WO2015180417A1 - 耦合电感和功率变换器 - Google Patents

耦合电感和功率变换器 Download PDF

Info

Publication number
WO2015180417A1
WO2015180417A1 PCT/CN2014/090442 CN2014090442W WO2015180417A1 WO 2015180417 A1 WO2015180417 A1 WO 2015180417A1 CN 2014090442 W CN2014090442 W CN 2014090442W WO 2015180417 A1 WO2015180417 A1 WO 2015180417A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
coupled inductor
columns
column
magnetic column
Prior art date
Application number
PCT/CN2014/090442
Other languages
English (en)
French (fr)
Inventor
刘云峰
叶飞
胡炎申
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14893090.2A priority Critical patent/EP3136404B1/en
Publication of WO2015180417A1 publication Critical patent/WO2015180417A1/zh
Priority to US15/360,572 priority patent/US20170076850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/12Magnetic shunt paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Definitions

  • the present invention relates to the field of circuits, and more particularly to a coupled inductor and power converter.
  • Such a multi-level power converter includes a plurality of power bridge arms in parallel, the plurality of power bridge arms being coupled by a plurality of windings or coils in the coupled inductor and operating in a staggered manner.
  • This interleaved parallel technology can reduce the output ripple current and increase the output switching frequency, thus reducing the inductance of the output filter inductor, thereby reducing the size and cost of the inductor.
  • the filter inductor In order to meet the system stability requirements of multi-level power converters, it is often necessary to provide a filter inductor to provide sufficient inductance of the filter inductor. Since the coupled inductor can generate leakage inductance, the leakage inductance of the coupled inductor can be used on the multilevel power converter instead of the filter inductor of the multilevel power converter, which can reduce system cost and improve system performance. .
  • Embodiments of the present invention provide a coupled inductor and a power converter capable of increasing the inductance of the leakage inductance of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor.
  • a coupled inductor comprising: a magnetic core and at least two windings, wherein the magnetic core comprises at least two first magnetic columns, at least one second magnetic column and two opposing yokes, at least two The first magnetic column and the at least one second magnetic column are disposed between two opposing yokes, and at least two windings are divided The at least two windings are in one-to-one correspondence with the at least two first magnetic columns on at least two first magnetic columns.
  • the cross section of the at least one second magnetic column is set such that the inductance of the leakage inductance generated when the coupled inductor is connected in the power converter satisfies the filtering required by the power converter The inductance of the inductor.
  • the magnetic permeability of the at least two first magnetic columns is greater than the magnetic permeability of the at least one second magnetic column.
  • the at least two first magnetic columns comprise N a first magnetic column, at least one second magnetic column includes N-1 second magnetic columns, and each of the N-1 second magnetic columns is disposed in two of the N first magnetic columns Between a magnetic column, wherein N is an integer greater than or equal to 2.
  • the at least two first magnetic columns are two first magnetic columns, and the at least one second magnetic column is a second magnetic column.
  • the at least two first magnetic columns are three first magnetic columns, and the at least one second magnetic column is two second magnetic columns.
  • the at least two first magnetic columns are three The first magnetic column, the at least one second magnetic column is a second magnetic column, the three first magnetic columns are arranged in a triangle, and the second magnetic column is disposed at an intermediate position of the triangle.
  • the at least two first magnetic columns are two The first magnetic column, the at least one second magnetic column is a second magnetic column, and the two first magnetic columns and the second magnetic column are arranged in a triangle shape.
  • the material of the at least two first magnetic columns is a magnetic material without an internal air gap
  • the material of the at least one second magnetic column It is a magnetic material with an internal air gap
  • the magnetic material without internal air gap comprises an amorphous material, a ferrite material or a silicon steel material, and has an internal air gap magnetic property.
  • Materials include iron silicon materials, iron silicon aluminum materials or amorphous powders.
  • the at least two first magnetic columns and the at least one second magnetic column are in the shape of a cylinder, a triangular prism, Cuboid or polygonal cylinder.
  • the two opposing yokes are circular, triangular, rectangular or polygonal in shape.
  • a power converter comprising: at least two power bridge arms; and a coupled inductor according to any of the possible implementations of the first aspect, wherein at least two windings of the coupled inductor are respectively at least two The power bridge arms are connected.
  • the leakage inductance of the coupled inductor can be increased by adding a second magnetic column between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor.
  • FIG. 1 is a schematic diagram of the structure of a coupled inductor in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of a coupled inductor in accordance with another embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing the structure of a coupled inductor in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a coupled inductor in accordance with another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a structure of a coupled inductor according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a structure of a coupled inductor in accordance with another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the structure of a coupled inductor in accordance with another embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing the structure of a coupled inductor in accordance with another embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a power converter in accordance with an embodiment of the present invention.
  • Embodiments of the present invention are applied to a multilevel power converter employing an interleaved parallel technique, the present invention
  • the embodiment does not limit the level level of the multilevel power converter.
  • the multilevel power converter may be a two-level power converter, a three-level power converter or a five-level power converter or the like.
  • the embodiment of the present invention does not limit the type of the multi-level power converter.
  • the multi-level power converter may be a diode clamp type multi-level power converter, or may be a capacitor clamp type multi-level power. Converter and so on.
  • FIG. 1 is a schematic diagram of the structure of a coupled inductor 100 in accordance with an embodiment of the present invention.
  • the coupled inductor 100 includes a magnetic core and at least two windings.
  • the magnetic core includes at least two first magnetic columns, at least one second magnetic column, and two opposing yokes. At least two first magnetic columns and at least one second magnetic column are disposed between two opposing yokes, at least two windings respectively on at least two first magnetic columns, at least two windings and at least two first The magnetic columns correspond one by one.
  • the magnetic core includes two first magnetic columns 111 and 112, a second magnetic column 121, and an upper yoke 131 and a lower yoke 132.
  • Two first magnetic columns 111 and 112 and one second magnetic column 121 are respectively disposed between the upper yoke 131 and the lower yoke 132, and the two windings 151 and 152 are respectively wound around the two first magnetic columns 111 and 112.
  • Upper, the two windings 151 and 152 are in one-to-one correspondence with the two first magnetic columns 111 and 112.
  • one end of the winding 151 is shorted to one end of the winding 152 and is connected to the load, and the other end of the winding 151 and the other end of the winding 152 are respectively connected to the power bridge arm of the power converter.
  • the windings 151 and 152 are used to couple the alternating current generated by the power bridge arm interleaving.
  • the magnetic flux generated by the windings 151 and 152 generates a leakage inductance through the air, and the magnetic flux generated by the windings 151 and 152 passes through the second magnetic column. Create a leaky feeling.
  • the embodiment of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic column between the two opposite yokes of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor, for example, can satisfy Performance requirements such as system stability, ripple current, and total harmonic current distortion of the input line.
  • Performance requirements such as system stability, ripple current, and total harmonic current distortion of the input line.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • FIG. 1 only shows a part of the structure of the structure of the coupled inductor 100, and the technical solution of the embodiment of the present invention is described in detail by taking this part of the structure as an example, but the embodiment of the present invention is not limited thereto. this.
  • the magnetic permeability of the material of the at least two first magnetic columns is greater than at least one The magnetic permeability of the material of the two magnetic columns.
  • the first magnetic column can be made of a high magnetic permeability material
  • the second magnetic column can be made of a low magnetic permeability material.
  • the material of the at least two first magnetic columns may be a magnetic material without an internal air gap such as an amorphous material, a ferrite material, a silicon steel material, and the material of the at least one second magnetic column may be a ferrosilicon material.
  • a magnetic material having an internal air gap such as an iron silicon aluminum material or an amorphous powder.
  • the material of the first magnetic columns 111 and 112 may be a ferrite material
  • the material of the second magnetic column 121 may be a ferrosilicon material.
  • the material of the at least two first magnetic columns may also be other magnetic materials without internal air gaps, and the material of at least one second magnetic column may also be other magnetic materials containing air gaps inside, embodiments of the present invention Not limited to this.
  • the material of the at least one second magnetic column may also be a magnetic material having no air gap inside, and each of the at least one second magnetic column comprises two parts, in the two parts Where an air gap having a pitch of the order of millimeters is provided, each of the at least one second magnetic column may be equivalent to a magnetic column made of a magnetic material of low magnetic permeability.
  • the material of the second magnetic column 121 may be a ferrite material, and the second magnetic column 121 includes a first portion and a second portion, wherein a gas having a pitch of 1 mm to 3 mm is disposed between the first portion and the second portion.
  • the second magnetic column 121 is equivalent to a magnetic column made of a magnetic material having a low magnetic permeability.
  • the shape of the at least two first magnetic columns and the at least one second magnetic column may be a cylinder, a triangular prism, a rectangular parallelepiped or a polygonal cylinder.
  • the shape of the first magnetic column may be the same as or different from the shape of the second magnetic column.
  • the shape of the first magnetic columns 111 and 112 and the second magnetic column 121 may be a cylinder, or the first magnetic columns 111 and 112 may be cylinders, and the shape of the second magnetic column 121 may be a polygonal cylinder.
  • the shape of the two opposing yokes may be circular, triangular, rectangular or polygonal. It should be understood that the shape of the two opposing yokes may also be a rounded triangle, a rounded rectangle, or other similar rounded rectangular shape. For example, the upper yoke 131 and the lower yoke 132 of the two opposing yokes have a rounded triangle shape.
  • the cross section of the at least one second magnetic column is set such that the inductance of the leakage inductance generated when the coupled inductor 100 is connected in the power converter meets the coupled inductor.
  • the inductance of the filter inductor required for a power converter of 100.
  • the cross section of the second magnetic column 121 may be sized such that the inductance of the leakage inductance of the coupled inductor 100 satisfies the sense of the filter inductance required for the power converter including the coupled inductor 100. the amount.
  • the embodiment of the present invention adjusts the coupling coefficient of the coupled inductor by setting the size of the cross section of the at least one second magnetic column, so that the inductance of the leakage inductance of the coupled inductor can satisfy the filtering required by the power converter including the coupled inductor.
  • the inductance of the inductor has high control precision.
  • At least one second magnetic column of the coupled inductor shown in FIG. 1 may be disposed adjacent to at least two first magnetic columns, and at least two first magnetic columns may be coupled to at least one second magnetic The columns are parallel.
  • At least one second magnetic column is disposed adjacent to at least two first magnetic columns of at least two first magnetic columns, and at least one second magnetic column and at least two first magnetic columns may be located in the same plane, Can be located in different planes.
  • at least one of the second magnetic columns and the at least two first magnetic columns may be in a straight line, or at least two second magnetic columns may be in a straight line, and at least one of the second magnetic columns is located on the other straight line.
  • Coupled inductor 200 is an example of the embodiment of Figure 1.
  • the coupled inductor 200 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • the first magnetic columns 211, 212 and 213, and the at least one second magnetic column 221 and 222 are arranged along a straight line, the second magnetic column 221 is located between the first magnetic columns 211 and 212, and the second magnetic column 222 is located at the first magnetic field. Between columns 212 and 213. Windings 251, 252, and 253 are wound on the first magnetic columns 211, 212, and 213, respectively.
  • Embodiments of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic post between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter coupled to the coupled inductor.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • the volume of the coupled inductor is not significantly increased, thereby facilitating the spatial layout of the system.
  • Coupled inductor 300 is an example of the embodiment of Figure 1.
  • the coupled inductor 300 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • the first magnetic columns 311, 312, and 313 are arranged along a straight line, and the second magnetic columns 321 and 322 are arranged along another straight line.
  • the second magnetic column 321 is located between the first magnetic columns 311 and 312, and the second magnetic column 322 is located between the first magnetic columns 312 and 313.
  • Windings 351, 352, and 353 are wound on the first magnetic columns 311, 312, and 313, respectively.
  • Embodiments of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic post between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter coupled to the coupled inductor.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • Coupled inductor 400 is an example of the embodiment of Figure 1.
  • the coupled inductor 400 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • the at least two first magnetic columns include N first magnetic columns
  • the at least one second magnetic column includes N-1 second magnetic columns
  • each of the N-1 second magnetic columns Provided between two first magnetic columns of the N first magnetic columns, wherein N is an integer greater than or equal to 2.
  • the N first magnetic columns are respectively the first magnetic columns 411, 412, ..., 41n
  • the first magnetic columns 411, 412, ..., 41n and the second magnetic columns 421, ..., 42m are disposed between the upper yoke 431 and the lower yoke 432, and the second magnetic columns 421, . . . , 42m
  • the i-th second magnetic column is disposed between the i-th first magnetic column and the i+1th first magnetic column of the first magnetic columns 411, 412, ..., 41n, and the value of i is from 1 to m.
  • the second magnetic column 421 is disposed between the first magnetic columns 411 and 412, and the second magnetic column 42m is disposed between the first magnetic columns 41n-1 and 41n.
  • the windings 451, 452, ..., 45n are wound on the first magnetic columns 411, 412, ..., 41n, respectively.
  • Embodiments of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic post between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter coupled to the coupled inductor.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the sense of leakage inductance replaces the filter inductor, which reduces the cost of the system, and reduces the loss caused by the filter inductor, which improves the efficiency of the system.
  • FIG. 5 is a schematic diagram of a structure of a coupled inductor 500 in accordance with another embodiment of the present invention.
  • Coupled inductor 500 is an example of the embodiment of FIG. 1 or 2.
  • the coupled inductor 500 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • the coupled inductor 500 includes two first magnetic columns 511 and 512, a second magnetic column 521, an upper yoke 531 and a lower yoke 532, and two windings 551 and 552.
  • the first magnetic columns 511 and 512 and the second magnetic column 521 are disposed between the upper yoke 531 and the lower yoke 532, and the second magnetic column 521 is located between the first magnetic columns 511 and 512.
  • Winding 551 is wound on first magnetic post 511 and winding 552 is wound on first magnetic post 512.
  • the embodiment of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic column between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • FIG. 6 is a schematic diagram of a structure of a coupled inductor 600 in accordance with another embodiment of the present invention.
  • Coupled inductor 600 is an example of the embodiment of FIG. 1 or 2.
  • the coupled inductor 600 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • the N first magnetic columns are three first magnetic columns, and the N-1 second magnetic columns are two second magnetic columns.
  • the coupling inductor 600 includes three first magnetic columns 611, 612, and 613, two second magnetic columns 621 and 622, an upper yoke 631 and a lower yoke 632, and three windings 651, according to an embodiment of the present invention. , 652 and 653.
  • the first magnetic columns 611, 612 and 613 and the two second magnetic columns 621 and 622 are disposed between the upper yoke 631 and the lower yoke 632, and the second magnetic column 621 is located between the first magnetic columns 611 and 612.
  • the second magnetic column 622 is located between the first magnetic columns 612 and 613.
  • Winding 651 is wound on first magnetic post 611
  • winding 652 is wound on first magnetic post 612
  • winding 653 is wound on first magnetic post 613.
  • the embodiment of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic column between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor.
  • this coupled inductor since this coupled inductor only needs to increase the magnetic column and there is no need to wind the wire on the magnetic column.
  • the circle therefore, is simple in processing and can meet the needs of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • FIG. 7 is a cross-sectional view showing the structure of a coupled inductor 700 in accordance with another embodiment of the present invention.
  • Coupled inductor 700 is an example of the embodiment of Figure 1 or Figure 3.
  • the coupled inductor 700 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • At least one second magnetic column is three first magnetic columns 711, 712, and 713, and at least one second magnetic column is a second magnetic column 721, and the three first magnetic columns are The triangles are arranged and the second magnetic column is placed in the middle of the triangle.
  • the coupled inductor 700 includes three first magnetic columns 711, 712, and 713, one second magnetic column 721, an upper yoke (not shown), and a lower yoke 732, and three Windings 751, 752 and 753.
  • the first magnetic columns 711, 712, and 713 and the second magnetic column 721 are disposed between the upper yoke and the lower yoke 732, and the three first magnetic columns 711, 712, and 713 are arranged in a triangular shape, that is, three
  • the first magnetic columns 711, 712, and 713 are respectively located at three apex angles of the triangle, and the second magnetic column 721 is located at the middle of the triangle.
  • the winding 751 is wound on the first magnetic column 711
  • the winding 752 is wound on the first magnetic column 712
  • the winding 753 is wound on the first magnetic column 713.
  • the shape of the yoke is a rounded triangle
  • the first magnetic columns 711, 712, and 713, and the shape of the second magnetic column 721 are circular.
  • the embodiment of the present invention is not limited thereto, for example, magnetic
  • the shape of the yoke may also be other shapes, such as a circle and a rectangle, and the first magnetic column and the second magnetic column may also have other shapes, for example, a polygon.
  • the embodiment of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic column between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • FIG. 8 is a cross-sectional view showing the structure of a coupled inductor 800 in accordance with another embodiment of the present invention.
  • Coupled inductor 800 is an example of the embodiment of FIG. 1 or 3.
  • the coupled inductor 800 is similar to the coupled inductor 100 of FIG. 1, and a detailed description is omitted as appropriate herein.
  • At least two first magnetic columns are two first magnetic columns
  • at least one second magnetic column is a second magnetic column
  • two first magnetic columns and second magnetic columns are Triangles are arranged.
  • the coupled inductor 800 includes: two first magnetic columns 811 and 812, a second magnetic post 821, an upper yoke (not shown) and a lower yoke 832, and two windings 851 and 852.
  • the first magnetic columns 811 and 812 and the second magnetic column 821 are disposed between the upper yoke 831 and the lower yoke 832, and the two first magnetic columns 811 and 812 and the second magnetic column 821 are arranged in a triangle, that is, It is said that the two first magnetic columns 811 and 812 and the second magnetic column 821 are respectively located at the three top corners of the triangle.
  • Winding 851 is wound on first magnetic post 811 and winding 852 is wound on first magnetic post 812. The windings are not wound on the second magnetic column 821.
  • the shape of the yoke is a rounded triangle
  • the shapes of the first magnetic columns 811 and 812, and the second magnetic column 821 are circular
  • the embodiment of the present invention is not limited thereto, for example, the shape of the yoke.
  • Other shapes, such as a circle and a rectangle, may also be used, and the first magnetic column and the second magnetic column may have other shapes, for example, a polygon.
  • the embodiment of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic column between the two opposing yokes of the coupled inductor, thereby improving the performance of the power converter connected to the coupled inductor.
  • the coupled inductor since the coupled inductor only needs to increase the magnetic column and does not need to wind the coil on the magnetic column, the processing process is simple and can meet the requirements of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • FIG. 9 is a block diagram of a power converter 900 in accordance with an embodiment of the present invention.
  • Power converter 900 includes: at least two power bridge arms and a coupled inductor as in the above embodiments. At least two windings of the coupled inductor are respectively connected to the at least two power bridge arms.
  • the two power bridge arms 900 are taken as an example for description.
  • the embodiments of the present invention are not limited thereto.
  • the coupled inductors of the embodiments of the present invention may be connected to multiple power bridge arms, and each power bridge arm corresponds to the coupled inductor. An input.
  • the power converter 900 shown in FIG. 9 includes two power bridge arms 960 and a coupled inductor 910.
  • the structure of the coupled inductor 910 is the coupled inductor 500 shown in FIG. 5 in the above-described coupled inductor embodiment, and a detailed description is omitted here.
  • the outputs of the two power bridge arms 960 are coupled to the inputs of the two windings 951 and 952 included in the coupled inductor 910, respectively.
  • the input end of the power bridge arm 1 and the input end of the power bridge arm 2 are connected in parallel between the two input terminals of the power converter 900, and the output end of the power bridge arm 1 is connected to the input end of the winding 952 of the coupled inductor.
  • the output of the power bridge arm 2 is connected to the input of the winding 951 of the coupled inductor, and the output of the windings 951 and 952 is connected to the output of the power converter 900, the power converter 900
  • the output is connected to a load (not shown).
  • the coupled inductor 910 includes first magnetic posts 911 and 912, a second magnetic post 921, an upper yoke 931 and a lower yoke 932, and two windings 951 and 952.
  • the first magnetic columns 911 and 912 and the second magnetic column 921 are disposed between the upper yoke 931 and the lower yoke 932, and the second magnetic column 921 is located between the first magnetic columns 911 and 912. Winding 951 is wound on first magnetic post 911 and winding 952 is wound on first magnetic post 912.
  • the power converter of the embodiment of the present invention can increase the leakage inductance of the coupled inductor by adding a second magnetic column between the two opposite yokes of the coupled inductor, thereby improving the power converter connected to the coupled inductor. performance.
  • the coupling inductor is simple to process and can meet the needs of mass production.
  • the leakage inductance of the coupled inductor is used instead of the filter inductor, the cost of the system is reduced, and the loss caused by the filter inductor is reduced, and the efficiency of the system is improved.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

一种耦合电感和功率变换器,该耦合电感包括:磁芯和至少两个绕组。该磁芯包括至少两个第一磁柱(111,112)、至少一个第二磁柱(121)和两个相对的磁轭(131,132),该至少两个第一磁柱和该至少一个第二磁柱设置在该两个相对的磁轭之间,该至少两个绕组(151,152)分别在该至少两个第一磁柱上,该至少两个绕组与该至少两个第一磁柱一一对应。通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而在将耦合电感连接在功率变换器中时满足了系统稳定性的要求。

Description

耦合电感和功率变换器
本申请要求于2014年5月27日提交中国专利局、申请号为201410228172.4、发明名称为“耦合电感和功率变换器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电路领域,尤其涉及一种耦合电感和功率变换器。
背景技术
目前,采用交错关联技术的多电平功率变换器得到广泛应用。这种多电平功率变换器包括并联的多个功率桥臂,多个功率桥臂通过耦合电感中的多个绕组或线圈耦合,并且以交错方式运行。这种交错并联技术能够降低输出纹波电流、提高输出开关频率,因此可以减小输出滤波电感的感量,从而降低电感的体积与成本。
为了满足多电平功率变换器的系统稳定性的要求,通常需要设置滤波电感来提供足够的滤波电感的感量。由于耦合电感可以产生漏感,因此,可以在多电平功率变换器上使用耦合电感的漏感来代替多电平功率变换器的滤波电感,这样,既能降低系统成本,又能够提高系统性能。
然而,由于耦合电感的漏感的感量较小,相当于滤波电感的感量较小,从而在将耦合电感连接在功率变换器中时不能够满足系统稳定性、纹波电流、输入线的总谐波电流畸变率(Total Harmonic Distortion of current on input,THDi)等性能要求。
发明内容
本发明实施例提供一种耦合电感和功率变换器,能够增大耦合电感的漏感的感量,从而能够提高与耦合电感连接的功率变换器的性能。
第一方面,提出一种耦合电感,包括:磁芯和至少两个绕组,其中,磁芯包括至少两个第一磁柱、至少一个第二磁柱和两个相对的磁轭,至少两个第一磁柱和至少一个第二磁柱设置在两个相对的磁轭之间,至少两个绕组分 别在至少两个第一磁柱上,至少两个绕组与至少两个第一磁柱一一对应。
结合第一方面,在第一种可能的实现方式下,至少一个第二磁柱的截面设置成使得耦合电感连接在功率变换器中时产生的漏感的感量满足功率变换器所需的滤波电感的感量。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式下,至少两个第一磁柱的磁导率大于至少一个第二磁柱的磁导率。
结合第一方面或第一方面的第一种和第二种可能的实现方式中的任一种可能的实现方式,在第三种可能的实现方式下,至少两个第一磁柱包括N个第一磁柱,至少一个第二磁柱包括N-1个第二磁柱,N-1个第二磁柱中的每个第二磁柱设置在N个第一磁柱中的两个第一磁柱之间,其中,N为大于或者等于2的整数。
结合第三种可能的实现方式,在第四种可能的实现方式下,至少两个第一磁柱为两个第一磁柱,至少一个第二磁柱为一个第二磁柱。
结合第三种可能的实现方式,在第五种可能的实现方式下,至少两个第一磁柱为三个第一磁柱,至少一个第二磁柱为两个第二磁柱。
结合第一方面或第一方面的第一种和第二种可能的实现方式中的任一种可能的实现方式,在第六种可能的实现方式下,至少两个第一磁柱为三个第一磁柱,至少一个第二磁柱为一个第二磁柱,三个第一磁柱呈三角形排布,第二磁柱设置在所述三角形的中间位置。
结合第一方面或第一方面的第一种和第二种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式下,至少两个第一磁柱为两个第一磁柱,至少一个第二磁柱为一个第二磁柱,两个第一磁柱和第二磁柱呈三角形排布。
结合第一方面或上述任何一种可能的实现方式,在第八种可能的实现方式下,至少两个第一磁柱的材料为无内部气隙的磁性材料,至少一个第二磁柱的材料为有内部气隙的磁性材料。
结合第一方面或上述任何一种可能的实现方式,在第九种可能的实现方式下,无内部气隙的磁性材料包括非晶材料、铁氧体材料或硅钢材料,有内部气隙的磁性材料包括铁硅材料、铁硅铝材料或非晶粉末。
结合第一方面或上述任何一种可能的实现方式,在第十种可能的实现方式下,至少两个第一磁柱和至少一个第二磁柱的形状为圆柱体、三棱柱体、 长方体或多边形柱体。
结合第一方面或上述任何一种可能的实现方式,在第十一种可能的实现方式下,两个相对的磁轭的形状为圆形、三角形、矩形或多边形。
第二方面,提供了一种功率变换器,包括:至少两个功率桥臂;如第一方面的任一种可能的实现方式下的耦合电感,耦合电感的至少两个绕组分别与至少两个功率桥臂相连接。
基于上述技术方案,可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的一个实施例的一种耦合电感的结构的示意图。
图2是根据本发明的另一实施例的一种耦合电感的结构的横截面图。
图3是根据本发明的另一实施例的一种耦合电感的结构的横截面图。
图4是根据本发明的另一实施例的一种耦合电感的结构的示意图。
图5是根据本发明的另一实施例的一种耦合电感的结构的示意图。
图6是根据本发明的另一实施例的一种耦合电感的结构的示意图。
图7是根据本发明的另一实施例的一种耦合电感的结构的横截面图。
图8是根据本发明的另一实施例的一种耦合电感的结构的横截面图。
图9是根据本发明的实施例的一种功率变换器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的实施例应用于采用交错并联技术的多电平功率变换器,本发明 的实施例对多电平功率变换器的电平等级不作限定,例如,多电平功率变换器可以二电平功率变换器,三电平功率变换器或五电平功率变换器等等。本发明的实施例对多电平功率变换器的类型也不作限定,例如,多电平功率变换器可以为二极管箝位型多电平功率变换器,也可以是电容箝位型多电平功率变换器等等。
图1是根据本发明的一个实施例的一种耦合电感100的结构的示意图。
耦合电感100包括:磁芯和至少两个绕组。磁芯包括至少两个第一磁柱、至少一个第二磁柱和两个相对的磁轭。至少两个第一磁柱和至少一个第二磁柱设置在两个相对的磁轭之间,至少两个绕组分别在至少两个第一磁柱上,至少两个绕组与至少两个第一磁柱一一对应。
如图1所示,磁芯包括:两个第一磁柱111和112、第二磁柱121,以及上磁轭131和下磁轭132。两个第一磁柱111和112以及一个第二磁柱121分别设置在上磁轭131和下磁轭132之间,两个绕组151和152分别绕制在两个第一磁柱111和112上,两个绕组151和152与两个第一磁柱111和112一一对应。
当耦合电感连接在功率变换器中时,绕组151一端与绕组152的一端短接,并且与负载连接,而绕组151的另一端和绕组152的另一端分别与功率变换器的功率桥臂的连接,绕组151和152用于将功率桥臂交错工作产生的交流电耦合,同时,绕组151和152产生的磁通量会通过空气产生漏感,另外,绕组151和152产生的磁通量还会通过第二磁柱产生漏感。
本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能,例如,能够满足系统稳定性、纹波电流、输入线的总谐波电流畸变率等性能要求。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
应理解,为了方便描述,图1仅给出了该耦合电感100的结构的一部分结构,并以这部分结构为例对本发明实施例的技术方案进行详细的描述,但本发明实施例并不仅限于此。
根据本发明实施例,至少两个第一磁柱的材料的磁导率大于至少一个第 二磁柱的材料的磁导率。换句话说,第一磁柱可以采用高磁导率材料,第二磁柱可以采用低磁导率材料。
根据本发明实施例,至少两个第一磁柱的材料可以为非晶材料、铁氧体材料、硅钢材料等无内部气隙的磁性材料,至少一个第二磁柱的材料可以为铁硅材料、铁硅铝材料、非晶粉末等有内部气隙的磁性材料。例如:第一磁柱111和112的材料可以为铁氧体材料,第二磁柱121的材料可以为铁硅材料。
应理解,至少两个第一磁柱的材料还可以为其他内部不含气隙的磁性材料,至少一个第二磁柱的材料还可以为其他内部含有气隙的磁性材料,本发明的实施例不仅限于此。
根据本发明实施例,至少一个第二磁柱的材料也可以为内部不含气隙的磁性材料,并且至少一个第二磁柱中的每个第二磁柱包括两部分,在这两部分之间设置一个间距在毫米量级的气隙,则至少一个第二磁柱中的每个第二磁柱可以等效为由低磁导率的磁性材料制成的磁柱。例如:第二磁柱121的材料可以为铁氧体材料,并且第二磁柱121包括第一部分和第二部分,其中,第一部分与第二部分之间设置有一个间距在1mm至3mm的气隙,则第二磁柱121就等效为由低磁导率的磁性材料制成的磁柱。
根据本发明实施例,至少两个第一磁柱和至少一个第二磁柱的形状可以为圆柱体、三棱柱体、长方体或多边形柱体。第一磁柱的形状可以与第二磁柱的形状相同,也可以不同。例如,第一磁柱111和112以及第二磁柱121的形状可以为圆柱体,或者第一磁柱111和112可以为圆柱体,而第二磁柱121的形状可以为多边形柱体。
根据本发明实施例,两个相对的磁轭的形状可以为圆形、三角形、矩形或多边形。应理解,两个相对的磁轭的形状还可以为圆角三角形,圆角矩形,或其他类似的圆角矩形形状。例如,两个相对的磁轭中的上磁轭131和下磁轭132的形状为圆角三角形。
根据本发明实施例,图1所示的耦合电感100中,至少一个第二磁柱的截面设置成使得该耦合电感100连接在功率变换器中时产生的漏感的感量满足包含该耦合电感100的功率变换器所需的滤波电感的感量。
例如,可以将第二磁柱121的截面的大小设置成能够使该耦合电感100的漏感的感量满足包含该耦合电感100的功率变换器所需的滤波电感的感 量。
因此,本发明实施例通过设置至少一个第二磁柱的截面的大小来调整耦合电感的耦合系数,从而使得耦合电感的漏感的感量能够满足包含该耦合电感的功率变换器所需的滤波电感的感量,控制精度较高。
根据本发明实施例,图1所示的耦合电感中,至少一个第二磁柱可以设置在至少两个第一磁柱的相邻位置,至少两个第一磁柱可以与至少一个第二磁柱平行。
应理解,至少一个第二磁柱设置在至少两个第一磁柱至少两个第一磁柱的相邻位置,至少一个第二磁柱与至少两个第一磁柱可以位于同一平面,也可以位于不同的平面。换句话说,至少一个第二磁柱与至少两个第一磁柱的可以位于一条直线上,或者至少两个第二磁柱位于一条直线上,至少一个第二磁柱位于另一直线上。
下面结合图2和图3所示的实施例对本发明实施例的技术方案进行详细的描述,但本发明实施例并不仅限于此。
图2是根据本发明的另一实施例的一种耦合电感200的结构的横截面图。耦合电感200是图1实施例的例子。耦合电感200与图1的耦合电感100类似,在此适当省略详细的描述。
如图2所示,仅示意性地给出该耦合电感包括的磁芯和至少两个绕组的一部分。第一磁柱211、212和213,以及至少一个第二磁柱221和222沿一条直线布置,第二磁柱221位于第一磁柱211和212之间,第二磁柱222位于第一磁柱212和213之间。绕组251、252和253分别绕制在第一磁柱211、212和213上。
本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
另外,由于增加的至少一个第二磁柱设置在至少两个第一磁柱之间,使得耦合电感的体积没有明显增大,从而有利于系统的空间布局。
图3是根据本发明的另一实施例的一种耦合电感300的结构的横截面 图。耦合电感300是图1实施例的例子。耦合电感300与图1的耦合电感100类似,在此适当省略详细的描述。
如图3所示,仅示意性地给出该耦合电感包括的磁芯和至少两个绕组的一部分。第一磁柱311、312和313沿一条直线布置,第二磁柱321和322沿另一条直线布置。第二磁柱321位于第一磁柱311和312之间,第二磁柱322位于第一磁柱312和313之间。绕组351、352和353分别绕制在第一磁柱311、312和313上。
本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
图4是根据本发明的另一实施例的一种耦合电感400的结构的示意图。耦合电感400是图1实施例的例子。耦合电感400与图1的耦合电感100类似,在此适当省略详细的描述。
具体地,至少两个第一磁柱包括N个第一磁柱,至少一个第二磁柱包括N-1个第二磁柱,N-1个第二磁柱中的每个第二磁柱设置在N个第一磁柱中的两个第一磁柱之间,其中,N为大于或者等于2的整数。
如图4所示,N个第一磁柱分别为第一磁柱411、412、……、41n,N-1个第二磁柱分别为第二磁柱421、…..、42m,其中,m=n-1。第一磁柱411、412、……、41n和第二磁柱421、…..、42m设置在上磁轭431和下磁轭432之间,且第二磁柱421、…..、42m中的第i个第二磁柱设置在第一磁柱411、412、……、41n中的第i个第一磁柱和第i+1个第一磁柱之间,i的取值从1到m。例如:第二磁柱421设置在第一磁柱411和412之间,第二磁柱42m设置在第一磁柱41n-1和41n之间。其中,绕组451、452、……、45n分别绕制在第一磁柱411、412、……、41n上。
本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电 感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
图5是根据本发明的另一实施例的一种耦合电感500的结构的示意图。耦合电感500是图1或图2的实施例的例子。耦合电感500与图1的耦合电感100类似,在此适当省略详细的描述。
具体地,根据本发明实施例,耦合电感500包括:两个第一磁柱511和512、一个第二磁柱为521、上磁轭531和下磁轭532以及两个绕组551和552。第一磁柱511和512以及第二磁柱521设置在上磁轭531和下磁轭532之间,且第二磁柱521位于第一磁柱511和512之间。绕组551绕制在第一磁柱511上,绕组552绕制在第一磁柱512上。
因此,本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
图6是根据本发明的另一实施例的一种耦合电感600的结构的示意图。耦合电感600是图1或图2的实施例的例子。耦合电感600与图1的耦合电感100类似,在此适当省略详细的描述。
图6所示的耦合电感600中,N个第一磁柱为三个第一磁柱,N-1个第二磁柱为两个第二磁柱。
具体地,根据本发明实施例,耦合电感600包括:三个第一磁柱611、612和613、两个第二磁柱621和622、上磁轭631和下磁轭632以及三个绕组651、652和653。第一磁柱611、612和613以及两个第二磁柱621和622设置在上磁轭631和下磁轭632之间,且第二磁柱621位于第一磁柱611和612之间,第二磁柱622位于第一磁柱612和613之间。绕组651绕制在第一磁柱611上,绕组652绕制在第一磁柱612上,绕组653绕制在第一磁柱613上。
因此,本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线 圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
图7是根据本发明的另一实施例的一种耦合电感700的结构的横截面图。耦合电感700是图1或图3的实施例的例子。耦合电感700与图1的耦合电感100类似,在此适当省略详细的描述。
图7所示的耦合电感700中,至少一个第二磁柱为三个第一磁柱711、712、713,至少一个第二磁柱为一个第二磁柱721,三个第一磁柱呈三角形排布,第二磁柱设置在该三角形的中间位置。
具体地,根据本发明实施例,耦合电感700包括:三个第一磁柱711、712和713、一个第二磁柱为721、上磁轭(未示出)和下磁轭732以及三个绕组751、752和753。第一磁柱711、712和713以及第二磁柱721设置在上磁轭和下磁轭732之间,且三个第一磁柱711、712和713呈三角形排布也就是说,三个第一磁柱711、712和713分别位于三角形的三个顶角处,第二磁柱721位于三角形的中间。绕组751绕制在第一磁柱711上,绕组752绕制在第一磁柱712上,绕组753绕制在第一磁柱713上。
这里仅以磁轭的形状为圆角三角形,第一磁柱711、712和713,以及第二磁柱721的形状为圆形为例进行说明,本发明实施例并不仅限于此,例如,磁轭的形状也可以为其它形状,例如,圆形和矩形,第一磁柱和第二磁柱也可以为其它形状,例如,多边形。
因此,本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
图8是根据本发明的另一实施例的一种耦合电感800的结构的横截面图。耦合电感800是图1或图3的实施例的例子。耦合电感800与图1的耦合电感100类似,在此适当省略详细的描述。
图8所示的耦合电感800中,至少两个第一磁柱为两个第一磁柱,至少一个第二磁柱为一个第二磁柱,两个第一磁柱和第二磁柱呈三角形排布。
具体地,根据本发明实施例,耦合电感800包括:两个第一磁柱811和812、一个第二磁柱821、上磁轭(未示出)和下磁轭832以及两个绕组851和852。第一磁柱811和812以及第二磁柱821设置在上磁轭831和下磁轭832之间,且两个第一磁柱811和812以及第二磁柱821呈三角形排布,也就是说,两个第一磁柱811和812以及第二磁柱821分别位于三角形的三个顶角处。绕组851绕制在第一磁柱811上,绕组852绕制在第一磁柱812上。第二磁柱821上未绕制绕组。
这里仅以磁轭的形状为圆角三角形、第一磁柱811和812以及第二磁柱821的形状为圆形为例进行说明,本发明实施例并不仅限于此,例如,磁轭的形状也可以为其它形状,例如,圆形和矩形,第一磁柱和第二磁柱也可以为其它形状,例如,多边形。
因此,本发明实施例可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,由于这种耦合电感仅仅需要增加磁柱且无需在该磁柱上绕制线圈,因此,加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
图9是根据本发明的实施例的一种功率变换器900的结构示意图。功率变换器900包括:至少两路功率桥臂和如上述实施例的耦合电感。该耦合电感的至少两个绕组分别与该至少两个功率桥臂相连接。
下面以两路功率桥臂900为例进行说明,本发明的实施例并不仅限于此,本发明的实施例的耦合电感可以与多路功率桥臂连接,每路功率桥臂对应于耦合电感的一个输入端。
如图9所示的功率变换器900包括:两路功率桥臂960和耦合电感910。其中,耦合电感910的结构如上述耦合电感实施例中图5所示的耦合电感500,在此适当省略详细的描述。两路功率桥臂960的输出端分别与耦合电感910包括的两个绕组951和952的输入端连接。
具体地,功率桥臂1的输入端和功率桥臂2的输入端并联连接在功率变换器900的两个输入端之间,功率桥臂1的输出端与耦合电感的绕组952的输入端连接,功率桥臂2的输出端与耦合电感的绕组951的输入端连接,绕组951和952的输出端与功率变换器900的输出端相连接,功率变换器900 的输出端与负载(未示出)连接。其中,耦合电感910包括:第一磁柱911和912,第二磁柱921,上磁轭931和下磁轭932,以及两个绕组951和952。第一磁柱911和912以及第二磁柱921设置在上磁轭931和下磁轭932之间,且第二磁柱921位于第一磁柱911和912之间。绕组951绕制在第一磁柱911上,绕组952绕制在第一磁柱912上。
因此,本发明实施例的功率变换器可以通过在耦合电感的两个相对的磁轭之间增加第二磁柱来增大耦合电感的漏感,从而提高了与耦合电感连接的功率变换器的性能。同时,这种耦合电感的加工工艺简单,能够满足大批量生产的需求。另外,由于采用耦合电感的漏感来代替滤波电感,降低了系统的成本,而且降低了采用滤波电感带来的损耗,提高了系统的效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种耦合电感,其特征在于,包括:磁芯和至少两个绕组,
    其中,所述磁芯包括至少两个第一磁柱、至少一个第二磁柱和两个相对的磁轭,所述至少两个第一磁柱和所述至少一个第二磁柱设置在所述两个相对的磁轭之间,所述至少两个绕组分别在所述至少两个第一磁柱上,所述至少两个绕组与所述至少两个第一磁柱一一对应。
  2. 根据权利要求1所述的耦合电感,其特征在于,所述至少一个第二磁柱的截面设置成使得所述耦合电感连接在功率变换器中时产生的漏感的感量满足所述功率变换器所需的滤波电感的感量。
  3. 根据权利要求1或2所述的耦合电感,其特征在于,所述至少两个第一磁柱的磁导率大于所述至少一个第二磁柱的磁导率。
  4. 根据权利要求1至3中的任一项所述的耦合电感,其特征在于,所述至少两个第一磁柱包括N个第一磁柱,所述至少一个第二磁柱包括N-1个第二磁柱,所述N-1个第二磁柱中的每个第二磁柱设置在所述N个第一磁柱中的两个第一磁柱之间,其中,N为大于或者等于2的整数。
  5. 根据权利要求4所述的耦合电感,其特征在于,所述至少两个第一磁柱为两个第一磁柱,所述至少一个第二磁柱为一个第二磁柱。
  6. 根据权利要求4所述的耦合电感,其特征在于,所述至少两个第一磁柱为三个第一磁柱,所述至少一个第二磁柱为两个第二磁柱。
  7. 根据权利要求1至3中的任一项所述的耦合电感,其特征在于,所述至少两个第一磁柱为三个第一磁柱,所述至少一个第二磁柱为一个第二磁柱,所述三个第一磁柱呈三角形排布,所述第二磁柱设置在所述三角形的中间位置。
  8. 根据权利要求1至3中的任一项所述的耦合电感,其特征在于,所述至少两个第一磁柱为两个第一磁柱,所述至少一个第二磁柱为一个第二磁柱,所述两个第一磁柱和所述第二磁柱呈三角形排布。
  9. 根据权利要求1-8中任一项所述的耦合电感,其特征在于,所述至少两个第一磁柱的材料为无内部气隙的磁性材料,所述至少一个第二磁柱的材料为有内部气隙的磁性材料。
  10. 根据权利要求9所述的耦合电感,其特征在于,所述无内部气隙的磁性材料包括非晶材料、铁氧体材料或硅钢材料,所述有内部气隙的磁性材 料包括铁硅材料、铁硅铝材料或非晶粉末。
  11. 根据权利要求1-10中任一项所述的耦合电感,其特征在于,所述至少两个第一磁柱和所述至少一个第二磁柱的形状为圆柱体、三棱柱体、长方体或多边形柱体。
  12. 根据权利要求1-11中任一项所述的耦合电感,其特征在于,所述两个相对的磁轭的形状为圆形、三角形、矩形或多边形。
  13. 一种功率变换器,其特征在于,包括:
    至少两个功率桥臂;
    根据权利要求1-12中任一项所述的耦合电感,所述耦合电感的至少两个绕组分别与所述至少两个功率桥臂相连接。
PCT/CN2014/090442 2014-05-27 2014-11-06 耦合电感和功率变换器 WO2015180417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14893090.2A EP3136404B1 (en) 2014-05-27 2014-11-06 Coupling inductor
US15/360,572 US20170076850A1 (en) 2014-05-27 2016-11-23 Coupled Inductor and Power Converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410228172.4 2014-05-27
CN201410228172.4A CN104021920B (zh) 2014-05-27 2014-05-27 耦合电感和功率变换器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/360,572 Continuation US20170076850A1 (en) 2014-05-27 2016-11-23 Coupled Inductor and Power Converter

Publications (1)

Publication Number Publication Date
WO2015180417A1 true WO2015180417A1 (zh) 2015-12-03

Family

ID=51438630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090442 WO2015180417A1 (zh) 2014-05-27 2014-11-06 耦合电感和功率变换器

Country Status (4)

Country Link
US (1) US20170076850A1 (zh)
EP (1) EP3136404B1 (zh)
CN (1) CN104021920B (zh)
WO (1) WO2015180417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211646A1 (en) * 2016-02-26 2017-08-30 Emerson Network Power Co. Ltd. Inductor winding method and inductor winding device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021920B (zh) * 2014-05-27 2016-09-28 华为技术有限公司 耦合电感和功率变换器
CN105575646B (zh) * 2014-11-10 2017-11-17 天津市鲲鹏电子有限公司 一种提高变频变压器漏感的方法
CN105097222A (zh) * 2015-07-22 2015-11-25 上海正泰电源系统有限公司 一种交错并联变换器的磁耦合电感器及其磁芯
CN106971815B (zh) * 2016-01-14 2018-12-14 华为技术有限公司 集成电感及应用所述集成电感的功率变换器
JP6667826B2 (ja) 2016-04-13 2020-03-18 ローム株式会社 交流電源装置
US10242791B2 (en) 2016-10-28 2019-03-26 Delta Electronics (Shanghai) Co., Ltd Coupled-inductor module and voltage regulating module comprising the same
US10438736B2 (en) 2016-10-28 2019-10-08 Delta Electronics (Shanghai) Co., Ltd. Magnetic component and manufacturing method thereof
CN108022731A (zh) * 2016-10-28 2018-05-11 台达电子企业管理(上海)有限公司 耦合电感及包括耦合电感的电压调节模块
US10643782B2 (en) 2016-10-28 2020-05-05 Delta Electronics (Shanghai) Co., Ltd. Magnetic component and power module
PL3330980T3 (pl) * 2016-12-02 2020-03-31 Abb Schweiz Ag Półhybrydowy rdzeń transformatora
CN108511148A (zh) * 2017-02-25 2018-09-07 华为技术有限公司 集成电感器及宽范围输出功率转换电路
CN108492958B (zh) * 2018-04-16 2019-09-27 山东大学 一种串联式多相交错耦合电感结构及其控制方法
CN113161122A (zh) * 2020-01-22 2021-07-23 株式会社村田制作所 电感结构
CN115885354A (zh) * 2020-06-10 2023-03-31 华为数字能源技术有限公司 一种电感器以及相关装置
CN113314311A (zh) * 2021-05-27 2021-08-27 海宁德科隆电子有限公司 磁芯结构及应用其的音响电感组件和分频电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023905A1 (de) * 2004-05-13 2005-12-22 Bürkert Werke GmbH & Co. KG Elektromagnetische Betätigungseinrichtung
CN103413662A (zh) * 2013-09-01 2013-11-27 兰州交通大学 一种变压器式可控电抗器磁集成装置
CN203397878U (zh) * 2013-09-01 2014-01-15 兰州交通大学 一种变压器式可控电抗器磁集成装置
CN104021920A (zh) * 2014-05-27 2014-09-03 华为技术有限公司 耦合电感和功率变换器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298935A (en) * 1940-05-16 1942-10-13 Westinghouse Electric & Mfg Co Vapor lamp power factor correction
JPH065448A (ja) * 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd チョークコイルおよび電源装置
US5731666A (en) * 1996-03-08 1998-03-24 Magnetek Inc. Integrated-magnetic filter having a lossy shunt
JP3379419B2 (ja) * 1998-01-16 2003-02-24 松下電器産業株式会社 複合形リアクタとその製造方法と電源装置
US7280026B2 (en) * 2002-04-18 2007-10-09 Coldwatt, Inc. Extended E matrix integrated magnetics (MIM) core
US8294544B2 (en) * 2008-03-14 2012-10-23 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US20120062207A1 (en) * 2002-12-13 2012-03-15 Alexandr Ikriannikov Powder Core Material Coupled Inductors And Associated Methods
US8299885B2 (en) * 2002-12-13 2012-10-30 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US6980077B1 (en) * 2004-08-19 2005-12-27 Coldwatt, Inc. Composite magnetic core for switch-mode power converters
JP2006108389A (ja) * 2004-10-05 2006-04-20 Tdk Corp トランスコア及びこれを用いたリーケージトランス
US7880577B1 (en) * 2006-08-25 2011-02-01 Lockheed Martin Corporation Current doubler rectifier with current ripple cancellation
CN101404201B (zh) * 2006-09-30 2012-04-25 杨东平 电源装置及其变压器
FI119491B (fi) * 2006-10-20 2008-11-28 Vacon Oyj Taajuusmuuttajan suotokuristinjärjestely
CN101404454A (zh) * 2008-11-24 2009-04-08 北京新雷能有限责任公司 集成磁元件的有源钳位正反激变换器
CN201478056U (zh) * 2009-03-16 2010-05-19 焦海波 新型高频大功率变压器铁心
CN201508741U (zh) * 2009-03-23 2010-06-16 台达电子工业股份有限公司 滤波电感器总成
CN101989485A (zh) * 2009-07-31 2011-03-23 株式会社田村制作所 电感器
US9019063B2 (en) * 2009-08-10 2015-04-28 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
CN102956344B (zh) * 2012-11-02 2016-06-29 华为技术有限公司 一种复合磁芯结构及磁性元件
CN103762064B (zh) * 2013-12-27 2016-08-31 华为技术有限公司 耦合电感及多电平功率变换器
CN103730230B (zh) * 2014-01-20 2016-03-16 田村(中国)企业管理有限公司 磁集成电感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023905A1 (de) * 2004-05-13 2005-12-22 Bürkert Werke GmbH & Co. KG Elektromagnetische Betätigungseinrichtung
CN103413662A (zh) * 2013-09-01 2013-11-27 兰州交通大学 一种变压器式可控电抗器磁集成装置
CN203397878U (zh) * 2013-09-01 2014-01-15 兰州交通大学 一种变压器式可控电抗器磁集成装置
CN104021920A (zh) * 2014-05-27 2014-09-03 华为技术有限公司 耦合电感和功率变换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136404A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211646A1 (en) * 2016-02-26 2017-08-30 Emerson Network Power Co. Ltd. Inductor winding method and inductor winding device
US10763039B2 (en) 2016-02-26 2020-09-01 Vertiv Tech Co., Ltd. Inductor winding method and inductor winding device

Also Published As

Publication number Publication date
CN104021920B (zh) 2016-09-28
EP3136404A4 (en) 2017-05-17
EP3136404B1 (en) 2021-03-31
EP3136404A1 (en) 2017-03-01
US20170076850A1 (en) 2017-03-16
CN104021920A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2015180417A1 (zh) 耦合电感和功率变换器
TWI690952B (zh) 磁性元件及其適用之電源轉換裝置
US11349400B2 (en) Multiple parallel-connected resonant converter, inductor-integrated magnetic element and transformer-integrated magnetic element
TWI675534B (zh) 電源轉換裝置
CN102326216B (zh) 电感器
TWI497908B (zh) 改善濾波器性能的方法及功率變換裝置
CN112700961A (zh) 用于降低耦合电感的工频磁通密度的电感绕制方法和低工频磁通密度的耦合电感
US9653202B2 (en) Power converter and device integrating inductors in parallel of the same
JP6180083B2 (ja) 積層トランス
CN104078195A (zh) 三相耦合电抗器及变流器
CN203760297U (zh) 一种变压器和电感器的集成结构
JP2013051288A (ja) リアクトルおよび電気機器
TWI611438B (zh) 複合平滑電感器及平滑化電路
WO2015180577A1 (zh) 耦合电感和功率变换器
JP6459116B2 (ja) トランス
US11587719B2 (en) Magnetic integrated hybrid distribution transformer
CN104051138A (zh) 变压器
US20140085757A1 (en) Surge blocking inductor
CN104752045A (zh) 一种变压器和电感器的集成结构及其实现方法
US8937523B1 (en) Transformer hybrid
JP3207529U (ja) チョークコイル用磁心
CN103474219A (zh) 一种三相变压器
CN107424785A (zh) 一种18脉波自耦移相整流变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893090

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014893090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893090

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE