WO2015180257A1 - 移动通讯终端及移动通讯终端的信号发射方法 - Google Patents

移动通讯终端及移动通讯终端的信号发射方法 Download PDF

Info

Publication number
WO2015180257A1
WO2015180257A1 PCT/CN2014/083295 CN2014083295W WO2015180257A1 WO 2015180257 A1 WO2015180257 A1 WO 2015180257A1 CN 2014083295 W CN2014083295 W CN 2014083295W WO 2015180257 A1 WO2015180257 A1 WO 2015180257A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
antenna module
transmission
signal output
Prior art date
Application number
PCT/CN2014/083295
Other languages
English (en)
French (fr)
Inventor
程守刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14892928.4A priority Critical patent/EP3139670B1/en
Priority to US15/314,229 priority patent/US10165520B2/en
Priority to ES14892928T priority patent/ES2700287T3/es
Priority to CA2950324A priority patent/CA2950324C/en
Publication of WO2015180257A1 publication Critical patent/WO2015180257A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0825Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with main and with auxiliary or diversity antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a mobile communication terminal and a signal transmission method of a mobile communication terminal. Background technique
  • the mobile communication terminal Due to the technical limitations of the antenna size, the complicated use environment, and the environmental factors such as imperfect network coverage, the mobile communication terminal often encounters problems of poor communication and communication quality. With the construction of 4G networks, the same mobile communication terminal needs to support multiple frequency bands of 2G, 3G, 4G, wifi, Bluetooth, etc. at the same time. At this point, the antenna performance is very difficult to achieve, so that the problem of communication quality will be more prominent. How to improve call performance and communication quality in a limited mobile phone space is an eternal pursuit of antenna design engineers and RF engineers. Those skilled in the art are aware that communication between the mobile communication terminal and the base station is accomplished through data interaction between the uplink and downlink.
  • the downlink generally refers to a base station transmitting a signal, and the mobile communication terminal receives.
  • the uplink generally refers to the mobile phone transmitting signals, and the base station receives.
  • the impact of the downlink uplink on communication quality is critical. It has been found that a considerable number of call blocking problems are caused by the excessive transmission loss of the uplink signal transmitted by the mobile phone and cannot be correctly demodulated by the base station. Summary of the invention
  • the main purpose of the embodiment of the present invention is to reduce the signal loss transmitted by the mobile communication terminal to the base station, thereby improving the call quality of the mobile communication terminal.
  • an embodiment of the present invention provides a mobile communication terminal, where the mobile communication terminal includes a signal output module, a main antenna module, a diversity antenna module, an acquisition module, a control module, and a radio frequency switching module.
  • the radio frequency switching module includes a common end, a controlled end, a first connecting end, and a second connecting end
  • the acquiring module includes a first signal acquiring end, a second signal acquiring end, a third signal acquiring end, and an acquiring signal.
  • the output end is connected to the output signal output end of the signal output module, the controlled end is connected to the control signal output end of the control module, and the first connection end is connected to the main antenna module
  • the second connection end is connected to the diversity antenna module; a signal acquisition end is connected to the transmit power output end of the signal output module, the second signal acquisition end is connected to the main antenna module, and the third signal acquisition end is connected to the diversity antenna module, and the acquiring The signal output end is connected to the signal receiving end of the control module;
  • the acquiring module is configured to acquire a transmit power P1 of the transmit signal when the signal output module generates a transmit signal and transmit the signal through the primary antenna module, and acquire the location when the transmit power P1 is greater than the first preset value.
  • the control module outputs a corresponding control signal to the radio frequency switching module according to the transmission capability of the main antenna module and the diversity antenna module;
  • the radio frequency switching module controls the signal output module to be connected to the main antenna module or the diversity antenna module according to the control signal.
  • the transmission capabilities of the primary antenna module and the diversity antenna module include received signal quality and received signal strength.
  • control module includes an average value acquisition unit, a determination unit, and a control signal output unit, where
  • the average value obtaining unit acquires an average value of the received signal quality of the main antenna module, an average value of the received signal strength of the main antenna module, an average value of the received signal quality of the diversity antenna module, and an average value of the received signal strength of the diversity antenna module.
  • the determining unit is configured to determine whether B1 is greater than A1;
  • the obtaining module is further configured to: when the B1 is less than or equal to A1, perform the operation of the signal output module generating the transmit power P1 of the transmit signal when the signal output module generates the transmit signal and transmits the signal through the main antenna module;
  • the determining unit is further configured to determine whether the difference between B2 and A2 is greater than or equal to a second preset value when B1 is greater than A1;
  • the control signal output unit is configured to, when the determining unit determines that the difference between B2 and A2 is greater than or equal to the second preset value, output a corresponding control signal, and control the radio frequency switching module to perform the connection state switching of the signal output module Processing to connect the signal output module to the diversity antenna module;
  • the acquiring module is further configured to: when the determining unit determines that the difference between B2 and A2 is less than a second preset value, when the signal output module generates a transmission signal and performs signal transmission through the main antenna module, acquiring the signal output The module generates an operation of transmitting power P1 of the transmitted signal.
  • the acquiring module is further configured to: when the signal output module generates a transmission signal and transmits the signal through the diversity antenna module, the transmission power of the transmission signal is ⁇ 2;
  • the determining unit is further configured to determine whether ⁇ 2 is greater than P1;
  • the acquiring module is further configured to: when the transmit power ⁇ 2 is less than or equal to P1, perform an operation of acquiring a transmit power ⁇ 2 of the transmit signal when the signal output module generates a transmit signal and transmits the signal through the diversity antenna module;
  • the control signal output module is further configured to output a corresponding control signal to the radio frequency switching module when the transmit power ⁇ 2 is greater than P1 to control the signal output module to be connected to the main antenna module.
  • control signal output module is further configured to output a corresponding control signal to the radio frequency switching module when the transmit power ⁇ 2 is greater than P1, to increase the connection between the signal output module and the main antenna module.
  • the second preset value is large.
  • the signal output module When the signal output module generates a transmission signal and performs signal transmission through the main antenna module, acquiring a transmission power P1 of the signal output module to generate a transmission signal;
  • the ability of the primary antenna module and the diversity antenna module to transmit signals includes received signal strength and received signal quality.
  • the step of connecting the diversity antenna module specifically includes:
  • the switching module performs a connection state switching process of the signal output module to connect the signal output module to the diversity antenna module;
  • the step of obtaining the transmit power P1 of the transmit signal generated by the signal output module when the signal output module transmits the signal through the main antenna module is returned.
  • the method further includes:
  • a corresponding control signal is output to the radio frequency switching module to control the signal output module to be connected to the main antenna module.
  • the corresponding control signal is outputted to the radio frequency switching module to increase the second preset value when the signal output module is connected to the main antenna module.
  • the acquisition module acquires the transmit power of the transmitted signal.
  • the acquiring module acquires the transmission capability of the primary antenna module and the diversity antenna module.
  • the control module analyzes the transmission capabilities of the primary antenna module and the diversity antenna module.
  • the diversity antenna module has better transmission capacity than the main antenna module
  • the control module outputs a control signal to the radio frequency switching module, so that the signal output module is connected to the diversity antenna module with better transmission capability, so that the transmission signal can be transmitted through a better transmission link, thereby reducing the movement.
  • the loss of the communication terminal transmitting the signal to the base station improves the call quality of the mobile communication terminal.
  • the loss of the transmitting link is reduced, and the transmitting power of the transmitted signal is correspondingly reduced, thereby saving energy loss for the mobile communication terminal for transmission and prolonging the life time of the mobile communication terminal.
  • FIG. 1 is a schematic block diagram of a mobile communication terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a module of the control module of FIG. 1;
  • FIG. 3 is a schematic flowchart of a signal transmission method of a mobile communication terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another embodiment of a signal transmission method of a mobile communication terminal according to the present invention
  • Method flow diagram of still another embodiment The implementation, functional features, and advantages of the present invention will be further described with reference to the accompanying drawings. Preferred embodiment of the invention
  • FIG. 1 is a schematic diagram of a module of a mobile communication terminal according to an embodiment of the present invention.
  • the mobile communication terminal provided by the embodiment includes a signal output module 1, a main antenna module 2, a diversity antenna module 3, an acquisition module 4, a control module 5, and a radio frequency switching module 6.
  • the acquisition module 4 includes a first signal acquisition end, a second signal acquisition end, a third signal acquisition end, and an acquisition signal output end.
  • the radio frequency switching module 6 includes a common end, a controlled end, a first connection end, and a second connection end.
  • the common end is connected to the output signal output end of the signal output module 1, and the controlled end is connected to the control signal output end of the control module 5.
  • the first connection end is connected to the main antenna module 2, and the second connection end is connected to the diversity antenna module 3.
  • the first signal acquisition end is connected to the transmit power output end of the signal output module 1, the second signal acquisition end is connected to the main antenna module 2, and the third signal acquisition end is connected to the diversity antenna module 3, and the signal output end and the control module 5 are obtained.
  • the signal receiving end is connected.
  • the signal output module 1 generates a transmission signal after establishing a communication link with the base station. Since the communication uplink of the mobile communication terminal and the base station uses closed loop power control, the base station outputs a control command according to the received transmission signal to request the mobile communication terminal to increase or decrease the transmission power. It should be noted that when the signal transmission loss between the mobile communication terminal and the base station is large, the transmission power of the transmission signal received by the base station is small. At this time, the base station outputs a control command requesting the mobile communication terminal to increase the transmission power. Then the mobile communication terminal increases the transmission power when the next transmission signal. The greater the transmission power of the mobile communication terminal, the greater the transmission link loss between the mobile communication terminal and the base station.
  • the transmission power of the mobile communication terminal is the transmission power of the transmission signal generated by the signal output module 1.
  • the main antenna module 2 and the diversity antenna module 3 cover the receiving frequency and the transmitting frequency of the mobile communication terminal.
  • the main antenna module 2 is a main receiving and transmitting signal channel of the mobile communication terminal.
  • the diversity antenna module 3 is a second receiving channel and a spare transmitting channel. It should be noted that when the mobile communication terminal establishes a communication link with the base station, the signal output module 1 is connected to the main antenna module 2, and performs signal transmission through the main antenna module 2. When the main antenna module 2 cannot transmit a signal or the loss of the transmitted signal is large, the signal output module 1 is connected to the diversity antenna module 3, and transmits a signal to the base station through the diversity antenna module 3.
  • the obtaining module 4 is configured to acquire the transmit power P1 of the transmit signal when the signal output module 1 generates the transmit signal and transmit the signal through the primary antenna module 2, and acquire the primary antenna module 2 when the transmit power P1 is greater than the first preset value. And the transmission capability of the diversity antenna module 3.
  • the acquisition module 4 acquires the transmission power P1 of the transmission signal.
  • the acquisition module 4 acquires the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3 when the transmission power PI is greater than the first predetermined value. It should be noted that the first preset value can be set according to actual conditions.
  • the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3 include received signal quality and received signal strength.
  • the obtaining module 4 obtains the transmission capability of the main antenna module 2 by acquiring the received signal strength and the received signal quality of the main antenna module 2.
  • the acquisition module 4 obtains the transmission capability of the diversity antenna module 3 by acquiring the received signal strength and the received signal quality of the diversity antenna module 3.
  • the control module 5 outputs a corresponding control signal to the radio frequency switching module 6 according to the transmission capabilities of the main antenna module 2 and the diversity antenna module 3.
  • the control module 5 receives the transmission capability of the primary antenna module 2 output by the acquisition module 4 and the transmission capability of the diversity antenna module 3, and analyzes the received transmission capability.
  • the control module 5 analyzes that the transmission capability of the primary antenna module 2 is better than the transmission capability of the diversity antenna module 3, the control module 5 outputs the first control signal to the radio frequency switching module 6.
  • the control module 5 analyzes that the transmission capability of the diversity antenna module 3 is better than the transmission capability of the primary antenna module 2, the control module 5 outputs a second control signal to the radio frequency switching module 6.
  • the RF switching module 6 controls the output module 1 to be connected to the main antenna module 2 or the diversity antenna module 3 according to the control signal.
  • the radio frequency switching module 6 is configured to receive the control signal output by the control module 5, and switch the connection state of the signal output module 1 according to the received control signal.
  • the connection state of the signal output module 1 includes: the signal output module 1 is connected to the main antenna module 2, and the signal output module 1 is connected to the diversity antenna module 3.
  • the radio frequency switching module 6 receives the first control signal output by the control module 5, the radio frequency switching module 6 controls the signal output module 1 to be connected to the main antenna module 2.
  • the RF switching module 6 receives the second control signal output by the control module 5, the RF switching module 6 controls the signal output module 1 to be connected to the diversity antenna module 3.
  • the radio frequency switch can be a duplexer or a double throw switch or the like.
  • a radio frequency switching module 6 When the signal output module 1 is connected to the main antenna module 2 and transmits a signal through the main antenna module 2, the acquisition module 4 acquires the transmission power P1 of the transmission signal. When the transmit power PI is greater than the first preset value, the acquisition module 4 acquires the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3. The control module 5 analyzes the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3.
  • FIG. 2 is a schematic diagram of a module of the control module of FIG. 1.
  • the control module 5 includes an average value acquisition unit 51, a determination unit 52, and a control signal output unit 53, wherein:
  • the average value obtaining unit 51 obtains an average value A1 of the received signal quality of the primary antenna module 2, an average value A2 of the received signal strength of the primary antenna module 2, an average value B1 of the received signal quality of the diversity antenna module 3, and a received signal strength of the diversity antenna module 3.
  • the determining unit 52 is configured to determine whether B1 is greater than A1;
  • the obtaining module 4 is further configured to perform an operation of acquiring the transmitting power P1 of the transmitting signal when the signal output module 1 generates a transmitting signal and transmits the signal through the main antenna module 2 when B1 is less than or equal to A1;
  • the determining unit 52 is further configured to determine whether the difference between B2 and A2 is greater than or equal to the second preset value D when B1 is greater than A1;
  • the control signal output unit 53 is configured to, when the determining unit 52 determines that the difference between B2 and A2 is greater than or equal to the second preset value D, output a corresponding control signal, and control the radio frequency switching module 6 to perform a connection state switching process of the signal output module 1 , so that the signal output module 1 is connected to the diversity antenna module 3;
  • the obtaining module 4 is further configured to: when the determining unit 52 determines that the difference between B2 and A2 is less than the second preset value D, perform the signal output module when the signal output module 1 generates the transmitting signal and transmits the signal through the main antenna module 2 1 An operation of generating a transmission power P1 of a transmission signal.
  • the control module 5 enters an operation of analyzing the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3, and specifically determines which of the received signal strength and the received signal quality of the primary antenna module 2 and the diversity antenna module 3 is optimal. .
  • the control signal output unit 53 When the received signal strength and the received signal quality of the diversity antenna module 3 are both superior to the received signal strength and the received signal quality of the primary antenna module 2, the control signal output unit 53 outputs a corresponding control signal to the RF switching module 6, so that the signal output module 1 It is connected with the diversity antenna module 3 with better transmission capability, thereby reducing the loss of the transmitted signal and improving the call quality of the mobile communication terminal.
  • the loss of the transmitting link is reduced, and the transmitting power of the transmitted signal is correspondingly reduced, thereby saving energy loss for the mobile communication terminal for transmission and prolonging the life time of the mobile communication terminal.
  • the acquisition module 4 is further arranged to acquire the transmission power P2 of the transmitted signal when the signal output module 1 generates a transmission signal and transmits the signal through the diversity antenna module 3.
  • the judging unit 52 is also set to judge whether P2 is greater than P1.
  • the acquisition module 4 is further configured to perform an operation of acquiring the transmission power P2 of the transmission signal when the signal output module 1 generates a transmission signal and transmits the signal through the diversity antenna module 3 when the transmission power P2 is less than or equal to P1.
  • the control signal output module 1 is further configured to output a corresponding control signal to the radio frequency switching module 6 when the transmission power P2 is greater than P1 to connect the control signal output module 1 with the main antenna module 2.
  • the acquisition module 4 acquires the signal output module 1 and transmits the signal through the diversity antenna module 3.
  • the transmit power of the signal is P2. If P2 is greater than P1, it indicates that the loss of the transmit signal of the diversity antenna module 3 is greater than the loss of the transmit signal of the primary antenna module 2.
  • the control signal output unit 53 outputs a control signal to the radio frequency switching module 6 to control the state in which the signal output module 1 is switched back to the main antenna module 2. If P2 is less than or equal to P1, it indicates that the loss of the transmit signal of the diversity antenna module 3 is smaller than the loss of the transmit signal of the main antenna module 2.
  • the signal output module 1 can continue to transmit signals through the diversity antenna module 3.
  • the obtaining module 4 continuously acquires the transmitting power. Once the transmitting power P2 is greater than P1, the switching back to the main antenna module 2 is performed to transmit the signal, so that the optimal transmitting link can be effectively obtained, and the signal loss transmitted by the mobile communication terminal to the base station is reduced.
  • the control signal output module 1 is further configured to output a corresponding control signal to the RF switching module 6 when the transmission power P2 is greater than P1, to increase the second preset value 0 when the control signal output module 1 is connected to the main antenna module 2.
  • the control module 5 detects that the transmission power P2 of the signal transmission module 1 transmitted by the diversity antenna module 3 is greater than the switching.
  • the second preset value D is increased.
  • the second preset value D is increased by one.
  • the second preset value D is used as the check value, and the second preset value D is increased, so that the error of the transmission capability of the main antenna module 2 and the diversity antenna module 3 can be reduced by the next determining unit 52, thereby avoiding the judgment to enter an infinite loop. , improve the accuracy of the transmission capacity judgment.
  • Increasing the second preset value D ensures that the signal of the mobile communication terminal can be transmitted through the optimal transmission link, reducing signal loss and improving the call quality of the mobile communication terminal.
  • Embodiments of the present invention provide a signal transmission method of a mobile communication terminal.
  • FIG. 3 is a schematic flowchart of a method for transmitting a signal of a mobile communication terminal according to an embodiment of the present invention.
  • the signal transmitting method of the mobile communication terminal provided by this embodiment includes the following steps:
  • Step S10 when the signal output module 1 generates a transmission signal and performs signal transmission through the main antenna module 2, the acquisition signal output module 1 generates a transmission power P1 of the transmission signal;
  • Step S20 Acquire transmission capability of the primary antenna module 2 and the diversity antenna module 3 when the transmit power P1 is greater than the first preset value
  • the signal output module 1 generates a transmission signal after establishing a communication link with the base station. Since the communication uplink of the mobile communication terminal and the base station uses closed loop power control, the base station outputs a control command according to the received transmission signal to request the mobile communication terminal to increase or decrease the transmission power. It should be noted that when the signal transmission loss between the mobile communication terminal and the base station is large, the transmission power of the transmission signal received by the base station is small. At this time, the base station outputs a control command requesting the mobile communication terminal to increase the transmission power. Then the mobile communication terminal increases the transmission power when the next transmission signal. The greater the transmission power of the mobile communication terminal, the greater the transmission link loss between the mobile communication terminal and the base station.
  • the transmission power of the mobile communication terminal is the transmission power of the transmission signal generated by the signal output module 1.
  • the main antenna module 2 and the diversity antenna module 3 cover the receiving frequency and the transmitting frequency of the mobile communication terminal.
  • the main antenna module 2 is a main receiving and transmitting signal channel of the mobile communication terminal.
  • the diversity antenna module 3 is a second receiving channel and a spare transmitting channel. It should be noted that when the mobile communication terminal establishes a communication link with the base station, the signal output module 1 is connected to the main antenna module 2, and transmits signals through the main antenna module 2. When the main antenna module 2 cannot transmit a signal or the loss of the transmitted signal is large, the signal output module 1 is connected to the diversity antenna module 3, and transmits a signal to the base station through the diversity antenna module 3.
  • the transmission power P1 of the transmission signal is obtained.
  • the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3 are obtained.
  • the first preset value can be set according to actual conditions.
  • the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3 include received signal quality and received signal strength.
  • Step S30 outputting corresponding control signals according to the transmission capabilities of the main antenna module 2 and the diversity antenna module 3, and controlling the radio frequency switching module 6 to perform connection state switching processing of the signal output module 1 to make the signal output module 1 and the main antenna module 2 or diversity
  • the antenna module 3 is connected.
  • the transmission capability of the primary antenna module 2 and the transmission capability of the diversity antenna module 3 are received, and the received transmission capability is analyzed.
  • the analysis shows that the transmission capability of the primary antenna module 2 is better than the transmission capability of the diversity antenna module 3, the first control signal is output to the radio frequency switching module 6.
  • the second control signal is output to the radio frequency switching module 6.
  • the RF switching module 6 is configured to: receive a control signal, and switch the connection state of the signal output module 1 according to the received control signal.
  • the connection state of the signal output module 1 includes: the signal output module 1 is connected to the main antenna module 2, and the signal output module 1 is connected to the diversity antenna module 3.
  • the radio frequency switching module 6 controls the signal output module 1 to be connected to the main antenna module 2.
  • the radio frequency switching module 6 controls the signal output module 1 to be connected to the diversity antenna module 3.
  • the RF switch can be a duplexer or a double throw switch.
  • the mobile communication terminal acquires the transmission power P1 of the transmission signal when the signal output module 1 is connected to the main antenna module 2 and transmits a signal through the main antenna module 2.
  • the transmission power P1 is greater than the first preset value
  • the transmission capabilities of the primary antenna module 2 and the diversity antenna module 3 are acquired.
  • the corresponding control signals are output according to the transmission capabilities of the main antenna module 2 and the diversity antenna module 3.
  • FIG. 4 is a schematic flowchart diagram of still another embodiment of a signal transmitting method of a mobile communication terminal according to the present invention. Step S30 includes the following steps:
  • Step S301 obtaining an average value A1 of the received signal quality of the primary antenna module 2, an average value A2 of the received signal strength of the primary antenna module 2, an average value B1 of the received signal quality of the diversity antenna module 3, and an average value of the received signal strength of the diversity antenna module 3. B2.
  • Step S302 determining whether B1 is greater than A1; when B1 is less than or equal to A1, returning to step S10;
  • Step S303 when B1 is greater than A1, determining whether the difference between B2 and A2 is greater than or equal to a second preset value D;
  • Step S304 when the difference between B2 and A2 is greater than or equal to the second preset value D, output a corresponding control signal, and control the radio frequency switching module 6 to perform a signal state output module 1 connection state switching process, so that the signal output module 1 and the diversity
  • the antenna module 3 is connected;
  • the signal output module 1 is connected to the main antenna module 2 and transmits signals through the main antenna module 2, if the transmission power P1 of the transmission signal is greater than the first preset value, the loss of the signal transmission link is large.
  • the operation of the transmission capability of the primary antenna module 2 and the diversity antenna module 3 is analyzed, and it is specifically determined which of the received signal strength and the received signal quality of the primary antenna module 2 and the diversity antenna module 3 is optimal.
  • the corresponding control signal is output to the RF switching module 6, so that the signal output module 1 and the transmission capability are better.
  • the diversity antenna module 3 is connected, thereby reducing the loss of the transmitted signal and improving the call quality of the mobile communication terminal.
  • the loss of the transmitting link is reduced, and the transmitting power of the transmitted signal is correspondingly reduced, thereby saving the energy loss for the mobile communication terminal for transmission and prolonging the life time of the mobile communication terminal.
  • 5 is a schematic flowchart of still another embodiment of a signal transmitting method of a mobile communication terminal according to the present invention. After step S304, the method further includes:
  • Step S305 after a preset period of time, acquiring, when the signal output module 1 generates a transmission signal
  • the transmission power of the transmitted signal is P2;
  • Step S306 when the transmit power P2 is less than or equal to P1, returning to perform the step of acquiring the transmit power P2 of the transmit signal when the signal output module 1 generates the transmit signal and transmits the signal through the diversity antenna module 3;
  • Step S307 When the transmit power P2 is greater than P1, output a corresponding control signal to the radio frequency switching module 6 to connect the control signal output module 1 with the main antenna module 2.
  • the signal output module 1 transmits the signal transmitted by the diversity antenna module 3.
  • Power P2 If P2 is greater than PI, it indicates that the loss of the transmit signal of the diversity antenna module 3 is greater than the loss of the transmit signal of the main antenna module 2.
  • the control signal is output to the RF switching module 6, and the control signal output module 1 is switched back to the state connected to the main antenna module 2.
  • P2 is less than or equal to P1, it indicates that the loss of the transmit signal of the diversity antenna module 3 is smaller than the loss of the transmit signal of the main antenna module 2.
  • the signal output module 1 can continue to transmit signals through the diversity antenna module 3. The transmission power is continuously obtained.
  • the main antenna module 2 is switched back to transmit signals, so that the optimal transmission link can be effectively obtained, and the signal loss transmitted by the mobile communication terminal to the base station is reduced.
  • step S307 the second preset value D is increased.
  • the transmission power P2 of the signal transmission module 1 transmitted by the diversity antenna module 3 is greater than the transmission power before the handover.
  • the second preset value D is increased.
  • the second preset value D is increased by one.
  • the second preset value D is used as the check value, and the second preset value D is increased, so that the error of the transmission capability of the main antenna module 2 and the diversity antenna module 3 can be reduced next time, thereby avoiding the judgment to enter an infinite loop and improving The accuracy of the transmission capability judgment.
  • Increasing the second preset value D ensures that the signal of the mobile communication terminal can be transmitted through the optimal transmission link, reducing signal loss and improving the call quality of the mobile communication terminal.
  • the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention, and the equivalent structure or equivalent process transformations made by the present specification and the drawings are directly or indirectly applied to other related technical fields. The same is included in the scope of patent protection of the present invention.
  • One of ordinary skill in the art will appreciate that all or a portion of the above steps may be performed by a program to instruct the associated hardware, such as a read only memory, a magnetic disk, or an optical disk. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
  • the embodiment of the invention enables the transmitted signal to be transmitted through a better transmit link, thereby reducing the loss of the mobile communication terminal transmitting the signal to the base station, improving the call quality of the mobile communication terminal; reducing the loss of the transmit link, transmitting the signal
  • the transmission power is also correspondingly reduced, thereby saving energy loss for the mobile communication terminal for transmission and prolonging the life time of the mobile communication terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种移动通讯终端以及信号发射方法,该移动通讯终端包括信号输出模块、主天线模块、分集天线模块、获取模块、控制模块及射频切换模块。获取模块用于当信号输出模块产生发射信号并通过主天线模块进行信号发射时,获取发射信号的发射功率P1,并在发射功率P1大于第一预设值时,获取主天线模块和分集天线模块的传输能力。控制模块根据主天线模块和分集天线模块的传输能力输出相应的控制信号至射频切换模块。射频切换模块根据控制信号控制输出模块与主天线模块或分集天线模块连接。

Description

移动通讯终端及移动通讯终端的信号发射方法 技术领域
本发明涉及移动通讯领域, 尤其涉及一种移动通讯终端及移动通讯终端 的信号发射方法。 背景技术
移动通讯终端由于天线尺寸小等技术限制, 使用环境复杂, 以及网络覆 盖不完善等环境因素的影响, 从而使得用户常会遇到通话、 通信质量不佳的 问题。随着 4G网络的建设,同一部移动通讯终端上需要同时支持 2G、 3G、 4G、 wifi、 蓝牙等多种制式多种频段。 此时, 天线效能很难做到很好, 以至于通信 质量的问题会比较突出。如何在有限的手机空间上改善通话性能和通信质量, 是天线设计工程师和射频工程师永恒的追求。 本领域技术人员当知, 移动通 讯终端与基站的通讯是通过上下行链路的数据交互来完成。 其中, 下行链路 一般指基站发射信号, 移动通讯终端接收。 上行链路一般是指手机发射信号, 基站接收。 下行上行链路对通信质量的影响都是非常关键的。 经研究发现, 有相当多的通话阻塞问题是由于手机发射的上行信号传播损耗过大而无法被 基站正确解调所致。 发明内容
本发明实施例的主要目的在于降低移动通讯终端传送至基站的信号损 耗, 从而提高移动通讯终端的通话质量。
为了实现上述目的, 本发明实施例提供一种移动通讯终端, 该移动通讯 终端包括信号输出模块、 主天线模块以及分集天线模块、 获取模块、 控制模 块以及射频切换模块;
其中, 所述射频切换模块包括公共端、 受控端、 第一连接端以及第二连 接端, 所述获取模块包括第一信号获取端、 第二信号获取端、 第三信号获取 端以及获取信号输出端; 所述公共端与所述信号输出模块的发射信号输出端 连接, 所述受控端与所述控制模块的控制信号输出端连接, 所述第一连接端 与所述主天线模块连接, 所述第二连接端与所述分集天线模块连接; 所述第 一信号获取端与所述信号输出模块的发射功率输出端连接, 所述第二信号获 取端与所述主天线模块连接,所述第三信号获取端与所述分集天线模块连接, 所述获取信号输出端与所述控制模块的信号接收端连接;
所述获取模块设置为当信号输出模块产生发射信号并通过主天线模块进 行信号发射时, 获取所述发射信号的发射功率 P1 , 并在所述发射功率 P1 大 于第一预设值时, 获取所述主天线模块和分集天线模块的传输能力;
所述控制模块则根据所述主天线模块和分集天线模块的传输能力输出相 应的控制信号至所述射频切换模块;
所述射频切换模块则根据所述控制信号控制所述信号输出模块与所述主 天线模块或分集天线模块连接。
较佳地, 所述主天线模块和分集天线模块的传输能力包括接收信号质量 和接收信号强度。
较佳地, 所述控制模块包括平均值获取单元、 判断单元和控制信号输出 单元, 其中,
所述平均值获取单元, 获取主天线模块接收信号质量的平均值 Al、 主天 线模块接收信号强度的平均值 A2、 分集天线模块接收信号质量的平均值 Bl、 分集天线模块接收信号强度的平均值 B2;
所述判断单元, 设置为判断 B1是否大于 A1 ;
所述获取模块还设置为当 B1小于或等于 A1时, 执行所述当信号输出模 块产生发射信号并通过主天线模块进行信号发射时, 获取信号输出模块产生 发射信号的发射功率 P1的操作;
所述判断单元还设置为当 B1大于 A1时,判断 B2与 A2的差值是否大于 或等于第二预设值;
控制信号输出单元,设置为当所述判断单元判定 B2与 A2的差值大于或 等于第二预设值时, 输出相应的控制信号, 控制所述射频切换模块进行所述 信号输出模块连接状态切换处理 , 以使所述信号输出模块与所述分集天线模 块连接;
所述获取模块还设置为当所述判断单元判定 B2与 A2的差值小于第二预 设值时, 执行所述当信号输出模块产生发射信号并通过主天线模块进行信号 发射时, 获取信号输出模块产生发射信号的发射功率 P1的操作。 较佳地, 所述获取模块还设置为获取当信号输出模块产生发射信号并通 过分集天线模块进行信号发射时, 所述发射信号的发射功率 Ρ2;
判断单元还设置为判断 Ρ2是否大于 P1;
所述获取模块还设置为当发射功率 Ρ2小于或等于 P1时, 执行获取当信 号输出模块产生发射信号并通过分集天线模块进行信号发射时, 所述发射信 号的发射功率 Ρ2的操作;
所述控制信号输出模块还设置为当发射功率 Ρ2大于 P1时, 输出相应的 控制信号至所述射频切换模块, 以控制所述信号输出模块与所述主天线模块 连接。
较佳地, 所述控制信号输出模块还设置为当发射功率 Ρ2大于 P1时, 输 出相应的控制信号至所述射频切换模块, 以控制所述信号输出模块与所述主 天线模块连接时, 增大所述第二预设值。 此外, 为实现上述目的, 本发明实施例还提供一种移动通讯终端的信号 发射方法, 所述移动通讯终端的信号发射方法包括以下步骤:
当信号输出模块产生发射信号并通过主天线模块进行信号发射时 , 获取 信号输出模块产生发射信号的发射功率 P1 ;
当所述发射功率 P1大于第一预设值时,获取所述主天线模块以及分集天 线模块的传输能力;
根据所述主天线模块和分集天线模块的传输能力输出相应的控制信号, 控制所述射频切换模块进行所述信号输出模块连接状态切换处理, 以使所述 信号输出模块与所述主天线模块或分集天线模块连接。
较佳地, 主天线模块和分集天线模块传输信号的能力包括接收信号强度 和接收信号质量。
较佳地, 所述根据所述主天线模块和分集天线模块的传输能力输出相应 的控制信号, 控制所述射频切换模块进行所述信号输出模块连接状态切换处 理, 以使所述信号输出模块与所述分集天线模块连接的步骤具体包括:
获取主天线模块接收信号质量的平均值 A1、主天线模块接收信号强度的 平均值 Α2、 分集天线模块接收信号质量的平均值 B1 , 分集天线模块接收信 号强度的平均值 Β2。 判断 Bl是否大于 Al ;
当 Bl小于或等于 Al时, 返回执行所述当信号输出模块产生发射信号并 通过主天线模块进行信号发射时, 获取信号输出模块产生发射信号的发射功 率 P1的步骤;
当 B1大于 A1时, 判断 B2与 A2的差值是否大于或等于第二预设值; 当 B2与 A2的差值大于或等于第二预设值时, 输出相应的控制信号, 控 制所述射频切换模块进行所述信号输出模块连接状态切换处理, 以使所述信 号输出模块与所述分集天线模块连接;
当 B2与 A2的差值小于第二预设值时, 返回执行所述当信号输出模块通 过主天线模块发射信号时,获取信号输出模块产生发射信号的发射功率 P1的 步骤。
较佳地, 所述当 B2与 A2的差值大于或等于第二预设值时, 输出相应的 控制信号 ,控制所述射频切换模块进行所述信号输出模块连接状态切换处理 , 以使所述信号输出模块与所述分集天线模块连接的步骤之后还包括:
经过预设时间段后, 获取当信号输出模块产生发射信号并通过分集天线 模块进行信号发射时, 所述发射信号的发射功率 P2;
当发射功率 P2小于或等于 P1时, 返回执行所述获取当信号输出模块产 生发射信号并通过分集天线模块进行信号发射时, 所述发射信号的发射功率 P2的步骤;
当发射功率 P2大于 P1时, 输出相应的控制信号至射频切换模块, 以控 制所述信号输出模块与所述主天线模块连接。
较佳地, 执行当发射功率 P2大于 P1时, 输出相应的控制信号至射频切 换模块, 以控制所述信号输出模块与所述主天线模块连接步骤时, 增大所述 第二预设值。
射频切换模块。 当信号输出模块与主天线模块连接并通过主天线模块发射信 号时, 获取模块获取发射信号的发射功率。 当发射功率大于第一预设值时, 获取模块获取主天线模块和分集天线模块的传输能力。 控制模块分析主天线 模块和分集天线模块的传输能力。 当分集天线模块的传输能力优于主天线模 块的传输能力时, 控制模块输出控制信号至射频切换模块, 从而使得信号输 出模块与传输能力更优的分集天线模块连接, 使得发射信号能够通过更优的 发射链路进行发射, 从而减小移动通讯终端传输信号至基站的损耗, 提高移 动通讯终端的通话质量。 另一方面, 发射链路的损耗减小, 发射信号的发射 功率也相应地减小, 从而能够节约移动通讯终端的用于发射的能量损耗, 延 长移动通讯终端的续航时间。 附图概述
图 1为本发明实施例移动通讯终端的模块示意图;
图 2为图 1中控制模块的模块示意图;
图 3为本发明移动通讯终端的信号发射方法一实施例的流程示意图; 图 4为本发明移动通讯终端的信号发射方法又一实施例的流程示意图; 图 5为本发明移动通讯终端的信号发射方法再一实施例的流程示意图。 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步 说明。 本发明的较佳实施方式
以下结合附图对本发明的优选实施例进行详细说明, 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。 参照图 1 , 图 1 为本发明实施例移动通讯终端的模块示意图。 本实施例提供 的一种移动通讯终端, 该移动通讯终端包括信号输出模块 1、 主天线模块 2、 分集天线模块 3、 获取模块 4、 控制模块 5以及射频切换模块 6。
获取模块 4包括第一信号获取端、 第二信号获取端、 第三信号获取端以 及获取信号输出端。 射频切换模块 6包括公共端、 受控端、 第一连接端以及 第二连接端。 公共端与信号输出模块 1的发射信号输出端连接, 受控端与控 制模块 5的控制信号输出端连接, 第一连接端与主天线模块 2连接, 第二连 接端与分集天线模块 3连接。 第一信号获取端与信号输出模块 1的发射功率 输出端连接, 第二信号获取端与主天线模块 2连接, 第三信号获取端与分集 天线模块 3连接, 获取信号输出端与控制模块 5的信号接收端连接。 在本实施例中,信号输出模块 1在与基站建立通讯链接后产生发射信号。 由于移动通讯终端与基站的通讯上行链路釆用闭环功率控制, 基站根据接收 到的发射信号输出控制指令以要求移动通讯终端增加或减小发射功率。 应当 说明的是, 当移动通讯终端与基站之间的信号传输损耗较大时, 基站接收到 的发射信号的发射功率较小。 此时, 基站则输出控制指令要求移动通讯终端 增加发射功率。 那么移动通讯终端在下一次发射信号时增加发射功率。 移动 通讯终端的发射功率越大, 移动通讯终端与基站之间的发射链路损耗越大。 移动通讯终端的发射功率越小, 移动通讯终端与基站之间的发射链路损耗越 小。 一般地, 移动通讯终端内部机制要求发射功率在任何情况下都不超过其 预设的最大发射功率。 移动通讯终端的发射功率为信号输出模块 1产生的发 射信号的发射功率。 主天线模块 2和分集天线模块 3覆盖移动通讯终端的接 收频率和发射频率。 其中, 主天线模块 2为移动通讯终端主要的接收和发射 信号通道。 分集天线模块 3为第二接收通道和备用的发射通道。 应当说明的 是, 当移动通讯终端与基站建立通讯链接时, 信号输出模块 1与主天线模块 2连接, 并通过主天线模块 2进行信号发射。 当主天线模块 2不能发射信号 或者发射信号的损耗较大时, 则信号输出模块 1与分集天线模块 3连接, 并 通过分集天线模块 3发射信号至基站。
获取模块 4设置为当信号输出模块 1产生发射信号并通过主天线模块 2 进行信号发射时, 获取发射信号的发射功率 P1 , 并在发射功率 P1 大于第一 预设值时, 获取主天线模块 2和分集天线模块 3的传输能力。
在本实施例中, 当信号输出模块 1产生发射信号并通过主天线模块 2进 行信号发射时, 获取模块 4获取发射信号的发射功率 Pl。 当发射功率 PI大 于第一预设值时, 获取模块 4获取主天线模块 2和分集天线模块 3的传输能 力。 应当说明的是, 第一预设值可以根据实际情况进行设定。 在本实施例中, 主天线模块 2和分集天线模块 3的传输能力包括接收信号质量和接受信号强 度。 获取模块 4通过获取主天线模块 2的接收信号强度和接收信号质量进而 获取主天线模块 2的传输能力。 同理, 获取模块 4通过获取分集天线模块 3 的接收信号强度和接收信号质量来获取分集天线模块 3的传输能力。
控制模块 5则根据主天线模块 2和分集天线模块 3的传输能力输出相应 的控制信号至射频切换模块 6。 在本实施例中, 控制模块 5接收获取模块 4输出的主天线模块 2的传输 能力以及分集天线模块 3的传输能力, 并对接收到的传输能力进行分析。 当 控制模块 5分析得到主天线模块 2的传输能力优于分集天线模块 3的传输能 力时, 控制模块 5输出第一控制信号至射频切换模块 6。 当控制模块 5分析 得到分集天线模块 3的传输能力优于主天线模块 2的传输能力时, 控制模块 5输出第二控制信号至射频切换模块 6。
射频切换模块 6则根据控制信号控制输出模块 1与主天线模块 2或分集 天线模块 3连接。
在本实施例中 ,射频切换模块 6设置为接收控制模块 5输出的控制信号, 并根据接收到的控制信号对信号输出模块 1的连接状态进行切换。 应当说明 的是, 信号输出模块 1的连接状态包括: 信号输出模块 1与主天线模块 2连 接, 信号输出模块 1与分集天线模块 3连接。 当射频切换模块 6接收到控制 模块 5输出的第一控制信号时, 射频切换模块 6控制信号输出模块 1与主天 线模块 2连接。 当射频切换模块 6接收到控制模块 5输出的第二控制信号时, 射频切换模块 6控制信号输出模块 1与分集天线模块 3连接。应当说明的是, 射频切换开关可以为双工器或者双掷开关等。 以及射频切换模块 6。 当信号输出模块 1与主天线模块 2连接并通过主天线 模块 2发射信号时, 获取模块 4获取发射信号的发射功率 Pl。 当发射功率 PI 大于第一预设值时, 获取模块 4获取主天线模块 2和分集天线模块 3的传输 能力。 控制模块 5分析主天线模块 2和分集天线模块 3的传输能力。 当分集 天线模块 3的传输能力优于主天线模块 2的传输能力时, 控制模块 5输出控 制信号至射频切换模块 6, 从而使得信号输出模块 1 与传输能力更优的分集 天线模块 3连接, 使得发射信号能够通过更优的发射链路进行发射, 从而减 小移动通讯终端传输信号至基站的损耗, 提高移动通讯终端的通话质量。 另 一方面, 发射链路的损耗减小, 发射信号的发射功率也相应地减小, 从而能 够节约移动通讯终端的用于发射的能量损耗,延长移动通讯终端的续航时间。 结合参照图 2, 图 2为图 1中控制模块的模块示意图。 控制模块 5包括 平均值获取单元 51、 判断单元 52和控制信号输出单元 53 , 其中: 平均值获取单元 51 ,获取主天线模块 2接收信号质量的平均值 A1、主天 线模块 2接收信号强度的平均值 A2、分集天线模块 3接收信号质量的平均值 Bl、 分集天线模块 3接收信号强度的平均值 B2;
判断单元 52, 设置为判断 B1是否大于 A1 ;
获取模块 4还设置为当 B1小于或等于 A1时, 执行当信号输出模块 1产 生发射信号并通过主天线模块 2进行信号发射时, 获取信号输出模块 1产生 发射信号的发射功率 P1的操作;
判断单元 52还设置为当 B1大于 A1时, 判断 B2与 A2的差值是否大于 或等于第二预设值 D;
控制信号输出单元 53 , 设置为当判断单元 52判定 B2与 A2的差值大于 或等于第二预设值 D时, 输出相应的控制信号, 控制射频切换模块 6进行信 号输出模块 1连接状态切换处理, 以使信号输出模块 1与分集天线模块 3连 接;
获取模块 4还设置为当判断单元 52判定 B2与 A2的差值小于第二预设 值 D时, 执行当信号输出模块 1产生发射信号并通过主天线模块 2进行信号 发射时, 获取信号输出模块 1产生发射信号的发射功率 P1的操作。
在本实施例中, 应当说明的是, 主天线模块 2的接收信号质量和接收信 号强度越好, 其传输能力越强。 同理, 分集天线模块 3的接收信号质量和接 收信号强度越好, 其传输能力越强。 当信号输出模块 1与主天线模块 2连接, 并经主天线模块 2发射信号时, 若发射信号的发射功率 P1大于第一预设值, 那么该信号发射链路的损耗较大。 为了减小发射信号的损耗, 控制模块 5进 入分析主天线模块 2和分集天线模块 3传输能力的操作, 具体判断主天线模 块 2和分集天线模块 3的接收信号强度和接收信号质量哪一个最优。 当分集 天线模块 3的接收信号强度和接收信号质量均优于主天线模块 2接收信号强 度和接收信号质量时,控制信号输出单元 53输出相应的控制信号至射频切换 模块 6, 使得信号输出模块 1与传输能力更优的分集天线模块 3连接, 从而 减小了发射信号的损耗, 提高移动通讯终端的通话质量。 另一方面, 发射链 路的损耗减小, 发射信号的发射功率也相应地减小, 从而能够节约移动通讯 终端的用于发射的能量损耗, 延长移动通讯终端的续航时间。 获取模块 4还设置为获取当信号输出模块 1产生发射信号并通过分集天 线模块 3进行信号发射时, 发射信号的发射功率 P2。
判断单元 52还设置为判断 P2是否大于 P1。
获取模块 4还设置为当发射功率 P2小于或等于 P1时, 执行获取当信号 输出模块 1产生发射信号并通过分集天线模块 3进行信号发射时, 发射信号 的发射功率 P2的操作。
控制信号输出模块 1还设置为当发射功率 P2大于 P1时, 输出相应的控 制信号至射频切换模块 6, 以控制信号输出模块 1与主天线模块 2连接。
在本实施例中, 当射频切换模块 6控制信号输出模块 1与主天线模块 2 连接切换为信号输出模块 1与分集天线模块 3连接后, 获取模块 4获取信号 输出模块 1经分集天线模块 3发射信号的发射功率 P2。 若 P2大于 P1 , 则表 明分集天线模块 3发射信号的损耗大于主天线模块 2发射信号的损耗。 控制 信号输出单元 53则输出控制信号至射频切换模块 6, 以控制信号输出模块 1 切换回与主天线模块 2连接的状态。 若 P2小于或等于 P1 , 则表明分集天线 模块 3发射信号的损耗小于主天线模块 2发射信号的损耗。 信号输出模块 1 仍可继续通过分集天线模块 3进行发射信号。获取模块 4不断获取发射功率, 一旦发射功率 P2大于 P1 , 则切换回主天线模块 2进行发射信号, 从而能够 有效地获取最优的发射链路, 减小移动通讯终端发射至基站的信号损耗。 控制信号输出模块 1还设置为当发射功率 P2大于 P1时, 输出相应的控 制信号至射频切换模块 6, 以控制信号输出模块 1与主天线模块 2连接时, 增大第二预设值0。
在本实施例中, 信号传输模块 1由与主天线模块 2连接切换至与分集天 线模块 3连接后, 控制模块 5检测到信号传输模块 1经分集天线模块 3发射 信号的发射功率 P2要大于切换前的发射功率 P1时, 则增大第二预设值 D。 在本实施例中, 第二预设值 D增大一。 第二预设值 D作为校验值, 增大第二 预设值 D, 能够减小下一次判断单元 52判断主天线模块 2和分集天线模块 3 的传输能力的误差, 从而避免判断进入死循环, 提高了传输能力判断的准确 度。 增大第二预设值 D, 保证了移动通讯终端的信号能够通过最优的发射链 路进行发射, 减小信号损耗, 提高移动通讯终端的通话质量。 本发明实施例提供一种移动通讯终端的信号发射方法。
参照图 3 , 图 3为本发明移动通讯终端的信号发射方法一实施例的流程 示意图。 本实施例提供的移动通讯终端的信号发射方法包括以下步骤:
步骤 S10, 当信号输出模块 1产生发射信号并通过主天线模块 2进行信 号发射时, 获取信号输出模块 1产生发射信号的发射功率 P1 ;
步骤 S20, 当发射功率 P1大于第一预设值时, 获取主天线模块 2以及分 集天线模块 3的传输能力;
在本实施例中,信号输出模块 1在与基站建立通讯链接后产生发射信号。 由于移动通讯终端与基站的通讯上行链路釆用闭环功率控制, 基站根据接收 到的发射信号输出控制指令以要求移动通讯终端增加或减小发射功率。 应当 说明的是, 当移动通讯终端与基站之间的信号传输损耗较大时, 基站接收到 的发射信号的发射功率较小。 此时, 基站则输出控制指令要求移动通讯终端 增加发射功率。 那么移动通讯终端在下一次发射信号时增加发射功率。 移动 通讯终端的发射功率越大, 移动通讯终端与基站之间的发射链路损耗越大。 移动通讯终端的发射功率越小, 移动通讯终端与基站之间的发射链路损耗越 小。 一般地, 移动通讯终端内部机制要求发射功率在任何情况下都不超过其 预设的最大发射功率。 移动通讯终端的发射功率为信号输出模块 1产生的发 射信号的发射功率。 主天线模块 2和分集天线模块 3覆盖移动通讯终端的接 收频率和发射频率。 其中, 主天线模块 2为移动通讯终端主要的接收和发射 信号通道。 分集天线模块 3为第二接收通道和备用的发射通道。 应当说明的 是, 当移动通讯终端与基站建立通讯链接时, 信号输出模块 1与主天线模块 2连接, 并通过主天线模块 2进行信号发射。 当主天线模块 2不能发射信号 或者发射信号的损耗较大时, 则信号输出模块 1与分集天线模块 3连接, 并 通过分集天线模块 3发射信号至基站。
当信号输出模块 1产生发射信号并通过主天线模块 2进行信号发射时, 获取发射信号的发射功率 Pl。 当发射功率 PI 大于第一预设值时, 获取主天 线模块 2和分集天线模块 3的传输能力。 应当说明的是, 第一预设值可以根 据实际情况进行设定。 在本实施例中, 主天线模块 2和分集天线模块 3的传 输能力包括接收信号质量和接受信号强度。 通过获取主天线模块 2的接收信 号强度和接收信号质量来获取主天线模块 2的传输能力。 同理, 通过获取分 集天线模块 3的接收信号强度和接收信号质量来获取分集天线模块 3的传输 能力。 步骤 S30, 根据主天线模块 2和分集天线模块 3的传输能力输出相应的 控制信号, 控制射频切换模块 6进行信号输出模块 1连接状态切换处理, 以 使信号输出模块 1与主天线模块 2或分集天线模块 3连接。
在本实施例中, 接收主天线模块 2的传输能力以及分集天线模块 3的传 输能力, 并对接收到的传输能力进行分析。 当分析得到主天线模块 2的传输 能力优于分集天线模块 3的传输能力时, 输出第一控制信号至射频切换模块 6。 当分集天线模块 3的传输能力优于主天线模块 2的传输能力时, 输出第二 控制信号至射频切换模块 6。
射频切换模块 6设置为: 接收控制信号, 并根据接收到的控制信号对信 号输出模块 1的连接状态进行切换。 应当说明的是, 信号输出模块 1的连接 状态包括: 信号输出模块 1与主天线模块 2连接, 信号输出模块 1与分集天 线模块 3连接。 当射频切换模块 6接收到第一控制信号时, 射频切换模块 6 控制信号输出模块 1与主天线模块 2连接。 当射频切换模块 6接收到第二控 制信号时, 射频切换模块 6控制信号输出模块 1与分集天线模块 3连接。 应 当说明的是, 射频切换开关可以为双工器或者双掷开关等。
本发明实施例提供的移动通讯终端, 当信号输出模块 1 与主天线模块 2 连接并通过主天线模块 2发射信号时, 获取发射信号的发射功率 Pl。 当发射 功率 P1大于第一预设值时,获取主天线模块 2和分集天线模块 3的传输能力。 根据主天线模块 2和分集天线模块 3的传输能力输出相应的控制信号。 当分 集天线模块 3的传输能力优于主天线模块 2的传输能力时, 输出控制信号至 射频切换模块 6,从而使得信号输出模块 1与传输能力更优的分集天线模块 3 连接, 使得发射信号能够通过更优的发射链路进行发射, 从而减小了移动通 讯终端传输信号至基站的损耗。 另一方面, 发射链路的损耗减小, 发射信号 的发射功率也相应地减小, 从而能够节约移动通讯终端的用于发射的能量损 耗, 延长移动通讯终端的续航时间。 结合参照图 4, 图 4为本发明移动通讯终端的信号发射方法又一实施例 的流程示意图。 步骤 S30包括以下步骤:
步骤 S301, 获取主天线模块 2接收信号质量的平均值 A1、 主天线模块 2 接收信号强度的平均值 A2、 分集天线模块 3接收信号质量的平均值 B1 , 分 集天线模块 3接收信号强度的平均值 B2。
步骤 S302, 判断 B1是否大于 A1 ; 当 B1小于或等于 A1时, 返回执行 步骤 S10;
步骤 S303 , 当 B1大于 A1时, 判断 B2与 A2的差值是否大于或等于第 二预设值 D;
步骤 S304, 当 B2与 A2的差值大于或等于第二预设值 D时, 输出相应 的控制信号, 控制射频切换模块 6进行信号输出模块 1连接状态切换处理, 以使信号输出模块 1与分集天线模块 3连接;
当 B2与 A2的差值小于第二预设值 D时, 返回执行步骤 S10。
在本实施例中, 应当说明的是, 主天线模块 2的接收信号质量和接收信 号强度越好, 其传输能力越强。 同理, 分集天线模块 3的接收信号质量和接 收信号强度越好, 其传输能力越强。 当信号输出模块 1与主天线模块 2连接, 并经主天线模块 2发射信号时, 若发射信号的发射功率 P1大于第一预设值, 那么该信号发射链路的损耗较大。 为了减小发射信号的损耗, 分析主天线模 块 2和分集天线模块 3传输能力的操作, 具体判断主天线模块 2和分集天线 模块 3的接收信号强度和接收信号质量哪一个最优。 当分集天线模块 3的接 收信号强度和接收信号质量均优于主天线模块 2接收信号强度和接收信号质 量时, 输出相应的控制信号至射频切换模块 6, 使得信号输出模块 1 与传输 能力更优的分集天线模块 3连接, 从而减小了发射信号的损耗, 提高移动通 讯终端的通话质量。 另一方面, 发射链路的损耗减小, 发射信号的发射功率 也相应地减小, 从而能够节约移动通讯终端的用于发射的能量损耗, 延长移 动通讯终端的续航时间。 结合参照图 5 , 图 5为本发明移动通讯终端的信号发射方法再一实施例 的流程示意图。 步骤 S304之后还包括:
步骤 S305 , 经过预设时间段后, 获取当信号输出模块 1产生发射信号并 通过分集天线模块 3进行信号发射时, 发射信号的发射功率 P2;
步骤 S306, 当发射功率 P2小于或等于 P1时, 返回执行获取当信号输出 模块 1产生发射信号并通过分集天线模块 3进行信号发射时, 发射信号的发 射功率 P2的步骤;
步骤 S307 , 当发射功率 P2大于 P1时, 输出相应的控制信号至射频切换 模块 6, 以控制信号输出模块 1与主天线模块 2连接。
在本实施例中, 当射频切换模块 6控制信号输出模块 1与主天线模块 2 连接切换为信号输出模块 1与分集天线模块 3连接后, 获取信号输出模块 1 经分集天线模块 3发射信号的发射功率 P2。 若 P2大于 PI , 则表明分集天线 模块 3发射信号的损耗大于主天线模块 2发射信号的损耗。 输出控制信号至 射频切换模块 6, 以控制信号输出模块 1切换回与主天线模块 2连接的状态。 若 P2小于或等于 P1 , 则表明分集天线模块 3发射信号的损耗小于主天线模 块 2发射信号的损耗。 信号输出模块 1仍可继续通过分集天线模块 3进行发 射信号。 不断获取发射功率, 一旦发射功率 P2大于 P1 , 则切换回主天线模 块 2进行发射信号, 从而能够有效地获取最优的发射链路, 减小移动通讯终 端发射至基站的信号损耗。 执行步骤 S307时, 增大第二预设值 D。
在本实施例中, 信号传输模块 1由与主天线模块 2连接切换至与分集天 线模块 3连接后, 当信号传输模块 1经分集天线模块 3发射信号的发射功率 P2要大于切换前的发射功率 P1时, 则增大第二预设值 D。 在本实施例中, 第二预设值 D增大一。 第二预设值 D作为校验值, 增大第二预设值 D, 能够 减小下一次判断主天线模块 2和分集天线模块 3的传输能力的误差, 从而避 免判断进入死循环, 提高了传输能力判断的准确度。 增大第二预设值 D, 保 证了移动通讯终端的信号能够通过最优的发射链路进行发射,减小信号损耗, 提高移动通讯终端的通话质量。 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间 接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明实施例使得发射信号能够通过更优的发射链路进行发射, 从而减 小移动通讯终端传输信号至基站的损耗, 提高移动通讯终端的通话质量; 发 射链路的损耗减小, 发射信号的发射功率也相应地减小, 从而能够节约移动 通讯终端的用于发射的能量损耗, 延长移动通讯终端的续航时间。

Claims

权 利 要 求 书
1、 一种移动通讯终端, 包括信号输出模块、 主天线模块以及分集天线模 块, 还包括获取模块、 控制模块以及射频切换模块;
其中, 所述射频切换模块包括公共端、 受控端、 第一连接端以及第二连 接端, 所述获取模块包括第一信号获取端、 第二信号获取端、 第三信号获取 端以及获取信号输出端; 所述公共端与所述信号输出模块的发射信号输出端 连接, 所述受控端与所述控制模块的控制信号输出端连接, 所述第一连接端 与所述主天线模块连接, 所述第二连接端与所述分集天线模块连接; 所述第 一信号获取端与所述信号输出模块的发射功率输出端连接, 所述第二信号获 取端与所述主天线模块连接,所述第三信号获取端与所述分集天线模块连接, 所述获取信号输出端与所述控制模块的信号接收端连接;
所述获取模块设置为: 当所述信号输出模块产生发射信号并通过所述主 天线模块进行信号发射时, 获取所述发射信号的发射功率 P1 , 并在所述发射 功率 P1 大于第一预设值时, 获取所述主天线模块和分集天线模块的传输能 力;
所述控制模块设置为: 根据所述主天线模块和分集天线模块的传输能力 输出控制信号至所述射频切换模块;
所述射频切换模块设置为: 根据所述控制信号控制所述信号输出模块与 所述主天线模块或分集天线模块连接。
2、 如权利要求 1所述的移动通讯终端, 其中, 所述主天线模块和分集天 线模块的传输能力包括接收信号质量和接收信号强度。
3、 如权利要求 2所述的移动通讯终端, 其中, 所述控制模块包括平均值 获取单元、 判断单元和控制信号输出单元, 其中,
所述平均值获取单元设置为: 获取主天线模块接收信号质量的平均值 Al、主天线模块接收信号强度的平均值 A2、分集天线模块接收信号质量的平 均值 B1以及分集天线模块接收信号强度的平均值 B2;
所述判断单元, 设置为判断 B1是否大于 A1 ;
所述获取模块还设置为: 当 B1小于或等于 A1时, 执行所述当信号输出 模块产生发射信号并通过主天线模块进行信号发射时, 获取信号输出模块产 生发射信号的发射功率 P1的操作;
所述判断单元还设置为: 当 B1大于 A1时,判断 B2与 A2的差值是否大 于或等于第二预设值;
所述控制信号输出单元设置为: 当所述判断单元判定 B2与 A2的差值大 于或等于第二预设值时, 输出控制信号, 控制所述射频切换模块进行所述信 号输出模块连接状态切换处理 , 以使所述信号输出模块与所述分集天线模块 连接;
所述获取模块还设置为: 当所述判断单元判定 B2与 A2的差值小于第二 预设值时, 执行所述当信号输出模块产生发射信号并通过主天线模块进行信 号发射时, 获取信号输出模块产生发射信号的发射功率 P1的操作。
4、 如权利要求 3所述的移动通讯终端, 其中,
所述获取模块还设置为: 获取当信号输出模块产生发射信号并通过分集 天线模块进行信号发射时, 所述发射信号的发射功率 P2;
判断单元还设置为判断 P2是否大于 P1;
所述获取模块还设置为: 当 P2小于或等于 P1时, 执行获取当信号输出 模块产生发射信号并通过分集天线模块进行信号发射时, 所述发射信号的发 射功率 P2的操作;
所述控制信号输出模块还设置为: 当 P2大于 P1时, 输出控制信号至所 述射频切换模块, 以控制所述信号输出模块与所述主天线模块连接。
5、 如权利要求 4所述的移动通讯终端, 其中, 所述控制信号输出模块还 设置为: 当发射功率 P2大于 P1时, 输出相应的控制信号至所述射频切换模 块, 以控制所述信号输出模块与所述主天线模块连接时, 增大所述第二预设 值。
6、 一种如权利要求 1所述移动通讯终端的信号发射方法, 包括: 当信号输出模块产生发射信号并通过主天线模块进行信号发射时 , 获取 信号输出模块产生发射信号的发射功率 P1 ; 当所述发射功率 PI大于第一预设值时,获取所述主天线模块以及分集天 线模块的传输能力;
根据所述主天线模块和分集天线模块的传输能力输出控制信号 , 控制所 述射频切换模块进行所述信号输出模块连接状态切换处理, 以使所述信号输 出模块与所述主天线模块或分集天线模块连接。
7、 如权利要求 6所述的移动通讯终端的信号发射方法, 其中, 所述主天 线模块和分集天线模块传输信号的能力包括接收信号强度和接收信号质量。
8、 如权利要求 7所述的移动通讯终端的信号发射方法, 其中, 所述根据 所述主天线模块和分集天线模块的传输能力输出相应的控制信号, 控制所述 射频切换模块进行所述信号输出模块连接状态切换处理, 以使所述信号输出 模块与所述分集天线模块连接的步骤包括:
获取主天线模块接收信号质量的平均值 A1、主天线模块接收信号强度的 平均值 A2、 分集天线模块接收信号质量的平均值 B1 , 分集天线模块接收信 号强度的平均值 B2;
判断 B1是否大于 A1 ;
当 B1小于或等于 A1时, 返回执行所述当信号输出模块产生发射信号并 通过主天线模块进行信号发射时, 获取信号输出模块产生发射信号的发射功 率 P1的步骤;
当 B1大于 A1时, 判断 B2与 A2的差值是否大于等于第二预设值; 当 B2与 A2的差值大于或等于第二预设值时, 输出控制信号, 控制所述 射频切换模块进行所述信号输出模块连接状态切换处理, 以使所述信号输出 模块与所述分集天线模块连接;
当 B2与 A2的差值小于第二预设值时, 返回执行所述当信号输出模块通 过主天线模块发射信号时,获取信号输出模块产生发射信号的发射功率 P1的 步骤。
9、 如权利要求 8 所述的移动通讯终端的信号发射方法, 其中, 所述当 B2与 A2的差值大于或等于第二预设值时, 输出控制信号, 控制所述射频切 换模块进行所述信号输出模块连接状态切换处理, 以使所述信号输出模块与 所述分集天线模块连接的步骤之后还包括:
经过预设时间段后 , 获取当信号输出模块产生发射信号并通过分集天线 模块进行信号发射时, 所述发射信号的发射功率 P2;
当发射功率 P2小于或等于 P1时, 返回执行所述获取当信号输出模块产 生发射信号并通过分集天线模块进行信号发射时, 所述发射信号的发射功率 P2的步骤;
当发射功率 P2大于 P1时, 输出相应的控制信号至射频切换模块, 以控 制所述信号输出模块与所述主天线模块连接。
10、 如权利要求 9所述的移动通讯终端的信号发射方法, 其中, 执行当 发射功率 P2大于 P1时, 输出相应的控制信号至射频切换模块, 以控制所述 信号输出模块与所述主天线模块连接的步骤时, 增大所述第二预设值。
PCT/CN2014/083295 2014-05-28 2014-07-30 移动通讯终端及移动通讯终端的信号发射方法 WO2015180257A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14892928.4A EP3139670B1 (en) 2014-05-28 2014-07-30 Mobile communication terminal and signal transmission method of mobile communication terminal
US15/314,229 US10165520B2 (en) 2014-05-28 2014-07-30 Mobile communication terminal and signal transmission method of mobile communication terminal
ES14892928T ES2700287T3 (es) 2014-05-28 2014-07-30 Terminal de comunicación móvil y procedimiento de transmisión de señal de un terminal de comunicación móvil
CA2950324A CA2950324C (en) 2014-05-28 2014-07-30 Mobile communication terminal and signal transmission method of mobile communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410231282.6 2014-05-28
CN201410231282.6A CN105307291B (zh) 2014-05-28 2014-05-28 移动通讯终端及移动通讯终端的信号发射方法

Publications (1)

Publication Number Publication Date
WO2015180257A1 true WO2015180257A1 (zh) 2015-12-03

Family

ID=54697973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083295 WO2015180257A1 (zh) 2014-05-28 2014-07-30 移动通讯终端及移动通讯终端的信号发射方法

Country Status (6)

Country Link
US (1) US10165520B2 (zh)
EP (1) EP3139670B1 (zh)
CN (1) CN105307291B (zh)
CA (1) CA2950324C (zh)
ES (1) ES2700287T3 (zh)
WO (1) WO2015180257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165520B2 (en) 2014-05-28 2018-12-25 Xi'an Zhongxing New Software Co., Ltd. Mobile communication terminal and signal transmission method of mobile communication terminal

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121967A1 (de) * 2015-12-16 2017-06-22 Intel IP Corporation Kommunikationsendgerät und Verfahren zum Auswählen einer Übertragungsantenne
CN107528606B (zh) * 2016-06-21 2020-10-16 中兴通讯股份有限公司 一种天线切换方法以及装置、移动终端
CN107204797A (zh) * 2017-07-21 2017-09-26 上海传英信息技术有限公司 天线设备、移动终端及主天线与分集天线的切换方法
CN107465837A (zh) * 2017-09-18 2017-12-12 深圳市盛路物联通讯技术有限公司 一种天线切换方法及移动终端
CN108282214B (zh) * 2018-01-19 2020-09-08 Oppo广东移动通信有限公司 天线组件、电子设备及天线切换方法
CN109246804A (zh) * 2018-08-24 2019-01-18 Tcl通讯(宁波)有限公司 一种可降低无线通信功耗的方法及设备
CN110247667B (zh) * 2019-06-25 2021-04-09 Oppo广东移动通信有限公司 天线共用方法及相关设备
CN113541755B (zh) * 2020-04-17 2023-06-16 华为技术有限公司 天线选择方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118771A (ko) * 2005-05-17 2006-11-24 주식회사 팬택앤큐리텔 다이버시티 기능을 갖는 이동통신단말기 및 그 송신출력제어방법
CN101848020A (zh) * 2009-02-05 2010-09-29 捷讯研究有限公司 具有分集天线系统的移动无线通信设备及相关方法
CN103249133A (zh) * 2013-03-29 2013-08-14 东莞宇龙通信科技有限公司 控制长期演进网络天线功率的方法及其移动终端
CN103414507A (zh) * 2013-07-26 2013-11-27 北京小米科技有限责任公司 一种移动终端及其天线的切换方法和装置
CN103648189A (zh) * 2013-12-23 2014-03-19 展讯通信(上海)有限公司 无线终端及其无线通信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660598B2 (en) * 2004-12-21 2010-02-09 Qualcomm, Incorporated Transmit power reduction for a wireless device with multiple transmit signal paths
CN101742739B (zh) * 2009-12-23 2014-08-13 中兴通讯股份有限公司 基站通讯方法、装置及系统
EP2434681B1 (en) * 2010-09-27 2013-08-14 Sequans Communications Tile allocation method
US9020447B2 (en) * 2012-05-24 2015-04-28 Sony Corporation Electronic devices, methods, and computer program products for making a change to an antenna element based on a power level of a transmission power amplifier
CN103701482A (zh) * 2012-09-27 2014-04-02 西门子公司 一种无线通信设备和收发无线信号的方法
GB2508671B (en) * 2012-12-10 2015-03-11 Broadcom Corp Mobile communication
US9379788B2 (en) * 2013-02-21 2016-06-28 Intel Mobile Communications GmbH Communications terminal, and a method for selecting a transmit antenna for a transmission to a radio communications network
US9100100B2 (en) * 2013-12-31 2015-08-04 Futurewei Technologies, Inc. Wireless electronic device with switchable antenna system
CN105307291B (zh) 2014-05-28 2019-10-15 南京中兴软件有限责任公司 移动通讯终端及移动通讯终端的信号发射方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118771A (ko) * 2005-05-17 2006-11-24 주식회사 팬택앤큐리텔 다이버시티 기능을 갖는 이동통신단말기 및 그 송신출력제어방법
CN101848020A (zh) * 2009-02-05 2010-09-29 捷讯研究有限公司 具有分集天线系统的移动无线通信设备及相关方法
CN103249133A (zh) * 2013-03-29 2013-08-14 东莞宇龙通信科技有限公司 控制长期演进网络天线功率的方法及其移动终端
CN103414507A (zh) * 2013-07-26 2013-11-27 北京小米科技有限责任公司 一种移动终端及其天线的切换方法和装置
CN103648189A (zh) * 2013-12-23 2014-03-19 展讯通信(上海)有限公司 无线终端及其无线通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165520B2 (en) 2014-05-28 2018-12-25 Xi'an Zhongxing New Software Co., Ltd. Mobile communication terminal and signal transmission method of mobile communication terminal

Also Published As

Publication number Publication date
CN105307291B (zh) 2019-10-15
EP3139670A4 (en) 2017-05-10
EP3139670B1 (en) 2018-09-05
CA2950324C (en) 2019-01-15
CA2950324A1 (en) 2015-12-03
CN105307291A (zh) 2016-02-03
ES2700287T3 (es) 2019-02-14
US10165520B2 (en) 2018-12-25
US20170201951A1 (en) 2017-07-13
EP3139670A1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015180257A1 (zh) 移动通讯终端及移动通讯终端的信号发射方法
JP6578355B2 (ja) 中継リンク通信
CN110692206B (zh) 用于用户设备的基于性能的天线选择
WO2017113304A1 (zh) 无线终端及无线终端的天线切换控制方法
US20200145918A1 (en) Apparatus, System, and Method for Mobile Station Power Saving
WO2017113693A1 (zh) 天线复用装置以及移动终端
US20160365995A1 (en) Multi-mode wireless terminal
WO2019011330A1 (zh) 天线切换方法及装置、天线系统、存储介质
JP2007324711A (ja) 無線通信方法および無線通信装置
US20180115858A1 (en) Systems and methods for connecting wireless communication devices
US20190007153A1 (en) Systems and methods for concurrent transmission
US9088916B2 (en) Method to enable single radio handover
JP2013528341A (ja) 同一周波数帯域におけるラジオ周波数信号に対するアンテナ共有
CN111937234B (zh) 用于毫米波mimo模式选择的方法和设备
WO2019154318A1 (zh) 波束失败恢复的处理方法及终端设备
US20140355491A1 (en) System and methods for enabling simultaneous transmit and receive in the same wifi band within a device
WO2018210134A1 (zh) 随机接入的方法、终端、源基站和目标基站
JP5805355B2 (ja) 無線通信装置および無線通信制御方法
KR20220092454A (ko) 무선 통신 방법 및 단말 디바이스
US10638425B2 (en) Adaptive out of service scan for modem power optimization in a wireless communication system
JP2020027997A (ja) 通信装置及び通信方法
WO2017016051A1 (zh) 一种优化终端信号的方法及装置
TWI503015B (zh) 雙模雙待雙通的行動通訊裝置與動態切換天線之耦接路徑之方法
WO2023035231A1 (zh) 通信方法和装置
WO2021213320A1 (zh) WiFi热点管理方法、电子设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950324

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014892928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892928

Country of ref document: EP

Ref document number: 15314229

Country of ref document: US