WO2017162146A1 - 一种实现板间通信的方法和装置 - Google Patents

一种实现板间通信的方法和装置 Download PDF

Info

Publication number
WO2017162146A1
WO2017162146A1 PCT/CN2017/077541 CN2017077541W WO2017162146A1 WO 2017162146 A1 WO2017162146 A1 WO 2017162146A1 CN 2017077541 W CN2017077541 W CN 2017077541W WO 2017162146 A1 WO2017162146 A1 WO 2017162146A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
board
sub
electrical
Prior art date
Application number
PCT/CN2017/077541
Other languages
English (en)
French (fr)
Inventor
高宇琦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017162146A1 publication Critical patent/WO2017162146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • This document relates to, but is not limited to, the field of communications, and more particularly to a method and apparatus for implementing inter-board communication.
  • interconnections between daughter boards and backplanes, daughter boards and daughter boards, backplanes, and backplanes of communication devices are typically electrical signal interconnects.
  • the capacity of communication equipment continues to increase, the interconnection relationship becomes more and more complicated.
  • the electrical signal has a high attenuation during transmission, the quality of the signal transmitted by the chip is high, and the interference between the signals is large.
  • the requirement for the transmission circuit is high; in addition, the electrical signal needs to be dissipated during the transmission process, so the implementation is complicated.
  • Embodiments of the present invention provide a method and apparatus for implementing inter-board communication, which can easily implement inter-board communication.
  • the embodiment of the invention provides a method for implementing communication between boards, including:
  • the first sub-board converts the electrical signal of the first signal and the electrical signal of the second signal into an optical signal of the first signal and an optical signal of the second signal, respectively, respectively, the optical signal of the first signal and the optical signal of the second signal Transfer to the second daughter board.
  • the transmitting the optical signal of the first signal and the optical signal of the second signal to the second sub-board respectively may include:
  • the optical signal of the second signal is transmitted to the second sub-board through the free-space optical path.
  • the transmitting the optical signal of the first signal and the optical signal of the second signal to the second sub-board respectively may include:
  • the above method may further include at least one of the following:
  • the first sub-board converts the electrical signal of the third signal into the optical signal of the fourth signal, and transmits the optical signal of the fourth signal to the backplane through the free-space optical path;
  • the first sub-board receives an optical signal of a fifth signal from the backplane through the free-space optical path, and converts an optical signal of the fifth signal into an electrical signal of the fourth signal.
  • the first signal may be a high speed signal, and the second signal may be a low speed signal; or the first signal may be a low speed signal, and the high speed signal may be a high speed signal.
  • An embodiment of the present invention further provides a method for implementing inter-board communication, including:
  • the second daughter board receives the optical signal from the first daughter board or the back board and converts the received optical signal into an electrical signal.
  • the method may further include:
  • the second sub-board determines that the electrical signal includes information indicating a parallel-serial converted signal, and the second sub-board performs serial-to-parallel conversion on the electrical signal.
  • An embodiment of the present invention further provides an apparatus for implementing inter-board communication, including:
  • An electro-optical conversion module configured to convert an electrical signal of the first signal and an electrical signal of the second signal into an optical signal of the first signal and an optical signal of the second signal, respectively;
  • the first transmission module is configured to transmit the optical signal of the first signal and the optical signal of the second signal to the second sub-board, respectively.
  • the first transmission module may be configured to:
  • the optical signal of the second signal is transmitted to the second sub-board through the free-space optical path.
  • the first transmission module may be configured to:
  • optical signals of the two or more of the second signals are transmitted to the backplane through the free-space optical path.
  • An embodiment of the present invention further provides an apparatus for implementing inter-board communication, including:
  • a first receiving module configured to receive an optical signal from the first sub-board or the backboard
  • the first photoelectric conversion module is configured to convert the received optical signal into an electrical signal.
  • the foregoing apparatus may further include:
  • the first processing module is configured to determine that the electrical signal includes information indicating a parallel-converted signal, and serially convert the electrical signal.
  • the embodiment of the invention further provides a backboard, including:
  • a second receiving module configured to receive optical signals of two or more second signals from the first sub-board
  • a second photoelectric conversion module configured to convert an optical signal of two or more of the second signals into an electrical signal of a corresponding second signal
  • the second processing module is configured to perform parallel-serial conversion on the electrical signals of the two or more second signals, and add information indicating the signals after the parallel conversion in the electrical signals of the parallel-converted second signals Obtaining an electrical signal of the third signal, converting the electrical signal of the third signal into an optical signal of the third signal;
  • the second transmission module is configured to transmit the optical signal of the third signal to the second sub-board through the optical waveguide.
  • the technical solution of the embodiment of the present invention includes: the first sub-board converts the electrical signal of the first signal and the electrical signal of the second signal into the optical signal of the first signal and the optical signal of the second signal, respectively.
  • the optical signal of the first signal and the optical signal of the second signal are respectively transmitted to the second sub-board.
  • FIG. 1 is a flowchart of a method for implementing inter-board communication according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for implementing inter-board communication according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another apparatus for implementing communication between boards according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a backplane according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a connection between a bracket and a backboard and a daughterboard according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of implementing inter-board communication in the first embodiment of the present application.
  • FIG. 8 is a schematic diagram of transmitting a high speed signal between a first sub-board and a second sub-board in the first embodiment of the present application;
  • FIG. 9 is a schematic diagram of transmitting a low speed signal between a first sub-board and a second sub-board in the first embodiment of the present application.
  • FIG. 10 is a schematic diagram of implementing inter-board communication according to a second embodiment of the present application.
  • FIG. 11 is a schematic diagram of transmitting a low speed signal between a first sub-board and a second sub-board in a second embodiment of the present application;
  • FIG. 12 is a schematic diagram of a first method of transmitting a low speed signal between a daughter board and a back board in a third embodiment of the present application;
  • FIG. 13 is a schematic diagram of a second method for transmitting a low speed signal between a daughter board and a back board in a third embodiment of the present application;
  • Figure 14 is a schematic diagram of a third method of transmitting a low speed signal between a daughter board and a backplane in a third embodiment of the present application.
  • an embodiment of the present invention provides a method for implementing inter-board communication, including:
  • Step 100 The first sub-board converts the electrical signals of the first signal and the electrical signals of the second signal into optical signals of the first signal and optical signals of the second signal, respectively.
  • the first signal may be a high speed signal, and the second signal may be a low speed signal; or the first signal may be a low speed signal, and the second signal may be a high speed signal.
  • the high speed signal includes a signal whose transmission rate is greater than or equal to a preset threshold (for example, 10 gigabits per second (Gbps)), and the low speed signal includes a signal whose transmission rate is less than a preset threshold.
  • a preset threshold for example, 10 gigabits per second (Gbps)
  • an electrical signal can be converted into an optical signal by using an electro-optical conversion device (such as a diode, or a triode, or a laser).
  • an electro-optical conversion device such as a diode, or a triode, or a laser.
  • Step 101 The first sub-board transmits the optical signal of the first signal and the optical signal of the second signal to the second sub-board, respectively.
  • This step can include:
  • the backplane converts the optical signals of the two or more second signals into electrical signals of the corresponding second signals
  • the parallel signals convert the electrical signals of the two or more second signals into a parallel string, Adding an information indicating a parallel-converted signal to an electrical signal of the converted second signal to obtain an electrical signal of the third signal, converting the electrical signal of the third signal into an optical signal of the third signal; and the light of the third signal
  • the signal is transmitted to the second sub-board through the optical waveguide.
  • the method of the present invention is not limited to the scope of protection of the present application.
  • the added header includes information indicating the signal after the parallel conversion.
  • the information indicating the signal after the parallel conversion may include: an identifier indicating a parallel-to-serial conversion, a number of parallel-converted electrical signals, and a parallel-to-serial conversion rule.
  • the optical waveguide can transmit the optical signal of the first signal to the second sub-board through the optical waveguide; the optical signal of the second signal can be transmitted to the second sub-board through the free-space optical path through the optical transmitting antenna.
  • the light emitting antenna may include any one or more of the following modules: a driving circuit, a flared lens, a dustproof protective cover, a waterproof protective cover, and the like.
  • a driving circuit a flared lens
  • a dustproof protective cover a waterproof protective cover
  • the specific implementation can be implemented by using the well-known technology of the person skilled in the art, and is not intended to limit the scope of protection of the present application, and details are not described herein again.
  • the above method may further include at least one of the following:
  • the first sub-board converts the electrical signal of the third signal into the optical signal of the fourth signal, and transmits the optical signal of the fourth signal to the backplane through the free-space optical path;
  • the first daughter board receives the optical signal of the fifth signal from the backplane through the free-space optical path, and converts the optical signal of the fifth signal into an electrical signal of the fourth signal.
  • an embodiment of the present invention further provides a method for implementing inter-board communication, including:
  • Step 200 The second daughter board receives an optical signal from the first daughter board or the back board.
  • Step 201 The second sub-board converts the received optical signal into an electrical signal.
  • the method may further include:
  • the second sub-board determines that the electrical signal includes information indicating the signal after the parallel conversion, and the second sub-board performs the serial-to-parallel conversion of the electrical signal.
  • serial-to-parallel conversion can be performed based on the number of parallel-converted electrical signals and the parallel-to-serial conversion in the information indicating the signal of the parallel-converted signal.
  • an embodiment of the present invention further provides a device for implementing inter-board communication, which can be disposed in the first sub-board, and includes:
  • the electro-optical conversion module 301 is configured to convert the electrical signal of the first signal and the electrical signal of the second signal into an optical signal of the first signal and an optical signal of the second signal, respectively;
  • the first transmission module 302 is configured to respectively respectively optical signals of the first signal and optical signals of the second signal The number is transmitted to the second daughter board.
  • the first transmission module 302 can be configured to:
  • the optical signal of the second signal is transmitted to the second sub-board through the free-space optical path.
  • the first transmission module 302 can be configured to:
  • optical signals of the two or more of the second signals are transmitted to the backplane through the free-space optical path.
  • the electro-optic conversion module 301 may include an electro-optical conversion device such as a diode, or a triode, or a laser, etc.
  • the first transmission module 302 may include an optical waveguide and a light-emitting antenna.
  • an embodiment of the present invention further provides a device for implementing inter-board communication, which can be disposed in the second sub-board, and includes:
  • the first receiving module 401 is configured to receive an optical signal from the first sub-board or the backboard;
  • the first photoelectric conversion module 402 is configured to convert the received optical signal into an electrical signal.
  • the first photoelectric conversion module 402 may include a photodetector or the like.
  • the apparatus of this embodiment may further include:
  • the first processing module 403 is configured to determine that the electrical signal includes information indicating a parallel-converted signal, and serially convert the electrical signal.
  • an embodiment of the present invention further provides a backplane, including:
  • the second receiving module 501 is configured to receive optical signals of two or more second signals from the first sub-board;
  • the second photoelectric conversion module 502 is configured to convert the optical signals of the two or more second signals into electrical signals of the corresponding second signals;
  • the second processing module 503 is configured to perform parallel-to-serial conversion of two or more electrical signals of the second signal, and add a signal indicating the parallel-converted signal in the electrical signal of the second-converted second signal.
  • the information obtains an electrical signal of the third signal, and converts the electrical signal of the third signal into an optical signal of the third signal;
  • the second transmission module 504 is configured to transmit the optical signal of the third signal to the second sub-board through the optical waveguide.
  • the backboard 2 and the sub-board 3 are mounted on the bracket 1, and the backboard 2 and the sub-board 3 are movable on the bracket 1.
  • the high-speed signal between the first sub-board 100 and the second sub-board 101 is transmitted by using the optical waveguide, and the first sub-board 100 and the second sub-board 101 are transmitted by using the free-space optical path.
  • the backboard 200 and the first sub-board 100 are connected by a connector 202 disposed on the backboard 200, and the backboard 200 and the second sub-board 101 are connected by a connector 203 disposed on the backplane 200, and are disposed on the backplane 200.
  • an optical transceiver 301 is disposed on the first sub-board 100
  • an optical transceiver 302 is disposed on the second sub-board 101.
  • the connector 202 includes an optical device such as a coupling lens, a radiation edge, and the like
  • the optical waveguide array 201 includes two or more optical waveguides (such as an optical fiber or the like).
  • FIG. 8 is a schematic diagram showing the transmission of a high speed signal between the first sub-board 100 and the second sub-board 101 in the first embodiment.
  • the electrical signal of the high-speed signal in the first sub-board 100 is converted into an optical signal of the high-speed signal by the electro-optical conversion device 103, and transmitted by the ribbon fiber 204 to the optical waveguide array on the backplane 200 through the connector 202.
  • the optical waveguide array 201 transmits the optical signal of the high speed signal to the ribbon fiber 205 through the connector 203, and the ribbon fiber 205 transmits the optical signal of the high speed signal to the second sub-board 101, and the high-speed signal is used by the photoelectric conversion device 104.
  • the optical signal is converted into an electrical signal of a high speed signal.
  • the photoelectric conversion device 104 may be a photodetector, a PIN tube or the like.
  • FIG. 9 is a schematic diagram of transmitting a low speed signal between the first sub-board 100 and the second sub-board 101 in the first embodiment.
  • the electrical signal of the low-speed signal on the first sub-board 100 is converted into the optical signal of the low-speed signal through the semiconductor laser 303 in the optical transceiver 301, and the optical signal of the low-speed signal is transmitted through the optical transmitting antenna 305.
  • the second sub-board 101 receives the optical signal of the low-speed signal, and converts the optical signal of the low-speed signal into the electrical signal of the low-speed signal through the photoelectric conversion device 304 in the optical transceiver 302.
  • the light emitting antenna 305 includes a driving circuit, a flared lens, a dustproof cover, and a waterproof protector.
  • a module such as a sheath;
  • the light receiving antenna 306 includes a module such as an amplifying circuit, a converging lens, a dustproof protective cover, and a waterproof protective cover.
  • the second embodiment transmits a high-speed signal between the first sub-board 100 and the second sub-board 101 by using an optical waveguide, and transmits a plurality of low-speed signals of the first sub-board 100 to the back through the free-space optical path.
  • the board 200 and the back board 200 perform parallel-serial conversion on the plurality of low-speed signals of the first sub-board 100, and transmit the high-speed signals generated after the parallel-serial conversion to the second sub-board 101 through the optical waveguide.
  • the transmission of high speed signals between the first sub-board 100 and the second sub-board 101 is as shown in FIG. 8, in accordance with the manner in the first embodiment.
  • FIG. 11 is a schematic diagram of transmitting a low speed signal between the first sub-board 100 and the second sub-board 101 in the second embodiment.
  • the electrical signals of the two or more low-speed signals of the first sub-board 100 are converted into optical signals of the low-speed signal through the semiconductor laser 303 in the optical transceiver 301, and the low-speed signals are transmitted through the optical transmitting antenna 305.
  • the optical signal is sent to the backplane 200, and the optical receiving antenna 309 on the backplane 200 receives the optical signal of the low speed signal.
  • the photoelectric conversion device 308 in the optical transceiver 307 converts the optical signal of the low speed signal into an electrical signal of the low speed signal, and the low speed
  • the electrical signal of the signal is serial-to-parallel converted to generate an electrical signal of the high-speed signal, the electrical signal of the high-speed signal is converted into an optical signal of the high-speed signal, and the optical signal of the high-speed signal is transmitted to the second sub-board 101 through the optical waveguide array 201.
  • the following three methods can be used to transmit a low speed signal between the daughter board and the back board:
  • the first sub-board 100 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal through the semiconductor laser 501 of the optical transceiver 401, and transmits the optical signal of the low-speed signal to the optical transmitting antenna 601.
  • the backplane 200, the light receiving antenna 604 on the backplane 200 receives the optical signal of the low speed signal, and the photoelectric conversion device 504 in the optical transceiver 404 converts the optical signal of the low speed signal into an electrical signal of the low speed signal.
  • the second sub-board 101 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal through the semiconductor laser 502 of the optical transceiver 402, and transmits the optical signal of the low-speed signal to the backplane 200 through the optical transmitting antenna 602, and the backplane 200
  • the light receiving antenna 605 receives the optical signal of the low speed signal
  • the photoelectric conversion device 505 in the optical transceiver 405 converts the optical signal of the low speed signal into an electrical signal of the low speed signal.
  • the third sub-board 102 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal through the semiconductor laser 503 of the optical transceiver 403, and transmits the optical signal of the low-speed signal through the optical transmitting antenna 603.
  • the light receiving antenna 606 on the backplane 200 receives the optical signal of the low speed signal, and the photoelectric conversion device 506 in the optical transceiver 406 converts the optical signal of the low speed signal into an electrical signal of the low speed signal.
  • the electro-optical conversion device 507 in the optical transceiver 407 on the backplane 200 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal, and the optical signal of the low-speed signal is transmitted through the optical transmitting antenna 607.
  • the first sub-board 100, the second sub-board 101, and the third sub-board 102 are simultaneously transmitted through the grating 701.
  • the light receiving antenna 608 of the first sub-board 100 receives the optical signal of the low speed signal, and converts the optical signal of the low speed signal into the electrical signal of the low speed signal through the photoelectric conversion device 508 in the optical transceiver 408.
  • the light receiving antenna 609 of the second sub-board 101 receives the optical signal of the low-speed signal, and converts the optical signal of the low-speed signal into the electrical signal of the low-speed signal through the photoelectric conversion device 509 in the optical transceiver 409.
  • the light receiving antenna 610 of the third sub-board 102 receives the optical signal of the low speed signal, and converts the optical signal of the low speed signal into the electrical signal of the low speed signal through the photoelectric conversion device 510 in the optical transceiver 410.
  • the first sub-board 100 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal through the semiconductor laser 501 of the optical transceiver 401, and transmits the optical signal of the low-speed signal to the optical transmitting antenna 601.
  • the backplane 200, the grating 701 on the backplane 200 transmits the optical signal of the low speed signal to the light receiving antenna 604, the light receiving antenna 604 receives the optical signal of the low speed signal, and the photoelectric conversion device 504 in the optical transceiver 404 will light the low speed signal.
  • the signal is converted into an electrical signal of a low speed signal.
  • the second sub-board 101 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal through the semiconductor laser 502 of the optical transceiver 402, and transmits the optical signal of the low-speed signal to the backplane 200 through the optical transmitting antenna 602, and the backplane 200
  • the grating 701 transmits the optical signal of the low speed signal to the light receiving antenna 604, the light receiving antenna 604 receives the optical signal of the low speed signal, and the photoelectric conversion device 504 in the optical transceiver 404 converts the optical signal of the low speed signal into an electrical signal of the low speed signal.
  • the third sub-board 102 converts the electrical signal of the low-speed signal into the optical signal of the low-speed signal through the semiconductor laser 503 of the optical transceiver 403, and transmits the optical signal of the low-speed signal to the backplane 200 through the optical transmitting antenna 603, and the backplane 200
  • the grating 701 transmits the optical signal of the low speed signal to the light receiving antenna 604, the light receiving antenna 604 receives the optical signal of the low speed signal, and the photoelectric conversion device 504 in the optical transceiver 404 converts the optical signal of the low speed signal into an electrical signal of the low speed signal.
  • Embodiments of the present application provide a method and apparatus for implementing inter-board communication, which realizes communication between different sub-boards simply by using optical interconnection.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种实现板间通信的方法和装置,包括:第一子板分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号,分别将第一信号的光信号和第二信号的光信号传输给第二子板。

Description

一种实现板间通信的方法和装置 技术领域
本文涉及但不限于通信领域,尤指一种实现板间通信的方法和装置。
背景技术
目前,通信设备(如路由器、交换机)中子板和背板、子板和子板、背板和背板之间的互连通常为电信号互连。随着通信设备容量的不断增大,互连关系越来越复杂;而且,由于电信号在传输过程中衰减较高,对芯片发射的信号的质量要求较高,并且信号之间干扰较大,使得对传输电路的要求较高;另外,电信号在传输过程中需要进行散热,因此实现较复杂。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种实现板间通信的方法和装置,能够简单地实现板间通信。
本发明实施例提出了一种实现板间通信的方法,包括:
第一子板分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号,分别将第一信号的光信号和第二信号的光信号传输给第二子板。
在示例性实施方式中,所述分别将第一信号的光信号和第二信号的光信号传输给第二子板可以包括:
将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
将所述第二信号的光信号通过自由空间光通路传输给第二子板。
在示例性实施方式中,所述分别将第一信号的光信号和第二信号的光信号传输给第二子板可以包括:
将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
将两个或两个以上所述第二信号的光信号通过自由空间光通路传输给背板;由背板将两个或两个以上所述第二信号的光信号转换成对应的第二信号的电信号;由背板将两个或两个以上所述第二信号的电信号进行并串转换,在并串转换后的第二信号的电信号中增加表示并串转换后的信号的信息得到第三信号的电信号,将第三信号的电信号转换成第三信号的光信号;将所述第三信号的光信号通过光波导通路传输给第二子板。
在示例性实施方式中,上述方法还可以包括以下至少之一:
第一子板将第三信号的电信号转换成第四信号的光信号,将第四信号的光信号通过所述自由空间光通路传输给背板;
所述第一子板通过所述自由空间光通路接收到来自所述背板的第五信号的光信号,将所述第五信号的光信号转换成所述第四信号的电信号。
在示例性实施方式中,所述第一信号可以为高速信号,所述第二信号可以为低速信号;或者,所述第一信号可以为低速信号,所述高速信号可以为高速信号。
本发明实施例还提出了一种实现板间通信的方法,包括:
第二子板接收到来自第一子板或背板的光信号,将接收到的光信号转换成电信号。
在示例性实施方式中,该方法还可以包括:
所述第二子板判断出所述电信号中包括表示并串转换后的信号的信息,所述第二子板将所述电信号进行串并转换。
本发明实施例还提出了一种实现板间通信的装置,包括:
电光转换模块,配置为分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号;
第一传输模块,配置为分别将第一信号的光信号和第二信号的光信号传输给第二子板。
在示例性实施方式中,所述第一传输模块可以配置为:
将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
将所述第二信号的光信号通过自由空间光通路传输给第二子板。
在示例性实施方式中,所述第一传输模块可以配置为:
将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
将两个或两个以上所述第二信号的光信号通过自由空间光通路传输给背板。
本发明实施例还提出了一种实现板间通信的装置,包括:
第一接收模块,配置为接收到来自第一子板或背板的光信号;
第一光电转换模块,配置为将接收到的光信号转换成电信号。
在示例性实施方式中,上述装置还可以包括:
第一处理模块,配置为判断出所述电信号中包括表示并串转换后的信号的信息,将所述电信号进行串并转换。
本发明实施例还提出了一种背板,包括:
第二接收模块,配置为接收到来自第一子板的两个或两个以上第二信号的光信号;
第二光电转换模块,配置为将两个或两个以上所述第二信号的光信号转换成对应的第二信号的电信号;
第二处理模块,配置为将两个或两个以上所述第二信号的电信号进行并串转换,在并串转换后的第二信号的电信号中增加表示并串转换后的信号的信息得到第三信号的电信号,将第三信号的电信号转换成第三信号的光信号;
第二传输模块,配置为将所述第三信号的光信号通过光波导通路传输给第二子板。
与相关技术相比,本发明实施例的技术方案包括:第一子板分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号,分别将第一信号的光信号和第二信号的光信号传输给第二子板。通过本发明实施例的方案,采用光互连简单地实现了不同的子板之间的通信。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本申请的进一步理解,与说明书一起用于解释本申请,并不构成对本申请保护范围的限制。
图1为本发明实施例的实现板间通信的方法的流程图;
图2为本发明实施例的另一种实现板间通信的方法的流程图;
图3为本发明实施例的实现板间通信的装置的结构组成示意图;
图4为本发明实施例的另一种实现板间通信的装置的结构组成示意图;
图5为本发明实施例的背板的结构组成示意图;
图6为本发明实施例的支架与背板和子板之间的连接示意图;
图7为本申请第一实施例中实现板间通信的示意图;
图8为本申请第一实施例中在第一子板和第二子板之间传输高速信号的示意图;
图9为本申请第一实施例中在第一子板和第二子板之间传输低速信号的示意图;
图10为本申请第二实施例的实现板间通信的示意图;
图11为本申请第二实施例中在第一子板和第二子板之间传输低速信号的示意图;
图12为本申请第三实施例中在子板和背板之间传输低速信号的第一种方法的示意图;
图13为本申请第三实施例中在子板和背板之间传输低速信号的第二种方法的示意图;
图14为本申请第三实施例中在子板和背板之间传输低速信号的第三种方法的示意图。
详述
为了便于本领域技术人员的理解,下面结合附图对本申请作进一步的描述,并不能用来限制本申请的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
参见图1,本发明实施例提出了一种实现板间通信的方法,包括:
步骤100、第一子板分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号。
本步骤中,第一信号可以为高速信号,第二信号可以为低速信号;或者,第一信号可以为低速信号,第二信号可以为高速信号。
其中,高速信号包括传输速率大于或等于预设阈值(例如10吉比特每秒(Gbps))的信号,低速信号包括传输速率小于预设阈值的信号。
本步骤中,可以采用电光转换器件(如二极管、或三极管、或激光器等)将第一子板上的电信号转换成光信号。
步骤101、第一子板分别将第一信号的光信号和第二信号的光信号传输给第二子板。
本步骤可以包括:
将第一信号的光信号通过背板上的光波导通路传输给第二子板,将第二信号的光信号通过自由空间光通路传输给第二子板;
或者,将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;将两个或两个以上第二信号的光信号通过自由空间光通路传输给背板;由背板将两个或两个以上第二信号的光信号转换成对应的第二信号的电信号;由背板将两个或两个以上第二信号的电信号进行并串转换,在并串转换后的第二信号的电信号中增加表示并串转换后的信号的信息得到第三信号的电信号,将第三信号的电信号转换成第三信号的光信号;将第三信号的光信号通过光波导通路传输给第二子板。
其中,背板具体如何将两个或两个以上第二信号的电信号进行并串转换可以采用本领域技术人员的公知技术实现,并不用于限定本申请的保护范围,这里不再赘述。
其中,可以通过在并串转换后的第二信号的电信号中增加一个帧头,在 增加的帧头中包括表示并串转换后的信号的信息。
表示并串转换后的信号的信息可以包括:表示是并串转换的标识、并串转换的电信号的个数、并串转换的规则。
其中,可以采用光波导将第一信号的光信号通过光波导通路传输给第二子板;可以通过光发射天线将第二信号的光信号通过自由空间光通路传输给第二子板。
其中,光发射天线可以包括以下的任意一个或多个模块:驱动电路、扩斑透镜、防尘保护套、防水保护套等。具体实现可以采用本领域技术人员的公知技术实现,并不用于限定本申请的保护范围,这里不再赘述。
在示例性实施方式中,上述方法还可以包括以下至少之一:
第一子板将第三信号的电信号转换成第四信号的光信号,将第四信号的光信号通过自由空间光通路传输给背板;
第一子板通过自由空间光通路接收到来自背板的第五信号的光信号,将第五信号的光信号转换成第四信号的电信号。
参见图2,本发明实施例还提出了一种实现板间通信的方法,包括:
步骤200、第二子板接收到来自第一子板或背板的光信号。
步骤201、第二子板将接收到的光信号转换成电信号。
在示例性实施方式中,该方法还可以包括:
第二子板判断出电信号中包括表示并串转换后的信号的信息,第二子板将电信号进行串并转换。
其中,可以根据表示并串转换后的信号的信息中的并串转换的电信号的个数、并串转换的规则来进行串并转换。
参见图3,本发明实施例还提出了一种实现板间通信的装置,可以设置在第一子板中,包括:
电光转换模块301,配置为分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号;
第一传输模块302,配置为分别将第一信号的光信号和第二信号的光信 号传输给第二子板。
本发明实施例的装置中,第一传输模块302可以配置为:
将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
将所述第二信号的光信号通过自由空间光通路传输给第二子板。
本发明实施例的装置中,第一传输模块302可以配置为:
将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
将两个或两个以上所述第二信号的光信号通过自由空间光通路传输给背板。
上述装置中,电光转换模块301可以包括电光转换器件,如二极管、或三极管、或激光器等;第一传输模块302可以包括光波导和光发射天线。
参见图4,本发明实施例还提出了一种实现板间通信的装置,可以设置在第二子板中,包括:
第一接收模块401,配置为接收到来自第一子板或背板的光信号;
第一光电转换模块402,配置为将接收到的光信号转换成电信号。
其中,第一光电转换模块402可以包括光电探测器等。
在示例性实施方式中,本实施例的装置还可以包括:
第一处理模块403,配置为判断出所述电信号中包括表示并串转换后的信号的信息,将所述电信号进行串并转换。
参见图5,本发明实施例还提出了一种背板,包括:
第二接收模块501,配置为接收到来自第一子板的两个或两个以上第二信号的光信号;
第二光电转换模块502,配置为将两个或两个以上所述第二信号的光信号转换成对应的第二信号的电信号;
第二处理模块503,配置为将两个或两个以上所述第二信号的电信号进行并串转换,在并串转换后的第二信号的电信号中增加表示并串转换后的信号的信息得到第三信号的电信号,将第三信号的电信号转换成第三信号的光信号;
第二传输模块504,配置为将所述第三信号的光信号通过光波导通路传输给第二子板。
下面通过具体实施例对上述方法和装置进行详细说明。
如图6所示,背板2和子板3安装在支架1上,背板2和子板3在支架1上是活动的。
第一实施例,如图7所示,采用光波导通路传输第一子板100和第二子板101之间的高速信号,采用自由空间光通路传输第一子板100和第二子板101之间的低速信号。
通过设置在背板200上的连接器202连接背板200和第一子板100,通过设置在背板200上的连接器203连接背板200和第二子板101,在背板200上设置光波导阵列201,在第一子板100上设置光收发器301,在第二子板101上设置光收发器302。其中,连接器202包括耦合透镜、放射棱角等光学器件,其中,光波导阵列201包括两个或两个以上光波导(如光纤等)。
图8为第一实施例中在第一子板100和第二子板101之间传输高速信号的示意图。如图8所示,第一子板100中的高速信号的电信号由电光转换器件103转换成高速信号的光信号,由带状光纤204通过连接器202传输给背板200上的光波导阵列201,光波导阵列201将高速信号的光信号通过连接器203传输给带状光纤205,带状光纤205将高速信号的光信号传输给第二子板101,由光电转换器件104将高速信号的光信号转换成高速信号的电信号。
其中,光电转换器件104可以是光电探测器、或PIN管等。
图9为第一实施例中在第一子板100和第二子板101之间传输低速信号的示意图。如图9所示,将第一子板100上的低速信号的电信号通过光收发器301中的半导体激光器303转换为低速信号的光信号,通过光发射天线305将低速信号的光信号发送给第二子板101。第二子板101的光接收天线306接收到低速信号的光信号,将低速信号的光信号通过光收发器302中的光电转换器件304转换成低速信号的电信号。
其中,光发射天线305包括驱动电路、扩斑透镜、防尘保护套、防水保 护套等模块;光接收天线306包括放大电路、汇聚透镜、防尘保护套、防水保护套等模块。
第二实施例,参见图10,采用光波导通路传输第一子板100和第二子板101之间的高速信号,将第一子板100的多个低速信号通过自由空间光通路传输给背板200,背板200将第一子板100的多个低速信号进行并串转换,将并串转换后生成的高速信号通过光波导通路传输给第二子板101。
第一子板100和第二子板101之间高速信号的传输如图8所示,与第一实施例中的方式一致。
图11为第二实施例中在第一子板100和第二子板101之间传输低速信号的示意图。如图11所示,对第一子板100两个或两个以上低速信号的电信号通过光收发器301中的半导体激光器303转换为低速信号的光信号,通过光发射天线305将低速信号的光信号发送给背板200,背板200上的光接收天线309接收低速信号的光信号,光收发器307中的光电转换器件308将低速信号的光信号转换成低速信号的电信号,将低速信号的电信号进行串并转换后生成高速信号的电信号,将高速信号的电信号转换成高速信号的光信号,将高速信号的光信号通过光波导阵列201发送给第二子板101。
第三实施例,在子板和背板之间传输低速信号可以采用以下三种方法:
第一种方法,参见图12,第一子板100将低速信号的电信号通过光收发器401的半导体激光器501转换为低速信号的光信号,通过光发射天线601将低速信号的光信号发送给背板200,背板200上的光接收天线604接收低速信号的光信号,光收发器404中的光电转换器件504将低速信号的光信号转换成低速信号的电信号。
第二子板101将低速信号的电信号通过光收发器402的半导体激光器502转换为低速信号的光信号,通过光发射天线602将低速信号的光信号发送给背板200,背板200上的光接收天线605接收低速信号的光信号,光收发器405中的光电转换器件505将低速信号的光信号转换成低速信号的电信号。
第三子板102将低速信号的电信号通过光收发器403的半导体激光器503转换为低速信号的光信号,通过光发射天线603将低速信号的光信号发 送给背板200,背板200上的光接收天线606接收低速信号的光信号,光收发器406中的光电转换器件506将低速信号的光信号转换成低速信号的电信号。
第二种方法,参见图13,背板200上的光收发器407中的电光转换器件507将低速信号的电信号转换成低速信号的光信号,低速信号的光信号通过光发射天线607发送,通过光栅701同时发送给第一子板100、第二子板101和第三子板102。
第一子板100的光接收天线608接收到低速信号的光信号,将低速信号的光信号通过光收发器408中的光电转换器件508转换成低速信号的电信号。
第二子板101的光接收天线609接收到低速信号的光信号,将低速信号的光信号通过光收发器409中的光电转换器件509转换成低速信号的电信号。
第三子板102的光接收天线610接收到低速信号的光信号,将低速信号的光信号通过光收发器410中的光电转换器件510转换成低速信号的电信号。
第三种方法,参见图14,第一子板100将低速信号的电信号通过光收发器401的半导体激光器501转换为低速信号的光信号,通过光发射天线601将低速信号的光信号发送给背板200,背板200上的光栅701将低速信号的光信号传输给光接收天线604,光接收天线604接收低速信号的光信号,光收发器404中的光电转换器件504将低速信号的光信号转换成低速信号的电信号。
第二子板101将低速信号的电信号通过光收发器402的半导体激光器502转换为低速信号的光信号,通过光发射天线602将低速信号的光信号发送给背板200,背板200上的光栅701将低速信号的光信号传输给光接收天线604,光接收天线604接收低速信号的光信号,光收发器404中的光电转换器件504将低速信号的光信号转换成低速信号的电信号。
第三子板102将低速信号的电信号通过光收发器403的半导体激光器503转换为低速信号的光信号,通过光发射天线603将低速信号的光信号发送给背板200,背板200上的光栅701将低速信号的光信号传输给光接收天线604,光接收天线604接收低速信号的光信号,光收发器404中的光电转换器件504将低速信号的光信号转换成低速信号的电信号。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本申请的保护范围,在不脱离本申请的发明构思的前提下,本领域技术人员对本申请所做出的任何显而易见的替换和改进等均在本申请的保护范围之内。
工业实用性
本申请实施例提供一种实现板间通信的方法和装置,采用光互连简单地实现了不同的子板之间的通信。

Claims (13)

  1. 一种实现板间通信的方法,包括:
    第一子板分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号,分别将第一信号的光信号和第二信号的光信号传输给第二子板。
  2. 根据权利要求1所述的方法,其中,所述分别将第一信号的光信号和第二信号的光信号传输给第二子板包括:
    将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
    将所述第二信号的光信号通过自由空间光通路传输给第二子板。
  3. 根据权利要求1所述的方法,其中,所述分别将第一信号的光信号和第二信号的光信号传输给第二子板包括:
    将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
    将两个或两个以上所述第二信号的光信号通过自由空间光通路传输给背板;由背板将两个或两个以上所述第二信号的光信号转换成对应的第二信号的电信号;由背板将两个或两个以上所述第二信号的电信号进行并串转换,在并串转换后的第二信号的电信号中增加表示并串转换后的信号的信息得到第三信号的电信号,将第三信号的电信号转换成第三信号的光信号;将所述第三信号的光信号通过光波导通路传输给第二子板。
  4. 根据权利要求2或3所述的方法,上述方法还包括以下至少之一:
    第一子板将第三信号的电信号转换成第四信号的光信号,将第四信号的光信号通过所述自由空间光通路传输给背板;
    所述第一子板通过所述自由空间光通路接收到来自所述背板的第五信号的光信号,将所述第五信号的光信号转换成所述第四信号的电信号。
  5. 根据权利要求1所述的方法,其中,所述第一信号为高速信号,所述第二信号为低速信号;或者,所述第一信号为低速信号,所述高速信号为高速信号。
  6. 一种实现板间通信的方法,包括:
    第二子板接收到来自第一子板或背板的光信号,将接收到的光信号转换成电信号。
  7. 根据权利要求6所述的方法,该方法还包括:
    所述第二子板判断出所述电信号中包括表示并串转换后的信号的信息,所述第二子板将所述电信号进行串并转换。
  8. 一种实现板间通信的装置,包括:
    电光转换模块,配置为分别将第一信号的电信号和第二信号的电信号转换成第一信号的光信号和第二信号的光信号;
    第一传输模块,配置为分别将第一信号的光信号和第二信号的光信号传输给第二子板。
  9. 根据权利要求8所述的装置,其中,所述第一传输模块配置为:
    将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
    将所述第二信号的光信号通过自由空间光通路传输给第二子板。
  10. 根据权利要求8所述的装置,其中,所述第一传输模块配置为:
    将所述第一信号的光信号通过背板上的光波导通路传输给第二子板;
    将两个或两个以上所述第二信号的光信号通过自由空间光通路传输给背板。
  11. 一种实现板间通信的装置,包括:
    第一接收模块,配置为接收到来自第一子板或背板的光信号;
    第一光电转换模块,配置为将接收到的光信号转换成电信号。
  12. 根据权利要求11所述的装置,上述装置还包括:
    第一处理模块,配置为判断出所述电信号中包括表示并串转换后的信号的信息,将所述电信号进行串并转换。
  13. 一种背板,包括:
    第二接收模块,配置为接收到来自第一子板的两个或两个以上第二信号的光信号;
    第二光电转换模块,配置为将两个或两个以上所述第二信号的光信号转换成对应的第二信号的电信号;
    第二处理模块,配置为将两个或两个以上所述第二信号的电信号进行并串转换,在并串转换后的第二信号的电信号中增加表示并串转换后的信号的信息得到第三信号的电信号,将第三信号的电信号转换成第三信号的光信号;
    第二传输模块,配置为将所述第三信号的光信号通过光波导通路传输给第二子板。
PCT/CN2017/077541 2016-03-23 2017-03-21 一种实现板间通信的方法和装置 WO2017162146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610168514.7 2016-03-23
CN201610168514.7A CN107231195B (zh) 2016-03-23 2016-03-23 一种实现板间通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2017162146A1 true WO2017162146A1 (zh) 2017-09-28

Family

ID=59899232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077541 WO2017162146A1 (zh) 2016-03-23 2017-03-21 一种实现板间通信的方法和装置

Country Status (2)

Country Link
CN (1) CN107231195B (zh)
WO (1) WO2017162146A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474690A (zh) * 2018-05-11 2019-11-19 中山市明阳电器有限公司 一种应用于抽屉式开关柜的光通信无线组网装置及方法
CN109379134A (zh) * 2018-10-08 2019-02-22 江苏奥雷光电有限公司 一种基于自由空间光传输的背板间信号通信装置
CN110806499B (zh) * 2019-12-06 2020-09-18 江苏南水科技有限公司 流速仪检定装置及其工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1630377A (zh) * 2003-12-18 2005-06-22 华为技术有限公司 一种传输设备硬件平台
CN101127569A (zh) * 2007-09-13 2008-02-20 中兴通讯股份有限公司 具有多个千兆位光端口的单板实现保护倒换的装置
US20110299808A1 (en) * 2009-02-25 2011-12-08 Yasunobu Matsuoka Optical Waveguide and Optical Waveguide Module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805080B2 (en) * 2007-06-22 2010-09-28 Hewlett-Packard Development Company, L.P. Optical interconnect
CN101882955B (zh) * 2010-04-26 2013-04-17 华为技术有限公司 光背板互连系统及通信设备
US8967884B2 (en) * 2010-12-14 2015-03-03 Sumitomo Electric Industries, Ltd. Optical transceiver
CN103051566B (zh) * 2012-12-27 2015-12-23 华为技术有限公司 背板装置及通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1630377A (zh) * 2003-12-18 2005-06-22 华为技术有限公司 一种传输设备硬件平台
CN101127569A (zh) * 2007-09-13 2008-02-20 中兴通讯股份有限公司 具有多个千兆位光端口的单板实现保护倒换的装置
US20110299808A1 (en) * 2009-02-25 2011-12-08 Yasunobu Matsuoka Optical Waveguide and Optical Waveguide Module

Also Published As

Publication number Publication date
CN107231195B (zh) 2022-01-25
CN107231195A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
JP6294838B2 (ja) 高密度に実装された光インターコネクトを有するチップアセンブリ構成
Pepeljugoski et al. Low power and high density optical interconnects for future supercomputers
Lee et al. End-to-end multicore multimode fiber optic link operating up to 120 Gb/s
JP5790769B2 (ja) 光モジュール
US20050226571A1 (en) High density optical transceiver
US8135281B2 (en) Free space optical connector
US20040175077A1 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
EP3316014A1 (en) Optical interconnection backboard, transmission device and signal scheduling method
US20240036254A1 (en) High-capacity optical input/output for data processors
US9225423B1 (en) Optical engines and optical cable assemblies capable of low-speed and high-speed optical communication
CN216700004U (zh) 一种通信设备、通信系统及光模块
US8606112B2 (en) Pluggable module with bi-directional host-module optical interface
WO2017162146A1 (zh) 一种实现板间通信的方法和装置
US20110188863A1 (en) Optical transceiver with polarity inversion
US20220187552A1 (en) Free air intrasystem interconnect
WO2015176482A1 (zh) 光收发器和主动光缆
CN206575419U (zh) 光通信传输装置
US7901144B2 (en) Optical interconnect solution
US9497525B2 (en) Optical engines and optical cable assemblies having electrical signal conditioning
KR101077250B1 (ko) 광 입/출력 버스 시스템
JP7144786B2 (ja) 小型光トランシーバ
Chujo et al. A 25-Gb/s× 4-Ch, 8× 8 mm2, 2.8-mm thick compact optical transceiver module for on-board optical interconnect
US11057113B1 (en) High-speed silicon photonics optical transceivers
Nagashima et al. 28-Gb/s× 24-channel CDR-integrated VCSEL-based transceiver module for high-density optical interconnects
CN110149149B (zh) 用于kvm切换设备的通信模块及kvm切换设备、系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769423

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769423

Country of ref document: EP

Kind code of ref document: A1