WO2012045693A1 - Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre - Google Patents

Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre Download PDF

Info

Publication number
WO2012045693A1
WO2012045693A1 PCT/EP2011/067211 EP2011067211W WO2012045693A1 WO 2012045693 A1 WO2012045693 A1 WO 2012045693A1 EP 2011067211 W EP2011067211 W EP 2011067211W WO 2012045693 A1 WO2012045693 A1 WO 2012045693A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
cylinder
active chamber
compressed air
piston
Prior art date
Application number
PCT/EP2011/067211
Other languages
English (en)
Inventor
Guy Negre
Cyril Negre
Original Assignee
Motor Development International S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UAA201305248A priority Critical patent/UA113278C2/uk
Priority to CN201180048061.XA priority patent/CN103201457B/zh
Priority to AU2011311695A priority patent/AU2011311695B2/en
Priority to BR112013008073A priority patent/BR112013008073A2/pt
Priority to SG2013025374A priority patent/SG189276A1/en
Priority to IN608MUN2013 priority patent/IN2013MN00608A/en
Priority to NZ608179A priority patent/NZ608179A/en
Priority to MA35768A priority patent/MA34543B1/fr
Priority to MX2013002592A priority patent/MX2013002592A/es
Priority to EP11764179.5A priority patent/EP2625385A1/fr
Application filed by Motor Development International S.A. filed Critical Motor Development International S.A.
Priority to US13/822,946 priority patent/US20130239563A1/en
Priority to CA2810930A priority patent/CA2810930C/fr
Priority to JP2013532149A priority patent/JP2013542367A/ja
Priority to KR1020137011563A priority patent/KR20130117783A/ko
Priority to AP2013006795A priority patent/AP3564A/xx
Priority to EA201390479A priority patent/EA201390479A1/ru
Publication of WO2012045693A1 publication Critical patent/WO2012045693A1/fr
Priority to TNP2013000092A priority patent/TN2013000092A1/fr
Priority to IL225296A priority patent/IL225296A0/en
Priority to CU2013000051A priority patent/CU20130051A7/es
Priority to ZA2013/02708A priority patent/ZA201302708B/en
Priority to CR20130193A priority patent/CR20130193A/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/02Hot gas positive-displacement engine plants of open-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • F02M31/163Preheating by burning an auxiliary mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an engine operating in particular with compressed air, or any other gas, and using a so-called “active chamber” chamber.
  • valves with valves and springs well known have very low flow rates and their use for this application requires very heavy and inefficient devices. In addition, they are very sensitive to icing due to the humidity of the cooled air during relaxation.
  • WO-A1-2005 / 049968 describing a compressed air motor preferably powered by compressed air or any other compressed gas contained in a storage tank.
  • high pressure previously relaxed to a nominal working pressure in a buffer capacity said working capacity.
  • the working capacity in a bi-energies version comprises a device for heating the air supplied by additional energy (fossil or other energy) making it possible to increase the temperature and / or the pressure of the air passing through it.
  • the expansion chamber is constituted by a variable volume equipped with means making it possible to produce a work, it is twinned and in contact by a permanent passage with the space included above the main engine piston which is equipped with a piston stop device at top dead center,
  • the air or the gas under pressure is admitted into the expansion chamber when it is at its smallest volume and, under the pressure, will increase its volume by producing a job
  • the expansion chamber being maintained substantially at its maximum volume, the compressed air contained therein then relaxes in the engine cylinder, thereby pushing the engine piston in its downward stroke, thereby providing a job
  • variable volume of the expansion chamber is reduced to its smallest volume to start a complete work cycle.
  • the engine expansion chamber according to this invention actively participates in the work.
  • the engine is thus called “active chamber” engine.
  • thermodynamic cycle in four phases during its operation in mono-energy compressed air mode characterized by:
  • WO-A1-2008/028881 which shows a variant of WO-A1-2005 / 049968, claims the same thermodynamic cycle but using a conventional crank-crank device. It is preferably supplied with compressed air or any other compressed gas contained in a high-pressure storage tank, previously expanded to a nominal working pressure in a so-called working capacity buffer capacity.
  • the capacity of work in version bi-energies comprises a device reheating the air powered by additional energy (fossil or other energy) to increase the temperature and / or the pressure of the air that passes through it.
  • the expansion chamber is constituted by a variable volume equipped with means making it possible to produce a work and is connected by a passage comprising a shutter thus making it possible to isolate it or put it in contact with the volume included in the engine cylinder above the engine piston at its top dead center;
  • the engine expansion chamber according to the invention actively participates in the work.
  • the motors according to WO-A1-2005 / 049968 and WO-A1-2008 / 028881 are known as active chamber motors.
  • the present invention proposes to solve this problem while simplifying the construction of the machine.
  • the active chamber motor included in the engine cylinder according to the invention uses the same thermodynamic cycles as WO-A1-2005 / 049968 and WO-A1-2008/028881 described above, as well as a traditional crank connecting device.
  • the invention thus proposes an active-chamber motor, comprising at least one piston slidably mounted in a cylinder and driving a crankshaft by means of a conventional crank-rod device and operating according to a four-phase thermodynamic cycle comprising:
  • the volume of the cylinder which is swept by the piston is closed at its upper part by a cylinder head having at least one duct and inlet port and at least one duct and exhaust port and which is arranged so that that when the piston is at its top dead point, the residual volume between the piston and the cylinder head is, by construction, reduced to the minimum clearances allowing operation without contact between the piston and the cylinder head;
  • the exhaust port is then open to ensure the exhaust phase during the ascent of the piston over its entire stroke.
  • the maximum volume of the active chamber CA included in the engine cylinder and the volume of the expansion chamber CD are dimensioned such that so that at the nominal operating pressure of the engine the pressure at the end of the expansion at the bottom dead point is close to the atmospheric pressure.
  • a 300 cm 3 engine of full displacement - that is, the volume of the active chamber plus the volume of the expansion chamber - the maximum volume of the CA active chamber included in the cylinder will be 35 cm 3 , reached at 45 degrees engine rotation after the top dead center, and the volume of the CD expansion chamber will be 265 cm 3 , and the bottom dead center pressure at The opening of the exhaust will be 1.03 bar.
  • the engine according to the invention is advantageously equipped with a variable-flow regulator according to WO-A1 -03 / 089764, known as a dynamic expansion valve, which makes it possible to feed the working capacity to its nominal operating pressure by compressed air. from the high pressure storage tank by performing a no-work relaxation of the isothermal type.
  • a variable-flow regulator according to WO-A1 -03 / 089764, known as a dynamic expansion valve, which makes it possible to feed the working capacity to its nominal operating pressure by compressed air. from the high pressure storage tank by performing a no-work relaxation of the isothermal type.
  • thermodynamic cycle of the active-chamber motor is identical to that of WO-A1-2005 / 049968 and WO-A1-2008/028881. It is characterized by an isothermal expansion without work allowed by the dynamic expansion valve, followed by a transfer accompanied by a very slight relaxation almost isothermal - for example a capacity of 3,000 cubic centimeters in a capacity of 3050 cubic centimeters - with work by the use of the air pressure included in the working capacity during the filling of the expansion chamber, followed by a polytropic relaxation of the expansion chamber in the engine cylinder with work and considerable lowering of the temperature, to end with the escape of the air relaxed to the atmosphere.
  • the active chamber engine included in the cylinder according to the invention comprises several stages of successive cascading cylinders each of which is designed and operated according to the principle of the invention which has just been to be defined, these consecutive cylinders being of increasing displacement.
  • the first cylinder of the smallest capacity, is supplied with compressed air by the working capacity.
  • the next cylinder (s), of increasing displacement, are supplied with compressed air by the exhaust of the upstream / preceding cylinder.
  • One or more heat exchanger (s) with the atmosphere is / are positioned between each cylinder, that is to say between two consecutive cylinders, to increase the air temperature of the cylinder. Exhaust the previous cylinder to bring it close to room temperature and thus increase the volume of air escaped.
  • the total cubic capacity, the volume of the active chamber and the volume of the expansion chamber of each cylinder are dimensioned so that the volume of air escaped from each of the cylinders, namely the volume of the total cubic capacity plus the volume of the cylinder. increase in volume caused by the increase of the temperature in the exchangers, are substantially equivalent to the maximum volume of the active chamber of the next cylinder.
  • each cylinder Depending on the number of cylinders chosen, and the total displacement of the engine, the characteristics of each cylinder are defined so that the exhaust temperatures of each cylinder are substantially identical. As a result, the lowering factors of the exhaust pressure are also found to be substantially similar.
  • a 3 cylinder engine according to the invention with a total displacement of 508.7 cm 3 fed by a working capacity at a nominal pressure of 100 bar will have the following characteristics:
  • the compressed air at ambient temperature contained in the working capacity is heated at constant pressure by additional energy in a thermal heater.
  • This arrangement makes it possible to increase the quantity of usable and available energy by the fact that the compressed air, before its introduction into the active chamber CA, will increase its temperature and increase its volume while allowing the increase of the autonomy of the a machine (for example a motor vehicle) equipped with the motor according to the invention, in the proportion of said increase in volume.
  • thermal reheat device or thermal reheater
  • thermal reheater has the advantage of being able to use clean continuous combustions which can be catalyzed or decontaminated by any known means in order to obtain minute emissions of pollutants.
  • the thermal heater can use for energy a fossil fuel such as gasoline, diesel or gas LPG or CNG.
  • the heater can also use biofuels or alcohol / ethanol, thus making it possible to perform a dual-energy operation with external combustion, in which a burner will cause a rise in temperature.
  • the heater can also use thermochemical processes that allow this rise in temperature.
  • the active-chamber motor uses solar energy to heat the compressed air and it is equipped for this purpose with a solar dish, or any other system for recovering solar energy, focusing in a chamber allowing the temperature increase of the compressed air that passes through the working capacity.
  • This characteristic makes it possible to increase the quantity of usable and available energy by the fact that the compressed air, before it is introduced into the cylinder, will increase its temperature and increase its volume while allowing the increase of the autonomy of the machine. equipped with the engine according to the invention, in the proportion of said increase in volume.
  • the different energies used can be used separately or in combination.
  • the means for heating the air by additional energy are preferably installed between the last two cylinders to maintain the input of ambient thermal energy during the operation.
  • reheating and / or warming up devices between each pair of cylinders can be used, without changing the principle of the present invention.
  • the exhaust air is directed to a single multi-stage heater so that only one combustion source can be used.
  • thermodynamic cycle of the first cylinder then comprises five phases:
  • thermodynamic cycle of subsequent / consecutive cylinders in the case of a multi-cylinder comprises four phases:
  • the engine according to the invention is driven in torque and in speed, by controlling the pressure in the working capacity, this control being advantageously provided by the dynamic expander, when it operates in dual energy mode with additional energy (fossil or other) and by means of an electronic computer that equips the engine and controls the amount of additional energy provided, depending on the pressure in said working capacity.
  • the active-chamber motor is coupled to an air compressor allowing, during its operating with the additional energy, supplying compressed air to the storage tank of compressed air at high pressure.
  • a heat exchanger is positioned between the compressor and the storage tank, so that the compressed air at high pressure at high temperature at the outlet of the compressor returns to the reservoir, a temperature close to ambient temperature.
  • the active chamber motor according to the invention mono-energy and bi-energies thus equipped operates in three modes:
  • the heat exchangers may be air / air or air / liquid exchangers, or any other device or gas producing the desired effect of reheating.
  • the active chamber engine according to the invention can be used on all land, maritime, railway, aeronautical vehicles.
  • the active chamber motor according to the invention can also and advantageously find its application in the emergency generator sets, as well as in many domestic cogeneration applications producing electricity, heating and air conditioning.
  • FIG. 1 shows schematically a motor according to the invention, active chamber included in the cylinder, which is illustrated in axial section at its bottom dead point, and its compressed air supply device;
  • FIG. 5 shows, in section, an active chamber motor according to the invention multi-cylinder with three stages
  • - Figure 6 schematically shows an active chamber motor according to the invention, seen in section, and its high-pressure air supply device comprising a device for heating the compressed air by means of a solar parabola;
  • FIG. 7 shows, in section, a multi-cylinder engine and its heating device by combustion
  • FIG. 8 schematically shows an active chamber motor according to the invention coupled to a compressor supplying the storage tank.
  • FIG. 1 represents an active chamber motor according to the invention on which a driving cylinder 1 can be seen in which a piston slides
  • the volume of the engine cylinder 1 according to the invention which is swept by the piston 2 is divided along an imaginary line DD '(corresponding to a plane of division orthogonal to the axis of the cylinder) into two parts: a first part constituting the chamber active CA, which is thus included in the cylinder, and a second portion constituting the expansion chamber CD.
  • the engine cylinder 1 is capped with an upper cylinder head 6 comprising an intake duct 7 and an exhaust duct 8, as well as associated means for closing said ducts, these means being here intake valves 9 and exhaust 10 respectively.
  • the intake duct is connected to a working capacity 11 at working pressure which is fed by a high-pressure reservoir 12 through a dynamic expander 13.
  • the high-pressure compressed air contained in the high pressure storage tank 12 is expanded to the working pressure in the working capacity 11 through the dynamic expansion valve 13 thus performing the first phase of the thermodynamic cycle: an isothermal expansion without job.
  • a device (not shown), controlled by the accelerator pedal, controls the dynamic expander 13 to allow to regulate the pressure in the working chamber and thus to control the engine.
  • the piston 2 When the piston 2 is at its top dead point, by construction, the residual volume between the upper face of the piston and the portion vis-à-vis the cylinder head 6 is zero, or almost zero, and the volume of the active chambers CA and relaxing CD is then zero. From the top dead center of the piston, the volume of the cylinder swept by the piston and located above the upper face of the piston will increase gradually, thus creating successively the active chamber CA, then the expansion chamber CD.
  • the downward stroke of the piston 2 in the cylinder 1 thus comprises, consecutively, a first "upper” part corresponding to the progressive formation of the so-called active chamber CA, and a second "lower” part corresponding to the progressive formation of the so-called chamber. relaxing CD.
  • Figure 2 shows the active chamber engine according to the invention during admission, the inlet valve 9 having been opened from the top dead center.
  • the compressed air at nominal working pressure contained in the working capacity 11 supplies constant pressure to the active chamber CA, the volume of which increases gradually, and pushes the piston 2 downwards, producing a work and performing the second phase. of the thermodynamic cycle: transfer with slight relaxation with quasi-isothermal work.
  • FIG. 3 represents the enclosed active-chamber motor CA according to the invention while the piston 2 reaches the line DD ', at which time the volume of the active chamber CA is maximum and at which the pressure in the active chamber is at the pressure nominal working identical to the pressure of the air contained in the working capacity 11.
  • the inlet valve 9 is then closed and interrupts the arrival of air under pressure.
  • the compressed air at the nominal pressure contained in the active chamber CA relaxes by pushing the piston 1 towards its bottom dead point (FIG. 4) by doing a relaxing engine work and by performing the third phase of the thermodynamic cycle: polytropic expansion with work.
  • the piston 1 then reaches its bottom dead point (FIG. 1), corresponding to the maximum available volume of the cylinder swept by the piston, and the exhaust valve 10 is then opened to evacuate, through the exhaust pipe 8, the air relaxed - at a pressure close to atmospheric pressure - to the atmosphere during its ascent stroke by performing the fourth phase of the thermodynamic cycle: exhaust at ambient / atmospheric pressure.
  • FIG. 5 represents a multi-cylinder engine with three stages of increasing displacement according to the invention. From left to right, we can see the first cylinder 1 of the smallest displacement in which slides a piston 2 connected by a connecting rod 3 to the crankpin 4 of a crankshaft 5.
  • This engine cylinder 1 is divided into a line DD 'in two parts: an active chamber CA and a partial expansion chamber CD (not visible in the drawing).
  • the engine cylinder 1 is capped with a cylinder head 6 comprising an intake duct 7 and an exhaust duct 8 as well as means for closing off these ducts which are here intake and exhaust valves 10.
  • the intake duct 7 is connected to a working capacity 11 at working pressure supplied by the high-pressure reservoir 12 through a dynamic expander 13.
  • the exhaust duct 8 opens at the inlet of a first heat exchanger air / air 14.
  • the second stage consists of a second cylinder 1A, whose displacement is greater than that of the first cylinder 1, in which slides a piston 2A connected by a connecting rod 3A to the crankpin 4A of the common crankshaft 5.
  • the second engine cylinder 1A is divided along a line DD 'in two parts: a second active chamber CA1 whose volume is substantially equal to the displacement of the first cylinder 1 plus the increase in volume caused by the heating of the exhaust in the air / air heat exchanger 14 , and a second partial relaxation chamber CD1.
  • the second engine cylinder 1A is capped with a common cylinder head 6 comprising an intake duct 7A and an exhaust duct 8A, and means for closing said ducts which are here intake valves 9A and exhaust 10A.
  • the intake duct 7A is connected to the outlet of the air / air heat exchanger 14 which supplies it with compressed air at the constant pressure of the exhaust of the first cylinder.
  • the exhaust duct 8A opens at the inlet of a second air / air
  • the third stage consists of a third cylinder 1B whose cubic capacity is even larger and is greater than the cylinder capacity of the second cylinder 1A, in which slides a piston 2B connected by a connecting rod 3B to the crankpin 4B of the common crankshaft 5.
  • the cylinder 1B engine is divided along a line DD 'into two parts: a third active chamber CA2 whose volume is substantially equal to the displacement of the second cylinder 1A increased volume increase caused by the heating of the exhaust in the second exchanger thermal air / air 15 and a third expansion chamber CD2 not visible in the drawing.
  • the engine cylinder 1B is capped with the cylinder head 6, here common to the three cylinders, comprising an intake duct 7B and an exhaust duct 8B and shutter means of these ducts which are here intake valves 9B and exhaust 10B.
  • the intake duct 7B is connected to the outlet of the second air / air heat exchanger 15 which the supply of compressed air at a constant pressure of the exhaust of the second cylinder 1A.
  • the exhaust pipe 8B opens to the atmosphere.
  • the high-pressure compressed air contained in the high pressure storage tank 12 is expanded by the dynamic expander 13 to a nominal working pressure which in this case can be much higher - for example 100 bar - than in the case of a single-cylinder engine as described above.
  • the inlet valve 9 When the piston 2 of the first cylinder 1 is at its top dead center, the inlet valve 9 is open and the compressed air at nominal working pressure contained in the working capacity 11 supplies constant pressure to the active chamber CA first cylinder 1 and pushes the piston 2 in its downstroke by producing a job.
  • the piston 2 reaches the line DD 'at which the volume of the active chamber CA of 5.5 is at the nominal working pressure of 100 bar identical to the pressure of the air contained in the working capacity 11.
  • intake 9 is closed and it interrupts the arrival of pressurized air.
  • the compressed air at the nominal pressure contained in the active chamber CA partially relaxes in the expansion chamber by pushing the piston 1 towards its bottom dead point by performing a work engine relaxation.
  • the compressed air cools to minus 78 degrees.
  • the first piston 1 reaches its low dead point while the air pressure contained in the cylinder 1 of a given total volume of 90 cm 3 is still large, of the order of 20 bar.
  • the exhaust valve 10 is then opened and the piston 1 pushes at almost constant pressure the compressed air into the air / air exchanger 14 in which it will heat up and regain substantially the ambient temperature by increasing the volume to go from 20 cm 3 to 26 cm 3 .
  • the top of the inlet valve 9A is open and the compressed air with secondary working pressure contained in the exchanger 14 supplies the second chamber with constant pressure (20 bar) included active CA1 cylinder 1A and pushes the second piston 2A in its downstroke by producing a job.
  • the piston 2A reaches the line DD 'at which the volume of the second active chamber CA1 of 26 cm3 is at the pressure secondary working 20 bar identical to the air pressure in the exchanger 14.
  • the inlet valve 9A is closed and interrupts the arrival of air under pressure.
  • the compressed air at the secondary pressure (20 bar) contained in the second active chamber CA1 then partially relaxes by pushing the second piston 1A towards its bottom dead point by performing a work engine relaxation.
  • the compressed air cools to minus 78 degrees.
  • the second piston 1A arrives at its bottom dead center while the air pressure contained in the second cylinder 1A, with a total volume of 90 cm 3 , is still significant of the order of 5 bar. 10A exhaust is then open and the second piston 1A pushes at almost constant pressure compressed air in the second air / air exchanger 15 in which it will heat up and regain substantially the ambient temperature by increasing volume to pass 90 cm 3 at 129 cm 3 .
  • the intake valve 9B When the third piston 2B of the third cylinder 1B is at its top dead point, the intake valve 9B is open and the compressed air at tertiary working pressure - 5 bar - contained in the second exchanger 15 supplies constant pressure to the third included active chamber CA2 of the third cylinder 1B and pushes the piston 2B in its downward stroke producing a job, the piston 2B reaches the line DD 'at which the volume of the third active chamber CA2 of 129 cm 3 is at the tertiary pressure working pressure - 5 bar - identical to the pressure of the air contained in the second exchanger 15.
  • the inlet valve 9B is closed and it interrupts the arrival of air under pressure.
  • the compressed air at tertiary pressure contained in the third active chamber CA2 relaxes completely by pushing the third piston 1B towards its bottom dead point by doing a work engine relaxation, to reach atmospheric pressure.
  • the compressed air cools to minus 78 degrees.
  • the third piston 1B reaches its bottom dead point while the pressure of the air contained in the third cylinder 1B of a given total volume of 400 cm 3 is close to atmospheric pressure and the exhaust valve 8B is then open and the third piston 2B pushes back to the atmosphere the air contained in the third cylinder 1B.
  • FIG. 6 represents an active chamber motor included according to the invention and its high pressure air supply device comprising a device for heating the compressed air by a solar parabola 16 which focuses in the working capacity allowing the increase temperature of the compressed air passing through it.
  • This arrangement makes it possible to increase the amount of usable and available energy by the fact that the compressed air, before its introduction into the active chamber included, will increase its temperature and increase pressure and / or volume by allowing the increase engine performance and / or the range of the vehicle equipped with the engine.
  • FIG. 7 shows the active-chamber motor according to the invention, a multi-energy version in which a schematic device 17 for heating compressed air positioned between the last (second) heat exchanger 15 and the admission of the last (third) cylinder with additional energy input.
  • This heating device is here a burner 17 fed by a gas cylinder 18.
  • the combustion implementation is thus here an external-internal combustion and it allows to significantly increase the volume and / or the pressure of the compressed air from the exhaust of the previous cylinder (second cylinder).
  • FIG. 8 represents the active chamber motor according to the invention operating in autonomous bi-energies mode with the so-called additional fossil or vegetable energy when, according to a variant of the invention, it drives a compressor 19 of compressed air which supplies the storage tank 12 through an air / air heat exchanger 20.
  • the general operation of the engine is identical to that described above with reference to FIGS. 1 to 4. However, this additional arrangement makes it possible to fill the storage tank in use. by means of additional energy.
  • the present invention proposes a method for controlling the operation of an engine comprising at least one cylinder closed by a cylinder head and piston-swept, with the possibility of stopping the piston at the top dead center, which makes it possible to incorporate / include functionally and thus structurally in the driving cylinder an active chamber CA which, in the previous inventions, was "external” to the cylinder to which this "external" active chamber was connected.
  • the active chamber motor according to the invention has been described with operation with compressed air. However, he can use any which compressed gas / gas at high pressure, without departing from the scope of the claimed invention.
  • the invention is not limited to the embodiments described and shown: the materials, the control means, the devices described may vary within the limit of equivalents, to produce the same results.
  • the number of engine cylinders, their displacements, the maximum volume of the active chamber relative to the displaced volume of the cylinder (s) and the number of stages of relaxation, may vary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

L'invention propose un moteur à chambre active, comportant au moins un piston (2) monté coulissant dans un cylindre (1) et entraînant un vilebrequin (5) au moyen d'un dispositif bielle-manivelle (3,4) et fonctionnant selon un cycle thermodynamique à quatre phases comportant : une détente isotherme sans travail, un transfert –légère détente avec travail dit quasi-isotherme, une détente polytropique avec travail, un échappement à pression ambiante, qui est alimenté préférentiellement par de l'air comprimé contenu dans un réservoir de stockage à haute pression (12), à travers une capacité tampon dite capacité de travail (11), qui est détendu à une pression moyenne dite pression de travail dans une capacité de travail (11), préférentiellement à travers un dispositif de détendeur dynamique (13), caractérisé en ce que la chambre active (CA) est incluse dans le cylindre moteur, le volume du cylindre (1) étant balayé par le piston et divisé en deux parties distinctes dont une première partie constituant la chambre active (CA) et une deuxième partie constituant la chambre de détente (CD).

Description

MOTEUR MONO ET/OU BI-ENERGIE A AIR COMPRIME ET/OU A ENERGIE ADDITIONNELLE A CHAMBRE ACTIVE INCLUSE DANS LE CYLINDRE
L'invention concerne un moteur fonctionnant notamment avec de l'air comprimé, ou tout autre gaz, et utilisant une chambre dite « chambre active ».
Les inventeurs ont déposé de nombreux brevets concernant des motorisations ainsi que leurs installations, utilisant des gaz et plus particulièrement de l'air comprimé pour un fonctionnement totalement propre en site urbain et suburbain :
Ils ont notamment déposé une demande de brevet internationale WO-A1 -03/036088 au contenu duquel on pourra se reporter, concernant un groupe moto-compresseur - moto-alternateur à injection d'air comprimé additionnel fonctionnant en mono-énergie et en pluri-énergies.
Dans ces types de moteur fonctionnant avec de l'air comprimé et comportant un réservoir de stockage d'air comprimé, il est nécessaire de détendre l'air comprimé stocké à très haute pression dans le réservoir mais dont la pression diminue au fur et à mesure que le réservoir se vide, à une pression intermédiaire stable dite pression finale d'utilisation, dans une capacité tampon - dite capacité de travail - avant son utilisation dans le ou les cylindres moteurs.
Les détendeurs conventionnels à clapets et ressorts bien connus ont des débits très faibles et leur utilisation pour cette application demande des appareils très lourds et peu performants. En outre, ils sont très sensibles au givrage dû à l'humidité de l'air refroidi lors de la détente.
Pour résoudre ce problème, les inventeurs ont aussi déposé une demande de brevet WO-A1 -03/089764, au contenu de laquelle on pourra se reporter, concernant un détendeur dynamique à débit variable et une distribution pour moteurs alimentés avec injection d'air comprimé, comportant un réservoir d'air comprimé à haute pression et une capacité de travail.
Dans le fonctionnement de ces moteurs à « détente de charge » le remplissage de la chambre d'expansion représente toujours une détente sans travail nuisible au rendement général de la machine.
Pour résoudre le problème indiqué ci-dessus les inventeurs ont encore déposé une demande de brevet WO-A1 -2005/049968 décrivant un moteur à air comprimé alimenté préférentiellement par de l'air comprimé ou tout autre gaz comprimé contenu dans un réservoir de stockage à haute pression, préalablement détendu à une pression nominale de travail dans une capacité tampon dite capacité de travail. La capacité de travail en version bi-énergies comporte un dispositif de réchauffage de l'air alimenté par une énergie additionnelle (fossile ou autre énergie) permettant d'augmenter la température et/ou la pression de l'air qui la traverse.
Dans ce type de moteur selon WO-A1 -2005/049968 :
- la chambre d'expansion est constituée d'un volume variable équipé de moyens permettant de produire un travail, elle est jumelée et en contact par un passage permanent avec l'espace compris au-dessus du piston moteur principal qui est équipé d'un dispositif d'arrêt du piston à son point mort haut,
- durant l'arrêt du piston moteur à son point mort haut, l'air ou le gaz sous pression est admis dans la chambre d'expansion lorsque celle-ci est à son plus petit volume et, sous la poussée, va augmenter son volume en produisant un travail,
- la chambre d'expansion étant maintenue sensiblement à son volume maximum, l'air comprimé qui y est contenu se détend ensuite dans le cylindre moteur en repoussant ainsi le piston moteur dans sa course descendante en fournissant un travail à son tour,
- durant la remontée du piston moteur pendant le temps échappement, le volume variable de la chambre d'expansion est ramené à son plus petit volume pour recommencer un cycle de travail complet.
La chambre d'expansion du moteur selon cette invention participe activement au travail. Le moteur est ainsi dit moteur à « chambre active ».
WO-A1 -2005/049968 revendique notamment un cycle thermodynamique en quatre phases lors de son fonctionnement en mode mono énergie air comprimé caractérisé par :
- une détente isotherme sans travail ;
- un transfert - légère détente avec travail dit quasi-isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante.
Le document WO-A1 -2008/028881 , qui présente une variante de WO- A1 -2005/049968, revendique le même cycle thermodynamique mais en utilisant un dispositif bielle-manivelle traditionnel. Il est alimenté préférentiellement par de l'air comprimé ou tout autre gaz comprimé contenu dans un réservoir de stockage à haute pression, préalablement détendu à une pression nominale de travail dans une capacité tampon dite capacité de travail. La capacité de travail en version bi-énergies comporte un dispositif de réchauffage de l'air alimenté par une énergie additionnelle (fossile ou autre énergie) permettant d'augmenter la température et/ou la pression de l'air qui la traverse.
Dans ce type de moteur selon WO-A1 -2008/028881 :
- la chambre d'expansion, dite chambre active, est constituée d'un volume variable équipé de moyens permettant de produire un travail et elle est reliée par un passage comportant un obturateur permettant ainsi de l'isoler ou de la mettre en contact avec le volume compris dans le cylindre moteur au-dessus du piston moteur à son point mort haut ;
- l'air ou le gaz sous pression est admis dans la chambre active lorsque celle-ci est à son plus petit volume et, sous la poussée va augmenter son volume en produisant un travail ;
- lorsque la chambre active est sensiblement à son volume maximum, et le piston moteur sensiblement à son point mort haut, l'admission est obturée, ladite chambre est mise en communication avec le cylindre moteur et l'air comprimé y contenu se détend repoussant ainsi le piston moteur dans sa course descendante en fournissant un travail à son tour ;
- durant la détente le volume de la chambre active est ramené à son volume minimum pour permettre un nouveau cycle.
La chambre d'expansion du moteur selon l'invention participe activement au travail. Les moteurs selon WO-A1 -2005/049968 et WO-A1 -2008/028881 sont dits moteurs à chambre active.
Pour un fonctionnement optimisé de ces derniers types de moteur il faut prendre en compte les pertes de charge lors du transfert de la chambre active à la chambre de détente pour le WO-A1 -2008/028881 , ainsi que les volumes morts engendrés par la construction du transfert pour le WO-A1 -2005/049968.
La présente invention propose de résoudre ce problème tout en simplifiant la construction de la machine.
Le moteur à chambre active incluse dans le cylindre moteur selon l'invention utilise les mêmes cycles thermodynamiques que WO-A1 -2005/049968 et WO-A1 -2008/028881 décrits ci-avant, ainsi qu'un dispositif bielle manivelle traditionnel.
L'invention propose ainsi un moteur à chambre active, comportant au moins un piston monté coulissant dans un cylindre et entraînant un vilebrequin au moyen d'un dispositif bielle-manivelle traditionnel et fonctionnant selon un cycle thermodynamique à quatre phases comportant :
- une détente isotherme sans travail ; - un transfert - légère détente avec travail dit quasi-isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante ;
alimenté préférentiellement par de l'air comprimé, ou tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression, à travers une capacité tampon dite capacité de travail qui est alimentée par de l'air comprimé, ou tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression, qui est détendu à une pression moyenne dite pression de travail dans une capacité de travail préférentiellement à travers un dispositif de détendeur dynamique,
caractérisé :
- en ce qu'il comporte au moins un piston monté coulissant dans au moins un cylindre dont le volume balayé par le piston est divisé, successivement, en deux parties distinctes dont une première partie constituant la chambre active CA qui est incluse dans le cylindre et une deuxième partie constituant la chambre de détente ;
- en ce que le volume du cylindre qui est balayé par le piston est fermé en sa partie supérieure par une culasse comportant au moins un conduit et orifice d'admission et au moins un conduit et orifice d'échappement et qui est aménagé de telle sorte que, lorsque le piston est à son point mort haut, le volume résiduel compris entre le piston et la culasse est, par construction, réduit aux seuls jeux minimum permettant le fonctionnement sans contact entre le piston et la culasse ;
- en ce que l'air comprimé ou le gaz sous pression est admis dans le cylindre au dessus du piston, et, sous la poussée continue de l'air comprimé à pression constante de travail, le volume de la chambre active augmente en produisant un travail représentant la phase de transfert quasi-isotherme ;
- en ce que l'admission de l'air comprimé, ou du gaz sous pression, dans le cylindre est obturée dés lors que le volume maximal de la chambre active CA est atteint, et que la quantité d'air comprimé, ou du gaz sous pression, comprise dans ladite chambre active se détend alors en repoussant le piston sur la deuxième partie de sa course qui détermine la chambre de détente CD en produisant un travail assurant ainsi la phase de détente ;
- en ce que, le piston ayant atteint son point mort bas, l'orifice d'échappement est alors ouvert pour assurer la phase d'échappement pendant la remontée du piston sur la totalité de sa course.
Le volume maximal de la chambre active CA incluse dans le cylindre moteur et le volume de la chambre de détente CD sont dimensionnés de telle sorte qu'à la pression nominale de fonctionnement du moteur la pression en fin de détente au point mort bas est proche de la pression atmosphérique.
Pour exemple, à la pression nominale de fonctionnement de 20 bars, un moteur de 300 cm3 de cylindrée totale - c'est-à-dire le volume de la chambre active plus le volume de la chambre de détente - le volume maximal de la chambre active CA incluse dans le cylindre sera de 35 cm3, atteint à 45 degrés de rotation moteur après le point mort haut, et le volume de la chambre de détente CD sera de 265 cm3, et la pression au point mort bas à l'ouverture de l'échappement sera de 1 ,03 bar.
Le moteur selon l'invention est avantageusement équipé d'un détendeur à débit variable selon WO-A1 -03/089764, dit détendeur dynamique, qui permet d'alimenter la capacité de travail à sa pression nominale de fonctionnement par de l'air comprimé provenant du réservoir à haute pression de stockage en effectuant une détente sans travail de type isotherme.
Le cycle thermodynamique du moteur à chambre active selon l'invention est identique à celui de WO-A1 -2005/049968 et de WO-A1 -2008/028881. Il est caractérisé par une détente isotherme sans travail permise par le détendeur dynamique, suivie d'un transfert accompagné d'une très légère détente quasi isotherme - par exemple une capacité de 3 000 centimètres cube dans une capacité de 3050 centimètres cube - avec travail par l'utilisation de la pression de l'air compris dans la capacité de travail durant le remplissage de la chambre d'expansion, puis suivie d'une détente polytropique de la chambre d'expansion dans le cylindre moteur avec travail et abaissement considérable de la température, pour se terminer par l'échappement de l'air détendu à l'atmosphère.
Il n'est pas rare que la température de l'échappement d'un tel type de moteur se retrouve à des valeurs de l'ordre de -75 à -100 degrés centigrade en dessous de la température ambiante.
Préférentiellement, et notamment en fonctionnement mono énergie à air comprimé, le moteur à chambre active incluse dans le cylindre selon l'invention comporte plusieurs étages de cylindres successifs en cascade dont chacun est conçu et fonctionne selon le principe de l'invention qui vient d'être défini, ces cylindres consécutifs étant de cylindrées croissantes.
Le premier cylindre, de cylindrée la plus petite, est alimenté en air comprimé par la capacité de travail.
Le ou les cylindres suivants, de cylindrées croissantes, sont alimentés en air comprimé par l'échappement du cylindre amont/précédent. Un ou plusieurs échangeur(s) thermique(s) avec l'atmosphère est/sont positionné(s) entre chaque cylindre, c'est-à-dire entre deux cylindres consécutifs, permettant d'augmenter la température de l'air de l'échappement du cylindre précédent pour la ramener proche de la température ambiante et augmenter ainsi le volume de l'air échappé.
La cylindrée totale, le volume de la chambre active et le volume de la chambre de détente de chaque cylindre sont dimensionnés de telle sorte que le volume de l'air échappé de chacun des cylindres, à savoir le volume de la cylindrée totale majoré de l'augmentation de volume provoqué par l'augmentation de la température dans les échangeurs, soient sensiblement équivalents au volume maximal de la chambre active du cylindre suivant.
En fonction du nombre de cylindres choisi, et de la cylindrée totale du moteur, les caractéristiques de chaque cylindre sont définies de telle sorte que les températures d'échappement de chaque cylindre soient sensiblement identiques. En conséquence, les facteurs d'abaissement de la pression à l'échappement se retrouvent eux aussi sensiblement similaires.
A titre d'exemple non limitatif, un moteur de 3 cylindres selon l'invention d'une cylindrée totale de 508,7 cm3 alimenté par une capacité de travail à pression nominale de 100 bars aura les caractéristiques suivantes :
Figure imgf000008_0001
Dans son application bi-énergies selon l'invention, et en mode avec carburant additionnel, l'air comprimé à la température ambiante contenu dans la capacité de travail est réchauffé à pression constante par une énergie additionnelle dans un réchauffeur thermique. Cette disposition permet d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé, avant son introduction dans la chambre active CA, va accroître sa température et augmenter de volume en permettant l'augmentation de l'autonomie d'une machine (par exemple un véhicule automobile) équipée du moteur selon l'invention, dans la proportion de ladite augmentation de volume. Il s'agit d'un chauffage isobare et le fait de multiplier par deux la température permet de doubler le volume utile d'air comprimé, et ainsi de suite.
Ainsi un réservoir de 200 litres d'air comprimé à 200 bars, soit 40 m3 d'air à 293K (20° Celsius) permettra de disposer à 586K (soit 313° Celsius) de 80 m3 d'air comprimé.
La combustion, démarrant à la température ambiante, permet avec peu d'énergie d'obtenir des résultats considérables en restant en dessous des températures de formation d'oxyde d'azote particulièrement polluantes. L'utilisation d'un dispositif de réchauffage thermique, ou réchauffeur thermique, présente l'avantage de pouvoir utiliser des combustions continues propres qui peuvent être catalysées ou dépolluées par tous moyens connus dans le but d'obtenir des émissions infimes de polluants.
Le réchauffeur thermique peut utiliser pour énergie un carburant fossile tel que de l'essence, du gazole ou bien du gaz GPL ou GNV. Le réchauffeur peut aussi utiliser des biocarburants ou de l'alcool/éthanol, en permettant de réaliser ainsi un fonctionnement bi-énergies à combustion externe, dans lequel un brûleur va provoquer une élévation de température. Le réchauffeur peut aussi utiliser des procédés thermochimiques permettant cette élévation de la température.
Selon une variante de l'invention, le moteur à chambre active utilise l'énergie solaire pour réchauffer l'air comprimé et il est équipé à cet effet d'une parabole solaire, ou de tout autre système de récupération de l'énergie solaire, focalisant dans une chambre permettant l'augmentation de température de l'air comprimé qui traverse la capacité de travail.
Cette caractéristique permet d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé, avant son introduction dans le cylindre, va accroître sa température et augmenter de volume en permettant l'augmentation de l'autonomie de la machine équipée du moteur selon l'invention, dans la proportion de ladite augmentation de volume.
Les différentes énergies utilisées peuvent être utilisées séparément ou en combinaison.
Dans le cas d'un moteur bi-énergies comportant plusieurs cylindres, les moyens permettant le réchauffement de l'air par énergie additionnelle sont préférentiellement installés entre les deux derniers cylindres pour permettre de conserver l'apport d'énergie thermique ambiante lors de l'augmentation de température dans le ou les échangeurs thermiques positionnés entre les cylindres précédents. Toutefois des dispositifs de réchauffage et/ou de complément de réchauffe entre chaque paire de cylindres pourront être utilisés, sans pour autant changer le principe de la présente invention.
Selon une variante de cette disposition, après chaque étage, l'air de l'échappement est dirigé vers un seul réchauffeur à plusieurs étages en permettant ainsi de n'utiliser qu'une seule source de combustion.
En mode de fonctionnement avec énergie additionnelle, le cycle thermodynamique du premier cylindre comprend alors cinq phases :
- une détente isotherme ;
- une augmentation de la température ;
- un transfert - légère détente avec travail dit quasi-isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante ;
et le cycle thermodynamique des cylindres suivants/consécutifs dans le cas d'un pluri-cylindres comprend quatre phases :
- une augmentation de la température ;
- un transfert - légère détente avec travail dit quasi-isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante ;
En mode à air comprimé, par exemple sur un véhicule automobile en site urbain, seule la pression de l'air comprimé dans le réservoir à haute pression est utilisée pour le fonctionnement. En fonctionnement en mode avec énergie additionnelle, fossile ou autre, par exemple sur un véhicule automobile sur route, le réchauffage de la capacité de travail est alors commandé, en permettant ainsi d'augmenter la température de l'air qui traverse la capacité de travail, et par voie de conséquence le volume et/ou la pression utilisable pour le travail de charge de la chambre active et de la détente.
Le moteur selon l'invention est piloté en couple et en régime, par le contrôle de la pression dans la capacité de travail, ce contrôle étant avantageusement assuré par le détendeur dynamique, lorsqu'il fonctionne en mode bi-énergies avec énergie additionnelle (fossile ou autre) et au moyen d'un calculateur électronique qui équipe le moteur et qui contrôle la quantité d'énergie additionnelle apportée, en fonction de la pression dans ladite capacité de travail.
Selon une variante de l'invention qui permet le fonctionnement autonome en bi-énergies du moteur selon l'invention, le moteur à chambre active est couplé à un compresseur d'air permettant, pendant son fonctionnement avec l'énergie additionnelle, d'alimenter en air comprimé le réservoir de stockage d'air comprimé à haute pression. Préférentiellement, un échangeur thermique est positionné entre le compresseur et le réservoir de stockage, de telle sorte que l'air comprimé à haute pression à température élevée en sortie du compresseur retrouve, dans le réservoir, une température proche de la température ambiante.
Le moteur à chambre active selon l'invention mono-énergie et bi- énergies ainsi équipé fonctionne selon trois modes :
- le fonctionnement en mode mono-énergie - zéro pollution - avec l'air préalablement comprimé contenu dans le réservoir de stockage à haute pression ;
- le fonctionnement en mode bi-énergies avec l'air préalablement comprimé contenu dans le réservoir de stockage à haute pression, plus avec l'énergie additionnelle apportée par le réchauffeur thermique ;
- le fonctionnement en mode bi-énergies autonome avec l'air comprimé dans le réservoir par un compresseur d'air entraîné par le moteur, plus avec l'énergie additionnelle apportée par le réchauffeur thermique.
Les échangeurs thermiques peuvent être des échangeurs air/air ou air/liquide, ou tout autre dispositif ou gaz produisant l'effet recherché de réchauffage.
Le moteur à chambre active selon l'invention peut être utilisé sur tous véhicules terrestres, maritimes, ferroviaires, aéronautiques. Le moteur à chambre active selon l'invention peut aussi et avantageusement trouver son application dans les groupes électrogènes de secours, de même que dans de nombreuses applications domestiques de cogénération produisant de l'électricité, du chauffage et de la climatisation.
D'autres buts, avantages et caractéristiques de l'invention apparaîtront à la lecture de la description, à titre non limitatif, de plusieurs modes de réalisation, faite en regard des dessins annexés dans lesquels :
- la figure 1 représente schématiquement un moteur selon l'invention, à chambre active incluse dans le cylindre, qui est illustré en coupe axiale à son point mort bas, et son dispositif d'alimentation en air comprimé ;
- les figures 2 à 4 représentent, sur des vues schématiques en coupe, les différentes phases de fonctionnement du moteur selon l'invention ;
- la figure 5 représente, vu en coupe, un moteur à chambre active selon l'invention pluri-cylindres comportant trois étages ; - la figure 6 représente schématiquement un moteur à chambre active selon l'invention, vu en coupe, et son dispositif d'alimentation en air à haute pression comportant un dispositif de réchauffage de l'air comprimé au moyen d'une parabole solaire ;
- la figure 7 représente, vu en coupe, un moteur pluri-cylindres et son dispositif de réchauffage par combustion ;
- la figure 8 représente schématiquement un moteur à chambre active selon l'invention couplé à un compresseur alimentant le réservoir de stockage.
La figure 1 représente un moteur à chambre active selon l'invention sur laquelle on peut voir un cylindre moteur 1 dans lequel coulisse un piston
2 relié par une bielle 3 au maneton 4 d'un vilebrequin 5.
Le volume du cylindre moteur 1 selon l'invention qui est balayé par le piston 2 est divisé selon une ligne imaginaire DD' (correspondant à un plan de division orthogonal à l'axe du cylindre) en deux parties : une première partie constituant la chambre active CA, qui est ainsi incluse dans le cylindre, et une deuxième partie constituant la chambre de détente CD.
Le cylindre moteur 1 est coiffé d'une culasse supérieure 6 comportant un conduit d'admission 7 et un conduit d'échappement 8, ainsi que des moyens associés d'obturation desdits conduits, ces moyens étant ici des soupapes d'admission 9 et d'échappement 10 respectivement.
Le conduit d'admission est relié à une capacité de travail 11 à pression de travail qui est alimentée par un réservoir à haute pression 12 à travers un détendeur dynamique 13.
L'air comprimé à haute pression contenu dans le réservoir de stockage à haute pression 12 est détendu à la pression de travail dans la capacité de travail 11 à travers le détendeur dynamique 13 en effectuant ainsi la première phase du cycle thermodynamique : une détente isotherme sans travail.
Un dispositif (non représenté), commandé par la pédale d'accélérateur, commande le détendeur dynamique 13 pour permettre de réguler la pression dans la chambre de travail et pour permettre ainsi de piloter le moteur.
Lorsque le piston 2 est à son point mort haut, par construction, le volume résiduel entre la face supérieure du piston et la portion en vis-à-vis de la culasse 6 est nul, ou quasi nul, et le volume des chambres active CA et de détente CD est alors nul. A partir du point mort haut du piston, le volume du cylindre balayé par le piston et situé au-dessus de la face supérieure du piston va augmenter progressivement en créant ainsi successivement la chambre active CA, puis la chambre de détente CD.
La course descendante du piston 2 dans le cylindre 1 comporte ainsi, consécutivement, une première partie « supérieure «correspondant à la formation progressive de la chambre dite active CA, et une deuxième partie « inférieure «correspondant à la formation progressive de la chambre dite de détente CD.
La figure 2 représente le moteur à chambre active selon l'invention en cours d'admission, la soupape d'admission 9 ayant été ouverte dès le point mort haut. L'air comprimé à pression nominale de travail contenu dans la capacité de travail 11 alimente à pression constante la chambre active incluse CA dont le volume augmente progressivement et il repousse le piston 2 dans sa course descendante en produisant un travail et en effectuant la deuxième phase du cycle thermodynamique : transfert avec légère détente avec travail dit quasi-isotherme.
La figure 3 représente le moteur à chambre active incluse CA selon l'invention alors que le piston 2 atteint la ligne DD', moment auquel le volume de la chambre active CA est maximal et auquel la pression dans la chambre active se trouve à la pression nominale de travail identique à la pression de l'air contenu dans la capacité de travail 11. La soupape d'admission 9 est alors fermée et interrompt l'arrivée de l'air sous pression. L'air comprimé à la pression nominale contenu dans la chambre active CA se détend alors en repoussant le piston 1 vers son point mort bas (figure 4) en faisant un travail moteur de détente et en effectuant la troisième phase du cycle thermodynamique : détente polytropique avec travail.
Le piston 1 atteint ensuite son point mort bas (figure 1), correspondant au volume maximal disponible du cylindre balayé par le piston, et la soupape d'échappement 10 est alors ouverte pour évacuer, à travers le conduit d'échappement 8, l'air détendu - à une pression proche de la pression atmosphérique - vers l'atmosphère durant sa course de remontée en effectuant la quatrième phase du cycle thermodynamique : échappement à pression ambiante/atmosphérique.
La figure 5 représente un moteur pluri-cylindres à trois étages de cylindrées croissantes selon l'invention. On peut voir, de gauche à droite, le premier cylindre 1 de cylindrée la plus petite dans lequel coulisse un piston 2 relié par une bielle 3 au maneton 4 d'un vilebrequin 5. Ce cylindre moteur 1 est divisé selon une ligne DD' en deux parties : une chambre active CA et une chambre de détente partielle CD (non visible sur le dessin). Le cylindre moteur 1 est coiffé d'une culasse 6 comportant un conduit d'admission 7 et un conduit d'échappement 8 ainsi que des moyens d'obturation de ces conduits qui sont ici des soupapes d'admission 9 et d'échappement 10. Le conduit d'admission 7 est relié à une capacité de travail 11 à pression de travail alimentée par le réservoir à haute pression 12 à travers un détendeur dynamique 13. Le conduit d'échappement 8 débouche à l'entrée d'un premier échangeur thermique air/air 14.
Le deuxième étage est constitué d'un deuxième cylindre 1A, dont la cylindrée est supérieure à celle du premier cylindre 1, dans lequel coulisse un piston 2A relié par une bielle 3A au maneton 4A du vilebrequin commun 5. Le deuxième cylindre moteur 1A est divisé selon une ligne DD' en deux parties : une deuxième chambre active CA1 dont le volume est sensiblement égal à la cylindrée du premier cylindre 1 augmenté de l'augmentation de volume provoquée par le réchauffement de l'échappement dans l'échangeur air/air 14, et une deuxième chambre de détente partielle CD1. Le deuxième cylindre moteur 1A est coiffé d'une culasse commune 6 comportant un conduit d'admission 7A et un conduit d'échappement 8A, ainsi que des moyens d'obturation desdits conduits qui sont ici des soupapes d'admission 9A et d'échappement 10A. Le conduit d'admission 7A est relié à la sortie de l'échangeur thermique air/air 14 qui l'alimente en air comprimé à la pression constante de l'échappement du premier cylindre. Le conduit d'échappement 8A débouche à l'entrée d'un deuxième échangeur thermique air/air 15.
Le troisième étage est constitué d'un troisième cylindre 1B dont la cylindrée est encore plus importante et est supérieure à la cylindrée du deuxième cylindre 1A, dans lequel coulisse un piston 2B relié par une bielle 3B au maneton 4B du vilebrequin commun 5. Le cylindre moteur 1B est divisé selon une ligne DD' en deux parties : une troisième chambre active CA2 dont le volume est sensiblement égal à la cylindrée du deuxième cylindre 1A augmenté de l'augmentation de volume provoqué par le réchauffement de l'échappement dans le deuxième échangeur thermique air/air 15 et une troisième chambre de détente CD2 non visible sur le dessin. Le cylindre moteur 1B est coiffé de la culasse 6, ici commune aux trois cylindres, comportant un conduit d'admission 7B et un conduit d'échappement 8B ainsi que des moyens d'obturation de ces conduits qui sont ici des soupapes d'admission 9B et d'échappement 10B. Le conduit d'admission 7B est relié à la sortie du deuxième échangeur thermique air/air 15 qui l'alimente en air comprimé à une pression constante de l'échappement du deuxième cylindre 1A. Le conduit d'échappement 8B débouche à l'atmosphère.
L'air comprimé à haute pression contenu dans le réservoir de stockage à haute pression 12 est détendu par le détendeur dynamique 13 à une pression nominale de travail qui, dans ce cas, peut être beaucoup plus élevée - par exemple 100 bars - que dans le cas d'un moteur monocylindre tel que décrit plus haut.
Les valeurs de volumes, de pressions et de températures indiquées dans la description ci-après du fonctionnement sont données à titre d'exemple non limitatif d'une réalisation réaliste et possible de l'invention.
Lorsque le piston 2 du premier cylindre 1 est à son point mort haut, la soupape d'admission 9 est ouverte et l'air comprimé à pression nominale de travail contenu dans la capacité de travail 11 alimente à pression constante la chambre active incluse CA du premier cylindre 1 et repousse le piston 2 dans sa course descendante en produisant un travail. Le piston 2 atteint la ligne DD' à laquelle le volume de la chambre active CA de 5.5 ce se trouve à la pression nominale de travail de 100 bars identique à la pression de l'air contenu dans la capacité de travail 11. La soupape d'admission 9 est fermée et elle interrompt l'arrivée de l'air sous pression. L'air comprimé à la pression nominale contenue dans la chambre active CA se détend partiellement dans la chambre de détente en repoussant le piston 1 vers son point mort bas en faisant un travail moteur de détente.
Lors de cette détente partielle, l'air comprimé se refroidit à moins 78 degrés. Le premier piston 1 arrive à son point mort bas alors que la pression de l'air contenu dans le cylindre 1 d'un volume total donné de 90 cm3 est encore importante, de l'ordre de 20 bars. La soupape d'échappement 10 est alors ouverte et le piston 1 repousse à pression quasi constante l'air comprimé dans l'échangeur air/air 14 dans lequel il va s'échauffer et retrouver sensiblement la température ambiante en augmentant de volume pour passer de 20 cm3 à 26 cm3.
Lorsque le piston 2A du deuxième cylindre 1A est à son point mort, haut la soupape d'admission 9A est ouverte et l'air comprimé à pression secondaire de travail contenu dans l'échangeur 14 alimente à pression constante (20 bars) la deuxième chambre active incluse CA1 du cylindre 1A et repousse le deuxième piston 2A dans sa course descendante en produisant un travail. Le piston 2A atteint la ligne DD' à laquelle le volume de la deuxième chambre active CA1 de 26 cm3 se trouve à la pression secondaire de travail de 20 bars identique à la pression de l'air contenu dans l'échangeur 14. La soupape d'admission 9A est fermée et interrompt l'arrivé de l'air sous pression. L'air comprimé à la pression secondaire (20 bars) contenu dans la deuxième chambre active CA1 se détend alors partiellement en repoussant le deuxième piston 1A vers son point mort bas en faisant un travail moteur de détente.
Lors de cette détente partielle, l'air comprimé se refroidit à moins 78 degrés. Le deuxième piston 1A arrive à son point mort bas alors que la pression de l'air contenu dans le deuxième cylindre 1A, d'un volume total donné de 90 cm3, est encore importante de l'ordre de 5 bars La soupape d'échappement 10A est alors ouverte et le deuxième piston 1A repousse à pression quasi constante l'air comprimé dans le deuxième échangeur air/air 15 dans lequel il va s'échauffer et retrouver sensiblement la température ambiante en augmentant de volume pour passer de 90 cm3 à 129 cm3.
Lorsque le troisième piston 2B du troisième cylindre 1B est à son point mort haut, la soupape d'admission 9B est ouverte et l'air comprimé à pression tertiaire de travail - 5 bars - contenu dans le deuxième échangeur 15 alimente à pression constante la troisième chambre active incluse CA2 du troisième cylindre 1B et repousse le piston 2B dans sa course descendante en produisant un travail, le piston 2B atteint la ligne DD' à laquelle le volume de la troisième chambre active CA2 de 129 cm3 se trouve à la pression tertiaire de travail - 5 bars - identique a la pression de l'air contenu dans le deuxième échangeur 15. La soupape d'admission 9B est fermée et elle interrompt l'arrivée de l'air sous pression. L'air comprimé à la pression tertiaire contenu dans la troisième chambre active CA2 se détend alors complètement en repoussant le troisième piston 1B vers son point mort bas en faisant un travail moteur de détente, pour atteindre la pression atmosphérique.
Lors de cette détente, l'air comprimé se refroidit à moins 78 degrés. Le troisième piston 1B arrive à son point mort bas alors que la pression de l'air contenu dans le troisième cylindre 1B d'un volume total donné de 400 cm3 est proche de la pression atmosphérique et la soupape d'échappement 8B est alors ouverte et le troisième piston 2B repousse à l'atmosphère l'air contenu dans le troisième cylindre 1B.
La figure 6 représente un moteur à chambre active incluse selon l'invention et son dispositif d'alimentation en air à haute pression comportant un dispositif de réchauffage de l'air comprimé par une parabole solaire 16 qui focalise dans la capacité de travail en permettant l'augmentation de la température de l'air comprimé qui la traverse. Cet agencement permet d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé, avant son introduction dans la chambre active incluse, va accroître sa température et augmenter de pression et/ou de volume en permettant l'augmentation des performances du moteur et/ou de l'autonomie du véhicule équipé du moteur.
La figure 7 représente le moteur à chambre active selon l'invention pluri-cylindres en version bi-énergies sur laquelle on peut voir un dispositif schématique 17 de réchauffage de l'air comprimé positionné entre le dernier (deuxième) échangeur thermique 15 et l'admission du dernier (troisième) cylindre avec apport d'énergie additionnelle. Ce dispositif de réchauffage est ici un brûleur 17 alimenté par une bouteille de gaz 18. La combustion mise ne œuvre est donc ainsi ici une combustion externe-interne et elle permet d'augmenter considérablement le volume et/ou la pression de l'air comprimé en provenance de l'échappement du cylindre précédent (deuxième cylindre).
La figure 8 représente le moteur à chambre active selon l'invention fonctionnant en mode bi-énergies autonome avec l'énergie dite additionnelle fossile ou végétale lorsque, selon une variante de l'invention, il entraîne un compresseur 19 d'air comprimé qui alimente le réservoir de stockage 12 à travers un échangeur thermique air/air 20. Le fonctionnement général du moteur est identique à celui décrit précédemment en référence aux figures 1 à 4. Toutefois cette disposition additionnelle permet de remplir le réservoir de stockage en cours d'utilisation, au moyen d'une énergie additionnelle.
Par comparaison avec l'état de la technique constitué par les inventions précédentes des inventeurs relatives aux moteurs dits à « chambre active », la présente invention propose un procédé de pilotage du fonctionnement d'un moteur comportant au moins un cylindre fermé par une culasse et balayé par un piston, avec possibilité d'arrêt du piston au point mort haut, qui permet d'incorporer/d'inclure fonctionnellement et ainsi structurellement dans le cylindre moteur une chambre active CA qui, dans les inventions précédentes, était « externe » au cylindre auquel cette chambre active « externe » était reliée.
Cette inclusion/incorporation de la chambre active CA dans le cylindre ne permet pas seulement une simplification structurelle d'un moteur à air ou gaz comprimé dit à chambre active, mais elle permet aussi une amélioration de ses performances et de son rendement.
Le moteur à chambre active selon l'invention a été décrit avec un fonctionnement avec de l'air comprimé. Toutefois, il peut utiliser n'importe quel gaz comprimé/gaz à haute pression, sans pour autant sortir du champ de l'invention revendiquée.
L'invention n'est pas limitée aux exemples de réalisations décrits et représentés : les matériaux, les moyens de commande, les dispositifs décrits peuvent varier dans la limite des équivalents, pour produire les mêmes résultats. Le nombre de cylindres moteurs, leurs cylindrées, le volume maximum de la chambre active par rapport au volume déplacé du/des cylindre(s) et le nombre d'étages de détente, peuvent varier.

Claims

REVENDICATIONS
1.- Moteur à chambre active, comportant au moins un piston (2) monté coulissant dans un cylindre (1) et entraînant un vilebrequin (5) au moyen d'un dispositif bielle-manivelle (3,4) traditionnel et fonctionnant selon un cycle thermodynamique à quatre phases comportant :
- une détente isotherme sans travail ;
- un transfert - légère détente avec travail dit quasi-isotherme ;
- une détente polytropique avec travail ;
- un échappement à pression ambiante ;
alimenté préférentiellement par de l'air comprimé, ou par tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression (12), à travers une capacité tampon dite capacité de travail (11) qui est alimentée par de l'air comprimé, ou tout autre gaz comprimé, contenu dans un réservoir de stockage à haute pression (12), qui est détendu à une pression moyenne dite pression de travail dans une capacité de travail (11), préférentiellement à travers un dispositif de détendeur dynamique (13),
caractérisé :
- en ce qu'il comporte au moins un piston monté coulissant (2) dans au moins un cylindre (1) dont le volume balayé par le piston est divisé en deux parties distinctes dont une première partie constituant la chambre active (CA) qui est incluse dans le cylindre et une deuxième partie constituant la chambre de détente (CD) ;
- en ce que le volume du cylindre (1) qui est balayé par le piston (2) est fermé en sa partie supérieure par une culasse (6) comportant au moins un conduit et orifice d'admission (7) et au moins un conduit et orifice d'échappement (9) et qui est aménagé de telle sorte que, lorsque le piston (2) est à son point mort haut, le volume résiduel compris entre le piston et la culasse (6) est, par construction réduit aux seuls jeux minimum permettant le fonctionnement sans contact entre le piston et la culasse ;
- en ce que l'air comprimé ou le gaz sous pression est admis dans le cylindre au dessus du piston, et, sous la poussée continue de l'air comprimé, ou tout autre gaz, à pression constante de travail, le volume de la chambre active (CA) augmente en produisant un travail représentant la phase de transfert quasi-isotherme ;
- en ce que l'admission de l'air comprimé, ou du gaz sous pression, dans le cylindre est obturée dés lors que le volume maximal de la chambre active (CA) est atteint, et que la quantité d'air comprimé, ou du gaz sous pression, comprise dans ladite chambre active se détend alors en repoussant le piston sur la deuxième partie de sa course qui détermine la chambre de détente (CD) en produisant un travail assurant ainsi la phase de détente ;
- en ce que, le piston ayant atteint son point mort bas, l'orifice d'échappement est alors ouvert pour assurer la phase d'échappement pendant la remontée du piston sur la totalité de sa course.
2. - Moteur à chambre active selon la revendication 1, caractérisé en ce que le volume maximal de la chambre active incluse (CA) et le volume de la chambre de détente (CD) sont dimensionnés de telle sorte que, à la pression nominale de fonctionnement du moteur, la pression en fin de détente au point mort bas est proche de la pression atmosphérique.
3. - Moteur à chambre active selon les revendications 1 et 2, caractérisé :
- en ce qu'il comporte plusieurs cylindres consécutifs (1 ; 1A ; 1 B) de cylindrée croissante fonctionnant chacun selon le même principe qui vient d'être décrit ;
- en ce que le premier cylindre de plus petite cylindrée est alimenté en air comprimé, ou du gaz sous pression, par la capacité de travail (11) et que le ou les cylindres suivants sont chacun alimentés par l'échappement (8A, 8B) du cylindre précédent ;
- en ce que un ou plusieurs échangeur(s) thermique(s) avec l'atmosphère est/sont positionné(s) entre chaque cylindre permettant d'augmenter la température de l'air de l'échappement du cylindre précédent pour la ramener proche de la température ambiante et augmenter ainsi le volume de l'air échappé.
4.- Moteur à chambre active selon l'une quelconque des revendications 1 à 3, dans son application bi-énergies, caractérisé en ce que la capacité de travail (13) comporte un dispositif de réchauffage (17) par une énergie additionnelle, fossile ou autre de l'air comprimé, ou du gaz sous pression, à pression constante ledit dispositif de réchauffage permettant d'augmenter la température de l'air ou du gaz qui le traverse et d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé, ou du gaz sous pression, avant son introduction dans la chambre active, va accroître sa température et augmenter de volume en permettant l'augmentation de l'autonomie d'une machine équipée du moteur selon l'invention, dans la proportion de ladite augmentation de volume.
5.- Moteur à chambre active selon les revendications 3 et 4, caractérisé en ce qu'un dispositif de réchauffage à pression constante est positionné entre les deux derniers desdits cylindres consécutifs, après l'échangeur, ledit dispositif permettant d'augmenter la température de l'air ou du gaz qui le traverse et d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé, ou le gaz sous pression, avant son introduction dans la chambre active, va accroître sa température et augmenter de volume en permettant l'augmentation de l'autonomie d'une machine équipée du moteur selon l'invention.
6. - Moteur à chambre active dans son application bi-énergies, selon l'une des revendications 4 ou 5, caractérisé en ce que le dispositif de réchauffage (25) comporte une parabole solaire focalisant dans la capacité de travail pour permettre l'augmentation de la température de l'air comprimé, ou du gaz sous pression, et d'augmenter la quantité d'énergie utilisable et disponible par le fait que l'air comprimé, ou le gaz sous pression, avant son introduction dans la chambre active, va accroître sa température et augmenter de volume en permettant l'augmentation de l'autonomie d'une machine équipée du moteur selon l'invention.
7. - Moteur à chambre active selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple et le régime du moteur sont pilotés par le contrôle de la pression dans la capacité de travail (11).
8. - Moteur à chambre active selon l'une quelconque des revendications 4 à 6, caractérisé en ce que, lors du fonctionnement en mode bi-énergies avec énergie additionnelle, un calculateur électronique contrôle la quantité d'énergie apportée en fonction de la pression de l'air comprimé, ou du gaz sous pression, et donc de la masse d'air, ou de gaz, introduite dans la capacité de travail.
9.- Moteur à chambre active selon l'une quelconque des revendications précédentes, dans son application bi-énergies autonome, caractérisé en ce que le moteur est couplé avec et entraîne un compresseur de l'air, ou du gaz, permettant, pendant son fonctionnement avec l'énergie additionnelle, d'alimenter en air comprimé, ou en gaz sous pression, le réservoir de stockage.
10. Moteur à chambre active selon la revendication précédente, caractérisé en ce qu'un échangeur thermique est positionné entre le compresseur et le réservoir de stockage telle sorte que l'air comprimé, ou le gaz, à haute pression à température élevée en sortie du compresseur retrouve dans le réservoir une température proche de la température ambiante.
11.- Moteur à chambre active selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il fonctionne selon trois modes pouvant être utilisés séparément ou en combinaison :
- le fonctionnement mono-énergie zéro pollution, avec l'air, ou le gaz, préalablement comprimé contenu dans le réservoir de stockage à haute pression ;
- le fonctionnement bi-énergies avec l'air, ou le gaz, préalablement comprimé contenu dans le réservoir plus l'énergie additionnelle apportée par un dispositif de réchauffage ;
- le fonctionnement bi-énergies autonome avec l'air, ou le gaz, comprimé dans le réservoir par un compresseur entraîné par le moteur plus l'énergie additionnelle apportée par le dispositif de réchauffage.
PCT/EP2011/067211 2010-10-04 2011-10-03 Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre WO2012045693A1 (fr)

Priority Applications (21)

Application Number Priority Date Filing Date Title
UAA201305248A UA113278C2 (xx) 2010-10-04 2011-03-10 Пневматичний двигун, що використовує один і/або два види енергії, який працює на стиснутому газі і/або на додатковій енергії, з активною камерою, включеною в циліндр
CA2810930A CA2810930C (fr) 2010-10-04 2011-10-03 Moteur mono et/ou bi-energie a air comprime et/ou a energie additionnelle a chambre active incluse dans le cylindre
AU2011311695A AU2011311695B2 (en) 2010-10-04 2011-10-03 Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
SG2013025374A SG189276A1 (en) 2010-10-04 2011-10-03 Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
IN608MUN2013 IN2013MN00608A (fr) 2010-10-04 2011-10-03
NZ608179A NZ608179A (en) 2010-10-04 2011-10-03 Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
MA35768A MA34543B1 (fr) 2010-10-04 2011-10-03 Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre
MX2013002592A MX2013002592A (es) 2010-10-04 2011-10-03 Motor de mono-energia y/o energia dual con aire comprimido y/o energia adicional, que comprende una camara activa includa en el cilindro.
JP2013532149A JP2013542367A (ja) 2010-10-04 2011-10-03 シリンダに包含される活性室を有する、圧縮空気および/または付加的エネルギーを用いる単一エネルギーおよび/または二重エネルギーエンジン
CN201180048061.XA CN103201457B (zh) 2010-10-04 2011-10-03 具有内置于汽缸的活动室的利用压缩空气和/或附加能源的单和/或双能源发动机
US13/822,946 US20130239563A1 (en) 2010-10-04 2011-10-03 Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
BR112013008073A BR112013008073A2 (pt) 2010-10-04 2011-10-03 motor mono e/ou bienergia a ar comprimido e/ou à energia adicional com câmara ativa incluída no cilindro
EP11764179.5A EP2625385A1 (fr) 2010-10-04 2011-10-03 Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre
KR1020137011563A KR20130117783A (ko) 2010-10-04 2011-10-03 실린더에 포함된 능동형 챔버를 포함하는,압축 공기 및/또는 추가적인 에너지를 이용하는 단일­에너지 및/또는 듀얼­에너지 엔진
AP2013006795A AP3564A (en) 2010-10-04 2011-10-03 Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
EA201390479A EA201390479A1 (ru) 2010-10-04 2011-10-03 Пневматический двигатель, использующий один и/или два вида энергии, работающий на сжатом газе и/или на дополнительной энергии, с активной камерой, включенной в цилиндр
TNP2013000092A TN2013000092A1 (fr) 2011-10-03 2013-03-08 Moteur mono et/ou bi-energie a air comprime et/ou a energie additionnelle a chambre active incluse dans le cylindre
IL225296A IL225296A0 (en) 2010-10-04 2013-03-18 Single or double energy engine with compressed air and/or additional energy containing an active cell contained in the cylinder
CU2013000051A CU20130051A7 (es) 2010-10-04 2013-04-04 Motor de mono-energía y/o energía dual con aire comprimido y/o energía adicional, que comprende una cámara activa incluida en el cilindro
ZA2013/02708A ZA201302708B (en) 2010-10-04 2013-04-15 Mono-energy and/or dual-energy engine with compressed air and/or additional energy, comprising an active chamber included in the cylinder
CR20130193A CR20130193A (es) 2010-10-04 2013-05-02 Motor de mono-energía y/o energía dual con aire comprimido y/o energía adicional, que comprende una cámara activa incluida en el cilindro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058005A FR2965581B1 (fr) 2010-10-04 2010-10-04 Moteur a chambre active incluse mono et/ou bi energie a air comprime et/ou a energie additionnelle
FR1058005 2010-10-04

Publications (1)

Publication Number Publication Date
WO2012045693A1 true WO2012045693A1 (fr) 2012-04-12

Family

ID=44146812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067211 WO2012045693A1 (fr) 2010-10-04 2011-10-03 Moteur mono et/ou bi-énergie à air comprimé et/ou à énergie additionnelle à chambre active incluse dans le cylindre

Country Status (27)

Country Link
US (1) US20130239563A1 (fr)
EP (1) EP2625385A1 (fr)
JP (1) JP2013542367A (fr)
KR (1) KR20130117783A (fr)
CN (1) CN103201457B (fr)
AP (1) AP3564A (fr)
AU (1) AU2011311695B2 (fr)
BR (1) BR112013008073A2 (fr)
CA (1) CA2810930C (fr)
CL (1) CL2013000828A1 (fr)
CO (1) CO6741149A2 (fr)
CR (1) CR20130193A (fr)
CU (1) CU20130051A7 (fr)
EA (1) EA201390479A1 (fr)
FR (1) FR2965581B1 (fr)
GE (1) GEP20156344B (fr)
IL (1) IL225296A0 (fr)
IN (1) IN2013MN00608A (fr)
MA (1) MA34543B1 (fr)
MX (1) MX2013002592A (fr)
MY (1) MY164380A (fr)
NZ (1) NZ608179A (fr)
PE (1) PE20140472A1 (fr)
SG (1) SG189276A1 (fr)
UA (1) UA113278C2 (fr)
WO (1) WO2012045693A1 (fr)
ZA (1) ZA201302708B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177076A2 (fr) 2014-05-22 2015-11-26 Motor Development International S.A Moteur à air comprimé à chambre active incluse et à distribution active à l'admission
WO2022100810A1 (fr) 2020-11-11 2022-05-19 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
WO2023217413A1 (fr) 2022-05-10 2023-11-16 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d'échappement équilibrée permettant une désactivation de cylindre

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905404B1 (fr) * 2006-09-05 2012-11-23 Mdi Motor Dev Internat Sa Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle.
FR3009580B1 (fr) * 2013-08-06 2015-08-21 Peugeot Citroen Automobiles Sa Moteur hybride thermique pneumatique a elements de stockage d'energie thermique
CN103437817A (zh) * 2013-08-15 2013-12-11 谢坤 活塞式多缸空气能驱动方法及驱动装置
CN103437824A (zh) * 2013-08-15 2013-12-11 谢坤 活塞式多缸空气能驱动装置的压力平衡方法及系统
CN103527251A (zh) * 2013-10-31 2014-01-22 孙超 排气涡轮增力二行程空气动力发动机总成
CN107288769A (zh) * 2017-06-13 2017-10-24 麦镇荣 四冲程梯次做功发动机
JP7426997B2 (ja) * 2018-11-09 2024-02-02 ツアー エンジン, インコーポレイテッド 分割サイクルエンジンのための移送機構
US20220120184A1 (en) * 2020-10-21 2022-04-21 Seth Gussow External compression engine
FR3141716A1 (fr) * 2022-11-08 2024-05-10 Jean-Pierre Reyal Moteur à air comprimé et cycle d'injection de l'air comprimé.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359118A (en) * 1979-09-10 1982-11-16 R & D Associates Engine system using liquid air and combustible fuel
WO2003006795A1 (fr) * 2001-08-08 2003-01-23 Yury Bogomolov Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime
WO2003036088A1 (fr) 2001-10-25 2003-05-01 Mdi Motor Development International Societe Anonyme Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
US20030101864A1 (en) * 2001-12-03 2003-06-05 Majeres William A. Compressed gas engine with pistons and cylinders
WO2003089764A1 (fr) 2002-04-22 2003-10-30 Mdi Motor Developement International S.A. Detendeur a debit variable et distribution par soupape a commande progressive pour moteur a injection d'air comprime fonctionnant en mono et pluri energie et autres moteurs ou compresseurs
WO2005049968A1 (fr) 2003-11-17 2005-06-02 Mdi - Motor Development International S.A. Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
DE202005017622U1 (de) * 2005-11-11 2006-01-12 Carlguth, Manfred Solarthermische Anlage
WO2008028881A1 (fr) 2006-09-05 2008-03-13 Mdi - Motor Development International S.A. Moteur optimisé à air comprimé ou gaz et/ou énergie supplémentaire possédant une chambre de détente active
WO2009034421A1 (fr) * 2007-09-13 2009-03-19 Ecole polytechnique fédérale de Lausanne (EPFL) Motocompresseur hydropneumatique à plusieurs étages
FR2952120A1 (fr) * 2009-11-02 2011-05-06 Ems Concept Dispositif de moteur pneumatique a injection pilotee par avance

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314337A (en) * 1964-01-31 1967-04-18 Dresser Ind Piston for an expansion engine
US3765180A (en) * 1972-08-03 1973-10-16 R Brown Compressed air engine
US3913699A (en) * 1974-11-18 1975-10-21 Glenn L Dyer Automotive power system
US4018050A (en) * 1976-07-16 1977-04-19 Coy F. Glenn Compressed air-operated motor employing dual lobe cams
JPS57140527A (en) * 1980-12-15 1982-08-31 Aaru Ando Deii Asooshieitsu In Engine using liquified air and liquified natural gas
JPS5988201U (ja) * 1982-12-06 1984-06-14 株式会社小松製作所 レシプロ式蒸気エキスパンダ
JPH01280601A (ja) * 1988-05-02 1989-11-10 Naoki Kirinoe 水蒸気爆発原動機
JPH0243427U (fr) * 1988-09-16 1990-03-26
FR2753487B1 (fr) * 1996-09-19 1998-11-20 Guy Negre Installation de compresseurs d'alimentation en air comprime haute pression pour moteur depollue ou depolluant
JPH10306747A (ja) * 1997-05-07 1998-11-17 Tomita Tekkosho:Kk 熱空気エンジン
US6223846B1 (en) * 1998-06-15 2001-05-01 Michael M. Schechter Vehicle operating method and system
FR2781619B1 (fr) * 1998-07-27 2000-10-13 Guy Negre Groupe electrogene de secours a air comprime
US20060248886A1 (en) * 2002-12-24 2006-11-09 Ma Thomas T H Isothermal reciprocating machines
FR2887591B1 (fr) * 2005-06-24 2007-09-21 Mdi Motor Dev Internat Sa Groupe moto-compresseur basses temperatures a combustion "froide" continue a pression constante et a chambre active
JP2009121349A (ja) * 2007-11-15 2009-06-04 Honda Motor Co Ltd 内燃機関の動弁装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359118A (en) * 1979-09-10 1982-11-16 R & D Associates Engine system using liquid air and combustible fuel
WO2003006795A1 (fr) * 2001-08-08 2003-01-23 Yury Bogomolov Procede de fonctionnement et d'agencement d'un moteur a pistons a air comprime
WO2003036088A1 (fr) 2001-10-25 2003-05-01 Mdi Motor Development International Societe Anonyme Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
US20030101864A1 (en) * 2001-12-03 2003-06-05 Majeres William A. Compressed gas engine with pistons and cylinders
WO2003089764A1 (fr) 2002-04-22 2003-10-30 Mdi Motor Developement International S.A. Detendeur a debit variable et distribution par soupape a commande progressive pour moteur a injection d'air comprime fonctionnant en mono et pluri energie et autres moteurs ou compresseurs
WO2005049968A1 (fr) 2003-11-17 2005-06-02 Mdi - Motor Development International S.A. Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
DE202005017622U1 (de) * 2005-11-11 2006-01-12 Carlguth, Manfred Solarthermische Anlage
WO2008028881A1 (fr) 2006-09-05 2008-03-13 Mdi - Motor Development International S.A. Moteur optimisé à air comprimé ou gaz et/ou énergie supplémentaire possédant une chambre de détente active
WO2009034421A1 (fr) * 2007-09-13 2009-03-19 Ecole polytechnique fédérale de Lausanne (EPFL) Motocompresseur hydropneumatique à plusieurs étages
FR2952120A1 (fr) * 2009-11-02 2011-05-06 Ems Concept Dispositif de moteur pneumatique a injection pilotee par avance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177076A2 (fr) 2014-05-22 2015-11-26 Motor Development International S.A Moteur à air comprimé à chambre active incluse et à distribution active à l'admission
US10371023B2 (en) 2014-05-22 2019-08-06 Motor Development International S.A. Compressed-air engine with an integrated active chamber and with active intake distribution
WO2022100810A1 (fr) 2020-11-11 2022-05-19 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
WO2023217413A1 (fr) 2022-05-10 2023-11-16 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d'échappement équilibrée permettant une désactivation de cylindre
FR3135486A1 (fr) 2022-05-10 2023-11-17 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d’échappement équilibrée permettant une désactivation de cylindre

Also Published As

Publication number Publication date
FR2965581B1 (fr) 2014-05-16
US20130239563A1 (en) 2013-09-19
MX2013002592A (es) 2013-08-21
AU2011311695A1 (en) 2013-04-11
JP2013542367A (ja) 2013-11-21
IL225296A0 (en) 2013-06-27
CA2810930C (fr) 2018-11-20
ZA201302708B (en) 2013-11-27
CA2810930A1 (fr) 2012-04-12
IN2013MN00608A (fr) 2015-09-11
EA201390479A1 (ru) 2013-07-30
NZ608179A (en) 2014-05-30
SG189276A1 (en) 2013-05-31
GEP20156344B (en) 2015-08-10
AP3564A (en) 2016-01-27
KR20130117783A (ko) 2013-10-28
CN103201457A (zh) 2013-07-10
MY164380A (en) 2017-12-15
AU2011311695B2 (en) 2015-10-22
UA113278C2 (xx) 2017-01-10
CU20130051A7 (es) 2013-09-27
CN103201457B (zh) 2016-08-03
MA34543B1 (fr) 2013-09-02
CR20130193A (es) 2013-08-27
AP2013006795A0 (en) 2013-04-30
PE20140472A1 (es) 2014-04-16
FR2965581A1 (fr) 2012-04-06
CL2013000828A1 (es) 2014-01-10
BR112013008073A2 (pt) 2016-06-14
CO6741149A2 (es) 2013-08-30
EP2625385A1 (fr) 2013-08-14

Similar Documents

Publication Publication Date Title
CA2810930C (fr) Moteur mono et/ou bi-energie a air comprime et/ou a energie additionnelle a chambre active incluse dans le cylindre
EP1702137B1 (fr) Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
FR2905404A1 (fr) Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle.
EP1899578B1 (fr) Groupe moto-compresseur basses temperatures à combustion « froide » continue a pression constante et a chambre active
FR2904054A1 (fr) Moteur cryogenique a energie thermique ambiante et pression constante et ses cycles thermodynamiques
EP2625400A1 (fr) Moteur à air comprimé à chambre active incluse et autodétendeur
EP2435676B1 (fr) Procede de fonctionnement d'un moteur a explosion et moteur a explosion selon ce procede
FR3032236B1 (fr) Moteur thermique a transfert-detente et regeneration
FR2831598A1 (fr) Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
FR2544384A1 (fr) Turbomoteur compound perfectionne
EP0954691A1 (fr) Procede et dispositif de recuperation de l'energie thermique ambiante pour vehicule equipe de moteur depollue a injection d'air comprime additionnel
FR2963643A1 (fr) Moteur a combustion interne ou externe a cycle combine 2 en 1 en parallele a chaleur perdue-recyclee donnant un fort rendement et mecanisme thermique
FR3066227B1 (fr) Moteur a combustion interne avec compression isotherme haute pression d’un flux d’air admis
CZ2006618A3 (cs) Termodynamicky úcinné zarízení k pohonu motorových vozidel a zpusob zvýšení termodynamické úcinnosti pístových spalovacích motoru
FR2945578A1 (fr) Procede et systeme de moteur hybride a synergie thermodynamique a charge thermique et pneumatique a cycles divises par plusieurs modes de fonctionnement
FR2964693A1 (fr) Installation de restitution d'energie
WO2014154715A1 (fr) Systeme mecanique de production et de stockage d'azote liquide et de production d'energie mecanique a partir dudit azote liquide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11764179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/002592

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2810930

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 225296

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 13054376

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2013000828

Country of ref document: CL

ENP Entry into the national phase

Ref document number: 2013532149

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 000780-2013

Country of ref document: PE

Ref document number: 12013500641

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011311695

Country of ref document: AU

Date of ref document: 20111003

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011764179

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: A201305248

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 201390479

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13075

Country of ref document: GE

WWE Wipo information: entry into national phase

Ref document number: CR2013-000193

Country of ref document: CR

ENP Entry into the national phase

Ref document number: 20137011563

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13822946

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013008073

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013008073

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130403