WO2021248340A1 - 一种电感器以及相关装置 - Google Patents

一种电感器以及相关装置 Download PDF

Info

Publication number
WO2021248340A1
WO2021248340A1 PCT/CN2020/095252 CN2020095252W WO2021248340A1 WO 2021248340 A1 WO2021248340 A1 WO 2021248340A1 CN 2020095252 W CN2020095252 W CN 2020095252W WO 2021248340 A1 WO2021248340 A1 WO 2021248340A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
current
bobbin
inductor
yoke
Prior art date
Application number
PCT/CN2020/095252
Other languages
English (en)
French (fr)
Inventor
朱建华
赵冬晨
蒋华
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP20939786.8A priority Critical patent/EP4152350A4/en
Priority to CN202080101772.8A priority patent/CN115885354A/zh
Priority to PCT/CN2020/095252 priority patent/WO2021248340A1/zh
Publication of WO2021248340A1 publication Critical patent/WO2021248340A1/zh
Priority to US18/064,186 priority patent/US20230112288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/006Details of transformers or inductances, in general with special arrangement or spacing of turns of the winding(s), e.g. to produce desired self-resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • This application relates to the field of electronic technology, and in particular to an inductor and related devices.
  • Inductor is an element that can convert electrical energy into magnetic energy and store it.
  • the structure of the inductor is similar to that of a transformer.
  • the inductor has a certain inductance, it only hinders the change of current. If the inductor is in a state where no current is flowing, it will try to block the current from flowing through it when the circuit is on; if the inductor is in a state where current is flowing, it will try to maintain the current when the circuit is off.
  • Inductors are also called chokes, reactors or dynamic reactors.
  • the magnetic flux
  • B the magnetic induction intensity
  • S the area.
  • the DC magnetic flux (Flux) generated by the DC current component makes the magnetic density of the winding column in the inductor excessively high and saturates.
  • the first aspect of the embodiments of the present application provides an inductor.
  • the inductor includes an upper magnetic yoke and a lower magnetic yoke.
  • the upper magnetic yoke and the lower magnetic yoke are in-line magnetic yokes, and the upper magnetic yoke
  • the yoke and the lower magnetic yoke are arranged in parallel; a first winding column, a first winding is arranged on the first winding column, and the first winding column is arranged between the upper magnetic yoke and the lower magnetic yoke; a second winding A bobbin, a second winding is arranged on the second bobbin, the second bobbin is arranged between the upper yoke and the lower yoke;
  • the first bobbin includes a first upper bobbin, a second bobbin A lower bobbin and a first air gap, wherein the first upper bobbin, the first lower bobbin and the first air gap are on the same axis
  • the upper yoke, the first upper bobbin and the second upper bobbin are integrally formed; the lower yoke, the first lower bobbin and the second lower bobbin are integrally formed.
  • it is integrally formed by means of a magnetic core press-bonding method.
  • it is integrally formed by means of a magnetic core press-bonding method.
  • the first winding and the second winding are coupled to each other; the clockwise/counterclockwise direction of the current in the first winding is consistent with the clockwise/counterclockwise direction of the current in the second winding, so that the first winding is in the first bobbin
  • the generated direct current magnetic flux cancels out the direct current magnetic flux generated by the second winding on the second bobbin.
  • the upper yoke and the lower yoke included in the inductor are in-line yokes, and the upper yoke and the lower yoke are arranged in parallel.
  • the inductor proposed in the embodiment of the present application is compared with The inductor using T-shaped yoke eliminates the common pole. Therefore, it avoids the current distortion caused by the saturation of the public column when the magnetic density is too high.
  • the first winding and the second winding are coupled with each other, and the clockwise/counterclockwise direction of the current in the first winding is the same as the clockwise/counterclockwise direction of the current in the second winding, so that the first winding is wound on the first winding.
  • the direct current magnetic flux generated in the column is offset with the direct current magnetic flux generated in the second winding column by the second winding. Therefore, it is avoided that the DC magnetic flux generated by the winding in the bobbin, which causes the magnetic density of the bobbin in the inductor to be too high and saturation. Furthermore, the technical defect of current distortion caused by saturation of the winding column in the inductor due to excessively high magnetic density is avoided. Improve the reliability of the circuit using the inductor.
  • the inductor can withstand the instantaneous overload power without being saturated, and the short-term overload capability is improved. Since the upper and lower magnetic yokes and bobbins can adopt integral molding technology, it has the advantages of simple processing and high inductance consistency of the finished inductor.
  • the upper yoke, the lower yoke, the first bobbin and the second bobbin are made of power ferrite material, such as : Manganese-zinc ferrite material, it can also be: ferrite, silicon steel, amorphous, sendust, sendust, or nanocrystalline materials.
  • the yoke and the bobbin can be made of a variety of different materials, which improves the flexibility of implementation of the solution.
  • the inductor further includes at least one third winding post and at least one third winding, wherein the third winding is disposed on the third winding.
  • the clockwise/counterclockwise direction of the current in the first winding, the clockwise/counterclockwise direction of the current in the second winding and the clockwise/counterclockwise direction of the current in the third winding are the same, so that the first winding is in the first winding
  • the DC magnetic flux generated in a winding column is offset with the DC magnetic flux generated in the second winding column by the second winding and the DC magnetic flux generated in the third winding column by the third winding.
  • the third bobbin includes: a third upper bobbin and a third lower bobbin, wherein the upper end of the third upper bobbin is connected with the upper magnetic yoke, and the lower end of the third lower bobbin is connected with the lower magnetic yoke connect.
  • the first upper bobbin, the second upper bobbin, the third upper bobbin and the upper magnetic yoke are integrally formed; the first lower bobbin, the second lower bobbin, the third lower bobbin and the lower
  • the yoke is formed in one piece.
  • it is integrally formed by sintering.
  • it is integrally formed by means of a magnetic core press-bonding method.
  • the first winding, the second winding and the third winding are independent of each other, and the current in the first winding is clockwise/counterclockwise, the current in the second winding is clockwise/counterclockwise, and the current in the third winding is The current is in the same clockwise/counterclockwise direction.
  • the DC magnetic flux generated by the first winding in the first bobbin and the DC magnetic flux generated by the second winding in the second bobbin are offset with the DC magnetic flux generated by the third winding in the third bobbin. , Thereby greatly improving the anti-saturation capability of the inductor. Inductors can use multiple bobbins and multiple windings to meet the needs of different circuits.
  • the phase difference between the currents in the two windings is 180°;
  • the phase difference of the current in the three windings is 120°;
  • the inductor includes N bobbins and N windings the current in the N windings
  • the phase difference is 360°/N, where N is a positive integer.
  • the phase difference of the current in each winding of the inductor is specified to ensure that the DC magnetic flux generated by the winding in the winding column is avoided under AC conditions, so that the magnetic density of the winding column in the inductor is too high. The occurrence of saturation occurs.
  • the shape of the cross-section of the first bobbin includes: a circle, an ellipse, an oval, a square, a rectangle, or a polygon; the second The shape of the cross-section of the bobbin includes a circle, an ellipse, an oval, a square, a rectangle, or a polygon.
  • the cross-section of the bobbin in the inductor may have a variety of different shapes to meet the requirements of different circuits.
  • the coupling coefficient of the inductor is negatively correlated with the spacing between the winding pillars, wherein, by reducing the spacing between the winding pillars, the The coupling coefficient of the inductor reduces the coupling coefficient of the inductor by increasing the spacing between the bobbins.
  • the coupling coefficient of the inductor is adjusted by adjusting the spacing between the bobbin posts, so as to meet the requirements of different inductance and magnetic flux cancellation in the circuit.
  • an embodiment of the present application proposes a current sharing circuit, including: a sampling module, a processing module, and an inductor as in any one of the first aspect and the first aspect;
  • the sampling module is used to perform current sampling on the first winding and the second winding of the inductor to obtain a first current signal and a second current signal respectively, wherein the first current signal is the current in the first winding , The second current signal is the signal of the current in the second winding;
  • the processing module is used to adjust the duty cycle of the main pipe of the first winding and the duty cycle of the main pipe of the second winding according to the first current signal and the second current signal, so that the current of the first winding is
  • the DC component is consistent with the DC component of the current of the second winding, so that the DC magnetic flux generated by the first winding in the first bobbin is equal to the DC magnetic flux generated by the second winding in the second bobbin.
  • the sampling module is also used to perform current sampling on the third winding of the inductor to obtain a third current signal, where the third current signal is the third winding
  • the processing module is also used to adjust the duty cycle of the main pipe of the first winding and the main pipe of the second winding according to the first current signal, the second current signal and the third current signal.
  • the duty ratio and the duty ratio of the main pipe of the third winding make the DC component of the current of the first winding, the DC component of the current of the second winding and the DC component of the current of the third winding consistent.
  • the sampling module includes: at least one Hall sensor, or, at least one current transformer, or, at least one resistive shunt, or, at least one magnetoresistive current sensor.
  • the processing module includes: at least one operational amplifier, or, at least one micro-control unit.
  • the current-sharing circuit adjusts the duty cycle of the main pipe of the first winding and the duty cycle of the main pipe of the second winding according to the first current signal and the second current signal, so that the DC component of the current of the first winding is Consistent with the DC component of the current in the second winding.
  • an embodiment of the present application proposes a DC/DC switching power supply, and the DC/DC switching power supply includes the current sharing circuit as described in the second aspect.
  • an embodiment of the present application proposes a module power supply, and the module power supply includes the current sharing circuit as described in the second aspect.
  • an embodiment of the present application proposes a battery management system, including a battery and the current sharing circuit according to the second aspect of claim, wherein the battery is used to provide electric energy; the current sharing circuit is used to control The charging and discharging of the battery.
  • the current sharing circuit is integrated in the switch module of the battery management system, and by controlling the on and off of the switch tube, bidirectional current control and bidirectional boost or buck output are realized.
  • the switch module can be integrated with the battery, or can form a separate module separately.
  • FIG. 1a is a schematic diagram of a structure of an inductor in the prior art in an embodiment of the application;
  • FIG. 1b is a schematic structural diagram of an inductor according to an embodiment of the application.
  • FIG. 1c is a schematic cross-sectional view of an inductor in an embodiment of the application.
  • FIG. 1d is a schematic diagram of another embodiment of an inductor proposed in an embodiment of this application.
  • FIG. 1e is a schematic cross-sectional view of an inductor according to an embodiment of the application.
  • FIG. 1f is a schematic cross-sectional view of another inductor according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of an embodiment of a current sharing circuit proposed in an embodiment of the application.
  • Figure 3a is a schematic diagram of a simulation experiment in an embodiment of the application.
  • Figure 3b is a schematic diagram of another simulation experiment in an embodiment of the application.
  • Fig. 4a is a schematic diagram of a boost circuit in an embodiment of the application.
  • FIG. 4b is a schematic diagram of yet another Boost circuit according to an embodiment of the application.
  • FIG. 4c is a schematic diagram of yet another Boost circuit according to an embodiment of the application.
  • FIG. 4d is a schematic diagram of yet another Boost circuit according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a battery management system proposed by an embodiment of the application.
  • DC/DC (DC/DC) circuits are widely used in power circuits.
  • inductors used in power circuits face many challenges.
  • is the magnetic flux
  • B is the magnetic induction intensity (also known as the magnetic flux density, or magnetic density for short)
  • S is the area.
  • the DC magnetic flux (Flux) generated by the DC current component causes the magnetic density of the winding column in the inductor to be too high and saturates, causing current distortion and affecting the reliability of the circuit.
  • the number of turns of the winding can be increased, or the operating frequency of the inductor can be increased.
  • the number of turns of the winding is increased, the resistance of the winding increases simultaneously, causing new problems such as copper loss (or variable loss) and heat generation.
  • Increasing the operating frequency of the inductor requires stricter requirements on the switching tube in the circuit.
  • the higher the operating frequency of the inductor the greater the switching loss of the switching tube in the circuit.
  • the magnetic core uses materials with high saturation magnetic density.
  • the use of high saturation magnetic density materials can solve the aforementioned technical problems.
  • the current common high saturation magnetic density materials are powder core materials, amorphous materials, nanocrystalline materials or silicon steel sheets, and high saturation magnetic density materials themselves have magnetic loss per unit volume.
  • Higher, shortcomings such as a significant decrease in inductance with the increase of current, which imposes many restrictions on the application scenarios of inductors.
  • the bobbin uses materials with high saturation magnetic density (such as powder core materials), and the yoke uses materials with low saturation magnetic density (such as power ferrite materials).
  • materials with high saturation magnetic density such as powder core materials
  • the yoke uses materials with low saturation magnetic density (such as power ferrite materials).
  • FIG. 1a is a schematic diagram of the structure of an inductor in the prior art in an embodiment of the application.
  • the magnetic fluxes generated by the windings cancel each other out of the common column (the junction of the T-shaped yoke is called the common column).
  • the disadvantage is that the magnetic flux on the bobbin cannot be completely offset, and there is still a problem of saturation due to excessive magnetic density.
  • the switch tube in the circuit adopts ultra-fast power semiconductor components (such as gallium nitride GaN power devices) to increase the switching frequency while suppressing switching losses.
  • the disadvantage is that the cost of the device is relatively high.
  • new issues are introduced, such as electromagnetic compatibility (EMC) issues, and switching tube voltage stress overshoot issues.
  • inductive ballast (6) Regarding the inductive ballast shown in the reference document CN2519988Y.
  • the inductive ballast presents a single inductance to the outside, so the coils of the two windings are connected in series.
  • the direction of the current in the two windings needs to be reversed so that the magnetic fluxes are superimposed on each other. Therefore, in this reference document, inductive ballasts use high saturation magnetic density silicon steel sheets to solve the core saturation problem. Based on this, the magnetic ballast in the reference document cannot solve the aforementioned technical defects.
  • an embodiment of the present application proposes an inductor and related devices.
  • the inductor proposed in the embodiment of the present application eliminates the common pole. Therefore, it avoids the current distortion caused by the saturation of the public column when the magnetic density is too high.
  • the first winding and the second winding are coupled with each other, and the clockwise/counterclockwise direction of the current in the first winding is the same as the clockwise/counterclockwise direction of the current in the second winding, so that the first winding is wound on the first winding.
  • the direct current magnetic flux generated in the column is offset with the direct current magnetic flux generated in the second winding column by the second winding.
  • the DC magnetic flux generated by the winding in the bobbin which causes the magnetic density of the bobbin in the inductor to be too high and saturation. Furthermore, the technical defect of current distortion caused by saturation of the winding column in the inductor due to excessively high magnetic density is avoided. Improve the reliability of the circuit using the inductor.
  • the inductor can withstand the instantaneous overload power without being saturated, and the short-term overload capability is improved. Since the upper and lower magnetic yokes and bobbins can adopt integral molding technology, it has the advantages of simple processing and high inductance consistency of the finished inductor.
  • Figure 1b is a schematic structural diagram of an inductor proposed in an embodiment of the application. 103, the second upper bobbin 104, the first lower bobbin 105, the second lower bobbin 106, the first winding 107, and the second winding 108.
  • the upper magnetic yoke 101, the lower magnetic yoke 102, the upper magnetic yoke 101 and the lower magnetic yoke 102 are in-line magnetic yokes, and the upper magnetic yoke 101 and the lower magnetic yoke 102 are arranged in parallel.
  • a first winding column, a first winding 107 is arranged on the first winding column, the first winding column is arranged between the upper magnetic yoke 101 and the lower magnetic yoke 102, and the first winding 107 includes a multi-turn coil.
  • the first bobbin includes a first upper bobbin 103, a first lower bobbin 105, and a first air gap.
  • the upper end of the first upper bobbin 103 is connected to the upper yoke 101, and the first upper bobbin 103 is connected to the upper yoke 101.
  • the lower end of the lower bobbin 105 is connected to the lower yoke 102.
  • the first upper bobbin 103, the first lower bobbin 105 and the first air gap are on the same axis, and a first air gap is provided between the first upper bobbin 103 and the first lower bobbin 105.
  • the first air gap includes one or more air gaps.
  • the second bobbin, a second winding 108 is provided on the second bobbin, and the second bobbin is provided between the upper yoke 101 and the lower yoke 102, and the second winding 108 includes a multi-turn coil.
  • the second bobbin includes a second upper bobbin 104, a second lower bobbin 106, and a second air gap.
  • the upper end of the second upper bobbin 104 is connected to the upper yoke 101, and the second upper bobbin 104 is connected to the upper magnetic yoke 101.
  • the lower end of the lower bobbin 106 is connected to the lower yoke 102.
  • the second upper bobbin 104, the second lower bobbin 106 and the second air gap are on the same axis, and a second air gap is provided between the second upper bobbin 104 and the second lower bobbin 106.
  • the second air gap includes one or more air gaps.
  • the specific position of the air gap in the bobbin is not limited, and the first air gap and the second air gap may be symmetrical or asymmetrical.
  • the number of turns of the coil in the first winding 107 is not limited in the embodiment of the present application, and the number of turns of the coil in the second winding 108 is not limited.
  • the diameter of the coil in the first winding 107 is not limited, and the diameter of the coil in the second winding 108 is not limited.
  • the material of the coil in the first winding 107 is not limited, and the material of the coil in the second winding 108 is not limited.
  • first upper bobbin 103, the second upper bobbin 104, and the upper yoke 101 are integrally formed; the first lower bobbin 105, the second lower bobbin, and The lower yoke 102 is integrally formed.
  • it is integrally formed by sintering.
  • it is integrally formed by means of a magnetic core press-bonding method.
  • the first bobbin, the second bobbin, the upper yoke 101 and the lower yoke 102 use the same magnetic material, for example: power ferrite material, for example: manganese zinc iron
  • the ferrite material can also be: ferrite, silicon steel, amorphous, sendust, sendust, or nanocrystalline materials.
  • the phase difference between the current in the first winding 107 and the current in the second winding 108 is 180°.
  • the first winding 107 and the second winding 108 are coupled to each other, and specifically, the first winding 107 and the second winding 108 are reversely coupled.
  • the clockwise/counterclockwise direction (i1) of the current in the first winding 107 is consistent with the clockwise/counterclockwise direction (i2) of the current in the second winding 108.
  • the current i1 is counterclockwise and the current i2 is counterclockwise.
  • the DC magnetic flux ( ⁇ 1) generated by the first winding 107 in the first bobbin is offset with the DC magnetic flux ( ⁇ 2) generated by the second winding 108 in the second bobbin.
  • FIG. 1c is a schematic cross-sectional view of an inductor in an embodiment of the application.
  • the cross-sections of the first lower bobbin 105 and the second lower bobbin 106 in the inductor are taken as an example for description.
  • the shape of the cross section of the first bobbin includes: circle, ellipse, oval, square, rectangle or polygon;
  • the shape of the cross section of the second bobbin includes: circle, ellipse, oval, square, Rectangle or polygon.
  • the coupling coefficient of the inductor is negatively related to the spacing between the winding posts. Specifically, the coupling coefficient of the inductor can be adjusted through the spacing between the winding posts. Take the inductor including the first bobbin and the second bobbin as an example for description: by reducing the distance between the first bobbin and the second bobbin, the coupling coefficient of the inductor is improved; by increasing the first bobbin The distance between one bobbin and the second bobbin reduces the coupling coefficient of the inductor.
  • the first winding and the second winding are independent of each other, and the clockwise/counterclockwise direction of the current in the first winding is consistent with the clockwise/counterclockwise direction of the current in the second winding.
  • the direct current magnetic flux generated by the first winding in the first winding column is offset with the direct current magnetic flux generated by the second winding in the second winding column, thereby greatly improving the anti-saturation ability of the inductor.
  • Inductors can obtain higher output power with less winding turns, smaller magnetic core volume, and cheap power ferrite magnetic materials. Since the upper and lower magnetic yokes and bobbins can adopt integral molding technology, it has the advantages of simple processing and high inductance consistency of the finished inductor. It is also possible to adjust the coupling coefficient of the inductor by adjusting the spacing between the winding posts, thereby meeting the requirements of different inductance and magnetic flux cancellation in the circuit.
  • the inductors proposed in the embodiments of the present application may also include multiple bobbins and corresponding windings.
  • FIG. 1d is this application.
  • the embodiment provides a schematic diagram of another embodiment of an inductor.
  • the inductor further includes at least one third winding post and at least one third winding 111, wherein the third winding 111 is disposed on the third winding post, and the third winding post and the second winding post have the same structure.
  • the third bobbin includes: a third upper bobbin 109 and a third lower bobbin 110, wherein the upper end of the third upper bobbin 109 is connected to the upper yoke 101, and the third lower bobbin The lower end of the wire post 110 is connected to the lower yoke 102.
  • the structure of the third bobbin is similar to the structure of the second bobbin, and the structure of the third winding 111 is similar to the structure of the second winding. Therefore, similarly, the number of turns of the coil in the third winding 111 is not limited in the embodiment of the present application. In the embodiment of the present application, the diameter of the coil in the third winding 111 is not limited. In the embodiment of the present application, the material of the coil in the third winding 111 is not limited.
  • the first upper bobbin 103, the second upper bobbin 104, the third upper bobbin 109, and the upper yoke 101 are integrally formed; the first lower bobbin 105 , The second lower bobbin 106, the third lower bobbin 110 and the lower yoke 102 are integrally formed.
  • it is integrally formed by sintering.
  • it is integrally formed by means of a magnetic core press-bonding method.
  • the first bobbin, the second bobbin, the third bobbin, the upper yoke 101 and the lower yoke 102 use the same magnetic material.
  • the phase difference between the current (i3) in the third winding 111 and the current in the second winding is 120°, and the phase difference with the current in the first winding is 120°; the current in the second winding and the current in the second winding are 120° The phase difference of the current in the first winding is 120°.
  • the first winding 107, the second winding 108, and the third winding 111 are coupled to each other.
  • the clockwise/counterclockwise direction (i1) of the current in the first winding 107 and the clockwise/counterclockwise direction (i2) of the current in the second winding 108 are consistent with the clockwise/counterclockwise direction (i3) of the current in the third winding 111.
  • the current i1 is counterclockwise
  • the current i2 is counterclockwise
  • the current i3 is counterclockwise. So that the DC magnetic flux generated by the first winding 107 in the first bobbin, the DC magnetic flux generated by the second winding 108 in the second bobbin, and the DC magnetic flux generated by the third winding 111 in the third bobbin Pass offset.
  • the shape of the cross-section of the third winding column includes: a circle, an ellipse, an oval, a square, a rectangle, or a polygon.
  • the first bobbin, the second bobbin, and the third bobbin may be located on the same axis (similar to FIG. 1c).
  • the first bobbin, the second bobbin, and the third bobbin may also be located on different axes.
  • FIG. 1e is a schematic cross-sectional view of an inductor according to an embodiment of the application. In FIG. 1e, the first winding column, the second winding column, and the third winding column are arranged in a triangle.
  • the inductor proposed in the embodiment of the present application may also include more third bobbins and corresponding third windings 111.
  • the connection between the multiple third bobbin and the third winding 111 and other components in the inductor is similar to the connection between the single third bobbin and the third winding 111 and other components in the inductor, and will not be repeated here.
  • FIG. 1f is a schematic cross-sectional view of another inductor according to an embodiment of the application.
  • the number of the third bobbin is N
  • the number of the third winding 111 is N.
  • the current (i3) in the third winding 111 has a phase difference of 360°/N with the current in the second winding, and the phase difference with the current in the first winding is 360°/N;
  • the phase difference between the current of and the current in the first winding is 360°/N, where N is a positive integer.
  • the first winding, the second winding and the third winding are independent of each other, and the current in the first winding is clockwise/counterclockwise, the current in the second winding is clockwise/counterclockwise, and the current in the third winding is The current is in the same clockwise/counterclockwise direction.
  • the DC magnetic flux generated by the first winding in the first bobbin and the DC magnetic flux generated by the second winding in the second bobbin are offset with the DC magnetic flux generated by the third winding in the third bobbin. , Thereby greatly improving the anti-saturation capability of the inductor. Inductors can obtain higher output power with fewer winding turns, smaller magnetic cores, and cheap power ferrite magnetic materials.
  • the upper and lower magnetic yokes and bobbins can adopt integral molding technology, it has the advantages of simple processing and high inductance consistency of the finished inductor. It is also possible to adjust the coupling coefficient of the inductor by adjusting the spacing between the winding posts, thereby meeting the requirements of different inductance and magnetic flux cancellation in the circuit.
  • FIG. 2 is a schematic diagram of an embodiment of a current-sharing circuit according to an embodiment of the application.
  • a current sharing circuit proposed in an embodiment of the present application includes: a sampling module 201, a processing module 202, an inductor 203, and a main pipe 204.
  • the inductor 203 is the inductor described in the aforementioned embodiment shown in FIG. 1b to FIG. 1f.
  • the main pipe is used to control the on and off of the inductor current, and each winding in the inductor corresponds to a main pipe;
  • the sampling module is used to sample the current of the first winding and the second winding of the inductor to obtain the first current signal and the second current signal respectively.
  • the first current signal is the signal of the current in the first winding
  • the second current is the signal of the current in the second winding;
  • the processing module is used to adjust the duty ratio of the main pipe of the first winding and the duty ratio of the main pipe of the second winding according to the first current signal and the second current signal, so that the DC component of the current of the first winding Consistent with the DC component of the current in the second winding.
  • the sampling module is also used to sample the current of the third winding of the inductor to obtain a third current signal, where the third current signal is a signal of the current in the third winding; processing module , Is also used to adjust the duty cycle of the main pipe of the first winding, the duty cycle of the main pipe of the second winding and the duty cycle of the main pipe of the third winding according to the first current signal, the second current signal and the third current signal , So that the DC component of the current of the first winding, the DC component of the current of the second winding and the DC component of the current of the third winding are consistent.
  • the sampling module includes: at least one Hall sensor, or, at least one current transformer, or at least one resistive shunt, or, at least one magnetoresistive current sensor.
  • an analog solution can be used in the current sharing circuit.
  • the processing module includes: at least one error operational amplifier.
  • the processing module includes: at least one micro controller unit (MCU).
  • MCU micro controller unit
  • FIG. 3a is a schematic diagram of a simulation experiment in an embodiment of this application.
  • the inductor including the first winding column (and the first winding) and the second winding group (and the second winding) as an example.
  • Figure 3a shows the waveform of the current in the first winding and the second winding when the inductor is not used in a current-sharing circuit.
  • the abscissa of Figure 3a is the time, the ordinate is the current value, and "ton" is the lead On time, “Ts” is the period, and the duty cycle is the ratio of the on time to the period, that is, "ton/Ts".
  • Is the DC component of current i1 Is the DC component of the current i2.
  • FIG. 3b is a schematic diagram of another simulation experiment in the embodiment of the present application.
  • the current-sharing circuit adjusts the duty cycle of the main pipe of the first winding and the duty cycle of the main pipe of the second winding, so that the DC component of the current of the first winding is the same as the current of the second winding.
  • the DC component is the same. This overcomes the technical defect that the DC component is inconsistent due to the difference in device parameters, and the magnetic flux in the bobbin cannot be completely cancelled out, which makes the magnetic density in the bobbin excessively high and saturation occurs.
  • the current sharing circuit proposed in the embodiments of the present application may apply the inductors proposed in the embodiments of the present application.
  • the real-time dynamic adjustment of the DC magnetic flux in the inductor is realized by the current-sharing circuit, so as to solve the problem of uneven current and magnetic bias saturation caused by the unbalanced device parameters, and further improve the reliability of the circuit.
  • Boost boost circuit is a switching DC boost circuit that can make the output voltage higher than the input voltage. Mainly used in DC motor drives, single-phase power factor correction (PFC) circuits and other AC and DC power supplies. Please refer to FIG.
  • Q1 and Q3 are normally-on tubes
  • Q6 and Q8 are the main tubes of the Boost circuit
  • Q5 and Q7 are the synchronous tubes of the Boost circuit
  • L1 is the first winding of the inductor proposed in the embodiment of the application
  • L2 is the embodiment of the application.
  • Q6 is the supervisor of L1
  • Q8 is the supervisor of L2.
  • FIG. 4b is a schematic diagram of yet another Boost circuit according to an embodiment of the application.
  • the sampling module A is used to sample the current (i1) of the first winding to obtain the first current signal;
  • the sampling module B is used to measure the second The current (i2) of the winding is sampled to obtain the second current signal.
  • the processing module is used to adjust the duty cycle of the main pipe of the first winding and the duty cycle of the main pipe of the second winding according to the first current signal and the second current signal.
  • the sampling point of the sampling module is between the inductor and Q1 and Between Q3, the sampled current is the current of each winding.
  • FIG. 4c is a schematic diagram of yet another Boost circuit according to an embodiment of the application.
  • the sampling module A is used to sample the current (i1) of the first winding to obtain the first current signal;
  • the sampling module B is used to measure the second The current (i2) of the winding is sampled to obtain the second current signal.
  • the processing module is used to adjust the duty cycle of the main pipe of the first winding and the duty cycle of the main pipe of the second winding according to the first current signal and the second current signal.
  • the sampling point of the sampling module is in the boost circuit
  • the current sampled on the main bus of the input power supply is the total loop current of the Boost circuit.
  • FIG. 4d is a schematic diagram of yet another Boost circuit according to an embodiment of the application.
  • the sampling module A is used to sample the current (i1) of the first winding to obtain the first current signal;
  • the sampling module B is used to measure the second The current (i2) of the winding is sampled to obtain the second current signal.
  • the processing module is used to adjust the duty cycle of the main pipe of the first winding and the duty cycle of the main pipe of the second winding according to the first current signal and the second current signal.
  • the sampling point of the sampling module is turned on at Q6 and Q8 In the loop, the current sampled is the main current.
  • the embodiment of the present application also provides a DC/DC switching power supply, and the DC/DC switching power supply includes the current sharing circuit described in the foregoing embodiment.
  • An embodiment of the present application also provides a module power supply, and the module power supply includes the current sharing circuit described in the foregoing embodiment.
  • FIG. 5 is a schematic diagram of a battery management system proposed in an embodiment of the present application.
  • the battery management system includes a battery and a switch module.
  • the switch module uses the current equalization circuit described in the foregoing embodiment, wherein the battery is used to provide electrical energy; the current equalization circuit is used to control the charging of the battery And discharge.
  • the current sharing circuit is integrated in the switch module of the battery management system, and by controlling the on and off of the switch tube, bidirectional current control and bidirectional boost or buck output are realized.
  • the switch module can be integrated with the battery, or can form a separate module separately.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电感器以及相关装置,该电感器包括:一字型平行设置的上磁轭(101)和下磁轭(102);第一绕线柱上设置第一绕组(107);第二绕线柱上设置第二绕组(108);上磁轭(101)、第一上绕线柱(103)以及第二上绕线柱(104)一体成型;下磁轭(102)、第一下绕线柱(105)以及第二下绕线(106)柱一体成型;第一绕组(107)中电流顺/逆时针方向与第二绕组(108)中电流顺/逆时针方向一致,使得第一绕组(107)在第一绕线柱中产生的直流磁通,与第二绕组(108)在第二绕线柱产生的直流磁通抵消。避免了因电感器中绕线柱的磁密过高而发生饱和时,引起的电流畸变的技术缺陷。使电感器能够承受瞬时过载功率而不饱和,提高了短时过载能力。上下磁轭和绕线柱可以采用一体成型技术,具有加工简单,电感器成品的感量一致性高等优点。

Description

一种电感器以及相关装置 技术领域
本申请涉及电子技术领域,尤其涉及一种电感器以及相关装置。
背景技术
电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器或动态电抗器。
电感器是直流/直流(DC/DC)电路中常见器件,直流/直流电路广泛应用于电源电路中。随着电源电路输出的功率上升,电感器中的绕组需要承受较大的直流电流分量。已知高斯磁场定律为:Φ=B*S,其中,Φ为磁通量,B为磁感应强度(又称为磁通密度,简称磁密),S为面积。而在电感器体积受限的条件下,该直流电流分量所产生的直流磁通(Flux)使得电感器中绕线柱的磁密过高而发生饱和。
当电感器中绕线柱的磁密过高而发生饱和时,引起的电流畸变可能影响整个电路的可靠性。因此,需要一种新型的电感器以解决上述技术缺陷。
发明内容
有鉴于此,本申请实施例第一方面提供了一种电感器,该电感器包括:上磁轭、下磁轭,该上磁轭与该下磁轭为一字型磁轭,该上磁轭与该下磁轭平行设置;第一绕线柱,该第一绕线柱上设置第一绕组,该第一绕线柱设置于该上磁轭与该下磁轭之间;第二绕线柱,该第二绕线柱上设置第二绕组,该第二绕线柱设置于该上磁轭与该下磁轭之间;该第一绕线柱包括第一上绕线柱、第一下绕线柱以及第一气隙,其中,该第一上绕线柱、该第一下绕线柱以及该第一气隙处于同一轴线,该第一上绕线柱与该第一下绕线柱之间设置第一气隙,该第一气隙包括一个或多个气隙;该第二绕线柱包括第二上绕线柱、第二下绕线柱以及第二气隙,其中,该第二上绕线柱、该第二下绕线柱以及该第二气隙处于同一轴线,该第二上绕线柱与该第二下绕线柱之间设置第二气隙,该第二气隙包括一个或多个气隙。该上磁轭、该第一上绕线柱以及该第二上绕线柱一体成型;该下磁轭、该第一下绕线柱以及该第二下绕线柱一体成型。可选的,采用磁芯压结的方式一体成型。可选的,采用磁芯压结的方式一体成型。降低加工难度,减小了磁芯成本,有效降低电感器成品的感量公差,提高电感器的性价比。
该第一绕组与该第二绕组相互耦合;该第一绕组中电流顺/逆时针方向与该第二绕组中电流顺/逆时针方向一致,使得该第一绕组在该第一绕线柱中产生的直流磁通,与该第二绕组在该第二绕线柱产生的直流磁通抵消。
本申请实施例中,该电感器包括的上磁轭和下磁轭为一字型磁轭,且,该上磁轭与该下磁轭平行设置,本申请实施例提出的电感器相较于使用T字形磁轭的电感器,取消了公共柱。因此,避免了公共柱磁密过高发生饱和时,引起的电流畸变。同时,该第一绕组与 第二绕组相互耦合,且,第一绕组中电流顺/逆时针方向与该第二绕组中电流顺/逆时针方向一致,使得该第一绕组在该第一绕线柱中产生的直流磁通,与该第二绕组在该第二绕线柱产生的直流磁通抵消。从而避免了绕组在绕线柱中产生的直流磁通,使得电感器中绕线柱的磁密过高而发生饱和的情况。进而避免了因电感器中绕线柱的磁密过高而发生饱和时,引起的电流畸变的技术缺陷。提升了应用该电感器的电路的可靠性。使电感器能够承受瞬时过载功率而不饱和,提高了短时过载能力。由于上下磁轭和绕线柱可以采用一体成型技术,具有加工简单,电感器成品的感量一致性高等优点。
结合第一方面,在第一方面的一种可选的实现方式中,该上磁轭、该下磁轭、该第一绕线柱和该第二绕线柱采用功率铁氧体材料,例如:锰锌铁氧体材料,还可以是:铁氧体、硅钢、非晶、铁硅铝、铁硅、或者纳米晶等材料。本申请实施例中,磁轭与绕线柱可以采用多种不同的材料,提升了方案的实现灵活性。
结合第一方面,在第一方面的一种可选的实现方式中,该电感器还包括至少一个第三绕线柱与至少一个第三绕组,其中,该第三绕组设置于该第三绕线柱上;该第一绕组中电流顺/逆时针方向、与该第二绕组中电流顺/逆时针方向与该第三绕组中电流顺/逆时针方向一致,使得该第一绕组在该第一绕线柱中产生的直流磁通,与该第二绕组在该第二绕线柱中产生的直流磁通,与该第三绕组在该第三绕线柱产生的直流磁通抵消。该第三绕线柱包括:第三上绕线柱和第三下绕线柱,其中,第三上绕线柱的上端与上磁轭连接,第三下绕线柱的下端与下磁轭连接。第一上绕线柱、第二上绕线柱、第三上绕线柱以及上磁轭采用一体成型;第一下绕线柱、第二下绕线柱、第三下绕线柱以及下磁轭采用一体成型。可选的,采用烧结的方式一体成型。可选的,采用磁芯压结的方式一体成型。
本申请实施例中,第一绕组、第二绕组与第三绕组相互独立,且第一绕组中的电流顺/逆时针方向、第二绕组中的电流顺/逆时针方向与第三绕组中的电流顺/逆时针方向一致。使得第一绕组在第一绕线柱中产生的直流磁通、与第二绕组在第二绕线柱产生的直流磁通,与第三绕组在第三绕线柱产生的直流磁通相抵消,从而大幅提高电感器的抗饱和能力。电感器可以采用多个绕线柱和多个绕组,满足不同电路的需求。
结合第一方面,在第一方面的一种可选的实现方式中,当该电感器包括2个绕线柱以及2个绕组时,该2个绕组中电流的相位差为180°;当该电感器包括3个绕线柱以及3个绕组时,该3个绕组中电流的相位差为120°;当该电感器包括N个绕线柱以及N个绕组时,该N个绕组中电流的相位差为360°/N,其中,该N为正整数。本申请实施例中,通过规定电感的各个绕组中电流的相位差,保障在交流条件下,避免绕组在绕线柱中产生的直流磁通,使得电感器中绕线柱的磁密过高而发生饱和的情况的发生。
结合第一方面,在第一方面的一种可选的实现方式中,该第一绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形;该第二绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形。本申请实施例中,电感器中绕线柱的截面可以是多种不同的形状,以满足不同电路的需求。
结合第一方面,在第一方面的一种可选的实现方式中,该电感器的耦合系数与绕线柱之间的间距负相关,其中,通过减小绕线柱之间的间距,提升该电感器的耦合系数,通过 增大绕线柱之间的间距,降低该电感器的耦合系数。本申请实施例中,通过调节绕线柱之间的间距,调节电感器的耦合系数,进而满足电路中不同感量以及磁通抵消的需求。
第二方面,本申请实施例提出了一种均流电路,包括:采样模块、处理模块以及如第一方面以及第一方面中任一项电感器;
该采样模块,用于对该电感器的该第一绕组和该第二绕组进行电流采样,分别得到第一电流信号和第二电流信号,其中,该第一电流信号为该第一绕组中电流的信号,该第二电流信号为该第二绕组中电流的信号;
该处理模块,用于根据该第一电流信号和该第二电流信号,调节该第一绕组的主管的占空比和该第二绕组的主管的占空比,使得该第一绕组的电流的直流分量与该第二绕组的电流的直流分量一致,进而使得该第一绕组在该第一绕线柱中产生的直流磁通,与该第二绕组在该第二绕线柱产生的直流磁通动态实时抵消。
当该电感器还包括该第三绕组时,该采样模块,还用于对该电感器的该第三绕组进行电流采样,得到第三电流信号,其中,该第三电流信号为该第三绕组中电流的信号;该处理模块,还用于根据该第一电流信号、该第二电流信号和该第三电流信号,调节该第一绕组的主管的占空比、该第二绕组的主管的占空比和该第三绕组的主管的占空比,使得该第一绕组的电流的直流分量、该第二绕组的电流的直流分量和该第三绕组的电流的直流分量一致。
该采样模块包括:至少一个霍尔传感器,或,至少一个电流互感器,或,至少一个电阻式分流器,或,至少一个磁阻式电流传感器。该处理模块包括:至少一个运算放大器,或,至少一个微控制单元。
本申请实施例中,均流电路根据第一电流信号和第二电流信号,调节第一绕组的主管的占空比和第二绕组的主管的占空比,使得第一绕组的电流的直流分量与第二绕组的电流的直流分量一致。从而克服了因器件参数差异的原因,而引起直流分量不一致,进而导致绕线柱中磁通无法完全抵消,使得绕线柱中磁密过高而发生饱和的技术缺陷,进一步提高了电路可靠性。
第三方面,本申请实施例提出了一种直流/直流开关电源,所述直流/直流开关电源包括如第二方面所述的均流电路。
第四方面,本申请实施例提出了一种模块电源,所述模块电源包括如第二方面所述的均流电路。
第五方面,本申请实施例提出了一种电池管理系统,包括电池以及如权利要求第二方面所述的均流电路,其中,所述电池用于提供电能;所述均流电路用于控制所述电池的充电以及放电。具体的,该均流电路集成于该电池管理系统的开关模块中,通过控制开关管的开通和关断,实现双向电流的控制,以及双向升压或降压输出。可选的,该开关模块可与电池集成在一起,也可单独构成独立的模块。
附图说明
图1a为本申请实施例中现有技术的一种电感器结构示意图;
图1b为本申请实施例提出的一种电感器的结构示意图;
图1c为本申请实施例中电感器的一种截面示意图;
图1d为本申请实施例提出的又一种电感器的实施例示意图;
图1e为本申请实施例提出的一种电感器的截面示意图;
图1f为本申请实施例提出的又一种电感器的截面示意图;
图2为本申请实施例提出的一种均流电路的实施例示意图;
图3a为本申请实施例中一种仿真实验示意图;
图3b为本申请实施例中另一种仿真实验示意图;
图4a为本申请实施例中一种Boost升压电路的示意图;
图4b为本申请实施例提出的又一种Boost升压电路的示意图;
图4c为本申请实施例提出的又一种Boost升压电路的示意图;
图4d为本申请实施例提出的又一种Boost升压电路的示意图;
图5为本申请实施例提出的一种电池管理系统示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”,第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程,方法,系统,产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程,方法,产品或设备固有的其它单元。
在介绍本申请实施例前,首先说明现有技术:
直流/直流(DC/DC)电路被广泛应用于电源电路中,目前,应用于电源电路中的电感器面临诸多挑战。高斯磁场定律为:Φ=B*S,其中,Φ为磁通量,B为磁感应强度(又称为磁通密度,简称磁密),S为面积。随着电源电路输出功率的上升,电感器的绕组中线圈需要承载较大的直流电流分量。而在电感器体积受限的条件下,该直流电流分量所产生的直流磁通(Flux)使得电感器中绕线柱的磁密过高而发生饱和,引起电流畸变并影响电路的可靠性。
而为了实现降低磁密,通常可以通过增加绕组的线圈匝数,或,提高电感器工作频率。但是,增加绕组的线圈匝数,绕组的电阻同步增大,引起铜损(或称为可变损耗)和发热等新问题。而提高电感器工作频率,需要对电路中的开关管有更严苛的要求,同时,电感器工作频率越高,电路中开关管的开关损耗越大。
为了解决上述技术问题,现有技术提出了多种方案,下面分别介绍:
(1)、通过增加单个磁芯(或称为绕线柱)的截面积,或采用多个分立磁芯代替单一磁芯。该方案尽管可以解决前述技术问题,但是电感器体积大,对电感器的使用场景造成了诸多限制,并且,电感器的物料成本较高。
(2)、磁芯使用高饱和磁密的材料。采用高饱和磁密材料可以解决前述技术问题,但是,目前常见的高饱和磁密材料为粉芯材料、非晶材料、纳米晶材料或硅钢片,而高饱和 磁密材料本身存在单位体积磁损较高,电感量随电流的增加明显下降等缺点,对电感器的应用场景造成诸多限制。
(3)、绕线柱使用高饱和磁密的材料(例如粉芯材料),磁轭使用低饱和磁密的材料(例如功率铁氧体材料)。制作电感器时,存在加工困难,成本高,绕线柱的材料与磁轭的材料的初始磁导率公差相差较大,电感器成品的公差难以控制等技术缺陷。
(4)、电感器中采用T字型磁轭,例如图1a,图1a为本申请实施例中现有技术的一种电感器结构示意图。在部分工况下,公共柱(将T字型磁轭的对接处称为公共柱)部分,绕组产生的磁通相互抵消。缺点是:在绕线柱上的磁通无法完全抵消,依然存在磁密过高而发生饱和的问题。
(5)、提高电感器的工作频率,例如:电路中开关管采用超快速功率半导体元件(例如氮化镓GaN功率器件),在提高开关频率的同时,抑制开关损耗。缺点是:器件成本较高。并且,引入新的问题,例如电磁兼容(EMC)问题,开关管电压应力过冲问题。
(6)、关于参考文件CN2519988Y示出的电感镇流器。该电感镇流器对外呈现为单一电感,因此,两个绕组的线圈为串联连接。为了实现交流工况下正常工作,两个绕组中电流方向需要为反向,使得磁通互相叠加。因此,该参考文件中,电感镇流器使用高饱和磁密的硅钢片解决磁芯饱和问题。基于此,该参考文件中电感镇流器无法解决前述技术缺陷。
基于此,本申请实施例提出了一种电感器以及相关装置,本申请实施例提出的电感器相较于使用T字形磁轭的电感器,取消了公共柱。因此,避免了公共柱磁密过高发生饱和时,引起的电流畸变。同时,该第一绕组与第二绕组相互耦合,且,第一绕组中电流顺/逆时针方向与该第二绕组中电流顺/逆时针方向一致,使得该第一绕组在该第一绕线柱中产生的直流磁通,与该第二绕组在该第二绕线柱产生的直流磁通抵消。从而避免了绕组在绕线柱中产生的直流磁通,使得电感器中绕线柱的磁密过高而发生饱和的情况。进而避免了因电感器中绕线柱的磁密过高而发生饱和时,引起的电流畸变的技术缺陷。提升了应用该电感器的电路的可靠性。使电感器能够承受瞬时过载功率而不饱和,提高了短时过载能力。由于上下磁轭和绕线柱可以采用一体成型技术,具有加工简单,电感器成品的感量一致性高等优点。
下面结合附图,对本申请的实施例进行详细描述。请参阅图1b,图1b为本申请实施例提出的一种电感器的结构示意图,本申请实施例提出的一种电感器包括:上磁轭101、下磁轭102、第一上绕线柱103、第二上绕线柱104、第一下绕线柱105、第二下绕线柱106、第一绕组107以及第二绕组108。
上磁轭101、下磁轭102,上磁轭101与下磁轭102为一字型磁轭,上磁轭101与下磁轭102平行设置。
第一绕线柱,第一绕线柱上设置第一绕组107,第一绕线柱设置于上磁轭101与下磁轭102之间,第一绕组107包括多匝线圈。具体的,第一绕线柱包括第一上绕线柱103、第一下绕线柱105以及第一气隙,其中,第一上绕线柱103的上端与上磁轭101连接,第一下绕线柱105的下端与下磁轭102连接。第一上绕线柱103、第一下绕线柱105以及第一气隙处于同一轴线,第一上绕线柱103与第一下绕线柱105之间设置第一气隙。可选的, 第一气隙包括一个或多个气隙。
第二绕线柱,第二绕线柱上设置第二绕组108,第二绕线柱设置于上磁轭101与下磁轭102之间,第二绕组108包括多匝线圈。具体的,第二绕线柱包括第二上绕线柱104、第二下绕线柱106以及第二气隙,其中,第二上绕线柱104的上端与上磁轭101连接,第二下绕线柱106的下端与下磁轭102连接。第二上绕线柱104、第二下绕线柱106以及第二气隙处于同一轴线,第二上绕线柱104与第二下绕线柱106之间设置第二气隙。可选的,第二气隙包括一个或多个气隙。
本申请实施例中,不对气隙在绕线柱中的具体位置进行限定,第一气隙与第二气隙既可以是对称的,也可以是不对称的。
需要说明的是,本申请实施例中不对第一绕组107中线圈的匝数进行限定,不对第二绕组108中线圈的匝数进行限定。本申请实施例中不对第一绕组107中线圈的直径进行限定,不对第二绕组108中线圈的直径进行限定。本申请实施例中不对第一绕组107中线圈的材质进行限定,不对第二绕组108中线圈的材质进行限定。
在另一种可选的实现方式中,第一上绕线柱103、第二上绕线柱104以及上磁轭101采用一体成型;第一下绕线柱105、第二下绕线柱以及下磁轭102采用一体成型。可选的,采用烧结的方式一体成型。可选的,采用磁芯压结的方式一体成型。
在一种可选的实现方式中,第一绕线柱、第二绕线柱、上磁轭101以及下磁轭102采用相同的磁性材料,例如:功率铁氧体材料,例如:锰锌铁氧体材料,还可以是:铁氧体、硅钢、非晶、铁硅铝、铁硅、或者纳米晶等材料。
可选的,第一绕组107中的电流,与第二绕组108中的电流的相位差为180°。
第一绕组107与第二绕组108相互耦合,具体的第一绕组107与第二绕组108反向耦合。第一绕组107中电流顺/逆时针方向(i1)与第二绕组108中电流顺/逆时针方向(i2)一致,例如图1b中电流i1为逆时针方向,电流i2为逆时针方向。使得第一绕组107在第一绕线柱中产生的直流磁通(φ1),与第二绕组108在第二绕线柱产生的直流磁通(φ2)抵消。
可选的,请参阅图1c,图1c为本申请实施例中电感器的一种截面示意图。图1c中以电感器中第一下绕线柱105和第二下绕线柱106的截面为例进行说明。第一绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形;第二绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形。
电感器的耦合系数与绕线柱之间的间距负相关。具体的,可以通过绕线柱之间的间距,调节电感器的耦合系数。以电感器包括第一绕线柱以及第二绕线柱为例进行说明:通过减小第一绕线柱与第二绕线柱之间的间距,提升电感器的耦合系数;通过增大第一绕线柱与第二绕线柱之间的间距,降低电感器的耦合系数。
本申请实施例中,第一绕组与第二绕组相互独立,且第一绕组中的电流顺/逆时针方向与第二绕组中的电流顺/逆时针方向一致。使得第一绕组在第一绕线柱中产生的直流磁通与第二绕组在第二绕线柱产生的直流磁通相抵消,从而大幅提高电感器的抗饱和能力。电感器可以在绕组匝数较少,磁芯体积较小,使用廉价的功率铁氧体磁性材料的同时,获得更 高的输出功率。由于上下磁轭和绕线柱可以采用一体成型技术,具有加工简单,电感器成品的感量一致性高等优点。还可以通过调节绕线柱之间的间距,调节电感器的耦合系数,进而满足电路中不同感量以及磁通抵消的需求。
基于图1b-图1c所示电感器的基础上,本申请实施例提出的电感器中还可以包括多个绕线柱以及对应的绕组,为了便于理解,请参阅图1d,图1d为本申请实施例提出的又一种电感器的实施例示意图。电感器还包括至少一个第三绕线柱与至少一个第三绕组111,其中,第三绕组111设置于第三绕线柱上,第三绕线柱与第二绕线柱结构一致。图1d中,该第三绕线柱包括:第三上绕线柱109和第三下绕线柱110,其中,第三上绕线柱109的上端与上磁轭101连接,第三下绕线柱110的下端与下磁轭102连接。
第三绕线柱的结构与第二绕线柱的结构类似,第三绕组111的结构与第二绕组的结构类似。因此类似的,本申请实施例中不对第三绕组111中线圈的匝数进行限定。本申请实施例中不对第三绕组111中线圈的直径进行限定。本申请实施例中不对第三绕组111中线圈的材质进行限定。
在另一种可选的实现方式中,第一上绕线柱103、第二上绕线柱104、第三上绕线柱109以及上磁轭101采用一体成型;第一下绕线柱105、第二下绕线柱106、第三下绕线柱110以及下磁轭102采用一体成型。可选的,采用烧结的方式一体成型。可选的,采用磁芯压结的方式一体成型。
在一种可选的实现方式中,第一绕线柱、第二绕线柱、第三绕线柱、上磁轭101以及下磁轭102采用相同的磁性材料。
可选的,第三绕组111中的电流(i3),与第二绕组中的电流的相位差为120°,与第一绕组中的电流的相位差为120°;第二绕组中的电流与第一绕组中的电流的相位差为120°。
第一绕组107、第二绕组108以及第三绕组111相互耦合。第一绕组107中电流顺/逆时针方向(i1)、第二绕组108中电流顺/逆时针方向(i2),与第三绕组111中电流顺/逆时针方向(i3)一致。例如图1d中电流i1为逆时针方向,电流i2为逆时针方向,电流i3为逆时针方向。使得第一绕组107在第一绕线柱中产生的直流磁通,与第二绕组108在第二绕线柱产生的直流磁通,与第三绕组111在第三绕线柱产生的直流磁通抵消。
可选的,第三绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形。
在一种可选的实施方式中,图1d所示的电感器中,第一绕线柱、第二绕线柱以及第三绕线柱可以位于同一轴线上(类似图1c)。第一绕线柱、第二绕线柱以及第三绕线柱也可以位于不同轴线上,为了便于理解,请参阅图1e,图1e为本申请实施例提出的一种电感器的截面示意图。图1e中,第一绕线柱、第二绕线柱以及第三绕线柱呈三角排列。
需要说明的是,本申请实施例提出的电感器中,还可以包括更多的第三绕线柱以及对应的第三绕组111。多个第三绕线柱和第三绕组111与电感器中其它组件的连接方式,与单个第三绕线柱和第三绕组111与电感器中其它组件的连接方式类似,此处不再赘述。示例性的,以第三绕线柱的数量是2为例,请参阅图1f,图1f为本申请实施例提出的又一 种电感器的截面示意图。
可选的,当第三绕线柱的数量为N时,第三绕组111的数量为N。此时,第三绕组111中的电流(i3),与第二绕组中的电流的相位差为360°/N,与第一绕组中的电流的相位差为360°/N;第二绕组中的电流与第一绕组中的电流的相位差为360°/N,其中,N为正整数。
本申请实施例中,第一绕组、第二绕组与第三绕组相互独立,且第一绕组中的电流顺/逆时针方向、第二绕组中的电流顺/逆时针方向与第三绕组中的电流顺/逆时针方向一致。使得第一绕组在第一绕线柱中产生的直流磁通、与第二绕组在第二绕线柱产生的直流磁通,与第三绕组在第三绕线柱产生的直流磁通相抵消,从而大幅提高电感器的抗饱和能力。电感器可以在绕组匝数较少,磁芯体积较小,使用廉价的功率铁氧体磁性材料的同时,获得更高的输出功率。由于上下磁轭和绕线柱可以采用一体成型技术,具有加工简单,电感器成品的感量一致性高等优点。还可以通过调节绕线柱之间的间距,调节电感器的耦合系数,进而满足电路中不同感量以及磁通抵消的需求。
在图1b-图1f所示实施例的基础上,本申请实施例还提出了一种均流电路(Current sharing circuit)。均流电路用于为多路绕组进行均流控制,使得不同的绕组支路能够流过相同的电流。请参阅图2,图2为本申请实施例提出的一种均流电路的实施例示意图。本申请实施例提出的一种均流电路包括:采样模块201、处理模块202以及电感器203、主管204。其中,该电感器203为前述图1b-图1f所示实施例中描述的电感器。
具体的,主管,用于控制电感器电流的导通与关断,电感器中每个绕组对应一个主管;
采样模块,用于对电感器的第一绕组和第二绕组进行电流采样,分别得到第一电流信号和第二电流信号,其中,第一电流信号为第一绕组中电流的信号,第二电流信号为第二绕组中电流的信号;
处理模块,用于根据第一电流信号和第二电流信号,调节第一绕组的主管的占空比(duty ratio)和第二绕组的主管的占空比,使得第一绕组的电流的直流分量与第二绕组的电流的直流分量一致。
当电感器还包括第三绕组时,采样模块,还用于对电感器的第三绕组进行电流采样,得到第三电流信号,其中,第三电流信号为第三绕组中电流的信号;处理模块,还用于根据第一电流信号、第二电流信号和第三电流信号,调节第一绕组的主管的占空比、第二绕组的主管的占空比和第三绕组的主管的占空比,使得第一绕组的电流的直流分量、第二绕组的电流的直流分量和第三绕组的电流的直流分量一致。
具体的,采样模块包括:至少一个霍尔传感器,或,至少一个电流互感器,或至少一个电阻式分流器,或,至少一个磁阻式电流传感器。
在一种可选的实现方式中,该均流电路中可采用模拟方案,此时,处理模块包括:至少一个误差运算放大器。
在另一种可选的实现方式中,该均流电路中可采用数字方案,此时,处理模块包括:至少一个微控制单元(micro controller unit,MCU)。
示例性的,请参阅图3a,图3a为本申请实施例中一种仿真实验示意图。以电感器包 括第一绕线柱(和第一绕组),和第二绕线组(和第二绕组)为例。图3a中所示的是电感器未应用于均流电路时,第一绕组与第二绕组中电流的波形,其中,图3a的横坐标为时间,纵坐标为电流值,“ton”为导通时间,“Ts”为周期,占空比为导通时间与周期的比值,即“ton/Ts”。
Figure PCTCN2020095252-appb-000001
为电流i1的直流分量,
Figure PCTCN2020095252-appb-000002
为电流i2的直流分量,在不引入本申请实施例提出的均流电路的前提下,本申请实施例提出的电感器中不同绕组可能因器件参数差异的原因,而引起直流分量不一致,进而导致绕线柱中磁通无法完全抵消,使得绕线柱中磁密过高而发生饱和的技术缺陷。当应用本申请实施例提出的均流电路后,请参阅图3b,图3b为本申请实施例中另一种仿真实验示意图。均流电路根据第一电流信号和第二电流信号,调节第一绕组的主管的占空比和第二绕组的主管的占空比,使得第一绕组的电流的直流分量与第二绕组的电流的直流分量一致。从而克服了因器件参数差异的原因,而引起直流分量不一致,进而导致绕线柱中磁通无法完全抵消,使得绕线柱中磁密过高而发生饱和的技术缺陷。
本申请实施例中,本申请实施例提出的均流电路中可以应用本申请实施例提出的电感器。通过均流电路实现电感器中直流磁通的实时动态调整,以解决器件参数不平衡引起的不均流和磁偏饱和问题,进一步提高了电路可靠性。
在图2所示均流电路的基础上,均流电路中采样模块的采样点存在多种可能的实现方式。以本申请实施例提出的均流电路应用于升压斩波电路(又称为Boost升压电路)为例,说明均流电路中电流的不同采样方式。需要说明的是,均流电路应用于其它电路中也可以有多种不同的电流采样方式,具体的采样方式与应用于Boost升压电路中类似,此处不再赘述。Boost升压电路一种开关直流升压电路,它可以使输出电压比输入电压高。主要应用于直流电动机传动、单相功率因数校正(PFC)电路及其他交直流电源中。请参阅图4a,图4a为本申请实施例中一种Boost升压电路的示意图。其中,Q1和Q3为常通管,Q6和Q8为Boost电路的主管,Q5和Q7为Boost电路的同步管,L1为本申请实施例提出的电感器的第一绕组,L2为本申请实施例提出的电感器的第二绕组。具体的,Q6为L1的主管,Q8为L2的主管。
在一种可选的实现方式中,请参阅图4b,图4b为本申请实施例提出的又一种Boost升压电路的示意图。当本申请实施例提出的均流电路应用于该Boost升压电路时,采样模块A用于对第一绕组的电流(i1)进行采样,得到第一电流信号;采样模块B用于对第二绕组的电流(i2)进行采样,得到第二电流信号。处理模块用于根据第一电流信号和第二电流信号,调节第一绕组的主管的占空比和第二绕组的主管的占空比,具体的,采样模块的采样点在电感器与Q1和Q3之间,采样的电流为每个绕组的电流。
在一种可选的实现方式中,请参阅图4c,图4c为本申请实施例提出的又一种Boost升压电路的示意图。当本申请实施例提出的均流电路应用于该Boost升压电路时,采样模块A用于对第一绕组的电流(i1)进行采样,得到第一电流信号;采样模块B用于对第二绕组的电流(i2)进行采样,得到第二电流信号。处理模块用于根据第一电流信号和第二电流信号,调节第一绕组的主管的占空比和第二绕组的主管的占空比,具体的,采样模块的采样点在Boost升压电路中输入电源的总母线上,采样的电流为Boost升压电路的回路 总电流。
在一种可选的实现方式中,请参阅图4d,图4d为本申请实施例提出的又一种Boost升压电路的示意图。当本申请实施例提出的均流电路应用于该Boost升压电路时,采样模块A用于对第一绕组的电流(i1)进行采样,得到第一电流信号;采样模块B用于对第二绕组的电流(i2)进行采样,得到第二电流信号。处理模块用于根据第一电流信号和第二电流信号,调节第一绕组的主管的占空比和第二绕组的主管的占空比,具体的,采样模块的采样点在Q6和Q8导通回路中,采样的电流为主管电流。
本申请实施例还提供了一种直流/直流开关电源,所述直流/直流开关电源包括前述实施例中所述的均流电路。
本申请实施例还提供了一种模块电源,所述模块电源包括前述实施例中所述的均流电路。
本申请实施例还提供了一种电池管理系统,请参阅图5,图5为本申请实施例提出的一种电池管理系统示意图。所述电池管理系统包括电池以及开关模块,该开关模块中应用前述实施例中所述的均流电路,其中,所述电池用于提供电能;所述均流电路用于控制所述电池的充电以及放电。具体的,该均流电路集成于该电池管理系统的开关模块中,通过控制开关管的开通和关断,实现双向电流的控制,以及双向升压或降压输出。可选的,该开关模块可与电池集成在一起,也可单独构成独立的模块。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种电感器,其特征在于,包括:
    上磁轭、下磁轭,所述上磁轭与所述下磁轭为一字型磁轭,所述上磁轭与所述下磁轭平行设置;
    第一绕线柱,所述第一绕线柱上设置第一绕组,所述第一绕线柱设置于所述上磁轭与所述下磁轭之间;
    第二绕线柱,所述第二绕线柱上设置第二绕组,所述第二绕线柱设置于所述上磁轭与所述下磁轭之间;
    所述第一绕线柱包括第一上绕线柱、第一下绕线柱以及第一气隙,其中,所述第一上绕线柱、所述第一下绕线柱以及所述第一气隙处于同一轴线,所述第一上绕线柱与所述第一下绕线柱之间设置第一气隙,所述第一气隙包括一个或多个气隙;
    所述第二绕线柱包括第二上绕线柱、第二下绕线柱以及第二气隙,其中,所述第二上绕线柱、所述第二下绕线柱以及所述第二气隙处于同一轴线,所述第二上绕线柱与所述第二下绕线柱之间设置第二气隙,所述第二气隙包括一个或多个气隙;
    所述上磁轭、所述第一上绕线柱以及所述第二上绕线柱一体成型;
    所述下磁轭、所述第一下绕线柱以及所述第二下绕线柱一体成型;
    所述第一绕组与所述第二绕组相互耦合;
    所述第一绕组中电流顺/逆时针方向与所述第二绕组中电流顺/逆时针方向一致,使得所述第一绕组在所述第一绕线柱中产生的直流磁通,与所述第二绕组在所述第二绕线柱产生的直流磁通抵消。
  2. 根据权利要求1所述的电感器,其特征在于,
    所述上磁轭、所述第一上绕线柱以及所述第二上绕线柱采用烧结的方式一体成型,所述下磁轭、所述第一下绕线柱以及所述第二下绕线柱一体成型用烧结的方式一体成型;
    或,所述上磁轭、所述第一上绕线柱以及所述第二上绕线柱采用磁芯压结的方式一体成型,所述下磁轭、所述第一下绕线柱以及所述第二下绕线柱一体成型用磁芯压结的方式一体成型。
  3. 根据权利要求1至2中任一项所述的电感器,其特征在于,所述上磁轭、所述下磁轭、所述第一绕线柱和所述第二绕线柱采用功率铁氧体材料,或粉芯材料。
  4. 根据权利要求1至3中任一项所述的电感器,其特征在于,所述电感器还包括至少一个第三绕线柱与至少一个第三绕组,其中,所述第三绕组设置于所述第三绕线柱上;
    所述第一绕组中电流顺/逆时针方向、与所述第二绕组中电流顺/逆时针方向与所述第三绕组中电流顺/逆时针方向一致,使得所述第一绕组在所述第一绕线柱中产生的直流磁通,与所述第二绕组在所述第二绕线柱中产生的直流磁通,与所述第三绕组在所述第三绕线柱产生的直流磁通抵消。
  5. 根据权利要求4所述的电感器,其特征在于,
    当所述电感器包括2个绕线柱以及2个绕组时,所述2个绕组中电流的相位差为180°;
    当所述电感器包括3个绕线柱以及3个绕组时,所述3个绕组中电流的相位差为120°;
    当所述电感器包括N个绕线柱以及N个绕组时,所述N个绕组中电流的相位差为360°/N,其中,所述N为正整数。
  6. 根据权利要求1至5中任一项所述的电感器,其特征在于,
    所述第一绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形;
    所述第二绕线柱的截面的形状包括:圆形、椭圆形、卵圆形、正方形、矩形或多边形。
  7. 根据权利要求1至6中任一项所述的电感器,其特征在于,所述电感器的耦合系数与绕线柱之间的间距负相关,其中,通过减小绕线柱之间的间距,提升所述电感器的耦合系数,通过增大绕线柱之间的间距,降低所述电感器的耦合系数。
  8. 一种均流电路,其特征在于,包括:主管、采样模块、处理模块以及如权利要求1-7中任一项所述的电感器;
    所述主管,用于控制所述电感器电流的导通与关断,所述电感器中每个绕组对应一个所述主管;
    所述采样模块,用于对所述电感器的所述第一绕组和所述第二绕组进行电流采样,分别得到第一电流信号和第二电流信号,其中,所述第一电流信号为所述第一绕组中电流的信号,所述第二电流信号为所述第二绕组中电流的信号;
    所述处理模块,用于根据所述第一电流信号和所述第二电流信号,调节所述第一绕组的所述主管的占空比和所述第二绕组的所述主管的占空比,使得所述第一绕组的电流的直流分量与所述第二绕组的电流的直流分量一致,进而使得所述第一绕组在所述第一绕线柱中产生的直流磁通,与所述第二绕组在所述第二绕线柱产生的直流磁通动态实时抵消。
  9. 根据权利要求8所述的均流电路,其特征在于,当所述电感器还包括所述第三绕组时,
    所述采样模块,还用于对所述电感器的所述第三绕组进行电流采样,得到第三电流信号,其中,所述第三电流信号为所述第三绕组中电流的信号;
    所述处理模块,还用于根据所述第一电流信号、所述第二电流信号和所述第三电流信号,调节所述第一绕组的所述主管的占空比、所述第二绕组的所述主管的占空比和所述第三绕组的所述主管的占空比,
    使得所述第一绕组的电流的直流分量、所述第二绕组的电流的直流分量和所述第三绕组的电流的直流分量一致。
  10. 根据权利要求8至9中任一项所述的均流电路,其特征在于,所述采样模块包括:至少一个霍尔传感器,或,至少一个电流互感器,或,至少一个电阻式分流器,或,至少一个磁阻式电流传感器。
  11. 根据权利要求8至10中任一项所述的均流电路,其特征在于,所述处理模块包括:
    至少一个运算放大器,或,至少一个微控制单元。
  12. 一种直流/直流开关电源,其特征在于,所述直流/直流开关电源包括如权利要求8至11中任一项所述的均流电路。
  13. 一种模块电源,其特征在于,所述模块电源包括如权利要求8至11中任一项所述的均流电路。
  14. 一种电池管理系统,其特征在于,所述电池管理系统包括电池以及如权利要求8至11中任一项所述的均流电路,其中,
    所述电池用于提供电能;
    所述均流电路用于控制所述电池的充电以及放电。
PCT/CN2020/095252 2020-06-10 2020-06-10 一种电感器以及相关装置 WO2021248340A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20939786.8A EP4152350A4 (en) 2020-06-10 2020-06-10 INDUCTOR AND ASSOCIATED APPARATUS
CN202080101772.8A CN115885354A (zh) 2020-06-10 2020-06-10 一种电感器以及相关装置
PCT/CN2020/095252 WO2021248340A1 (zh) 2020-06-10 2020-06-10 一种电感器以及相关装置
US18/064,186 US20230112288A1 (en) 2020-06-10 2022-12-09 Inductor and Related Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095252 WO2021248340A1 (zh) 2020-06-10 2020-06-10 一种电感器以及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,186 Continuation US20230112288A1 (en) 2020-06-10 2022-12-09 Inductor and Related Apparatus

Publications (1)

Publication Number Publication Date
WO2021248340A1 true WO2021248340A1 (zh) 2021-12-16

Family

ID=78846674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095252 WO2021248340A1 (zh) 2020-06-10 2020-06-10 一种电感器以及相关装置

Country Status (4)

Country Link
US (1) US20230112288A1 (zh)
EP (1) EP4152350A4 (zh)
CN (1) CN115885354A (zh)
WO (1) WO2021248340A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130642A1 (en) * 2001-03-02 2002-09-19 Ettes Wilhelmus Gerardus Maria Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
CN2519988Y (zh) 2001-11-21 2002-11-06 安徽省三色照明股份有限公司 用于35w陶瓷内管金属卤化物灯的节能电感镇流器
CN104021920A (zh) * 2014-05-27 2014-09-03 华为技术有限公司 耦合电感和功率变换器
CN204632497U (zh) * 2014-09-01 2015-09-09 杨玉岗 一种多相磁集成耦合电感器
CN105895302A (zh) * 2014-09-01 2016-08-24 杨玉岗 一种多相磁集成耦合电感器
CN106653305A (zh) * 2016-12-29 2017-05-10 江苏越达电力设备有限公司 一种基于磁通控制的大容量可调低压串联电抗器
CN108039267A (zh) * 2017-11-25 2018-05-15 华为数字技术(苏州)有限公司 电流互感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362986B1 (en) * 2001-03-22 2002-03-26 Volterra, Inc. Voltage converter with coupled inductive windings, and associated methods
US8773231B2 (en) * 2012-03-09 2014-07-08 Raytheon Company Multiphase power converters involving controllable inductors
DE102014206469A1 (de) * 2014-04-03 2015-10-08 SUMIDA Components & Modules GmbH Drossel und drosselkern
CN103943330A (zh) * 2014-05-05 2014-07-23 田村(中国)企业管理有限公司 混合磁路的三相耦合电感器
CN107430928A (zh) * 2015-04-07 2017-12-01 松下知识产权经营株式会社 电抗器
CN106971815B (zh) * 2016-01-14 2018-12-14 华为技术有限公司 集成电感及应用所述集成电感的功率变换器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130642A1 (en) * 2001-03-02 2002-09-19 Ettes Wilhelmus Gerardus Maria Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
CN2519988Y (zh) 2001-11-21 2002-11-06 安徽省三色照明股份有限公司 用于35w陶瓷内管金属卤化物灯的节能电感镇流器
CN104021920A (zh) * 2014-05-27 2014-09-03 华为技术有限公司 耦合电感和功率变换器
CN204632497U (zh) * 2014-09-01 2015-09-09 杨玉岗 一种多相磁集成耦合电感器
CN105895302A (zh) * 2014-09-01 2016-08-24 杨玉岗 一种多相磁集成耦合电感器
CN106653305A (zh) * 2016-12-29 2017-05-10 江苏越达电力设备有限公司 一种基于磁通控制的大容量可调低压串联电抗器
CN108039267A (zh) * 2017-11-25 2018-05-15 华为数字技术(苏州)有限公司 电流互感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152350A4

Also Published As

Publication number Publication date
CN115885354A (zh) 2023-03-31
EP4152350A4 (en) 2023-07-26
EP4152350A1 (en) 2023-03-22
US20230112288A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2021047207A1 (zh) 磁件装置和双向dc变换电路
US9356520B2 (en) Forward converter with magnetic component
TWI514427B (zh) 電感及包含該電感之開關電路
CN107134358A (zh) 一种电感绕制方法及装置
WO2015180417A1 (zh) 耦合电感和功率变换器
CN105518810A (zh) 集成磁性组件及其组装方法
CN105322798B (zh) 多路输出反激变换器
US11587719B2 (en) Magnetic integrated hybrid distribution transformer
US8988182B2 (en) Transformers and methods for constructing transformers
CN111223646A (zh) 一种磁轭闭合型多相对称集成磁件
WO2021248340A1 (zh) 一种电感器以及相关装置
CN212518795U (zh) 一种基于全耦合电感器的可自动均流的多相并联谐振变换器
CN204497043U (zh) 磁分路型全漏磁回收同轴双绕组可控阻抗电抗器
CN102904263B (zh) 一种基于磁控电抗器的快速励磁及去磁装置
CN115331930B (zh) 一种结构简单的磁集成混合配电变压器
CN108492958B (zh) 一种串联式多相交错耦合电感结构及其控制方法
CN207410075U (zh) 基于ddq磁结构的均流电路
CN104300802A (zh) 一种采用磁集成变压器的单级升压逆变器
WO2020164084A1 (zh) 一种电感器
CN206848848U (zh) 正交磁场调压装置
CN204857428U (zh) 电流互感器
Yang et al. Design of “EIE” SHAPE coupling inductors and its application in interleaved LLC resonant converter
CN112347720A (zh) 新型三相八柱式磁控型可控电抗器的建模方法及仿真模型
WO2023005736A1 (zh) 电感器、电压控制电路、电压控制电路的检测及控制方法
CN204575717U (zh) 一种对电感的电流进行采样的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020939786

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE