C. and humidity of 90% for 168 hours, and then the presence of abnormality such as devitrification, white burn, and blue burn was observed with a microscope. Was marked with ⁇ , and those without change before and after the test were marked with ⁇ .
  • the basicity of glass is an index indicating how much oxygen electrons in glass are attracted to cations in glass.
  • the attracting of oxygen electrons by cations in the glass is weak. Therefore, when a glass having a high basicity is in contact with a cation (mold component) that has a strong tendency to demand electrons, a cation from the mold is more likely to enter the glass than a glass having a low basicity. .
  • the cation which is a mold component penetrates (diffuses) into the glass, the mold component concentration in the glass phase near the interface increases.
  • the glass and the mold phase are fused by such a mechanism. That is, as the basicity decreases, the mold components are less likely to enter the glass, and the glass and the mold are not fused.
  • the optical glasses of Examples 1 to 15 shown in Table 1 and Table 2 all have good characteristics such as a basicity of 3 or less, a liquidus temperature of 840 ° C. or less, and a Vickers hardness (Hv) of 450 or more. It was confirmed to have. In contrast, all of the optical glasses of Comparative Examples 1 to 8 shown in Table 3 had a Vickers hardness (Hv) of 450 or less. Further, there was no liquid phase temperature (LT) of 840 ° C. or lower and a basicity of 3 or lower, which did not have sufficient characteristics.
  • LT liquid phase temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 光学ガラスは、モル%表示で、P25:10~25%、Al23:2~5%、B23:15~30%、Li2O:0~8%(ただし、0%を含まない。)、Na2O:0~8%、K2O:0~7%、R2O:1~15%(ただし、R2OはLi2OとNa2OとK2Oとの合計であり、2種以上を含む。)、ZnO:25~40%、BaO:0~10%、SrO:0~10%(ただし、BaO+SrOは15%を上限とする。)、CaO:5~15%、の範囲で決定された組成を有する。

Description

光学ガラス及び光学素子
 本発明は光学ガラス及び光学素子に関するものである。更に詳しくは、モールドプレス成形に適した光学ガラス及びその光学ガラスからなる光学素子に関するものである。
 近年、光ディスク(CD,MD,BD等)用のピックアップレンズ、携帯電話に搭載される撮像用レンズ等の光学レンズとして、種々のタイプの光学ガラスからなる光学素子が広く用いられており、その高精度化が求められている。高い表面精度の製品が得られる方法としてはモールドプレス成形法が知られているが、モールドプレス成形法においても金型とガラスとが融着して表面精度が損なわれるという問題がある。その金型とガラスとの融着の原因としては以下の2つが挙げられる。
 第1の原因は、ガラスの塩基性度にある。モールド成形中にガラスの成分が金型中に侵入し、界面付近の金型相中のガラス成分濃度が増加する。これによりガラス相と金型相との組成差が減少するため、親和性が増し、金型にガラスが融着すると考えられている。このガラス成分の金型への侵入のしやすさの度合いの指標として、塩基性度が用いられている。塩基性度が低いことは融着が発生しにくいということを意味するので、塩基性度を低くすることによってガラスの離型性を良くすることができる。
 第2の原因は、ガラスの滴下温度にある。ガラスの滴下温度が高ければ高いほど、金型表面の劣化も進み、ガラスが融着しやすくなる。モールドプレス成形法には、ほぼ最終製品形状を有するプリフォームを軟化点以上に加熱し、加熱した上下一対の金型によりプレス成形して最終製品形状とする再加熱プレス成形法と、加熱した金型上にガラス溶融炉から溶融ガラス滴を直接滴下し、プレス成形することにより最終製品形状とするダイレクトプレス成形法と、の2種類ある。特にダイレクトプレス成形法では、溶融ガラスの滴下温度を結晶化が始まる温度である液相温度(LT)より高くする必要があり、滴下温度を下げるためには液相温度(LT)を低くする必要がある。したがって、液相温度(LT)を低くすれば、滴下温度を下げて金型表面の劣化を抑えることができるので、ガラスの離型性を良くすることができる。
 モールドプレス成形用のガラスはこれまでにも提案されており、例えば、特許文献1,2には中屈折率・低分散域のリン酸塩ガラスが提案されている。
特開2011-57553号公報 特開2010-37154号公報
 特許文献1に記載されているガラスには、液相温度(LT)が高いという問題がある。通常、ダイレクトプレス成形では、ガラスがノズルで失透して安定した滴下ができなくなることを防ぐため、ノズルの温度は液相温度(LT)又はそれ以上に設定される。そのため、液相温度(LT)が高いとノズルの温度も高くなり、金型に滴下されるガラスの温度(すなわち滴下温度)が高くなる。その結果、金型の表面酸化や金属組成の変化が生じやすくなり、レンズの表面精度が損なわれるばかりか、成形金型の寿命が短くなるため、生産コストの上昇を招くことになる。
 特許文献1に記載されているガラスには、ガラス転移点(Tg)が高いという問題もある。モールドプレス成形法では、成形する光学ガラスのガラス転移点(Tg)近傍又はそれ以上の温度に、成形金型を加熱する必要がある。そのため、成形する光学ガラスのガラス転移点(Tg)が高いほど、成形金型の表面酸化や金属組成の変化が生じやすくなり、成形金型の寿命が短くなるため、生産コストの上昇を招くことになる。したがって、モールドプレス成形に用いる光学ガラスとしては、ガラス転移点(Tg)と液相温度(LT)ができるだけ低いものが望ましい。
 特許文献2に記載されている中屈折率・低分散域のガラスは、低いガラス転移点(Tg)を有するものであり、いずれもガラス転移点(Tg)を下げることを重要視した成分比となっている。このため、塩基性度が高く、プレス成形した際の金型からの離型性が悪い、という問題がある。離型性が悪いガラスは、製造における歩留まりを低下させるばかりでなく、前述したように製品の表面精度を悪くするという問題がある。
 本発明はこのような状況に鑑みてなされたものであって、その目的は、低い塩基性度及び液相温度(LT)によって金型との融着が抑えられた、離型性の良い光学ガラス及びその光学ガラスからなる光学素子を提供することにある。
 上記目的を達成するために、第1の発明の光学ガラスは、モル%表示で、
25:10~25%、
Al23:2~5%、
23:15~30%、
Li2O:0~8%(ただし、0%を含まない。)、
Na2O:0~8%、
2O:0~7%、
2O:1~15%(ただし、R2OはLi2OとNa2OとK2Oとの合計であり、2種以上を含む。)、
ZnO:25~40%、
BaO:0~10%、
SrO:0~10%(ただし、BaO+SrOは15%を上限とする。)、
CaO:5~15%、
の範囲で決定された組成を有する。以下、特に断りのない限り「%」は「モル%」を意味するものとする。
 第2の発明の光学ガラスは、上記第1の発明において、液相温度(LT)が840℃以下であり、塩基性度が3以下である。
 第3の発明の光学ガラスは、上記第1又は第2の発明において、ガラス転移点(Tg)が470℃以下である。
 第4の発明の光学ガラスは、上記第1~第3のいずれか1つの発明において、d線に対する屈折率(nd)が1.55~1.63、アッベ数(νd)が53~62の範囲の光学恒数を有する。
 第5の発明の光学ガラスは、上記第1~第4のいずれか1つの発明において、P25/B23≦1である。
 第6の発明の光学ガラスは、上記第1~第5のいずれか1つの発明において、ビッカース硬さ:Hv≧450である。
 第7の発明の光学素子は、上記第1~第6のいずれか1つの発明に係る光学ガラスからなる。このような光学素子の例としては、レンズ,プリズム,ミラーが挙げられる。
 第8の発明の光学素子は、上記第1~第7のいずれか1つの発明に係る光学ガラスをモールドプレス成形してなる。
 本発明に係るガラス組成であれば、低い塩基性度及び液相温度(LT)によって金型との融着が抑えられた、離型性の良い光学ガラス及びその光学ガラスからなる光学素子を実現することができる。また、本発明の光学素子は、前記光学ガラスのモールドプレス成形により作製可能であるため、前記光学ガラスの特性を有しながら、高い生産効率,低コスト化等を図ることができる。つまり、安定したプレス成形により精密な面を作製することが可能であるため、製品の品質と量産性の向上を達成することができる。
 以下、本発明に係る光学ガラス及び光学素子を説明する。本発明に係る光学ガラスは、モル%表示で、P25:10~25%、Al23:2~5%、B23:15~30%、Li2O:0~8%(ただし、0%を含まない。)、Na2O:0~8%、K2O:0~7%、R2O:1~15%(ただし、R2OはLi2OとNa2OとK2Oとの合計であり、2種以上を含む。)、ZnO:25~40%、BaO:0~10%、SrO:0~10%(ただし、BaO+SrOは15%を上限とする。)、CaO:5~15%、の範囲で決定された組成を有することを特徴としている。
 本発明者は、前記目的を達成すべく鋭意検討を重ねた結果、所定の屈折率と分散の光学恒数を有する光学ガラスにおいて、P25,B23,ZnO,R2O(RはNa,K,Liのいずれかの元素であり、そのうちの1つ以上を有する。)を基本組成とし、光学ガラス成分を所定の範囲内に有することにより、モールドプレス成形に適した低い液相温度(LT)と塩基性度(離型性)、具体的には840℃以下の液相温度(LT)と3以下の塩基性度が得られることを見出し、本発明をなすに至った。
 つまり、P25系のガラスにおいて、イオン価数が大きく、かつ、イオン半径の短いB23を多く導入することで、塩基性度を低くするとともにビッカース硬さ(Hv)を向上させることができる、という知見を得た。しかし、B23の含有量が増えると、化学耐久性が急激に悪化する。さらに液相温度(LT)も急激に高くなり、ガラスの安定性が悪くなり失透する。そこで、ZnOを多く導入することで液相温度(LT)を低くし、ガラスの安定性を向上させた。加えて、アルカリ金属酸化物やアルカリ土類金属酸化物等の含有量も調整し、さらに塩基性度を低く維持するため、P25/B23を1以下とすることで、低い液相温度(LT)であっても塩基性度を低くする組成範囲を見出した。
 したがって、本発明に係るガラス組成であれば、低い塩基性度及び液相温度(LT)によって金型との融着が抑えられた、離型性の良い光学ガラス及びその光学ガラスからなる光学素子を実現することができる。また、本発明の光学素子は、前記光学ガラスのモールドプレス成形により作製可能であるため、前記光学ガラスの特性を有しながら、高い生産効率,低コスト化等を図ることができる。つまり、安定したプレス成形により精密な面を作製することが可能であるため、製品の品質と量産性の向上を達成することができる。
 ダイレクトプレス成形では、成形後に光学素子(レンズ等)の外周を研削する芯取り加工を行うが、その際にビッカース硬さ(Hv)が450以下であると、ヒビ,カケ,ワレ等が発生するおそれがある。そのため、ビッカース硬さ(Hv)は450以上が好ましい。
 また、成形金型は、光学素子に良好な光学面を転写できるようにするため、所定温度に加熱しておく必要がある。製造する光学素子の形状や大きさ等、種々の条件によって異なるが、光学ガラスのガラス転移点(Tg)近傍の温度に設定するのが一般的である。そのため、ガラス転移点(Tg)が高くなればなるほど成形金型の温度を高くする必要がある。例えば、クロムコーティングしたWC100の金型では470℃以上で劣化が進むため、470℃以下にする必要がある。したがって、ガラス転移点(Tg)は470℃以下にすることが好ましく、460℃以下にすることが更に好ましく、450℃以下にすることが最も好ましい。
 次に、本発明に係る光学ガラスの各成分の含有量について、前記のように限定した理由等を詳細に説明する。なお、特に断らない限り、各成分の含有量はガラス成分全体に対する含有量(モル%表記)を表すものとする。
 P25はガラスを構成する主要成分であり、ガラスに製造可能な安定性を持たせ、ガラス転移点(Tg)と液相温度(LT)を小さくする作用が大きい。しかし、含有量が10%未満であると十分な効果が得られない。また、25%を超えて過剰に含有すると、化学的耐久性が悪化するおそれがある。このため、P25の含有量は10~25%の範囲である。
 Al23は、線熱膨張係数を小さくする効果とともに、ガラスの耐候性を向上させる効果を有している。しかし、含有量が2%未満であると十分な効果が得られない。また、含有量が5%を超えて多すぎるとガラスが不安定になり、液相温度(LT)が急激に上がって耐失透性も悪くなる。したがって、Al23の含有量は2~5%の範囲である。
 B23は、ガラスを構成する主要成分であり、かつ、ガラスの溶融性の向上やガラスの均質化に非常に有効な成分である。それと同時に、塩基性度を低くして離型性を向上させ、ビッカース硬さ(Hv)を向上させる成分でもある。しかし、含有量が15%未満であると十分な効果が得られない。また、30%を超えて過剰に含有すると、ガラスが不安定になり耐失透性が低下する。このため、B23含有量は15~30%の範囲である。
 前述したように、ビッカース硬さ:Hv≧450であることが好ましい。また、ビッカース硬さ(Hv)を保つためには、P25/B23≦1であることが好ましい。液相温度(LT)とガラス転移点(Tg)を低くし、かつ、塩基性度を3以下に保つという点から、0.2≦P25/B23≦1であることが更に好ましい。
 Li2O成分は、ガラス転移点(Tg)と屈伏点(At)を低下させ、プレス成形温度を低下させるために導入する成分である。また、混合したガラス原料の溶融を促進する効果がある。ただし、過剰の導入によりガラスの化学的耐久性が悪化し、屈折率も急激に低下してしまうおそれがあるため、その含有量は0~8%(ただし、0%を含まない。)の範囲である。
 Na2Oは、ガラスの耐失透性を向上させ、ガラス転移点(Tg),屈伏点(At),液相温度(LT)を低下させ、ガラスの高温溶融性を改善するために導入される成分である。しかし、B23が多く導入された組成系で、Na2Oを8%を超えて導入すると耐候性が悪化し、ガラスの安定性も低下する。このため、Na2Oの含有量は0~8%の範囲である。
 K2Oは、ガラスの耐失透性を向上させ、ガラス転移点(Tg),屈伏点(At),液相温度(LT)を低下させ、ガラスの高温溶融性を改善するために導入される成分である。しかし、7%を超えて過剰に導入すると、ガラスの安定性が悪くなるばかりでなく、化学的耐久性も悪化し、屈折率も低下する。このため、K2Oの含有量は0~7%の範囲である。
 また、Li2O,Na2O,K2Oといったアルカリ金属酸化物の2種以上の導入は、混合アルカリ効果により、液相温度(LT)とガラス転移点(Tg)を低下させ、ガラスの成形性を向上させる。R2O(ただし、R2OはLi2OとNa2OとK2Oとの合計であり、2種以上を含む。)が1%未満になると、液相温度(LT)とガラス転移点(Tg)が大きくなる。しかし、R2Oの含有量が15%を超えると、ガラスの安定性が悪化し、失透するおそれがある。このため、R2Oの含有量は1~15%の範囲である。
 ZnOは、ビッカース硬さ(Hv)を大きく低下させることなく、ガラス転移点(Tg)と液相温度(LT)を低下させる効果を有している。また、線膨張係数(α)を増大させることもない。ただし、過剰のZnOの導入によりガラスの耐久性が悪化するおそれがある。しかし、その含有量が20%未満では十分な効果が得られない。このため、ZnOの含有量は25~40%の範囲である。また、液相温度(LT)の低下の点から、ZnOの含有量は30~40%が好ましく、30~35%が更に好ましい。
 BaO成分は、ガラスの屈折率を高め、液相温度(LT)を低下させる効果を有している。しかし、その量が多すぎると耐失透性が悪化しやすくなる。このため、BaOの含有量は0~10%の範囲である。
 SrOは、ガラスの低分散特性を損なわずにガラスの屈折率を高める有効な成分である。特に、ガラスの耐候性を高める成分として有効である。しかし、過剰のSrOを導入すると、ガラスの安定性が悪化し、液相温度(LT)も上昇する。このため、SrOの含有量は0~10%の範囲である。
 BaO,SrO成分は、液相温度(LT)を急激に下げ、さらに粘性を上げることによって安定したプレス成形を可能とする。しかし、過剰な導入はガラスの化学的耐久性を悪化させるばかりか、失透を導くおそれがある。このため、BaO,SrO成分の合計含有量(BaO+SrO)は15%を上限とする。
 CaOは、適量でガラスの化学的耐久性を向上させ、液相温度(LT)を低下させる。しかし、5%未満では十分な効果が得られない。また、15%を超えて過剰に含有すると、ガラスの化学的耐久性を悪化させるばかりか、失透を導くおそれがある。このため、CaOの含有量は5~15%の範囲である。
 本発明に係る光学ガラスにおいては、溶融により形成される溶融ガラスと貴金属との接触角が67°以上であることが好ましく、70°以上であることが更に好ましい。これにより貴金属からなる離型膜がコートされた金型で光学ガラスをプレスする際に、離型膜と光学ガラスとの接触角が高められるため、離型膜と光学ガラスとの融着を低減し、金型の長寿命化と製品品質の向上を図ることができる。
 各成分の組成範囲を上述したように限定することにより、d線に対する屈折率(nd):1.55~1.63、アッベ数(νd):53~62の範囲の光学恒数を有し、液相温度(LT):840℃以下、塩基性度:3以下、ガラス転移点(Tg):470℃以下であり、離型性,耐候性等に優れた光学ガラスを実現することができる。
 本発明に係る光学ガラスを、デジタルカメラ,カメラ付き携帯電話等の光学機器に搭載される光学素子(レンズ,プリズム,ミラー等)の材料として用いれば、耐候性及び精密プレス成形性の向上による光学素子の生産性の向上と低コスト化が可能になるため、光学機器の低コスト化等に寄与することができる。
 本発明の光学素子は、前記光学ガラスをモールドプレス成形することによって作製される。このモールドプレス成形法としては、前述したように、溶融したガラスをノズルから、所定温度に加熱された金型へ滴下しプレス成形するダイレクトプレス成形法、及びプリフォーム材を金型に載置してガラス軟化点以上に加熱してプレス成形する再加熱プレス成形法が挙げられる。このような方法によれば研削・研磨工程が不要となり、生産性が向上し、また自由曲面や非球面といった加工困難な形状の光学素子を得ることができる。したがって、低コスト化を図ることができる。
 以下、本発明を実施した光学ガラスの構成等を、実施例1~15及び比較例1~8を挙げて更に具体的に説明する。
 炭酸塩,硝酸塩,酸化物等のガラス原料を用いて、表1~表3に示す目標組成(モル%)となるように、ガラス原料を調合し、粉末で十分に混合して調合原料とした。これらを1000~1250℃に加熱された溶融炉に投入し、溶融・清澄後、撹拌均質化して予め加熱された金属製の鋳型に鋳込み、室温まで徐冷して各サンプル(実施例1~15,比較例1~8)を製造した。これらの各サンプルについて、d線に対する屈折率(nd),アッベ数(νd),ガラス転移点(Tg),屈伏点(At),100~300℃間の平均線膨張係数α(×10-7/℃),液相温度(LT),ビッカース硬さ(Hv),耐候性,塩基性度及び接触角(°)を測定した。測定結果(物性)を表1~表3に合わせて示す。
 各サンプルの物性の測定は、日本光学硝子工業会規格(JOGIS)の試験方法等に準じて行った。屈折率(nd)とアッベ数(νd)は、溶融し鋳型に鋳込んだときの温度から室温まで-30℃/時間の冷却速度で徐冷したガラスを「KPR-2000」(カルニュー光学工業社製)で測定した。ガラス転移点(Tg),屈伏点(At),線膨張係数(α)は、熱機械的分析装置「TMA/SS6000」(Seiko Instruments Inc.社製)を用いて毎分10℃の昇温条件で測定した。
 液相温度(LT)は、白金るつぼにガラス試料を50g入れ、1150℃での1時間の溶融の後、それぞれ920℃,910℃,900℃,890℃,880℃,870℃,860℃,850℃,840℃,830℃,820℃,810℃,800℃,790℃,780℃,770℃,760℃に12時間保温したものを冷却して結晶析出の有無を顕微鏡により観察した。そして、結晶の認められない最低温度を液相温度(LT)とした。
 ビッカース硬さ(Hv)は、ビッカース硬度試験機(商品名:HM-113、アカシ社製)を用いて、荷重100g,負荷時間15secの条件下で測定した。耐候性の試験では、温度60℃,湿度90%の加速条件で168時間維持して、その後、顕微鏡により失透,白ヤケ,青ヤケ等の異常の有無を観察し、異常の認められたものを×、試験前後で変化のないものを○とした。
 ここで測定した塩基性度は、式:(酸素原子のモル数の総和/陽イオンのField Strengthの総和)×100として定義されるものであり、式中のField Strength(以下、F.S.と表記する)は、式:F.S.=Z/r2(ただし、Z:イオン価数、r:イオン半径である。)により求められる。なお、ここでの測定におけるZ,rの数値は『化学便覧基礎編改訂2版(1975年 丸善株式会社発行)』を参照した。
 ガラスの塩基性度は、ガラス中の酸素の電子がガラス中の陽イオンにどのくらい引きつけられているかを示す指標になる。塩基性度の高いガラスでは、ガラス中の陽イオンによる酸素の電子の引きつけが弱い。したがって、塩基性度の高いガラスは、電子を求める傾向の強い陽イオン(金型成分)と接した際、塩基性度の低いガラスに比べガラス中に金型からの陽イオンの侵入が起きやすい。金型成分である陽イオンがガラス中へ侵入(拡散)すると、界面付近のガラス相中の金型成分濃度が増加する。これによりガラス相と金型相の組成差が減少するため、両者の間の親和性が増し、ガラスが金型に濡れやすくなる。このような機構により、ガラスと金型とが融着すると考えられる。つまり、塩基性度が低くなるにしたがって、ガラス中に金型成分が侵入しにくくなり、ガラスと金型とは融着しなくなる。
 接触角の測定では、貴金属(Cr)をコートした金型に粘度:2ポアズの溶融ガラスをおよそ0.1g滴下し、試料を作製した。その際の金型と試料との間の接触角(°)を測定した。表1~表3中の接触角(°)は、金型温度が、Tg-20度,Tg,Tg+20度の場合のそれぞれ3回測定し、その平均値を示している。
 表1及び表2に示した実施例1~15の光学ガラスは、いずれも塩基性度が3以下、液相温度が840℃以下、ビッカース硬さ(Hv)は450以上、という良好な特性を有していることが確認された。これに対し、表3に示した比較例1~8の光学ガラスは、いずれもビッカース硬さ(Hv)が450以下であった。また、液相温度(LT)が840℃以下であり、かつ、塩基性度が3以下であるものはなく、十分な特性を有していないものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (8)

  1.  モル%表示で、
    25:10~25%、
    Al23:2~5%、
    23:15~30%、
    Li2O:0~8%(ただし、0%を含まない。)、
    Na2O:0~8%、
    2O:0~7%、
    2O:1~15%(ただし、R2OはLi2OとNa2OとK2Oとの合計であり、2種以上を含む。)、
    ZnO:25~40%、
    BaO:0~10%、
    SrO:0~10%(ただし、BaO+SrOは15%を上限とする。)、
    CaO:5~15%、
    の範囲で決定された組成を有する光学ガラス。
  2.  液相温度(LT)が840℃以下であり、塩基性度が3以下である請求項1記載の光学ガラス。
  3.  ガラス転移点(Tg)が470℃以下である請求項1又は2記載の光学ガラス。
  4.  d線に対する屈折率(nd)が1.55~1.63、アッベ数(νd)が53~62の範囲の光学恒数を有する請求項1~3のいずれか1項に記載の光学ガラス。
  5.  P25/B23≦1である請求項1~4のいずれか1項に記載の光学ガラス。
  6.  ビッカース硬さ:Hv≧450である請求項1~5のいずれか1項に記載の光学ガラス。
  7.  請求項1~6のいずれか1項に記載の光学ガラスからなる光学素子。
  8.  請求項1~7のいずれか1項に記載の光学ガラスをモールドプレス成形してなる光学素子。
PCT/JP2015/056784 2014-05-27 2015-03-09 光学ガラス及び光学素子 WO2015182209A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523185A JP6540693B2 (ja) 2014-05-27 2015-03-09 光学ガラス及び光学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014109276 2014-05-27
JP2014-109276 2014-05-27

Publications (1)

Publication Number Publication Date
WO2015182209A1 true WO2015182209A1 (ja) 2015-12-03

Family

ID=54698551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056784 WO2015182209A1 (ja) 2014-05-27 2015-03-09 光学ガラス及び光学素子

Country Status (2)

Country Link
JP (1) JP6540693B2 (ja)
WO (1) WO2015182209A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053749A (ja) * 2003-08-05 2005-03-03 Minolta Co Ltd 光学ガラス及びこれから作製される光学素子
JP2008266122A (ja) * 2007-03-23 2008-11-06 Hoya Corp ガラスの製造方法およびこのガラスから得られる精密プレス成形用プリフォームと光学素子
JP2011102228A (ja) * 2009-10-15 2011-05-26 Asahi Glass Co Ltd 光学ガラス、ガラスフリット及びガラス層付き透光性基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290915A (ja) * 2007-05-25 2008-12-04 Tomita Rikagaku Kenkyusho リン酸塩系ガラス組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053749A (ja) * 2003-08-05 2005-03-03 Minolta Co Ltd 光学ガラス及びこれから作製される光学素子
JP2008266122A (ja) * 2007-03-23 2008-11-06 Hoya Corp ガラスの製造方法およびこのガラスから得られる精密プレス成形用プリフォームと光学素子
JP2011102228A (ja) * 2009-10-15 2011-05-26 Asahi Glass Co Ltd 光学ガラス、ガラスフリット及びガラス層付き透光性基板

Also Published As

Publication number Publication date
JPWO2015182209A1 (ja) 2017-04-20
JP6540693B2 (ja) 2019-07-10

Similar Documents

Publication Publication Date Title
JP4810901B2 (ja) 光学ガラス及び光学素子
JP5358888B2 (ja) 光学ガラス及び光学素子
JP6136009B2 (ja) 光学ガラス
WO2013031385A1 (ja) 光学ガラス
CN107879620B (zh) 光学玻璃、玻璃预制件和光学元件
JP2018052800A (ja) 光学ガラス、ガラス母材と光学素子
JP6201605B2 (ja) 光学ガラス
WO2011065097A1 (ja) 光学ガラス及び光学素子
CN117105523A (zh) 光学玻璃、玻璃预制件和光学元件
JP6280015B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
KR20160038780A (ko) 유리, 프레스 성형용 유리 소재, 광학 소자 블랭크, 및 광학 소자
JP2006111482A (ja) 光学ガラス及び光学素子
JP6694229B2 (ja) ガラス
JP2018035037A (ja) ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP2008214135A (ja) 精密プレス成形用光学ガラス
JP2007008761A (ja) 光学ガラス及び光学素子
JP2012140314A (ja) 光学ガラス
JP2007145615A (ja) 光学ガラス及び光学素子
CN109399916A (zh) 光学玻璃、光学预制件、光学元件和光学仪器
JP6280284B1 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP2018172282A (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP2018104283A (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP2009203140A (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
CN107129140B (zh) 光学玻璃及光学元件
JP2005053749A (ja) 光学ガラス及びこれから作製される光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799891

Country of ref document: EP

Kind code of ref document: A1