WO2015176418A1 - 调度、发送方法及其基站、终端、系统 - Google Patents

调度、发送方法及其基站、终端、系统 Download PDF

Info

Publication number
WO2015176418A1
WO2015176418A1 PCT/CN2014/086065 CN2014086065W WO2015176418A1 WO 2015176418 A1 WO2015176418 A1 WO 2015176418A1 CN 2014086065 W CN2014086065 W CN 2014086065W WO 2015176418 A1 WO2015176418 A1 WO 2015176418A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
scheduling
uplink
status report
Prior art date
Application number
PCT/CN2014/086065
Other languages
English (en)
French (fr)
Inventor
王蕾
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14892541.5A priority Critical patent/EP3148272A4/en
Priority to JP2016567031A priority patent/JP2017520962A/ja
Publication of WO2015176418A1 publication Critical patent/WO2015176418A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a scheduling method and system, a terminal, a transmitting method, a base station, and a scheduling method thereof.
  • a mobile communication system generally adopts a shared resource allocation scheduling method, which has the advantage that wireless communication resources can be utilized to a great extent.
  • this scheduling method the voice service of the original circuit domain has been canceled and replaced with the VoIP service of the data domain.
  • the resource allocation mode of the shared scheduling needs to send relevant control information for each transmission, so the overhead of the control information is too large.
  • Semi-persistence Scheduling refers to a scheduling method designed for a specific service that uses pre-allocated resources at fixed times and dynamic scheduling (retransmission) at other times. Specifically, after the semi-persistent scheduling is started, the specified resource blocks are periodically allocated to the specified users to adapt to certain periodic services with fixed payload sizes, and the system for reducing resource allocation, indication, and the like is implemented. Overhead, and semi-statically scheduled data retransmission uses dynamic scheduling, so it is called semi-persistent scheduling. In general, VoIP services are more in line with SPS scheduling.
  • LTE long-term evolution
  • a user equipment UE
  • SR uplink scheduling request
  • the purpose is to apply for valid and valid uplink transmission resources.
  • the base station responds to the UE-initiated SR, and grants the UE a certain size of resources.
  • the purpose is to allow the UE to report the amount of the data to be transmitted in the cache to the base station, that is, to report the status of the buffer area.
  • the Buffer Status Report (BSR) is used to inform the base station.
  • the UE will schedule the UE.
  • the base station activates the semi-static scheduling service by sending Down Control Information Format 0 (DCI0) containing specific information to the UE.
  • DCI0 Down Control Information Format 0
  • the UE identifies that the DCI0 of the semi-persistent scheduling is activated, and saves the current scheduling information.
  • the fixed-time periodic period uses the pre-configured time-frequency resources to transmit the semi-static service data. If the UE has a voice service or other data service suddenly at a non-SPS cycle point, and there is no uplink legal resource, the UE will initiate the SR.
  • the base station will respond to the SR and perform SR scheduling.
  • the UE may The data block is uploaded at the non-SPS periodic point through the uplink resource location authorized by the base station, and the UE group packet will be forwarded to the dynamically authorized transport block in advance in the UE group packet, and then wait until the next SPS.
  • the UE may not have the VoIP service to be transmitted in the cache of the UE because the VoIP data is scheduled to be sent out in advance, and the padding is transmitted at the SPS cycle point.
  • VoIP is a periodic service
  • such a scenario in which the VoIP service is scheduled to be dispatched in advance due to the SR scheduling causes a scenario in which no valid data is padding at the SPS periodic point is periodically generated.
  • the uplink SPS in the LTE system has an implicit deactivation process.
  • the implicit deactivation means that when the UE transmits data packets of empty SDUs at consecutive N SPS periodic points, the UE will release its SPS configuration. Off, that is, there is no fixed time-frequency resource for data upload.
  • the present invention provides a scheduling method and system, a terminal, a transmitting method, a base station, and a scheduling method thereof, to at least solve the problem of poor stability and waste of resources of the uplink semi-static scheduling service in the related art.
  • the present invention provides a scheduling method for a base station, including the following steps: After activating the uplink semi-persistent scheduling, rejecting an uplink scheduling request initiated by the terminal; and obtaining a buffer status sent by the terminal in an uplink semi-persistent scheduling period. Reporting: dynamically scheduling the service of the terminal according to the buffer status report.
  • the method further includes: after the uplink semi-persistent scheduling deactivation, recovering an uplink scheduling request initiated by the terminal, and configuring a resource for the terminal; acquiring a buffer that is sent by the terminal by using the resource.
  • the status report is: dynamically scheduling the service of the terminal according to the buffer status report sent by the terminal by using the resource.
  • the step of obtaining, by the acquiring terminal, the buffer status report sent by the uplink semi-persistent scheduling period includes: obtaining, by the terminal, the buffer status report by using the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period
  • the present invention also provides another method for scheduling a base station, including the following steps: After activating the uplink semi-persistent scheduling, acquiring a buffer status report sent by the terminal at an uplink semi-persistent scheduling period; The buffer status report dynamically schedules the services of the terminal.
  • the method further includes: after the uplink semi-persistent scheduling deactivation, responding to the uplink scheduling request initiated by the terminal, and configuring resources for the terminal; acquiring a buffer status that is sent by the terminal by using the resource. Reporting: dynamically scheduling the service of the terminal according to the buffer status report sent by the terminal by using the resource.
  • the step of obtaining, by the acquiring terminal, the buffer status report sent by the uplink semi-persistent scheduling period includes: obtaining, by the terminal, the buffer status report by using the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period.
  • the present invention further provides a sending method, including the following steps: after the uplink semi-persistent scheduling is activated, the terminal stops initiating an uplink scheduling request to the base station; and the terminal caches the terminal in an uplink semi-persistent scheduling period.
  • the zone status report is sent to the base station.
  • the method further includes: after the uplink semi-persistent scheduling deactivation, the terminal resumes initiating an uplink scheduling request to the base station; and the terminal configures, by the base station, the terminal by responding to the uplink scheduling request The resource sends the buffer status report of the terminal to the base station.
  • the step of the terminal sending the buffer status report of the terminal to the base station at the uplink semi-persistent scheduling period includes: the terminal, by using the uploaded service data packet, the buffer status at the uplink semi-persistent scheduling period The report is sent to the base station.
  • the present invention further provides another sending method, including the following steps: after the uplink semi-persistent scheduling is activated, the terminal initiates an uplink scheduling request to the base station; the terminal sets the terminal at the uplink semi-persistent scheduling period.
  • the buffer status report is sent to the base station.
  • the method further includes: after the uplink semi-persistent scheduling deactivation, the terminal sends, by using the base station, the buffer status report of the terminal to the resource configured by the terminal by using the base station in response to the uplink scheduling request.
  • the base station after the uplink semi-persistent scheduling deactivation, the terminal sends, by using the base station, the buffer status report of the terminal to the resource configured by the terminal by using the base station in response to the uplink scheduling request.
  • the step of the terminal sending the buffer status report of the terminal to the base station at the uplink semi-persistent scheduling period includes: the terminal, by using the uploaded service data packet, the buffer status at the uplink semi-persistent scheduling period The report is sent to the base station.
  • the present invention further provides a scheduling method, including the following steps: after the uplink semi-persistent scheduling is activated, the terminal initiates an uplink scheduling request to the base station; the base station refuses to respond to the uplink scheduling request initiated by the terminal.
  • the terminal sends a buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period; the base station acquires a buffer status report sent by the terminal, and reports the terminal according to the obtained buffer status report.
  • the method further includes: after the uplink semi-persistent scheduling deactivation, the base station resumes responding to the uplink scheduling request initiated by the terminal, and configures resources for the terminal;
  • the buffer status report of the terminal is sent to the base station;
  • the base station dynamically schedules the service of the terminal according to the cache difference status report sent by the terminal through the resource.
  • the step of the terminal transmitting, by the terminal, the buffer status report of the terminal to the base station at the uplink semi-persistent scheduling period includes: the terminal is configured by the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period
  • the buffer status report of the terminal is sent to the base station.
  • the present invention further provides another scheduling method, including the following steps: After the uplink semi-persistent scheduling is activated, the terminal stops initiating an uplink scheduling request to the base station; the terminal is in an uplink semi-persistent scheduling period.
  • the node sends the buffer status report of the terminal to the base station; the base station acquires the buffer status report sent by the terminal, and dynamically schedules the service of the terminal according to the obtained status information of the buffer area.
  • the method further includes: after the uplink semi-persistent scheduling deactivation, the terminal resumes initiating an uplink scheduling request to the base station; the base station responds to the uplink scheduling request, and allocates resources for the terminal; The terminal sends the resource of the buffer status report of the terminal to the base station by using the resource; the base station dynamically schedules the service of the terminal according to the buffer status report sent by the terminal by using the resource.
  • the step of the terminal transmitting, by the terminal, the buffer status report of the terminal to the base station at the uplink semi-persistent scheduling period includes: the terminal is configured by the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period The buffer status report of the terminal is sent to the base station.
  • the present invention further provides a base station, including: a request response module, an information acquisition module, and a scheduling module; the request response module is configured to refuse to respond to the terminal initiated after activating the uplink semi-static scheduling An uplink scheduling request; the information acquiring module is configured to obtain a buffer status report sent by the terminal at an uplink semi-persistent scheduling period.
  • the scheduling module is configured to dynamically schedule the service of the terminal according to the buffer status report.
  • the request response module is further configured to: after the uplink semi-static scheduling deactivation, restore the uplink scheduling request initiated by the terminal, and configure resources for the terminal; the information acquiring module is further configured to acquire The buffer status report sent by the terminal by using the resource; the scheduling module is further configured to perform dynamic scheduling on the service of the terminal according to the buffer status report sent by the terminal by using the resource.
  • the information acquiring module is configured to obtain the buffer status report by using a service data packet uploaded by the terminal at an uplink semi-persistent scheduling period.
  • the present invention further provides another base station, including: an information acquiring module and a scheduling module; the information acquiring module is configured to acquire the terminal in an uplink semi-persistent scheduling period after activating the uplink semi-persistent scheduling The buffer status report sent by the point; the scheduling module is configured to dynamically schedule the service of the terminal according to the buffer status report.
  • the base station further includes: a request response module, where the request response module is configured to respond to the uplink scheduling request initiated by the terminal after the uplink semi-persistent scheduling is deactivated, and configure resources for the terminal;
  • the information obtaining module is further configured to obtain a buffer status report that is sent by the terminal by using the resource;
  • the scheduling module is further configured to dynamically update the service of the terminal according to the buffer status report sent by the terminal by using the resource Scheduling.
  • the information acquiring module is configured to obtain the buffer status report by using a service data packet uploaded by the terminal at an uplink semi-persistent scheduling period.
  • the present invention further provides a terminal, including: a requesting module and an information sending module; the requesting module is configured to stop initiating an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; The information sending module is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the requesting module is further configured to: after the uplink semi-persistent scheduling deactivation, resume to initiate an uplink scheduling request to the base station; the information sending module is further configured to respond to the uplink scheduling request by the base station
  • the resource configured by the terminal sends a buffer status report of the terminal to the base station.
  • the information sending module is configured to send the buffer status report to the base station by using the uploaded service data packet at the uplink semi-persistent scheduling period.
  • the present invention further provides another terminal, including: a requesting module and an information sending module; the requesting module is configured to initiate an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; The information sending module is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the information sending module is further configured to: after the uplink semi-persistent scheduling deactivation, send, by the base station, the buffer status report of the terminal to the resource configured by the terminal in response to the uplink scheduling request Said base station.
  • the information sending module is configured to send the buffer status report to the base station by using the uploaded service data packet at the uplink semi-persistent scheduling period.
  • the present invention also provides a scheduling system, including a terminal and a base station.
  • the terminal includes: a requesting module and an information sending module;
  • the base station includes: a request response module, an information acquiring module, and a scheduling module.
  • the requesting module is configured to initiate an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; the request response module is configured to refuse to respond to the uplink scheduling request initiated by the terminal; and the information sending module is set to be in the uplink half
  • the static scheduling period sends the buffer status report of the terminal to the base station; the information acquiring module is configured to obtain a buffer status report sent by the terminal; and the scheduling module is configured to obtain the buffer status report.
  • the service of the terminal is dynamically scheduled.
  • the request response module is further configured to: after the uplink semi-persistent scheduling deactivation, the base station resumes responding to the uplink scheduling request initiated by the terminal, and configure resources for the terminal; the information sending module further sets Sending a buffer status report of the terminal to the base station by using the resource.
  • the information sending module is configured to send the buffer status report of the terminal to the base station by using the service data packet uploaded by the periodic point in the uplink semi-persistent scheduling period.
  • the present invention further provides another scheduling system, including a terminal and a base station; the terminal includes: a requesting module and an information sending module; the base station includes: an information acquiring module and a scheduling module; The requesting module is configured to stop sending an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; the information sending module is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period; The information obtaining module is configured to obtain a buffer status report sent by the terminal, and the scheduling module is configured to dynamically acquire the service of the terminal by using the obtained buffer status report.
  • the base station further includes: a request response module; the requesting module is further configured to: after the uplink semi-persistent scheduling deactivation, resume to initiate an uplink scheduling request to the base station; the request response module is configured to respond to the An uplink scheduling request, and configuring resources for the terminal; the information sending module is further configured to send, by using the resource, the resource reported by the buffer status of the terminal to the base station.
  • the information sending module is configured to send the buffer status report of the terminal to the base station by using the service data packet uploaded by the periodic point in the uplink semi-persistent scheduling period.
  • the beneficial effects of the invention are:
  • the invention provides a scheduling method and system, a terminal, a sending method, a base station and a scheduling method thereof, which can improve the stability of the uplink semi-static scheduling service and reduce the waste of resources.
  • the scheduling method of the base station of the present invention includes: after activating the uplink semi-persistent scheduling, rejecting the uplink scheduling request initiated by the terminal; acquiring the buffer status report sent by the terminal at the uplink semi-persistent scheduling period; and reporting the status according to the buffer status report The service of the terminal is dynamically scheduled.
  • the scheduling method of the present invention acquires the BSR sent by the terminal at the uplink semi-persistent scheduling period, and performs dynamic scheduling according to the BSR, thereby avoiding non-uplink semi-persistent scheduling.
  • the problem of the UE transmitting the null data packet caused by the SR response at the periodic point improves the stability of the uplink semi-persistent scheduling service. Since the SR response is not performed after the uplink semi-static scheduling is activated, the system resources can be saved.
  • the method and method of the present invention Compared with the existing, the service quality of the uplink semi-static scheduling service is improved.
  • FIG. 1 is a schematic flowchart of a scheduling method of a base station according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a method for scheduling a base station after uplink SPS deactivation according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a working operation of a base station after activating an uplink SPS according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a working process of a base station after activating an uplink SPS according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram of the operation of the base station after the uplink SPS is activated according to the second embodiment of the present invention
  • FIG. 7 is a schematic diagram of the operation of the base station after the uplink SPS is activated according to the third embodiment of the present invention
  • FIG. 8 is a schematic diagram of a working process of a base station after activating an uplink SPS according to Embodiment 4 of the present invention
  • FIG. 3 is a schematic diagram of a working operation of a base station after activating an uplink SPS according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a working process of a base station after activating an uplink SPS according to
  • FIG. 9 is a schematic flowchart of a sending method according to Embodiment 5 of the present invention
  • 10 is a schematic flowchart of a sending method according to Embodiment 6 of the present invention
  • FIG. 11 is a schematic diagram of operation of a UE after uplink SPS activation according to Embodiment 6 of the present invention
  • FIG. 12 is a schematic diagram of Embodiment 7 of the present invention.
  • FIG. 13 is a schematic flowchart of a scheduling method according to Embodiment 8 of the present invention;
  • FIG. 16 is a schematic structural diagram of a terminal according to Embodiment 10 of the present invention
  • FIG. 17 is a scheduling system according to Embodiment 11 of the present invention
  • FIG. 18 is a schematic structural diagram of another scheduling system according to Embodiment 11 of the present invention.
  • the present invention provides a scheduling method and system, a terminal, a sending method, and The base station and its scheduling method can improve the stability of the uplink semi-static scheduling service and reduce the waste of resources.
  • Embodiment 1 As shown in FIG. 1 , this embodiment provides a scheduling method for a base station, which specifically includes: Step 101: After activating an uplink semi-persistent scheduling, rejecting an uplink scheduling request initiated by the terminal.
  • the base station activates the uplink semi-persistent scheduling by sending the downlink control information DCI0 to the UE; after the uplink SPS is activated, the terminal initiates the SR to the base station when needed (for example, when the SR periodic point arrives or suddenly has other data); The method of this embodiment no longer responds to the SR terminal after the uplink SPS is activated.
  • the base station responds to the SR request, and then configures the terminal to upload the BSR resources, and then schedules the data services according to the BSR;
  • the method of obtaining the BSR by using the SR response is avoided, and the BSR is actively sent by the terminal to the base station at the uplink SPS periodic point.
  • the BSR is sent at the uplink SPS periodic point. Because the uplink SPS uses the pre-configured video resources to upload the higher priority VoIP service group packets to the base station in the uplink SPS, so that the terminal will have a higher priority after the base station receives the BSR to the terminal.
  • the transmission of the service group packet to the base station causes the padding to be transmitted at the SPS cycle point, thereby improving the stability of the upper limit SPS service.
  • the uplink SPS cycle of this embodiment The point is determined by the configuration information of the uplink SPS set in advance.
  • the preset configuration information includes a fixed interval period and a preset time-frequency resource.
  • the terminal transmits the service data by using the preset time-frequency resource at a fixed interval.
  • the scheduling method in this embodiment can carry the BSR through the service data packet uploaded at the uplink SPS periodic point, and send the BSR to the base station.
  • the scheduling method of the base station in this embodiment may obtain the buffer status report by using the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period.
  • Step 103 Dynamically schedule services of the terminal according to the buffer status report. Specifically, the base station dynamically configures a resource block for uploading service data according to the BSR, and the terminal sends the service data in the terminal to the base station by using the resource block configured by the base station.
  • the scheduling method in this embodiment can improve the stability problem after the uplink semi-static scheduling service is activated, avoid the waste of the uplink scheduling resources, and ensure the service quality of the uplink semi-static scheduling service as much as possible.
  • the UE will release its SPS configuration, also That is, there is no fixed time-frequency resource for data uploading, that is, the uplink SPS is deactivated, or the UE releases the uplink SPS configuration when the UE meets other deactivation conditions, that is, deactivates; if the base station also saves the state of rejecting the response SR Therefore, the data service may not be transmitted normally.
  • the method in this embodiment may further include: Step 201: After the uplink semi-persistent scheduling is deactivated, restoring the uplink scheduling request initiated by the terminal, and configuring resources for the terminal. . After the uplink SPS is deactivated, the base station starts to respond to the SR that occurs in the terminal, and allocates resources for the terminal to enable the terminal to send the BSR to the base station. Step 202: Obtain a buffer status report sent by the terminal through the resource. Step 203: Dynamically schedule services of the terminal according to a buffer status report sent by the terminal by using the resource.
  • Scenario 1 As shown in FIG.
  • the preparation condition is: FDD
  • the RRC layer of the base station configures the SPS parameter of the QCI1
  • the uplink SPS period is 20 ms
  • the number of consecutive empty packets is 3.
  • the base station MAC layer sends the DCI0 information for activating the uplink semi-persistent scheduling to the UE in the subframe 0 of the radio frame 0, and the UE successfully activates the uplink SPS in this subframe at the same time, and then
  • the UE is on the No. 4 radio frame No. 4 subframe, with an interval of 20 ms, and uses fixed frequency domain resources at the SPS periodic point.
  • the SR period is configured to be 10ms with an offset of 6.
  • the UE first packet SPS data does not contain valid BSR information.
  • the No. 2 radio frame No. 4 subframe is the next SPS periodic point. Therefore, at the next SPS periodic point, the UE can carry the BSR to the base station through the second packet SPS data, and the base station dynamically adjusts after receiving the BSR.
  • the following steps are used to activate the uplink semi-persistent scheduling process for the base station MAC: Step 1: The base station MAC receives the SR initiated by the UE in the No.
  • Step 2 The base station MAC is in the No. 0 radio frame No. 6 subframe
  • the UE's SR is not classified into the queue of the SR response, and the base station does not perform dynamic scheduling after the No. 6 radio frame No. 6 subframe until the No. 2 radio frame No. 4 subframe.
  • Step 3 The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No. 1.
  • Step 4 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No. 1.
  • the base station is after the subframe No. 6 of the radio frame No. 1 and before the subframe No. 4 of the radio frame No.
  • the base station MAC obtains the service data packet sent by the UE in the subframe 4 of the radio frame No. 2, and the data includes the BSR; and then dynamically schedules the service of the terminal according to the BSR.
  • preparation condition FDD
  • the base station RRC layer configures the SPS parameter of QCI1
  • the uplink SPS period is 20ms
  • the number of consecutive null packets is 3.
  • the base station MAC layer sends the active uplink semi-static to the UE in the 0th radio frame 0 subframe.
  • the scheduled DCI0 information the UE successfully activates the uplink SPS in this subframe at the same time, and then the UE is on the No. 4 radio frame No.
  • Step 1 The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No.
  • Step 2 The base station MAC is in the radio frame No. 0
  • the subframe 6 does not classify the SR of the UE into the queue of the SR response, and the base station does not perform dynamic scheduling after the subframe No. 6 of the radio frame No. 0 until the subframe No. 4 of the radio frame No. 2.
  • the base station can obtain the BSR reported by the UE in the No. 4 radio frame No. 4 subframe, and then dynamically schedule the terminal according to the BSR.
  • Scenario 3 Preparation conditions: FDD, the base station RRC layer configures the SPS parameters of QCI1, the uplink SPS period is 20ms, and the number of consecutive null packets is 3.
  • the base station MAC layer sends the active uplink semi-static to the UE in the 0th radio frame 0 subframe.
  • the scheduled DCI0 information the UE successfully activates the uplink SPS in this subframe at the same time, and then the UE has no number 0.
  • the interval is 20ms, and the fixed frequency domain resource is used for uplink data transmission at the SPS cycle point.
  • the SR period is configured to 5ms with an offset of 1.
  • the UE first packet SPS data does not contain valid BSR information.
  • the No. 2 radio frame No. 4 subframe is the next uplink SPS periodic point.
  • Step 1 The base station MAC receives the SR initiated by the UE in the subframe No. 1 of the radio frame No. 0;
  • Step 2 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No. 0, the base station The dynamic scheduling is not performed after the subframe No. 1 of the radio frame No. 0 until the subframe No. 4 of the radio frame No. 2;
  • Step 3 The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No.
  • Step 4 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 0 of the radio frame No. 0, and the base station does not perform dynamics after the subframe No. 6 of the radio frame No. 0 until the subframe No. 4 of the radio frame No. 2 Scheduling.
  • Step 5 The base station MAC receives the SR initiated by the UE in the subframe 1 of the radio frame No. 1:
  • Step 6 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe 1 of the radio frame No. 1. Dynamic scheduling is not performed after subframe 1 of the radio frame No. 1 until the subframe No. 4 of the radio frame No. 2.
  • Step 7 The base station MAC receives the SR initiated by the UE in the subframe No. 1 of the radio frame No. 1:
  • Step 8 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 6 of the radio frame No. 1. Dynamic scheduling is not performed after the No. 6 subframe of the radio frame No. 1 until the No. 2 radio frame No. 4 subframe.
  • Step 9 The base station MAC receives the SR initiated by the UE in the subframe No. 1 of the radio frame No. 2;
  • Step 10 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No.
  • the base station Dynamic scheduling is not performed after the No. 1 radio frame No. 1 subframe until the No. 2 radio frame No. 4 subframe.
  • the base station MAC can obtain the BSR reported by the UE in the No. 2 radio frame No. 4 subframe, and then according to the BSR.
  • the BSR dynamically schedules the terminal.
  • Embodiment 2 This embodiment will describe in detail the application of the method of the present invention in a specific scenario.
  • the UE will initiate the SR after the uplink semi-persistent scheduling is activated, but the base station will not respond to the SR.
  • the base station RRC layer configures the SPS parameters of QCI1
  • the uplink SPS period is 40ms
  • the number of consecutive null packets is 3.
  • the base station MAC layer sends the active uplink semi-static tone to the UE in the 0th radio frame 0 subframe.
  • the DCIO information of the degree the UE successfully activates the uplink SPS in this subframe at the same time, and then the UE is on the No.
  • the working process of the base station in the scenario by using the scheduling method in this embodiment includes the following steps: Step 1: The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No. 0; Step 2: The base station The MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 0 of the radio frame No.
  • Step 3 The base station MAC sends DCI0 to perform dynamic scheduling in the subframe No. 8 of the radio frame No. 0, and the target value of the scheduling is the size of the BSR obtained in step 2. It is assumed that the BSR scheduling is completed in the current subframe.
  • Step 4 The base station MAC receives the SR initiated by the UE in the subframe 1 of the radio frame 1;
  • Step 5 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe 1 of the radio frame 1 Dynamic scheduling is not performed after subframe 1 of the radio frame No. 1 until the subframe 4 of the radio frame No. 4.
  • Step 6 The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No. 1: Step 7: The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 6 of the radio frame No. 1. Dynamic scheduling is not performed after the No. 6 subframe of Radio Frame No. 1 until the No. 4 radio frame No. 4 subframe. Step 8: The base station MAC receives the SR initiated by the UE in the subframe No. 1 of the radio frame No. 2; Step 9: The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No.
  • the base station Dynamic scheduling is not performed after the No. 1 radio frame No. 1 subframe until the No. 4 radio frame No. 4 subframe.
  • Step 10 The base station MAC receives the SR initiated by the UE in the subframe No. 2 of the radio frame No. 2;
  • Step 11 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 6 of the radio frame No. 2, the base station Dynamic scheduling is not performed after subframe number 2 of the radio frame No. 2 until the subframe No. 4 of the radio frame No. 4.
  • Step 12 The base station MAC receives the SR initiated by the UE in the subframe No. 1 of the radio frame No.
  • Step 13 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No. 3, the base station Dynamic scheduling is not performed after the No. 1 subframe of Radio Frame No. 3 until the No. 4 subframe of Radio Frame No. 4.
  • Step 12 The base station MAC receives the SR initiated by the UE in the subframe 6 of the radio frame No. 3;
  • Step 13 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 3 of the radio frame No. 3, and the base station is after the subframe No. 6 of the radio frame No. 3 until the subframe No. 4 of the radio frame No. 4, No dynamic scheduling is performed.
  • Step 12 The base station MAC receives the SR initiated by the UE in the subframe No. 1 of the radio frame No. 4;
  • Step 13 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No. 4, the base station Dynamic scheduling is not performed after the No. 1 radio frame No. 1 subframe until the No. 4 radio frame No. 4 subframe.
  • another application scenario in this embodiment is: TDD, uplink and downlink subframe ratio 1, DSUUDDSUUD.
  • the RRC layer of the base station is configured with the SPS parameters of the QCI1.
  • the uplink SPS period is 20 ms, the dual-cycle is closed, and the number of consecutive null packets is 3.
  • the base station MAC layer sends the DCI0 information for activating the uplink semi-persistent scheduling to the UE in the radio frame 1 S.
  • the uplink SPS is successfully activated in this subframe, and then the UE is on the 0th radio frame 7U with an interval of 20ms, and the fixed frequency domain resource is used for uplink data transmission at the SPS periodic point.
  • the SR period is configured to 5ms with an offset of 3.
  • the UE first packet SPS data does not contain valid BSR information.
  • the steps of uplink semi-persistent scheduling in this scenario refer to FIG. 5.
  • the base station does not respond to the SR before the No. 2 radio frame 7U, and dynamically adjusts.
  • Embodiment 3 This embodiment will describe a specific process of the scheduling method of the present invention after uplink semi-persistent scheduling deactivation. Scenario preparation conditions: FDD, the base station RRC layer configures the SPS parameters of QCI1, the uplink SPS period is 20ms, and the number of consecutive null packets is 3. The base station MAC layer sends the activated uplink semi-persistent scheduling to the UE in the 0th radio frame 0 subframe.
  • the UE successfully activates the uplink SPS in this subframe at the same time, and then the UE is on the No. 4 radio frame No. 4 subframe, with an interval of 20 ms, and uses the fixed frequency domain resource for uplink data transmission at the SPS periodic point.
  • the SR period is configured to be 10ms with an offset of 1.
  • the UE first packet SPS data does not include valid BSR information.
  • the uplink semi-persistent scheduling method in this embodiment is used to perform scheduling in the scenario. Step 1: The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No.
  • Step 2 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 6 of the radio frame No. 0, the base station Dynamic scheduling is not performed after the subframe No. 6 of the radio frame No. 0 until the subframe No. 4 of the radio frame No. 2.
  • Step 3 The base station MAC receives the SR initiated by the UE in the subframe No. 6 of the radio frame No. 1;
  • Step 4 The base station MAC does not classify the SR of the UE into the queue of the SR response in the subframe No. 1 of the radio frame No. 1.
  • the base station is after the subframe No. 6 of the radio frame No. 1 and before the subframe No. 4 of the radio frame No.
  • Step 5 The base station MAC sends an uplink to deactivate the SPS DCIO in the No. 3 radio frame No. 8 subframe, and the UE releases the uplink SPS configuration in the current TTI.
  • Step 6 The base station MAC receives the UE initiated in the No. 4 radio frame No. 6 subframe.
  • SR The base station MAC classifies the SR into the SR response scheduling queue in the No. 6 radio frame No. 6 subframe, and sends dynamic scheduling in the No. 5 radio frame No. 0 subframe, and responds to the DCI0 of the SR.
  • the other periodic offset combinations of other SPS and SR under FDD are in accordance with the above FDD rules.
  • Embodiment 4 As shown in FIG. 7, this embodiment provides a scheduling method for a base station, including the following steps: Step 701: After activating an uplink semi-persistent scheduling, acquiring a buffer area sent by a terminal in an uplink semi-persistent scheduling period status report.
  • the base station of the present embodiment activates the uplink semi-persistent scheduling by sending the downlink control information DCI0 to the UE.
  • the terminal will not initiate the SR to the base station; therefore, the base station in this embodiment does not receive the SR, nor does it Respond to SR.
  • the existing technology generally sends an SR request resource to the base station.
  • the base station responds to the SR request, and then configures the terminal to upload the BSR resources, and then schedules the data services according to the BSR;
  • the terminal does not initiate the SR, so in order to ensure the normal transmission of the service data, the base station in this embodiment may obtain the buffer status report sent by the terminal at the uplink semi-persistent scheduling period, and then perform dynamic scheduling according to the BSR.
  • the problem of service instability and resource waste caused by SR response for transmitting other data services after uplink SPS activation is avoided.
  • the uplink SPS cycle point in this embodiment is determined by the uplink SPS configuration information set in advance.
  • the preset configuration information includes a fixed interval period and a preset time-frequency resource.
  • the terminal After the uplink SPS is activated, the terminal transmits the service data by using the preset time-frequency resource at a fixed interval.
  • the scheduling method in this embodiment can carry the BSR through the service data packet uploaded at the uplink SPS periodic point, and send the BSR to the base station. Therefore, the scheduling method of the base station in this embodiment may obtain the buffer status report by using the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period.
  • Step 702 Dynamically schedule services of the terminal according to the buffer status report.
  • the scheduling method in this embodiment can improve the stability problem after the uplink semi-static scheduling service is activated, avoid the waste of the uplink scheduling resources, and ensure the service quality of the uplink semi-static scheduling service as much as possible.
  • the method in this embodiment may further include: deactivating the uplink semi-persistent scheduling. Thereafter, recovering an uplink scheduling request initiated by the terminal, and configuring a resource for the terminal; acquiring a buffer status report sent by the terminal by using the resource; and reporting, according to the status of the buffer sent by the terminal by using the resource Dynamically scheduling the services of the terminal.
  • Scenario preparation conditions FDD, the base station RRC layer configures the SPS parameters of QCI1, and the uplink SPS period is
  • the number of consecutive null packets is 3.
  • the base station MAC layer sends DCI0 information for activating the uplink semi-persistent scheduling to the UE in the 0th subframe of the 0th radio frame, and the UE successfully activates the uplink SPS in this subframe at the same time, and then the UE is wireless at 0.
  • the interval is 40ms, and the fixed frequency domain resource is used for uplink data transmission at the SPS cycle point.
  • the SR period is configured to 5ms with an offset of 1.
  • the UE first packet SPS data contains valid BSR information. Referring to FIG.
  • the working process of the base station in the scenario by using the scheduling method in this embodiment includes the following steps: Step 1: When the SR period arrives, since the UE does not initiate the SR after the activation, the base station MAC is in the 0th wireless. Frame 6 subframes do not receive SR; they do not respond to SR. Step 2: The base station MAC acquires the BSR information reported by the UE in the subframe No. 4 of the radio frame No. 0. Step 3: The base station MAC sends DCI0 to perform dynamic scheduling in the subframe No. 8 of the radio frame No. 0, and the target value of the scheduling is the size of the BSR obtained in step 2. It is assumed that the BSR scheduling is completed in the current subframe.
  • Step 4 After the scheduling is completed, the base station MAC will receive the SR. That is, in the 1st radio frame 1 subframe, the 1st radio frame 6 subframe, the 2nd radio frame 1 subframe, the 2nd radio frame 6 subframe, the 3rd radio frame 1 and 3 radio frame 6 No. 4, No. 4 radio frame No. 1 subframe will not receive SR.
  • the base station MAC can receive the SR, respond to the SR to obtain the BSR, and then perform dynamic scheduling.
  • Embodiment 5 Corresponding to the scheduling method of the base station in the first embodiment, the embodiment provides a sending method. As shown in FIG.
  • Step 901 After the uplink semi-persistent scheduling is activated, the terminal initiates to the base station. Upstream scheduling request.
  • the terminal After the terminal detects the uplink SPS activation, the terminal uploads the service data packet to the base station by using the pre-configured video resource.
  • the terminal sends an SR to the base station to request the resource to upload the BSR.
  • the base station since the present invention needs to avoid the SR response, the base station does not respond regardless of how the terminal transmits the SR, and the problem caused by the SR response at the non-periodic point is avoided.
  • Step 902 The terminal sends the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the terminal may send the BSR to the base station for dynamic scheduling at the pre-configured uplink SPS periodic point.
  • the reason why the BSR is sent in the uplink SPS periodic point in this embodiment is that the terminal is used in the uplink SPS at the periodic point.
  • the video resource uploads the higher priority VoIP service group packet to the base station, thereby avoiding the SPS cycle point caused by the base station transmitting the service group packet with the higher priority to the base station after the base station receives the BSR to the terminal scheduling.
  • the transmission is all in the case of padding, thereby improving the stability of the upper limit SPS service.
  • the service data packet can be used to carry the BSR, that is, the buffer status report is sent to the base station through the uploaded service data packet at the uplink semi-persistent scheduling period.
  • the data service can be normally transmitted after the uplink SPS is deactivated, that is, after the uplink SPS configuration is invalid.
  • the method in this embodiment may further include: after the uplink semi-persistent scheduling is deactivated, responding to the uplink scheduling request by the base station is The resource configured by the terminal sends a buffer status report of the terminal to the base station.
  • the terminal can upload the BSR to the base station by responding with the terminal SR, so as to ensure that the data can be normally transmitted after the uplink SPS is deactivated.
  • the sending method in this embodiment, reference may be made to the content of the SR and the periodic data packet in the foregoing FIG. 3, FIG. Embodiment 6: Corresponding to the scheduling method of the base station in the foregoing Embodiment 4, this embodiment provides a sending method. As shown in FIG. 10, the method includes the following steps: Step 1001: After the uplink semi-persistent scheduling is activated, the terminal stops. An uplink scheduling request is initiated to the base station.
  • Step 1002 The terminal sends the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the uplink SPS is activated, if there are other data services, the existing technology generally sends an SR request to the base station to send the resources of the BSR, and then schedules the data services according to the BSR.
  • the BSR may be sent to the base station for dynamic scheduling at the SPS periodic point.
  • the application of the sending method in this embodiment to the uplink SPS can solve the problem of poor stability of resources and waste of resources after uplink SPS activation. Since the terminal needs to upload the service data in the uplink SPS cycle, the service data packet can be used to carry the BSR, that is, the buffer status report is sent to the base station through the uploaded service data packet at the uplink semi-persistent scheduling period. After the uplink SPS is deactivated, that is, after the uplink SPS configuration is disabled, if the base station does not receive the SR at all times, the data service may not be transmitted normally.
  • the method in this embodiment may further include: After the activation, the uplink scheduling request is resumed to the base station; and the buffer status report of the terminal is sent to the base station by the base station in response to the uplink scheduling request for the resource configured by the terminal.
  • the scenario preparation condition The UE supporting the SPS function establishes the service of QCI1, that is, VoIP. The UE receives the reconfiguration signaling sent by the base station, and obtains an SPS period of 20 ms, a SR period of 5 ms, and an SR offset of 6.
  • the scheduling process in the scenario includes: Step 1: The UE detects the SPS-activated DCI0 information in the No. 0 radio frame 0 subframe, and the UE activates the SPS configuration in the subframe.
  • Step 2 The UE performs a new transmission of the first packet SPS cycle in the No. 4 radio frame No. 4 subframe.
  • Step 3 The SR period of the UE is up, but the UE does not send the SR.
  • Step 4 The UE performs a new transmission of the second packet SPS period in the No. 2 radio frame No. 4 subframe.
  • Step 5 If the UE satisfies the SPS implicit deactivation condition in the subframe No. 5 of the radio frame No.
  • Step 6 The UE sends an SR in the No. 6 radio frame No. 6 subframe.
  • Step 7 The UE detects the dynamically scheduled DCI0 information sent by the base station in the subframe No. 9 of the radio frame No. 4.
  • the present invention only introduces a scenario embodiment of a UE side, the present invention is not limited to this embodiment, and may include other scenario embodiments.
  • the dynamically scheduled DCI format in this embodiment although only the DCI0 format is described above, it is not limited to DCI0, and for example, DCI4 is also included.
  • this embodiment provides a scheduling method, which is applicable to the upper SPS, and includes the following steps: Step 121: After the uplink semi-persistent scheduling is activated, the terminal initiates an uplink scheduling request to the base station.
  • the base station of the present implementation may activate uplink semi-persistent scheduling by sending downlink control information DCI0 to the UE.
  • Step 123 The terminal sends a buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the terminal sends the buffer status report of the terminal to the base station by using the service data packet uploaded by the periodic point in the uplink semi-persistent scheduling period. That is, the service data packet uploaded by the uplink SPS cycle point carries the BSR.
  • the scheduling method in this embodiment does not perform the SR response after the uplink semi-persistent scheduling is activated, and the BSR sent in the uplink semi-persistent scheduling period avoids the UE sending null caused by the SR response in the non-uplink semi-persistent scheduling period.
  • the problem of the data packet improves the stability of the uplink semi-persistent scheduling service. Since the SR response is not performed after the uplink semi-persistent scheduling is activated, the system resources can be saved.
  • the method of the present invention improves the uplink semi-persistent scheduling compared with the existing one. The quality of service of the business.
  • the method in this embodiment may further include: After deactivation, the base station resumes responding to the uplink scheduling request initiated by the terminal, and configures resources for the terminal; the terminal sends a buffer status report of the terminal to the base station by using the resource; The base station dynamically schedules services of the terminal according to a cache difference status report sent by the terminal through the resource.
  • the method of this embodiment can restore the SR response after the uplink SPS is deactivated to ensure normal transmission of the uplink data.
  • Embodiment 8 As shown in FIG. 13, this embodiment provides a scheduling method, which is applicable to an uplink SPS, and includes the following steps: Step 131: After the uplink semi-persistent scheduling is activated, the terminal stops initiating an uplink scheduling request to the base station. .
  • the base station of the present implementation may activate uplink semi-persistent scheduling by sending downlink control information DCI0 to the UE. The terminal will no longer send the SR after activation.
  • Step 132 The terminal sends a buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the terminal sends the buffer status report of the terminal to the base station by using the service data packet uploaded by the periodic point in the uplink semi-persistent scheduling period. That is, the service data packet uploaded by the uplink SPS cycle point carries the BSR.
  • Step 133 The base station acquires a buffer status report sent by the terminal, and dynamically schedules the service of the terminal according to the obtained status information of the buffer area. After the uplink semi-persistent scheduling is activated, the base station does not perform the SR response, and the BSR sent by the terminal in the uplink semi-persistent scheduling period avoids the non-uplink semi-persistent scheduling period.
  • the problem of the UE transmitting the null data packet caused by the SR response improves the stability of the uplink semi-persistent scheduling service. Since the SR response is not performed after the uplink semi-persistent scheduling is activated, the system resources can be saved.
  • the method and the present invention Compared with improving the quality of service of the uplink semi-static scheduling service. After the uplink SPS is deactivated, if the base station also saves the state of the refusal to respond to the SR, the data service may not be transmitted normally.
  • the method in this embodiment may further include: after the uplink semi-static scheduling is deactivated, the terminal Recovering an uplink scheduling request to the base station; the base station responding to the uplink scheduling request, and configuring a resource for the terminal; the terminal transmitting, by using the resource, the resource of the buffer status report of the terminal to the base station; The base station dynamically schedules services of the terminal according to a buffer status report sent by the terminal by using the resource.
  • the method of this embodiment can restore the SR response after the uplink SPS is deactivated to ensure normal transmission of the uplink data.
  • Example 9 As shown in FIG. 14, the embodiment provides a base station, including: a request response module, an information acquisition module, and a scheduling module.
  • the request response module is configured to reject the uplink scheduling initiated by the terminal after activating the uplink semi-persistent scheduling.
  • the information acquisition module is configured to acquire a buffer status report sent by the terminal at an uplink semi-persistent scheduling period
  • the scheduling module is configured to dynamically schedule services of the terminal according to the buffer status report. After the SPS is activated, the base station does not respond to the SR initiated by the terminal, and obtains the dynamic scheduling of the BSR sent by the terminal at the SPS periodic point, thereby avoiding the problem of service instability caused by the SR response at the non-SPS periodic point. Business service quality.
  • the request response module is further configured to: after the uplink semi-static scheduling deactivation, restore the uplink scheduling request initiated by the terminal, and configure a resource for the terminal; the information acquiring module is further configured to acquire the a buffer status report sent by the terminal by using the resource; the scheduling module is further configured to perform dynamic scheduling on the service of the terminal according to the buffer status report sent by the terminal by using the resource.
  • the information obtaining module is configured to obtain the buffer status report by using a service data packet uploaded by the terminal at an uplink semi-persistent scheduling period.
  • the functions of the foregoing modules are implemented in this embodiment, for example, the functions of the request response module, the information acquisition module, and the scheduling module may be completed by the related program hardware; the program may be stored in a readable storage medium of the base station, the processor Calling the program instructions in the storage medium to implement the functions of the above modules; for example, the processor calls the program in the memory to perform the function of rejecting the uplink scheduling request initiated by the terminal after activating the uplink semi-persistent scheduling (other module functions are implemented similarly here.
  • the storage medium in this embodiment includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk. As shown in FIG.
  • the embodiment further provides another base station, including: an information acquiring module and a scheduling module; the information acquiring module is configured to: after the uplink semi-persistent scheduling is activated, the acquiring terminal sends the uplink semi-persistent scheduling period The buffer status report; the scheduling module is configured to dynamically schedule the service of the terminal according to the buffer status report.
  • the base station does not receive the SR after the uplink SPS is activated, does not respond to the SR, and obtains the dynamic scheduling of the BSR sent by the terminal at the SPS periodic point, thereby avoiding the problem of service instability caused by the SR response at the non-SPS periodic point. , improve the quality of business services.
  • an information acquiring module is configured to: after the uplink semi-persistent scheduling is activated, the acquiring terminal sends the uplink semi-persistent scheduling period The buffer status report
  • the scheduling module is configured to dynamically schedule the service of the terminal according to the buffer status report.
  • the base station does not receive the SR after the uplink SPS
  • the base station of this embodiment may further include: a request response module according to FIG. 15; the request response module is configured to respond to the uplink initiated by the terminal after the uplink semi-static scheduling is deactivated. Scheduling a request, and configuring a resource for the terminal for the terminal; the information acquiring module is further configured to acquire a buffer status report sent by the terminal by using the resource; the scheduling module is further configured to pass the terminal according to the terminal.
  • the buffer status report sent by the resource dynamically schedules services of the terminal.
  • the base station of this embodiment can protect the normal transmission of service data after deactivation.
  • the information obtaining module in the embodiment is configured to obtain the buffer status report by using the service data packet uploaded by the terminal at the uplink semi-persistent scheduling period.
  • the functions of the foregoing modules are implemented in this embodiment, for example, the functions of the request response module, the information acquisition module, and the scheduling module may be completed by the related program hardware; the program may be stored in a readable storage medium of the base station, the processor Calling the program instructions in the storage medium to implement the functions of the above modules; for example, the processor calls the program in the memory to perform the function of rejecting the uplink scheduling request initiated by the terminal after activating the uplink semi-persistent scheduling (other module functions are implemented similarly here.
  • the storage medium in this embodiment includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • Embodiment 10 As shown in FIG. 16, the embodiment provides a terminal, including: a requesting module and an information sending module; the requesting module is configured to stop initiating an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; The information sending module is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the terminal in this embodiment can cooperate with the base station to obtain the BSR through the SR response after the uplink SPS is activated.
  • the requesting module in the embodiment is further configured to: after the uplink semi-persistent scheduling deactivation, resume to initiate an uplink scheduling request to the base station; the information sending module is further configured to respond to the uplink scheduling by using the base station Requesting resources configured for the terminal to send a buffer status report of the terminal to the base station.
  • the information sending module is configured to send the buffer status report to the base station by using the uploaded service data packet at the uplink semi-persistent scheduling period.
  • the embodiment further provides another terminal, including: a requesting module and an information sending module; the requesting module is configured to initiate an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; the information sending module The method is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period.
  • the terminal can cooperate with the base station that does not respond to the SR after activation to solve the problem of uplink SPS service instability and resource waste.
  • the information sending module is further configured to: after the uplink semi-persistent scheduling deactivation, send, by the base station, the buffer status report of the terminal to the resource configured by the terminal in response to the uplink scheduling request Base station.
  • the information sending module is configured to send the buffer status report to the base station by using the uploaded service data packet at the uplink semi-persistent scheduling period.
  • the functions of the foregoing modules are implemented in the terminal of the embodiment, for example, the functions of the request module and the information sending module may be completed by the related program hardware; the function program may be stored in the readable storage medium of the terminal, and the processor in the terminal Calling a program instruction in the storage medium to implement the function of the foregoing module; for example, the processor in the memory calling memory performs the function of stopping the uplink scheduling request from the base station after the uplink semi-static scheduling is activated.
  • Embodiment 1 As shown in FIG. 17, this embodiment provides a scheduling system, and application and uplink semi-static scheduling, including a terminal and a base station;
  • the terminal includes: a requesting module and an information sending module;
  • the base station includes: a request response module, an information acquiring module, and a scheduling module;
  • the requesting module is configured to initiate an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated;
  • the request response module is configured to refuse to respond to the uplink scheduling request initiated by the terminal;
  • the information sending module is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period;
  • the information acquiring module is configured To obtain a buffer status report sent by the terminal, the scheduling module is configured to dynamically acquire the service of the terminal by using the obtained buffer status report.
  • the scheduling system can obtain the BSR without the SR response after the uplink SPS is activated, and avoids the problem that the UE sends the null data packet caused by the SR response in the non-uplink semi-persistent scheduling period, and improves the stability of the uplink semi-static scheduling service.
  • the system can save system resources because the SR response is not performed after the uplink semi-static scheduling is activated.
  • the system of the present invention improves the service quality of the uplink semi-static scheduling service compared with the prior art.
  • the request response module is further configured to: after the uplink semi-persistent scheduling deactivation, the base station resumes responding to the uplink scheduling request initiated by the terminal, and configure resources for the terminal; the information sending module is further configured to Sending, by the resource, the buffer status report of the terminal to the base station.
  • the information sending module is configured to send the buffer status report of the terminal to the base station by using the service data packet uploaded by the periodic point in the uplink semi-persistent scheduling period. As shown in FIG.
  • this embodiment further provides another scheduling system, including: a terminal and a base station; the terminal includes: a requesting module and an information sending module; the base station includes: an information acquiring module and a scheduling module; The requesting module is configured to stop sending an uplink scheduling request to the base station after the uplink semi-persistent scheduling is activated; the information sending module is configured to send the buffer status report of the terminal to the base station at an uplink semi-persistent scheduling period; The information obtaining module is configured to obtain a buffer status report sent by the terminal; The scheduling module is configured to dynamically acquire the service of the terminal by using the obtained buffer status report. Further, on the basis of the system shown in FIG.
  • the base station may further include: a request response module; the requesting module is further configured to resume uplink scheduling to the base station after uplink semi-persistent scheduling deactivation
  • the request response module is configured to respond to the uplink scheduling request and configure resources for the terminal;
  • the information sending module is further configured to send, by using the resource, the resource of the buffer status report of the terminal to the base station .
  • the information sending module is configured to send the buffer status report of the terminal to the base station by using the service data packet uploaded by the periodic point in the uplink semi-persistent scheduling period.
  • the functions of the request module and the information sending module can be completed by using related hardware of the function program; the function program can be stored in the readable storage medium of the terminal.
  • the processor in the terminal invokes a program instruction in the storage medium to implement the function of the foregoing module; for example, the processor calls the program in the memory to perform the function of stopping the uplink scheduling request from the base station after the uplink semi-static scheduling is activated (other module functions are implemented similarly here)
  • the storage medium in this embodiment includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the functions of the foregoing modules are implemented in the base station of the system of the embodiment, for example, the functions of the request response module, the information acquisition module, and the scheduling module may be completed by the related program hardware; the program may be stored in the readable storage medium of the base station.
  • the processor in the base station invokes a program instruction in the storage medium to implement the function of the foregoing module; for example, the processor calls the program in the memory to perform the function of rejecting the uplink scheduling request initiated by the terminal after activating the uplink semi-static scheduling (other module functions are implemented).
  • the storage medium in this embodiment includes: a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the scheduling system in this embodiment sends the BSR to the base station for dynamic scheduling, and avoids the UE sending null caused by the SR response in the non-uplink semi-persistent scheduling period.
  • the problem of the data packet improves the stability of the uplink semi-persistent scheduling service. Since the SR response is not performed after the uplink semi-persistent scheduling is activated, the system resources can be saved. Compared with the existing, the service quality of the uplink semi-static scheduling service is improved. .
  • a scheduling method and system, a terminal, a transmitting method, a base station, and a scheduling method thereof according to embodiments of the present invention have the following beneficial effects: avoiding an SR response caused by a non-uplink semi-persistent scheduling period
  • the problem of the UE transmitting the null data packet improves the stability of the uplink semi-persistent scheduling service. Since the SR response is not performed after the uplink semi-static scheduling is activated, the system resources can be saved.
  • the uplink semi-static scheduling service is improved compared with the existing one. Quality of service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种调度方法及系统、终端、发送方法、基站及其调度方法。本发明提供的基站的调度方法包括:在激活上行半静态调度后,拒绝响应终端发起的上行调度请求;获取终端在上行半静态调度周期点发送的缓存区状态报告;根据所述缓存区状态报告对所述终端的业务进行动态调度;本发明的方法可以提高上行半静态调度业务的稳定性、减小资源的浪费。

Description

调度、 发送方法及其基站、 终端、 系统 技术领域 本发明涉及移动通信技术领域, 尤其涉及一种调度方法及系统、终端、发送方法、 基站及其调度方法。 背景技术 目前移动通信系统一般采用共享式资源分配调度方式, 其优点是可以极大程度的 利用无线通信资源。 对于这种调度方式, 原有的电路域的话音业务已经取消, 代之以 数据域的网络电话 (VoIP) 业务。 但由于话音用户的数量往往比较庞大, 共享式调度 的资源分配方式需要对每次传输都发送相关的控制信息, 所以控制信息的开销过大。 针对这类数据包大小比较固定, 到达时间间隔满足一定规律的实时性业务, 采用半静 态调度技术可以减小控制信息的开销。 半静态调度 (Semi-persistence Scheduling, 简称为 SPS ) 是指为特定业务设计的、 在固定时刻使用预先分配的资源, 而在其他时刻采用动态调度 (重传) 机制的一种调 度方法。 具体地, 半静态调度启动后, 指定的资源块会周期性地分配给指定的用户, 以适应某些周期性的、 有效载荷大小固定的业务, 达到减少资源分配、 指示等信息带 来的系统开销, 而半静态调度的数据重传采用动态调度的方法, 因此称为半静态调度。 一般的, VoIP业务就比较符合 SPS调度。 长期演进 (LTE) 系统中, 当用户设备 (UE) 没有传输数据的有效资源, 且 UE 又同时有业务待传输时, 就会主动的向基站发起上行调度请求 (Scheduling Request, 简称为 SR), 目的在于申请有效合法的上行传输资源。 一般的, 当 UE发起 SR之后, 基站会响应 UE发起的 SR, 给 UE授权一定大小的资源, 目的让 UE把自己缓存中待 传输数据量的大小上报给基站, 也就是把缓存区状态报告 (Buffer Status reporting, 简 称为 BSR) 告诉基站, 然后, 基站获取到 UE的 BSR之后, 就会对 UE进行调度。 当上行 SPS 激活之后, 即基站通过向 UE发送包含特定信息的下行控制信息 0 (Downlink Control Information formatO, 简称为 DCI0), 来激活半静态调度业务。 UE 识别是激活半静态调度的 DCI0, 则保存当前的调度信息, 按照半静态调度的配置, 间 隔固定的周期使用预先配置的时频资源进行半静态业务数据的发送。 若 UE在非 SPS 周期点, 突然有语音业务或者其他数据业务, 且没有上行的合法资源时, UE就会发起 SR。 这时, 若不做特殊处理, 基站就会响应 SR, 进行 SR的调度, 此时, UE就可能 会在非 SPS周期点通过基站授权的上行资源位置上进行数据块上传, UE组包时就会 将优先级较高的 VoIP 业务组包进入动态授权的传输块中提前调度, 那么等到下一次 SPS的调度周期点, UE因为提前将 VoIP数据调度出去, UE的缓存中可能就没有待传 输的 VoIP业务了, 导致 SPS周期点上传输的都是 padding。 而且因为 VoIP是周期性 的业务,这种因为 SR调度导致的提前将 VoIP业务调度出去而导致 SPS周期点上没有 有效数据均为 padding的场景会周期性产生。 如图 3所示。 同时, LTE系统中上行 SPS有隐式去激活的流程, 隐式去激活是指当 UE连续 N 个 SPS周期点上发送的都是空 SDU的数据包时, UE就会将自己的 SPS配置释放掉, 也就是没有了固定的时频资源进行数据上传了。 结合 SPS中的 SR调度以及上行 SPS 的隐式去激活, 就可以发现, 若 SPS激活之后基站响应了 SR那么就可能造成 UE的 频繁的隐式去激活以及激活, 对上行 SPS业务的稳定性造成了一定的影响。 而且因为 响应了 SR, 还造成了一定资源浪费。 发明内容 本发明提供了一种调度方法及系统、 终端、 发送方法、 基站及其调度方法, 以至 少解决相关技术中的上行半静态调度业务的稳定性差以及浪费资源的问题。 为解决上述技术问题, 本发明提供基站的调度方法,, 包括如下步骤: 在激活上行半静态调度后, 拒绝响应终端发起的上行调度请求; 获取终端在上行半静态调度周期点发送的缓存区状态报告; 根据所述缓存区状态报告对所述终端的业务进行动态调度。 可选地, 所述方法还包括: 在上行半静态调度去激活之后, 恢复响应所述终端发起的上行调度请求, 并为所 述终端配置资源; 获取所述终端通过所述资源发送的缓存区状态报告; 根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进行动态调 度。 可选地, 所述获取终端在上行半静态调度周期点发送的缓存区状态报告的步骤包 括: 通过所述终端在上行半静态调度周期点上传的业务数据包获取所述缓存区状态报 告 同样为了解决上述的技术问题, 本发明还提出了另一种基站的调度方法, 包括如 下步骤: 在激活上行半静态调度后, 获取终端在上行半静态调度周期点发送的缓存区状态 报告; 根据所述缓存区状态报告对所述终端的业务进行动态调度。 可选地, 所述方法还包括: 在上行半静态调度去激活之后, 响应所述终端发起的上行调度请求, 并为所述终 端配置资源; 获取所述终端通过所述资源发送的缓存区状态报告; 根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进行动态调 度。 可选地, 所述获取终端在上行半静态调度周期点发送的缓存区状态报告的步骤包 括: 通过所述终端在上行半静态调度周期点上传的业务数据包获取所述缓存区状态报 告 同样为了解决上述的技术问题, 本发明还提出一种发送方法, 包括如下步骤: 在上行半静态调度激活之后, 终端停止向基站发起上行调度请求; 终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基站。 可选地, 所述方法还包括: 在上行半静态调度去激活之后, 所述终端恢复向所述基站发起上行调度请求; 所述终端通过所述基站响应所述上行调度请求为所述终端配置的资源将所述终端 的缓存区状态报告发送给所述基站。 可选地, 所述终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给 基站的步骤包括: 所述终端在上行半静态调度周期点通过上传的业务数据包将缓存区 状态报告发送给基站。 同样为了解决上述的技术问题, 本发明还提出另一种发送方法, 包括如下步骤: 在上行半静态调度激活之后, 终端向基站发起上行调度请求; 终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基站。 可选地, 所述方法还包括: 在上行半静态调度去激活之后, 所述终端通过所述基 站响应所述上行调度请求为所述终端配置的资源将所述终端的缓存区状态报告发送给 所述基站。 可选地, 所述终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给 基站的步骤包括: 所述终端在上行半静态调度周期点通过上传的业务数据包将缓存区 状态报告发送给基站。 同样为了解决上述的技术问题, 本发明还提出一种调度方法, 包括如下步骤: 在上行半静态调度激活之后, 终端向基站发起上行调度请求; 所述基站拒绝响应所述终端发起的上行调度请求; 所述终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基站; 所述基站获取所述终端发送的缓存区状态报告, 并根据获取的缓存区状态报告对 所述终端的业务进行动态调度。 可选地, 所述方法还包括: 在上行半静态调度去激活之后,所述基站恢复响应所述终端发起的上行调度请求, 并为所述终端配置资源; 所述终端通过所述资源将所述终端的缓存区状态报告发送给所述基站; 所述基站根据终端通过所述资源发送的缓存区别状态报告对所述终端的业务进行 动态调度。 可选地, 所述终端在上行半静态调度周期点将终端的缓存区状态报告发送给基站 的步骤包括: 所述终端在上行半静态调度周期点通过该周期点上传的业务数据包将所 述终端的缓存区状态报告发送给基站。 同样为了解决上述的技术问题, 本发明还提出另一种调度方法, 包括如下步骤: 在上行半静态调度激活之后, 所述终端停止向基站发起上行调度请求; 所述终端在上行半静态调度周期点将终端的缓存区状态报告发送给基站; 所述基站获取终端发送的缓存区状态报告, 并根据获取的所述缓存区状态报告对 所述终端的业务进行动态调度。 可选地, 所述方法还包括: 在上行半静态调度去激活之后, 所述终端恢复向所述基站发起上行调度请求; 所述基站响应所述上行调度请求, 并为所述终端配置资源; 所述终端通过所述资源将所述终端的缓存区状态报告的资源发送给基站; 所述基站根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进 行动态调度。 可选地, 所述终端在上行半静态调度周期点将终端的缓存区状态报告发送给基站 的步骤包括: 所述终端在上行半静态调度周期点通过该周期点上传的业务数据包将所述终端的 缓存区状态报告发送给基站。 同样为了解决上述的技术问题, 本发明还提出了一种基站, 包括: 请求响应模块、 信息获取模块以及调度模块; 所述请求响应模块设置为在激活上行半静态调度后, 拒绝响应终端发起的上行调 度请求; 所述信息获取模块设置为获取终端在上行半静态调度周期点发送的缓存区状态报 告. 所述调度模块设置为根据所述缓存区状态报告对所述终端的业务进行动态调度。 可选地, 所述请求响应模块还设置为在上行半静态调度去激活之后, 恢复响应所 述终端发起的上行调度请求, 并为所述终端配置资源; 所述信息获取模块还设置为获取所述终端通过所述资源发送的缓存区状态报告; 所述调度模块还设置为根据所述终端通过所述资源发送的缓存区状态报告对所述 终端的业务进行动态调度。 可选地, 所述信息获取模块设置为通过所述终端在上行半静态调度周期点上传的 业务数据包获取所述缓存区状态报告。 同样为了解决上述的技术问题, 本发明还提出了另一种基站, 包括: 信息获取模 块和调度模块; 所述信息获取模块设置为在激活上行半静态调度后, 获取终端在上行半静态调度 周期点发送的缓存区状态报告; 所述调度模块设置为根据所述缓存区状态报告对所述终端的业务进行动态调度。 可选地, 所述基站还包括: 请求响应模块; 所述请求响应模块设置为在上行半静态调度去激活之后, 响应所述终端发起的上 行调度请求, 并为所述终端配置资源; 所述信息获取模块还设置为获取所述终端通过所述资源发送的缓存区状态报告; 所述调度模块还设置为根据所述终端通过所述资源发送的缓存区状态报告对所述 终端的业务进行动态调度。 可选地, 所述信息获取模块设置为通过所述终端在上行半静态调度周期点上传的 业务数据包获取所述缓存区状态报告。 同样为了解决上述的技术问题, 本发明还提出了一种终端, 包括: 请求模块和信 息发送模块; 所述请求模块设置为在上行半静态调度激活之后,停止向基站发起上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站。 可选地, 所述请求模块还设置为在上行半静态调度去激活之后, 恢复向所述基站 发起上行调度请求; 所述信息发送模块还设置为通过所述基站响应所述上行调度请求为所述终端配置 的资源将所述终端的缓存区状态报告发送给所述基站。 可选地, 所述信息发送模块设置为在上行半静态调度周期点通过上传的业务数据 包将缓存区状态报告发送给基站。 同样为了解决上述的技术问题, 本发明还提出了另一种终端, 包括: 请求模块和 信息发送模块; 所述请求模块设置为在上行半静态调度激活之后, 向基站发起上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站。 可选地, 所述信息发送模块还设置为在上行半静态调度去激活之后, 通过所述基 站响应所述上行调度请求为所述终端配置的资源将所述终端的缓存区状态报告发送给 所述基站。 可选地, 所述信息发送模块设置为在上行半静态调度周期点通过上传的业务数据 包将缓存区状态报告发送给基站。 同样为了解决上述的技术问题,本发明还提出了一种调度系统,包括终端和基站; 所述终端包括: 请求模块和信息发送模块; 所述基站包括: 请求响应模块、 信息获取模块以及调度模块; 所述请求模块设置为在上行半静态调度激活之后, 向基站发起上行调度请求; 所述请求响应模块设置为拒绝响应所述终端发起的上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站; 所述信息获取模块设置为获取所述终端发送的缓存区状态报告; 所述调度模块设置为获取的缓存区状态报告对所述终端的业务进行动态调度。 可选地, 所述请求响应模块还设置为在上行半静态调度去激活之后, 所述基站恢 复响应所述终端发起的上行调度请求, 并为所述终端配置资源; 所述信息发送模块还设置为通过所述资源将所述终端的缓存区状态报告发送给所 述基站。 可选地, 所述信息发送模块设置为在上行半静态调度周期点通过该周期点上传的 业务数据包将所述终端的缓存区状态报告发送给基站。 同样为了解决上述的技术问题, 本发明还提出了另一种调度系统, 包括终端和基 站; 所述终端包括: 请求模块和信息发送模块; 所述基站包括: 信息获取模块和调度模块; 所述请求模块设置为在上行半静态调度激活之后, 停止向所述基站发起上行调度 请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站; 所述信息获取模块设置为获取所述终端发送的缓存区状态报告; 所述调度模块设置为获取的缓存区状态报告对所述终端的业务进行动态调度。 可选地, 所述基站还包括: 请求响应模块; 所述请求模块还设置为在上行半静态调度去激活之后, 恢复向所述基站发起上行 调度请求; 所述请求响应模块设置为响应所述上行调度请求, 并为所述终端配置资源; 所述信息发送模块还设置为通过所述资源将所述终端的缓存区状态报告的资源发 送给基站。 可选地, 所信息发送模块设置为在上行半静态调度周期点通过该周期点上传的业 务数据包将所述终端的缓存区状态报告发送给基站。 本发明的有益效果是: 本发明提供了一种调度方法及系统、 终端、 发送方法、 基站及其调度方法,可以 提高上行半静态调度业务的稳定性、减小资源的浪费。本发明的基站的调度方法包括: 在激活上行半静态调度后, 拒绝响应终端发起的上行调度请求; 获取终端在上行半静 态调度周期点发送的缓存区状态报告; 根据所述缓存区状态报告对所述终端的业务进 行动态调度; 本发明的调度方法在上行半静态调度激活之后, 获取终端在上行半静态 调度周期点发送的 BSR, 并根据 BSR进行动态调度,避免了在非上行半静态调度周期 点进行 SR响应导致的 UE发送空数据包的问题,提高了上行半静态调度业务的稳定性, 由于在上行半静态调度激活之后不再进行 SR响应可以节省系统的资源; 本发明的方 法与现有相比提高了上行半静态调度业务的服务质量。 附图说明 图 1为本发明实施例一提供的一种基站的调度方法的流程示意图; 图 2为本发明实施例一提供的一种基站的调度方法在上行 SPS去激活后的流程示
图 3为本发明实施例一提供的一种基站在激活上行 SPS后的工作示意图; 图 4为本发明实施例二提供的一种基站在激活上行 SPS后的工作示意图; 图 5为本发明实施例二提供的另一种基站在激活上行 SPS后的工作示意图; 图 6为本发明实施例三提供的一种基站在激活上行 SPS后的工作示意图; 图 7为本发明实施例四提供的一种基站的调度方法的流程示意图; 图 8为本发明实施例四提供的一种基站在激活上行 SPS后的工作示意图; 图 9为本发明实施例五提供的一种发送方法的流程示意图; 图 10为本发明实施例六提供的一种发送方法的流程示意图; 图 11为本发明实施例六提供的一种 UE在上行 SPS激活之后的工作示意图; 图 12为本发明实施例七提供的一种调度方法的流程示意图; 图 13为本发明实施例八提供的一种调度方法的流程示意图; 图 14为本发明实施例九提供的一种基站的结构示意图; 图 15为本发明实施例九提供的另一种基站的结构示意图; 图 16为本发明实施例十提供的一种终端的结构示意图; 图 17为本发明实施例十一提供的一种调度系统的结构示意图; 图 18为本发明实施例十一提供的另一种调度系统的结构示意图。 具体实施方式 在现有上行 SPS中, 由于在非 SPS周期点进行 SR响应会导致上行 SPS业务不稳 定和资源浪费的问题; 因此, 本发明提供了一种调度方法及系统、 终端、 发送方法、 基站及其调度方法,可以提高上行半静态调度业务的稳定性、 减小资源的浪费。 本发明 的核心思想在于: 在上行 SPS激活之后在非周期点不进行 SR响应发送 BSR信息, 通 过在 SPS周期点将 BSR发送给基站;由于在上行 SPS激活之后不在进行 SR响应并在 SPS周期点发送 BSR可以在实现业务发送的同时, 避免上述的技术问题。 下面通过具体实施方式结合附图对本发明作进一步详细说明。 实施例一: 如图 1所示, 本实施例提供了一种基站的调度方法, 具体包括: 步骤 101 : 在激活上行半静态调度后, 拒绝响应终端发起的上行调度请求。 本实施基站通过向 UE发送下行控制信息 DCI0来激活上行半静态调度; 在上行 SPS激活之后, 终端会在需要的时候 (例如在 SR周期点到达时或者突然有其他数据 时) 对基站发起 SR; 本实施例方法在上行 SPS激活之后不再响应 SR终端。 步骤 102: 获取终端在上行半静态调度周期点发送的缓存区状态报告。 在上行 SPS激活之后, 如果有其他数据业务时现有技术一般向基站发起 SR请求 资源, 具体地, 基站响应 SR请求, 然后为终端配置上传 BSR的资源, 然后根据 BSR 调度这些数据业务; 而本实施例的方法为了保证调度的稳定性, 避免使用通过 SR响 应获取 BSR的方式, 而是在上行 SPS周期点由终端主动将 BSR发送给基站, 本实施 例之所以在上行 SPS周期点发送 BSR,是由于上行 SPS中在周期点终端会使用预先配 置的视频资源将优先级较高的 VoIP业务组包上传给基站,从而避免了在基站在接收到 BSR对终端调度后终端会将优先级较大的业务组包上传给基站导致的 SPS周期点上传 输的都是 padding的情况, 从而提高上限 SPS业务的稳定性。 本实施例上行 SPS周期 点是由事先设置的上行 SPS的配置信息确定的。 在事先设置的配置信息中包括间隔固 定的周期和预置的时频资源, 在上行 SPS激活之后, 终端在间隔固定的周期点利用预 置的时频资源发送业务数据。 优先地, 本实施例调度方法可以通过在上行 SPS周期点上传的业务数据包来携带 BSR, 将其发送给基站。 所以本实施例基站的调度方法可以通过所述终端在上行半静 态调度周期点上传的业务数据包获取所述缓存区状态报告。 步骤 103 : 根据所述缓存区状态报告对所述终端的业务进行动态调度。 具体地, 基站会根据 BSR为终端动态配置上传业务数据的资源块, 终端利用基站 配置的资源块将终端内的业务数据发送给基站。 本实施例的调度方法可以提高上行半静态调度业务激活之后的稳定性问题, 避免 上行调度资源浪费并尽可能地保证上行半静态调度业务的服务质量。 考虑到在上行 SPS去激活之后, 即上行 SPS配置失效之后, 一般情况下, 当 UE 在连续 N个上行 SPS周期点发送都是空数据包时, UE就会将自己的 SPS配置释放掉, 也就是没有了固定的时频资源进行数据上传了, 此时即上行 SPS去激活, 或者在 UE 满足其他去激活条件时 UE会释放上行 SPS配置, 即去激活; 如果基站还保存拒绝响 应 SR的状态, 就会导致数据业务不能正常传输; 所以, 本实施例方法还可以包括: 步骤 201 : 在上行半静态调度去激活之后, 恢复响应所述终端发起的上行调度请 求, 并为所述终端配置资源。 在上行 SPS去激活之后, 基站开始对终端发生的 SR进行响应, 为终端配置资源 使终端可以将 BSR发送给基站 步骤 202: 获取所述终端通过所述资源发送的缓存区状态报告。 步骤 203 : 根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务 进行动态调度。 下面介绍本实施例方法在各场景中的具体实施过程: 场景 1 : 如图 3所示, 准备条件: FDD, 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期为 20ms,连续空包次数为 3。基站 MAC层在 0号无线帧 0号子帧向 UE 发送激活上行半静态调度的 DCI0信息, UE同时在这个子帧成功激活上行 SPS, 随后
UE在 0号无线帧 4号子帧上, 间隔 20ms, 在 SPS周期点上使用固定的频域资源进行 上行数据传输。 SR周期配置为 10ms, 偏移为 6。 UE第一包 SPS数据中没有包含有效 的 BSR信息。 本场景中在 2号无线帧 4号子帧为下一个 SPS周期点, 所以在下一个 SPS周期点 UE可以通过第二包 SPS数据携带 BSR发送给基站, 基站接收到 BSR后 进行动态调整。 以下步骤为基站 MAC激活上行半静态调度后的工作过程: 步骤 1 : 基站 MAC在 0号无线帧 6号子帧收到 UE发起的 SR; 步骤 2: 基站 MAC在 0号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 0号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 步骤 3 : 基站 MAC在 1号无线帧 6号子帧收到 UE发起的 SR。 步骤 4: 基站 MAC在 1号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 1号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 在本场景中基站 MAC获取 UE在 2号无线帧 4号子帧发送的业务数据包, 该数 据包括可以携带 BSR; 然后根据 BSR对终端的业务进行动态调度。 场景 2, 准备条件: FDD, 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期 为 20ms, 连续空包次数为 3.基站 MAC层在 0号无线帧 0号子帧向 UE发送激活上行 半静态调度的 DCI0信息, UE同时在这个子帧成功激活上行 SPS, 随后 UE在 0号无 线帧 4号子帧上,间隔 20ms,在 SPS周期点上使用固定的频域资源进行上行数据传输。 SR周期配置为 20ms, 偏移为 6。 UE第一包 SPS数据中没有包含有效的 BSR信息。 本场景中在 2号无线帧 4号子帧为下一个 SPS周期点, 所以在下一个 SPS周期点 UE 可以通过第二包 SPS数据携带 BSR发送给基站, 基站接收到 BSR后进行动态调整。 以下步骤为基站 MAC激活上行半静态调度后的过程, 可以参考图 3 : 步骤 1: 基站 MAC在 0号无线帧 6号子帧收到 UE发起的 SR; 步骤 2: 基站 MAC在 0号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 0号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 冋样在本场景中基站可以获取 UE在 2号无线帧 4号子帧上报的 BSR, 然后根据 BSR对终端动态调度。 场景 3 : 准备条件: FDD, 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期 为 20ms, 连续空包次数为 3.基站 MAC层在 0号无线帧 0号子帧向 UE发送激活上行 半静态调度的 DCI0信息, UE同时在这个子帧成功激活上行 SPS, 随后 UE在 0号无 线帧 4号子帧上,间隔 20ms,在 SPS周期点上使用固定的频域资源进行上行数据传输。 SR周期配置为 5ms, 偏移为 1。 UE第一包 SPS数据中没有包含有效的 BSR信息。 本 场景中在 2号无线帧 4号子帧为下一个上行 SPS周期点, 所以在下一个 SPS周期点 UE可以通过第二包 SPS数据携带 BSR发送给基站,基站接收到 BSR后进行动态调整。 步骤 1 : 基站 MAC在 0号无线帧 1号子帧收到 UE发起的 SR; 步骤 2: 基站 MAC在 0号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 0号无线帧 1号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度; 步骤 3 : 基站 MAC在 0号无线帧 6号子帧收到 UE发起的 SR; 步骤 4: 基站 MAC在 0号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 0号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 步骤 5 : 基站 MAC在 1号无线帧 1号子帧收到 UE发起的 SR; 步骤 6: 基站 MAC在 1号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 1号无线帧 1号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 步骤 7: 基站 MAC在 1号无线帧 6号子帧收到 UE发起的 SR; 步骤 8: 基站 MAC在 1号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 1号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 步骤 9: 基站 MAC在 2号无线帧 1号子帧收到 UE发起的 SR; 步骤 10:基站 MAC在 2号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 2号无线帧 1号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 本场景中基站 MAC可以在 2号无线帧 4号子帧获取 UE上报的 BSR, 之后根据
BSR对终端进行动态调度。 实施例二: 本实施例将详细介绍本发明方法在具体场景的应用。 在本实施例中 UE在上行半 静态调度激活之后将会发起 SR, 但是基站不会响应 SR。 准备条件: FDD, 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期为 40ms, 连续空包次数为 3.基站 MAC层在 0号无线帧 0号子帧向 UE发送激活上行半静态调 度的 DCIO信息, UE同时在这个子帧成功激活上行 SPS, 随后 UE在 0号无线帧 4号 子帧上, 间隔 40ms, 在 SPS周期点上使用固定的频域资源进行上行数据传输。 SR周 期配置为 5ms, 偏移为 1。 UE第一包 SPS数据中包含有效的 BSR信息。 参考图 4所 示, 应用本实施例调度方法在该场景中基站的工作过程, 包括以下步骤: 步骤 1 : 基站 MAC在 0号无线帧 6号子帧收到 UE发起的 SR; 步骤 2: 基站 MAC在 0号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中, 基站获取 UE在 0号无线帧 4号子帧中上报的 BSR信息。 步骤 3 : 基站 MAC在 0号无线帧 8号子帧下发 DCI0进行动态调度, 调度的目标 值是在步骤 2中获取的 BSR大小。 假定在当前子帧将 BSR调度完成。 步骤 4: 基站 MAC在 1号无线帧 1号子帧收到 UE发起的 SR; 步骤 5 : 基站 MAC在 1号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 1号无线帧 1号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 步骤 6: 基站 MAC在 1号无线帧 6号子帧收到 UE发起的 SR; 步骤 7: 基站 MAC在 1号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 1号无线帧 6号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 步骤 8: 基站 MAC在 2号无线帧 1号子帧收到 UE发起的 SR; 步骤 9: 基站 MAC在 2号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 2号无线帧 1号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 步骤 10: 基站 MAC在 2号无线帧 6号子帧收到 UE发起的 SR; 步骤 11: 基站 MAC在 2号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 2号无线帧 6号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 步骤 12: 基站 MAC在 3号无线帧 1号子帧收到 UE发起的 SR; 步骤 13 :基站 MAC在 3号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 3号无线帧 1号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 步骤 12: 基站 MAC在 3号无线帧 6号子帧收到 UE发起的 SR; 步骤 13 :基站 MAC在 3号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 3号无线帧 6号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 步骤 12: 基站 MAC在 4号无线帧 1号子帧收到 UE发起的 SR; 步骤 13 :基站 MAC在 4号无线帧 1号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 4号无线帧 1号子帧之后直至 4号无线帧 4号子帧之前,不进行动态调度。 如图 5 所示, 本实施例中另一应用场景为: TDD, 上下行子帧配比 1, DSUUDDSUUD。 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期为 20ms, 双 周期关闭,连续空包次数为 3.基站 MAC层在 0号无线帧 1 S向 UE发送激活上行半静 态调度的 DCI0信息, UE同时在这个子帧成功激活上行 SPS, 随后 UE在 0号无线帧 7U上, 间隔 20ms, 在 SPS周期点上使用固定的频域资源进行上行数据传输。 SR周期 配置为 5ms, 偏移为 3。 UE第一包 SPS数据中不包含有效的 BSR信息。 该场景中上 行半静态调度的步骤参考图 5。 基站在 2号无线帧 7U之前都不会对 SR进行响应, 以 及动态调整。 因为应用本发明的方法只有在 SPS周期点会将 BSR发送给基站。 另外, 关于本实施例中动态调度的 DCI格式, 虽然上述只描述了 DCI0格式, 但 是不限于 DCI0, 例如还包括 DCI4。 实施例三: 本实施例将介绍在上行半静态调度去激活之后本发明调度方法的具体过程。 场景准备条件: FDD, 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期为 20ms, 连续空包次数为 3.基站 MAC层在 0号无线帧 0号子帧向 UE发送激活上行半 静态调度的 DCI0信息, UE同时在这个子帧成功激活上行 SPS, 随后 UE在 0号无线 帧 4号子帧上, 间隔 20ms, 在 SPS周期点上使用固定的频域资源进行上行数据传输。 SR周期配置为 10ms, 偏移为 1。 UE第一包 SPS数据中没有包含有效的 BSR信息, 如图 6所示为, 应用本实施例上行半静态调度方法在该场景中进行调度的过程。 步骤 1: 基站 MAC在 0号无线帧 6号子帧收到 UE发起的 SR; 步骤 2: 基站 MAC在 0号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 0号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 步骤 3 : 基站 MAC在 1号无线帧 6号子帧收到 UE发起的 SR; 步骤 4: 基站 MAC在 1号无线帧 6号子帧不将 UE的 SR归入到 SR响应的队列 中,基站在 1号无线帧 6号子帧之后直至 2号无线帧 4号子帧之前,不进行动态调度。 步骤 5: 基站 MAC在 3号无线帧 8号子帧下发上行去激活 SPS DCIO, UE在当前 TTI释放上行 SPS配置; 步骤 6: 基站 MAC在 4号无线帧 6号子帧收到 UE发起的 SR; 步骤 7: 基站 MAC在 4号无线帧 6号子帧将此 SR归入 SR响应调度队列中, 且 在 5号无线帧 0号子帧下发动态调度, 响应 SR的 DCI0。 请见图 4所示。 注: FDD下其他 SPS、 SR各种周期偏移组合均符合上述 FDD下规则。 TDD其他 配比, 各种 SPS、 SR周期偏移组合均满足 TDD下规则。 TDD下, 双周期使能时, 也 许按照上述 TDD下规则进行。 另外, 关于本实施例中动态调度的 DCI格式, 虽然上述只描述了 DCI0格式, 但 是不限于 DCI0, 例如还包括 DCI4。 实施例四: 如图 7所示, 本实施例提供了一种基站的调度方法, 包括如下步骤: 步骤 701 : 在激活上行半静态调度后, 获取终端在上行半静态调度周期点发送的 缓存区状态报告。 本实施基站通过向 UE发送下行控制信息 DCI0来激活上行半静态调度; 在上行 SPS激活之后, 终端将不再对基站发起 SR; 所以本实施例中的基站是不会接收到 SR, 也不会响应 SR。 在上行 SPS激活之后, 如果有其他数据业务时现有技术一般向基站发起 SR请求 资源, 具体地, 基站响应 SR请求, 然后为终端配置上传 BSR的资源, 然后根据 BSR 调度这些数据业务; 但是由于本实施例中终端不再发起 SR,所以为了保证业务数据的 正常发送, 本实施例中基站可以获取终端在上行半静态调度周期点发送的缓存区状态 报告,然后根据 BSR进行动态调度,这样做避免了在上行 SPS激活之后为了传输其他 数据业务进行 SR响应导致的业务不稳定和资源浪费问题。 本实施例上行 SPS周期点 是由事先设置的上行 SPS配置信息确定的。 在事先设置的配置信息中包括间隔固定的 周期和预置的时频资源, 在上行 SPS激活之后, 终端在间隔固定的周期点利用预置的 时频资源发送业务数据。 优先地, 本实施例调度方法可以通过在上行 SPS周期点上传的业务数据包来携带 BSR, 将其发送给基站。 所以本实施例基站的调度方法可以通过所述终端在上行半静 态调度周期点上传的业务数据包获取所述缓存区状态报告。 步骤 702: 根据所述缓存区状态报告对所述终端的业务进行动态调度。 本实施例的调度方法可以提高上行半静态调度业务激活之后的稳定性问题, 避免 上行调度资源浪费并尽可能地保证上行半静态调度业务的服务质量。 考虑到在上行 SPS配置失效之后, 即 SPS去激活之后, 如果基站始终接收不到 SR时, 就会导致数据业务不能正常传输; 所以, 本实施例方法还可以包括: 在上行半静态调度去激活之后, 恢复响应所述终端发起的上行调度请求, 并为所 述终端配置资源; 获取所述终端通过所述资源发送的缓存区状态报告; 根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进行动态调 度。 下面介绍本实施例基站的调度方法在实际通信场景中的具体应用。 场景准备条件: FDD, 基站 RRC层配置好 QCI1的 SPS参数, 上行 SPS周期为
40ms, 连续空包次数为 3.基站 MAC层在 0号无线帧 0号子帧向 UE发送激活上行半 静态调度的 DCI0信息, UE同时在这个子帧成功激活上行 SPS, 随后 UE在 0号无线 帧 4号子帧上, 间隔 40ms, 在 SPS周期点上使用固定的频域资源进行上行数据传输。 SR周期配置为 5ms, 偏移为 1。 UE第一包 SPS数据中包含有效的 BSR信息。 参考图 8所示, 应用本实施例调度方法在该场景中基站的工作过程, 包括以下步骤: 步骤 1 : SR周期到达时, 由于 UE在激活之后不再发起 SR, 所以基站 MAC在 0 号无线帧 6号子帧接收不到 SR; 不会响应 SR。 步骤 2: 基站 MAC获取 UE在 0号无线帧 4号子帧中上报的 BSR信息。 步骤 3 : 基站 MAC在 0号无线帧 8号子帧下发 DCI0进行动态调度, 调度的目标 值是在步骤 2中获取的 BSR大小。 假定在当前子帧将 BSR调度完成。 步骤 4: 调度完成之后, 基站 MAC会接收到 SR。 即在 1号无线帧 1号子帧、 1 号无线帧 6号子帧、 2号无线帧 1号子帧、 2号无线帧 6号子帧、 3号无线帧 1号、 3 号无线帧 6号、 4号无线帧 1号子帧不会接收到 SR。 本实施例场景中, 如果在后续过程中上行 SPS去激活之后, 基站 MAC才能接收 到 SR, 对 SR进行响应获取 BSR, 然后进行动态调度。 实施例五: 对应上述实施例一中基站的调度方法, 本实施例提供了一种发送方法, 如图 9所 示, 包括以下步骤: 步骤 901 : 在上行半静态调度激活之后, 终端向基站发起上行调度请求。 本实施例在终端在检测到上行 SPS激活之后, 会使用预先配置的视频资源将业务 数据包上传给基站, 当有新业务或者 SR周期到达时, 终端会向基站发起 SR, 请求资 源上传 BSR。 但是由于本发明需要避免 SR响应, 所以无论终端怎么发送 SR, 基站都 不会响应, 避免了在非周期点进行 SR响应导致的问题。 步骤 902: 终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基 站。 本实施例终端可以在预先配置的上行 SPS周期点将 BSR发送给基站供其进行动态 调度,本实施例之所以在上行 SPS周期点发送 BSR,是由于上行 SPS中在周期点终端 会使用预先配置的视频资源将优先级较高的 VoIP业务组包上传给基站,从而避免了在 基站在接收到 BSR对终端调度后终端会将优先级较大的业务组包上传给基站导致的 SPS周期点上传输的都是 padding的情况, 从而提高上限 SPS业务的稳定性。 由于在上行 SPS周期点终端本来就需要上传业务数据包括, 所以可以利用该业务 数据包携带 BSR, 即在上行半静态调度周期点通过上传的业务数据包将缓存区状态报 告发送给基站。 考虑到在上行 SPS去激活之后也就是上行 SPS配置失效之后,数据业务能够正常 传输; 本实施例方法还可以包括: 在上行半静态调度去激活之后, 通过所述基站响应所述上行调度请求为所述终端 配置的资源将所述终端的缓存区状态报告发送给所述基站。 本实施例在上行 SPS去激活之后终端可以通过与终端 SR响应将 BSR上传给基站, 保证了在上行 SPS去激活之后数据能够正常传输。 本实施例发送方法的具体描述, 可以参考上述图 3、 4、 6中 SR和周期数据包的 发送内容。 实施例六: 对应上述实施例四所述的基站的调度方法, 本实施例提供了一种发送方法, 如图 10所示, 包括如下步骤: 步骤 1001 : 在上行半静态调度激活之后, 终端停止向基站发起上行调度请求。 本实施例终端检测到基站激活了上行 SPS后终端将不再对基站发起 SR; 所以基 站是不会接收到 SR, 也不会响应 SR。 步骤 1002: 终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基 站。 上行 SPS激活之后, 如果有其他数据业务时现有技术一般向基站发起 SR请求发 送 BSR的资源, 然后根据 BSR调度这些数据业务; 但是由于本实施例中终端不再发 起 SR, 所以为了保证业务数据的正常发送, 本实施例可以在 SPS周期点将 BSR发送 给基站供基站进行动态调度。 本实施例的发送方法应用到上行 SPS中可以解决在上行 SPS激活之后业务的稳定 性差以及资源浪费的问题。 由于在上行 SPS周期点终端本来就需要上传业务数据包括, 所以可以利用该业务 数据包携带 BSR, 即在上行半静态调度周期点通过上传的业务数据包将缓存区状态报 告发送给基站。 考虑到在上行 SPS去激活之后, 即上行 SPS配置失效之后, 如果基站始终接收不 到 SR时, 就会导致数据业务不能正常传输; 所以, 本实施例方法还可以包括: 在上行半静态调度去激活之后, 恢复向所述基站发起上行调度请求; 通过所述基站响应所述上行调度请求为所述终端配置的资源将所述终端的缓存区 状态报告发送给所述基站。 下面通过本实施例方法在具体场景中的应用来接收本实施例终端侧的行为: 场景准备条件: 支持 SPS功能的 UE建立 QCI1的业务, 也就是 VoIP。 UE收到基 站侧下发的重配信令, 获取 SPS周期为 20ms, SR周期为 5ms, SR偏移为 6。 参考图 11, 该场景中的调度过程包括: 步骤 1 : UE在 0号无线帧 0号子帧检测到 SPS激活的 DCI0信息, UE在该子帧 激活 SPS配置。 步骤 2: UE在 0号无线帧 4号子帧进行第一包 SPS周期新传。 步骤 3 : UE的 SR周期到了, 但是 UE不发 SR。 步骤 4: UE在 2号无线帧 4号子帧进行第二包 SPS周期新传。 步骤 5: 若 UE在 3号无线帧 5号子帧满足 SPS隐式去激活条件, 或者在当前子 帧检测到了基站下发的 SPS去激活 DCI0信息, UE释放掉 SPS配置。 步骤 6: UE在 4号无线帧 6号子帧发 SR。 步骤 7: UE在 4号无线帧 9号子帧检测到基站下发的动态调度的 DCI0信息。 应当理解的是: 虽然本发明仅仅介绍了一个 UE侧的场景实施例, 但是本发明不 仅限于这个实施例, 还可以包括其他场景实施例。 另外, 关于本实施例中动态调度的 DCI格式, 虽然上述只描述了 DCI0格式, 但 是不限于 DCI0, 例如还包括 DCI4。 而对于 SPS去激活 DCI格式, 一般限于 DCI0。 实施例七: 如图 12所示, 本实施例提供了一种调度方法, 适用于上 SPS, 包括如下步骤: 步骤 121 : 在上行半静态调度激活之后, 终端向基站发起上行调度请求。 本实施基站可以通过向 UE发送下行控制信息 DCI0来激活上行半静态调度。 步骤 122: 所述基站拒绝响应所述终端发起的上行调度请求。 本实施例基站在上行 SPS激活之后不再发起 SR。 步骤 123 : 所述终端在上行半静态调度周期点将所述终端的缓存区状态报告发送 给基站。 优先地, 本实施例调度方法中所述终端在上行半静态调度周期点通过该周期点上 传的业务数据包将所述终端的缓存区状态报告发送给基站。 即利用上行 SPS周期点上 传的业务数据包携带 BSR。 步骤 124: 所述基站获取所述终端发送的缓存区状态报告, 并根据获取的缓存区 状态报告对所述终端的业务进行动态调度。 本实施例的调度方法在上行半静态调度激活之后, 不再进行 SR响应, 并且在上 行半静态调度周期点发送的 BSR, 避免了在非上行半静态调度周期点进行 SR响应导 致的 UE发送空数据包的问题, 提高了上行半静态调度业务的稳定性, 由于在上行半 静态调度激活之后不再进行 SR响应可以节省系统的资源; 本发明的方法与现有相比 提高了上行半静态调度业务的服务质量。 考虑到在上行 SPS去激活之后, 即上行 SPS配置失效之后, 如果基站还保存拒绝 响应 SR的状态, 就会导致数据业务不能正常传输; 所以, 本实施例方法还可以包括: 在上行半静态调度去激活之后,所述基站恢复响应所述终端发起的上行调度请求, 并为所述终端配置资源; 所述终端通过所述资源将所述终端的缓存区状态报告发送给所述基站; 所述基站根据终端通过所述资源发送的缓存区别状态报告对所述终端的业务进行 动态调度。 本实施例方法可以在上行 SPS去激活之后, 恢复 SR响应保证了上行数据的正常 传输。 本实施例方法各步骤的详细介绍可以参考上述实施例中关于基站和终端行为的接 收, 这里就不在赘述。 实施例八: 如图 13所示, 本实施例提供了一种调度方法, 适用于上行 SPS, 包括如下步骤: 步骤 131 : 在上行半静态调度激活之后, 所述终端停止向基站发起上行调度请求。 本实施基站可以通过向 UE发送下行控制信息 DCI0来激活上行半静态调度。在激 活之后终端将不再发送 SR。 步骤 132: 所述终端在上行半静态调度周期点将终端的缓存区状态报告发送给基 站。 优先地, 本实施例调度方法中所述终端在上行半静态调度周期点通过该周期点上 传的业务数据包将所述终端的缓存区状态报告发送给基站。 即利用上行 SPS周期点上 传的业务数据包携带 BSR。 步骤 133 : 所述基站获取终端发送的缓存区状态报告, 并根据获取的所述缓存区 状态报告对所述终端的业务进行动态调度。 本实施例的调度方法在上行半静态调度激活之后, 再在发起 SR,基站也就不再进 行 SR响应, 并且终端在上行半静态调度周期点发送的 BSR, 避免了在非上行半静态 调度周期点进行 SR响应导致的 UE发送空数据包的问题,提高了上行半静态调度业务 的稳定性, 由于在上行半静态调度激活之后不再进行 SR响应可以节省系统的资源; 本发明的方法与现有相比提高了上行半静态调度业务的服务质量。 考虑到在上行 SPS去激活之后, 如果基站还保存拒绝响应 SR的状态, 就会导致 数据业务不能正常传输; 所以, 本实施例方法还可以包括: 在上行半静态调度去激活之后, 所述终端恢复向所述基站发起上行调度请求; 所述基站响应所述上行调度请求, 并为所述终端配置资源; 所述终端通过所述资源将所述终端的缓存区状态报告的资源发送给基站; 所述基站根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进 行动态调度。 本实施例方法可以在上行 SPS去激活之后, 恢复 SR响应保证了上行数据的正常 传输。 本实施例方法各步骤的详细介绍可以参考上述实施例中关于基站和终端行为的接 收, 这里就不在赘述。 实施例九: 如图 14所示, 本实施例提供了一种基站, 包括: 请求响应模块、 信息获取模块以 及调度模块; 所述请求响应模块设置为在激活上行半静态调度后, 拒绝响应终端发起的上行调 度请求; 所述信息获取模块设置为获取终端在上行半静态调度周期点发送的缓存区状态报
所述调度模块设置为根据所述缓存区状态报告对所述终端的业务进行动态调度。 本实施例基站在激活 SPS后就不再响应终端发起的 SR, 并且获取终端在 SPS周 期点发送的 BSR进行动态调度, 避免了在非 SPS周期点进行 SR响应导致的业务不稳 定问题, 提高了业务服务质量。 优先地, 所述请求响应模块还设置为在上行半静态调度去激活之后, 恢复响应所 述终端发起的上行调度请求, 并为所述终端配置资源; 所述信息获取模块还设置为获取所述终端通过所述资源发送的缓存区状态报告; 所述调度模块还设置为根据所述终端通过所述资源发送的缓存区状态报告对所述 终端的业务进行动态调度。 优先地, 所述信息获取模块设置为通过所述终端在上行半静态调度周期点上传的 业务数据包获取所述缓存区状态报告。 在本实施例中实现上述模块的功能, 例如请求响应模块、 信息获取模块以及调度 模块的功能可以通过功能程序指令相关的硬件来完成; 程序可以存储于基站的可读取 存储介质中, 处理器调用存储介质中的程序指令实现上述模块的功能; 例如处理器调 用存储器中程序执行在激活上行半静态调度后拒绝响应终端发起的上行调度请求的功 能 (其他的模块功能实现与其类似这里就不再赘述); 本实施例中的存储介质包括: ROM, RAM, 磁盘或者光盘等各种可以存储程序代码的介质。 如图 15所示, 本实施例还提供另一种基站, 包括: 信息获取模块和调度模块; 所述信息获取模块设置为在激活上行半静态调度后, 获取终端在上行半静态调度 周期点发送的缓存区状态报告; 所述调度模块设置为根据所述缓存区状态报告对所述终端的业务进行动态调度。 图 15所述基站在激活上行 SPS之后接收不到 SR, 不对进行 SR响应, 并且获取 终端在 SPS周期点发送的 BSR进行动态调度,避免了在非 SPS周期点进行 SR响应导 致的业务不稳定问题, 提高了业务服务质量。 优先地, 参考图 14, 本实施例的基站在图 15的基础上, 还可以包括: 请求响应 模块; 所述请求响应模块设置为在上行半静态调度去激活之后, 响应所述终端发起的上 行调度请求, 并为所述终端为所述终端配置资源; 所述信息获取模块还设置为获取所述终端通过所述资源发送的缓存区状态报告; 所述调度模块还设置为根据所述终端通过所述资源发送的缓存区状态报告对所述 终端的业务进行动态调度。 本实施例的基站可以在去激活之后保护业务数据的正常传输。 优选地, 本实施例所述信息获取模块设置为通过所述终端在上行半静态调度周期 点上传的业务数据包获取所述缓存区状态报告。 在本实施例中实现上述模块的功能, 例如请求响应模块、 信息获取模块以及调度 模块的功能可以通过功能程序指令相关的硬件来完成; 程序可以存储于基站的可读取 存储介质中, 处理器调用存储介质中的程序指令实现上述模块的功能; 例如处理器调 用存储器中程序执行在激活上行半静态调度后拒绝响应终端发起的上行调度请求的功 能 (其他的模块功能实现与其类似这里就不再赘述); 本实施例中的存储介质包括: ROM, RAM, 磁盘或者光盘等各种可以存储程序代码的介质。 本实施例中基站各模块的功能的具体介绍可以参考上述实施例介绍的基站侧的行 为。 实施例十: 如图 16所示, 本实施例提供了一种终端, 包括: 请求模块和信息发送模块; 所述请求模块设置为在上行半静态调度激活之后,停止向基站发起上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站。 本实施例的终端可以与基站配合在上行 SPS激活之后不通过 SR响应获取 BSR; 避免了在非 SPS周期点进行 SR响应导致的业务不稳定问题, 提高了业务服务质量。 优先地, 本实施例中所述请求模块还设置为在上行半静态调度去激活之后, 恢复 向所述基站发起上行调度请求; 所述信息发送模块还设置为通过所述基站响应所述上 行调度请求为所述终端配置的资源将所述终端的缓存区状态报告发送给所述基站。 优先地, 所述信息发送模块设置为在上行半静态调度周期点通过上传的业务数据 包将缓存区状态报告发送给基站。 参考上述图 16, 本实施例还提供另一种终端, 包括: 请求模块和信息发送模块; 所述请求模块设置为在上行半静态调度激活之后, 向基站发起上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站。 本实施例终端可以与在激活之后不响应 SR的基站配合解决上行 SPS业务不稳定 以及资源浪费的问题。 优先地, 所述信息发送模块还设置为在上行半静态调度去激活之后, 通过所述基 站响应所述上行调度请求为所述终端配置的资源将所述终端的缓存区状态报告发送给 所述基站。 优先地, 所述信息发送模块设置为在上行半静态调度周期点通过上传的业务数据 包将缓存区状态报告发送给基站。 在本实施例终端中实现上述模块的功能, 例如请求模块和信息发送模块的功能可 以通过功能程序指令相关的硬件来完成; 功能程序可以存储于终端的可读取存储介质 中, 终端中处理器调用存储介质中的程序指令实现上述模块的功能; 例如处理器调用 存储器中程序执行在上行半静态调度激活之后停止向基站发起上行调度请求的功能
(其他的模块功能实现与其类似这里就不再赘述); 本实施例中的存储介质包括: ROM, RAM, 磁盘或者光盘等各种可以存储程序代码的介质。 实施例 ^一: 如图 17所示, 本实施例提供了一种调度系统, 应用与上行半静态调度中, 包括终 端禾口基站; 所述终端包括: 请求模块和信息发送模块; 所述基站包括: 请求响应模块、 信息获取模块以及调度模块; 所述请求模块设置为在上行半静态调度激活之后, 向基站发起上行调度请求; 所述请求响应模块设置为拒绝响应所述终端发起的上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站; 所述信息获取模块设置为获取所述终端发送的缓存区状态报告; 所述调度模块设置为获取的缓存区状态报告对所述终端的业务进行动态调度。 本实施例调度系统可以在上行 SPS激活之后不通过 SR响应获取 BSR, 避免了在 非上行半静态调度周期点进行 SR响应导致的 UE发送空数据包的问题,提高了上行半 静态调度业务的稳定性, 由于在上行半静态调度激活之后不再进行 SR响应可以节省 系统的资源; 本发明的系统与现有相比提高了上行半静态调度业务的服务质量。 优先地, 所述请求响应模块还设置为在上行半静态调度去激活之后, 所述基站恢 复响应所述终端发起的上行调度请求, 并为所述终端配置资源; 所述信息发送模块还 设置为通过所述资源将所述终端的缓存区状态报告发送给所述基站。 优先地, 所述信息发送模块设置为在上行半静态调度周期点通过该周期点上传的 业务数据包将所述终端的缓存区状态报告发送给基站。 如图 18所示, 本实施例还提供了另一种调度系统, 包括: 终端和基站; 所述终端包括: 请求模块和信息发送模块; 所述基站包括: 信息获取模块和调度模块; 所述请求模块设置为在上行半静态调度激活之后, 停止向所述基站发起上行调度 请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状态报告 发送给基站; 所述信息获取模块设置为获取所述终端发送的缓存区状态报告; 所述调度模块设置为获取的缓存区状态报告对所述终端的业务进行动态调度。 进一步地, 在图 18所示的系统基础上, 参考图 17, 基站还可以包括: 请求响应 模块; 所述请求模块还设置为在上行半静态调度去激活之后, 恢复向所述基站发起上行 调度请求; 所述请求响应模块设置为响应所述上行调度请求, 并为所述终端配置资源; 所述信息发送模块还设置为通过所述资源将所述终端的缓存区状态报告的资源发 送给基站。 优先地, 所信息发送模块设置为在上行半静态调度周期点通过该周期点上传的业 务数据包将所述终端的缓存区状态报告发送给基站。 在本实施例系统的终端中实现上述终端中模块的功能, 例如请求模块和信息发送 模块的功能可以通过功能程序指令相关的硬件来完成; 功能程序可以存储于终端的可 读取存储介质中, 终端中处理器调用存储介质中的程序指令实现上述模块的功能; 例 如处理器调用存储器中程序执行在上行半静态调度激活之后停止向基站发起上行调度 请求的功能(其他的模块功能实现与其类似这里就不再赘述);本实施例中的存储介质 包括: ROM、 RAM, 磁盘或者光盘等各种可以存储程序代码的介质。 在本实施例系统的基站中实现上述模块的功能, 例如请求响应模块、 信息获取模 块以及调度模块的功能可以通过功能程序指令相关的硬件来完成; 程序可以存储于基 站的可读取存储介质中, 基站中的处理器调用存储介质中的程序指令实现上述模块的 功能; 例如处理器调用存储器中程序执行在激活上行半静态调度后拒绝响应终端发起 的上行调度请求的功能(其他的模块功能实现与其类似这里就不再赘述);本实施例中 的存储介质包括: ROM、 RAM, 磁盘或者光盘等各种可以存储程序代码的介质。 本实施例的调度系统在上行半静态调度激活之后, 在上行半静态调度周期点将 BSR发送给基站供基站进行动态调度, 避免了在非上行半静态调度周期点进行 SR响 应导致的 UE发送空数据包的问题, 提高了上行半静态调度业务的稳定性, 由于在上 行半静态调度激活之后不再进行 SR响应可以节省系统的资源; 与现有相比提高了上 行半静态调度业务的服务质量。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在 不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发 明的保护范围。 工业实用性 如上所述, 本发明实施例提供的一种调度方法及系统、 终端、 发送方法、 基站及 其调度方法具有以下有益效果: 避免了在非上行半静态调度周期点进行 SR响应导致 的 UE发送空数据包的问题, 提高了上行半静态调度业务的稳定性, 由于在上行半静 态调度激活之后不再进行 SR响应可以节省系统的资源; 与现有相比提高了上行半静 态调度业务的服务质量。

Claims

权 利 要 求 书
1. 一种基站的调度方法, 包括如下步骤: 在激活上行半静态调度后, 拒绝响应终端发起的上行调度请求; 获取终端在上行半静态调度周期点发送的缓存区状态报告; 根据所述缓存区状态报告对所述终端的业务进行动态调度。
2. 如权利要求 1所述的基站的调度方法, 其中, 还包括: 在上行半静态调度去激活之后, 恢复响应所述终端发起的上行调度请求, 并为所述终端配置资源; 获取所述终端通过所述资源发送的缓存区状态报告;
根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进行 动态调度。
3. 如权利要求 1或 2所述的基站的调度方法, 其中, 所述获取终端在上行半静态 调度周期点发送的缓存区状态报告的步骤包括:
通过所述终端在上行半静态调度周期点上传的业务数据包获取所述缓存区状态 报告。
4. 一种基站的调度方法, 包括如下步骤: 在激活上行半静态调度后, 获取终端在上行半静态调度周期点发送的缓存 区状态报告;
根据所述缓存区状态报告对所述终端的业务进行动态调度。
5. 如权利要求 4所述的基站的调度方法, 其中, 还包括: 在上行半静态调度去激活之后, 响应所述终端发起的上行调度请求, 并为 所述终端配置资源;
获取所述终端通过所述资源发送的缓存区状态报告; 根据所述终端通过所述资源发送的缓存区状态报告对所述终端的业务进行 动态调度。
6. 如权利要求 4或 5所述的基站的调度方法, 其中, 所述获取终端在上行半静态 调度周期点发送的缓存区状态报告的步骤包括:
通过所述终端在上行半静态调度周期点上传的业务数据包获取所述缓存区 状态报告。
7. 一种发送方法, 包括如下步骤: 在上行半静态调度激活之后, 终端停止向基站发起上行调度请求; 终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基站。
8. 如权利要求 7所述的发送方法, 其中, 还包括: 在上行半静态调度去激活之后, 所述终端恢复向所述基站发起上行调度请 求;
所述终端通过所述基站响应所述上行调度请求为所述终端配置的资源将所 述终端的缓存区状态报告发送给所述基站。
9. 如权利要求 7或 8所述的发送方法, 其中, 所述终端在上行半静态调度周期点 将所述终端的缓存区状态报告发送给基站的歩骤包括:
所述终端在上行半静态调度周期点通过上传的业务数据包将缓存区状态报 告发送给基站。
10. 一种发送方法, 包括如下步骤: 在上行半静态调度激活之后, 终端向基站发起上行调度请求; 终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基站。
11. 如权利要求 10所述的发送方法, 其中, 还包括: 在上行半静态调度去激活之后, 所述终端通过所述基站响应所述上行调度 请求为所述终端配置的资源将所述终端的缓存区状态报告发送给所述基站。
12. 如权利要求 10或 11所述的发送方法, 其中, 所述终端在上行半静态调度周期 点将所述终端的缓存区状态报告发送给基站的步骤包括:
所述终端在上行半静态调度周期点通过上传的业务数据包将缓存区状态报 告发送给基站。
13. 一种调度方法, 包括如下步骤: 在上行半静态调度激活之后, 终端向基站发起上行调度请求; 所述基站拒绝响应所述终端发起的上行调度请求;
所述终端在上行半静态调度周期点将所述终端的缓存区状态报告发送给基 站; 所述基站获取所述终端发送的缓存区状态报告, 并根据获取的缓存区状态 报告对所述终端的业务进行动态调度。
14. 如权利要求 13所述的调度方法, 其中, 还包括: 在上行半静态调度去激活之后, 所述基站恢复响应所述终端发起的上行调 度请求, 并为所述终端配置资源;
所述终端通过所述资源将所述终端的缓存区状态报告发送给所述基站; 所述基站根据终端通过所述资源发送的缓存区别状态报告对所述终端的业 务进行动态调度。
15. 如权利要求 13或 14所述的调度方法, 其中, 所述终端在上行半静态调度周期 点将终端的缓存区状态报告发送给基站的步骤包括: 所述终端在上行半静态调度周期点通过该周期点上传的业务数据包将所述 终端的缓存区状态报告发送给基站。
16. 一种调度方法, 包括如下步骤: 在上行半静态调度激活之后, 所述终端停止向基站发起上行调度请求; 所述终端在上行半静态调度周期点将终端的缓存区状态报告发送给基站; 所述基站获取终端发送的缓存区状态报告, 并根据获取的所述缓存区状态 报告对所述终端的业务进行动态调度。
17. 如权利要求 16所述的调度方法, 其中, 还包括: 在上行半静态调度去激活之后,所述终端恢复向所述基站发起上行调度请 求;
所述基站响应所述上行调度请求, 并为所述终端配置资源;
所述终端通过所述资源将所述终端的缓存区状态报告的资源发送给基站; 所述基站根据所述终端通过所述资源发送的缓存区状态报告对所述终端的 业务进行动态调度。
18. 如权利要求 16或 17所述的调度方法, 其中, 所述终端在上行半静态调度周期 点将终端的缓存区状态报告发送给基站的步骤包括:
所述终端在上行半静态调度周期点通过该周期点上传的业务数据包将所述 终端的缓存区状态报告发送给基站。
19. 一种基站, 包括: 请求响应模块、 信息获取模块以及调度模块; 所述请求响应模块设置为在激活上行半静态调度后, 拒绝响应终端发起的 上行调度请求; 所述信息获取模块设置为获取终端在上行半静态调度周期点发送的缓存区 状态报告;
所述调度模块设置为根据所述缓存区状态报告对所述终端的业务进行动态 调度。
20. 如权利要求 19所述的基站,其中,所述请求响应模块还设置为在上行半静态调 度去激活之后, 恢复响应所述终端发起的上行调度请求, 并为所述终端配置资 源;
所述信息获取模块还设置为获取所述终端通过所述资源发送的缓存区状态 报告;
所述调度模块还设置为根据所述终端通过所述资源发送的缓存区状态报告 对所述终端的业务进行动态调度。
21. 如权利要求 19或 20所述的基站, 其中, 所述信息获取模块设置为通过所述终 端在上行半静态调度周期点上传的业务数据包获取所述缓存区状态报告。
22. 一种基站, 包括: 信息获取模块和调度模块; 所述信息获取模块设置为在激活上行半静态调度后, 获取终端在上行半静 态调度周期点发送的缓存区状态报告;
所述调度模块设置为根据所述缓存区状态报告对所述终端的业务进行动态 调度。
23. 如权利要求 22所述的基站, 其中, 还包括: 请求响应模块; 所述请求响应模块设置为在上行半静态调度去激活之后, 响应所述终端发 起的上行调度请求, 并为所述终端配置资源;
所述信息获取模块还设置为获取所述终端通过所述资源发送的缓存区状态 报告;
所述调度模块还设置为根据所述终端通过所述资源发送的缓存区状态报告 对所述终端的业务进行动态调度。
24. 如权利要求 22或 23所述的基站, 其中, 所述信息获取模块设置为通过所述终 端在上行半静态调度周期点上传的业务数据包获取所述缓存区状态报告。
25. 一种终端, 包括: 请求模块和信息发送模块; 所述请求模块设置为在上行半静态调度激活之后, 停止向基站发起上行调 度请求;
所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状 态报告发送给基站。
26. 如权利要求 25所述的终端,其中,所述请求模块还设置为在上行半静态调度去 激活之后, 恢复向所述基站发起上行调度请求; 所述信息发送模块还设置为通过所述基站响应所述上行调度请求后, 为所 述终端配置的资源将所述终端的缓存区状态报告发送给所述基站。
27. 如权利要求 25或 26所述的终端, 其中, 所述信息发送模块设置为在上行半静 态调度周期点通过上传的业务数据包将缓存区状态报告发送给基站。
28. 一种终端, 包括: 请求模块和信息发送模块; 所述请求模块设置为在上行半静态调度激活之后, 向基站发起上行调度请 求;
所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状 态报告发送给基站。
29. 如权利要求 28所述的终端,其中,所述信息发送模块还设置为在上行半静态调 度去激活之后, 通过所述基站响应所述上行调度请求为所述终端配置的资源将 所述终端的缓存区状态报告发送给所述基站。
30. 如权利要求 28或 29所述的终端, 其中, 所述信息发送模块设置为在上行半静 态调度周期点通过上传的业务数据包将缓存区状态报告发送给基站。
31. 一种调度系统, 包括终端和基站; 所述终端包括: 请求模块和信息发送模块;
所述基站包括: 请求响应模块、 信息获取模块以及调度模块; 所述请求模块设置为在上行半静态调度激活之后, 向基站发起上行调度请 求;
所述请求响应模块设置为拒绝响应所述终端发起的上行调度请求; 所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状 态报告发送给基站; 所述信息获取模块设置为获取所述终端发送的缓存区状态报告; 所述调度模块设置为获取的缓存区状态报告对所述终端的业务进行动态调 度。
32. 如权利要求 31所述的调度系统, 其中, 所述请求响应模块还设置为在上行半静态调度去激活之后, 恢复响应所述 终端发起的上行调度请求, 并为所述终端配置资源;
所述信息发送模块还设置为通过所述资源将所述终端的缓存区状态报告发 送给所述基站。
33. 如权利要求 31或 32所述的调度系统, 其中, 所述信息发送模块设置为在上行 半静态调度周期点通过该周期点上传的业务数据包将所述终端的缓存区状态报 告发送给基站。
34. 一种调度系统, 包括终端和基站; 所述终端包括: 请求模块和信息发送模块;
所述基站包括: 信息获取模块和调度模块; 所述请求模块设置为在上行半静态调度激活之后, 停止向所述基站发起上 行调度请求;
所述信息发送模块设置为在上行半静态调度周期点将所述终端的缓存区状 态报告发送给基站; 所述信息获取模块设置为获取所述终端发送的缓存区状态报告; 所述调度模块设置为获取的缓存区状态报告对所述终端的业务进行动态调 度。
35. 如权利要求 34所述的调度系统, 其中, 所述基站还包括: 请求响应模块; 所述请求模块还设置为在上行半静态调度去激活之后, 恢复向所述基站发 起上行调度请求;
所述请求响应模块设置为响应所述上行调度请求为, 并为所述终端配置资 源;
所述信息发送模块还设置为通过所述资源将所述终端的缓存区状态报告的 资源发送给基站。
36. 如权利要求 34或 35所述的调度系统, 其中, 所信息发送模块设置为在上行半 静态调度周期点通过该周期点上传的业务数据包将所述终端的缓存区状态报告 发送给基站。
PCT/CN2014/086065 2014-05-22 2014-09-05 调度、发送方法及其基站、终端、系统 WO2015176418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14892541.5A EP3148272A4 (en) 2014-05-22 2014-09-05 Scheduling, transmission method, and base station, terminal and system thereof
JP2016567031A JP2017520962A (ja) 2014-05-22 2014-09-05 スケジューリング、送信方法及びその基地局、端末、システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410220435.7A CN105101428A (zh) 2014-05-22 2014-05-22 调度方法及系统、终端、发送方法、基站及其调度方法
CN201410220435.7 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015176418A1 true WO2015176418A1 (zh) 2015-11-26

Family

ID=54553313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086065 WO2015176418A1 (zh) 2014-05-22 2014-09-05 调度、发送方法及其基站、终端、系统

Country Status (4)

Country Link
EP (1) EP3148272A4 (zh)
JP (1) JP2017520962A (zh)
CN (1) CN105101428A (zh)
WO (1) WO2015176418A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791882B2 (en) 2016-04-13 2023-10-17 Qualcomm Incorporated System and method for beam management

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323838A (zh) * 2015-12-14 2016-02-10 魅族科技(中国)有限公司 用于超密集网络的数据传输方法及数据传输装置
CN106973436A (zh) * 2016-01-13 2017-07-21 中兴通讯股份有限公司 补偿调度方法及装置
CN107155218B (zh) 2016-03-04 2020-03-24 电信科学技术研究院 一种配置上行半持续调度的方法和设备
CN107295679A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 资源的调度方法及装置
CN107343316A (zh) * 2016-04-28 2017-11-10 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置
CN108271267B (zh) * 2016-12-30 2021-07-09 中国电信股份有限公司 终端资源的分配方法、eNB和VoLTE系统
WO2018223390A1 (zh) * 2017-06-09 2018-12-13 华为技术有限公司 半静态调度方法、装置及设备
CN108322940B (zh) * 2018-04-04 2021-05-28 京信通信系统(中国)有限公司 上行半静态调度方法、装置及系统
CN112533255B (zh) * 2019-09-17 2023-11-14 中兴通讯股份有限公司 一种终端切换控制方法、基站、存储介质
CN114828283A (zh) * 2020-02-26 2022-07-29 展讯通信(上海)有限公司 数据传输方法与设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572913A (zh) * 2008-04-28 2009-11-04 华为技术有限公司 缓冲区状态报告的处理方法及装置
CN101695194A (zh) * 2009-10-22 2010-04-14 普天信息技术研究院有限公司 一种lte系统半静态调度中上行逻辑信道的复用方法
CN101938840A (zh) * 2009-07-01 2011-01-05 中兴通讯股份有限公司 一种缓存状态报告的发送方法及系统
CN102833857A (zh) * 2011-06-17 2012-12-19 中兴通讯股份有限公司 一种上行数据发送调度方法、系统及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367476B1 (ko) * 2007-08-13 2014-02-25 엘지전자 주식회사 무선통신 시스템에서 데이터 수신방법
US8532032B2 (en) * 2008-03-18 2013-09-10 Blackberry Limited Dynamic scheduling overwriting of semi-persistent allocation in an uplink
ES2620744T3 (es) * 2008-03-21 2017-06-29 Telefonaktiebolaget L M Ericsson (Publ) Prohibición de solicitudes de planificación innecesarias para concesiones de enlace ascendente
US20100040028A1 (en) * 2008-08-13 2010-02-18 Qualcomm Incorporated Method and apparatus for mitigation of procedures in a wireless communication system
WO2012117511A1 (ja) * 2011-03-01 2012-09-07 富士通株式会社 無線通信装置、無線通信システムおよび無線通信方法
US8976730B2 (en) * 2011-07-22 2015-03-10 Alcatel Lucent Enhanced capabilities and efficient bandwidth utilization for ISSI-based push-to-talk over LTE
US8964679B2 (en) * 2011-12-23 2015-02-24 Blackberry Limited Method implemented in an eNodeB base station
US9426783B2 (en) * 2012-11-02 2016-08-23 Industrial Technology Research Institute Methods, apparatuses, and systems for resource allocation for terminals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572913A (zh) * 2008-04-28 2009-11-04 华为技术有限公司 缓冲区状态报告的处理方法及装置
CN101938840A (zh) * 2009-07-01 2011-01-05 中兴通讯股份有限公司 一种缓存状态报告的发送方法及系统
CN101695194A (zh) * 2009-10-22 2010-04-14 普天信息技术研究院有限公司 一种lte系统半静态调度中上行逻辑信道的复用方法
CN102833857A (zh) * 2011-06-17 2012-12-19 中兴通讯股份有限公司 一种上行数据发送调度方法、系统及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148272A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791882B2 (en) 2016-04-13 2023-10-17 Qualcomm Incorporated System and method for beam management

Also Published As

Publication number Publication date
JP2017520962A (ja) 2017-07-27
CN105101428A (zh) 2015-11-25
EP3148272A4 (en) 2017-06-21
EP3148272A1 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2015176418A1 (zh) 调度、发送方法及其基站、终端、系统
JP7248661B2 (ja) 通信方法、通信装置、およびデバイス
JP5367118B2 (ja) Bsrをトリガーするタイマーを処理する方法及び通信装置
US10602394B2 (en) Method and apparatus for handling prohibit timer for scheduling request (SR) in a wireless communication system
EP2263411B1 (en) Prohibiting unnecessary scheduling requests for uplink grants
WO2018036433A1 (zh) 信息发送、接收方法及装置、基站、终端
KR20190042525A (ko) 이동통신 시스템에서 랜덤 액세스 절차를 수행하는 방법 및 장치
JP2018186506A (ja) 無線通信システムにおいて、制御要素送信のためにリソースを要求するための方法及び装置
WO2017148231A1 (zh) 一种配置上行半持续调度的方法、终端及网络侧设备
WO2018127131A1 (zh) 信息传输方法、终端设备及接入网设备
EP2282597B1 (en) Method and device for scheduling request
US20160227517A1 (en) Method for semi-persistent shared resource scheduling, and apparatus
JP2013506364A (ja) スケジューリングを制御するための方法及び装置
KR20150052839A (ko) 클러스터 반-지속 스케줄링 자원 구성 방법, 기지국 및 단말
US20220232618A1 (en) Methods, communications devices, and infrastructure equipment
US12069638B2 (en) Network entity and user equipment for exploiting resilience to consecutive transmission failures
JP2022546896A (ja) 通信方法、端末装置及びネットワーク装置
JP2015213282A (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
US10917817B2 (en) Methods and apparatus for discarding packets in a wireless communication network
KR101724700B1 (ko) 무선 통신 시스템에서 자원 할당 방식 정보 송수신 방법 및 그 장치
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
JP2022527921A (ja) 通信方法および装置
EP2701442B1 (en) Service scheduling method and base station
WO2017121213A1 (zh) 一种通信传输方法、终端设备及基站
WO2022197223A1 (en) Multi-ue semi persistent allocation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892541

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014892541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892541

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016567031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE