WO2015177076A2 - Moteur à air comprimé à chambre active incluse et à distribution active à l'admission - Google Patents

Moteur à air comprimé à chambre active incluse et à distribution active à l'admission Download PDF

Info

Publication number
WO2015177076A2
WO2015177076A2 PCT/EP2015/060855 EP2015060855W WO2015177076A2 WO 2015177076 A2 WO2015177076 A2 WO 2015177076A2 EP 2015060855 W EP2015060855 W EP 2015060855W WO 2015177076 A2 WO2015177076 A2 WO 2015177076A2
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
cylinder
active
pressure
Prior art date
Application number
PCT/EP2015/060855
Other languages
English (en)
Other versions
WO2015177076A3 (fr
Inventor
Guy Negre
Cyril Negre
Original Assignee
Motor Development International S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/312,828 priority Critical patent/US10371023B2/en
Priority to RU2016145407A priority patent/RU2701784C2/ru
Priority to EP15726034.0A priority patent/EP3146167B1/fr
Priority to ES15726034T priority patent/ES2715515T3/es
Priority to AU2015263264A priority patent/AU2015263264B2/en
Priority to KR1020167032335A priority patent/KR102345515B1/ko
Priority to NZ725405A priority patent/NZ725405B2/en
Priority to AP2016009621A priority patent/AP2016009621A0/en
Application filed by Motor Development International S.A filed Critical Motor Development International S.A
Priority to CA2946481A priority patent/CA2946481C/fr
Priority to CN201580027044.6A priority patent/CN106414899B/zh
Publication of WO2015177076A2 publication Critical patent/WO2015177076A2/fr
Publication of WO2015177076A3 publication Critical patent/WO2015177076A3/fr
Priority to IL248944A priority patent/IL248944B/en
Priority to ZA2016/08834A priority patent/ZA201608834B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/16Pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L2003/25Valve configurations in relation to engine
    • F01L2003/258Valve configurations in relation to engine opening away from cylinder

Definitions

  • the invention relates to an engine operating in particular with compressed air, or any other gas, and using a chamber called "active chamber"
  • the invention relates to the distribution on admission of such an engine and more particularly for a motor comprising an active chamber included, and in particular for a multi-modal self-expanding motor with active chamber included.
  • the term "distribution" is the set of means used to supply such a motor with compressed gas.
  • the expansion chamber is constituted by a variable volume equipped with means making it possible to produce a work, it is twinned and in contact by a permanent passage with the space included above the main engine piston which is equipped with a piston stop device at top dead center,
  • the air or the gas under pressure is admitted into the expansion chamber when it is at its smallest volume and, under the thrust, increase its volume by producing a job
  • the expansion chamber being kept substantially at its maximum volume, the compressed air contained therein then expands in the engine cylinder, thus pushing the engine piston in its downward stroke, thereby providing work
  • variable volume of the expansion chamber is reduced to its smallest volume to start a complete work cycle.
  • the engine expansion chamber according to this invention actively participates in the work.
  • the engine is thus called “active chamber” engine.
  • thermodynamic cycle in four phases during its operation in mono-energy mode with compressed air characterized by:
  • an enclosed active-chamber motor comprising at least one piston slidably mounted in a cylinder and driving a crankshaft by means of a conventional and working crank-rod device.
  • a four-phase thermodynamic cycle comprising:
  • the active chamber is included / incorporated in the engine cylinder
  • the engine cylinder comprises at least one piston slidably mounted in at least one cylinder whose volume swept by the piston is divided into two distinct parts, a first portion constituting the active chamber CA and a second portion constituting the expansion chamber CD;
  • the cylinder is closed at its upper part by a cylinder head having at least one duct and an intake port, and at least one duct and an exhaust port and which is arranged so that when the piston is at its top dead center, the residual volume between the piston and the cylinder head is, by construction, if not nonexistent, reduced to the minimum clearances allowing operation without contact between the piston and the cylinder head;
  • the admission of the compressed air, or pressurized gas, into the cylinder is closed when the maximum volume of the active chamber CA is reached, and the quantity of compressed air or gas under pressure, included in said active chamber then relaxes by pushing the piston on the second part of its stroke which determines the expansion chamber CD producing a job thus ensuring the relaxation phase;
  • the volume of the active chamber CA included and the volume of the expansion chamber CD are dimensioned such that at the nominal operating pressure of the engine, the pressure at the end of expansion at low dead point is close to the ambient pressure, especially atmospheric.
  • the volume of the active chamber is determined by the closing of the admission.
  • the active chamber motor included described above comprises a plurality of successive cylinders of increasing displacements.
  • the engine is powered like the teachings of documents WO-A1-2005 / 049968 and WO-A1 -2008/028881, by compressed air, or by any other compressed gas, contained in a high pressure storage tank, previously expanded, at a nominal working pressure, in a buffer capacity - said capacity of job.
  • the filling of the active chamber CA is effected at a constant intake pressure at each engine revolution, this intake pressure being degressive as the pressure in the storage tank decreases as and when measurement of the progressive emptying of this tank;
  • the volume of the active chamber CA included is variable and is gradually increased as the pressure in the storage tank which determines said intake pressure decreases;
  • the means for opening and closing the admission of compressed air into the active chamber CA not only make it possible to open the orifice and the intake duct substantially at the top dead center of the piston stroke, but they also make it possible to modify the duration and / or the angular sector of the admission, as well as the passage section of the opening; the volume of the active chamber CA included is dimensioned for the maximum storage pressure, then it is gradually increased so that, depending on the inlet pressure, the volume ratio between the active chamber CA included and the chamber relaxation CD, the pressure at the end of relaxation before the opening of the exhaust is close to atmospheric pressure.
  • the engine according to WO-A1 -2012 / 045694 also acts as an expander, the invention thus making it possible to provide an engine called "autodetendeur" which, for the supply of the active chamber CA, does not require any expansion valve independent of any one type.
  • the multi-modal autodetender motor with active chamber included according to the teachings of document WO-A1-2012 / 045694 notably implements, during its operation in single-energy compressed air mode, a three-phase thermodynamic cycle comprising:
  • the volume, variable depending on the pressure of the high pressure storage tank, the active chamber included determines the amount of compressed air injected.
  • the difficulty lies in the realization of the opening and closing means of the admission of compressed air into the active chamber included which not only allow to open the orifice and the intake duct substantially at the top dead center of the stroke of the piston, but which also make it possible to modify the duration and / or the angular sector of the admission, as well as the passage section of the opening.
  • valves The distribution of engines of all types is generally provided by valves whose operation is well known.
  • a valve closes the intake and / or exhaust duct and has a valve head held by springs resting on a circular valve seat formed around an orifice communicating the intake duct and / or or exhaust with the combustion chamber and / or expansion contained in the cylinder.
  • the valve head opens the circuit by penetrating the chamber to be powered by mechanical mechanical cams and pushers acting on the tail or stem of the valve which extends the valve head.
  • the invention particularly adapted to active chamber compressed air motors, including multi-modal self-expanding motors with active chamber included, proposes to solve all the problems mentioned above while providing additional power.
  • the active intake distribution device applied to the compressed air motors uses the compressed air contained in the high-pressure storage tank and / or in the intake circuit to move the intake valve in order to opening and closing the intake duct for supplying the active chamber of the engine, the compressed air used for these actions is then reused in the engine to produce additional work.
  • the invention proposes an active chamber motor operating according to a three-phase thermodynamic cycle comprising:
  • This engine comprising:
  • At least one cylinder fed with a gas under pressure, preferably with compressed air, contained in a high-pressure storage tank,
  • crankshaft driven by the piston by means of a conventional crank-rod device
  • a cylinder head which closes at its upper part the volume of the cylinder, which is swept by the piston, and which comprises at least one intake duct in which flows a flow of gas under pressure to fill the cylinder, an orifice of admitting the pressurized gas above the piston, and at least one exhaust port and an exhaust duct, the cylinder head being arranged such that when the piston is at its top dead center, the residual volume included between the piston and the cylinder head is, by construction, reduced to only minimum allowing operation without contact between the piston and the cylinder head,
  • At least one intake valve which cooperates sealingly with a valve seat formed in the cylinder head and which delimits the inlet orifice
  • the volume of the cylinder swept by the piston is divided into two distinct parts of which a first portion constituting an active chamber which is included in the cylinder and a second part constituting an expansion chamber,
  • the exhaust port is then open to ensure the exhaust phase during the ascent of the piston over its entire path to its top dead center
  • the engine torque and speed are controlled by the opening and closing of the intake valve allowing the intake valve to be opened substantially at the top dead center of the piston stroke, and allowing, by closing the valve, changing the duration and / or the angular sector of the intake, and the passage section of the intake opening to, depending on the pressure of the compressed gas contained in the storage tank and the pressure at the end of the expansion phase, to determine the quantity of pressurized gas admitted as well as the volume of the active chamber, characterized in that:
  • the intake valve is mounted movably in axial displacement between a low closing position in which it is in sealing engagement on its valve seat, and a high opening position, - b) in the direction of its opening, the intake valve moves axially, in the opposite direction to that of the flow of the pressurized gas flow filling the cylinder,
  • the inlet valve in its closed position, the inlet valve is kept autoclave closed on its valve seat by the pressure prevailing in the intake duct and applying to the intake valve,
  • the engine comprises means for controlling the opening of the intake valve, substantially at the top dead point of the piston stroke, to cause the detachment of the intake valve of its seat to allow the establishment the inlet pressure in the active chamber, the valve then traversing its full opening stroke under the action of the differential pressure forces exerted by the gas under pressure on the corresponding parts of the intake valve,
  • the engine comprises a pneumatic cylinder for closing the intake valve which comprises a cylinder of cylinder and a closing piston which is connected in axial displacement with the intake valve, and which is slidably mounted in the cylinder of cylinder inside which it delimits in a sealed manner a cylinder control chamber, called closure chamber,
  • the engine comprises at least one intake valve opening control channel which connects said closure chamber to a source of pressurized gas which is either the upper part of the active chamber of the cylinder or the conduit; intake, ie the pressurized gas tank,
  • the motor comprises an active distribution channel which connects said closure chamber to the upper part of the active chamber and a valve closing the flow of gas in the active distribution channel, called active distribution valve, whose the opening is controlled to bring the closure chamber into communication with the upper part of the active chamber, to close the inlet valve and to produce work which is added to the work of the pre-admitted pressure gas charge, via the intake duct, in the active chamber.
  • active distribution valve a valve closing the flow of gas in the active distribution channel
  • the active dispensing valve is controlled according to the following cycle: i) opening of the active dispensing valve to put the closure chamber in communication with the active chamber to cause the closing of the inlet valve and, during the expansion phase, allow the expansion of the compressed gas, contained in the closure chamber, in the expansion chamber of the cylinder producing a work which is added to the work of the pre-admitted pressure gas charge, via the intake duct, in the active chamber,
  • said means d) for controlling the opening of the intake valve comprise:
  • the engine comprises a channel which connects said closure chamber to the inlet duct and / or the pressurized gas tank, and a shut-off valve for the circulation of the gas in this channel, the opening and closing of which are controlled , to cause the closing of the intake valve, prior to the placing the closure chamber in communication with the volume of the cylinder swept by the cylinder.
  • said means for controlling the opening of the intake valve comprise a finger formed in relief on the upper face of the piston which, during the end of stroke of the piston towards its top dead point, acts through the intake port, on a portion facing the intake valve to take off its seat.
  • the maximum open position of the intake valve is defined by an adjustable stop whose axial position, in the direction of movement of the intake valve, is controlled to vary the flow rate of pressurized gas admitted into the cylinder via the intake duct.
  • FIG. 1A schematically shows an engine according to the invention, active chamber included in the cylinder, which is illustrated in axial section at its bottom dead point, and its compressed air supply device;
  • FIGS. 1B to 1D are views similar to that of FIG. 1A on which the motor is illustrated in different phases successive operation of the engine according to the invention and in which Figure 1B represents the engine being admitted, the intake valve having been opened from top dead center;
  • Figure 2 is a view similar to that of Figure 1D which illustrates a second embodiment of an engine according to the invention
  • FIG. 3 is a view similar to that of FIG. 1B which illustrates a third embodiment of an engine according to the invention
  • Figure 4 is a view similar to that of Figure 1D which illustrates a fourth embodiment of an engine according to the invention.
  • FIG. 1A represents an active chamber self-expansion motor equipped with an active intake distribution assembly according to the invention.
  • FIGS. 1A to 1D show an active chamber engine CA operating according to a three-phase thermodynamic cycle comprising:
  • the engine comprises at least one cylinder 1, only one of which is represented, which is fed with a gas under pressure, preferably with compressed air, contained in a high-pressure storage tank 12.
  • the engine comprises a piston 2 which is slidably mounted in the cylinder 1, and a crankshaft 5 which is driven by the piston 2 by means of a conventional crank-rod device 3, 4.
  • the volume of the engine cylinder 1 which is swept by the piston 2 is divided along an imaginary line DD '(corresponding to a division plane orthogonal to the axis of the cylinder) into two parts: a first part constituting the active chamber CA, which is thus included in the cylinder 1, and a second part constituting the expansion chamber CD.
  • the engine further comprises a cylinder head 6 which closes at its upper part the volume of the cylinder 1, which is swept by the piston 2.
  • the cylinder head 6 comprises at least one intake duct 8 which is connected to the tank 12 and in which flows the flow of pressurized cylinder filling gas, an inlet 7 of the gas under pressure above the piston 2.
  • the cylinder head further comprises at least one exhaust port and one exhaust duct (not shown).
  • the cylinder head 6 is arranged such that, when the piston 2 is at its top dead point, the residual volume between the piston 2 and the cylinder head 6 is, by construction, reduced to the minimum clearances allowing the operation without contact between the piston 2 and the cylinder head 6.
  • the cylinder head 6 comprises at least one intake valve 9, one of which is illustrated, which cooperates sealingly with a valve seat 20 formed in the cylinder head 6 and which delimits the inlet orifice 7.
  • the volume of the cylinder 1 swept by the piston 2 is divided into two distinct parts of which a first part constituting a so-called active chamber CA which is included in the cylinder 1, and a second part constituting a relaxation chamber CD,
  • the volume of the active chamber CA increases by producing a work representing the quasi-isothermal transfer phase
  • the admission of the pressurized gas into the cylinder 1 is closed as soon as the chosen maximum volume of the active chamber CA is reached, the quantity of pressurized gas included in the active chamber CA then relaxing while pushing the piston 2 onto the second part of his race which determines the CD relaxation chamber by producing a work thus ensuring the relaxation phase,
  • the torque and the engine speed are controlled by controlling the opening and closing of the intake valve 9 by making it possible to open the intake valve 9, substantially at the top dead center of the piston stroke (vertically according to the orientation of the figure), and allowing, by closing the valve 9, to change the duration and / or the angular sector of the intake, and the passage section of the intake opening to, depending on the pressure the gas contained in the storage tank 12 and the pressure at the end of the expansion phase, to determine the amount of pressurized gas admitted and the volume of the active chamber CA.
  • the intake duct 8 is directly connected to the high pressure reservoir 12 which directly supplies the active chamber CA and is at the same pressure as that of the reservoir.
  • the pressure in the intake duct 8 is identical to that of the storage tank 12, for example of the order of 100 bars, and is greater than that prevailing in the active chamber CA and the expansion chamber CD, for example equal to 1.5 bar at the moment of the cycle corresponding to the bottom dead center of the piston, at the end of expansion, just before the opening of the exhaust valve.
  • the intake valve 9 is mounted to move axially between a low position (considering the general vertical orientation of the figures and without reference to earth gravity) closing - shown in Figure 1A - in which it is in sealing engagement on its valve seat 20, and a high opening position - shown in Figure 1B.
  • the inlet valve 9 moves axially - upwards, in the opposite direction to that of the flow of the gas flow F under pressure of filling the cylinder.
  • the inlet valve opens in the opposite direction to the flow of air under pressure filling the engine cylinder.
  • the inlet valve 9 In its closed position, the inlet valve 9 is held closed autoclave on its valve seat 20 by the pressure in the intake duct 8 and applied to the intake valve, that is, ie on the valve head inside the intake duct 8.
  • the engine comprises means for controlling the opening of the intake valve 9, substantially at the top dead center of the piston stroke, to cause the detachment of the intake valve 9 from its seat 20 and to establish in the chamber activates a pressure to that prevailing in the intake duct 8.
  • the valve During its opening phase, the valve then traverses its full opening stroke under the action of the differential forces of pressure exerted by the gas under pressure on the corresponding parts of the intake valve and in particular on the head of the valve, that is to say on the one hand on the lower surface 22 in the form of disc subjected to pressure prevailing in the cylinder 1, and secondly on the upper surface 24 subjected to the pressure in the intake duct 8, the difference between the areas of these two surfaces corresponding substantially to the area of the section of the rod or tail 26 of the valve 9.
  • the inlet valve 9 In its closed position, the inlet valve 9 is held in its seat 20, autoclaved by the pressure of the compressed air contained in the intake circuit, and / or in the air storage tank 12 compressed, the pressure in the active chamber CA and the engine expansion chamber CD being lower during the relaxation and exhaust phases of operation.
  • the engine comprises a pneumatic cylinder V closing the intake valve 9 which, by way of non-limiting example, is here arranged in the cylinder head 6.
  • the jack V comprises a cylinder of cylinder 100 and a closing piston 102 which is connected in axial displacement with the rod 26 of the intake valve 9, and which is slidably mounted in the cylinder cylinder 100 inside which it delimits sealingly an upper chamber 104 of the cylinder, called the closing chamber of the valve 9.
  • the motor comprises an active distribution channel X1 which connects the closing chamber 104 to the upper part of the active chamber CA arranged included in the cylinder 1.
  • the maximum maximum opening position of the inlet valve 9 is defined by an adjustable stop 30 which extends into the chamber 104 and whose axial position, in the axial direction of displacement of the valve, is controlled (by means of means not shown in the figures) to vary the flow of pressurized gas admitted into the cylinder via the intake duct.
  • the controlled adjustable stop thus acts as a "throttle" controlled by an accelerator.
  • the displacements of the abutment are for example controlled and caused by means of an electric motor step by step.
  • the adjustable stop 30 makes it possible to stop the upward and automatic upward movement of the intake valve 9 by modifying its lift as a function of the required motor operating parameters.
  • the engine comprises a controlled valve Y closing the flow of gas in the channel X1 active distribution, called Y valve active distribution, whose opening can be controlled to put the chamber 104, closing the intake, in communication with the upper part of the active chamber CA by establishing in the closure chamber 104 a complementary pressure on the upper face of the piston 102 by pushing, by the action of this piston, the intake valve 9 on its seat 20 and thus closing the intake circuit thereby ending the work of the active chamber CA.
  • the active dispensing valve Y is then kept open during the expansion time by allowing the compressed gas contained in the closure chamber 104 to relax together with the gas contained in the expansion chamber, while producing a work which is added in the work of the pressure gas charge previously admitted, via the intake duct, into the active chamber.
  • the engine comprises an X2 channel for controlling the opening of the intake valve 9 which connects the upper part of the active chamber CA to the intake duct 8.
  • the engine comprises a valve Z controlled shutter of the flow of gas in the channel X2, called valve opening of the intake valve, whose opening can be controlled to put the upper part of the active chamber CA in communication with the intake duct 8.
  • the intake circuit When the piston 2 of the engine is close to its top dead point (FIG. 1B), by opening the opening valve Z, the intake circuit is, at the chosen moment, put into communication with the active chamber CA of the cylinder in allowing the establishment of a pressure identical to that contained in the intake circuit and, because of the difference in areas mentioned above, the pressure, automatically pushes the intake valve 9 upwards and the valve d admission, in its movement, opens the intake circuit.
  • a thrust of 28 kg is exerted to open automatically the inlet valve 9 and allow the filling of the active chamber CA.
  • the closing of the intake valve 9 is then ensured by placing the active chamber CA in communication with the closure chamber 104 thus creating a complementary pressure on the upper surface of the piston 102 of the closing cylinder V, which then pushes the valve intake 9 on its seat 20 and closes / closes the admission to allow the relaxation cycle of the active chamber CA in the relaxation room CD ..
  • valve Y is an active dispensing valve
  • channel X1 is an active distribution channel
  • the operation of the so-called active distribution according to the invention is therefore understood in which, advantageously, the energy necessary for the opening and closing of the inlet valve 9 is provided by the pressure prevailing in the storage tank and or the intake circuit for opening, and prevailing in the active chamber for closure, then is reused by producing additional work in the cylinder.
  • the volume of the closing chamber 104 is of reduced value, for example, without limitation, less than 10% of the cylinder capacity of the cylinder 1.
  • Y and Z valves of the electromechanical type constituted in particular in the form of solenoid valves adapted and easily controllable by an electronic management unit (not shown), will be used.
  • control by electronic management and pneumatic control allows opening and closing speeds of the valve (s) and angular control phases of high precision.
  • the expansion of the volume of air contained in the closure chamber is carried out in conjunction with that of the active chamber and with pressure drops of about from the nominal pressure to the pressure. exhaust.
  • the engine also comprises a valve T controlled closing the flow of gas, compressed air, in the channel X3, whose opening can be controlled to put the intake duct 8 and / or the tank 12 in communication with the closing chamber 104.
  • the closure chamber 104 has at least two ducts, X3 and X1 each provided with controlled closure means, T and Y, for closing the closure chamber 104, successively in communication with the one hand with the intake circuit and / or the high-pressure storage tank 12, and secondly with the active and expansion chamber of the cylinder.
  • Closing of the intake valve 9 is ensured by placing in communication the intake circuit and / or the reservoir of storage with the closure chamber 104, via the channel X3, and by controlling the opening of the valve T, thereby creating a complementary pressure on the surface of the closing piston 102 which pushes the inlet valve 9 on its seat 20 and closes the inlet to allow the relaxation cycle of the active chamber CA in the expansion chamber CD.
  • the active expansion of the closure chamber 104 can be delayed to intervene later in the cycle, by controlling the opening of the valve Y.
  • the volume of the closure chamber 104 is in communication with the expansion chamber CD and the compressed air contained in the closure chamber 104 relaxes in the expansion chamber CD by producing a work that is added to the work of relaxation of the load admitted into the active chamber CA.
  • the opening of the intake valve 9 is advantageously simplified by the integration of such a mechanical device.
  • said means for controlling the opening of the intake valve 9 are constituted by a finger D, or pusher, which is formed in relief on the upper face of the piston (2) and which extends vertically upwards facing the head opposite the intake valve 9.
  • the opening control finger D is able to cooperate mechanically with the lower face 20 of the head of the intake valve 9 to push the latter vertically upwards.
  • the finger D is positioned in line with the lower part of the intake valve head so that it slightly raises the intake valve creating a leak which puts the intake circuit in communication with the active chamber.
  • CA by establishing in the closure chamber 104 a complementary pressure on the upper surface of the piston 102 and, by the action of the piston 102 connected to the tail of the valve, by pushing the intake valve 9 on its seat 20 by closing thus the intake circuit by putting an end to the work of the active chamber CA.
  • the valve then travels its full opening stroke under the action of the differential pressure forces exerted by the gas under pressure on the corresponding parts of the intake valve 9.
  • the arrangement of the channel X2 and the associated valve Z for controlling the opening of the intake valve is modified.
  • the jack V is a double-acting jack with two sealed chambers separated by the piston 102.
  • the lower chamber 105 is a chamber for controlling the opening of the intake valve 9 which, via the channel X2, is connected to the intake duct 8 and / or to the tank 12 of gas under pressure.
  • the closure chamber 104 has at least two ducts, X3 and X1, each provided with controlled shutter means T, Y for putting the closure chamber 104 in succession in communication with the circuit on the one hand. inlet and / or the high-pressure storage tank 12, and secondly with the active and expansion chamber of the cylinder.
  • the opening of the intake valve 9 is controlled by the valve Z which supplies pressurized gas to the lower chamber 105 of the cylinder V which is an opening chamber.
  • Closing of the inlet valve 9 is ensured by placing the intake circuit and / or the storage tank in communication with the closure chamber 104, via the channel X3 and by controlling the opening of the valve T , thus creating a complementary pressure on the surface of the closing piston 102 which pushes the intake valve 9 on its seat 20 and closes the inlet to allow the expansion cycle of the active chamber CA in the expansion chamber CD .
  • the closure is obtained because of the area of the piston 102 subjected to the pressure, which is greater on the side of the chamber 104, than on the opening chamber 105 side (the difference corresponding substantially to the area of the section of the rod of the intake valve).
  • the active relaxation of the closure chamber can be delayed to intervene later in the cycle, by controlling the opening of the valve Y.
  • the volume of the closure chamber 104 is then placed in communication with the expansion chamber CD and the compressed air contained in the closure chamber 104 expands in the chamber relaxation by producing a job that is added to the work of relaxation of the load admitted into the active room.
  • the piston 102 of the jack V successively controls the opening and closing of the intake valve 9.
  • the chamber 104 it is possible, as for the chamber 104, to connect the chamber 105 to the active chamber through a channel X1 'and a valve Y', thus achieving two parallel active distribution circuits.
  • the volumes of the closing chamber 104 and of the opening chamber 105 can then be placed in communication with the expansion chamber and the compressed air contained therein is expanded in the expansion chamber, making it possible to increase the work. releasing the load admitted by relaxing in the main engine cylinder.
  • the engine equipped with the "active" intake distribution according to the invention can be used on all land, sea, rail and aeronautical vehicles.
  • the active chamber motor according to the invention can also and advantageously find its application in the emergency generator sets, as well as in many domestic cogeneration applications producing electricity, heating and air conditioning.
  • the active chamber motor according to the invention has been described with operation with compressed air. However, it can use any compressed gas / gas at high pressure, without departing from the scope of the claimed invention.
  • the invention is not limited to the embodiments described and shown: the materials, the control means, the devices described may vary within the limit of equivalents, to produce the same results.
  • the number of engine cylinders, their displacements, the maximum volume of the active chamber relative to the displaced volume of the cylinder (s) and the number of stages of relaxation, may vary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

L'invention propose un moteur à chambre active, comportant au moins un piston (2) monté coulissant dans un cylindre (1) et fonctionnant selon un cycle thermodynamique à trois phases comportant un transfert isobare et isotherme, une détente polytropique avec travail et un échappement à pression ambiante, qui est alimenté préférentiellement par de l'air comprimé contenu dans un réservoir de stockage à haute pression (12), dans lequel le volume du cylindre (1) balayé par le piston est divisé en une chambre active (CA) et une de détente (CD), et dans lequel on utilise l'air comprimé pour mouvoir la soupape d'admission (9) afin d'ouvrir puis de fermer le conduit d'admission permettant d'alimenter la chambre active du moteur, l'air comprimé ayant servi à ces actions étant ensuite réutilisé dans le moteur pour produire un complément de travail.

Description

« Moteur à air comprimé à chambre active incluse
et à distribution active à l'admission»
DOMAINE TECHNIQUE DE L'INVENTION
L'invention concerne un moteur fonctionnant notamment avec de l'air comprimé, ou tout autre gaz, et utilisant une chambre dite « chambre active »
L'invention concerne la distribution à l'admission d'un tel moteur et plus particulièrement pour un moteur comportant une chambre active incluse, et notamment pour un moteur autodétendeur plurimodal à chambre active incluse.
ETAT DE LA TECHNIQUE
On appelle distribution l'ensemble des moyens utilisés pour alimenter un tel moteur en gaz comprimé.
Les inventeurs ont déposé de nombreux brevets concernant des motorisations ainsi que leurs installations, utilisant des gaz et plus particulièrement de l'air comprimé pour un fonctionnement totalement propre en site urbain et suburbain :
Ils ont notamment déposé une demande de brevet internationale WO-A1 -03/036088 au contenu de laquelle on pourra se reporter, concernant un groupe moto-compresseur - moto-alternateur à injection d'air comprimé additionnel fonctionnant en mono-énergie et en pluri-énergies.
Dans ces types de moteur fonctionnant avec de l'air comprimé et comportant un réservoir de stockage d'air comprimé, il est nécessaire de détendre l'air comprimé stocké à très haute pression dans le réservoir - mais dont la pression diminue au fur et à mesure que le réservoir se vide - à une pression intermédiaire stable dite pression finale d'utilisation, dans une capacité tampon - dite capacité de travail - avant son utilisation dans le ou les cylindres moteurs du moteur.
Pour résoudre les problèmes de détendeur, les inventeurs ont aussi déposé une demande de brevet WO-A1 -03/089764, au contenu de laquelle on pourra se reporter, concernant un détendeur dynamique à débit variable et une distribution pour moteurs alimentés avec injection d'air comprimé, comportant un réservoir d'air comprimé à haute pression et une capacité de travail.
Dans le fonctionnement de ces moteurs à « détente de charge », le remplissage de la chambre d'expansion représente toujours une détente sans travail qui est nuisible au rendement global de la machine.
Pour résoudre le problème indiqué ci-dessus, les inventeurs ont alors déposé une demande de brevet WO-A1 -2005/049968 décrivant un moteur à air comprimé alimenté préférentiellement par de l'air comprimé, ou par tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression, préalablement détendu à une pression nominale de travail dans une capacité tampon dite capacité de travail.
Dans ce type de moteur selon les enseignements de WO-A1- 2005/049968 :
- la chambre d'expansion est constituée d'un volume variable équipé de moyens permettant de produire un travail, elle est jumelée et en contact par un passage permanent avec l'espace compris au-dessus du piston moteur principal qui est équipé d'un dispositif d'arrêt du piston à son point mort haut,
- durant l'arrêt de la course du piston moteur à son point mort haut, l'air ou le gaz sous pression est admis dans la chambre d'expansion lorsque celle-ci est à son plus petit volume et, sous la poussée, va augmenter son volume en produisant un travail,
- la chambre d'expansion étant maintenue sensiblement à son volume maximum, l'air comprimé qui y est contenu se détend ensuite dans le cylindre moteur en repoussant ainsi le piston moteur dans sa course descendante en fournissant à son tour un travail,
- durant la remontée du piston moteur pendant le temps échappement, le volume variable de la chambre d'expansion est ramené à son plus petit volume pour recommencer un cycle de travail complet.
La chambre d'expansion du moteur selon cette invention participe activement au travail. Le moteur est ainsi dit moteur à « chambre active ».
Le document WO-A1 -2005/049968 enseigne notamment un cycle thermodynamique en quatre phases lors de son fonctionnement en mode mono-énergie à air comprimé caractérisé par :
- une détente isotherme sans travail ; - un transfert - légère détente avec travail dit quasi-isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante.
Le document WO-A1 -2008/028881 , qui présente une variante des enseignements du document WO-A1 -2005/049968, enseigne le même cycle thermodynamique, mais en utilisant un dispositif bielle-manivelle traditionnel, la chambre d'expansion du moteur selon l'invention participant activement au travail.
Les moteurs selon les enseignements des documents WO-A1-2005/049968 et WO-A1 -2008/028881 sont dits « moteurs à chambre active ».
Par la suite, les inventeurs ont déposé une demande de brevet pour un moteur à air ou à gaz comprimé à chambre active incluse qui met en œuvre le même cycle thermodynamique que les moteurs selon les enseignements de WO-A1 -2005/049968 et WO-A1 -2008/028881 , ainsi qu'un dispositif bielle-manivelle conventionnel.
Selon les enseignements du document WO-A1 -2012/045693, les inventeurs ont proposé un moteur à chambre active incluse, comportant au moins un piston monté coulissant dans un cylindre et entraînant un vilebrequin au moyen d'un dispositif bielle-manivelle traditionnel et fonctionnant selon un cycle thermodynamique à quatre phases comportant :
- une détente isotherme sans travail ;
- un transfert - légère détente avec travail dit quasi-isotherme ; - une détente polytropique avec travail ;
- un échappement à pression ambiante.
Alimenté préférentiellement par de l'air comprimé, ou tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression, à travers une capacité tampon dite capacité de travail qui est alimentée par de l'air comprimé, ou tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression, qui est détendu à une pression moyenne dite pression de travail dans une capacité de travail préférentiellement à travers un dispositif de détendeur dynamique, dans lequel :
- la chambre active est incluse/incorporée dans le cylindre moteur ;
- le cylindre moteur comporte au moins un piston monté coulissant dans au moins un cylindre dont le volume balayé par le piston est divisé en deux parties distinctes dont une première partie constituant la chambre active CA et une deuxième partie constituant la chambre de détente CD ;
- le cylindre est fermé à sa partie supérieure par une culasse comportant au moins un conduit et un orifice d'admission, et au moins un conduit et un orifice d'échappement et qui est aménagé de telle sorte que, lorsque le piston est à son point mort haut, le volume résiduel compris entre le piston et la culasse est, par construction, sinon inexistant, réduit aux seuls jeux minimum permettant le fonctionnement sans contact entre le piston et la culasse ;
- l'air comprimé ou le gaz sous pression est admis dans le cylindre au-dessus du piston lorsque le volume de la chambre active CA est à son plus petit volume et qui, sous la poussée continue de l'air comprimé à pression constante de travail, va augmenter son volume en produisant un travail représentant la phase de transfert quasi- isotherme ;
- l'admission de l'air comprimé, ou du gaz sous pression, dans le cylindre est obturée dès lors que le volume maximal de la chambre active CA est atteint, et que la quantité d'air comprimé, ou du gaz sous pression, comprise dans ladite chambre active se détend alors en repoussant le piston sur la deuxième partie de sa course qui détermine la chambre de détente CD en produisant un travail assurant ainsi la phase de détente ;
- le piston ayant atteint son point mort bas, l'orifice d'échappement est alors ouvert pour assurer la phase d'échappement pendant la remontée du piston sur la totalité de sa course.
Le volume de la chambre active incluse CA et le volume de la chambre de détente CD sont dimensionnés de telle sorte qu'à la pression nominale de fonctionnement du moteur, la pression en fin de détente au point mort bas est proche de la pression ambiante, notamment atmosphérique. Le volume de la chambre active est déterminé par la fermeture de l'admission.
Avantageusement, et notamment en fonctionnement monoénergie à air comprimé, le moteur à chambre active incluse décrit ci- dessus comporte plusieurs cylindres successifs de cylindrées croissantes.
Préférentiellement, le moteur est alimenté à l'instar des enseignements des documents WO-A1 -2005/049968 et WO-A1 -2008/028881 , par de l'air comprimé, ou par tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression, préalablement détendu, à une pression nominale de travail, dans une capacité tampon - dite capacité de travail.
Toutefois, même si il est possible dans le cas d'un moteur pluri étagé d'alimenter le premier des cylindres à des pressions élevées, il reste nécessaire de détendre l'air comprimé à très haute pression contenu dans le réservoir de stockage à haute pression jusqu'à une pression nominale de travail et cette opération de détente, soit entraîne une perte de rendement par l'utilisation d'un détendeur conventionnel soit, avec l'utilisation des enseignements de WO-A1 -03/089764, ne coûte pas d'énergie, mais cette détente ne permet pas d'effectuer un quelconque travail de détente entre la haute pression contenue dans le réservoir et la pression nominale de travail dans la capacité de travail à volume constant.
Les inventeurs ont alors déposé une nouvelle demande de brevet WO-A1-2012/045694 au contenu de laquelle on pourra se reporter qui revendique un moteur à air comprimé à chambre active incluse dans lequel :
- le réservoir de stockage d'air comprimé à haute pression, ou de tout autre gaz sous pression, alimente directement l'admission du cylindre moteur ;
- le remplissage de la chambre active incluse CA s'effectue à une pression d'admission constante à chaque tour moteur, cette pression d'admission étant dégressive au fur à mesure de la diminution de la pression dans le réservoir de stockage au fur et à mesure de la vidange progressive de ce réservoir ;
- le volume de la chambre active incluse CA est variable et est augmenté progressivement au fur et à mesure de la diminution de la pression dans le réservoir de stockage qui détermine ladite pression d'admission ;
- les moyens d'ouverture et de fermeture de l'admission de l'air comprimé dans la chambre active incluse CA permettent non seulement d'ouvrir l'orifice et le conduit d'admission sensiblement au point mort haut de la course du piston, mais ils permettent aussi de modifier la durée et/ou le secteur angulaire de l'admission, ainsi que la section de passage de l'ouverture ; - le volume de la chambre active incluse CA est dimensionné pour la pression maximum de stockage, puis il est progressivement augmenté de telle sorte que, en fonction de la pression d'admission, du rapport de volumes entre la chambre active incluse CA et la chambre de détente CD, la pression en fin de détente avant l'ouverture de l'échappement se trouve proche de la pression atmosphérique.
Le moteur selon WO-A1 -2012/045694 fait aussi fonction de détendeur, l'invention permettant ainsi de proposer un moteur dit « autodétendeur » qui, pour l'alimentation de la chambre active CA, ne nécessite aucun détendeur indépendant d'un quelconque type.
Le moteur autodétendeur plurimodal à chambre active incluse selon les enseignements du document WO-A1-2012/045694 met notamment en œuvre, lors de son fonctionnement en mode mono énergie air comprimé, un cycle thermodynamique à trois phases comportant :
- une phase de transfert isobare et isotherme
- une phase de détente polytropique avec travail
- une phase d'échappement à pression ambiante.
Dans le fonctionnement de ce moteur, le volume, variable en fonction de la pression du réservoir de stockage haute pression, de la chambre active incluse détermine la quantité d'air comprimé injecté. Plus la pression d'admission est élevée, plus le volume de la chambre active doit être petit.
Afin d'obtenir un fonctionnement correct dans toutes les phases d'utilisation du moteur, il convient donc de l'alimenter avec une grande précision en fonction des divers paramètres notamment de vitesse ou régime de rotation, de la pression d'alimentation, de la charge déterminée par la position de l'accélérateur, de la température.
A cet effet, il est nécessaire de pouvoir faire varier :
- le moment de l'ouverture de l'admission en fonction du régime de rotation du moteur avant ou après le point mort haut pour tenir compte des inerties des gaz, mais aussi du rapport entre les temps d'établissement de la pression,
- le moment de fermeture de l'admission, en fonction du régime de rotation du moteur, mais aussi de la pression d'admission,
- la levée de la soupape d'admission en fonction de la charge souhaitée. La difficulté réside dans la réalisation des moyens d'ouverture et de fermeture de l'admission de l'air comprimé dans la chambre active incluse qui permettent non seulement d'ouvrir l'orifice et le conduit d'admission sensiblement au point mort haut de la course du piston, mais qui permettent aussi de modifier la durée et/ou le secteur angulaire de l'admission, ainsi que la section de passage de l'ouverture.
La distribution des moteurs de tous types est généralement assurée par des soupapes dont le fonctionnement est bien connu. Une soupape vient obturer le conduit d'admission et/ou d'échappement et elle comporte une tête de soupape maintenue par des ressorts en appui sur un siège de soupape circulaire formé autour d'un orifice mettant en communication le conduit d'admission et/ou d'échappement avec la chambre de combustion et/ou d'expansion contenue dans le cylindre.
La tête de soupape ouvre le circuit en pénétrant la chambre à alimenter mue par des systèmes mécaniques de came et de poussoirs agissant sur la queue ou tige de la soupape qui prolonge la tête de la soupape.
Dans d'autres domaines de motorisation et pour d'autres raisons techniques concernant notamment la réduction de la pollution et dans le but de maîtriser l'admission et l'échappement des moteurs conventionnels à combustion, un grand nombre de motoristes travaillent sur des systèmes permettant de contrôler le phasage et la durée des ouvertures de soupapes en cours de fonctionnement et ont déposé de nombreux brevets concernant ces applications. Des systèmes mécaniques complexes pilotés par des moteurs électriques pas à pas ont aussi été développés et commercialisés, notamment par BMW (Marque Déposée) avec le dispositif appelé « Vamos ».
Les inventeurs ont aussi déposé la demande de brevet WO-A1-
03/089764 au contenu de laquelle on pourra se reporter concernant une distribution par soupape à commande progressive.
De nombreux travaux ont été entrepris concernant des dispositifs électromécaniques, notamment commandés par des électroaimants facilement pilotables pour prendre en compte les divers paramètres de fonctionnement, mais les puissances électriques devant être mise en œuvre pour permettre les accélérations et la vitesse de déplacement des soupapes demandent, compte tenu du poids et de l'inertie de ces dernières, des puissances considérables.
L'invention, adaptée notamment aux moteurs à air comprimé à chambre active, et notamment aux moteurs autodétendeurs plurimodaux à chambre active incluse, propose de résoudre l'ensemble des problèmes évoqués ci-dessus tout en apportant un surcroit de puissance.
Le dispositif de distribution active à l'admission selon l'invention appliqué aux moteurs à air comprimé utilise l'air comprimé contenu dans le réservoir de stockage haute pression et/ou dans le circuit d'admission pour mouvoir la soupape d'admission afin d'ouvrir puis de fermer le conduit d'admission permettant d'alimenter la chambre active du moteur, l'air comprimé ayant servi à ces actions étant ensuite réutilisé dans le moteur pour produire un complément de travail.
BREF RESUME DE L'INVENTION
L'invention propose un moteur à chambre active fonctionnant selon un cycle thermodynamique à trois phases comportant :
- une phase de transfert isobare et isotherme ;
- une phase de détente polytropique avec travail ;
- une phase d'échappement à pression ambiante ;
ce moteur comportant :
- au moins un cylindre alimenté par un gaz sous pression, préférentiellement par de l'air comprimé, contenu dans un réservoir de stockage à haute pression,
- au moins un piston qui est monté coulissant dans ce cylindre,
- un vilebrequin entraîné par le piston au moyen d'un dispositif bielle-manivelle traditionnel,
- une culasse qui ferme à sa partie supérieure le volume du cylindre, qui est balayé par le piston, et qui comporte au moins un conduit d'admission dans lequel s'écoule un flux de gaz sous pression de remplissage du cylindre, un orifice d'admission du gaz sous pression au-dessus du piston, et au moins un orifice d'échappement et un conduit d'échappement, la culasse étant agencée de telle sorte que, lorsque le piston est à son point mort haut, le volume résiduel compris entre le piston et la culasse est, par construction, réduit aux seuls jeux minimum permettant le fonctionnement sans contact entre le piston et la culasse,
— au moins une soupape d'admission qui coopère de manière étanche avec un siège de soupape formé dans la culasse et qui délimite l'orifice d'admission,
moteur dans lequel :
— le volume du cylindre balayé par le piston est divisé en deux parties distinctes dont une première partie constituant une chambre active qui est incluse dans le cylindre et une deuxième partie constituant une chambre de détente,
— sous la poussée continue du gaz sous pression admis dans le cylindre, à pression constante de travail, le volume de la chambre active augmente en produisant un travail représentant la phase de transfert isobare et isotherme,
— l'admission du gaz sous pression dans le cylindre est obturée dès que le volume maximal de la chambre active est atteint, la quantité de gaz sous pression comprise dans ladite chambre active se détendant alors en repoussant le piston sur la deuxième partie de sa course qui détermine la chambre de détente en produisant un travail assurant ainsi la phase de détente polytropique,
— le piston ayant atteint son point mort bas, l'orifice d'échappement est alors ouvert pour assurer la phase d'échappement pendant la remontée du piston sur la totalité de sa course jusqu'à son point mort haut,
— le couple et le régime du moteur sont commandés par l'ouverture et la fermeture de la soupape d'admission en permettant d'ouvrir la soupape d'admission, sensiblement au point mort haut de la course du piston, et en permettant, par la fermeture de la soupape, de modifier la durée et/ou le secteur angulaire de l'admission, ainsi que la section de passage de l'ouverture d'admission afin, en fonction de la pression du gaz comprimé contenu dans le réservoir de stockage et de la pression en fin de phase de détente, de déterminer la quantité de gaz sous pression admise ainsi que le volume de la chambre active, caractérisé en ce que :
- a) la soupape d'admission est montée mobile en déplacement axial entre une position basse de fermeture dans laquelle elle est en appui étanche sur son siège de soupape, et une position haute d'ouverture, - b) dans le sens de son ouverture, la soupape d'admission se déplace axialement, dans le sens opposé à celui de l'écoulement du flux de gaz sous pression de remplissage du cylindre,
- c) dans sa position de fermeture, la soupape d'admission est maintenue fermée de façon autoclave sur son siège de soupape par la pression régnant dans le conduit d'admission et s'appliquant à la soupape d'admission,
- d) le moteur comporte des moyens de commande de l'ouverture de la soupape d'admission, sensiblement au point mort haut de la course du piston, pour provoquer le décollement de la soupape d'admission de son siège pour permettre l'établissement de la pression d'admission dans la chambre active, la soupape parcourant alors sa course complète d'ouverture sous l'action des efforts différentiels de pression exercés par le gaz sous pression sur les parties correspondantes de la soupape d'admission,
- e) le moteur comporte un vérin pneumatique de fermeture de la soupape d'admission qui comporte un cylindre de vérin et un piston de fermeture qui est lié en déplacement axial avec la soupape d'admission, et qui est monté coulissant dans le cylindre de vérin à l'intérieur duquel il délimite de manière étanche une chambre de commande du vérin, dite chambre de fermeture,
- f) le moteur comporte au moins un canal de commande d'ouverture de la soupape d'admission qui relie ladite chambre de fermeture à une source de gaz sous pression qui est soit la partie supérieure de la chambre active du cylindre, soit le conduit d'admission, soit le réservoir de gaz sous pression,
- g) le moteur comporte un canal de distribution active qui relie ladite chambre de fermeture à la partie supérieure de la chambre active et une valve d'obturation de la circulation du gaz dans le canal de distribution active, dite valve de distribution active, dont l'ouverture est commandée pour mettre la chambre de fermeture en communication avec la partie supérieure de la chambre active, fermer la soupape d'admission et produire un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise, via le conduit d'admission, dans la chambre active.
Selon d'autres caractéristiques de l'invention :
- la valve de distribution active est commandée selon le cycle suivant : i) ouverture de la valve de distribution active pour mettre la chambre de fermeture en communication avec la chambre active pour, provoquer la fermeture de la soupape d'admission puis, au cours de la phase de détente, permettre la détente du gaz comprimé, contenu dans la chambre de fermeture, dans la chambre de détente du cylindre en produisant un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise, via le conduit d'admission, dans la chambre active,
ii) en fin de la phase de détente, fermeture à nouveau de la valve de distribution active pour maintenir à l'intérieur de la chambre de fermeture la pression du gaz détendu dont la valeur est proche de celle de la pression atmosphérique ;
- lesdits moyens d) de commande de l'ouverture de la soupape d'admission comportent :
- d1) un canal de commande d'ouverture de la soupape d'admission qui relie la partie supérieure de la chambre active au conduit d'admission ou au réservoir de gaz sous pression,
- d2) et une valve commandée d'obturation de la circulation du gaz dans le canal de commande d'ouverture, dite valve d'ouverture ;
- ladite valve de commande d'ouverture est commandée selon le cycle suivant :
k1) en fin de phase d'échappement, lorsque le piston est sensiblement au point mort haut de sa course, ouverture de ladite valve, pour permettre d'établir dans la chambre active une pression identique à celle régnant dans le conduit d'admission et provoquer le décollement de la soupape d'admission de son siège,
k2) la soupape d'admission parcourt alors sa course complète d'ouverture sous l'action des efforts différentiels de pression exercés par le gaz sous pression sur les parties correspondantes de la soupape d'admission,
k3) fermeture de ladite valve dès que la soupape d'admission s'ouvre ;
- le moteur comporte un canal qui relie ladite chambre de fermeture au conduit d'admission et/ou au réservoir de gaz sous pression, et une valve d'obturation de la circulation du gaz dans ce canal dont l'ouverture puis la fermeture sont commandés, pour provoquer la fermeture de la soupape d'admission, préalablement à la mise en communication de la chambre de fermeture avec le volume du cylindre balayé par le cylindre.
- lesdits moyens de commande de l'ouverture de la soupape d'admission, comportent un doigt formé en relief sur la face supérieure du piston qui, au cours de la fin de course du piston vers son point mort haut, agit, à travers l'orifice d'admission, sur une portion en vis à vis de la soupape d'admission pour la décoller de son siège.
- la valve de distribution active est commandée selon le cycle suivant :
j) ouverture de la valve de distribution active pour mettre la chambre de fermeture en communication avec la chambre active pour mettre la chambre de fermeture en communication avec la chambre de détente du cylindre, pour permettre la détente du gaz comprimé, contenu dans la chambre de fermeture, dans la chambre de détente du cylindre en produisant un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise dans la chambre active,
jj) en fin de la phase de détente, fermeture à nouveau de la valve de distribution active pour maintenir à l'intérieur de la chambre de fermeture une pression dont la valeur est proche de celle de la pression atmosphérique ;
- la position haute maximale d'ouverture de la soupape d'admission est définie par une butée réglable dont la position axiale, selon la direction de déplacement de la soupape d'admission, est commandée pour faire varier de débit de gaz sous pression admis dans le cylindre via le conduit d'admission.
BREVE DESCRIPTION DES FIGURES
D'autres buts, avantages et caractéristiques de l'invention apparaîtront à la lecture de la description, à titre non limitatif, de plusieurs modes de réalisation, faite en regard des dessins annexés dans lesquels :
- la figure 1A représente schématiquement un moteur selon l'invention, à chambre active incluse dans le cylindre, qui est illustré en coupe axiale à son point mort bas, et son dispositif d'alimentation en air comprimé ;
- les figures 1B à 1D sont des vues analogues à celle de la figure 1A sur lesquelles le moteur est illustré dans différentes phases successives de fonctionnement du moteur selon l'invention et dans lesquelles la figure 1B représente le moteur en cours d'admission, la soupape d'admission ayant été ouverte dès le point mort haut ;
- la figure 2 est une vue analogue à celle de la figure 1D qui illustre un deuxième mode de réalisation d'un moteur selon l'invention ;
- la figure 3 est une vue analogue à celle de la figure 1B qui illustre un troisième mode de réalisation d'un moteur selon l'invention ;
- la figure 4 est une vue analogue à celle de la figure 1D qui illustre un quatrième mode de réalisation d'un moteur selon l'invention.
DESCRIPTION DETAILLEE DES FIGURES
Description des figures 1a à 1D. La figure 1A représente un moteur auto-détendeur à chambre active équipé d'un ensemble de distribution active d'admission selon l'invention.
On a représenté aux figures 1A à 1D un moteur à chambre active CA fonctionnant selon un cycle thermodynamique à trois phases comportant :
- un transfert isobare et isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante.
Le moteur comporte au moins un cylindre 1, dont un seul est représenté, qui est alimenté par un gaz sous pression, préférentiellement par de l'air comprimé, contenu dans un réservoir de stockage à haute pression 12.
Le moteur comporte un piston 2 qui est monté coulissant dans ce cylindre 1, et un vilebrequin 5 qui est entraîné par le piston 2 au moyen d'un dispositif bielle-manivelle 3, 4 traditionnel.
Le volume du cylindre moteur 1 qui est balayé par le piston 2 est divisé selon une ligne imaginaire DD' (correspondant à un plan de division orthogonal à l'axe du cylindre) en deux parties : une première partie constituant la chambre active CA, qui est ainsi incluse dans le cylindre 1, et une deuxième partie constituant la chambre de détente CD.
Le moteur comporte encore une culasse 6 qui ferme à sa partie supérieure le volume du cylindre 1, qui est balayé par le piston 2. La culasse 6 comporte au moins un conduit d'admission 8 qui est relié au réservoir 12 et dans lequel s'écoule le flux de gaz sous pression de remplissage du cylindre, un orifice d'admission 7 du gaz sous pression au-dessus du piston 2.
La culasse comporte encore au moins un orifice d'échappement et un conduit d'échappement (non représentés).
La culasse 6 est agencée de telle sorte que, lorsque le piston 2 est à son point mort haut, le volume résiduel compris entre le piston 2 et la culasse 6 est, par construction, réduit aux seuls jeux minimum permettant le fonctionnement sans contact entre le piston 2 et la culasse 6.
La culasse 6 comporte au moins une soupape d'admission 9, dont une est illustrée, qui coopère de manière étanche avec un siège de soupape 20 formé dans la culasse 6 et qui délimite l'orifice d'admission 7.
De manière connue, dans un tel moteur :
- le volume du cylindre 1 balayé par le piston 2 est divisé en deux parties distinctes dont une première partie constituant une chambre dite chambre active CA qui est incluse dans le cylindre 1, et une deuxième partie constituant une chambre de détente CD,
- sous la poussée continue du gaz sous pression admis dans le cylindre 1, à pression constante de travail, le volume de la chambre active CA augmente en produisant un travail représentant la phase de transfert quasi-isotherme,
- l'admission du gaz sous pression dans le cylindre 1 est obturée dès que le volume maximal choisi de la chambre active CA est atteint, la quantité de gaz sous pression comprise dans la chambre active CA se détendant alors en repoussant le piston 2 sur la deuxième partie de sa course qui détermine la chambre de détente CD en produisant un travail assurant ainsi la phase de détente,
- le piston 2 ayant atteint son point mort bas, l'orifice d'échappement est alors ouvert pour assurer la phase d'échappement pendant la remontée du piston 2 sur la totalité de sa course jusqu'à son point mort haut,
- le couple et le régime du moteur sont commandés par commande de l'ouverture et la fermeture de la soupape d'admission 9 en permettant d'ouvrir la soupape d'admission 9, sensiblement au point mort haut de la course du piston (verticalement selon l'orientation de la figure), et en permettant, par la fermeture de la soupape 9, de modifier la durée et/ou le secteur angulaire de l'admission, ainsi que la section de passage de l'ouverture d'admission afin, en fonction de la pression du gaz contenu dans le réservoir de stockage 12 et la pression en fin de phase de détente, de déterminer la quantité de gaz sous pression admise ainsi que le volume de la chambre active CA.
Le conduit d'admission 8 est directement relié au réservoir à haute pression 12 qui alimente ainsi directement la chambre active CA et se trouve à la même pression que celle du réservoir.
La pression régnant dans le conduit d'admission 8 est identique à celle du réservoir de stockage 12, par exemple de l'ordre de 100 bars et elle est supérieure à celle régnant dans la chambre active CA et la chambre de détente CD, par exemple égale à 1,5 bar au moment du cycle correspondant au point mort bas du piston, en fin de détente, juste avant l'ouverture de la soupape d'échappement.
Selon l'invention, la soupape d'admission 9 est montée mobile en déplacement axial entre une position basse (en considérant l'orientation générale verticale des figures et sans référence à la gravité terrestre) de fermeture - représentée à la figure 1A - dans laquelle elle est en appui étanche sur son siège de soupape 20, et une position haute d'ouverture - représentée à la figure 1B.
Dans le sens de son ouverture, la soupape d'admission 9 se déplace axialement - vers le haut, dans le sens opposé à celui de l'écoulement du flux F de gaz sous pression de remplissage du cylindre. Ainsi, la soupape d'admission s'ouvre dans le sens opposé au flux d'air sous pression de remplissage du cylindre du moteur.
Dans sa position de fermeture, la soupape d'admission 9 est maintenue fermée de façon autoclave sur son siège de soupape 20 par la pression régnant dans le conduit d'admission 8 et s'appliquant à la soupape d'admission, c'est-à-dire sur la tête de la soupape à l'intérieur du conduit d'admission 8.
Le moteur comporte des moyens de commande de l'ouverture de la soupape d'admission 9, sensiblement au point mort haut de la course du piston, pour provoquer le décollement de la soupape d'admission 9 de son siège 20 et permettre d'établir dans la chambre active une pression à celle régnant dans le conduit d'admission 8.
Lors de sa phase d'ouverture, la soupape parcoure alors sa course complète d'ouverture sous l'action des efforts différentiels de pression exercés par le gaz sous pression sur les parties correspondantes de la soupape d'admission et notamment sur la tête de la soupape, c'est-à-dire d'une part sur la surface inférieure 22 en forme de disque soumise à la pression régnant dans le cylindre 1, et d'autre part sur la surface supérieure 24 soumise à la pression régnant dans le conduit d'admission 8, la différence entre les aires de ces deux surfaces correspondant sensiblement à l'aire de la section de la tige ou queue 26 de la soupape 9.
Dans sa position fermeture, la soupape d'admission 9 est maintenue sur son siège 20, de façon autoclave par la pression de l'air comprimé contenu dans le circuit d'admission, et/ou dans le réservoir de 12 stockage de l'air comprimé, la pression dans la chambre active CA et la chambre de détente CD du moteur étant plus faible durant les phases détente et d'échappement de fonctionnement.
Le moteur comporte un vérin pneumatique V de fermeture de la soupape d'admission 9 qui, à titre d'exemple non limitatif, est ici aménagé dans la culasse 6.
Le vérin V comporte un cylindre de vérin 100 et un piston de fermeture 102 qui est lié en déplacement axial avec la tige 26 de la soupape d'admission 9, et qui est monté coulissant dans le cylindre de vérin 100 à l'intérieur duquel il délimite de manière étanche une chambre supérieure 104 du vérin, appelée chambre de fermeture de la soupape 9.
Le moteur comporte un canal X1 de distribution active qui relie la chambre de fermeture 104 à la partie supérieure de la chambre active CA agencée incluse dans le cylindre 1.
La position haute maximale d'ouverture de la soupape d'admission 9 est définie par une butée réglable 30 qui s'étend dans la chambre 104 et dont la position axiale, selon la direction axiale de déplacement de la soupape, est commandée (par des moyens non représentés sur les figures) pour faire varier le débit de gaz sous pression admis dans le cylindre via le conduit d'admission. La butée réglable commandée fait ainsi fonction de « papillon » commandé par un accélérateur. Les déplacements de la buté sont par exemple commandés et provoqués au moyen d'un moteur électrique pas à pas.
La butée réglable 30 permet de stopper la course ascendante et automatique de la soupape d'admission 9 en modifiant sa levée en fonction de paramètres demandés de fonctionnement du moteur. Le moteur comporte une valve commandée Y d'obturation de la circulation du gaz dans le canal X1 de distribution active, appelée valve Y de distribution active, dont l'ouverture peut être commandée pour mettre la chambre 104, de fermeture de l'admission, en communication avec la partie supérieure de la chambre active CA en établissant dans la chambre de fermeture 104 une pression complémentaire sur la face supérieure du piston 102 en repoussant, par l'action de ce piston, la soupape d'admission 9 sur son siège 20 et en fermant ainsi le circuit d'admission en mettant ainsi fin au travail de la chambre active CA.
La valve Y de distribution active est alors maintenue ouverte durant le temps de détente en permettant au gaz comprimé contenu dans la chambre de fermeture 104 de se détendre conjointement avec le gaz contenu dans la chambre de détente, tout en produisant un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise, via le conduit d'admission, dans la chambre active.
Le moteur comporte un canal X2 de commande de l'ouverture de la soupape d'admission 9 qui relie la partie supérieure de la chambre active CA au conduit d'admission 8.
Le moteur comporte une valve Z commandée d'obturation de la circulation du gaz dans le canal X2, appelée valve d'ouverture de la soupape d'admission, dont l'ouverture peut être commandée pour mettre la partie supérieure de la chambre active CA en communication avec le conduit d'admission 8.
Lorsque le piston 2 du moteur est proche de son point mort haut (Figure 1B), par ouverture de la valve d'ouverture Z, le circuit d'admission est, au moment choisi, mis en communication avec la chambre active CA du cylindre en y permettant l'établissement d'une pression identique à celle contenue dans le circuit d'admission et, du fait de la différence d'aires mentionnée précédemment, la pression, repousse automatiquement la soupape d'admission 9 vers le haut et la soupape d'admission, dans son mouvement, ouvre le circuit d'admission.
Par exemple, pour une soupape d'un diamètre de 20 mm commandée par une queue de soupape de 6 mm, la surface inférieure est égale à 3,14 cm2 et la surface supérieure est égale à 2,86 cm2 (3,14 - 0,28), une poussée de 28 kg s'exerce pour ouvrir automatiquement la soupape d'admission 9 et permettre le remplissage de la chambre active CA.
La fermeture de la soupape d'admission 9 est ensuite assurée par la mise en communication de la chambre active CA avec la chambre de fermeture 104 créant ainsi une pression complémentaire sur la surface supérieure du piston 102 du vérin V de fermeture qui repousse alors la soupape d'admission 9 sur son siège 20 et ferme / obture l'admission pour permettre le cycle de détente de la chambre active CA dans la chambre de détente CD..
Dès le début de la détente (Figure 1C) le volume de la chambre de fermeture 104 est maintenu en communication avec la chambre de détente CD du moteur et l'air comprimé contenu dans la chambre de fermeture 104 se détend dans la chambre de détente CD du moteur en produisant un travail qui vient s'ajouter au travail de détente de la charge admise dans la chambre active.
Ainsi, au sens de l'invention, la valve Y est une valve de distribution active, et le canal X1 est un canal de distribution active.
En fin de détente, la communication entre la chambre active et la chambre de détente du cylindre et la chambre de fermeture 104 est à nouveau obturée en maintenant dans cette dernière une pression proche de la pression atmosphérique, en permettant le renouvellement du cycle.
On comprend dès lors le fonctionnement de la distribution dite active selon l'invention dans lequel, avantageusement, l'énergie nécessaire à l'ouverture et la fermeture de la soupape d'admission 9 est fournie par la pression régnant dans le réservoir de stockage et / ou le circuit d'admission pour l'ouverture, et régnant dans la chambre active pour la fermeture, puis est ensuite réutilisée en produisant un complément de travail dans le cylindre.
Le volume de la chambre de fermeture 104 est de valeur réduite par exemple, à titre non limitatif, inférieur à 10% de la cylindrée du cylindre 1.
Il en va de même pour les canaux reliant l'admission et la chambre active, et la chambre de fermeture 104 à la chambre de détente CD, dont les sections de passage sont calculées pour permettre un débit suffisant pour l'établissement des pressions dans les différentes chambres. Ces divers canaux ont des diamètres réduits par exemple de l'ordre de 0,5 à 2 millimètres pour un diamètre du conduit principal d'admission de l'ordre de 20 millimètres.
Préférentiellement on utilisera des valves Y et Z du type électromécaniques, constituées notamment sous la forme d'électrovannes adaptées et facilement pilotables par un boîtier de gestion électronique (non représenté).
En outre le pilotage par gestion électronique et commande pneumatique permet des vitesses d'ouverture et de fermeture de la ou des soupapes et des phasages angulaires de commande de grande précision.
Dans le cycle de fonctionnement de la distribution active décrit ci-dessus la détente du volume d'air contenu dans la chambre de fermeture s'effectue conjointement à celle de la chambre active et aux pertes de charge près allant de la pression nominale à la pression d'échappement.
Description de la figure 2 La description qui suit est effectuée par comparaison avec le mode de réalisation préalablement décrit en référence aux figures 1A à 1 D.
La conception précédente est complétée par un canal supplémentaire X3 qui relie le conduit d'admission 8 à la chambre de fermeture 104 du vérin V.
Le moteur comporte aussi une valve T commandée d'obturation de la circulation du gaz, de l'air comprimé, dans le canal X3, dont l'ouverture peut être commandée pour mettre le conduit d'admission 8 et/ou le réservoir 12 en communication avec la chambre de fermeture 104.
Ainsi, la chambre de fermeture 104 dispose d'au moins deux conduits, X3 et X1 munis chacun de moyens commandés d'obturation, T et Y, permettant de mettre la chambre de fermeture 104, successivement en communication avec d'une part avec le circuit d'admission et/ou le réservoir de stockage à haute pression 12, et d'autre part avec la chambre active et de détente du cylindre.
La fermeture de la soupape d'admission 9 est assurée par la mise en communication du circuit d'admission et/ou du réservoir de stockage avec la chambre de fermeture 104, via le canal X3, et par commande de l'ouverture de la valve T, en créant ainsi une pression complémentaire sur la surface du piston de fermeture 102 qui repousse la soupape d'admission 9 sur son siège 20 et ferme l'admission pour permettre le cycle de détente de la chambre active CA dans la chambre de détente CD.
Ainsi, la détente active de la chambre de fermeture 104 peut être retardée pour intervenir plus tard dans le cycle, par commande l'ouverture de la valve Y.
Dès le début de la détente, ou en cours de détente, le volume de la chambre de fermeture 104 est mis en communication avec la chambre de détente CD et l'air comprimé contenu dans la chambre de fermeture 104 se détend dans la chambre de détente CD en produisant un travail qui vient s'ajouter au travail de détente de la charge admise dans la chambre active CA.
Sensiblement en fin de détente, la communication entre la chambre active et de détente du moteur et la chambre de fermeture 104 est à nouveau obturée en maintenant dans cette dernière une pression proche de la pression atmosphérique autorisant le renouvellement du cycle.
Description de la figure 3.
La description qui suit est effectuée par comparaison avec le premier mode de réalisation illustré aux figures 1A à 1D.
Selon ce mode de réalisation, il est prévu des moyens mécaniques pour provoquer le décollement de la soupape d'admission 9 de son siège 20, qui agissent directement sur la tête de la soupape d'admission 9.
Dans le cas d'un moteur devant fonctionner à des vitesses de rotation sensiblement constantes, et qui ne nécessite donc pas de variations du calage de l'ouverture de l'admission, l'ouverture de la soupape d'admission 9 est avantageusement simplifiée par l'intégration d'un tel dispositif mécanique.
A cet effet, lesdits moyens de commande de l'ouverture de la soupape d'admission 9, sont constitués par un doigt D, ou poussoir, qui est formé en relief sur la face supérieure du piston (2) et qui s'étend verticalement vers le haut en regard de la tête en vis à vis de la soupape d'admission 9.
De par son agencement et son dimensionnement, le doigt D de commande d'ouverture est apte à coopérer mécaniquement avec la face inférieure 20 de la tête de la soupape d'admission 9 pour pousser cette dernière verticalement vers le haut.
C'est au cours de la fin de course du piston vers son point mort haut, que le doigt D agit, à travers l'orifice d'admission, sur la portion en vis à vis de la face inférieure 22 de la tête de la soupape d'admission 9 pour la décoller de son siège.
Le doigt D est positionné au droit de la partie inférieure de la tête de la soupape d'admission de telle sorte qu'il soulève légèrement la soupape d'admission en créant une fuite qui met en communication le circuit d'admission avec la chambre active CA en établissant dans la chambre de fermeture 104 une pression complémentaire sur la surface supérieure du piston 102 et, par l'action du piston 102 lié à la queue de la soupape, en repoussant la soupape d'admission 9 sur son siège 20 en fermant ainsi le circuit d'admission en mettant fin au travail de la chambre active CA.
La soupape parcourt alors sa course complète d'ouverture sous l'action des efforts différentiels de pression exercés par le gaz sous pression sur les parties correspondantes de la soupape d'admission 9.
Après ouverture de la soupape d'admission, et début du cycle de détente, du fait de la descente du piston 2, le doigt D n'agit plus sur la soupape d'admission 9, et la suite du cycle est identique à celle décrite en référence aux figures 1A à1D, en mettant en œuvre la valve Y.
Description de la figure 4
La description qui suit est effectuée par comparaison avec le deuxième mode de réalisation illustré à la Figure 2.
L'agencement du canal X2 et de la valve associée Z de commande l'ouverture de la soupape d'admission est modifié.
Le vérin V est un vérin à double effet à deux chambres étanches séparées par le piston 102. La chambre inférieure 105 est une chambre de commande l'ouverture de la soupape d'admission 9 qui, par le canal X2, est reliée au conduit d'admission 8 et/ou au réservoir 12 de gaz sous pression.
Ainsi, la chambre de fermeture 104 dispose d'au moins deux conduits, X3 et X1, munis chacun de moyens commandés d'obturation T, Y permettant de mettre la chambre de fermeture 104, successivement en communication avec d'une part avec le circuit d'admission et/ou le réservoir de stockage à haute pression 12, et d'autre part avec la chambre active et de détente du cylindre.
L'ouverture de la soupape d'admission 9 est commandée par la valve Z qui alimente en gaz sous pression la chambre inférieure 105 du vérin V qui est une chambre d'ouverture.
La fermeture de la soupape d'admission 9 est assurée par la mise en communication du circuit d'admission et/ou du réservoir de stockage avec la chambre de fermeture 104, via le canal X3 et par commande de l'ouverture de la valve T, en créant ainsi une pression complémentaire sur la surface du piston de fermeture 102 qui repousse la soupape d'admission 9 sur son siège 20 et qui ferme l'admission pour permettre le cycle de détente de la chambre active CA dans la chambre de détente CD.
La fermeture est obtenue du fait de l'aire du piston 102 soumise à la pression qui est plus importante côté de la chambre 104, que du côté chambre 105 d'ouverture (la différence correspondant sensiblement à l'aire de la section de la tige de la soupape d'admission).
Ainsi, la détente active de la chambre de fermeture peut être retardée pour intervenir plus tard dans le cycle, par commande l'ouverture de la valve Y.
Dès le début de la détente, ou en cours de détente, le volume de la chambre de fermeture 104 est alors mis en communication avec la chambre de détente CD et l'air comprimé contenu dans la chambre de fermeture 104 se détend dans la chambre de détente en produisant un travail qui vient s'ajouter au travail de détente de la charge admise dans la chambre active.
Sensiblement en fin de détente, la communication entre la chambre active et de détente du moteur et la chambre de fermeture 104 est à nouveau obturée en maintenant dans cette dernière une pression proche de la pression atmosphérique autorisant le renouvellement du cycle.
Selon cette conception, le piston 102 du vérin V commande successivement l'ouverture et la fermeture de la soupape d'admission 9.
Selon une variante, non représentée, il est possible, comme pour la chambre 104, de relier la chambre 105 à la chambre active grâce à un canal X1' et une valve Y', en réalisant ainsi deux circuits parallèles de distribution active.
Les volumes de la chambre de fermeture 104 et de la chambre d'ouverture 105 peuvent alors être mis en communication avec la chambre de détente et l'air comprimé qui y est contenu se détend dans la chambre de détente en permettant d'augmenter le travail de détente de la charge admise en se détendant dans le cylindre moteur principal.
En raison de la souplesse d'utilisation et des possibilités de réglage(s) quasi illimités, le moteur équipé de la distribution d'admission « active » selon l'invention peut être utilisé sur tous véhicules terrestres, maritimes, ferroviaires, aéronautiques. Le moteur à chambre active selon l'invention peut aussi et avantageusement trouver son application dans les groupes électrogènes de secours, de même que dans de nombreuses applications domestiques de cogénération produisant de l'électricité, du chauffage et de la climatisation.
Le moteur à chambre active selon l'invention a été décrit avec un fonctionnement avec de l'air comprimé. Toutefois, il peut utiliser n'importe quel gaz comprimé/gaz à haute pression, sans pour autant sortir du champ de l'invention revendiquée.
L'invention n'est pas limitée aux exemples de réalisations décrits et représentés : les matériaux, les moyens de commande, les dispositifs décrits peuvent varier dans la limite des équivalents, pour produire les mêmes résultats. Le nombre de cylindres moteurs, leurs cylindrées, le volume maximum de la chambre active par rapport au volume déplacé du/des cylindre(s) et le nombre d'étages de détente, peuvent varier.

Claims

REVENDICATIONS
1. Moteur à chambre active fonctionnant selon un cycle thermodynamique à trois phases comportant :
- une phase de transfert isobare et isotherme ;
- une phase de détente polytropique avec travail ;
- une phase d'échappement à pression ambiante ;
ce moteur comportant :
- au moins un cylindre (1) alimenté par un gaz sous pression, préférentiellement par de l'air comprimé, contenu dans un réservoir de stockage à haute pression (12),
- au moins un piston (2) qui est monté coulissant dans ce cylindre (1 ),
- un vilebrequin (5) entraîné par le piston au moyen d'un dispositif bielle-manivelle (3,4) traditionnel,
- une culasse (6) qui ferme à sa partie supérieure le volume du cylindre (1), qui est balayé par le piston (2), et qui comporte au moins un conduit d'admission (8) dans lequel s'écoule un flux de gaz sous pression de remplissage du cylindre, un orifice d'admission (7) du gaz sous pression au-dessus du piston, et au moins un orifice d'échappement et un conduit d'échappement, la culasse étant agencée de telle sorte que, lorsque le piston (2) est à son point mort haut, le volume résiduel compris entre le piston (2) et la culasse (6) est, par construction, réduit aux seuls jeux minimum permettant le fonctionnement sans contact entre le piston (2) et la culasse (6),
- au moins une soupape d'admission (9) qui coopère de manière étanche avec un siège de soupape (20) formé dans la culasse (6) et qui délimite l'orifice d'admission (7),
moteur dans lequel :
- le volume du cylindre (1) balayé par le piston (2) est divisé en deux parties distinctes dont une première partie constituant une chambre active (CA) qui est incluse dans le cylindre (1) et une deuxième partie constituant une chambre de détente (CD),
- sous la poussée continue du gaz sous pression admis dans le cylindre, à pression constante de travail, le volume de la chambre active (CA) augmente en produisant un travail représentant la phase de transfert isobare et isotherme,
- l'admission du gaz sous pression dans le cylindre (1) est obturée dès que le volume maximal de la chambre active (CA) est atteint, la quantité de gaz sous pression comprise dans ladite chambre active (CA) se détendant alors en repoussant le piston (2) sur la deuxième partie de sa course qui détermine la chambre de détente (CD) en produisant un travail assurant ainsi la phase de détente polytropique,
- le piston (2) ayant atteint son point mort bas, l'orifice d'échappement est alors ouvert pour assurer la phase d'échappement (7) pendant la remontée du piston sur la totalité de sa course jusqu'à son point mort haut,
— le couple et le régime du moteur sont commandés par l'ouverture et la fermeture de la soupape d'admission (9) en permettant d'ouvrir la soupape d'admission (9), sensiblement au point mort haut de la course du piston, et en permettant, par la fermeture de la soupape (9), de modifier la durée et/ou le secteur angulaire de l'admission, ainsi que la section de passage de l'ouverture d'admission afin, en fonction de la pression du gaz comprimé contenu dans le réservoir de stockage (12) et de la pression en fin de phase de détente, de déterminer la quantité de gaz sous pression admise ainsi que le volume de la chambre active (CA),
caractérisé en ce que :
- a) la soupape d'admission (9) est montée mobile en déplacement axial entre une position basse de fermeture dans laquelle elle est en appui étanche sur son siège de soupape (20), et une position haute d'ouverture,
- b) dans le sens de son ouverture, la soupape d'admission (9) se déplace axialement, dans le sens opposé à celui de l'écoulement du flux de gaz sous pression de remplissage du cylindre (1),
- c) dans sa position de fermeture, la soupape d'admission (9) est maintenue fermée de façon autoclave sur son siège de soupape par la pression régnant dans le conduit d'admission (8) et s'appliquant à la soupape d'admission,
- d) le moteur comporte des moyens de commande de l'ouverture de la soupape d'admission (9), sensiblement au point mort haut de la course du piston, pour provoquer le décollement de la soupape d'admission (9) de son siège pour permettre l'établissement de la pression d'admission dans la chambre active (CA), la soupape parcourant alors sa course complète d'ouverture sous l'action des efforts différentiels de pression exercés par le gaz sous pression sur les parties correspondantes de la soupape d'admission,
- e) le moteur comporte un vérin pneumatique de fermeture de la soupape d'admission (9) qui comporte un cylindre de vérin (100) et un piston de fermeture (102) qui est lié en déplacement axial avec la soupape d'admission, et qui est monté coulissant dans le cylindre de vérin (100) à l'intérieur duquel il (102) délimite de manière étanche une chambre de commande du vérin, dite chambre de fermeture (104),
- f) le moteur comporte au moins un canal (X2) de commande d'ouverture de la soupape d'admission (9) qui relie ladite chambre de fermeture (104) à une source de gaz sous pression qui est soit la partie supérieure de la chambre active (CA) du cylindre, soit le conduit d'admission (8), soit le réservoir de gaz sous pression,
- g) le moteur comporte un canal de distribution active (X1) qui relie ladite chambre de fermeture (104) à la partie supérieure de la chambre active (CA) et une valve (Y) d'obturation de la circulation du gaz dans le canal (X1) de distribution active, dite valve (Y) de distribution active, dont l'ouverture est commandée pour mettre la chambre de fermeture en communication avec la partie supérieure de la chambre active (CA), fermer la soupape d'admission (8) et produire un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise, via le conduit d'admission, dans la chambre active.
2. Moteur selon la revendication 1, caractérisé en ce que la valve (Y) de distribution active est commandée selon le cycle suivant : i) ouverture de la valve de distribution active pour mettre la chambre de fermeture (104) en communication avec la chambre active (CA) pour, provoquer la fermeture de la soupape d'admission (9) puis, au cours de la phase de détente, permettre la détente du gaz comprimé, contenu dans la chambre de fermeture, dans la chambre de détente (CD) du cylindre en produisant un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise, via le conduit d'admission, dans la chambre active ;
ii) en fin de la phase de détente, fermeture à nouveau de la valve de distribution active (Y) pour maintenir à l'intérieur de la chambre de fermeture (104) la pression du gaz détendu dont la valeur est proche de celle de la pression atmosphérique.
3. Moteur selon la revendication 2, caractérisé en ce que lesdits moyens d) de commande de l'ouverture de la soupape d'admission (9) comportent :
- d1) un canal (X2) de commande d'ouverture de la soupape d'admission qui relie la partie supérieure de la chambre active (CA) au conduit d'admission (8) ou au réservoir de gaz sous pression (12),
- d2) et une valve (Z) commandée d'obturation de la circulation du gaz dans le canal (X2) de commande d'ouverture, dite valve (Z) d'ouverture.
4. Moteur selon la revendication 3, caractérisé en ce que ladite valve (z) de commande d'ouverture est commandée selon le cycle suivant :
k1) en fin de phase d'échappement, lorsque le piston (2) est sensiblement au point mort haut de sa course, ouverture de ladite valve (Z), pour permettre d'établir dans la chambre active (CA) une pression identique à celle régnant dans le conduit d'admission (8) et provoquer le décollement de la soupape d'admission (9) de son siège (20) ;
k2) la soupape d'admission (9) parcourt alors sa course complète d'ouverture sous l'action des efforts différentiels de pression exercés par le gaz sous pression sur les parties correspondantes de la soupape d'admission (9) ;
k3) fermeture de ladite valve (Z) dès que la soupape d'admission (9) s'ouvre.
5. Moteur selon la revendication 2, caractérisé en ce qu'il comporte un canal (X3) qui relie ladite chambre de fermeture (104) au conduit d'admission et/ou au réservoir (12) de gaz sous pression, et une valve (T) d'obturation de la circulation du gaz dans ce canal (X3) dont l'ouverture puis la fermeture sont commandés, pour provoquer la fermeture de la soupape d'admission, préalablement à la mise en communication de la chambre de fermeture (104) avec le volume du cylindre (1) balayé par le cylindre (2).
6. Moteur selon la revendication 1, caractérisé en ce que en ce que lesdits moyens (d) de commande de l'ouverture de la soupape d'admission (9), comportent un doigt (D) formé en relief sur la face supérieure du piston (2) qui, au cours de la fin de course du piston (2) vers son point mort haut, agit, à travers l'orifice d'admission, sur une portion en vis à vis (22) de la soupape d'admission (9) pour la décoller de son siège (20).
7. Moteur selon la revendication 6, caractérisé en ce que la valve de distribution active (Y) est commandée selon le cycle suivant : j) ouverture de la valve de distribution active (Y) pour mettre la chambre de fermeture (104) en communication avec la chambre active (CA) pour mettre la chambre de fermeture (104) en communication avec la chambre de détente (CD) du cylindre, pour permettre la détente du gaz comprimé, contenu dans la chambre de fermeture (104), dans la chambre de détente (CD) du cylindre en produisant un travail qui s'ajoute au travail de la charge de gaz sous pression préalablement admise dans la chambre active ;
jj) en fin de la phase de détente, fermeture à nouveau de la valve (Y) de distribution active pour maintenir à l'intérieur de la chambre de fermeture une pression dont la valeur est proche de celle de la pression atmosphérique.
8. Moteur selon l'une quelconque des revendications précédentes, caractérisé en ce que la position haute maximale d'ouverture de la soupape d'admission (9) est définie par une butée réglable (30) dont la position axiale, selon la direction de déplacement de la soupape d'admission (9), est commandée pour faire varier de débit de gaz sous pression admis dans le cylindre (1) via le conduit d'admission.
PCT/EP2015/060855 2014-05-22 2015-05-18 Moteur à air comprimé à chambre active incluse et à distribution active à l'admission WO2015177076A2 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
NZ725405A NZ725405B2 (en) 2014-05-22 2015-05-18 Compressed-air engine with an integrated active chamber and with active intake distribution
EP15726034.0A EP3146167B1 (fr) 2014-05-22 2015-05-18 Moteur à air comprimé à chambre active incluse et à distribution active à l'admission
ES15726034T ES2715515T3 (es) 2014-05-22 2015-05-18 Motor de aire comprimido con cámara activa incluída y con distribución activa en la admisión
AU2015263264A AU2015263264B2 (en) 2014-05-22 2015-05-18 Compressed-air engine with an integrated active chamber and with active intake distribution
KR1020167032335A KR102345515B1 (ko) 2014-05-22 2015-05-18 통합식 활성 챔버가 있고 활성 흡기구 분배수단이 있는 압축 공기 엔진
US15/312,828 US10371023B2 (en) 2014-05-22 2015-05-18 Compressed-air engine with an integrated active chamber and with active intake distribution
AP2016009621A AP2016009621A0 (en) 2014-05-22 2015-05-18 Compressed-air engine with an integrated active chamber and with active intake distribution
RU2016145407A RU2701784C2 (ru) 2014-05-22 2015-05-18 Работающий на сжатом воздухе двигатель с включенной активной камерой и с активным распределением впуска
CA2946481A CA2946481C (fr) 2014-05-22 2015-05-18 Moteur a air comprime a chambre active incluse et a distribution active a l'admission
CN201580027044.6A CN106414899B (zh) 2014-05-22 2015-05-18 具有内置活动室的主动进气配气式压缩空气发动机
IL248944A IL248944B (en) 2014-05-22 2016-11-14 Air-compressed engine with active chamber included and with active suction distribution
ZA2016/08834A ZA201608834B (en) 2014-05-22 2016-12-21 Compressed-air engine with an integrated active chamber and with active intake distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454603A FR3021347B1 (fr) 2014-05-22 2014-05-22 Moteur a air comprime a chambre active incluse et a distribution active a l'admission
FR1454603 2014-05-22

Publications (2)

Publication Number Publication Date
WO2015177076A2 true WO2015177076A2 (fr) 2015-11-26
WO2015177076A3 WO2015177076A3 (fr) 2016-01-14

Family

ID=51570549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/060855 WO2015177076A2 (fr) 2014-05-22 2015-05-18 Moteur à air comprimé à chambre active incluse et à distribution active à l'admission

Country Status (13)

Country Link
US (1) US10371023B2 (fr)
EP (1) EP3146167B1 (fr)
KR (1) KR102345515B1 (fr)
CN (1) CN106414899B (fr)
AP (1) AP2016009621A0 (fr)
AU (1) AU2015263264B2 (fr)
CA (1) CA2946481C (fr)
ES (1) ES2715515T3 (fr)
FR (1) FR3021347B1 (fr)
IL (1) IL248944B (fr)
RU (1) RU2701784C2 (fr)
WO (1) WO2015177076A2 (fr)
ZA (1) ZA201608834B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260744A1 (fr) * 2016-06-22 2017-12-27 Eduard Menrath Commande à aimant permanent pour moteurs pneumatiques
GB2586429A (en) * 2020-11-27 2021-02-17 Okwudili Isichei Michael Isichei Engine
WO2022100810A1 (fr) 2020-11-11 2022-05-19 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
WO2023217413A1 (fr) 2022-05-10 2023-11-16 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d'échappement équilibrée permettant une désactivation de cylindre

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201712717D0 (en) 2017-08-08 2017-09-20 Level Energy Ltd Energy supply system and method of operation
CH714963A1 (de) * 2018-05-02 2019-11-15 Explotechnik AG Druckwellengenerator und Verfahren zum Betreiben eines Druckwellengenerators, sowie pneumatischer Aktuator.
IT202000011080A1 (it) * 2020-05-14 2021-11-14 Fpt Motorenforschung Ag Motore a combustione interna sovralimentato dotato di un sistema (va) di attuazione delle valvole
CN111691925B (zh) * 2020-06-24 2021-11-09 张谭伟 一种空气发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036088A1 (fr) 2001-10-25 2003-05-01 Mdi Motor Development International Societe Anonyme Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
WO2003089764A1 (fr) 2002-04-22 2003-10-30 Mdi Motor Developement International S.A. Detendeur a debit variable et distribution par soupape a commande progressive pour moteur a injection d'air comprime fonctionnant en mono et pluri energie et autres moteurs ou compresseurs
WO2005049968A1 (fr) 2003-11-17 2005-06-02 Mdi - Motor Development International S.A. Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
WO2008028881A1 (fr) 2006-09-05 2008-03-13 Mdi - Motor Development International S.A. Moteur optimisé à air comprimé ou gaz et/ou énergie supplémentaire possédant une chambre de détente active
WO2012045693A1 (fr) 2010-10-04 2012-04-12 Motor Development International S.A. Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre
WO2012045694A1 (fr) 2010-10-05 2012-04-12 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et autodétendeur

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US213435A (en) * 1879-03-18 Improvement in valve-gear for steam-engines
US896439A (en) * 1907-09-13 1908-08-18 Fred S Holsteen Valve.
US920991A (en) * 1907-10-24 1909-05-11 Harry Edward Perrault Valve mechanism.
US955786A (en) * 1909-06-30 1910-04-19 Pelatiah J Marsh Internal-combustion engine.
US1942711A (en) * 1930-06-06 1934-01-09 American Throttle Company Inc Regulating valve apparatus for locomotive or other steam engines
DE1042607B (de) * 1956-01-05 1958-11-06 Mannesmann Meer Ag Einlass- und Auslassventilsteuerung fuer Kolbenkraftmaschinen mit getrennten Ein- und Auslassventilen
US3410304A (en) * 1966-01-19 1968-11-12 Herman L. Paul Jr. Relief valves
GB2402169B (en) * 2003-05-28 2005-08-10 Lotus Car An engine with a plurality of operating modes including operation by compressed air
DE202005017622U1 (de) * 2005-11-11 2006-01-12 Carlguth, Manfred Solarthermische Anlage
SE531265C2 (sv) * 2006-01-16 2009-02-03 Cargine Engineering Ab Metod och anordning för drivning av en ventil till en förbränningsmotors förbränningskammare, och en förbränningsmotor
US7377249B1 (en) * 2007-03-19 2008-05-27 Delphi Technologies, Inc. Outward-opening gas-exchange valve system for an internal combustion engine
US7536984B2 (en) * 2007-04-16 2009-05-26 Lgd Technology, Llc Variable valve actuator with a pneumatic booster
KR101128473B1 (ko) * 2007-08-13 2012-03-23 스쿠데리 그룹 엘엘씨 압력 평형 엔진 밸브들
US8763571B2 (en) * 2009-05-07 2014-07-01 Scuderi Group, Inc. Air supply for components of a split-cycle engine
DE102009052385A1 (de) * 2009-11-09 2011-05-12 Robert Bosch Gmbh Ventilgesteuerte Verdrängermaschine
US8607763B2 (en) * 2010-05-13 2013-12-17 Itzhak GONIGMAN Method and system for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036088A1 (fr) 2001-10-25 2003-05-01 Mdi Motor Development International Societe Anonyme Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
WO2003089764A1 (fr) 2002-04-22 2003-10-30 Mdi Motor Developement International S.A. Detendeur a debit variable et distribution par soupape a commande progressive pour moteur a injection d'air comprime fonctionnant en mono et pluri energie et autres moteurs ou compresseurs
WO2005049968A1 (fr) 2003-11-17 2005-06-02 Mdi - Motor Development International S.A. Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
WO2008028881A1 (fr) 2006-09-05 2008-03-13 Mdi - Motor Development International S.A. Moteur optimisé à air comprimé ou gaz et/ou énergie supplémentaire possédant une chambre de détente active
WO2012045693A1 (fr) 2010-10-04 2012-04-12 Motor Development International S.A. Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre
WO2012045694A1 (fr) 2010-10-05 2012-04-12 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et autodétendeur

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260744A1 (fr) * 2016-06-22 2017-12-27 Eduard Menrath Commande à aimant permanent pour moteurs pneumatiques
WO2022100810A1 (fr) 2020-11-11 2022-05-19 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
US20230407747A1 (en) * 2020-11-11 2023-12-21 Motor Development International S.A. Compressed-air engine with integrated active chamber and active distribution with balanced valve
GB2586429A (en) * 2020-11-27 2021-02-17 Okwudili Isichei Michael Isichei Engine
WO2023217413A1 (fr) 2022-05-10 2023-11-16 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d'échappement équilibrée permettant une désactivation de cylindre
FR3135486A1 (fr) 2022-05-10 2023-11-17 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d’échappement équilibrée permettant une désactivation de cylindre

Also Published As

Publication number Publication date
ES2715515T3 (es) 2019-06-04
FR3021347A1 (fr) 2015-11-27
NZ725405A (en) 2022-03-25
US20170211435A1 (en) 2017-07-27
RU2016145407A3 (fr) 2018-12-04
KR20170007306A (ko) 2017-01-18
ZA201608834B (en) 2018-08-29
AU2015263264B2 (en) 2019-05-16
IL248944A0 (en) 2017-01-31
AU2015263264A1 (en) 2016-11-10
AP2016009621A0 (en) 2016-12-31
WO2015177076A3 (fr) 2016-01-14
RU2701784C2 (ru) 2019-10-01
RU2016145407A (ru) 2018-06-26
CA2946481A1 (fr) 2015-11-26
CA2946481C (fr) 2023-02-28
US10371023B2 (en) 2019-08-06
EP3146167A2 (fr) 2017-03-29
EP3146167B1 (fr) 2018-12-12
IL248944B (en) 2020-06-30
KR102345515B1 (ko) 2021-12-31
CN106414899A (zh) 2017-02-15
FR3021347B1 (fr) 2016-05-20
CN106414899B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
EP3146167B1 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à l'admission
EP0407436B1 (fr) Groupe motopropulseur, notamment pour vehicule automobile et vehicule comportant un tel groupe
EP1702137B1 (fr) Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
EP1341992B1 (fr) Dispositif d'actionnement de soupapes, et procede de commande pour un tel dispositif
CA2810930C (fr) Moteur mono et/ou bi-energie a air comprime et/ou a energie additionnelle a chambre active incluse dans le cylindre
EP3143288B1 (fr) Convertisseur de pression à piston comprenant un détendeur de fin de course
WO2012045694A1 (fr) Moteur à air comprimé à chambre active incluse et autodétendeur
EP3692248B1 (fr) Actionneur hydraulique de soupape a regeneration
FR3097254A3 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
WO2023217413A1 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à soupape d'échappement équilibrée permettant une désactivation de cylindre
EP0358655B1 (fr) Procede et dispositif d'amenagement d'un moteur a deux temps a post-remplissage
EP4259902A1 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
EP2574752A1 (fr) Procédé et dispositif d'alimentation en air d'un moteur hybride pneumatique-thermique
EP3983647B1 (fr) Moteur à combustion interne à train epicycloïdale et à pistons alternatifs
FR3006735A1 (fr) Dispositif de transformation de mouvement et procede correspondant
WO2013038081A1 (fr) Dispositif comportant un clapet associe a un conduit et ensemble de motorisation comprenant un tel dispositif
FR2655088A1 (fr) Procede de fonctionnement d'un moteur a vapeur et culasse de moteur a commande integree d'admission et d'echappement.
BE408258A (fr)
WO2015011390A1 (fr) Procédé de pilotage d'un moteur deux-temps a combustion interne
FR3003601A1 (fr) Systeme mecanique de production et de stockage d'azote liquide et de production d'energie mecanique a partir dudit azote liquide.
FR2996877A1 (fr) Moteur hybride pneumatique-thermique

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2946481

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015263264

Country of ref document: AU

Date of ref document: 20150518

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 248944

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20167032335

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015726034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312828

Country of ref document: US

Ref document number: 2015726034

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016145407

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15726034

Country of ref document: EP

Kind code of ref document: A2