WO2020164084A1 - 一种电感器 - Google Patents

一种电感器 Download PDF

Info

Publication number
WO2020164084A1
WO2020164084A1 PCT/CN2019/075148 CN2019075148W WO2020164084A1 WO 2020164084 A1 WO2020164084 A1 WO 2020164084A1 CN 2019075148 W CN2019075148 W CN 2019075148W WO 2020164084 A1 WO2020164084 A1 WO 2020164084A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
inductor
lobe
coil
leg
Prior art date
Application number
PCT/CN2019/075148
Other languages
English (en)
French (fr)
Inventor
邵革良
肖俊承
王一龙
Original Assignee
佛山市顺德区伊戈尔电力科技有限公司
伊戈尔电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区伊戈尔电力科技有限公司, 伊戈尔电气股份有限公司 filed Critical 佛山市顺德区伊戈尔电力科技有限公司
Priority to PCT/CN2019/075148 priority Critical patent/WO2020164084A1/zh
Priority to US17/427,907 priority patent/US20220108823A1/en
Publication of WO2020164084A1 publication Critical patent/WO2020164084A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to electronic components, in particular to an inductor.
  • Inductors are commonly known as coils.
  • the simplest inductor is to wind a few turns with a wire hollow, and for an inductor with a magnetic core, wind a few turns with a wire on the core.
  • No matter which kind of inductor if the structure is the same, its basic characteristics are the same, but when the number of turns of the winding is different or the non-magnetic core is different, the size of the inductance of the inductor is different. The more the number of winding turns, the greater the inductance. In the case of the same number of turns, the inductance will increase after the coil is increased by the magnetic core. Air-core coils do not have a magnetic core. Generally, the fewer turns of the coil, the smaller the inductance.
  • the difference between iron core and magnetic core is the difference in working frequency.
  • the low working frequency is called the iron core
  • the high working frequency is called the magnetic core.
  • the iron core is used in the 50Hz AC mains frequency circuit, and the magnetic rod coil of the radio circuit
  • the magnetic bar in is a magnetic core, and its working frequency is up to thousands of Hz.
  • the magnetic core is divided into low frequency magnetic core and high frequency magnetic core according to the working frequency.
  • Inductance is a commonly used element in switching power supplies. Because its current and voltage phases are different, theoretically the loss is zero. Inductance is often an energy storage element, and is often used in input filtering and output filtering circuits together with capacitors to smooth current. Inductance is also called a choke, and it is characterized by "large inertia" in the current flowing through it, that is, due to the continuity of magnetic flux, the current in the inductor must be continuous, otherwise a large voltage spike will be generated . Inductance is a magnetic component, so it has the problem of magnetic saturation. Some applications allow the inductor to saturate, some applications allow the inductor to enter saturation from a certain current value, and some applications do not allow the inductor to saturate.
  • the inductor works in the "linear region", at this time the inductance value is a constant, and does not change with the terminal voltage and current.
  • the winding of the inductance will cause two distributed parameters (or parasitic parameters), one is the inevitable winding resistance, and the other is the distribution related to the winding process and materials.
  • Stray capacitance Stray capacitance has little effect at low frequencies, but it gradually becomes apparent as the frequency increases. When the frequency is higher than a certain value, the inductance may become a capacitive characteristic.
  • Inductors are generally composed of skeletons, windings, shields, packaging materials, magnetic cores or iron cores, etc.
  • the magnetic core is generally made of nickel-zinc ferrite or manganese-zinc ferrite. It has pot type, RM type, E type, EC type, ETD type, EER type, PQ type, EP type and toroidal cores, etc.
  • FIG. 1 it is a schematic diagram of an inductor using a flat wire vertical winding toroidal core.
  • the toroidal core is the most economical. Among other comparable magnetic cores, it has the lowest cost and output Large current, low loss, withstand voltage, high inductance and low price. Due to its good EMC electromagnetic characteristics and good heat dissipation of the vertical winding structure, it is used as the boost inductor of photovoltaic inverters, high frequency inverter filter inductors, variable frequency air conditioner PFC inductors, UPS rectifier inverter inductors, and charging pile PFC inductors , High-power and high-frequency inductors such as PFC inductors for chargers of new energy vehicles are widely used.
  • inductors need to have higher permeability, lower loss, higher saturation and magnetic flux density, higher frequency of use, higher temperature range, smaller size and Weight and low installation height.
  • the toroidal core adopts a magnetic material of iron-nickel alloy soft magnetic powder core.
  • the inductors with toroidal cores made of magnetic materials can easily obtain large inductance under high-frequency and high-current conditions, and have the characteristics of high efficiency and small size, the production cost of such inductors is extremely expensive.
  • the winding cost of the toroidal core inductor is high and it is difficult to mass produce.
  • the main technical problem solved by the present invention is to increase the inductance of the inductor under the condition of limiting the space size of the inductor and the thickness of the winding wire of the inductor.
  • an embodiment provides an inductor, which includes the same first magnetic core leg and the second magnetic core leg, and the same first magnetic core lobe and the same second magnetic core lobe;
  • the first magnetic core lobe and the second magnetic core lobe respectively have two opposite side surfaces, and a bottom surface and a circular arc surface that meet each other;
  • the first magnetic core column and the second magnetic core column are both wound with conductive coils; wherein one end of the conductive coil wound by the first magnetic core column serves as a terminal of the inductor, and the first magnetic core column The other end of the wound conductive coil is connected to one end of the conductive coil wound by the second magnetic core column, and the other end of the conductive coil wound by the first magnetic core column serves as the other terminal of the inductor;
  • the first magnetic core lobe and the second magnetic core lobe are arranged in such a manner that their bottom faces face each other, and the first magnetic core leg and the second magnetic core leg are arranged side by side on the first magnetic core lobe and the In the middle of the second magnetic core lobe, the end surfaces of the first magnetic core column and the second magnetic core column are in contact with the bottom surfaces of the first magnetic core column and the second magnetic core column respectively.
  • the first magnetic core lobe and the second magnetic core lobe of the inductor have a crescent-shaped structure, and the outer side is a circular arc surface, so that Compared with toroidal vertical wound inductors, the effective cross-sectional area of the conductive coil wound around the magnetic core is significantly increased under the conditions of the same wire thickness of the conductive coil, the same number of winding turns and the same size of the outer edge of the inductor, so as to increase the inductor’s performance. Inductance.
  • the magnetic core of the inductor has a split structure, it is convenient for mass production of the inductor, thereby reducing the production cost.
  • Figure 1 is a schematic diagram of an inductor using a flat wire vertical winding toroidal core
  • FIG. 2 is a schematic diagram of the magnetic core structure of the inductor in an embodiment
  • Figure 3 is a schematic diagram of the air gap setting of the inductor core lobe in an embodiment
  • FIG. 4 is a schematic diagram of air gap setting of the magnetic core column of the inductor in an embodiment
  • FIG. 6 is a schematic diagram of a three-dimensional structure of an inductor in an embodiment
  • FIG. 7 is a schematic diagram of a split structure of an inductor in an embodiment
  • FIG. 8 is a schematic diagram of the terminal connection of the inductor in an embodiment
  • FIG. 9 is a schematic diagram of the spatial arrangement of an elliptical inductor and a toroidal inductor in an embodiment.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • the magnetic core structure of the inductor is optimized. Specifically, the magnetic core outside the inductor coil is designed into a crescent-shaped structure to increase the effective cross-sectional area of the inductor's conductive coil winding the magnetic core, and then Increase the inductance of the inductor.
  • FIG. 2 is a schematic diagram of the magnetic core structure of the inductor in an embodiment.
  • the inductor includes the same first magnetic core leg 30 and the second magnetic core leg 40, and the same first magnetic core lobe 10 and second magnetic core leg.
  • Core valve 20 Both the first magnetic core lobe 10 and the second magnetic core lobe 20 have two opposite side surfaces, and a bottom surface and a circular arc surface that meet each other.
  • Both the first magnetic core leg 30 and the second magnetic core leg 40 are wound with conductive coils.
  • one end of the conductive coil wound by the first magnetic core column 30 is used as a terminal of the inductor, and the other end of the conductive coil wound by the first magnetic core column 30 and one end of the conductive coil wound by the second magnetic core column 40 Connected, the other end of the conductive coil wound by the first magnetic core leg 30 serves as the other terminal of the inductor.
  • the first magnetic core lobe 10 and the second magnetic core lobe 20 are arranged in such a manner that their bottom faces face each other, and the first magnetic core leg 30 and the second magnetic core leg 40 are arranged side by side between the first magnetic core lobe 10 and the second magnetic core lobe 20 , So that the end surfaces of the first magnetic core column 30 and the second magnetic core column 40 are in contact with the bottom surfaces of the first magnetic core lobe 10 and the second magnetic core lobe 20 respectively.
  • the first magnetic core column 30 and the second magnetic core column 40 are rectangular parallelepipeds or cylinders.
  • the edges between the bottom surface and the arc surface of the first magnetic core lobe 10 and the second core lobe 20 are rounded.
  • the edges of the first magnetic core column 30 and the second magnetic core column 40 are rounded.
  • the radius of the rounded corner is one-tenth to one-fifth of the outer radius of the first magnetic core column 30 and the second magnetic core column 40.
  • the end surfaces of the first magnetic core column 30 and the second magnetic core column 40 are slightly smaller than half of the bottom surfaces of the first magnetic core lobe 10 and the second magnetic core lobe 20.
  • the core lobe air gap 11 may be provided in the first magnetic core lobe 10 and/or the second magnetic core lobe 20.
  • the magnetic core lobe air gap 11 is arranged on the central axis of the first magnetic core lobe 10 and/or the second magnetic core lobe 20.
  • the magnetic core lobe air gap 11 is provided on the third halves of the first magnetic core lobe 10 and/or the second magnetic core lobe 20.
  • the magnetic core lobe air gap 11 is provided on the quartered cross section of the first core lobe 10 and/or the second core lobe 20.
  • the arrangement of the core-lobe air gap 11 of the first magnetic core lobe 10 and the second magnetic core lobe 20 may be the same or different.
  • the difference may be that the first magnetic core lobe 10 is provided with a magnetic core lobe air gap 11, and the second magnetic core lobe 20 is not provided with a magnetic core lobe air gap 11; or, the first magnetic core lobe 10 and the second magnetic core lobe 20
  • the positions of the respective magnetic core lobe air gaps 11 are different, and the number of the respective core lobe air gaps 11 of the first magnetic core lobe 10 and the second magnetic core lobe 20 is different.
  • the plane where the air gap 11 of the core lobe in the first core lobe 10 and/or the second core lobe 20 is located is perpendicular to the bottom surface of the first core lobe 10 and/or the second core lobe 20.
  • the magnetic core column air gap 31 may be provided in the first magnetic core column 30 and/or the second magnetic core 40 column. In an embodiment, the magnetic core column air gap 31 is arranged on the central axis of the first magnetic core column 30 and/or the second magnetic core column 40. In one embodiment, the air gap 31 of the magnetic core column is arranged on the third halves of the first magnetic core column 30 and/or the second magnetic core column 40. In an embodiment, the air gap 31 of the magnetic core column is arranged on the quartered cross section of the first magnetic core column 30 and/or the second magnetic core column 40.
  • the arrangement of the magnetic core column air gap 31 of the first magnetic core column 30 and/or the second magnetic core column 40 may be the same or different.
  • the difference may be that the first magnetic core column 30 is provided with a magnetic core column air gap 31, and the second magnetic core column 40 is not provided with a magnetic core column air gap 31; or, the first magnetic core column 30 and/or the second magnetic core
  • the positions of the air gaps 31 of the magnetic core columns of the columns 40 are different, and the number of the air gaps 31 of the magnetic core columns of the first magnetic core column 30 and/or the second magnetic core column 40 is different.
  • a non-magnetic material is placed in the air gap of the magnetic core column and the air gap of the magnetic core lobe to adjust the magnetic circuit reluctance required by the inductor disclosed in the present application, so as to obtain the required inductance and the coupling coefficient between the two coils Requirements.
  • the multiple parts of the first magnetic core lobe and/or the second magnetic core lobe divided by the air gap can be made of different materials, and the first magnetic core leg and/or the second magnetic core leg are divided into multiple parts by the air gap. Some of them can be made of different materials. That is, the different magnetic core blocks cut by the air gap can be made of the same material or different materials to adjust the magnetic circuit reluctance required by the inductor disclosed in this application.
  • the magnetic core of the inductor disclosed in this application includes the same first magnetic core leg 30 and the second magnetic core leg 40, and the same A magnetic core lobe 10 and a second magnetic core lobe 20.
  • the arc surfaces of the first magnetic core lobe 10 and the second magnetic core lobe 20 are axisymmetric.
  • a conductive coil 70 is wound on the first magnetic core leg 30 and the second magnetic core leg 40, respectively.
  • the cross section of the first magnetic core leg 30 and the second magnetic core leg 40 wound with the conductive coil 70 is larger than the cross section of the toroidal core 80.
  • the total volume of the magnetic core of the inductor disclosed in the present application is greater than the volume of the magnetic core of the toroidal inductor.
  • the external dimensions of the inductor disclosed in this application are the same as the ring sensor 90 in the directions of the first magnetic core lobe 10 and the second magnetic core lobe 20, but in the directions of the first magnetic core leg 30 and the second magnetic core leg 40 The size of the ring sensor 90 is smaller.
  • the conductive coil 70 is a flat wire vertical winding coil.
  • the material of the first magnetic core leg 30, the second magnetic core leg 40, the first magnetic core flap 10 and the second magnetic core flap 20 is nickel-zinc ferrite or manganese-zinc ferrite, magnesium-zinc-iron. Ferrite such as ferrite.
  • FIGS. 6 and 7 are a schematic diagram of a three-dimensional structure and a schematic diagram of a split structure of an inductor in an embodiment, including a first magnetic core lobe 10, a second magnetic core lobe 20 and a conductive coil 70.
  • the conductive coil 70 includes a first coil 71 and a second coil 72.
  • the first coil 71 is wound around the first magnetic core leg 30.
  • the second coil 72 is wound around the second magnetic core leg 40.
  • the first coil 71 includes a first terminal 711 and a second terminal 712.
  • the second coil 72 includes a third terminal 721 and a fourth terminal 722.
  • the first coil 71 and the second coil 72 are rectangular rectangular copper wire vertical winding coils, and the first coil 71 and the second coil 72 are wound in the same direction as the first magnetic core column 30 and the second magnetic core column 40, respectively. .
  • FIG. 8 it is a schematic diagram of the terminal connection of the inductor in an embodiment.
  • the second terminal 712 of the first coil 71 serves as a terminal 1 of the inductor, and the first terminal 712 of the first line 71 and the second coil 72 are connected
  • the third terminal 721 is connected
  • the fourth terminal 722 of the second coil 72 serves as the other terminal of the inductor.
  • its inductance is:
  • V is the voltage across the first coil 71
  • Ls is the self-inductance of the first coil 71
  • M is the mutual inductance formed by the magnetic coupling between the first coil 71 and the second coil 72
  • is the internal flux of the two inductive coils.
  • the magnetic flux generated by the incoming current in the magnetic circuit, I 1 and I 2 are the currents flowing through the two coils respectively.
  • V is the voltage across the first coil 71
  • Ls is the self-inductance of the first coil 71
  • M is the mutual inductance formed by the magnetic coupling between the first coil 71 and the second coil 72
  • is the internal flux of the two inductive coils.
  • the magnetic flux generated by the incoming current in the magnetic circuit, I 1 and I 2 are the currents flowing through the two coils respectively.
  • the inductance of the first coil 71 of a single coil is:
  • L is the inductance
  • Ls is the self-inductance of the first coil 71
  • M is the mutual inductance formed by the magnetic coupling between the first coil 71 and the second coil 72.
  • L is the total inductance of the inductor
  • Ls is the self-inductance of the first coil 71 or the second coil
  • M is the mutual inductance formed by the magnetic coupling between the first coil 71 and the second coil 72.
  • the inductance of the toroidal inductor of the toroidal core is:
  • L is the inductance of the toroidal inductor
  • K is the coefficient, which depends on the ratio of the radius to the length of the coil
  • l is the length of the coil
  • S is the cross-sectional area of the coil
  • N 2 is the square of the number of turns of the coil
  • S is the internal magnetic field of the coil.
  • the relative permeability of the core, O is the vacuum permeability.
  • the inductance of the toroidal inductor is:
  • Ls is the self-inductance of the first coil 71 or the second coil 72, because the coil length of the toroidal inductor is the sum of the first coil 71 and the second coil 72.
  • the inductance of the inductor disclosed in the present application is greater than the inductance of the toroidal inductor under the condition that the conductive coil has the same wire material thickness, the same number of winding turns, and the same outer edge size of the inductor.
  • the first coil 71 and the second coil 72 of the inductor disclosed in the present application are not short-circuited to form a coupling inductance of the two coils.
  • Such an inductance is more suitable for, for example, an inverter single-phase AC output filter inductor.
  • each coil is used as a filter inductor on the phase line.
  • the coupled inductance of the inductor disclosed in this application can be implemented as a coupling form in which two inductances are interleaved in parallel.
  • one side of the inductance in use is short-circuited as a common input pole in staggered parallel connection (such as connecting 1 and 4 poles as a common input), and the two outer 2 poles of the two coils are respectively connected to 2 electrical circuits in staggered parallel connection to form
  • the winding directions of the two inductor coils of the inductor disclosed in the present application are completely the same, forming the same electrical flux flow direction.
  • the two inductor coils can also be wound in opposite directions and short-circuit diagonally to form the same magnetic direction. Pass, the effect is the same.
  • the inductor disclosed in the present application arranges the flat vertical winding coils neatly in the center, and the arc surfaces of the magnetic core lobes on both sides are located on the outer contour of the toroidal inductor of the same size. Therefore, the magnetic field of the inductor disclosed in the present application
  • the effective cross-sectional area of the core is significantly larger, and the space occupancy rate of the coil is greatly increased, so that the space utilization rate of the coil and the magnetic core of the inductor disclosed in the present application is greatly increased, which far exceeds that of the magnetic core material and winding coil of the toroidal vertical wound inductor Space utilization.
  • the volume of the magnetic core wound around the first coil 71 and the second coil 72 of the inductor disclosed in the present application is also required. It is larger than the volume of the magnetic core of the toroidal inductor, therefore, the inductance of the inductor disclosed in the present application is also greater than the inductance of the toroidal inductor.
  • the inductor disclosed in this application is different from the circular magnetic circuit formed by the toroidal core.
  • the magnetic circuit consists of two crescent-shaped non-wound magnetic cores on both sides, combined with two rectangular wound magnetic cores to form a square-shaped magnetic circuit structure, and the crescent-shaped magnetic core has an arc-shaped outer boundary , Which constitutes the maximum boundary size of the inductor disclosed in this application.
  • the effective cross-sectional area of the magnetic core is a rectangular copper wire vertical winding coil made from the outer winding of the upper and lower square magnetic core posts.
  • the upper and lower coils constituting the inductor disclosed in the present application are electrically connected in series, so as to obtain a toroidal vertical winding inductance that is much larger than the same vertical winding wire cross-sectional area.
  • the inductance of the device if the same magnetic core material is used, the inductance of the inductor disclosed in the present application in the current DC bias state is also greater than the DC bias inductance of the toroidal vertical winding inductor, and as adopted The material of the magnetic core is different.
  • the magnetic material in the new inductor can be used instead of DC bias.
  • the toroidal vertical wound inductor made of materials with good characteristics can keep its electrical parameters basically unchanged.
  • the inductor disclosed in the present application replaces the physical space of the toroidal vertical wound inductor of the same size, in order to achieve a greater inductance.
  • the present invention can maintain the same inductance as the toroidal vertical wound inductor of the same size.
  • the inductor disclosed in the present application is an alternative to the physical space of the toroidal vertical wound inductor of the same size
  • the size of the inductor disclosed in the present application is as close as possible to a circle, in order to further increase the inductance of the inductor disclosed in the present application
  • the length of the magnetic core column inside the coil can be further elongated, so that the coil can get more winding space, thereby obtaining more coil turns and greater inductance.
  • a new type of inductance that is approximately circular becomes It presents a new embodiment that is approximately elliptical. In this embodiment, especially when multiple inductors are arranged in parallel, as shown in FIG.
  • FIG. 9 it is a schematic diagram of the spatial arrangement of the elliptical inductor and the toroidal inductor in an embodiment.
  • the inductor of the elliptical embodiment disclosed in the present application can further improve the space utilization rate of the inductor installation.
  • the present application discloses an inductor, which includes the same first magnetic core leg and the second magnetic core leg, and the same first magnetic core lobe and the same second magnetic core lobe. Due to the optimized design of the magnetic core structure of the inductor, specifically through the optimized design of the core material shape and winding structure, the same coil wire thickness and the same number of winding turns are used for the same circular inductor as the toroidal vertical winding inductor. Under the size conditions, the effective cross-sectional area of the magnetic core material is significantly increased.
  • the inductance Due to the significant increase in the effective cross-sectional area of the magnetic flux loop, for the inductance of the same magnetic core material, the inductance has been increased proportionally to the effective cross-sectional area of the magnetic core material, that is, it is equivalent to the original ring In the same volume and shape of the vertical wound inductor, even if the cross-sectional area of the flat copper wire of the same size as the original toroidal vertical wound inductor is used, the shape and path of the magnetic circuit, the shape of the magnetic core at different parts of the magnetic circuit and the The size significantly increases the inductance capacity of the inductor disclosed in this application. Since the magnetic core of the inductor disclosed in the present application has a split structure, it is convenient for mass production of the inductor, thereby reducing the production cost.
  • Coupled refers to physical connection, electrical connection, magnetic connection, optical connection, communication connection, functional connection and/or any other connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种电感器,包括相同的第一磁芯柱(30)和第二磁芯柱(40),相同的第一磁芯瓣(10)和第二磁芯瓣(20)。由于对电感器的磁芯结构进行优化设计,具体是电感器的第一磁芯瓣(10)和第二磁芯瓣(20)为月牙形结构,其外侧为圆弧面。使得相比于环形电感器,在导电线圈的导线粗细相同、绕组匝数相同及电感器外沿尺寸相同的条件下,导电线圈缠绕磁芯的有效截面显著增大,进而提高了电感器的电感量。另该电感器的磁芯是分体结构,便于电感器的大批量生产,进而降低生产成本。

Description

一种电感器 技术领域
本发明涉及电子部件,具体涉及一种电感器。
背景技术
电感器俗称线圈,最简单的电感器就是用导线空心的绕几圈,有磁芯的电感器在磁芯上用导线绕几圈。无论哪种电感器,如果结构相同,其基本特性相同,但绕线的匝数不同或无磁芯不同时,电感器的电感量的大小不同。绕线匝数越多,电感量越大,在同样匝数的情况下,线圈增加量磁芯后,电感量会增加。空心线圈没有磁芯,通常线圈匝数越少,电感越小,主要用于高频电路中,例如,短波收音电路中和调频收音电路中等。铁芯与磁芯的区别是工作频率的不同,工作频率低的称为铁芯,工作频率高的称为磁芯,例如用于50Hz交流市电频率电路中为铁芯,收音电路磁棒线圈中的磁棒为磁芯,其工作频率高达上千Hz。磁芯根据工作频率的高低不同,还有低频磁芯和高频磁芯之分。
电感是开关电源中常用的元件,由于它的电流和电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”,即由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。电感作为磁性元件,所以有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和。一般情况,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。电感器一般由骨架、绕组、屏蔽罩、封装材料、磁芯或铁芯等组成,其中,磁芯一般采用镍锌铁氧体或锰锌铁氧体等材料,它有罐型、RM型、E型、EC型、ETD型、EER型、PQ型、EP型和环形磁芯等。
如图1所示,为一种采用扁平线立绕环形磁芯的电感器结构示意图, 环形磁芯是最经济的,在与其它可比较的各种磁芯中,它的花费是最低,输出电流大,损耗小,耐电压,电感高,价格低。由于其良好的EMC电磁特性、立绕结构的良好的散热等性能,作为光伏逆变器的升压电感、高频逆变滤波电感、变频空调PFC电感、UPS整流逆变电感、充电桩PFC电感、新能源汽车的充电机的PFC电感等大功率高频电感被广泛采用。尤其在电源的电路设计中,需对高频功率电感元件的高功率密度进行优化设计。具体是,尽可能提升环形磁芯电感器的电感量。因为电感量的提升,极其有利于电源装置的稳定性控制、减小电源装置的PFC纹波、改善PFC电流的高次谐波含量、提高电源的效率。而在实际电路设计中,电感器需要有更高的磁导率、更低的损耗、更高的饱和和磁通密度、更高的使用频率、更高的使用温区、更小的体积和重量、低矮的安装高度。不但需要限定电感器的空间尺寸,还要限定电感器的绕组线的粗细(即限定绕组线的截面积)。现有技术中,为提升环形磁芯电感器的电感量,环形磁芯采用铁镍合金软磁粉芯的磁性材料。虽然此类磁性材料的环形磁芯的电感器,在高频大电流条件下,容易获取大电感量,且具有效率高、体积小的特点,但此类电感器的生产成本极其昂贵。另外,环形磁芯的电感器的绕线成本高,很难大批量生产。
发明内容
本发明主要解决的技术问题是在限定电感器的空间尺寸和电感器的绕组线的粗细的条件下提高电感器的电感量。
根据第一方面,一种实施例中提供一种电感器,包括相同的第一磁芯柱和第二磁芯柱,相同的第一磁芯瓣和第二磁芯瓣;
所述第一磁芯瓣和所述第二磁芯瓣分别具有相对的两个侧面,以及相接的底面和圆弧面;
所述第一磁芯柱和所述第二磁芯柱都缠绕有导电线圈;其中所述第一磁芯柱所缠绕的导电线圈的一端作为电感器的一个端子,所述第一磁芯柱所缠绕的导电线圈的另一端与所述第二磁芯柱所缠绕的导电线圈的一端连接,所述第一磁芯柱所缠绕的导电线圈的另一端作为电感器的另一个端子;
所述第一磁芯瓣和所述第二磁芯瓣以底面相对的方式设置,所述第 一磁芯柱和所述第二磁芯柱并排设置于所述第一磁芯瓣和所述第二磁芯瓣中间,以使得所述第一磁芯柱和所述第二磁芯柱的端面分别与所述第一磁芯柱、所述第二磁芯柱的底面相接触。
依据上述实施例的一种电感器,由于对电感器的磁芯结构进行优化设计,使电感器的第一磁芯瓣和第二磁芯瓣为月牙形结构,其外侧为圆弧面,使得相对于环形立绕电感器,在导电线圈的导线粗细相同、绕组匝数相同和电感器外沿尺寸相同的条件下,使导电线圈缠绕磁芯的有效截面积显著增大,以提高电感器的电感量。另因电感器的磁芯是分体结构,便于电感器的大批量生产,进而降低生产成本。
附图说明
图1为一种采用扁平线立绕环形磁芯的电感器结构示意图;
图2为一种实施例中电感器的磁芯结构示意图;
图3为一实施例中电感器磁芯瓣的气隙设置示意图;
图4为一实施例中电感器磁芯柱的气隙设置示意图;
图5为本申请公开的电感器与环形电感器的比较示意图;
图6为一实施例中电感器的立体结构示意图;
图7为一实施例中电感器的分体结构示意图;
图8为一实施例中电感器的端子连接示意图;
图9为一实施例中椭圆形电感器与环形电感器空间排列示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
在本发明实施例中,对电感器的磁芯结构进行优化设计,具体是将电感器线圈外的磁芯设计成月牙形结构,以增加电感器的导电线圈缠绕磁芯的有效截面积,进而提高电感器的电感量。
实施例一:
请参考图2,为一种实施例中电感器的磁芯结构示意图,电感器包括相同的第一磁芯柱30和第二磁芯柱40,相同的第一磁芯瓣10和第二磁芯瓣20。第一磁芯瓣10和第二磁芯瓣20都具有相对的两个侧面,以及相接的底面和圆弧面。第一磁芯柱30和第二磁芯柱40都缠绕有导电线圈。其中,第一磁芯柱30所缠绕的导电线圈的一端作为电感器的一个端子,第一磁芯柱30所缠绕的导电线圈的另一端与第二磁芯柱40所缠绕的导电线圈的一端连接,第一磁芯柱30所缠绕的导电线圈的另一端作为电感器的另一个端子。第一磁芯瓣10和第二磁芯瓣20以底面相对的方式设置,第一磁芯柱30和第二磁芯柱40并排设置于第一磁芯瓣10和第二磁芯瓣20中间,以使得第一磁芯柱30和第二磁芯柱40的端面分别与第一磁芯瓣10和第二磁芯瓣20的底面相接触。一实施例中,第一磁芯柱30和第二磁芯柱40是长方体或圆柱体。一实施例中,第一磁芯瓣10和第二磁芯瓣20的底面与圆弧面之间的边缘倒圆角。一实施例中,第一磁芯柱30和第二磁芯柱40的边缘倒圆角。其中,倒圆角的半径为第一磁芯柱30和第二磁芯柱40的外圆半径的十分之一至五分之一。一实施例中,第一磁芯柱30和第二磁芯柱40的端面略小于第一磁芯瓣10和第二磁芯瓣20的底面的一半。
如图3所示,为一实施例中电感器磁芯瓣的气隙设置示意图,第一磁芯瓣10和/或第二磁芯瓣20内可设置磁芯瓣气隙11。一实施例中, 磁芯瓣气隙11设置在第一磁芯瓣10和/或第二磁芯瓣20的中轴面上。一实施例中,磁芯瓣气隙11设置在第一磁芯瓣10和/或第二磁芯瓣20的三等分截面上。一实施例中,磁芯瓣气隙11设置在第一磁芯瓣10和/或第二磁芯瓣20的四等分截面上。另外,第一磁芯瓣10和第二磁芯瓣20的磁芯瓣气隙11的设置可以相同也可以不相同。其中,不相同可以是第一磁芯瓣10设置磁芯瓣气隙11,第二磁芯瓣20不设置磁芯瓣气隙11;或,第一磁芯瓣10和第二磁芯瓣20各自的磁芯瓣气隙11设置位置不同,及第一磁芯瓣10和第二磁芯瓣20各自的磁芯瓣气隙11设置个数不同。一实施例中,第一磁芯瓣10和/或第二磁芯瓣20内的磁芯瓣气隙11所在平面与第一磁芯瓣10和/或第二磁芯瓣20的底面垂直。
如图4所示,为一实施例中电感器磁芯柱的气隙设置示意图,第一磁芯柱30和/或第二磁芯40柱内可设置磁芯柱气隙31。一实施例中,磁芯柱气隙31设置在第一磁芯柱30和/或第二磁芯柱40的中轴面上。一实施例中,磁芯柱气隙31设置在第一磁芯柱30和/或第二磁芯柱40的三等分截面上。一实施例中,磁芯柱气隙31设置在第一磁芯柱30和/或第二磁芯柱40的四等分截面上。另外,第一磁芯柱30和/或第二磁芯柱40的磁芯柱气隙31的设置可以相同也可以不相同。其中,不相同可以是第一磁芯柱30设置磁芯柱气隙31,第二磁芯柱40不设置磁芯柱气隙31;或,第一磁芯柱30和/或第二磁芯柱40各自的磁芯柱气隙31设置位置不同,及第一磁芯柱30和/或第二磁芯柱40各自的磁芯柱气隙31设置个数不同。
进一步,磁芯柱气隙和磁芯瓣气隙处放入非导磁性物质,以调节本申请公开的电感器所需的磁路磁阻,从而获取需要的电感量及两个线圈间耦合系数的要求。另外,第一磁芯瓣和/或第二磁芯瓣被气隙分成的多个部份可采用不同的材质,第一磁芯柱和/或第二磁芯柱被气隙分成的多个部份可采用不同的材质。即,被气隙切割的不同磁芯块即可以采用相同材质,也可以采用不同的材质,以调节本申请公开的电感器所需的磁路磁阻。
如图5所示,为本申请公开的电感器与环形电感器的比较示意图,本申请公开的电感器的磁芯包括相同的第一磁芯柱30和第二磁芯柱40,相同的第一磁芯瓣10和第二磁芯瓣20。第一磁芯瓣10和第二磁芯瓣20的圆弧面轴对称。第一磁芯柱30和第二磁芯柱40上各自缠绕导电线圈 70。缠绕导电线圈70的第一磁芯柱30和第二磁芯柱40横截面大于环形磁芯80的截面。本申请公开的电感器的磁芯的总体积大于环形电感器的磁芯的体积。本申请公开的电感器的外形尺寸,在第一磁芯瓣10和第二磁芯瓣20方向上与环形传感器90相同,而在第一磁芯柱30和第二磁芯柱40的方向上的尺寸小于环形传感器90。一实施例中,导电线圈70是扁平线立绕线圈。一实施例中,第一磁芯柱30、第二磁芯柱40、第一磁芯瓣10和第二磁芯瓣20的材质是镍锌铁氧体或锰锌铁氧体、镁锌铁氧体等铁氧体。
如图6和图7所示,为一实施例中电感器的立体结构示意图和分体结构示意图,包括第一磁芯瓣10、第二磁芯瓣20和导电线圈70。导电线圈70包括第一线圈71和第二线圈72。第一线圈71缠绕第一磁芯柱30。第二线圈72缠绕第二磁芯柱40。第一线圈71包括第一端子711和第二端子712。第二线圈72包括第三端子721和第四端子722。
一实施例中,第一线圈71和第二线圈72为长方形扁铜线立绕线圈,第一线圈71和第二线圈72分别缠绕第一磁芯柱30和第二磁芯柱40的方向相同。
如图8所示,为一实施例中电感器的端子连接示意图,第一线圈71的第二端子712作为电感器的一个端子1,第一线71的第一端子712和第二线圈72的第三端子721连接,第二线圈72的第四端子722作为电感器的另一个端子。对于单个线圈71,其电感量为:
Figure PCTCN2019075148-appb-000001
其中,V为第一线圈71的两端的电压,Ls为第一线圈71的自感,M为第一线圈71和第二线圈72间的磁耦合形成的互感,∮为两个电感线圈内通入电流在磁路中所产生的磁通,I 1和I 2则分别为流经这两个线圈内部的电流。
当第一线圈71的第一端子712和第二线圈72的第三端子721连接时,这两个电流值相同,则单个线圈的两端的电压可以表示如下:
Figure PCTCN2019075148-appb-000002
其中,V为第一线圈71的两端的电压,Ls为第一线圈71的自感,M为第一线圈71和第二线圈72间的磁耦合形成的互感,∮为两个电感线 圈内通入电流在磁路中所产生的磁通,I 1和I 2则分别为流经这两个线圈内部的电流。
由上可得,单个线圈第一线圈71的电感量为:
L=Ls+M,
其中,L为电感量,Ls为第一线圈71的自感,M为第一线圈71和第二线圈72间的磁耦合形成的互感。
则,第一线圈71和第二线圈72串联的总电感为:
L=2(Ls+M),
其中,L为电感器的总电感量,Ls为第一线圈71或第二线圈的自感,M为第一线圈71和第二线圈72间的磁耦合形成的互感。
环形磁芯的环形电感器的电感为:
L=(K*O*s*N 2S)/l,
其中,L为环形电感器的电感,K为系数,取决于线圈的半径与长度的比值,l为线圈的长度,S线圈的截面积,N 2为线圈圈数的平方,S为线圈内部磁芯的相对磁导率,O为真空磁导率。在导电线圈的导线材质粗细相同、绕组匝数相同和电感器外沿尺寸相同的条件下,环形电感器的电感为:
L=2Ls,
其中,Ls为第一线圈71或第二线圈72的自感,因环形电感器的线圈长度为第一线圈71和第二线圈72的和。
由上可知,在导电线圈的导线材质粗细相同、绕组匝数相同和电感器外沿尺寸相同的条件下,本申请公开的电感器的电感量大于环形电感器的电感量。
一实施例中,本申请公开的电感器的第一线圈71和第二线圈72不进行短路连接,形成两个线圈的耦合电感,这样的电感更加适用例如逆变器单相交流输出滤波电感的场合,每个线圈作为一个相线上的滤波电感使用。
一实施例中,针对交错并联的PFC电路、交错并联的Boost升压电路等各种需要2个电感交错工作电路,本申请公开的电感器的耦合电感可以作为两个电感交错并联的耦合形态进行使用,使用中电感的一侧进行短路作为交错并联的公共输入极(如将1、4极连接作为公共输入)、两个线圈的两外2极分别接入交错并联的2个电气回路,形成交错并联 双耦合电感的实施形态。
本申请公开的电感器的两个电感线圈绕线方向完全相同,构成电气上相同的磁通流动方向,两个电感线圈也可以采用相反方向绕线,对角短路方式,同样构成相同方向的磁通,效果相同。
进一步,本申请公开的电感器将扁平立绕线圈整齐排列中置,两侧的磁芯瓣的圆弧面位于等同大小的环形电感器的外圆轮廓上,因此本申请公开的电感器的磁芯的有效截面积显著变大,线圈的空间占有率大幅提升,使得本申请公开的电感器的线圈与磁芯的空间利用率大幅上升,远远超过环形立绕电感器磁芯材料与绕组线圈的空间利用率。具体是,在导电线圈的导线材质粗细相同、绕组匝数相同和电感器外沿尺寸相同的条件下,本申请公开的电感器的第一线圈71和第二线圈72缠绕的磁芯体积也要大于环形电感器的磁芯的体积,因此,本申请公开的电感器的电感量也大于环形电感器的电感量。
本申请公开的电感器与环形磁芯构成的圆形磁路不同。一实施例中,磁路由2块月牙形两侧非绕线磁芯,与2块长方形绕线磁芯,组合成口字形磁路结构,而且月牙形的磁芯的圆弧面形的外侧边界,构成本申请公开的电感器的最大边界尺寸。与环形立绕电感器尺寸相比,对于相同大小的环形立绕电感器的外径尺寸,为了保证本申请公开的电感器的线圈内部的磁芯截面积大于环形立绕电感器内部的圆环磁芯有效截面积,上下两个方形磁芯柱外部绕制而成的扁铜线立绕线圈,在组装成本发明的电感器后,其两线圈的对角线长度L,不超过由两块月牙形磁芯所形成的圆弧轮廓的直径长度D的1.2倍。一实施例中,对于导电线圈绕组的铜线的相同截面积,构成本申请公开的电感器的上下两个线圈电气上串联使用,从而得到远大于相同立绕导线截面积下,环形立绕电感器的电感量。同时,在上述条件下,如采用相同的磁芯材料,本申请公开的电感器在电流直流偏置状态下,其电感量也大于环形立绕电感器的直流偏置电感量,并且如采用的磁芯材料不同,由于本申请公开的电感器的磁芯有效面积的增加,新型电感器中的磁性材料,即便使用了直流偏置特性差、易饱和的磁性材料,也可以替代采用直流偏置特性好的材料构成的环形立绕电感器,可以保持其电气参数基本维持不变。
本申请公开的电感器对同样尺寸的环形立绕电感器的物理空间替代,以达到取得更大电感量为目的,同样原理,本发明可以通过保持与相同 大小的环形立绕电感相同的电感量能力,减少线圈总匝数,用更粗截面积的导线进行绕组,可以获得相同电感量更大功率密度的电感器的实施形态。
进一步,本申请公开的电感器虽为针对同样尺寸的环形立绕电感的物理空间的替代,使得本申请公开的电感器的尺寸尽量接近圆形,为了进一步提升本申请公开的电感器的电感量,可以进一步拉长线圈内部磁芯柱的长度,使线圈能够得到更多的绕线空间,从而获得更多的线圈匝数,取得更大的电感量,此时近似圆形的新型电感,成为呈现近似椭圆形的新的实施形态,该实施形态下,特别是针对多个电感并行安装排布时,如图9所示,为一实施例中椭圆形电感器与环形电感器空间排列示意图,本申请公开的椭圆形实施形态的电感器可以进一步提升电感安装的空间利用率。
本申请公开一种电感器,包括相同的第一磁芯柱和第二磁芯柱,相同的第一磁芯瓣和第二磁芯瓣。由于对电感器的磁芯结构进行优化设计,具体通过对磁芯材料形状、绕线结构的优化设计,在相同线圈导线粗细、相同绕组匝数,对于与环形立绕电感相同的圆形电感外尺寸条件下,使磁芯材料的有效截面积显著增大。由于构成磁通回路的有效截面积的显著增加,对于相同磁芯材料的电感,其电感量实现了随同其磁芯材料有效截面积的等比例增大,也就是说,在等同于原来的环形立绕电感器的相同的体积形状内,即便使用同原来的环形立绕电感器一样尺寸的扁平铜线的截面积,通过优化磁路的形状路径、电感器磁路不同部位的磁芯形状和尺寸,使本申请公开的电感器的电感量能力明显增加。因本申请公开的电感器的磁芯是分体结构,因此便于电感器的大批量生产,进而降低生产成本。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (23)

  1. 一种电感器,其特征在于,包括相同的第一磁芯柱和第二磁芯柱,相同的第一磁芯瓣和第二磁芯瓣;
    所述第一磁芯瓣和所述第二磁芯瓣分别具有相对的两个侧面,以及相接的底面和圆弧面;
    所述第一磁芯柱和所述第二磁芯柱都缠绕有导电线圈;其中所述第一磁芯柱所缠绕的导电线圈的一端作为电感器的一个端子,所述第一磁芯柱所缠绕的导电线圈的另一端与所述第二磁芯柱所缠绕的导电线圈的一端连接,所述第一磁芯柱所缠绕的导电线圈的另一端作为电感器的另一个端子;
    所述第一磁芯瓣和所述第二磁芯瓣以底面相对的方式设置,所述第一磁芯柱和所述第二磁芯柱并排设置于所述第一磁芯瓣和所述第二磁芯瓣中间,以使得所述第一磁芯柱和所述第二磁芯柱的端面分别与所述第一磁芯瓣和所述第二磁芯瓣的底面相接触。
  2. 如权利要求1所述的电感器,其特征在于,所述第一磁芯柱和/或所述第二磁芯柱是长方体或圆柱体。
  3. 如权利要求1所述的电感器,其特征在于,所述第一磁芯柱和/或所述第二磁芯柱的外边缘倒圆角。
  4. 如权利要求3所述的电感器,其特征在于,所述倒圆角的半径为所述第一磁芯柱和/或所述第二磁芯柱的外圆半径的十分之一至五分之一。
  5. 如权利要求1所述的电感器,其特征在于,所述第一磁芯瓣和所述第二磁芯瓣的底面与圆弧面之间的边缘倒圆角。
  6. 如权利要求1所述的电感器,其特征在于,所述第一磁芯柱和所述第二磁芯柱的端面略小于所述第一磁芯瓣和所述第二磁芯瓣的底面的一半。
  7. 如权利要求1所述的电感器,其特征在于,所述第一磁芯瓣和所述第二磁芯瓣内至少设置一个气隙;和/或,所述第一磁芯柱和所述第二磁芯柱内至少设置一个气隙。
  8. 如权利要求7所述的电感器,其特征在于,所述第一磁芯瓣和/或所述第二磁芯瓣内的气隙所在平面与所述第一磁芯瓣和所述第二磁芯瓣的底面垂直。
  9. 如权利要求7所述的电感器,其特征在于,所述第一磁芯瓣和/或所述第二磁芯瓣内的气隙设置在所述第一磁芯瓣和/或所述第二磁芯瓣的中轴面上。
  10. 如权利要求7所述的电感器,其特征在于,所述第一磁芯瓣的气隙位置与所述第二磁芯瓣的气隙位置不同。
  11. 如权利要求7所述的电感器,其特征在于,所述第一磁芯瓣的气隙的数量与所述第二磁芯瓣的气隙的数量不同。
  12. 如权利要求7所述的电感器,其特征在于,所述第一磁芯柱和/或所述第二磁芯柱内的气隙设置在所述第一磁芯柱和/或所述第二磁芯柱的中轴面上。
  13. 如权利要求7所述的电感器,其特征在于,所述第一磁芯柱的气隙位置与所述第二磁芯柱的气隙位置不同。
  14. 如权利要求7所述的电感器,其特征在于,所述第一磁芯柱的气隙的数量与所述第二磁芯柱的气隙的数量不同。
  15. 如权利要求7所述的电感器,其特征在于,所述第一磁芯瓣和/或所述第二磁芯瓣被气隙分成的多个部份可采用不同的材质。
  16. 如权利要求7所述的电感器,其特征在于,所述第一磁芯柱和/或所述第二磁芯柱被气隙分成的多个部份可采用不同的材质。
  17. 如权利要求1所述的电感器,其特征在于,缠绕所述第一磁芯柱的导电线圈是第一线圈;缠绕所述第二磁芯柱的导电线圈是第二线圈;所述第一线圈和所述第二线圈的缠绕方向相同;
    或,
    所述第一线圈和所述第二线圈的缠绕方向相反。
  18. 如权利要求17所述的电感器,其特征在于,所述第一线圈包括第一端点和第二端点;所述第二线圈包括第三端点和第四端点;
    所述第一端点与所述第三端点和/或所述第四端点连接;
    或,
    所述第二端点与所述第三端点和/或所述第四端点连接。
  19. 如权利要求1所述的电感器,其特征在于,所述导电线圈是方形线圈。
  20. 如权利要求1所述的电感器,其特征在于,所述导电线圈是扁平线立绕线圈。
  21. 如权利要求1所述的电感器,其特征在于,所述电感器的磁芯是铁氧体,包括镍锌铁氧体或锰锌铁氧体、镁锌铁氧体中至少一种。
  22. 如权利要求1所述的电感器,其特征在于,在所述电感器的中轴面上,所述导电线圈外沿的最远距离不大于所述第一磁芯瓣和所述第二磁芯瓣的圆弧面之间的最远距离。
  23. 如权利要求1所述的电感器,其特征在于,在所述电感器的中轴面上,所述第一磁芯瓣和所述第二磁芯瓣的圆弧面之间的最远距离为所述导电线圈外沿的最远距离的1.2倍。
PCT/CN2019/075148 2019-02-15 2019-02-15 一种电感器 WO2020164084A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075148 WO2020164084A1 (zh) 2019-02-15 2019-02-15 一种电感器
US17/427,907 US20220108823A1 (en) 2019-02-15 2019-02-15 Inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075148 WO2020164084A1 (zh) 2019-02-15 2019-02-15 一种电感器

Publications (1)

Publication Number Publication Date
WO2020164084A1 true WO2020164084A1 (zh) 2020-08-20

Family

ID=72044170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075148 WO2020164084A1 (zh) 2019-02-15 2019-02-15 一种电感器

Country Status (2)

Country Link
US (1) US20220108823A1 (zh)
WO (1) WO2020164084A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264164B2 (en) 2019-11-18 2022-03-01 Ford Global Technologies, Llc Cooling system for an inductor in a power supply device of a hybrid/electric vehicle
CN116230366A (zh) * 2022-12-12 2023-06-06 禧荣电器(深圳)有限公司 磁芯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517667A (zh) * 2006-09-19 2009-08-26 丰田自动车株式会社 电抗器的铁心以及电抗器
CN201689757U (zh) * 2009-12-03 2010-12-29 北京动力源科技股份有限公司 一种电感器
WO2011132361A1 (ja) * 2010-04-23 2011-10-27 住友電装株式会社 リアクトル
CN102576600A (zh) * 2009-10-29 2012-07-11 住友电气工业株式会社 电抗器
CN104303246A (zh) * 2012-02-24 2015-01-21 住友电气工业株式会社 电抗器、用于电抗器的芯部件、转换器以及电力变换装置
CN104332276A (zh) * 2014-10-28 2015-02-04 田村(中国)企业管理有限公司 多层立绕式电感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517667A (zh) * 2006-09-19 2009-08-26 丰田自动车株式会社 电抗器的铁心以及电抗器
CN102576600A (zh) * 2009-10-29 2012-07-11 住友电气工业株式会社 电抗器
CN201689757U (zh) * 2009-12-03 2010-12-29 北京动力源科技股份有限公司 一种电感器
WO2011132361A1 (ja) * 2010-04-23 2011-10-27 住友電装株式会社 リアクトル
CN104303246A (zh) * 2012-02-24 2015-01-21 住友电气工业株式会社 电抗器、用于电抗器的芯部件、转换器以及电力变换装置
CN104332276A (zh) * 2014-10-28 2015-02-04 田村(中国)企业管理有限公司 多层立绕式电感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264164B2 (en) 2019-11-18 2022-03-01 Ford Global Technologies, Llc Cooling system for an inductor in a power supply device of a hybrid/electric vehicle
CN116230366A (zh) * 2022-12-12 2023-06-06 禧荣电器(深圳)有限公司 磁芯

Also Published As

Publication number Publication date
US20220108823A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Yang et al. Design of “EIE” SHAPE coupling inductors and its application in interleaved LLC resonant converter
JP4800451B1 (ja) 高周波トランス
US9224530B2 (en) Power supply apparatus
US9613745B2 (en) Adjustable integrated combined common mode and differential mode three phase inductors and methods of manufacture and use thereof
CN112700961A (zh) 用于降低耦合电感的工频磁通密度的电感绕制方法和低工频磁通密度的耦合电感
JP3614816B2 (ja) 磁性素子およびそれを用いた電源
CN110212784B (zh) 一种用于单相三电平交直流谐振变换器的无源元件集成装置
CN209418265U (zh) 一种电感器
WO2020164084A1 (zh) 一种电感器
CN215988364U (zh) 一种超宽频紧凑型变压器
CN207503796U (zh) 一种共差模磁集成电感
CN116598102A (zh) 使用叠片带材制备的电感器和电子设备
TWM446964U (zh) 邊繞式的繞線變壓器
CN109686539A (zh) 一种电感器
CN213400745U (zh) 一种磁芯、磁集成器件及其线路板、家用电器
CN210743711U (zh) 共模电感结构
CN202996537U (zh) 边绕式的绕线变压器
CN209357573U (zh) 三相电抗器的电感平衡磁芯及三相电抗器
CN218100913U (zh) 一种功率电感结构
CN220156406U (zh) 三相llc谐振电路和谐振变换器
CN215377153U (zh) 一种具有异形压粉磁心的电感
CN210325400U (zh) 一种圆形横截面磁环及θ型圆形横截面磁环电感器
CN103680867A (zh) 边绕式的绕线变压器及其绕线方法
CN109326420B (zh) 三相电抗器的电感平衡磁芯及三相电抗器
CN215600217U (zh) 一种电感结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915386

Country of ref document: EP

Kind code of ref document: A1