WO2015176482A1 - 光收发器和主动光缆 - Google Patents

光收发器和主动光缆 Download PDF

Info

Publication number
WO2015176482A1
WO2015176482A1 PCT/CN2014/088965 CN2014088965W WO2015176482A1 WO 2015176482 A1 WO2015176482 A1 WO 2015176482A1 CN 2014088965 W CN2014088965 W CN 2014088965W WO 2015176482 A1 WO2015176482 A1 WO 2015176482A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
electrical
optical transceiver
interface
electrical connector
Prior art date
Application number
PCT/CN2014/088965
Other languages
English (en)
French (fr)
Inventor
周创
王波
胡睿
胡驰昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015176482A1 publication Critical patent/WO2015176482A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to an optical transceiver and an active optical cable.
  • Fiber-optic communication has become a key interconnect technology for applications such as computing, networking and consumer electronics. Fiber has become a popular choice for providing high-bandwidth and high-speed information channels. The proliferation of smart mobile devices has further stimulated high-bandwidth information. Pass the demand.
  • an optical transceiver module is used for processing mutual conversion between an optical signal and an electrical signal.
  • An optional optical transceiver module structure is set on a printed circuit board (PCB).
  • PCB printed circuit board
  • Related chips for photoelectric conversion such as a driver chip and a laser array chip for electro-optical conversion, and a preamplifier chip and a photodetection chip for photoelectric conversion.
  • the optical interface of the optical transceiver module is connected to the panel for connecting with the optical fiber outside the panel; the electrical interface of the optical transceiver module can be electrically connected to the motherboard by using a gold finger connector.
  • the optical transceiver module of this structure has a limited interconnection density between the optical interface and the electrical interface, thereby further limiting the capability of the optical fiber communication bandwidth of the optical transceiver module.
  • Embodiments of the present invention provide an optical transceiver and an active optical cable to improve bandwidth of optical fiber communication.
  • an optical transceiver comprising: at least one printed circuit board and at least two light engines disposed on the at least one printed circuit board, the at least two light engines including at least for photoelectric conversion a first light engine and a second light engine for performing electro-optic conversion;
  • the optical transceiver further includes an electrical connector for interconnecting the at least two light engines
  • Each of the light engines includes: a first electrical interface and an optical interface in the form of an optical fiber array for connecting optical fibers, the first electrical interface being passed through a printed circuit board One of the at least two second electrical interfaces of the electrical connector is connected, and each of the second electrical interfaces is in the form of an array.
  • the electrical connector is a linear grid array electrical connector.
  • the at least one second electrical interface of the electrical connector is a contact array package LGA connector.
  • the number of the at least one printed circuit board is at least two.
  • the electrical connector passes through a pin of the second electrical interface A differential drilling pair of a printed circuit board is contact-connected.
  • the optical interface uses an optical fiber array of a multimode fiber or a single mode fiber.
  • an active optical cable comprising the optical transceiver and optical fiber of the present invention, wherein an optical interface of each optical engine in the optical transceiver is fixedly connected to the optical fiber.
  • the method further includes a mechanical housing for enclosing the at least one printed circuit board, at least two light engines, and an electrical connector, the printed circuit board being adjacent to the Mechanical housing settings.
  • a motherboard is further disposed on the motherboard, in the optical transceiver
  • the electrical connector is hot-swapped with the main board through a guide rail and a guide groove.
  • one or more printed circuit boards of the at least one printed circuit board are placed horizontally or vertically with the main board.
  • the optical transceiver and the active optical cable provided in the embodiments of the present invention are connected to the optical fiber by using an optical interface in the form of an optical fiber array, so that the optical interconnection density is improved, and an electrical connector having an array-type electrical interface is used, and the electrical connection is also made. Increased density compared to the use of gold fingers
  • the connector of the structure can improve the communication capability of the optical transceiver as a whole and improve the bandwidth of the optical fiber communication.
  • FIG. 1 is a schematic structural diagram of an optical transceiver according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of application of another optical transceiver according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view of Figure 2;
  • FIG. 4 is a schematic diagram of connection between a PCB and an electrical connector in another optical transceiver according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another application of an optical transceiver according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another application of an optical transceiver according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an application example of another optical transceiver according to an embodiment of the present invention.
  • the embodiment of the present invention provides an optical transceiver, which may also be referred to as an optical transceiver module, an optical transceiver device, etc., and can be used for inter-frame interconnection of a core network router, such as a short-range (less than 300 meters) frame.
  • a core network router such as a short-range (less than 300 meters) frame.
  • Inter-connected, and the optical transceiver provided in this embodiment can be used for future inter-frame interconnection applications of Tbit, Terabit and 10Tbit bandwidth, and provides key interconnection for future applications such as 1000 Gbit Internet router, parallel computing, and high bandwidth. technology.
  • the structure of the optical transceiver will be described in detail below:
  • FIG. 1 is a schematic structural diagram of an optical transceiver according to an embodiment of the present invention.
  • FIG. 1 is a schematic block diagram showing a structural design of an optical transceiver.
  • the optical transceiver may include at least one printed circuit board PCB, and at least two light engines (OE Engines) may be disposed on the at least one PCB; optionally, two pieces are set in FIG. 1 of the embodiment.
  • PCB is PCB1 and PCB2.
  • the number can be changed in the specific implementation. For example, three blocks are set, and no limitation is imposed.
  • the at least two light engines include at least a first light engine and a second light engine, wherein the first light engine is configured to perform photoelectric conversion, such as receiving an optical signal and converting it into an electrical signal, for example, in FIG. "RX OE Engine”; the second light engine is used for electro-optical conversion, such as receiving an electrical signal and converting it into an optical signal, such as "TX OE” in Figure 1. And a plurality of light engines are illustrated in FIG. 1.
  • the first light engine includes: RX OE Engine 1, RX OE Engine 2, ... RX OE Engine n, and also exemplifies a plurality of second lights.
  • the first light engine can be set on the PCB2, and the second light engine is set on the PCB1, so that the PCB2 is equivalent to one Receiver, PCB1 is equivalent to a transmitter.
  • an electrical connector is further included, wherein the electrical connector is used to interconnect the at least two light engines; for example, in the embodiment, the electrical connector will be the first light engine and the second The light engine is connected, that is, the portion that receives the optical signal is connected to the portion that emits the optical signal to form an optical transceiver device.
  • each light engine includes an optical interface and an electrical interface, and the optical interface is used to connect an optical fiber other than the optical transceiver, and is an optical interface in the form of a fiber array; the electrical interface may be referred to as a first electrical interface (for The electrical interface of the electrical connector is distinguished and named.
  • the first electrical interface is to be connected to the electrical connector, specifically to the electrical connector through the PCB, that is, the electrical interface of the optical engine is connected to the PCB, and the PCB is connected to the electrical connector.
  • the second electrical interface is connected; more specifically, the first electrical interface can be connected to one of the at least two second electrical interfaces of the electrical connector through a PCB, and the second electrical interface is also in the form of an array.
  • at least one of the at least two second electrical interfaces of the electrical connector is a land grid array (LGA) connector.
  • the electrical connectors are, for example, electrical connectors of a linear grid array that increase the density of the electrical interconnects by employing electrical connectors in the form of an array.
  • the optical interface of the optical engine is in the form of an optical fiber array, so that the density of the optical interconnection can be greatly improved, and since the electrical interface of the electrical connector is also in an array form, the density of the electrical interconnection is also improved. Therefore, the optical transceiver can improve the bandwidth capability as a whole; in addition, since the electrical interconnection and the optical interconnection are both in an array form, it is easier to achieve physical density matching, and the interconnection density can be increased without increasing the volume of the optical transceiver. .
  • the conventional optical transceiver uses a gold finger connector, and the density of the electrical interconnection is limited by the width of the PCB and the spacing of the gold fingers, etc., and the density of the interconnection is increased. Therefore, it is necessary to increase the width of the PCB circuit board, reduce the feature size of the gold finger or use a plurality of PCBs, but this will greatly increase the cost; and in this embodiment, the electrical connector uses a connector with an array form electrical interface, breaking through Bureau of traditional connection limit.
  • the interior of the optical transceiver may further include a Micro Controller and a Power Unit, wherein the microcontroller can be used for monitoring and communication related control functions.
  • the optical transceiver can be a simplex transceiver or a duplex transceiver by selecting the proportion of the light engine.
  • the duplex transceiver can set the optical engine of the PCB1 as the originating light engine (TX OE Engine). ), the PCB2's light engine is all set to the RX OE Engine.
  • the transmitted simplex transceiver can set the optical engines of PCB1 and PCB2 as the originating light engine (TX OE Engine), and the received simplex transceiver can set the optical engines of PCB1 and PCB2 as the receiving light engine ( RX OE Engine).
  • FIG. 2 is a schematic diagram of an application structure of another optical transceiver according to an embodiment of the present invention.
  • an optical transceiver is mounted on a main board 21, and a periphery of the optical transceiver is provided with a mechanical housing 22, the mechanism The housing 22 encloses the optical transceiver.
  • FIG. 3 is a cross-sectional view of FIG. 2.
  • the PCB in the optical transceiver of this embodiment can be disposed in two pieces and can be horizontally placed with the main board 21, as shown in FIG. 3, PCB23 and PCB24. Parallel and parallel to the main board 21.
  • the two PCBs are disposed close to the mechanical casing 22, have better heat dissipation, and can dissipate heat from four sides.
  • the proximity here is that the PCB is tightly coupled to the mechanical housing 22 such that the PCB facilitates heat dissipation through the mechanical housing 22.
  • six light engines 25 are disposed, and three light engines 25 are disposed on each PCB.
  • a light engine (which may be referred to as a first light engine) for photoelectric conversion is disposed on the PCB 23, and another A light engine (which may be referred to as a second light engine) for electro-optic conversion is disposed on one of the PCBs 24; these light engines 25 may be disposed on the surface of the PCB circuit board by soldering or connectors.
  • the light engine 25 in this embodiment may use a Vertical Cavity Surface Emitting Laser (VCSEL) based on 850 nm or other wavelengths, and is a high-speed (for example, 10-58 G) photodiode (Photo Diode, Abbreviation: PD) array, for example, on each PCB, if three pairs of 11.1G VCSEL-based light engines are used, the bandwidth that the optical transceiver can achieve is 0.4Tbit; if three pairs of 20.8G VCSELs are used The optical engine, the optical transceiver can achieve a bandwidth of 0.75Tbit; if three pairs of 28G VCSEL-based optical engines are used, the bandwidth that the optical transceiver can achieve is 1Tbit; if three pairs of 56G VCSEL-based light engines are used, the bandwidth that the optical transceiver can achieve is 2Tbit. And by setting up several pairs of light engines, the light engine can be replaced at any time to ensure reliability and manufacturability. In addition, other types of lasers other
  • each light engine 25 includes an optical interface and an electrical interface.
  • the electrical interface of the optical engine may be referred to as a first electrical interface, and the electrical interface of the electrical connector may be referred to as a second electrical interface.
  • the optical interface 26 of the optical engine 25 is used for connecting the optical fiber 27; the optical interface is in the form of an optical fiber array, for example, based on a multi-mode fiber (MMF) or a single-mode fiber (SM Fiber, SMF for short: SMF for short).
  • MMF multi-mode fiber
  • SM Fiber, SMF for short single-mode fiber
  • the optical interface of the light engine is inside the optical transceiver, and the array fiber bundle also extends from the inside of the optical transceiver to the panel 28, and the optical fiber on the panel 28
  • the interface 29 extends and is used to connect the optical fibers 30.
  • the optical engine adopts an optical interface in the form of a fiber array, the density of the optical interconnection is greatly improved. For example, if each optical engine uses an optical interface of a 12-way optical array, the optical interconnection density of the optical transceiver can reach duplex. 36 channels of transmission and 36 channels of reception; if each light engine uses the optical interface of a 24-way fiber array, the optical interconnect density of the optical transceiver can reach 72 channels of transmission and 72 channels of reception. Moreover, as the speed of Ethernet changes from 100Gbit to 1000Gbit, the single-channel rate of fiber is also improving from 10Gbit to 28Gbit. For example, the 24-channel high-speed single-channel 28Gbit optical engine is gradually maturing with the development of R&D.
  • the total bandwidth in the future can reach 680Gbit of the total bandwidth of the duplex or the duplex, and the two 24-channel single-channel 28Gbit optical engine can achieve 2Tbit duplex bandwidth or 4Tbit simplex bandwidth. It should be noted that this embodiment does not limit the speed and number of which light engine or light engine to use, such as the three pairs of 11.1 Gbit-based light engines or 28 Gbit-based light engines mentioned above.
  • FIG. 4 is a schematic diagram of a connection between a PCB and an electrical connector in another optical transceiver according to an embodiment of the present invention.
  • the electrical connector includes at least two second electrical interfaces 33, each of the second electrical interfaces. 33 is connected to a PCB, and the second electrical interface 33 in FIG.
  • the Figure 4 is connected to the PCB 23; the specific connection manner may be that the electrical connector passes through the differential drilling pair of the lead 34 at one of the second electrical interfaces 33 and a PCB. Contact interconnection.
  • the Figure 4 also shows details of the high speed signal within the electrical connector, which is a ground-shielded differential pair signal pair, and the signal inside the connector can be done, for example, as an L-bend for topological conversion of the PCB and external connections. This layout has several advantages.
  • the connector can match multiple (such as two) PCBs, can include a transmitter and a receiver to make up an optical transceiver;
  • the length of the wiring and the length of the differential signal Matching can be formed to minimize delay matching between pairs of signals, and delay matching between signals is reduced to a very critical performance improvement for real-time computing and bus applications.
  • the electrical connector is also interconnected with the receptacle connector 32 on the main board 21, specifically by the pin 35 and the receptacle connector of the other second electrical interface of FIG. 32 connections.
  • the electrical connector 31 of the optical transceiver is hot-swapped with the main board 21 through a guide rail and a guiding slot.
  • the guiding rail is a matching mechanism for the electrical connector 31 to be inserted into the main board 21, and the side of the electrical connector 31 has a guiding slot and a main board 21
  • the sliding rail cooperates, so that the electrical connector can be easily and precisely inserted into the main board 21; and when the electrical connector is inserted into the main board 21, the electrical interface inside the electrical connector 31 and the point interface on the main board 21 need to be closely matched, and the matching
  • the mechanism is for the male and female slots.
  • the electrical connector of the embodiment may also have a function of digital optical monitoring (DOM).
  • the optical fiber 30 may be pluggable or connected to the optical fiber interface 29, or may be fixedly connected to the optical fiber interface 29.
  • the whole of the optical fiber 30 and the optical transceiver may be referred to as an active optical cable ( Active Optical Cables, referred to as AOC).
  • FIG. 5 is an embodiment of the present invention.
  • a schematic diagram of an application structure of another optical transceiver is provided.
  • the newly added third PCB can be disposed on the S surface shown in FIG. 5, that is, a plane parallel to the plane of FIG. 5 and perpendicular to the mechanical housing 22.
  • the light engine 25 is set on this side (only one light engine is illustrated on the S side). In this case, as long as the corresponding port for connecting to the PCB (ie, the second electrical interface) is added to the electrical connector of FIG. 4, the pin can be connected to the PCB.
  • FIG. 6 is another light collection provided by the embodiment of the present invention.
  • a schematic diagram of the application structure of the hair device which schematically illustrates the structure of the vertical arrangement.
  • the PCB 23 and the PCB 24 are vertically disposed on the main board 21, and the setting of the electrical connector 31 can be unchanged, which is the same as that in FIG. 5, and is still sandwiched between the two PCBs, except that the two PCBs in FIG. 5 are parallel.
  • On the main board 21, and the two PCBs in Fig. 6 are parallel to the plane in which Fig. 6 is located.
  • Several optical transceivers can be installed on the network card and motherboard. It realizes the interconnection communication of network devices such as routing switches of terabit to picobit, and can be used not only for hot plugging, but also for backplane application scenarios such as backplane plugging and unplugging modules.
  • FIG. 7 is a schematic diagram of an application example of another optical transceiver according to an embodiment of the present invention.
  • FIG. 7 illustrates a design use scenario of a network card using 15 optical transceivers 71 of the embodiment of the present invention.
  • Each optical transceiver can provide a maximum duplex bandwidth of 2Tbit, and the network card can provide a maximum bandwidth of 30Tbit.
  • the embodiment of the present invention further provides an AOC, which may include the optical transceiver and the optical fiber according to the foregoing embodiment of the present invention.
  • the structure of the AOC may be coupled to FIG. 2, and the optical fiber 30 is fixedly connected to the optical fiber interface 29, that is, the optical The optical interface of each optical engine in the transceiver is fixedly connected to the optical fiber.
  • other structures may be referred to the foregoing embodiments, such as the optical transceiver further comprising a mechanical housing enclosing the at least one printed circuit board, at least two light engines and electrical connectors, the printing A circuit board is placed adjacent to the mechanical housing.
  • the optical transceiver is disposed on the main board 21, and the electrical connector 31 in the optical transceiver is hot-plugged and engaged with the main board 21 through a guide rail and a guiding slot.
  • the optical transceiver is disposed on the main board 21, one or more printed circuit boards of the at least one printed circuit board are placed horizontally or vertically with the main board 21.
  • the sub-steps can be accomplished by hardware associated with the program instructions.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM (Read Only Memory), RAM (Random Access Memory), disk or optical disk, and the like, which can store program codes. medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光收发器,包括至少一个印刷电路板(23,24)和设置在印刷电路板(23,24)上的至少两个光引擎(25)。光引擎(25)包括用于进行光电转换的第一光引擎(25)和用于电光转换的第二光引擎(25)。光收发器还包括电连接器(31),电连接器(31)用于互连至少两个光引擎(25)。每个光引擎(25)包括第一电接口以及光接口(26),光接口(26)使用光纤阵列形式且用于连接光纤(27),第一电接口通过一个印刷电路板(23)与电连接器(31)的至少两个第二电接口(33)中的一个第二电接口(33)连接,每个第二电接口(33)采用阵列形式。还公开了一种主动光缆,这种光收发器和主动光缆能够提高光纤通信的带宽。

Description

光收发器和主动光缆 技术领域
本发明实施例涉及通信技术,尤其涉及一种光收发器和主动光缆。
背景技术
光纤通信已经普及成为涵盖计算、网络和消费电子等应用的关键互联技术,光纤已经成为一项普遍选择的提供高带宽高速度的信息通道;而激增的智能移动设备,进一步刺激了高带宽的信息传递需求。在光纤通信中,使用了光收发模块用于处理光信号和电信号之间的相互转换,一种可选的光收发模块结构是,在印刷电路板(Printed Circuit Board,简称:PCB)上设置光电转换所用的相关芯片,比如用于电光转换的驱动芯片和激光阵列芯片,以及用于光电转换的前置放大芯片和光探测芯片等。该光收发模块的光接口连接到面板上,用于与面板外的光纤连接;光收发模块的电接口可以用金手指连接器与主板进行电口互联。但是,这种结构的光收发模块,其光接口和电接口的互联密度都是有限的,进而限制了采用该光收发模块的光纤通信带宽能力的进一步提高。
发明内容
本发明实施例提供一种光收发器和主动光缆,以提高光纤通信的带宽。
第一方面,提供一种光收发器,包括:至少一个印刷电路板和设置在所述至少一个印刷电路板上的至少两个光引擎,所述至少两个光引擎至少包括用于进行光电转换的第一光引擎以及用于进行电光转换的第二光引擎;
所述光收发器还包括电连接器,所述电连接器用于互相连接所述至少两个光引擎;
每个所述光引擎包括:第一电接口以及使用光纤阵列形式的光接口,所述光接口用于连接光纤,所述第一电接口通过一个印刷电路板与 所述电连接器的至少两个第二电接口中的一个第二电接口连接,每个所述第二电接口采用阵列形式。
结合第一方面,在第一种可能的实现方式中,所述电连接器是线性栅阵列电连接器。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述电连接器的至少一个第二电接口是触点阵列封装LGA接头。
结合第一方面至第一方面的第二种可能的实现方式中的任一种,在第三种可能的实现方式中,所述至少一个印刷电路板的数量为至少两块。
结合第一方面至第一方面的第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述电连接器通过所述一个第二电接口的引脚与所述一个印刷电路板的差分钻孔对进行接触式互联。
结合第一方面至第一方面的第四种可能的实现方式中的任一种,在第五种可能的实现方式中,所述光接口采用多模光纤或单模光纤的光纤阵列。
第二方面,提供一种主动光缆,包括本发明所述的光收发器和光纤,所述光收发器中的每个光引擎的光接口固定连接所述光纤。
结合第二方面,在第一种可能的实现方式中,还包括机械外壳,用于围设所述至少一个印刷电路板、至少两个光引擎和电连接器,所述印刷电路板靠近所述机械外壳设置。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,还包括主板,所述光收发器设置在所述主板上,所述光收发器中的电连接器通过导轨和导槽与所述主板热插拔配合。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述至少一个印刷电路板中的一个或多个印刷电路板与所述主板水平或垂直放置。
本发明实施例中提供的光收发器和主动光缆,通过采用具有光纤阵列形式的光接口与光纤互联,使得光互联密度提高,并且采用具有阵列形式电接口的电连接器,也使得电连接的密度提高,相对于采用金手指 结构的连接器,能够整体提高该光收发器的通信能力,提高光纤通信的带宽。
附图说明
图1为本发明实施例提供的一种光收发器的结构示意图;
图2为本发明实施例提供的另一种光收发器的应用结构示意图;
图3为图2的剖视图;
图4为本发明实施例提供的另一种光收发器中的PCB与电连接器的连接示意图;
图5为本发明实施例提供的又一种光收发器的应用结构示意图;
图6为本发明实施例提供的又一种光收发器的应用结构示意图;
图7为本发明实施例提供的又一种光收发器的应用示例。
具体实施方式
本发明实施例提供了一种光收发器,该光收发器也可以称作光收发模块、光收发器件等,可以用于核心网路由器的框间互联,比如短距(小于300米)的框间互联,并且本实施例提供的光收发器可以用于未来太比特(Tbit,Terabit)和10Tbit带宽的框间互联应用场景,为今后的1000Gbit互联网路由器、并行计算、高带宽等应用提供关键互联技术。下面将详述描述该光收发器的结构:
图1为本发明实施例提供的一种光收发器的结构示意图,该图1是用于表示光收发器结构设计的原理框图。具体的,该光收发器可以包括至少一个印刷电路板PCB,并且在该至少一个PCB上可以设置至少两个光引擎(OE Engine);可选的,本实施例的图1中以设置两块PCB为例,分别为PCB1和PCB2,当然具体实施中可以变动其数量,比如设置三块,不做限制。
所述的至少两个光引擎至少包括第一光引擎和第二光引擎,其中的第一光引擎,用于进行光电转换,比如接收光信号并将其转换为电信号,例如是图1中的“RX OE Engine”;其中的第二光引擎,用于进行电光转换,比如接收电信号并将其转换为光信号,例如是图1中的“TX OE  Engine”。并且,图1中示例了多个数量的光引擎,比如第一光引擎包括:RX OE Engine 1、RX OE Engine 2……RX OE Engine n,也示例了多个数量的第二光引擎:TX OE Engine 1、TX OE Engine 2……TX OE Engine n。可选的,可以将第一光引擎均设置在PCB2上,将第二光引擎均设置在PCB1上,这样PCB2相当于一个接收器,PCB1相当于一个发射器。
在本实施例的收发器中,还包括电连接器,该电连接器用于互相连接上述的至少两个光引擎;比如在本实施例中,电连接器将第一光引擎和所述第二光引擎连接,即将接收光信号的部分与发射光信号的部分连接,组成光收发器件。此外,每个光引擎包括光接口和电接口,光接口是用于连接光收发器之外的光纤的,并且是采用光纤阵列形式的光接口;电接口可以称为第一电接口(为了与电连接器的电接口区分而命名),该第一电接口要与电连接器连接,具体是通过PCB与电连接器连接,即光引擎的电接口连接在PCB上,PCB再与电连接器的第二电接口连接;更具体的,第一电接口可以通过一个PCB与电连接器的至少两个第二电接口中的一个第二电接口连接,该第二电接口也采用阵列形式,比如,上述电连接器的至少两个第二电接口中的至少一个是触点阵列封装(land grid array,简称:LGA)接头。所述的电连接器例如是线性栅阵列的电连接器,通过采用阵列形式的电连接器,提升了电互联的密度。
本实施例的光收发器,光引擎的光接口采用光纤阵列的形式,使得光互联的密度能够大幅提高,并且,由于电连接器的电接口也采用阵列形式,使得电互联的密度也得到提高,从而该光收发器能够整体提升带宽能力;此外,由于电互联和光互联均采用阵列形式,更容易达到物理密度的匹配,可以在不增加该光收发器的体积的情况下加大互联的密度。
将本实施例的方案与传统的光收发器比较来看,传统的光收发器使用金手指连接器的方式,电互联的密度受限于PCB的宽度和金手指间距等,要增加互联的密度,就需要增加PCB电路板的宽度,减少金手指的特征尺寸或使用多块PCB,但是这会大幅提高成本;而在本实施例中,电连接器采用具有阵列形式电接口的连接器,突破了传统连接方式的局 限。
此外,参见图1,该光收发器的内部还可以包括微控制器(Micro Controller)和电源管理模块(Power Unit),其中的微控制器可以用于监视和通信相关的控制功能。并且,该光收发器可以通过选择光引擎的比例,成为单工的收发机或者双工的收发机,比如,双工的收发机可以把PCB1的光引擎全部设为发端光引擎(TX OE Engine),把PCB2的光引擎全部设为收端光引擎(RX OE Engine)。发射的单工的收发机可以把PCB1和PCB2的光引擎全部设为发端光引擎(TX OE Engine),接收的单工的收发机可以把PCB1和PCB2的光引擎全部设为收端光引擎(RX OE Engine)。
图2为本发明实施例提供的另一种光收发器的应用结构示意图,在该图2中,光收发器被安装在主板21上,并且光收发器的外围设置有机械外壳22,该机械外壳22将光收发器围设起来。
具体的结构也可以结合参见图3,图3为图2的剖视图,本实施例的光收发器中的PCB可以设置两块,并且可以与主板21水平放置,如图3所示,PCB23和PCB24相平行的且与主板21平行的设置。此外,上述两块PCB靠近机械外壳22设置,具有较好的散热性,可以从四面散热。这里的靠近也就是PCB与机械外壳22紧密连接,使得PCB便于通过机械外壳22进行散热。本实施例设置六个光引擎25,每个PCB上设置三个光引擎25,比如可以设置为,在PCB23上设置用于进行光电转换的光引擎(可以称为第一光引擎),在另一个PCB24上设置用于电光转换的光引擎(可以称为第二光引擎);这些光引擎25可以通过焊接或者连接器设置在PCB电路板的表面。
本实施例中的光引擎25,可以使用基于850nm或者其他波长的垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,简称:VCSEL),并且是高速(例如10-58G)的光电二极管(Photo Diode,简称:PD)阵列,比如,每块PCB上,如果采用的是三对基于11.1G VCSEL的光引擎,该光收发器能达到的带宽是0.4Tbit;如果采用的是三对基于20.8G VCSEL的光引擎,该光收发器能达到的带宽是0.75Tbit;如果采用的是三对基于28G VCSEL的光引擎,该光收发器能达到的带宽是 1Tbit;如果采用的是三对基于56G VCSEL的光引擎,该光收发器能达到的带宽是2Tbit。并且通过设置数对光引擎,可以随时对光引擎进行替换,保证可靠性和可制造性,此外,还可以使用VCSEL之外的其他类型的激光器。
此外,每个光引擎25都包括光接口和电接口,为了与电连接器的电接口区分,可以将光引擎的电接口称为第一电接口,将电连接器的电接口称为第二电接口。光引擎25的光接口26是用于连接光纤27的;光接口采用光纤阵列的形式,比如是基于多模光纤(Multi-Mode Fiber,简称:MMF)或者单模光纤(SM Fiber,简称:SMF)的光纤阵列,那么其连接的光纤就是带状阵列光纤束。结合图2和图3,由于光引擎是设置在PCB上,所以光引擎的光接口是在光收发器内部的,阵列光纤束也是从光收发器内部延伸至面板28,从面板28上的光纤接口29伸出,再用于连接光纤30。
由于光引擎采用光纤阵列形式的光接口,使得光互联的密度大幅提高,比如,如果每个光引擎使用12路的光纤阵列的光接口,那么该光收发器的光互联密度可以达到双工的36路发送和36路接收;如果每个光引擎使用24路的光纤阵列的光接口,那么该光收发器的光互联密度可以达到双工的72路发送和72路接收。并且,随着以太网的速度从100Gbit向1000Gbit转变,光纤的单通道速率也在从10Gbit向28Gbit进步,比如,高速单通道为28Gbit的24路光引擎也在随着研发的进步而逐步成熟,那么未来的总共的带宽可以达到680Gbit的收或发双工总带宽,采用3个24路单通道28Gbit的光引擎就可以达到2Tbit的双工带宽或4Tbit的单工带宽。应该指出的是,本实施例并不限制使用哪一种光引擎或者光引擎的速率和数量,比如上面提到过的三对基于11.1Gbit的光引擎或者基于28Gbit的光引擎等。
本实施例中,电连接器31与PCB连接,具体是电连接器31的第二电接口通过PCB与光引擎25的第一电接口连接;并且,该电连接器31还与主板21上的插座连接器32互联,以实现与主板21的电连接。参见图4,图4为本发明实施例提供的另一种光收发器中的PCB与电连接器的连接示意图,该电连接器包括至少两个第二电接口33,每个第二电接口 33连接一块PCB,图4中的第二电接口33连接PCB23;具体的连接方式可以是,电连接器通过其中的一个第二电接口33处的引脚34与一个PCB的差分钻孔对进行接触式互联。该图4还示出了电连接器内的高速信号的细节,该高速信号是地屏蔽的差分对信号对,连接器内部的信号可以做比如L型弯曲来进行PCB和外部连接的拓扑转换。这种布局有几大优势,首先,连接器可以匹配多个(比如两个)PCB,可以包含一个发射器和一个接收器,以使组成一个光收发器;其次,布线长度和差分信号的长度可以形成匹配,以达到信号对之间的延迟相匹配最小化,信号间的延迟匹配减小对于实时计算和总线应用有非常关键的性能提升。
此外,由图2和图3也可以看到,电连接器还与主板21上的插座连接器32互联,具体可以是通过图4中的另一个第二电接口的引脚35与插座连接器32连接。所述光收发器中的电连接器31通过导轨和导槽与主板21热插拔配合,其中导轨是电连接器31插入主板21的配合机制,电连接器31的侧面有导槽和主板21的滑轨配合,使得电连接器可以容易并且精密的插入主板21;并且,当电连接器插入主板21时,电连接器31内部的电接口和主板21上的点接口需要精密配合,其配合机制为公母槽配合。此外,本实施例的电连接器还可以带光电检测(Digital Optical Monitoring,简称:DOM)功能。
本实施例中,光纤30可以是可插拔的连接在光纤接口29,也可以是固定连接在光纤接口29,当固定连接时,那么可以将光纤30和光收发器组成的整体称为主动光缆(Active Optical Cables,简称:AOC)。
在以上的图2-图4中,是以PCB的数量为两块为例,实际应用中PCB的数量是可变的,比如可以设置三块PCB,参见图5,图5为本发明实施例提供的又一种光收发器的应用结构示意图,新增加的第三块PCB可以设置在图5中所示的S面,即相当于平行于图5所在平面且垂直于机械外壳22的平面,并在该面上设置光引擎25(仅在S面示例了一个光引擎)。这种情况下,只要在图4中的电连接器上增加相应的用于与PCB连接的端口(即第二电接口)即可,仍然可以采用引脚与PCB连接。
此外,在以上的图2-图4中,是以PCB平行于主板21为例,实际上PCB也可以垂直于主板21设置,图6为本发明实施例提供的又一种光收 发器的应用结构示意图,该图6简单示意了垂直设置的结构。PCB23和PCB24垂直设置在主板21上,电连接器31的设置可以不变,与图5中是相同的,仍然是夹设在两块PCB中间,只不过在图5中的两块PCB均平行于主板21,而图6中的两块PCB均平行于图6所在的平面。
本发明实施例的光收发器,用低成本的光引擎技术搭建太比特(一太比特通常是1 Tbit/s=1024 Gbit/s=1024x1024Mbit/s,用于反映带宽)级光收发器和主动光缆,有低成本、低功耗、高带宽的特性,可以在今后3-5年内量产太比特级的短距互联产品,在未来的企业网、数据中心、云计算、基于太比特粒度的高带宽核心交换机、路由器、服务器、存储和背板互联等领域有广泛的应用,为核心路由器和数据中心提供<300米内Tbit级互联方案,在网卡和母板上安装使用数个光收发器可以实现太比特至皮比特的路由开关等网络设备的互联通讯,而且不仅可以用作热插拔,也可以用在背板插拔模块等背板联接应用场景。
图7为本发明实施例提供的又一种光收发器的应用示例,该图7演示了一个使用了15个本发明实施例的光收发器71的网卡的设计使用场景。每个光收发器可以提供的最大双工带宽在2Tbit,该网卡可以提供的最高带宽为30Tbit。多个这样的网卡可以联合在一起集群使用,提供达到petabit(数据存储单位,1PB(petabit)=1000TB)的高速网络应用,为百亿亿次级(exascale)计算和网络提供高速光电互联。
本发明实施例还提供一种AOC,该AOC可以包括本发明上述实施例所述的光收发器以及光纤,AOC的结构可以结合参见图2,将光纤30固定连接在光纤接口29,也就是光收发器中的每个光引擎的光接口固定连接光纤。此外,其他的结构可以参见前述的各实施例,比如所述光收发器还包括机械外壳,该机械外壳围设所述至少一个印刷电路板、至少两个光引擎和电连接器,所述印刷电路板靠近所述机械外壳设置。所述光收发器设置在主板21上,所述光收发器中的电连接器31通过导轨和导槽与所述主板21热插拔配合。当所述光收发器设置在所述主板21上时,所述至少一个印刷电路板中的一个或多个印刷电路板与所述主板21水平放置或者垂直放置。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部 分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM(只读存储器)、RAM(随机存取存储器)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种光收发器,其特征在于,包括:至少一个印刷电路板和设置在所述至少一个印刷电路板上的至少两个光引擎,所述至少两个光引擎至少包括用于进行光电转换的第一光引擎以及用于进行电光转换的第二光引擎;
    所述光收发器还包括电连接器,所述电连接器用于互相连接所述至少两个光引擎;
    每个所述光引擎包括:第一电接口以及使用光纤阵列形式的光接口,所述光接口用于连接光纤,所述第一电接口通过一个印刷电路板与所述电连接器的至少两个第二电接口中的一个第二电接口连接,每个所述第二电接口采用阵列形式。
  2. 根据权利要求1所述的光收发器,其特征在于,所述电连接器是线性栅阵列电连接器。
  3. 根据权利要求1或2所述的光收发器,其特征在于,所述电连接器的至少一个第二电接口是触点阵列封装LGA接头。
  4. 根据权利要求1-3中任一项所述的光收发器,其特征在于,所述至少一个印刷电路板的数量为至少两块。
  5. 根据权利要求1-4中任一项所述的光收发器,其特征在于,所述电连接器通过所述一个第二电接口的引脚与所述一个印刷电路板的差分钻孔对进行接触式互联。
  6. 根据权利要求1-5中任一项所述的光收发器,其特征在于,所述光接口采用多模光纤或单模光纤的光纤阵列。
  7. 一种主动光缆,其特征在于,包括权利要求1-6任一所述的光收发器和光纤,所述光收发器中的每个光引擎的光接口固定连接所述光纤。
  8. 根据权利要求7所述的主动光缆,其特征在于,还包括机械外壳,用于围设所述至少一个印刷电路板、至少两个光引擎和电连接器,所述印刷电路板靠近所述机械外壳设置。
  9. 根据权利要求7或8所述的主动光缆,其特征在于,还包括主板,所述光收发器设置在所述主板上,所述光收发器中的电连接器通过 导轨和导槽与所述主板热插拔配合。
  10. 根据权利要求9所述的主动光缆,其特征在于,所述至少一个印刷电路板中的一个或多个印刷电路板与所述主板水平或垂直放置。
PCT/CN2014/088965 2014-05-22 2014-10-20 光收发器和主动光缆 WO2015176482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410220356.6A CN105099563A (zh) 2014-05-22 2014-05-22 光收发器和主动光缆
CN201410220356.6 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015176482A1 true WO2015176482A1 (zh) 2015-11-26

Family

ID=54553352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088965 WO2015176482A1 (zh) 2014-05-22 2014-10-20 光收发器和主动光缆

Country Status (2)

Country Link
CN (1) CN105099563A (zh)
WO (1) WO2015176482A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999828A (zh) * 2020-09-24 2020-11-27 武汉锐奥特科技有限公司 一种直连式光模块及其装配方法
CN112688717A (zh) * 2020-12-24 2021-04-20 深圳市瑞葆科技有限公司 一种接口配对方法
CN115220159A (zh) * 2022-06-20 2022-10-21 武汉光迅科技股份有限公司 一种光电封装组件以及光模块

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690923A (zh) * 2018-07-05 2020-01-14 上海瑞波电子科技有限公司 一种基于光引擎的光纤通信系统
CN109188615A (zh) * 2018-09-06 2019-01-11 杭州耀芯科技有限公司 光引擎及其应用方法、光收发器
US10884205B2 (en) * 2018-09-06 2021-01-05 Hewlett Packard Enterprise Development Lp Modular faceplate optical connection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1202095A1 (en) * 2000-10-26 2002-05-02 Fci Electro-optical connection module
CN1947362A (zh) * 2004-04-22 2007-04-11 菲尼萨公司 紧凑型光收发器
US20110026893A1 (en) * 2009-07-29 2011-02-03 Koichi Omori Optical module
CN102540363A (zh) * 2010-12-14 2012-07-04 住友电气工业株式会社 光收发器
CN102687049A (zh) * 2009-10-29 2012-09-19 住友电气工业株式会社 可插式光收发器及其制造方法
CN103238094A (zh) * 2010-11-05 2013-08-07 Fci公司 具有接插线的光电模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523791A (zh) * 2003-02-19 2004-08-25 台达电子工业股份有限公司 可插拔的光收发模块
US7137744B2 (en) * 2004-06-14 2006-11-21 Emcore Corporation Fiber optic transceiver module with rigid and flexible circuit boards
US8057109B2 (en) * 2008-05-20 2011-11-15 Finisar Corporation Transceiver module with dual printed circuit boards
US8632261B2 (en) * 2010-04-20 2014-01-21 Hon Hai Precision Industry Co., Ltd. Integrated and sealed opto-electronic device assembly
US9002155B2 (en) * 2011-03-28 2015-04-07 Altera Corporation Integrated optical-electronic interface in programmable integrated circuit device
US8588561B2 (en) * 2011-07-01 2013-11-19 Samtec, Inc. Transceiver and interface for IC package
US8882366B2 (en) * 2011-12-07 2014-11-11 Finisar Corporation Chip identification pads for identification of integrated circuits in an assembly
JP5842622B2 (ja) * 2012-01-12 2016-01-13 富士通株式会社 光伝送装置および光伝送方法
CN103376515A (zh) * 2012-04-27 2013-10-30 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
CN103780310B (zh) * 2012-10-26 2016-08-10 深圳新飞通光电子技术有限公司 一种用于olt的sfp光收发一体模块
TWM459412U (zh) * 2013-04-02 2013-08-11 Luxnet Corp 光連接器封裝結構
CN203590231U (zh) * 2013-05-30 2014-05-07 武汉电信器件有限公司 一种cxp光收发模块
CN103475421B (zh) * 2013-08-21 2016-08-10 成都新易盛通信技术股份有限公司 一种sff2x10光收发模块
CN103441801B (zh) * 2013-08-26 2016-05-11 四川飞阳科技有限公司 光线路终端制作方法、光线路终端、无源光网络局端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1202095A1 (en) * 2000-10-26 2002-05-02 Fci Electro-optical connection module
CN1947362A (zh) * 2004-04-22 2007-04-11 菲尼萨公司 紧凑型光收发器
US20110026893A1 (en) * 2009-07-29 2011-02-03 Koichi Omori Optical module
CN102687049A (zh) * 2009-10-29 2012-09-19 住友电气工业株式会社 可插式光收发器及其制造方法
CN103238094A (zh) * 2010-11-05 2013-08-07 Fci公司 具有接插线的光电模块
CN102540363A (zh) * 2010-12-14 2012-07-04 住友电气工业株式会社 光收发器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999828A (zh) * 2020-09-24 2020-11-27 武汉锐奥特科技有限公司 一种直连式光模块及其装配方法
CN112688717A (zh) * 2020-12-24 2021-04-20 深圳市瑞葆科技有限公司 一种接口配对方法
CN112688717B (zh) * 2020-12-24 2023-01-31 深圳市瑞葆科技有限公司 一种接口配对方法
CN115220159A (zh) * 2022-06-20 2022-10-21 武汉光迅科技股份有限公司 一种光电封装组件以及光模块

Also Published As

Publication number Publication date
CN105099563A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP6294838B2 (ja) 高密度に実装された光インターコネクトを有するチップアセンブリ構成
WO2015176482A1 (zh) 光收发器和主动光缆
Pepeljugoski et al. Low power and high density optical interconnects for future supercomputers
Taubenblatt Optical interconnects for high-performance computing
US6951426B2 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
EP3028083B1 (en) Opto-electrical transceiver module and active optical cable
JP5790769B2 (ja) 光モジュール
EP3316014A1 (en) Optical interconnection backboard, transmission device and signal scheduling method
Kuchta et al. Multi-wavelength optical transceivers integrated on node (MOTION)
US10101537B2 (en) High-speed data connector
CN111193547A (zh) 一种光模块
WO2020108294A1 (zh) 光模块
Li et al. Transferring high-speed data over long distances with combined FPGA and multichannel optical modules
CN106877936B (zh) 一种sfp28光模块
US11561352B2 (en) High density optical I/O inside a data center switch using multi-core fibers
WO2017162146A1 (zh) 一种实现板间通信的方法和装置
TWM457971U (zh) 光電轉換系統
JP6348908B2 (ja) 電子ユニットと光ユニットとを結合するための相互接続構造、および光電子モジュール
CN216411656U (zh) 一种光模块
WO2022007428A1 (zh) 一种光模块
US10791385B2 (en) Optical to electrical conversion module
CN114371535A (zh) 一种光模块
Tanaka et al. High-bandwidth optical interconnect technologies for next-generation server systems
Nishimura et al. Optical interconnection subsystem used in the RWC-1 massively parallel computer
CN220473746U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892514

Country of ref document: EP

Kind code of ref document: A1