WO2015176885A1 - Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug - Google Patents

Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug Download PDF

Info

Publication number
WO2015176885A1
WO2015176885A1 PCT/EP2015/058394 EP2015058394W WO2015176885A1 WO 2015176885 A1 WO2015176885 A1 WO 2015176885A1 EP 2015058394 W EP2015058394 W EP 2015058394W WO 2015176885 A1 WO2015176885 A1 WO 2015176885A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
ultrasonic sensor
phase
during
membrane
Prior art date
Application number
PCT/EP2015/058394
Other languages
English (en)
French (fr)
Inventor
Michael Hallek
Michael Ludwig
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Priority to EP15716814.7A priority Critical patent/EP3146360A1/de
Publication of WO2015176885A1 publication Critical patent/WO2015176885A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/30Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups with electronic damping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature

Definitions

  • the present invention relates to a method for operating an ultrasonic sensor of a motor vehicle, wherein during a transmission phase, a transmission signal by exciting a membrane of the ultrasonic sensor with an excitation frequency
  • the present invention relates to an ultrasonic sensor device. Furthermore, the present invention relates to a driver assistance system and a motor vehicle with such a driver assistance system.
  • the interest is directed in the present case in particular to a method for operating an ultrasonic sensor for a motor vehicle.
  • Such ultrasonic sensors can in
  • Ultrasonic sensor are determined to the object. However, such are
  • Distance measurement limited in terms of their range. This applies to both the maximum range and the minimum distance.
  • the minimum distance is given by the transmission duration, in which the ultrasonic waves are emitted, and the so-called decay time.
  • the settling time itself represents the time at which the excited membrane can decay again to receive ultrasonic waves reflected from the object. If a little
  • Fading time is reached, this means that smaller distances to an object can be detected.
  • Such a reduction of the decay time can be achieved by a material damping of the membrane of the ultrasonic sensor itself.
  • an active damping can be provided.
  • the membrane is stimulated for the duration of the decay process with an antiphase oscillation.
  • DE 101 36 628 B4 describes a method for operating an ultrasonic transducer for emitting and receiving ultrasonic waves by means of a membrane. To emit ultrasonic waves, the membrane is energized for a predetermined period of time, then the membrane vibrations are damped and recorded to receive ultrasonic waves, the membrane vibration. To dampen the membrane vibrations are detected and the membrane in the correct phase
  • the value of the amplitude and / or the duration of the excitation of the membrane are tracked to the amplitude of the detected membrane oscillation in order to control the
  • a disadvantage of the active damping of the membrane of the ultrasonic sensor is that the phase of the vibration of the membrane must be measured correctly during the decay process and the antiphase damping oscillation must be output correctly. If this antiphase excitation is not optimally determined, it may happen that the decaying oscillates and instead of a constant reduction of the amplitude of the membrane oscillation even partially higher amplitudes can be achieved. This non-synchronicity is reflected, for example, in the form of a brief dip in the amplitude of the oscillation during the decay time. This in turn means that a later increase in the amplitude of the membrane oscillation due to the non-ideal excitation is detected by a control device of the ultrasonic sensor as an echo signal.
  • Ultrasonic sensor of the type mentioned which is actively attenuated during the swinging, can be operated reliably more easily.
  • This object is achieved by a method by a
  • Ultrasonic sensor device by a driver assistance system and by a
  • An inventive method is used to operate an ultrasonic sensor of a motor vehicle.
  • a transmission signal is emitted by exciting a membrane of the ultrasonic sensor with an excitation frequency during a transmission phase, then during a damping phase, the membrane with a to the Excited frequency excitation frequency opposite phase and then a mechanical oscillation of the membrane is detected during a receiving phase, wherein an amplitude of the mechanical vibration of the membrane is detected during the damping phase.
  • the ultrasonic sensor is for determining a distance between the
  • Ultrasonic sensor and an object In particular measurement cycles, in which the distance to the object is to be determined, the ultrasonic sensor is in time
  • the membrane of the sensor is excited at a predetermined excitation frequency.
  • the membrane with a corresponding adjusting device for example a
  • piezoelectric actuator are set in mechanical vibrations, so that the membrane emits ultrasonic waves as the transmission signal.
  • the membrane is driven by means of the adjusting device with an anti-phase to the excitation frequency damping frequency.
  • Damping phase Following reception phase, a mechanical vibration of the membrane is detected.
  • the actuating element or the piezoelectric actuator is used. This detected mechanical vibration can then be used as a received signal or as an echo signal.
  • Actuating device or the piezoelectric actuator can be used. It is checked for what duration of the detected mechanical vibration a
  • Vibration threshold exceeds. In addition, it is checked whether the time duration, while the amplitude is exceeded, within a predetermined
  • the damping time interval may be limited by a predetermined minimum settling time and a predetermined maximum settling time. In this way it can be determined whether the decay behavior of the membrane of the ultrasonic sensor takes place as intended or whether the excitation of the membrane with the damping frequency possibly leads to an excitation of the oscillation of the membrane. In this way, the functionality of the ultrasonic sensor can be easily checked.
  • the mechanical vibration of the membrane detected during the reception phase is used as a reception signal if the amplitude detected during the damping phase falls below the threshold value during the time duration of the predetermined damping interval. If the duration of the mechanical
  • Receiving interval is determined during which the amplitude of the
  • Vibration threshold exceeds. In this way it can be checked in the reception phase based on the duration of the mechanical vibration of the membrane, whether a received signal or an echo is present. If the reception time interval differs from conventionally known values, then it can be assumed that the mechanical oscillation of the diaphragm does not originate from the echo of the ultrasonic signal. In this case, a so-called apparent echo may be present.
  • Damping phase is operated, and determines the reception time interval. In other words, it is checked after which time, after the attenuation of the membrane has occurred, a supposed echo of the ultrasonic signal arrives at the membrane. If this difference in duration differs from conventionally known values, then it may
  • the mechanical vibration of the diaphragm detected during the reception phase is used as the reception signal if the time duration of the
  • Receiving time interval falls below a reference value and / or the difference duration falls below a limit. If the mechanical vibration of the diaphragm detected during the receiving phase is shorter than the predetermined one
  • Receiving time interval is usually a sham echo and this mechanical oscillation is not detected as a received signal. Even if the time duration between the swinging out and receiving the supposed echo is smaller than the predetermined difference duration, the detected mechanical vibration is not used as a reception signal.
  • the predetermined damping time is adjusted if the time duration of the reception time interval falls below the reference value and / or the difference duration falls below the limit value.
  • a predetermined value can be preset.
  • the damping time can be increased. In this way, the time from which the reception time interval is less than the reference value and / or the difference duration is less than the limit value.
  • Reception phase begins to be moved backwards.
  • echoes from the sensor signal can be virtually filtered out.
  • the damping time can be adjusted so that the adjusted damping time is equal to a sum of the predetermined damping time
  • a current temperature of the ultrasonic sensor is detected and the damping time interval is adjusted as a function of the detected temperature.
  • Vibration behavior of the membrane of the ultrasonic sensor are taken into account.
  • different values for the damping time interval for different temperatures can be stored in a memory unit of a control device.
  • the damping time interval is adjusted as a function of an operating state of the ultrasonic sensor.
  • an operating period of the ultrasonic sensor can be taken into account.
  • a mechanical wear which usually sets in the course of time, are taken into account.
  • An inventive driver assistance system comprises at least one
  • Ultrasonic sensor device The ultrasonic sensors of the ultrasonic sensor device, for example, in a front bumper and / or in a rear
  • the driver assistance system can be designed, for example, as a so-called parking aid system.
  • An inventive motor vehicle comprises the inventive
  • the motor vehicle is designed in particular as a passenger car.
  • Embodiments and their advantages apply correspondingly to the ultrasonic sensor device according to the invention, the driver assistance system according to the invention and the motor vehicle according to the invention.
  • 1 is a schematic representation of an ultrasonic sensor device for a
  • Fig. 1 shows an ultrasonic sensor device 1 in a sectional side view.
  • the ultrasonic sensor device 1 can be part of a driver assistance system of a motor vehicle, for example.
  • This driver assistance system can be used in particular as
  • Park assist system be formed, in which one or more
  • Ultrasonic sensor devices 1 at a front and / or at a rear
  • Ultrasonic sensor device 1 a distance from the motor vehicle to an object can be determined.
  • the ultrasonic sensor device 1 comprises an ultrasonic sensor 2
  • Ultrasonic sensor 2 in turn comprises a housing 3, which may be made of metal or plastic, for example. Furthermore, the ultrasonic sensor 2 comprises a membrane 4, which is made in particular of aluminum. Finally, the ultrasonic sensor 2 comprises an actuating unit 5, which in particular comprises a piezoelectric element. By means of the adjusting unit 5, the membrane 4 can be set in mechanical vibrations. For this purpose, a time-varying electrical voltage is applied to the control unit 5. The membrane 4 of the ultrasonic sensor 2 is excited with a predetermined excitation frequency by means of the setting unit 5, which may in particular be in a range between 40 and 60 kHz, for example at 52 kHz. As a transmission signal ultrasonic waves are thus generated by the membrane 4, which propagate to an object. At the object, the ultrasonic waves are reflected again and get back to the membrane 4.
  • the ultrasonic sensor 2 in this case also serves to receive the reflected ultrasonic waves.
  • the membrane 4 is set in mechanical vibration by the reflected ultrasonic waves. This can with the actuator 5 and the
  • Piezoelectric element are detected, which outputs a time-varying electrical voltage as a result of the mechanical excitation.
  • the ultrasonic sensor 2 is operated in an attenuation phase 10 between a transmission phase in which the transmission signal with the diaphragm 4 is emitted and the reception phase 11 in which the reflected signal of the diaphragm 4 is detected, during which the diaphragm 4 is operated with the actuator from one to the excitation frequency in phase opposition damping frequency.
  • the ultrasound sensor device 1 comprises a control device 6, with which the activation of the ultrasound sensor 2 or the setting unit 5 takes place.
  • Control device 6 is also designed to evaluate the mechanical vibration of the diaphragm 4, which is detected with the control unit 5 during the damping phase 10, in the form of sensor signals.
  • a first diagram 7 shows an analog sensor signal 9 and the diagram 8 the associated digital sensor signal 13.
  • Diagram 7 the time t is plotted and on the ordinate of the diagram 7, the amplitude A1 of the analog sensor signal 9 is plotted.
  • the diagram 8 on the abscissa also the time t and on the ordinate the amplitude A2 of the digital
  • the analog sensor signal 9 describes the mechanical oscillation of the membrane 4 during the damping phase 10 and the subsequent receiving phase 11. It can be seen that the amplitude of the oscillation during the damping phase 10 decreases continuously until it falls below a predetermined oscillation threshold value 12. After falling below the
  • Vibration threshold 12 the ultrasonic sensor 2 in the receiving phase 1 1 are operated.
  • the digital sensor signal 13 which is shown in the graph 8, has, for example, the value 1 when the curve 9 exceeds the oscillation threshold value 12. If the curve 9 falls below the oscillation threshold value 12, the digital sensor signal 13 assumes the value 0.
  • Fig. 2 illustrates the case by the vibration of the membrane is attenuated by the anti-phase attenuation signal.
  • the embodiment according to FIG. 3 shows the case in which the activation of the membrane 4 for damping the mechanical oscillation does not take place in an ideal manner in antiphase to the actual mechanical oscillation of the membrane 4.
  • the mechanical vibration is first damped. After a predetermined time duration, in turn, an increase in the amplitude of the analog sensor signal 9 follows. The amplitude of the analog sensor signal 9 increases in this case such that the oscillation threshold value 12 is exceeded. This is reflected in the digital signal 13 as a signal pulse 14 down.
  • This signal pulse 14 is interpreted by the control device 6 of the ultrasonic sensor device as an echo signal.
  • This supposed echo can also be referred to as a sham echo or as a ghost echo.
  • a minimum decay time t1 and a maximum decay time t2 are specified.
  • the minimum settling time t1 and the maximum settling time t2 thus limit a predetermined damping time interval 15.
  • a reference value for a reception time interval 16 is specified.
  • the reception time interval 16 corresponds to the time duration during the mechanical oscillation of the diaphragm 4 during the reception phase 1 1
  • Vibration threshold 12 exceeds.
  • a limit value for a difference duration tu is specified.
  • the difference duration tu corresponds to the time interval between an end of the damping phase or the end of the damping time td and the reception time interval 16.
  • FIG. 5 shows a flow chart of a method according to the invention for operating an ultrasound sensor 2.
  • the method is started in a step S1 for each measurement cycle of the ultrasound sensor 2.
  • a step S2 an amplitude of the mechanical vibration of the membrane 4 is detected via the damping phase 10.
  • it is checked whether the amplitude of the mechanical vibration of the
  • Vibration threshold 12 during the predetermined damping time interval 15 exceeds. If this is the case, it can be assumed that the
  • step S2 Decay process is OK.
  • the ultrasonic sensor could be defective. If the query is satisfied in step S2, the method is ended in step S3.
  • step S4 it is checked whether the time duration of the reception time interval 16 falls below the reference value and / or whether the difference duration tu is smaller than the limit value. If this is not fulfilled, there is either no echo or the echo is not a false echo. Then, the process is ended in step S3.
  • step S5 the method is continued in step S5.
  • the decay time td is adjusted.
  • the settling time td is adjusted so that the adjusted settling time of the Sum of the previous settling time td, the difference duration tu and the
  • Receive time interval 16 corresponds.
  • the detected ticket echo is deleted in the control device 6.
  • an echo detected by the control device 6 is only considered or filtered out under certain circumstances and not generally. This can be used to prevent real echoes from being filtered out of the signal.
  • the duration of the settling time td is reconstructed when the apparent echo is present.
  • the filtering of the signal is based on this time duration.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Ultraschallsensors (2) eines Kraftfahrzeugs, bei welchem während einer Sendephase ein Sendesignal durch Anregen einer Membran (4) des Ultraschallsensors (2) mit einer Anregungsfrequenz ausgesendet wird, anschließend während einer Dämpfungsphase (10) die Membran (4) mit einer zu der Anregungsfrequenz gegenphasigen Dämpfungsfrequenz angeregt wird und anschließend während einer Empfangsphase (11) eine mechanische Schwingung der Membran (4) erfasst wird, wobei während der Dämpfungsphase (10) eine Amplitude der mechanischen Schwingung der Membran (4) erfasst wird, wobei während der Dämpfungsphase (10) ermittelt wird, ob die Amplitude einen Schwingungsschwellenwert (12) für eine zeitliche Dauer eines vorbestimmten Dämpfungszeitintervalls (15) unterschreitet (S2).

Description

Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, bei welchem während einer Sendephase ein Sendesignal durch Anregen einer Membran des Ultraschallsensors mit einer Anregungsfrequenz
ausgesendet wird, anschließend während einer Dämpfungsphase die Membran mit einer zu der Anregungsfrequenz gegenphasigen Dämpfungsfrequenz angeregt wird und anschließend während einer Empfangsphase eine mechanische Schwingung der
Membran erfasst wird, wobei während der Dämpfungsphase eine Amplitude der mechanischen Schwingung der Membran erfasst wird. Überdies betrifft die vorliegende Erfindung eine Ultraschallsensorvorrichtung. Ferner betrifft die vorliegende Erfindung ein Fahrerassistenzsystem und ein Kraftfahrzeug mit einem solchen Fahrerassistenzsystem.
Das Interesse richtet sich vorliegend insbesondere auf ein Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug. Derartige Ultraschallsensoren können in
Fahrerassistenzsystemen, beispielsweise in einem sogenannten Parkhilfesystem, verwendet werden. Heutige Parkhilfesysteme arbeiten nach dem Echolot- Verfahren. Dabei wird ein Ultraschallsignal bzw. eine Ultraschallwelle vom Ultraschallsensor ausgesendet, an einem Objekt reflektiert und wiederum von dem Ultraschallsensor empfangen. Aufgrund der Laufzeit der Ultraschallwelle kann der Abstand von dem
Ultraschallsensor zu dem Objekt bestimmt werden. Allerdings sind solche
Abstandsmessverfahren hinsichtlich ihrer Reichweite begrenzt. Dies gilt sowohl für die maximale Reichweite als auch für den Mindestabstand.
Der Mindestabstand ist durch die Sendedauer, in der die Ultraschallwellen ausgesendet werden, und die sogenannte Ausschwingzeit vorgegeben. Die Ausschwingzeit selbst stellt die Zeit dar, in der die angeregte Membran wieder ausklingen kann, um Ultraschallwellen, welche von dem Objekt reflektiert werden, zu empfangen. Wenn eine geringe
Ausklingdauer erreicht wird, bedeutet dies, dass geringere Abstände zu einem Objekt erfasst werden können. Eine solche Reduktion der Abklingdauer kann durch eine materielle Dämpfung der Membran des Ultraschallsensors selbst erreicht werden.
Alternativ oder zusätzlich kann eine aktive Dämpfung vorgesehen sein. Hierbei wird die Membran für die zeitliche Dauer des Ausschwingvorgangs mit einer gegenphasigen Schwingung angeregt. In diesem Zusammenhang beschreibt die DE 101 36 628 B4 ein Verfahren zum Betrieb eines Ultraschallwandlers zum Aussenden und Empfangen von Ultraschallwellen mittels einer Membran. Zum Aussenden von Ultraschallwellen wird die Membran für eine vorgebbare Zeitdauer erregt, danach werden die Membranschwingungen gedämpft und zum Empfangen von Ultraschallwellen die Membranschwingung erfasst. Zur Dämpfung werden die Membranschwingungen erfasst und die Membran phasenrichtig
entgegengesetzt zu den erfassten Schwingungen erregt. Zudem werden im Rahmen des Dämpfungsvorgangs der Wert der Amplitude und/oder die Dauer der Erregung der Membran der Amplitude der erfassten Membranschwingung nachgeführt, um die
Dämpfung der Stärke der noch vorhandenen Membranschwingungen anzupassen.
Ein Nachteil der aktiven Dämpfung der Membran des Ultraschallsensors liegt darin, dass die Phase der Schwingung der Membran während des Ausschwingvorgangs korrekt gemessen werden muss und die gegenphasige Dämpfungsschwingung korrekt ausgegeben werden muss. Falls diese gegenphasige Anregung nicht optimal bestimmt wird, kann es vorkommen, dass sich der Ausschwingvorgang aufschaukelt und anstatt einer konstanten Reduzierung der Amplitude der Membranschwingung sogar teilweise höhere Amplituden erreicht werden können. Diese nicht vorhandene Synchronität spiegelt sich beispielsweise in Form eines kurzzeitigen Einbruchs der Amplitude der Schwingung während der Ausschwingzeit dar. Dies führt wiederum dazu, dass ein späterer Anstieg der Amplitude der Membranschwingung in Folge der nicht idealen Anregung von einer Steuereinrichtung des Ultraschallsensors als Echosignal erkannt wird.
Es ist Aufgabe der vorliegenden Erfindung, eine Lösung aufzuzeigen, wie ein
Ultraschallsensor der eingangs genannten Gattung, der während des Ausschwingens aktiv gedämpft wird, auf einfache Weise zuverlässiger betrieben werden kann.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren, durch eine
Ultraschallsensorvorrichtung, durch ein Fahrerassistenzsystem sowie durch ein
Kraftfahrzeug mit den Merkmalen gemäß den jeweiligen unabhängigen
Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung und der Figuren.
Ein erfindungsgemäßes Verfahren dient zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs. Hierbei wird während einer Sendephase ein Sendesignal durch Anregen einer Membran des Ultraschallsensors mit einer Anregungsfrequenz ausgesendet, anschließend wird während einer Dämpfungsphase die Membran mit einer zu der Anregungsfrequenz gegenphasigen Dämpfungsfrequenz angeregt und anschließend wird während einer Empfangsphase eine mechanische Schwingung der Membran erfasst, wobei während der Dämpfungsphase eine Amplitude der mechanischen Schwingung der Membran erfasst wird. Zudem ist es vorgesehen, dass während der Dämpfungsphase ermittelt wird, ob die Amplitude einen Schwingungsschwellenwert für eine zeitliche Dauer eines vorbestimmten Dämpfungszeitintervalls unterschreitet.
Der Ultraschallsensor dient zum Bestimmen eines Abstands zwischen dem
Ultraschallsensor und einem Objekt. In jeweiligen Messzyklen, in denen der Abstand zu dem Objekt bestimmt werden soll, wird der Ultraschallsensor in zeitlich
aufeinanderfolgenden Phasen betrieben. In der Sendephase wird die Membran des Sensors mit einer vorbestimmten Anregungsfrequenz angeregt. Zu diesem Zweck kann die Membran mit einer entsprechenden Stelleinrichtung, beispielsweise einem
piezoelektrischen Aktor, in mechanische Schwingungen versetzt werden, so dass die Membran Ultraschallwellen als das Sendesignal aussendet. In der darauffolgenden Dämpfungsphase wird die Membran mit einer zu der Anregungsfrequenz gegenphasigen Dämpfungsfrequenz mittels der Stelleinrichtung angesteuert. In einer auf die
Dämpfungsphase folgende Empfangsphase wird eine mechanische Schwingung der Membran erfasst. Zu diesem Zweck wird üblicherweise das Stellelement bzw. der piezoelektrische Aktor verwendet. Diese erfasste mechanische Schwingung kann dann als Empfangssignal bzw. als Echosignal verwendet werden.
Während der Dämpfungsphase wird zudem eine Amplitude der mechanischen
Schwingung der Ultraschallmembran erfasst. Zu diesem Zweck kann wieder die
Stelleinrichtung bzw. der piezoelektrische Aktor verwendet werden. Dabei wird überprüft, für welche zeitliche Dauer die erfasste mechanische Schwingung einen
Schwingungsschwellenwert überschreitet. Darüber hinaus wird überprüft, ob die zeitliche Dauer, während die Amplitude überschritten wird, innerhalb eines vorbestimmten
Dämpfungszeitintervalls liegt. Das Dämpfungszeitintervall kann durch eine vorgegebenen minimale Ausschwingzeit und eine vorgegebene maximale Ausschwingzeit begrenzt sein. Auf diese Weise kann ermittelt werden, ob das Ausschwingverhalten der Membran des Ultraschallsensors wie gewollt erfolgt oder ob die Anregung der Membran mit der Dämpfungsfrequenz möglicherweise zu einer Anregung der Schwingung der Membran führt. Auf diese Weise kann die Funktionsfähigkeit des Ultraschallsensors auf einfache Weise überprüft werden. Bevorzugt wird die während der Empfangsphase erfasste mechanische Schwingung der Membran als ein Empfangssignal verwendet, falls die während der Dämpfungsphase erfasste Amplitude den Schwellenwert während der zeitlichen Dauer des vorbestimmten Dämpfungsintervalls unterschreitet. Falls die zeitliche Dauer der mechanischen
Schwingung der Membran während der Dämpfungsphase in dem Dämpfungszeitintervall liegt, kann davon ausgegangen werden, dass die aktive Dämpfung der Membran zu einer Dämpfung der Schwingung der Membran geführt hat. In diesem Fall kann weiterhin davon ausgegangen werden, dass eine nachfolgend in der Empfangsphase erfasste mechanische Schwingung als Empfangssignal verwendet werden kann.
Weiterhin hat es sich vorteilhaft gezeigt, wenn während der Empfangsphase die
Amplitude der mechanischen Schwingung der Membran erfasst wird und ein
Empfangsintervall ermittelt wird, während dem die Amplitude den
Schwingungsschwellenwert überschreitet. Auf diese Weise kann anhand der zeitlichen Dauer der mechanischen Schwingung der Membran in der Empfangsphase überprüft werden, ob ein Empfangssignal bzw. ein Echo vorliegt. Weicht das Empfangszeitintervall von üblicherweise bekannten Werten ab, so kann davon ausgegangen werden, dass die mechanische Schwingung der Membran nicht von dem Echo des Ultraschallsignals stammt. In diesem Fall kann ein sogenanntes Scheinecho vorliegen.
In einer Ausführungsform wird eine Unterschiedsdauer zwischen einem Ende einer vorbestimmten Dämpfungszeit, während der der Ultraschallsensor in der
Dämpfungsphase betrieben wird, und dem Empfangszeitintervall bestimmt. Mit anderen Worten wird überprüft, nach welcher Zeit, nach der die Dämpfung der Membran erfolgt ist, ein vermeintliches Echo des Ultraschallsignals an der Membran eintrifft. Weicht diese Unterschiedsdauer von üblicherweise bekannten Werten ab, so kann davon
ausgegangen werden, dass vorliegend kein Echo empfangen wird.
Vorzugsweise wird die während der Empfangsphase erfasste mechanische Schwingung der Membran als das Empfangssignal verwendet, falls die zeitliche Dauer des
Empfangszeitintervalls einen Referenzwert unterschreitet und/oder die Unterschiedsdauer einen Grenzwert unterschreitet. Wenn die während der Empfangsphase erfasste mechanische Schwingung der Membran kürzer als das vorbestimmte
Empfangszeitintervall ist, handelt es sich üblicherweise um ein Scheinecho und diese mechanische Schwingung wird nicht als Empfangssignal erfasst. Auch wenn die zeitliche Dauer zwischen dem Ausschwingen und dem Empfangen des vermeintlichen Echos kleiner als die vorbestimmte Unterschiedsdauer ist, wird die erfasste mechanische Schwingung nicht als Empfangssignal verwendet.
Bevorzugt wird die vorbestimmte Dämpfungszeit angepasst, falls die zeitliche Dauer des Empfangszeitintervalls den Referenzwert unterschreitet und/oder die Unterschiedsdauer den Grenzwert unterschreitet. Für die Dämpfungszeit, während der der Ultraschallsensor in der Dämpfungsphase betrieben wird, kann zunächst ein vorbestimmter Wert vorgegeben werden. Falls das Empfangszeitintervall kleiner als der Referenzwert ist und/oder die Unterschiedsdauer kleiner als der Grenzwert ist, kann die Dämpfungszeit insbesondere erhöht werden. Auf diese Weise kann der Zeitpunkt, ab dem die
Empfangsphase beginnt, nach hinten verschoben werden. Somit können Scheinechos aus dem Sensorsignal quasi herausgefiltert werden.
Insbesondere kann die Dämpfungszeit so angepasst werden, dass die angepasste Dämpfungszeit einer Summe der vorbestimmten Dämpfungszeit, des
Empfangszeitintervalls und Unterschiedsdauer entspricht. Zu der ursprünglich
eingestellten Dämpfungszeit können also die zeitliche Dauer des Empfangszeitintervalls und die zeitliche Dauer der Unterschiedsdauer addiert werden. Erst nach dieser zeitlichen Dauer kann die Empfangsphase des Ultraschallsensors beginnen. Somit können von einem Objekt reflektierte Ultraschallsignale zuverlässiger erkannt werden.
In einer Ausgestaltung wird eine aktuelle Temperatur des Ultraschallsensors erfasst und das Dämpfungszeitintervall wird in Abhängigkeit von der erfassten Temperatur angepasst. Hiermit kann der Einfluss der Temperatur auf das mechanische
Schwingungsverhalten der Membran des Ultraschallsensors berücksichtigt werden. So können unterschiedliche Werte für das Dämpfungszeitintervall für unterschiedliche Temperaturen in einer Speichereinheit einer Steuereinrichtung hinterlegt sein.
Weiterhin ist es vorteilhaft, wenn das Dämpfungszeitintervall in Abhängigkeit von einem Betriebszustand des Ultraschallsensors angepasst wird. Auch hier kann beispielsweise eine Betriebsdauer des Ultraschallsensors berücksichtigt werden. Somit kann
beispielsweise ein mechanischer Verschleiß, der sich üblicherweise im Laufe der Zeit einstellt, berücksichtigt werden.
Eine erfindungsgemäße Ultraschallsensorvorrichtung für ein Kraftfahrzeug umfasst einen Ultraschallsensor und eine Steuereinrichtung, welche dazu ausgelegt ist, das
erfindungsgemäße Verfahren durchzuführen. Ein erfindungsgemäßes Fahrerassistenzsystem umfasst zumindest eine
Ultraschallsensorvorrichtung. Die Ultraschallsensoren der Ultraschallsensorvorrichtung können beispielsweise in einem vorderen Stoßfänger und/oder in einem hinteren
Stoßfänger des Kraftfahrzeugs angeordnet sein. Das Fahrerassistenzsystem kann beispielsweise als sogenanntes Parkhilfesystem ausgebildet sein.
Ein erfindungsgemäßes Kraftfahrzeug umfasst das erfindungsgemäße
Fahrerassistenzsystem. Das Kraftfahrzeug ist insbesondere als Personenkraftwagen ausgebildet.
Die mit Bezug auf das erfindungsgemäße Verfahren vorgestellten bevorzugten
Ausführungsformen und deren Vorteile gelten entsprechend für die erfindungsgemäße Ultraschallsensorvorrichtung, das erfindungsgemäßes Fahrerassistenzsystem sowie das erfindungsgemäße Kraftfahrzeug.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Figurenbeschreibung. Alle vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder aber in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
Dabei zeigen
Fig. 1 in schematischer Darstellung eine Ultraschallsensorvorrichtung für ein
Kraftfahrzeug;
Fig. 2, 3 analoge und digitale Sensorsignale, die während einer Dämpfungsphase und einer Empfangsphase des Ultraschallsensors mit einer Steuereinrichtung der Ultraschallsensorvorrichtung empfangen werden;
Fig. 4 ein digitales Sensorsignal in einer weiteren Ausführungsform; und Fig. 5 ein Flussdiagramm eines Verfahrens gemäß einer Ausführungsform der
Erfindung.
Fig. 1 zeigt eine Ultraschallsensorvorrichtung 1 in einer geschnittenen Seitenansicht. Die Ultraschallsensorvorrichtung 1 kann beispielsweise Teil eines Fahrerassistenzsystems eines Kraftfahrzeugs sein. Dieses Fahrerassistenzsystem kann insbesondere als
Parkhilfesystem ausgebildet sein, bei dem eine oder mehrere
Ultraschallsensorvorrichtungen 1 an einem vorderen und/oder an einem hinteren
Stoßfänger des Kraftfahrzeugs angeordnet sein. Mit Hilfe der
Ultraschallsensorvorrichtung 1 kann ein Abstand von dem Kraftfahrzeug zu einem Objekt ermittelt werden.
Die Ultraschallsensorvorrichtung 1 umfasst einen Ultraschallsensor 2. Der
Ultraschallsensor 2 umfasst wiederum ein Gehäuse 3, das beispielsweise aus Metall oder aus Kunststoff gefertigt sein kann. Des Weiteren umfasst der Ultraschallsensor 2 eine Membran 4, die insbesondere aus Aluminium gefertigt ist. Schließlich umfasst der Ultraschallsensor 2 eine Stelleinheit 5, die insbesondere ein piezoelektrisches Element umfasst. Mittels der Stelleinheit 5 kann die Membran 4 in mechanische Schwingungen versetzt werden. Zu diesem Zweck wird an der Stelleinheit 5 eine zeitlich veränderliche elektrische Spannung angelegt. Die Membran 4 des Ultraschallsensors 2 wird mit einer vorbestimmten Anregungsfrequenz mittels der Stelleinheit 5 angeregt, die insbesondere in einem Bereich zwischen 40 und 60 kHz, beispielsweise bei 52 kHz liegen kann. Als Sendesignal werden von der Membran 4 somit Ultraschallwellen erzeugt, die sich bis zu einem Objekt hin ausbreiten. An dem Objekt werden die Ultraschallwellen wieder reflektiert und gelangen wieder zu der Membran 4 zurück.
Der Ultraschallsensor 2 dient in diesem Fall auch zum Empfangen der reflektierten Ultraschallwellen. Die Membran 4 wird durch die reflektierten Ultraschallwellen in eine mechanische Schwingung versetzt. Diese kann mit der Stelleinheit 5 bzw. dem
piezoelektrischen Element erfasst werden, welches in Folge der mechanischen Anregung eine zeitlich veränderliche elektrische Spannung ausgibt.
Zwischen dem Aussenden des Signals und dem Empfangen des reflektierten Signals sollte die mechanische Schwingung der Membran 4 möglichst schnell gedämpft werden, da ansonsten die Mindestabstände, die mit dem Ultraschallsensor 2 erfasst werden können, reduziert werden. Zu diesem Zweck wird der Ultraschallsensor 2 zwischen einer Sendephase, in der das Sendesignal mit der Membran 4 ausgesendet wird, und der Empfangsphase 1 1 , in der das reflektierte Signal der Membran 4 erfasst wird, in einer Dämpfungsphase 10 betrieben, während der die Membran 4 mit der Stelleinheit von einer zu der Anregungsfrequenz gegenphasigen Dämpfungsfrequenz betrieben wird.
Des Weiteren umfasst die Ultraschallsensorvorrichtung 1 eine Steuereinrichtung 6, mit der die Ansteuerung des Ultraschallsensors 2 bzw. der Stelleinheit 5 erfolgt. Die
Steuereinrichtung 6 ist auch dazu ausgebildet, die mechanische Schwingung der Membran 4, die mit der Stelleinheit 5 während der Dämpfungsphase 10 erfasst wird, in Form von Sensorsignalen auszuwerten.
Die Sensorsignale, die mit der Steuereinrichtung 6 ausgewertet werden, sind in Fig. 2 dargestellt. Dabei zeigt ein erstes Diagramm 7 ein analoges Sensorsignal 9 und das Diagramm 8 das dazugehörige digitale Sensorsignal 13. Auf der Abszisse in dem
Diagramm 7 ist die Zeit t aufgetragen und auf der Ordinate des Diagramms 7 ist die Amplitude A1 des analogen Sensorsignals 9 aufgetragen. In dem Diagramm 8 ist auf der Abszisse ebenfalls die Zeit t und auf der Ordinate die Amplitude A2 des digitalen
Sensorsignals 13 aufgetragen. Das analoge Sensorsignal 9 beschreibt die mechanische Schwingung der Membran 4 während der Dämpfungsphase 10 und der darauffolgenden Empfangsphase 1 1 . Hierbei ist zu erkennen, dass die Amplitude der Schwingung während der Dämpfungsphase 10 kontinuierlich abnimmt, bis sie einen vorbestimmten Schwingungsschwellenwert 12 unterschreitet. Nach Unterschreiten des
Schwingungsschwellenwerts 12 kann der Ultraschallsensor 2 in der Empfangsphase 1 1 betrieben werden. Das digitale Sensorsignal 13, das in dem Graphen 8 dargestellt ist, weist beispielsweise den Wert 1 auf, wenn die Kurve 9 den Schwingungsschwellenwert 12 überschreitet. Falls die Kurve 9 den Schwingungsschwellenwert 12 unterschreitet, nimmt das digitale Sensorsignal 13 den Wert 0 an.
Fig. 2 verdeutlicht den Fall, indem die Schwingung der Membran durch das gegenphasige Dämpfungssignal gedämpft wird. Im Vergleich dazu zeigt die Ausführungsform gemäß Fig. 3 den Fall, in dem die Ansteuerung der Membran 4 zur Dämpfung der mechanischen Schwingung nicht ideal gegenphasig zur aktuellen mechanischen Schwingung der Membran 4 erfolgt. Hierbei wird die mechanische Schwingung zunächst gedämpft. Nach einer vorbestimmten zeitlichen Dauer folgt wiederum ein Anstieg der Amplitude des analogen Sensorsignals 9. Die Amplitude des analogen Sensorsignals 9 nimmt hierbei derart zu, dass der Schwingungsschwellenwert 12 überschritten wird. Dies schlägt sich in dem digitalen Signal 13 als Signalpuls 14 nieder. Dieser Signalpuls 14 wird von der Steuereinrichtung 6 der Ultraschallsensorvorrichtung als Echosignal interpretiert. Dieses vermeintliche Echo kann auch als Scheinecho bzw. als Ghostecho bezeichnet werden.
Um das Erfassen eines Scheinechos zu vermeiden, sind innerhalb der Steuereinrichtung 6 verschiedene Zeitintervalle und Schwellwerte für das digitale Sensorsignal 13 vorgegeben. Dies ist in Fig. 4 verdeutlicht. Für die Dämpfungszeit td, nach welcher die Dämpfungsphase 10 beendet ist, wird eine minimale Ausschwingzeit t1 und eine maximale Ausschwingzeit t2 vorgegeben. Die minimale Ausschwingzeit t1 und die maximale Ausschwingzeit t2 begrenzen somit eine vorbestimmtes Dämpfungszeitintervall 15. Zudem wird ein Referenzwert für ein Empfangszeitintervall 16 vorgegeben. Das Empfangszeitintervall 16 entspricht der zeitlichen Dauer, während der mechanischen Schwingung der Membran 4 während der Empfangsphase 1 1 den
Schwingungsschwellenwert 12 überschreitet. Darüber hinaus wird ein Grenzwert für eine Unterschiedsdauer tu vorgegeben. Die Unterschiedsdauer tu entspricht dem zeitlichen Abstand zwischen einem Ende der Dämpfungsphase bzw. dem Ende der Dämpfungszeit td und dem Empfangszeitintervall 16.
Fig. 5 zeigt ein Flussdiagramm eines erfindungsgemäßen Verfahrens zum Betreiben eines Ultraschallsensors 2. Das Verfahren wird in einem Schritt S1 für jeden Messzyklus des Ultraschallsensors 2 gestartet. In einem Schritt S2 wird über der Dämpfungsphase 10 eine Amplitude der mechanischen Schwingung der Membran 4 erfasst. Zudem wird überprüft, ob die Amplitude der mechanischen Schwingung den
Schwingungsschwellenwert 12 während des vorbestimmten Dämpfungszeitintervalls 15 überschreitet. Ist dies der Fall, kann davon ausgegangen werden, dass der
Ausschwingvorgang in Ordnung ist. Alternativ dazu könnte der Ultraschallsensor defekt sein. Ist die Abfrage in Schritt S2 erfüllt, wird das Verfahren in einem Schritt S3 beendet.
Ist die Abfrage in Schritt S2 nicht erfüllt, wird das Verfahren in einem Schritt S4 fortgesetzt. Hierbei wird überprüft, ob die zeitliche Dauer des Empfangszeitintervalls 16 den Referenzwert unterschreitet und/oder ob die Unterschiedsdauer tu kleiner als der Grenzwert ist. Ist dies nicht erfüllt, liegt entweder kein Echo vor oder das Echo ist kein Scheinecho. Dann wird das Verfahren in dem Schritt S3 beendet.
Ist eine der Bedingungen gemäß Schritt S4 allerdings erfüllt, wird das Verfahren in dem Schritt S5 fortgesetzt. In diesem Fall wird die Ausschwingzeit td angepasst. Insbesondere wird die Ausschwingzeit td so angepasst, dass die angepasste Ausschwingzeit der Summe aus der bisherigen Ausschwingzeit td, der Unterschiedsdauer tu und dem
Empfangszeitintervall 16 entspricht. Darüber hinaus wird das erfasste Scheinecho in der Steuereinrichtung 6 gelöscht.
Auf diese Weise wird ein mit der Steuereinrichtung 6 erfasstes Echo nur unter bestimmten Umständen nicht berücksichtigt bzw. herausgefiltert und nicht generell. Damit kann verhindert werden, dass reale Echos aus dem Signal herausgefiltert werden.
Darüber hinaus wird die Dauer der Ausschwingzeit td bei vorhandenem Scheinecho wieder rekonstruiert. Die Filterung des Signals basiert auf dieser zeitlichen Dauer. Eine Blindheitserkennung des Ultraschallsensors 2, während der die Membran 4 angesteuert wird und die Resonanzfrequenz der Membran 4 bestimmt wird, wird dadurch
beispielsweise nicht beeinflusst. Auf diese Weise kann eine kostengünstige Lösung bereitgestellt werden, mit der vermieden werden kann, dass Scheinechos erfasst werden.

Claims

Patentansprüche
1 . Verfahren zum Betreiben eines Ultraschallsensors (2) eines Kraftfahrzeugs, bei welchem während einer Sendephase ein Sendesignal durch Anregen einer Membran (4) des Ultraschallsensors (2) mit einer Anregungsfrequenz ausgesendet wird, anschließend während einer Dämpfungsphase (10) die Membran (4) mit einer zu der Anregungsfrequenz gegenphasigen Dämpfungsfrequenz angeregt wird und anschließend während einer Empfangsphase (1 1 ) eine mechanische Schwingung der Membran (4) erfasst wird, wobei während der Dämpfungsphase (10) eine Amplitude der mechanischen Schwingung der Membran (4) erfasst wird, dadurch gekennzeichnet, dass
während der Dämpfungsphase (10) ermittelt wird, ob die Amplitude einen
Schwingungsschwellenwert (12) für eine zeitliche Dauer eines vorbestimmten Dämpfungszeitintervalls (15) unterschreitet (S2).
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die während der Empfangsphase (1 1 ) erfasste mechanische Schwingung der Membran (4) als ein Empfangssignal verwendet wird, falls die während der Dämpfungsphase (10) erfasste Amplitude den Schwingungsschwellenwert (12) für die zeitliche Dauer des vorbestimmten Dämpfungszeitintervalls (15) unterschreitet.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
während der Empfangsphase (1 1 ) die Amplitude der mechanischen Schwingung der Membran (4) erfasst wird und ein Empfangszeitintervall (16) ermittelt wird, während dem die Amplitude den Schwingungsschwellenwert (12) überschreitet.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass
eine Unterschiedsdauer (tu) zwischen einem Ende eine vorbestimmte
Dämpfungszeit (td), während der der Ultraschallsensor (2) im der Dämpfungsphase (10) betreiben wird, und dem Empfangszeitintervall (16) bestimmt wird.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
die während der Empfangsphase (1 1 ) erfasste mechanische Schwingung der Membran (4) als das Empfangssignal verwendet wird, falls die zeitliche Dauer des Empfangszeitintervalls (16) einen Referenzwert unterschreitet und/oder die Unterschiedsdauer (tu) einen Grenzwert unterschreitet (S4).
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass
die vorbestimmte Dämpfungszeit (td) angepasst wird, falls die zeitliche Dauer des Empfangszeitintervalls (16) den Referenzwert unterschreitet und/oder die
Unterschiedsdauer (tu) den Grenzwert unterschreitet.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
die vorbestimmte Dämpfungszeit (td) so angepasst wird, dass die angepasste Dämpfungszeit einer Summe der vorbestimmten Dämpfungszeit (td), des
Empfangszeitintervalls (16) und der Unterschiedsdauer (tu) entspricht (S5).
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
eine aktuelle Temperatur des Ultraschallsensors (2) erfasst wird und das
Dämpfungszeitintervall (15) in Abhängigkeit von der erfassten Temperatur angepasst wird.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Dämpfungszeitintervall (15) in Abhängigkeit von einem Betriebszustand des Ultraschallsensors (2) angepasst wird.
10. Ultraschallsensorvorrichtung (1 ) für ein Kraftfahrzeug, mit einem Ultraschallsensor (2) und mit einer Steuereinrichtung (6), welche dazu ausgelegt ist, ein Verfahren nach einem der vorhergehenden Ansprüche durchzuführen.
1 1 . Fahrerassistenzsystem mit zumindest einer Ultraschallsensorvorrichtung (1 ) nach Anspruch 10.
12. Kraftfahrzeug mit einem Fahrerassistenzsystem nach Anspruch 1 1 .
PCT/EP2015/058394 2014-05-23 2015-04-17 Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug WO2015176885A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15716814.7A EP3146360A1 (de) 2014-05-23 2015-04-17 Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014107311.8A DE102014107311A1 (de) 2014-05-23 2014-05-23 Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102014107311.8 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015176885A1 true WO2015176885A1 (de) 2015-11-26

Family

ID=52875707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/058394 WO2015176885A1 (de) 2014-05-23 2015-04-17 Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug

Country Status (3)

Country Link
EP (1) EP3146360A1 (de)
DE (1) DE102014107311A1 (de)
WO (1) WO2015176885A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780144A (zh) * 2016-03-15 2018-11-09 松下知识产权经营株式会社 物体探测装置
CN113157011A (zh) * 2021-02-23 2021-07-23 潍坊歌尔微电子有限公司 超声波控制方法、装置、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165358B2 (en) 2014-12-11 2018-12-25 Semiconductor Components Industries, Llc Transducer controller and method therefor
DE102017207679A1 (de) 2017-05-08 2018-11-08 Robert Bosch Gmbh Betriebsverfahren und Steuereinheit für eine Ultraschallsendeempfangseinrichtung, Ultraschallsendeempfangseinrichtung und Arbeitsvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142075A1 (de) * 2000-08-31 2002-05-23 Denso Corp Hinderniserfassungssystem mit einer Schnee-Erfassungsfunktion
DE102010039017A1 (de) * 2010-08-06 2012-02-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur aktiven Dämpfung eines akustischen Wandlers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136628B4 (de) 2001-07-26 2006-04-20 Valeo Schalter Und Sensoren Gmbh Ultraschallwandler zum Aussenden und Empfangen von Ultraschallwellen mittels einer Membran, Verfahren und Steuergerät zum Betrieb des Ultraschallwandlers, sowie Verwendung des Ultraschallwandlers
DE102011089542A1 (de) * 2011-12-22 2013-06-27 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Ansteuerung eines Ultraschallsensors
DE102012213580A1 (de) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Auswerten eines empfangenen Wechselsignals
DE102012221591A1 (de) * 2012-11-26 2014-05-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Umfelderfassung eines Fahrzeugs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142075A1 (de) * 2000-08-31 2002-05-23 Denso Corp Hinderniserfassungssystem mit einer Schnee-Erfassungsfunktion
DE102010039017A1 (de) * 2010-08-06 2012-02-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur aktiven Dämpfung eines akustischen Wandlers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780144A (zh) * 2016-03-15 2018-11-09 松下知识产权经营株式会社 物体探测装置
CN108780144B (zh) * 2016-03-15 2022-10-11 松下知识产权经营株式会社 物体探测装置
CN113157011A (zh) * 2021-02-23 2021-07-23 潍坊歌尔微电子有限公司 超声波控制方法、装置、设备及介质
CN113157011B (zh) * 2021-02-23 2022-01-14 潍坊歌尔微电子有限公司 超声波控制方法、装置、设备及介质

Also Published As

Publication number Publication date
EP3146360A1 (de) 2017-03-29
DE102014107311A1 (de) 2015-11-26

Similar Documents

Publication Publication Date Title
EP3084469B1 (de) Ultraschallsensoreinrichtung für ein kraftfahrzeug, kraftfahrzeug und entsprechendes verfahren
EP2618177B1 (de) Verfahren zum Erkennen eines vereisten und/oder verschmutzten Zustands eines Ultraschallsensors in einem Kraftfahrzeug, Sensoreinrichtung und Kraftfahrzeug
DE102008002232A1 (de) Verfahren und Vorrichtung zur Bestimmung von Entfernung und/oder Geschwindigkeit eines Objektes relativ zu einem Fahrzeug
DE102010021960A1 (de) Verrfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP3146360A1 (de) Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE102004043597A1 (de) Einrichtung zur Erfassung einer Kollision eines Fahrzeugs mit einem Hindernis
DE102014115000A1 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102011016287B4 (de) Verfahren und Vorrichtung zum Regeln eines Ultraschallsensors eines Kraftfahrzeugs
EP3195006A1 (de) Verfahren und vorrichtung zum öffnen eines flügelelements eines kraftfahrzeugs, sowie kraftfahrzeug
DE102010018349A1 (de) Verfahren und Vorrichtung zur Detektion eines Objektes in der Umgebung eines Fahrzeugs
DE102011118643A1 (de) Fahrerassistenzeinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben einer Fahrerassistenzeinrichtung in einem Kraftfahrzeug
DE102014112917B4 (de) Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
EP3012654A1 (de) Ultraschallsensor für ein kraftfahrzeug, anordnung, kraftfahrzeug sowie herstellungsverfahren
DE102017122477B4 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Objekterkennung im Nahbereich und im Fernbereich, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102018103414B4 (de) Verfahren zur Charakterisierung eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit Höhenschätzung anhand einer zeitlichen Ableitung eines Empfangssignals eines Ultraschallsensors, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102015110776A1 (de) Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit zwei Piezoelementen, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren
DE102011116197A1 (de) Verfahren zur Erkennung eines Dachträgers eines Fahrzeugs
DE102017122383B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Bestimmung eines Zustands eines Schallwandlerelements, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102019120350B4 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Fahrzeugs mit dynamischer Bestimmung von Schwellwerten, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102013017933A1 (de) Einparkassistenzsystem und Betriebsverfahren dafür
WO2019096500A1 (de) Verfahren zum betreiben eines ultraschallsensors für ein kraftfahrzeug mit unterdrückung von störungen in einem zweiten empfangspfad, ultraschallsensor sowie fahrerassistenzsystem
DE102022004971B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022101227B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022004969B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich
DE102022004970B3 (de) Ultraschallsensor mit einer Objekterkennung von Objekten im Nahbereich

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15716814

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015716814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015716814

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE