WO2015176219A1 - 一种雷达保护罩的制备方法 - Google Patents

一种雷达保护罩的制备方法 Download PDF

Info

Publication number
WO2015176219A1
WO2015176219A1 PCT/CN2014/077839 CN2014077839W WO2015176219A1 WO 2015176219 A1 WO2015176219 A1 WO 2015176219A1 CN 2014077839 W CN2014077839 W CN 2014077839W WO 2015176219 A1 WO2015176219 A1 WO 2015176219A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
layer
protective cover
substrate
film
Prior art date
Application number
PCT/CN2014/077839
Other languages
English (en)
French (fr)
Inventor
钱苗根
Original Assignee
湖州泰和汽车零部件有限公司
湖州金泰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖州泰和汽车零部件有限公司, 湖州金泰科技股份有限公司 filed Critical 湖州泰和汽车零部件有限公司
Priority to PCT/CN2014/077839 priority Critical patent/WO2015176219A1/zh
Publication of WO2015176219A1 publication Critical patent/WO2015176219A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Definitions

  • the present invention relates to an early warning system device for active collision avoidance of an automobile, and more particularly to a method for preparing a radar protection cover.
  • car accidents have brought huge disasters to people. Research shows that more than 80% of car accidents are caused by drivers' unresponsiveness.
  • the car active collision avoidance system provides warning information to the driver in time before the traffic hazard occurs, and can actively cruise and decelerate the car. Compared with the passive passive collision avoidance facilities of the car, the traffic safety hazard is significantly reduced and reduced. The harm caused by car accidents.
  • the vehicle-mounted radar is generally installed at the inner side of the vehicle logo in the middle of the vehicle head.
  • Ordinary logos only have a good logo, but they cannot be used as protective covers for on-board radars. This is because the general metal materials or surface-plated metal layers can cause the millimeter waves emitted by the radar to be seriously attenuated, or cannot pass back and forth.
  • a radome for an automotive radar system and a method of manufacturing the same are disclosed in the prior art, for example, the patent EP 1 750 329 A1, in which an insulating lens is mounted on the first contact surface of the radome, and the insulating lens on the radome can be bonded Connected or soldered to the contact surface of the radome.
  • This patent is mainly used to solve the problem of large space occupied by existing automotive radar systems.
  • Patent CN1838482B provides a metal gloss layer decorative molded article for use in a beam path of a radar device, comprising a substrate composed of a transparent resin layer, a tin and/or tin alloy layer disposed on the back surface of the substrate, and a setting A decorative lacquer layer on the back side of the tin and/or tin alloy layer.
  • the molded article described in this patent has a delicate metal design similar to that of chrome plating and does not interfere with the transmission of radio waves.
  • the above-mentioned patented device is difficult to balance the transmission and processability of radio waves, and cannot provide a good metal texture, sufficient strength, good reliability, long service life, and minimal impact on radar electromagnetic waves, and does not affect the radar. Performance of the radar shield.
  • a method for preparing a radar protective cover comprising the steps of:
  • Pre-treatment Dedusting and cleaning the substrate obtained by pre-treatment
  • Hot stamping cover the area where the nano metal layer is to be plated in the next process, and then stamp or print the colored layer on the substrate;
  • first plating using a magnetron sputtering method or a vacuum evaporation method to plate a nano indium alloy layer in an unhot stamped or printed area around the colored layer to form a nano metal layer having a thickness of 5-50 nm;
  • Topcoating or vacuum plating A UV layer or a PU paint or a vacuum coating is sprayed on the other surface of the substrate to form a reinforcing layer.
  • the steps of the present invention especially two special vacuum platings are formed to form adjacent coating protective layers, nano metal layers, colored layers, primer layers, substrates and reinforcing layers, so that the radar protective cover has a good mark.
  • the metallic luster has the good logo effect; at the same time, the radar millimeter wave is almost non-attenuating; in addition, the radar is protected from external natural factors such as wind, sand, rain, snow and light, thus playing a good protection role; , has good surface hardness, strength and corrosion resistance, and has a service life of 20 years;
  • the nano-metal layer is too thin, it is difficult to ensure that the surface has a good metallic luster; if the film is too thick, the attenuation rate of the radar millimeter wave will increase, and it is difficult to ensure the effectiveness of the radar, and the present invention
  • the thickness of the nano-metal layer balances and coordinates all aspects of performance requirements, giving the radar shield an excellent overall performance.
  • the step (1) pre-treatment is specifically to electrostatically dedust the substrate, then remove the dust with a brush, and finally clean with dry ice.
  • the high-speed airflow is used to remove the dust on the surface of the part, and then the brush is applied to the surface of the part by a brush, especially the ostrich hair brush.
  • the dust on the surface of the part is detached and taken away by the airflow.
  • the injection molded body is cleaned with dry ice to thoroughly pretreat to ensure the quality of the coating.
  • the step (2) masks the area where the nano metal layer is to be plated in the next process, and then hot stamps or prints a black film or a color film layer of 0.1 to 1 micron thickness on the substrate.
  • the step (3) of the nano indium alloy is indium and one or more of tin, gallium, silver, and antimony having a mass percentage of 0-10%.
  • the metal component selection of the nano metal layer cooperates with each plating layer to not only make the radar protective cover mark have a good metallic luster, but also make the millimeter wave emitted by the radar back and forth across the protective cover with almost no attenuation, thereby ensuring the use of the radar. Effectiveness; and can achieve product environmental protection requirements, to achieve zero discharge of heavy metal ions.
  • the nano indium alloy is an indium alloy containing 5 wt% of silver.
  • This component enables the radar shield to have a small radar millimeter wave attenuation rate and good metallic luster.
  • the process of plating the nano metal layer by vacuum evaporation is performed in three stages of evaporation under a vacuum of (1-2) X 10 - 2 Pa, and the first stage of evaporation is 1. 5-2. Evaporation at 5 volts for 10-12 s, evaporation at 5 volts at 5 volts for 5-10 s. .
  • the specified thickness and repeatability of the film layer can be ensured, and a high surface resistance and an island-like film structure can be obtained, thereby reducing the attenuation rate of the millimeter wave as it passes through the film to a small extent;
  • the gloss and brightness of the metal film meet the requirements of the functional mark.
  • the purity control makes the radar shield's logo have a better metallic luster, and it has a good mark for the logo; at the same time, the radar millimeter wave is almost non-decaying.
  • the step (3) forms a nano-indium alloy layer having an island-like structure and having a thickness of 5 to 50 nm and a surface resistance of more than 20 megohms per port by magnetron sputtering or vacuum evaporation.
  • the nano metal layer is too thick and the surface resistance is too small, it is difficult to pass the radar wave with a small attenuation rate, and the effectiveness of the radar cannot be guaranteed; the film layer is too thin to ensure good metallic luster; If the layer is too thick, the attenuation rate of the radar millimeter wave will increase; the surface resistance and the thickness of the film must be matched with the coatings in order to make the radar shield have a good metallic luster and enable the radar to emit. When the millimeter wave traverses the protective cover, there is almost no attenuation, which ensures the effectiveness of the radar; and it can realize the environmental protection requirements of the product and achieve zero discharge of heavy metal ions.
  • the preparation method further comprises performing a second plating after the first plating: plating an oxide on the nano metal layer by an intermediate frequency twin target magnetron sputtering method or an electron beam vacuum evaporation method.
  • the protective film forms an oxide protective layer.
  • the composition and thickness of the oxide protective layer help to protect the nano metal layer, which can make the radar protective cover mark have better metallic luster, and can make the millimeter wave emitted by the radar pass through the protective cover almost without attenuation. , to ensure the effectiveness of the use of the radar; thus, the radar protective cover has excellent comprehensive performance.
  • the oxide protective film is a silicon dioxide film.
  • the method of plating the silicon dioxide film by vacuum evaporation is electron beam vacuum evaporation
  • the evaporation source used includes an electron gun, a magnetic field coil and a crucible
  • the electron gun includes an electron-emitting filament and a converging electron.
  • a focusing pole and an anode that accelerates electrons; the field coil is perpendicular to the accelerating electric field.
  • the substrate used in the product of the present invention is polycarbonate PC
  • the vacuum chamber temperature or particle bombardment energy during vacuum coating cannot be too high, and the raw material used for the oxide protective layer tends to have a high melting point, so a suitable process must be selected.
  • the evaporation source uses an e-type electron gun, that is, the electron beam is deflected by 270 °, so that the electron beam is bombarded into the silicon dioxide film in the crucible, thereby avoiding the electron gun filament material to the film material. Pollution.
  • the electron beam focusing characteristics depend on the shape, relative position, and applied voltage of the three electrodes of the filament (cathode), the focusing electrode of the converging electrons, and the anode of the accelerating electron.
  • the filament (cathode) is typically made of tungsten wire and is connected to a low voltage and high current to heat the tungsten wire to an incandescent state that emits hot electrons.
  • the magnetic field coil is perpendicular to the accelerating electric field, and after the electron is accelerated, the direction of the movement is changed by the action of the magnetic force of Lorent generated by the orthogonal electromagnetic field, and the electron beam trajectory is spiral, and the shape of the electron beam is like the English word e.
  • Magnetic field coil generation The magnetic field deflects the electrons onto the crucible, and adjusting the magnitude of the magnetic field current changes the strength of the magnetic field, thereby changing the position of the electron beam on the surface of the evaporating material (film).
  • the filament of the electron gun is connected in parallel with the high voltage to accelerate the negative pole of the power source, and the voltage is 6-30 KV, and the electrons are accelerated by the high-voltage electric field to form an electron beam, and the beam current is 0. 3-1 ⁇ .
  • the hydrazine is an oxygen-free copper ruthenium.
  • helium is also an important part.
  • the oxygen-free copper crucible is cooled by water, and different membrane materials can be placed in the crucible, and the crucible position can be changed by the transposition mechanism.
  • the method of plating the silicon dioxide film by vacuum evaporation is;
  • the thickness of the silicon dioxide film was controlled by a quartz crystal oscillator film thickness gauge, and the coating was completed at 100-150 nm. Still more preferably, ion beam assisted deposition is employed in the silica deposition process to increase the density and adhesion of the silicon dioxide film, specifically:
  • ion source Place the ion source in the vacuum chamber, the working current is 16-20A, the discharge power is 100-150W, and the working gas is argon; b.
  • the ion beam energy used for ion beam assisted deposition is 400-800 ev argon ion beam before coating. First, bombarding the substrate with the argon ion beam for 1-5 minutes to clean and activate the surface of the substrate;
  • the deposition thickness of the silicon dioxide film is controlled by a quartz crystal oscillator film thickness gauge, and the coating is completed at 100-150 nm. While depositing the silicon dioxide film, the deposition surface is bombarded with a 400-800 ev argon ion beam; the density and adhesion of the silicon dioxide film layer are significantly improved by the momentum exchange and interfacial mixing of the ions with the film-forming atoms.
  • Ion beam assisted deposition can be used to significantly increase the amount of oxygen in the process of silicon dioxide film.
  • the silicon film produces density and adhesion, which greatly enhances the protective effect of the silicon dioxide film.
  • the step (4) spraying a UV paint or a PU paint having a thickness of 10-25 microns on the oxide protective layer to form a protective layer of paint; and spraying a thickness of 10-25 microns on the other surface of the substrate.
  • the UV paint or PU paint forms a reinforcement layer.
  • the step (4) further comprises subjecting the sprayed UV paint to ultraviolet light curing.
  • the method of preparation further comprises baking prior to the pre-treatment step.
  • the substrate By baking, the substrate has a better adhesion to the undercoat and topcoat prepared by subsequent processes.
  • the radar protective cover further includes a base disposed at a rear of the substrate, the substrate and the base being a polycarbonate plate, and the substrate and the base are tightly coupled by a dispensing method.
  • the conventional method makes the front cover and the base structure easy to bond the whole product, and the defective product is prone to occur.
  • the dispensing method of the present invention does not affect the structure of each layer of the front cover, and improves the performance and the pass rate of the product.
  • the preparation method further comprises milling and removing excess handle on the injection molded body of the substrate.
  • the invention also provides a radar protection cover which can make the marking of the radar protective cover have good metallic luster and can make the millimeter wave emitted by the radar pass back and forth through the protective cover and has a small attenuation rate.
  • a radar protective cover comprising a substrate having a front surface and a rear surface, the front surface of the substrate being covered with a reinforcing layer, the rear surface of the substrate being covered with at least a primer layer and a colored layer from the inside to the outside
  • the orientation of the onboard radar is followed, and the rear surface of the substrate faces the onboard radar.
  • the metal composition of the nano-metal layer is matched with each plating layer, which not only enables the radar protective cover to have a good metallic luster, but also enables the millimeter wave emitted by the radar to pass through the protective cover almost without attenuation, thereby ensuring The effectiveness of radar use; and can achieve product environmental requirements, to achieve zero discharge of heavy metal ions.
  • the metal component of the nanometal layer is an indium alloy containing 5 wt% of silver. This component gives the radome a small radar millimeter wave attenuation rate and good metallic luster.
  • the nanometal layer has a thickness of 5 to 50 nm.
  • the film layer is too thin to ensure good metallic luster; if the film layer is too thick, the attenuation rate of the radar millimeter wave will increase, and it is difficult to ensure the effectiveness of the radar.
  • the thickness of the nano metal layer of the present invention balances and coordinates various performance requirements, so that the radar protective cover has excellent comprehensive performance.
  • the surface resistance of the nanometal layer is greater than 20 megohms per port.
  • the nano metal layer is an island structure.
  • an island-like nano-metal layer greatly reduces the attenuation rate of the radar millimeter wave, so that the radar millimeter wave passing through the radar shield is almost non-attenuating, which may be the attenuation rate of the radar millimeter wave and the metal layer.
  • the resistance is related, and the island structure greatly increases the resistance of the nano metal layer, so that the radar protective cover of the nano metal layer having the island structure has a good metallic luster, and the millimeter wave emitted by the radar can be back and forth. Pass through the protective cover and the attenuation rate is small.
  • the nano metal layer when the nano metal layer is formed by vapor deposition, a critical nucleus is first formed on the substrate.
  • the nucleus grows in a three-dimensional direction, and not only increases and expands, but also forms an island shape. There will also be new nuclear weapons that will continue to grow into islands. As the island continues to expand on the base, the islands are linked to each other to form an island passage.
  • the island structure is a discontinuous film structure.
  • the substrate is further plated with an oxide protective layer disposed between the nano metal layer and the coating protective layer.
  • the oxide protective layer is a silicon dioxide film having a thickness of from 100 to 150 nm.
  • composition and thickness of the oxide protective layer help to protect the nano metal layer, which can make the radar protective cover mark have a good metallic luster, and can make the millimeter wave emitted by the radar pass through the protective cover almost without attenuation.
  • the effectiveness of the radar is guaranteed; thus, the radar shield has excellent overall performance.
  • the reinforcing layer is a UV paint or PU paint having a thickness of 10-25 microns or a vacuum coating layer having a thickness of 100-200 nm.
  • the present invention employs a high solids content such as 70-95% of a UV lacquer or PU lacquer to be applied to the surface of the workpiece while controlling the thickness of the reinforced layer to provide the reinforced layer with good surface hardness, strength and corrosion resistance.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • the reinforcing layer After curing, the reinforcing layer has a good bonding force and does not damage the substrate.
  • the colored layer is a hot stamping black film or a printed color film layer having a thickness of 0.1 to 1 micron.
  • the use of this thickness of hot stamping black film or printed color film layer can make the radar protective cover logo have better metallic luster, and have better surface hardness, strength and corrosion resistance in use performance, and at the same time make radar millimeter wave Nearly no attenuation.
  • the coating protection layer is a UV paint or PU paint having a thickness of 10-25 microns.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • said radar boot further comprises a base interconnected to said substrate by an adhesive or overmolding.
  • the substrate serves as a logo front cover, and the base is located behind the logo to facilitate protection of the plating on the substrate.
  • the substrate and/or the base is a transparent heat-resistant and impact-resistant plastic material.
  • the substrate and/or the base is a polycarbonate substrate.
  • the total thickness of the substrate and the base is 4. 4-5. 3mm.
  • a radar protective cover comprising a substrate having a front surface and a rear surface, the front surface of the substrate being covered with a reinforcing layer, the rear surface of the substrate being covered with at least a colored layer and a nano metal layer from the inside to the outside And a protective layer of the coating, the nano metal layer having a thickness of 5-50 nm.
  • the thickness of the nano-metal layer is selected to cooperate with each plating layer, which not only enables the radar protective cover to have a good metallic luster, but also enables the millimeter wave emitted by the radar to pass through the protective cover without any attenuation, thereby ensuring the radar.
  • the effectiveness of the use and can achieve environmental protection requirements of the product, to achieve zero discharge of heavy metal ions; and if the nano-metal layer is too thin, although the surface resistance is large, but the visible light reflectivity is low, the brightness of the metal film is insufficient, can not reach the function The requirement of the sexual mark; the thick layer will increase the attenuation rate of the radar millimeter wave, and it is difficult to ensure the effectiveness of the radar; and the thickness of the nano metal layer of the present invention can balance and coordinate various performance requirements, so that the radar The protective cover has excellent overall performance.
  • the metal component of the nanometal layer is indium and one or more of tin, gallium, silver, and lanthanum in an amount of 0 to 10% by mass.
  • the metal component selection of the nano metal layer cooperates with each plating layer to not only make the radar protective cover mark have a good metallic luster, but also make the millimeter wave emitted by the radar back and forth across the protective cover with almost no attenuation, thereby ensuring the use of the radar. Effectiveness; and can achieve product environmental protection requirements, to achieve zero discharge of heavy metal ions. More preferably, the metal component of the nano metal layer is an indium alloy containing 5 wt% of silver.
  • This component gives the radome a small radar millimeter wave attenuation rate and good metallic luster.
  • the surface resistance of the nanometal layer is greater than 20 megohms per port.
  • the nano metal layer is an island structure.
  • the use of an island-like nanometal layer greatly reduces the attenuation of the radar millimeter wave, making the radar millimeter wave passing through the radar shield nearly non-attenuating.
  • the attenuation rate of the radar millimeter wave is related to the resistance of the metal layer, and the island structure greatly increases the resistance of the nano metal layer, so that the logo of the radar protective cover of the nano metal layer having the island structure has a good metallic luster.
  • the millimeter wave emitted by the radar can pass back and forth through the protective cover and the attenuation rate is small.
  • the substrate is further plated with an oxide protective layer disposed between the nano metal layer and the coating protective layer.
  • the oxide protective layer is a silicon dioxide film having a thickness of from 100 to 150 nm.
  • composition and thickness of the oxide protective layer help to protect the nano metal layer, which can make the radar protective cover mark have a good metallic luster, and can make the millimeter wave emitted by the radar pass through the protective cover almost without attenuation.
  • the effectiveness of the radar is guaranteed; thus, the radar shield has excellent overall performance.
  • the reinforcing layer is a UV paint or PU paint having a thickness of 10-25 microns or a vacuum coating layer having a thickness of 100-200 nm.
  • the present invention employs a high solids content such as 70-95% of a UV lacquer or PU lacquer to be applied to the surface of the workpiece while controlling the thickness of the reinforced layer to provide the reinforced layer with good surface hardness, strength and corrosion resistance.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • the reinforcing layer After curing, the reinforcing layer has a good bonding force and does not damage the substrate.
  • the colored layer is a hot stamping black film or a printed color film layer having a thickness of 0.11 ⁇ m.
  • this thickness of hot stamping black film or printed color film layer can make the radar protective cover logo have more significant metallic luster, and have better surface hardness, strength and corrosion resistance in use performance, while making radar millimeter The wave is almost no attenuation.
  • the coating protection layer is a UV lacquer or PU lacquer layer having a thickness of 10-25 microns.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • said radar boot further comprises a base interconnected to said substrate by an adhesive or overmolding.
  • the substrate serves as a front cover, and the base is located behind the vehicle logo to facilitate protection of the plating layers covering the substrate.
  • the substrate and/or the base is a transparent heat-resistant and impact-resistant plastic material.
  • the substrate and/or the base is a polycarbonate substrate.
  • the total thickness of the substrate and the base is 4. 4-5. 3mm.
  • a radar protective cover comprising a substrate having a front surface and a rear surface, the front surface of the substrate being covered with a reinforcing layer, the rear surface of the substrate being covered with at least a colored layer and a nano metal layer from the inside to the outside And a protective layer of the coating, the surface resistance of the nano metal layer being greater than 20 megohms/square.
  • the surface resistance of the nano-metal layer is too small, it is difficult to pass the radar wave with a small attenuation rate, and the effectiveness of the radar cannot be guaranteed.
  • the surface resistance is selected to cooperate with each plating layer to enable the radar protective cover.
  • the mark has a good metallic luster, and it can make the millimeter wave emitted by the radar pass through the protective cover almost without attenuation, which ensures the effectiveness of the radar; and can realize the environmental protection requirements of the product and achieve zero discharge of heavy metal ions.
  • the metal component of the nanometal layer is indium and one or more of tin, gallium, silver, and lanthanum in an amount of 0 to 10% by mass.
  • the metal component selection of the nano metal layer cooperates with each plating layer to not only make the radar protective cover mark have a good metallic luster, but also make the millimeter wave emitted by the radar back and forth across the protective cover with almost no attenuation, thereby ensuring the use of the radar. Effectiveness; and can achieve product environmental protection requirements, to achieve zero discharge of heavy metal ions.
  • the metal component of the nanometal layer is an indium alloy containing 5 wt% of silver.
  • This component gives the radome a small radar millimeter wave attenuation rate and good metallic luster.
  • the nanometal layer has a thickness of 5 to 50 nm.
  • the film layer is too thin to ensure good metallic luster; if the film layer is too thick, the attenuation rate of the radar millimeter wave will increase, and it is difficult to ensure the effectiveness of the radar, and the thickness of the nano metal layer of the present invention can be balanced and Coordinate all aspects of performance requirements, so that the radar protective cover has excellent comprehensive performance.
  • the nano metal layer is an island structure.
  • the use of island-shaped nano-metal layer will greatly reduce the attenuation rate of the radar millimeter wave, so that the radar millimeter wave passing through the radar shield is almost no attenuation, which may be the attenuation rate of the radar millimeter wave and the metal layer.
  • Resistor related and
  • the use of an island-like structure greatly increases the electrical resistance of the nano-metal layer, so that the marking of the radar protective cover of the nano-metal layer having the island-like structure has a good metallic luster, and the millimeter wave emitted by the radar can pass back and forth through the protective cover. And the attenuation rate is small.
  • the substrate is further plated with an oxide protective layer disposed between the nano metal layer and the coating protective layer.
  • the oxide protective layer is a silicon dioxide film having a thickness of from 100 to 150 nm.
  • composition and thickness of the oxide protective layer help to protect the nano metal layer, which can make the radar protective cover mark have a good metallic luster, and can make the millimeter wave emitted by the radar pass through the protective cover almost without attenuation.
  • the effectiveness of the radar is guaranteed; thus, the radar shield has excellent overall performance.
  • the reinforcing layer is a UV paint or PU paint having a thickness of 10-25 microns or a vacuum coating layer having a thickness of 100-200 nm.
  • the present invention employs a high solids content such as 70-95% of a UV lacquer or PU lacquer to be applied to the surface of the workpiece while controlling the thickness of the reinforced layer to provide the reinforced layer with good surface hardness, strength and corrosion resistance.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • the reinforcing layer After curing, the reinforcing layer has a good bonding force and does not damage the substrate.
  • the colored layer is a hot stamping black film or a printed color film layer having a thickness of 0.11 ⁇ m.
  • this thickness of hot stamping black film or printed color film layer can make the radar protective cover logo have better metallic luster, and have better surface hardness, strength and corrosion resistance in use performance, and at the same time make radar millimeter wave Nearly no attenuation.
  • the coating protection layer is a UV paint or PU paint having a thickness of 10-25 microns.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • said radar boot further comprises a base interconnected to said substrate by an adhesive or overmolding.
  • the substrate serves as a front cover, and the base is located behind the vehicle logo to facilitate protection of the plating layers covering the substrate.
  • the substrate and/or the base is a transparent heat-resistant and impact-resistant plastic material.
  • the substrate and/or the base is a polycarbonate substrate.
  • the total thickness of the substrate and the base is 4. 4-5. 3mm.
  • a radar protective cover comprising a substrate having a front surface and a rear surface, the front surface of the substrate being covered with a reinforcing layer, the rear surface of the substrate being covered with at least a colored layer and a nano metal layer from the inside to the outside And a protective layer of the coating, the nano metal layer being an island structure.
  • the nano-metal layer with island structure will greatly reduce the attenuation rate of the radar millimeter wave, so that the radar millimeter wave passing through the radar shield is almost no attenuation, which may be the attenuation rate of the radar millimeter wave and the resistance of the metal layer.
  • the use of an island-like structure greatly increases the electrical resistance of the nano-metal layer, so that the logo of the radar protective cover of the nano-metal layer having an island structure has a good metallic luster, and the millimeter wave emitted by the radar can pass back and forth.
  • the protective cover has a small attenuation rate
  • the metal component of the nanometal layer is indium and one or more of tin, gallium, silver, and lanthanum in an amount of 0 to 10% by mass.
  • the metal component selection of the nano metal layer cooperates with each plating layer to not only make the radar protective cover mark have a good metallic luster, but also make the millimeter wave emitted by the radar back and forth across the protective cover with almost no attenuation, thereby ensuring the use of the radar. Effectiveness; and can achieve product environmental protection requirements, to achieve zero discharge of heavy metal ions.
  • the metal component of the nanometal layer is an indium alloy containing 5 wt% of silver.
  • This component gives the radome a small radar millimeter wave attenuation rate and good metallic luster.
  • the nanometal layer has a thickness of 5 to 50 nm.
  • the film layer is too thin to ensure good metallic luster; if the film layer is too thick, the attenuation rate of the radar millimeter wave will increase, and it is difficult to ensure the effectiveness of the radar, and the thickness of the nano metal layer of the present invention can be balanced and Coordinate all aspects of performance requirements, so that the radar protective cover has excellent comprehensive performance.
  • the substrate is further plated with an oxide protective layer disposed between the nano metal layer and the coating protective layer.
  • the oxide protective layer is a silicon dioxide film having a thickness of from 100 to 150 nm.
  • composition and thickness of the oxide protective layer help to protect the nano metal layer, which can make the radar protective cover mark have a good metallic luster, and can make the millimeter wave emitted by the radar pass through the protective cover almost without attenuation.
  • the effectiveness of the radar is guaranteed; thus, the radar shield has excellent overall performance.
  • the reinforcing layer is a UV paint or PU paint having a thickness of 10-25 microns or a vacuum coating layer having a thickness of 100-200 nm.
  • the present invention employs a high solids content such as 70-95% of a UV lacquer or PU lacquer to be applied to the surface of the workpiece while controlling the thickness of the reinforced layer to provide the reinforced layer with good surface hardness, strength and corrosion resistance.
  • the UV lacquer is cured by irradiation with ultraviolet light. After curing, the reinforcing layer has a good bonding force and does not damage the substrate.
  • the colored layer is a hot stamping black film or a printed color film layer having a thickness of 0.11 ⁇ m.
  • this thickness of hot stamping black film or printed color film layer can make the radar protective cover logo have better metallic luster, and have better surface hardness, strength and corrosion resistance in use performance, and at the same time make radar millimeter wave Nearly no attenuation.
  • the coating protection layer is a UV paint or PU paint having a thickness of 10-25 microns.
  • the UV lacquer is cured by irradiation with ultraviolet light.
  • said radar boot further comprises a base interconnected to said substrate by an adhesive or overmolding.
  • the substrate serves as a front cover, and the base is located behind the vehicle logo to facilitate protection of the plating layers covering the substrate.
  • the substrate is used as a front cover, and the substrate and/or the base is a transparent heat-resistant and impact-resistant plastic material. More preferably, the substrate and/or the base is a polycarbonate substrate.
  • the total thickness of the substrate and the base is 4. 4-5. 3mm.
  • FIG. 1 is a schematic diagram of each hierarchical structure of a radar protective cover of the present invention and a relationship between a radar protective cover and a radar;
  • FIG. 2 is a process road diagram of a method for preparing a radar protective cover according to an embodiment of the present invention;
  • a radar protective cover for a model car that includes a substrate with a front surface and a rear surface.
  • the substrate material is a transparent heat-resistant and impact-resistant plastic material having excellent comprehensive properties such as a polycarbonate plate.
  • the two surfaces of the substrate 1 are separately treated, and the cross-sectional structure of the radar protective cover is shown in Fig. 1.
  • the reinforcing layer 2 is coated with a high solids UV or PU paint on the surface of the workpiece to a thickness of 10 microns. UV paint needs to be cured by UV light.
  • the reinforcing layer 2 can also be prepared by vacuum coating to improve the hardness and wear resistance of the substrate 1.
  • the color layer 3 is a hot stamping black film or a printed color film layer, according to actual needs, the thickness is 0.1 microns.
  • the purity of both the indium and the silver is 99.99%.
  • the film thickness is
  • the nano-metal layer is very thin and has a thickness of 15 nanometers.
  • the microstructure of the film layer is mainly "island" structure, which is a kind of non-connection.
  • the film is renewed to ensure a high resistance, and the attenuation of the millimeter wave of the radar passing back and forth is small.
  • the conductivity of the film is related to the electron mean free path A f and the film thickness t.
  • t ⁇ A f if the film is island-shaped, the resistivity is extremely large.
  • t is increased to several tens of nanometers, the resistivity drops sharply; when t A f , the resistivity of the film is close to the bulk material. But larger than the bulk material.
  • the oxide protective layer 5 is a silicon oxide film having a thickness of 100 nm, and its function is mainly to protect the nano metal layer.
  • the coating protection layer 6 is sprayed on the surface of the workpiece with a high solids UV or PU paint and the thickness is controlled to 10 microns. UV paint needs to be cured by UV light.
  • the base 7 is made of the same high-transmission material as the substrate 1, and is surface-treated and joined to the substrate 1 by an adhesive.
  • the thickness of the substrate 1 and the base 7 is 4. 4 mm.
  • the manufacturing process of this product mainly includes injection molding, pre-treatment, hot stamping, magnetron sputtering or vacuum evaporation, medium frequency twin target magnetron sputtering or electron beam vacuum evaporation, spraying or curing, dispensing, milling. Gate, inspection, packaging, etc.
  • the process route is shown in Figure 2.
  • Injection molding Open the injection mold according to the product requirements, select the injection molding machine that requires the clamping force, and stepless speed regulation multi-stage injection molding. Transfer to the line: After the injection molded parts are passed by the robot, they are placed on the transfer belt.
  • Electrostatic dust removal that is, neutralizing the surface of the parts, using high-speed airflow to remove the dust on the surface of the part, and then using a brush, especially an ostrich hair brush, to mechanically act on the surface of the part, causing the surface dust to detach by disturbing the scouring action, and It is taken away by the airflow, and finally the dry body is used to clean the injection molded body to ensure that the workpiece is cleaned and enters the next process. Thoroughly pretreat to prevent surface hardness, strength and corrosion resistance from affecting its service life.
  • Hot stamping Use the tooling to cover the area where the nano metal layer is to be plated in the next process, and then polish the black film or print the color film on the surface of the substrate.
  • the nano-indium alloy layer is plated by magnetron sputtering or vacuum evaporation, and its thickness is strictly controlled to 15 nm and the surface resistance is greater than 20 M ⁇ / ⁇ .
  • the resistance test uses a common multimeter with a pitch of 1 cm.
  • the determination of actual process parameters is related to product performance requirements, coating methods, coating equipment, film composition, film thickness and other factors.
  • An indium silver alloy (film material) containing 5 wt% of silver is vacuum-deposited as an example to illustrate the preparation process of a vacuum-plated nano metal layer.
  • Membrane 1 mm in diameter and 3-5 cm in length;
  • Evaporation source Conical mesh basket tungsten skein, 4;
  • the workpiece (substrate) has a diameter of 80 mm. Each coating can hold 8-12 workpieces. Turn, the speed is infinitely adjustable, the revolution speed is controlled at 4-6 rpm;
  • the diameter of the vacuum chamber is 1600 mm and the height is 1200 mm.
  • the vacuum evaporation process is continuous three-stage evaporation under a vacuum of 1.5 X 10 - 2 Pa, the first stage evaporation is 1 volt evaporation, the second stage evaporation is 4 Evaporation at volts for 8 s, the third phase is evaporation at 6 volts 3. 5 s o
  • a silicon dioxide film is deposited by a medium frequency twin target magnetron sputtering method or an electron beam vacuum evaporation method to a thickness of 100 nm.
  • the substrate used in the product of the present invention is polycarbonate PC
  • the vacuum chamber temperature or particle bombardment energy during vacuum coating cannot be too high, and the raw material used for the oxide protective layer tends to have a high melting point, so a suitable process must be selected.
  • the evaporation source uses an e-type electron gun, that is, the electron beam is deflected by 270 °, so that the electron beam is bombarded into the silicon dioxide film in the crucible, thereby avoiding the electron gun filament material to the film material. Pollution.
  • the electron beam focusing characteristics depend on the shape, relative position, and applied voltage of the three electrodes of the filament (cathode), the focusing electrode of the converging electrons, and the anode of the accelerating electron.
  • the filament (cathode) is typically made of tungsten wire and is connected to a low voltage and high current to heat the tungsten wire to an incandescent state that emits hot electrons.
  • the magnetic field coil is perpendicular to the accelerating electric field. After the electron is accelerated, it is subjected to the magnetic force of Lorent generated by the orthogonal electromagnetic field to change the direction of motion.
  • the electron beam trajectory is spiral, and the shape of the electron beam is like the English word e, that is, the magnetic field coil.
  • the generated magnetic field deflects the electrons onto the crucible. Adjusting the magnitude of the magnetic field current changes the strength of the magnetic field, thereby changing the position of the electron beam on the surface of the evaporating material (film). It is an oxygen-free copper matte.
  • helium is also an important part.
  • the oxygen-free copper crucible is used to cool the water, and different film materials can be placed in the crucible, and the crucible position can be changed by the transposition mechanism.
  • the beam is 0. 6A.
  • the beam is 0. 6A.
  • the electron beam is accelerated by the high-voltage electric field to form an electron beam.
  • a specific method for plating the silicon dioxide film by vacuum evaporation is:
  • Ion beam assisted deposition (IBAD) in the silicon dioxide film process can significantly increase the density and adhesion of the silicon dioxide film, thereby greatly enhancing the protective effect of the silicon dioxide film.
  • Ion beam assisted deposition is used in the silica deposition process to increase the density and adhesion of the silicon dioxide film, specifically:
  • ion source Place the ion source in the vacuum chamber, the working current is 18A, the discharge power is 120W, and the working gas is argon; b.
  • the ion beam energy used for ion beam assisted deposition is 600 ev argon ion beam, and the argon ion is used before coating. Beaming the substrate for 5 min to clean and activate the surface of the substrate;
  • the deposition thickness of the silicon dioxide film was controlled by a quartz crystal oscillating film thickness gauge, and the coating was completed at 120 nm.
  • the deposition surface is bombarded with a 600 ev argon ion beam, and the density and adhesion of the silicon dioxide film layer are remarkably improved by the momentum exchange and interfacial mixing of the ions with the film-forming atoms.
  • Spraying Spray high-solids UV paint or PU paint on the surface of the silica film; spray high-solid UV paint or PU paint or vacuum coating on the other surface of the substrate PC.
  • UV curing If the surface is painted with UV paint, it should be cured by UV light.
  • Dispensing The polycarbonate base is tightly bonded to the front cover by dispensing.
  • Milling gate Mill out the excess handle on the injection molded body.
  • Transfer to the offline The product is placed on the transfer belt by the robot and sent to the inspection and packaging process.
  • Inspection and packaging After passing the inspection, the product will be labeled and sent to the product warehouse.
  • the prepared radar shield makes the attenuation of the millimeter wave emitted by the radar back and forth across the protective cover to 2 db or less.
  • a radar protective cover for a model car comprising a base plate 1 having a front surface and a rear surface.
  • the substrate material is a transparent heat-resistant and impact-resistant plastic material having excellent comprehensive properties such as a polycarbonate plate.
  • the two surfaces of the substrate are separately processed, and the cross-sectional structure of the radar protective cover is shown in Fig. 1.
  • 3mm Reinforcement layer 2 is coated with a high solids UV or PU paint on the surface of the workpiece to a thickness of 25 microns. UV paint needs to be cured by UV light.
  • the colored layer 3 is a hot stamping black film or a printed color film layer, and has a thickness of 1 ⁇ m depending on actual needs.
  • the purity of both the indium and the tin is 99.99%.
  • the film thickness is
  • the nano-metal layer is very thin and has a thickness of 30 nm.
  • the microstructure of the film layer is dominated by the "island" structure, thus ensuring a high electrical resistance, and the attenuation of the millimeter wave of the radar passing back and forth is small.
  • the conductivity of the film is related to the electron mean free path A f and the film thickness t.
  • t ⁇ A f if the film is island-shaped, the resistivity is extremely large.
  • t is increased to several tens of nanometers, the resistivity drops sharply; when t A f , the resistivity of the film is close to the bulk material. But larger than the bulk material.
  • the oxide protective layer 5 is a silicon oxide film having a thickness of 150 nm, and its function is mainly to protect the nano metal layer.
  • the coating protection layer 6 is sprayed on the surface of the workpiece with a high solids UV or PU paint and the thickness is controlled at 25 microns. UV paint needs to be cured by UV light.
  • the manufacturing process of this product mainly includes injection molding, pre-treatment, hot stamping, magnetron sputtering or vacuum evaporation, medium frequency twin target magnetron sputtering or electron beam vacuum evaporation, spraying or curing, dispensing, milling. Gate, inspection, packaging, etc. The process route is shown in Figure 2.
  • Injection molding Open the injection mold according to the product requirements, select the injection molding machine that requires the clamping force, and stepless speed regulation multi-stage injection molding. Transfer to the line: After the injection molded parts are passed by the robot, they are placed on the transfer belt.
  • Electrostatic dust removal that is, neutralizing the surface of the parts, using high-speed airflow to remove the dust on the surface of the part, and then using a brush, especially an ostrich hair brush, to mechanically act on the surface of the part, causing the surface dust to detach by disturbing the scouring action, and It is taken away by the airflow, and finally the dry body is used to clean the injection molded body to ensure that the workpiece is cleaned and enters the next process. Thoroughly pretreat to prevent surface hardness, strength and corrosion resistance from affecting its service life.
  • Primer Spray onto the surface of the workpiece with a high solids UV paint.
  • UV curing UV coating is used to cure the UV paint on the surface of the workpiece.
  • Hot stamping Use the tooling to cover the area where the nano metal layer is to be coated in the next process, and then polish the black film or print the color film layer on the surface of the workpiece.
  • First plating The nano-indium alloy layer is plated by magnetron sputtering or vacuum evaporation, and its thickness is strictly controlled at 30 nm and the surface resistance is greater than 20 megohm/port.
  • Second plating A silicon dioxide film was deposited by a medium frequency twin target magnetron sputtering method or an electron beam vacuum evaporation method to a thickness of 150 nm.
  • Spraying Spray high-solids UV paint or PU paint on the surface of the silica film; spray high-solid UV paint or PU paint or vacuum coating on the other surface of the substrate PC.
  • UV curing If the surface is painted with UV paint, it should be cured by UV light.
  • Dispensing The polycarbonate base is tightly bonded to the front cover by dispensing.
  • Milling gate Mill out the excess handle on the injection molded body.
  • Transfer to the offline The product is placed on the transfer belt by the robot and sent to the inspection and packaging process.
  • Inspection and packaging After passing the inspection, the product will be labeled and sent to the product warehouse.
  • the prepared radar shield makes the attenuation of the millimeter wave emitted by the radar back and forth across the protective cover to 2 db or less.
  • a radar protective cover for a model car that includes a substrate with a front surface and a rear surface.
  • the substrate material is a transparent heat-resistant and impact-resistant plastic material having excellent comprehensive properties such as a polycarbonate plate.
  • the two surfaces of the substrate are separately processed, and the cross-sectional structure of the radar shield is shown in Fig. 1.
  • the substrate 1 and the base 7 are surface-treated and then connected to each other by an adhesive or an overmolding method, and the total thickness of the substrate 1 and the base 7 is 5 mm.
  • Reinforcement layer 2 is coated with a high solids UV or PU paint on the surface of the workpiece to a thickness of 18 microns. UV paint needs to be cured by UV light.
  • the color layer 3 is a hot stamping black film or a printed color film layer, according to actual needs, the thickness is 0.6 microns.
  • the nano-metal layer 4 is an indium alloy containing 3% (mass fraction) of gallium, and the purity of both indium and silver is 99.99%.
  • the film thickness is 50 nm. Its function is to have good metallic luster and visible light reflectivity, and the attenuation rate of the millimeter wave emitted by the radar back and forth across the protective cover is small.
  • the nano-metal layer 4 is very thin and has a thickness of 50 nm.
  • the microstructure of the film layer is mainly composed of an "island" structure, thereby ensuring a high electrical resistance, and a small attenuation rate of the radar millimeter wave for the back and forth crossing.
  • the conductivity of the film is related to the electron mean free path A f and the film thickness t.
  • t ⁇ A f if the film is island-shaped, the resistivity is extremely large.
  • t is increased to several tens of nanometers, the resistivity drops sharply; when t A f , the resistivity of the film is close to the bulk material. But larger than the bulk material.
  • the oxide protective layer 5 is a silicon dioxide film having a thickness of 120 nm, and its function is mainly to protect the nano metal layer.
  • the coating protection layer 6 is sprayed on the surface of the workpiece with a high solid content UV paint or PU paint. The thickness is controlled at 20 micro. Meter. The uv paint needs to be cured by ultraviolet light.
  • the manufacturing process of this product mainly includes injection molding, pre-treatment, spraying and curing, hot stamping, magnetron sputtering or vacuum evaporation plating, medium frequency twin target magnetron sputtering or electron beam vacuum evaporation, spraying or curing, Dispensing, milling gates, inspection, packaging, etc. The process route is shown in Figure 2.
  • Injection molding Open the injection mold according to the product requirements, select the injection molding machine that requires the clamping force, and stepless speed regulation multi-stage injection molding. Transfer to the line: After the injection molded parts are passed by the robot, they are placed on the transfer belt.
  • Electrostatic dust removal that is, neutralizing the surface of the parts, using high-speed airflow to remove the dust on the surface of the part, and then using a brush, especially an ostrich hair brush, to mechanically act on the surface of the part, causing the surface dust to detach by disturbing the scouring action, and It is taken away by the airflow, and finally the dry body is used to clean the injection molded body to ensure that the workpiece is cleaned and enters the next process. Thoroughly pretreat to prevent surface hardness, strength and corrosion resistance from affecting its service life.
  • Primer Spray onto the surface of the workpiece with a high solids UV paint.
  • UV curing UV coating is used to cure the UV paint on the surface of the workpiece.
  • Hot stamping Use the tooling to cover the area where the nano metal layer is to be coated in the next process, and then polish the black film or print the color film layer on the surface of the workpiece.
  • the nano-indium alloy layer is plated by magnetron sputtering or vacuum evaporation, and its thickness is strictly controlled at 50 nm and the surface resistance is greater than 20 M ⁇ / ⁇ .
  • a silicon dioxide film was deposited by a medium frequency twin target magnetron sputtering method or an electron beam vacuum evaporation method to a thickness of 120 nm.
  • Spraying Spray high-solids UV paint or PU paint on the surface of the silica film; spray high-solid UV paint or PU paint or vacuum coating on the other surface of the substrate PC.
  • UV curing If the surface is painted with UV paint, it should be cured by UV light.
  • Dispensing The polycarbonate base is tightly bonded to the front cover by dispensing.
  • Milling gate Mill out the excess handle on the injection molded body.
  • Transfer to the offline The product is placed on the transfer belt by the robot and sent to the inspection and packaging process.
  • Inspection and packaging After passing the inspection, the product will be labeled and sent to the product warehouse.
  • the prepared radar protective cover makes the attenuation rate of the millimeter wave emitted by the radar back and forth across the protective cover to be less than 2 db.
  • Embodiment 4 Same as the first embodiment, the difference is that the first vacuum evaporation process of the nano-indium alloy layer is carried out in three stages of evaporation under a vacuum of 1 X 10 - 2 Pa, and the first stage evaporation is 1. Evaporation at 5 volts for 10 s, evaporation in the second stage was 6 8 at 3.5 volts, and evaporation in the third stage at 5.5 volts for 3 s, plating a nanometal layer 4 having a thickness of 5 nm.
  • the specific method of plating the silicon dioxide film by the second vacuum evaporation method is;
  • the thickness of the silicon dioxide film was controlled by a quartz crystal oscillator film thickness gauge, and the coating was completed at 100 nm.
  • Ion beam assisted deposition (IBAD) in the silicon dioxide film process can significantly increase the density and adhesion of the silicon dioxide film, thereby greatly enhancing the protective effect of the silicon dioxide film.
  • Ion beam assisted deposition is used in the silica deposition process to increase the density and adhesion of the silicon dioxide film, specifically:
  • ion source Place the ion source in the vacuum chamber, the working current is 16A, the discharge power is 100W, and the working gas is argon; b.
  • the ion beam energy used for ion beam assisted deposition is 400 ev argon ion beam, and the argon ion is used before coating. Beaming the substrate for 1 min to clean and activate the surface of the substrate;
  • the deposition thickness of the silicon dioxide film is controlled by a quartz crystal oscillator film thickness gauge, and the coating is finished at 100 nm.
  • the difference is that the first vacuum evaporation process of the nano-indium alloy layer is carried out in three stages of vacuum under a vacuum of 2 X 10 - 2 Pa, and the first stage evaporation is at 2. Evaporation at 5 volts for 12 s, the second phase of evaporation is at 4. Evaporation at 5 volts 6-10 8 , the third phase is evaporation at 6.5 volts for 4 s.
  • the specific method of plating the silicon dioxide film by the second vacuum evaporation method is;
  • the thickness of the silicon dioxide film was controlled by a quartz crystal oscillation film thickness gauge, and the coating was completed at 150 nm.
  • Ion beam assisted deposition (IBAD) in the silicon dioxide film process can significantly increase the density and adhesion of the silicon dioxide film, thereby greatly enhancing the protective effect of the silicon dioxide film.
  • Ion beam assisted deposition is used in the silica deposition process to increase the density and adhesion of the silicon dioxide film, specifically:
  • ion source Place the ion source in the vacuum chamber, the working current is 20A, the discharge power is 150W, and the working gas is argon; b.
  • the ion beam energy used for ion beam assisted deposition is 800 rv argon ion beam, and the argon ion is used before coating. Beaming the substrate for 3 min to clean and activate the surface of the substrate;
  • the deposition thickness of the silicon dioxide film is controlled by a quartz crystal oscillator film thickness gauge, and the coating is finished at 150 nm.
  • the deposition surface is bombarded with an argon ion beam of 800 ev; the density and adhesion of the silicon dioxide film layer are significantly improved by the momentum exchange and interfacial mixing of the ions with the film-forming atoms.
  • the nano metal layer 4 is a zinc metal layer having a thickness of 80 nm.
  • the prepared lightning protection cover makes the attenuation of the millimeter wave emitted by the radar back and forth across the protective cover by more than 3%.

Abstract

一种用于汽车主动防撞的预警系统装置的制备方法,尤其涉及一种雷达保护罩的制备方法,该方法依次包括以下步骤:前处理:将所得基板(1)进行除尘清洁;烫印:掩盖下道工序要镀纳米金属层(4)的区域,然后在基板(1)上烫印或印刷有色层(3);第一次镀:采用磁控溅射法或真空蒸镀法在所述有色层(3)周围未烫印或印刷的区域镀制纳米铟合金层,形成厚度为5-50nm的纳米金属层(4);然后喷涂形成涂料保护层(6),面涂或真空镀形成加强层(2)。该雷达保护罩纳米金属层的金属成分选择与各镀层配合作用,既能使雷达保护罩的标志具有良好的金属光泽,又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减,并达到重金属离子零排放。

Description

一种雷达保护罩的制备方法
技术领域
本发明涉及一种用于汽车主动防撞的预警系统装置, 尤其涉及一种雷达保护罩的制备方 法。
背景技术
车祸给人们带来巨大灾难, 研究表明, 80%以上的车祸是由于司机反应不及时所引起 的。 汽车主动防撞系统是在交通危险发生前及时地向驾驶员提供报警信息, 并能对汽车进行 主动巡航、 减速刹车等动作, 相对于以往汽车被动防撞设施, 显著减小交通安全隐患, 降低 车祸带来的危害。
考虑到方位角度、 信号强度等因素, 车载雷达一般都安装在车头正中的车标内侧处。 普 通的车标只具有良好的标志作用, 但不能用作车载雷达的保护罩, 这是因为一般的金属材料 或表面电镀金属层, 都会使雷达发射的毫米波发生严重的衰减, 或者不能来回通过车标。
已有技术如专利 EP1750329A1公开了一种用于汽车雷达系统的天线罩及其制造方法, 该 雷达天线罩的第一接触面上安装有一个绝缘透镜, 雷达天线罩上的绝缘透镜可通过粘合连接 或者焊接方式安装在雷达天线罩的接触面上。 该专利主要用于解决现有汽车雷达系统占用空 间大的问题。
专利 CN1838482B提供了一种用于雷达装置的射束路径中的金属光泽层装饰成形品, 包 括由透明树脂层构成的基体, 设置在该基体的背面上的锡和 /或锡合金层, 以及设置在该锡 和 /或锡合金层的背面上的装饰漆层。 该专利所述成形品具有类似镀铬等色调的精美金属设 计, 并且不会妨碍无线电波的传输。
然而上述专利的装置难以兼顾无线电波的传输性和工艺性, 不能同时提供一个既具有良 好的金属质感、 足够的强度、 可靠性能佳、 使用寿命长且对雷达电磁波的影响极小、 不影响 雷达性能的发挥的雷达保护罩。
发明内容
本发明的目的是提供一种既能使雷达保护罩的标志具有良好的金属光泽、 又能使雷达发 射的毫米波能来回穿越该保护罩且衰减率小的雷达保护罩的制备方法。
本发明的技术目的是通过以下技术方案得以实现的:
一种雷达保护罩的制备方法, 其特征在于依次包括步骤:
( 1 ) 前处理: 将前处理所得基板进行除尘清洁;
( 2 ) 烫印: 掩盖下道工序要镀纳米金属层的区域, 然后在基板上烫印或印刷有色 层; ( 3 ) 第一次镀: 采用磁控溅射法或真空蒸镀法在所述有色层周围未烫印或印刷的区 域镀制纳米铟合金层, 形成厚度为 5-50nm的纳米金属层;
( 4) 喷涂及固化: 在所述纳米金属层上喷 UV漆或 PU漆, 固化后形成涂料保护层;
( 5 ) 面涂或真空镀: 在所述基板的另一表面上喷涂 UV漆或 PU漆或真空镀膜形成加 强层。
( 6 ) 本发明制备方法的优点是:
( 1 ) 通过本发明各步骤制备尤其是两次特殊的真空镀形成依次相邻的涂料保护层、 纳米金属层、 有色层、 底漆层、 基板和加强层, 使雷达保护罩的标志具有良好的金属光泽, 具备车标良好的标志作用; 同时使雷达毫米波近乎无衰减; 另外还使雷达不受风沙雨雪和光 等外界自然因素的侵害, 从而起到良好的保护作用; 在使用性能上, 具有良好的表面硬度、 强度和耐腐蚀性能, 使用寿命达 20年之久;
( 2 ) 若纳米金属层膜层太薄, 难以保证其表面具有良好的金属光泽; 膜层太厚, 会 使雷达毫米波的衰减率升高, 难以保证雷达使用的有效性, 而本发明的纳米金属层的厚度能 够平衡并协调各方面的性能要求, 使雷达保护罩具备优良的综合性能。
作为优选, 所述步骤 (1 ) 前处理具体是先对基板静电除尘, 然后用毛刷除尘, 最后采 用干冰清洗。
通过中和零件表面静电, 用高速气流带走零件表面灰尘, 然后再采用毛刷特别是鸵鸟毛 毛刷机械作用于零件表面, 通过扰动冲刷作用, 使零件表面灰尘脱离, 并且被气流带走, 最 后采用干冰对注塑体进行清洗, 使前处理进行彻底, 以保证镀膜的质量。
作为优选, 所述步骤 (2 ) 掩盖下道工序要镀纳米金属层的区域, 然后在基板上烫印或 印刷 0. 1-1微米厚度的黑膜或彩色膜层。
作为优选, 所述步骤 (3 ) 纳米铟合金为铟及占质量百分数为 0-10%的锡、 镓、 银、 锗 的一种或多种。
纳米金属层的金属成分选择与各镀层配合作用, 既能使雷达保护罩的标志具有良好的金 属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使用的有效 性; 并且能实现产品环保要求, 达到重金属离子零排放。
更优选地, 所述纳米铟合金为含 5wt%银的铟合金。
该成分能使雷达保护罩具有很小的雷达毫米波衰减率和良好的金属光泽。
进一步优选地, 采用真空蒸镀法镀制所述纳米金属层的工艺是在真空度为 (1-2 ) X 10— 2Pa的真空度下连续进行三个阶段蒸发, 第一阶段蒸发是在 1. 5-2. 5伏下蒸发 10-12s, 第二 阶段蒸发是在 3. 5-4. 5伏下蒸发 6-10s, 第三阶段是在 5. 5-6. 5伏下蒸发 3_4s。 采用该工艺参数, 能保证膜层的规定厚度和重复性, 得到很高的表面电阻和岛状薄膜结 构, 从而既能使毫米波穿越薄膜时的衰减率降低到很小的程度; 并且同时保证金属薄膜的光 泽和亮度, 满足功能性标志的要求。
更优选地, 所述铟和银的纯度为 99. 99%。
纯度的控制使雷达保护罩的标志具有更好的金属光泽, 具备车标良好的标志作用; 同时 使雷达毫米波近乎无衰减。
优选地, 所述步骤 (3 ) 采用磁控溅射法或真空蒸镀法形成岛状结构的、 厚度为 5-50nm 且表面电阻大于 20兆欧 /口的纳米铟合金层。
申请人发现: 纳米金属层过厚和表面电阻过小, 难以使雷达波以很小的衰减率通过, 不 能保证雷达使用的有效性; 膜层太薄, 难以保证其具有良好的金属光泽; 膜层太厚, 会使雷 达毫米波的衰减率升高; 表面电阻大小以及膜层厚度选择必须与各镀层配合作用, 才能既使 雷达保护罩的标志具有良好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎 无衰减, 保证雷达使用的有效性; 并且能实现产品环保要求, 达到重金属离子零排放。
作为优选, 所述制备方法还包括在所述第一次镀之后进行第二次镀: 采用中频孪生靶磁 控溅射法或电子束真空蒸镀法在所述纳米金属层上镀制氧化物保护膜, 形成氧化物保护层。
所述氧化物保护层的成分和厚度有助于保护纳米金属层, 既能使雷达保护罩的标志具有 更好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使 用的有效性; 从而使雷达保护罩具备优良的综合性能。
更优选地, 所述氧化物保护膜为二氧化硅薄膜。
更优选地, 采用真空蒸镀法镀制所述二氧化硅薄膜的方法是以电子束真空蒸镀, 采用的 蒸发源包括电子枪、 磁场线圈和坩埚, 所述电子枪包括发射电子的灯丝、 汇聚电子的聚焦极 和加速电子的阳极; 所述磁场线圈与加速电场相垂直。
由于本发明产品所用基材是聚碳酸酯 PC,真空镀膜时真空室内温度或粒子轰击能量不能 太高, 而氧化物保护层所用的原材料往往具有高的熔点, 因此必须选择合适的工艺。
以电子束真空蒸镀二氧化硅薄膜为例, 蒸发源采用 e型电子枪, 即电子束偏转 270 ° , 使电子束轰击到坩埚中的二氧化硅膜料, 避免了电子枪灯丝物质对膜料的污染。
电子束聚焦特性取决于灯丝 (阴极)、 汇聚电子的聚焦极和加速电子的阳极这三个电极 的形状、 相对位置以及所加的电压。 灯丝 (阴极) 一般由钨丝制造, 连接低电压大电流, 可 以把钨丝加热到发射热电子的白炽状态。
所述磁场线圈与加速电场相垂直, 电子被加速后, 受正交电磁场所产生的洛仑磁力的作 用, 改变运动方向, 电子束轨迹成螺旋线状, 而电子束形状如同英文字 e, 即磁场线圈产生 的磁场使电子偏转到坩埚上, 调节磁场电流的大小可改变磁场强度, 从而可改变电子束达到 蒸发材料 (膜料) 表面上的位置。
进一步优选地, 电子枪的灯丝并联高压加速电源的负极, 电压为 6-30KV, 电子在高压 电场作用下加速运动形成电子束, 束流为 0. 3-1Α。
进一步优选地, 所述坩埚为无氧铜坩埚。
在电子枪蒸发源的组件中, 坩埚也是重要部分。 采用无氧铜坩埚, 通水冷却, 坩埚中可 放置不同的膜料, 通过换位机构能改变坩埚位置。
进一步优选地, 采用真空蒸镀法镀制所述二氧化硅薄膜的方法是;
① 将基板与膜料放入真空室内, 关闭真空室门, 抽气到 (5-8 ) X 10¾;
② 开启磁场电源, 调到预定的磁场电流, 确定磁场强度, 以保证电子束能打到坩埚 上;
③ 开启灯丝加热电源, 加热灯丝;
④ 开启电子枪的高压加速电源, 电压调到 6-30KV;
⑤ 调节灯丝的加热电流和磁场电流, 使电子束斑点位于坩埚中央;
⑥ 调节束流扫描控制器, 以 x-y横纵双向驱动束流, 并且调节振幅和频率;
⑦ 在加速电压 6-30KV、 束流 0. 3-1Α、 沉积速率 0. 3-0. 4nm/s的参数下蒸镀二氧化硅薄 膜;
⑧ 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 100-150nm时镀膜结束。 更进一步优选地, 在二氧化硅沉积过程中采用离子束辅助沉积法以提高二氧化硅薄膜的 致密度和附着力, 具体是:
a.在真空室内放置离子源, 工作电流 16-20A, 放电功率 100-150W, 工作气体为氩气; b . 离子束辅助沉积所用的离子束能量为 400-800ev的氩离子束, 在镀膜前先用所述氩 离子束对所述基板进行轰击 l_5min, 使所述基板表面清洁和活化;
c 在沉积二氧化硅薄膜的同时, 用 400-800ev的氩离子束轰击沉积表面;
d. 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 100-150nm时镀膜结束。 在沉积二氧化硅薄膜的同时, 用 400-800ev的氩离子束轰击沉积表面; 通过离子与成膜 原子的动量交换和界面混合, 从而显著提高二氧化硅膜层的致密度和附着力。
由于热蒸发的原子或分子在沉积时能量很低, 约为 0. 2ev, 其表面迁移率也就很低, 加 上已经沉积的原子或分子对后来沉积的原子或分子会造成阴影效果, 使蒸镀薄膜呈含有较多 孔隙的柱状颗粒聚集体结构, 二氧化硅薄膜的保护作用显著降低。 因此在二氧化硅薄膜过程 中采用离子束辅助沉积法 (Ion beam assisted exposition,简写 IBAD), 可显著提高二氧 化硅薄膜致密度和附着力, 从而大大增强二氧化硅薄膜的保护作用。
作为优选, 所述步骤 (4) 在所述氧化物保护层上喷涂 10-25微米厚度的 UV漆或 PU漆 形成涂料保护层; 同时在所述基板的另一表面上喷涂 10-25微米厚度的 UV漆或 PU漆形成加 强层。
更优选地, 所述步骤 (4) 还包括对喷涂的 UV漆进行紫外光照射固化。
作为优选, 所述制备方法还包括在前处理步骤之前进行烘烤。
通过烘烤, 基材与后续工艺制备的底涂层和面涂层具有更好的结合力。
作为优选, 所述雷达保护罩还包括设置在所述基板后方的底座, 所述基板和所述底座为 聚碳酸酯板, 所述基板和所述底座通过点胶法进行紧密结合。
采用传统方法使前盖与底座结构易使产品整体粘结, 容易出现次品, 而采用本发明的点 胶法不会影响前盖的各层结构受影响, 提高产品的性能和合格率。
作为优选, 所述制备方法还包括将基板注塑体上多余的料柄铣切去除。
本发明的还提供了一种既能使雷达保护罩的标志具有良好的金属光泽、 又能使雷达发射 的毫米波能来回穿越该保护罩且衰减率小的雷达保护罩。
该目的是通过以下四种技术方案得以实现的:
第一种技术方案是:
一种雷达保护罩, 包括带有前表面和后表面的基板, 所述基板的前表面上覆盖有加强 层, 其所述基板的后表面上自内而外至少覆盖有底漆层、 有色层、 纳米金属层和涂料保护 层, 所述纳米金属层的金属成分为铟及占质量百分数为 0-10%的锡、 镓、 银、 锗的一种或多 种。
本发明以车载雷达所在方位为后面, 所述基板的后表面朝向车载雷达。
本发明的优点是:
( 1 ) 依次相邻的涂料保护层、 纳米金属层、 有色层、 基板和加强层, 使雷达保护罩 的标志具有良好的金属光泽, 具备车标良好的标志作用; 同时使雷达毫米波近乎无衰减; 另 外还使雷达不受风沙雨雪光等外界自然因素的侵害, 从而起到良好的保护作用; 在使用性能 上, 加强层又增强了基板的性能, 赋予雷达保护罩的外表面具有良好的抗老化性、 表面硬 度、 强度和耐腐蚀性能, 使用寿命达 20年之久;
( 2 ) 纳米金属层的金属成分选择与各镀层配合作用, 既能使雷达保护罩的标志具有 良好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使 用的有效性; 并且能实现产品环保要求, 达到重金属离子零排放。
作为优选, 所述纳米金属层的金属成分为含 5wt%银的铟合金。 该成分使雷达罩具有很小的雷达毫米波衰减率和良好的金属光泽。
更优选地, 所述铟和银的纯度为 99. 99%。
更优选地, 所述纳米金属层的厚度为 5-50nm。
膜层太薄, 难以保证具有良好的金属光泽; 膜层太厚则会使雷达毫米波的衰减率升高, 难以保证雷达使用的有效性。 而本发明的纳米金属层的厚度能够平衡并协调各方面的性能要 求, 使雷达保护罩具备优良的综合性能。
作为优选, 所述纳米金属层的表面电阻大于 20兆欧 /口。
若电阻太小, 难以使雷达波以很小的衰减率通过, 不能保证雷达使用的有效性。
作为优选, 所述纳米金属层为岛状结构。
申请人发现, 采用岛状结构的纳米金属层会大大降低该雷达毫米波的衰减率, 使穿过该 雷达保护罩的雷达毫米波近乎无衰减, 这可能是雷达毫米波的衰减率与金属层电阻有关, 而 采用岛状结构会大大提高该纳米金属层的电阻, 从而既使具有岛状结构的纳米金属层的雷达 保护罩的标志具有良好的金属光泽、 又使雷达发射的毫米波能来回穿越该保护罩且衰减率 小。
本发明所述的岛状结构是纳米金属层采用气相沉积薄膜时, 首先在基底上形成临界核, 当原子不断地沉积时, 核以三维方向长大, 不仅增高而且扩大, 形成岛状, 同时还会出现新 的核继续长大成岛。 当岛在基底上不断扩大时, 岛会相互联系起来, 形成岛的通道。 岛状结 构是一种不连续的薄膜结构。
作为优选, 所述基板上还镀有设置在所述纳米金属层与所述涂料保护层之间的氧化物保 护层。
更优选地, 所述氧化物保护层为二氧化硅薄膜, 厚度为 100-150nm。
所述氧化物保护层的成分和厚度有助于保护纳米金属层, 既能使雷达保护罩的标志具有 良好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使 用的有效性; 从而使雷达保护罩具备优良的综合性能。
作为优选, 所述加强层为 10-25微米厚度的 UV漆或 PU漆或 100-200纳米厚度的真空镀 膜层。
本发明采用高固体含量例如 70-95%的 UV漆或 PU漆, 喷涂在工件表面, 同时控制加强 层的厚度, 使加强层具有良好的表面硬度、 强度和耐腐蚀性能。
更优选地, 所述 UV漆采用紫外光照射固化而成。
经过固化, 加强层有良好的结合力, 并且不损伤基板。
作为优选, 所述有色层为 0. 1-1微米厚度的烫印黑膜或印刷彩色膜层。 采用该厚度的烫印黑膜或印刷彩色膜层可使雷达保护罩的标志具有更好的金属光泽, 在 使用性能上, 具有更好的表面硬度、 强度和耐腐蚀性能, 同时使雷达毫米波近乎无衰减。
作为优选, 所述涂料保护层为 10-25微米厚度的 UV漆或 PU漆。
更优选地, 所述 UV漆采用紫外光照射固化而成。
作为优选, 所述雷达保护罩还包括通过粘结剂或二次注塑方式与所述基板相互连接的底 座。
所述基板作为车标前盖, 所述底座位于车标后面, 以便于保护覆盖在所述基板上的各镀 层。
作为优选, 所述基板和 /或底座为透明耐热抗冲击的塑性材料。
更优选地, 所述基板和 /或底座为聚碳酸酯基板。
更优选地, 所述基板和底座的总厚度为 4. 4-5. 3mm。
第二种技术方案是:
一种雷达保护罩, 包括带有前表面和后表面的基板, 所述基板的前表面上覆盖有加强 层, 其所述基板的后表面上自内而外至少覆盖有有色层、 纳米金属层和涂料保护层, 所述纳 米金属层的厚度为 5-50nm。
本发明的优点是:
( 1 ) 依次相邻的涂料保护层、 纳米金属层、 有色层、 基板和加强层, 使雷达保护罩 的标志具有良好的金属光泽, 具备车标良好的标志作用; 同时使雷达毫米波近乎无衰减; 另 外还使雷达不受风沙雨雪和光等外界自然因素的侵害, 从而起到良好的保护作用; 在使用性 能上, 具有良好的表面硬度、 强度和耐腐蚀性能, 使用寿命达 20年之久;
( 2 ) 纳米金属层的厚度选择与各镀层配合作用, 既能使雷达保护罩的标志具有良好 的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使用的 有效性; 并且能实现产品环保要求, 达到重金属离子零排放; 而若纳米金属层膜层太薄, 虽 然表面电阻很大, 但可见光反射率低, 显得金属薄膜的亮度不足, 不能达到功能性标志的要 求; 膜层太厚, 会使雷达毫米波的衰减率升高, 难以保证雷达使用的有效性; 而本发明的纳 米金属层的厚度能够平衡并协调各方面的性能要求, 使雷达保护罩具备优良的综合性能。
作为优选, 所述纳米金属层的金属成分为铟及占质量百分数为 0-10%的锡、 镓、 银、 锗 的一种或多种。
纳米金属层的金属成分选择与各镀层配合作用, 既能使雷达保护罩的标志具有良好的金 属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使用的有效 性; 并且能实现产品环保要求, 达到重金属离子零排放。 更优选地, 所述纳米金属层的金属成分为含 5wt%银的铟合金。
该成分使雷达罩具有很小的雷达毫米波衰减率和良好的金属光泽。
更优选地, 所述铟和银的纯度为 99. 99%。
作为优选, 所述纳米金属层的表面电阻大于 20兆欧 /口。
若电阻太小, 难以使雷达波通过, 不能保证雷达使用的有效性。
作为优选, 所述纳米金属层为岛状结构。
申请人发现, 采用岛状结构的纳米金属层会大大降低该雷达毫米波的衰减率, 使穿过该 雷达保护罩的雷达毫米波近乎无衰减。 雷达毫米波的衰减率与金属层电阻有关, 而采用岛状 结构会大大提高该纳米金属层的电阻, 从而既使具有岛状结构的纳米金属层的雷达保护罩的 标志具有良好的金属光泽、 又使雷达发射的毫米波能来回穿越该保护罩且衰减率小。
作为优选, 所述基板上还镀有设置在所述纳米金属层与所述涂料保护层之间的氧化物保 护层。
更优选地, 所述氧化物保护层为二氧化硅薄膜, 厚度为 100-150nm。
所述氧化物保护层的成分和厚度有助于保护纳米金属层, 既能使雷达保护罩的标志具有 良好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使 用的有效性; 从而使雷达保护罩具备优良的综合性能。
作为优选, 所述加强层为 10-25微米厚度的 UV漆或 PU漆或 100-200纳米厚度的真空镀 膜层。
本发明采用高固体含量例如 70-95%的 UV漆或 PU漆, 喷涂在工件表面, 同时控制加强 层的厚度, 使加强层具有良好的表面硬度、 强度和耐腐蚀性能。
更优选地, 所述 UV漆采用紫外光照射固化而成。
经过固化, 加强层有良好的结合力, 并且不损伤基板。
作为优选, 所述有色层为 0. 1-1微米厚度的烫印黑膜或印刷彩色膜层。
采用该厚度的烫印黑膜或印刷彩色膜层可使雷达保护罩的标志具有更为显著的金属光 泽, 在使用性能上, 具有更好的表面硬度、 强度和耐腐蚀性能, 同时使雷达毫米波近乎无衰 减。
作为优选, 所述涂料保护层为 10-25微米厚度的 UV漆或 PU漆层。
更优选地, 所述 UV漆采用紫外光照射固化而成。
作为优选, 所述雷达保护罩还包括通过粘结剂或二次注塑方式与所述基板相互连接的底 座。
所述基板作为前盖, 所述底座位于车标后面, 以便于保护覆盖在所述基板上的各镀层。 作为优选, 所述基板和 /或底座为透明耐热抗冲击的塑性材料。
更优选地, 所述基板和 /或底座为聚碳酸酯基板。
更优选地, 所述基板和底座的总厚度为 4. 4-5. 3mm。
第三种技术方案是:
一种雷达保护罩, 包括带有前表面和后表面的基板, 所述基板的前表面上覆盖有加强 层, 其所述基板的后表面上自内而外至少覆盖有有色层、 纳米金属层和涂料保护层, 所述纳 米金属层的表面电阻大于 20兆欧 /□。
本发明的优点是:
( 1 ) 依次相邻的涂料保护层、 纳米金属层、 有色层、 基板和加强层, 使雷达保护罩 的标志具有良好的金属光泽, 具备车标良好的标志作用; 同时使雷达毫米波近乎无衰减; 另 外还使雷达不受风沙雨雪光等外界自然因素的侵害, 从而起到良好的保护作用; 在使用性能 上, 具有良好的表面硬度、 强度和耐腐蚀性能, 使用寿命达 20年之久;
( 2 ) 纳米金属层的表面电阻若太小, 难以使雷达波以很小的衰减率通过, 不能保证 雷达使用的有效性; 表面电阻大小选择与各镀层配合作用, 既能使雷达保护罩的标志具有良 好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使用 的有效性; 并且能实现产品环保要求, 达到重金属离子零排放。
作为优选, 所述纳米金属层的金属成分为铟及占质量百分数为 0-10%的锡、 镓、 银、 锗 的一种或多种。
纳米金属层的金属成分选择与各镀层配合作用, 既能使雷达保护罩的标志具有良好的金 属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使用的有效 性; 并且能实现产品环保要求, 达到重金属离子零排放。
更优选地, 所述纳米金属层的金属成分为含 5wt%银的铟合金。
该成分使雷达罩具有很小的雷达毫米波衰减率和良好的金属光泽。
更优选地, 所述铟和银的纯度为 99. 99%。
作为优选, 所述纳米金属层的厚度为 5-50nm。
膜层太薄, 难以保证其具有良好的金属光泽; 膜层太厚, 会使雷达毫米波的衰减率升 高, 难以保证雷达使用的有效性, 而本发明的纳米金属层的厚度能够平衡并协调各方面的性 能要求, 使雷达保护罩具备优良的综合性能。
作为优选, 所述纳米金属层为岛状结构。
申请人发现: 采用岛状结构的纳米金属层会大大降低该雷达毫米波的衰减率, 使穿过该 雷达保护罩的雷达毫米波近乎无衰减, 这可能是雷达毫米波的衰减率与金属层电阻有关, 而 采用岛状结构会大大提高该纳米金属层的电阻, 从而既使具有岛状结构的纳米金属层的雷达 保护罩的标志具有良好的金属光泽、 又使雷达发射的毫米波能来回穿越该保护罩且衰减率 小。
作为优选, 所述基板上还镀有设置在所述纳米金属层与所述涂料保护层之间的氧化物保 护层。
更优选地, 所述氧化物保护层为二氧化硅薄膜, 厚度为 100-150nm。
所述氧化物保护层的成分和厚度有助于保护纳米金属层, 既能使雷达保护罩的标志具有 良好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使 用的有效性; 从而使雷达保护罩具备优良的综合性能。
作为优选, 所述加强层为 10-25微米厚度的 UV漆或 PU漆或 100-200纳米厚度的真空镀 膜层。
本发明采用高固体含量例如 70-95%的 UV漆或 PU漆, 喷涂在工件表面, 同时控制加强 层的厚度, 使加强层具有良好的表面硬度、 强度和耐腐蚀性能。
更优选地, 所述 UV漆采用紫外光照射固化而成。
经过固化, 加强层有良好的结合力, 并且不损伤基板。
作为优选, 所述有色层为 0. 1-1微米厚度的烫印黑膜或印刷彩色膜层。
采用该厚度的烫印黑膜或印刷彩色膜层可使雷达保护罩的标志具有更好的金属光泽, 在 使用性能上, 具有更好的表面硬度、 强度和耐腐蚀性能, 同时使雷达毫米波近乎无衰减。
作为优选, 所述涂料保护层为 10-25微米厚度的 UV漆或 PU漆。
更优选地, 所述 UV漆采用紫外光照射固化而成。
作为优选, 所述雷达保护罩还包括通过粘结剂或二次注塑方式与所述基板相互连接的底 座。
所述基板作为前盖, 所述底座位于车标后面, 以便于保护覆盖在所述基板上的各镀层。 作为优选, 所述基板和 /或底座为透明耐热抗冲击的塑性材料。
更优选地, 所述基板和 /或底座为聚碳酸酯基板。
更优选地, 所述基板和底座的总厚度为 4. 4-5. 3mm。
第四种技术方案是:
一种雷达保护罩, 包括带有前表面和后表面的基板, 所述基板的前表面上覆盖有加强 层, 其所述基板的后表面上自内而外至少覆盖有有色层、 纳米金属层和涂料保护层, 所述纳 米金属层为岛状结构。
申请人发现: ( 1 ) 采用岛状结构的纳米金属层会大大降低该雷达毫米波的衰减率, 使穿过该雷达 保护罩的雷达毫米波近乎无衰减, 这可能是雷达毫米波的衰减率与金属层电阻有关, 而采用 岛状结构会大大提高该纳米金属层的电阻, 从而既使具有岛状结构的纳米金属层的雷达保护 罩的标志具有良好的金属光泽、 又使雷达发射的毫米波能来回穿越该保护罩且衰减率小;
( 2 ) 依次相邻的涂料保护层、 纳米金属层、 有色层、 基板和加强层, 使雷达保护罩 的标志具有良好的金属光泽, 具备车标良好的标志作用; 同时使雷达毫米波近乎无衰减; 另 外还使雷达不受风沙雨雪光等外界自然因素的侵害, 从而起到良好的保护作用; 在使用性能 上, 具有良好的表面硬度、 强度和耐腐蚀性能, 使用寿命达 20年之久。
作为优选, 所述纳米金属层的金属成分为铟及占质量百分数为 0-10%的锡、 镓、 银、 锗 的一种或多种。
纳米金属层的金属成分选择与各镀层配合作用, 既能使雷达保护罩的标志具有良好的金 属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使用的有效 性; 并且能实现产品环保要求, 达到重金属离子零排放。
更优选地, 所述纳米金属层的金属成分为含 5wt%银的铟合金。
该成分使雷达罩具有很小的雷达毫米波衰减率和良好的金属光泽。
更优选地, 所述铟和银的纯度为 99. 99%。
作为优选, 所述纳米金属层的厚度为 5-50nm。
膜层太薄, 难以保证其具有良好的金属光泽; 膜层太厚, 会使雷达毫米波的衰减率升 高, 难以保证雷达使用的有效性, 而本发明的纳米金属层的厚度能够平衡并协调各方面的性 能要求, 使雷达保护罩具备优良的综合性能。
作为优选, 所述基板上还镀有设置在所述纳米金属层与所述涂料保护层之间的氧化物保 护层。
更优选地, 所述氧化物保护层为二氧化硅薄膜, 厚度为 100-150nm。
所述氧化物保护层的成分和厚度有助于保护纳米金属层, 既能使雷达保护罩的标志具有 良好的金属光泽, 又能使雷达发射的毫米波来回穿越该保护罩时几乎无衰减, 保证了雷达使 用的有效性; 从而使雷达保护罩具备优良的综合性能。
作为优选, 所述加强层为 10-25微米厚度的 UV漆或 PU漆或 100-200纳米厚度的真空镀 膜层。
本发明采用高固体含量例如 70-95%的 UV漆或 PU漆, 喷涂在工件表面, 同时控制加强 层的厚度, 使加强层具有良好的表面硬度、 强度和耐腐蚀性能。
更优选地, 所述 UV漆采用紫外光照射固化而成。 经过固化, 加强层有良好的结合力, 并且不损伤基板。
作为优选, 所述有色层为 0. 1-1微米厚度的烫印黑膜或印刷彩色膜层。
采用该厚度的烫印黑膜或印刷彩色膜层可使雷达保护罩的标志具有更好的金属光泽, 在 使用性能上, 具有更好的表面硬度、 强度和耐腐蚀性能, 同时使雷达毫米波近乎无衰减。
作为优选, 所述涂料保护层为 10-25微米厚度的 UV漆或 PU漆。
更优选地, 所述 UV漆采用紫外光照射固化而成。
作为优选, 所述雷达保护罩还包括通过粘结剂或二次注塑方式与所述基板相互连接的底 座。
所述基板作为前盖, 所述底座位于车标后面, 以便于保护覆盖在所述基板上的各镀层。 作为优选, 所述基板作为前盖, 所述基板和 /或底座为透明耐热抗冲击的塑性材料。 更优选地, 所述基板和 /或底座为聚碳酸酯基板。
更优选地, 所述基板和底座的总厚度为 4. 4-5. 3mm。
附图说明
图 1是本发明雷达保护罩各层次结构及雷达保护罩与雷达方位关系的示意图; 图 2是本发明一个实施例的雷达保护罩制备方法的工艺路线图;
图中, 1-基板; 2-加强层; 3-有色层; 4-纳米金属层; 5-氧化物保护层; 6-涂料保护 层; 7-底座; R-雷达。 具体实施方式
实施例一
某型号汽车的雷达保护罩,包括带有前表面和后表面的基板。 基板材料为透明耐热抗冲 击、 综合性能优良的塑性材料, 例如聚碳酸酯板。 对基板 1的两个表面分别进行处理, 该雷 达保护罩的剖面结构见图 1。
加强层 2采用高固体含量的 UV漆或 PU漆, 喷涂在工件表面, 厚度控制在 10微米。 UV 漆需用紫外光照射固化。 加强层 2也可以采用真空镀膜制备, 以提高基板 1的硬度和耐磨 性。
有色层 3为烫印黑膜或印刷彩色膜层, 根据实际需要而定, 厚度为 0. 1微米。
纳米金属层 4为含 5% (质量) 银的铟合金, 铟和银的纯度都为 99. 99%。 该膜层厚度为
15纳米。 其作用是具有良好的金属光泽和可见光反射率, 同时雷达发射的毫米波来回穿越 该保护罩时衰减率很小。
纳米金属层很薄, 厚度为 15纳米, 膜层的微观结构以 "岛屿"结构为主, 是一种不连 续膜, 从而保证具有很高的电阻, 对来回穿越的雷达毫米波衰减率很小。
薄膜的导电性与电子平均自由程 A f和膜厚 t有关。 在 t< A f时, 如果膜层为岛状, 则 电阻率极大, 当 t增大到数十纳米后, 电阻率急剧下降; 当 t A f时, 薄膜的电阻率与体 材料接近, 但比体材料大。
氧化物保护层 5为二氧化硅薄膜, 厚度为 100纳米, 其作用主要是保护纳米金属层。 涂料保护层 6采用高固体含量的 UV漆或 PU漆, 喷涂在工件表面, 厚度控制在 10微 米。 UV漆需用紫外光照射固化。
底座 7采用与基板 1相同的高透过的材料组成, 表面处理后通过粘结剂与基板 1相互连 接, 基板 1与底座 7的厚度为 4. 4mm。
本产品的制造工艺主要有注塑、 前处理、 烫印、 磁控溅射镀或真空蒸发镀、 中频率孪生 靶磁控溅射法或电子束真空蒸镀法、 喷涂或固化、 点胶、 铣浇口、 检验、 包装等。 工艺路线 见图 2。
注塑: 按产品要求开制注塑模具, 选定所需要锁模力的注塑机, 无级调速多级注塑。 转送上线: 注塑件经机械手下件后, 放置在转送带上线。
烘烤: 经烘烤, 基板与底涂层、 面涂层有更好的结合力。
前处理: 静电除尘, 即中和零件表面静电, 用高速气流带走零件表面灰尘, 然后再采用 毛刷特别是鸵鸟毛毛刷机械作用于零件表面, 通过扰动冲刷作用, 使零件表面灰尘脱离, 并 且被气流带走, 最后采用干冰对注塑体进行清洗, 保障工件清洁进入下道工序。 使前处理进 行彻底, 以防止其表面硬度、 强度和耐腐蚀性能受影响, 提高其使用寿命。
烫印: 利用工装掩盖下道工序要镀纳米金属层的区域, 然后在基板表面上烫黑膜或印刷 彩色膜层。
第一次镀: 用磁控溅射法或真空蒸镀法, 镀制纳米铟合金层, 严格控制其厚度在 15纳 米且表面电阻大于 20兆欧 /口。
电阻测试采用普通万用表, 间距 1公分测试。
实际工艺参数的确定与产品性能要求、 镀膜方法、 镀膜设备、 膜料成分、 膜层厚度等因 素有关。
现以真空蒸镀含 5wt%银的铟银合金 (膜料) 为例, 说明真空镀纳米金属层的制备工 艺。
1. 膜料: 直径 1毫米, 长度 3-5厘米;
2. 蒸发源: 锥形网筐钨绞丝, 4个;
3. 工件架: 工件 (基板) 直径 80毫米, 每次镀膜可安置 8-12个工件, 有公、 自 转, 转速无极可调, 公转速度控制在 4-6转 /分;
4. 镀膜设备: 真空室的直径 1600毫米, 高度 1200毫米;
5. 真空蒸镀工艺是在真空度为 1. 5 X 10— 2Pa的真空度下连续进行三个阶段蒸发, 第 一阶段蒸发是在 2伏下蒸发 l is, 第二阶段蒸发是在 4伏下蒸发 8s, 第三阶段是在 6伏下蒸 发 3. 5s o
第二次镀: 用中频率孪生靶磁控溅射法或电子束真空蒸镀法, 镀制二氧化硅薄膜, 厚度 为 100nm。
由于本发明产品所用基材是聚碳酸酯 PC,真空镀膜时真空室内温度或粒子轰击能量不能 太高, 而氧化物保护层所用的原材料旺旺具有高的熔点, 因此必须选择合适的工艺。
以电子束真空蒸镀二氧化硅薄膜为例, 蒸发源采用 e型电子枪, 即电子束偏转 270 ° , 使电子束轰击到坩埚中的二氧化硅膜料, 避免了电子枪灯丝物质对膜料的污染。
电子束聚焦特性取决于灯丝 (阴极)、 汇聚电子的聚焦极和加速电子的阳极这三个电极 的形状、 相对位置以及所加的电压。 灯丝 (阴极) 一般由钨丝制造, 连接低电压大电流, 可 以把钨丝加热到发射热电子的白炽状态。
磁场线圈与加速电场相垂直, 电子被加速后, 受正交电磁场所产生的洛仑磁力的作用, 改变运动方向, 电子束轨迹成螺旋线状, 而电子束形状如同英文字 e, 即磁场线圈产生的磁 场使电子偏转到坩埚上, 调节磁场电流的大小可改变磁场强度, 从而可改变电子束达到蒸发 材料 (膜料) 表面上的位置。 坩埚为无氧铜坩埚。 在电子枪蒸发源的组件中, 坩埚也是重要 部分。 采用无氧铜坩埚, 通水冷却, 坩埚中可放置不同的膜料, 通过换位机构能改变坩埚位 置。
电子枪的灯丝并联高压加速电源的负极, 电压为 15KV, 电子在高压电场作用下加速运 动形成电子束, 束流为 0. 6A。
采用真空蒸镀法镀制所述二氧化硅薄膜的具体方法是;
① 将基板与膜料放入真空室内, 关闭真空室门, 抽气到 6 X 10— 3Pa;
② 开启磁场电源, 调到预定的磁场电流, 确定磁场强度, 以保证电子束能打到坩埚 上;
③ 开启灯丝加热电源, 加热灯丝;
④ 开启电子枪的高压加速电源, 电压调到 15KV;
⑤ 调节灯丝的加热电流和磁场电流, 使电子束斑点位于坩埚中央;
⑥ 调节束流扫描控制器, 以 x-y横纵双向驱动束流, 并且调节振幅和频率;
⑦ 在加速电压 15KV、 束流 0. 6A、 沉积速率 0. 35nm/s的参数下蒸镀二氧化硅薄膜; ⑧ 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 130nm时镀膜结束。
由于热蒸发的原子或分子在沉积时能量很低, 约为 0. 2ev, 其表面迁移率也就很低, 加 上已经沉积的原子或分子对后来沉积的原子或分子会造成阴影效果, 使蒸镀薄膜呈含有较多 孔隙的柱状颗粒聚集体结构, 二氧化硅薄膜的保护作用显著降低。 因此在二氧化硅薄膜过程 中采用离子束辅助沉积法 (Ion beam assisted exposition,简写 IBAD), 可显著提高二氧 化硅薄膜致密度和附着力, 从而大大增强二氧化硅薄膜的保护作用。
在二氧化硅沉积过程中采用离子束辅助沉积法以提高二氧化硅薄膜的致密度和附着力, 具体是:
a.在真空室内放置离子源, 工作电流 18A, 放电功率 120W, 工作气体为氩气; b . 离子束辅助沉积所用的离子束能量为 600ev的氩离子束, 在镀膜前先用所述氩离子 束对所述基板进行轰击 5min, 使所述基板表面清洁和活化;
c 在沉积二氧化硅薄膜的同时, 用 600ev的氩离子束轰击沉积表面;
d. 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 120nm时镀膜结束。
在沉积二氧化硅薄膜的同时, 用 600ev的氩离子束轰击沉积表面, 通过离子与成膜原子 的动量交换和界面混合, 从而显著提高二氧化硅膜层的致密度和附着力。
喷涂: 在二氧化硅薄膜表面再喷涂高固体含量的 UV漆或 PU漆; 在基板 PC的另一表面 也喷涂高固体含量的 UV漆或 PU漆或真空镀膜。
UV固化: 如果面涂为 UV漆, 则要经紫外光照射固化。
点胶: 用点胶法使聚碳酸酯底座与前盖紧密结合。
铣浇口: 把注塑体上多余的料柄铣切去掉。
转送下线: 产品经机械手放置在转送带上, 送往检验包装工序。
检验包装: 产品经检验合格后贴上标识, 送至产品仓库。
经检测, 所制备的雷达保护罩使雷达发射的毫米波来回穿越该保护罩的衰减率为 2db以 下。 实施例二
某型号汽车的雷达保护罩,包括带有前表面和后表面的基板 1。 基板材料为透明耐热抗 冲击、 综合性能优良的塑性材料, 例如聚碳酸酯板。 对基板的两个表面分别进行处理, 该雷 达保护罩的剖面结构见图 1。
基板 1和底座表面处理后通过粘结剂或二次注塑方式相互连接, 基板 1和底座 7的总厚 度为 5. 3mm 加强层 2采用高固体含量的 UV漆或 PU漆, 喷涂在工件表面, 厚度控制在 25微米。 UV 漆需用紫外光照射固化。
有色层 3为烫印黑膜或印刷彩色膜层, 根据实际需要而定, 厚度为 1微米。
纳米金属层 4为含 1% (质量) 锡的铟合金, 铟和锡的纯度都为 99. 99%。 该膜层厚度为
30纳米。 其作用是具有良好的金属光泽和可见光反射率, 同时雷达发射的毫米波来回穿越 该保护罩时衰减率很小。
纳米金属层很薄, 厚度为 30nm, 膜层的微观结构以 "岛屿"结构为主, 从而保证具有 很高的电阻, 对来回穿越的雷达毫米波衰减率很小。
薄膜的导电性与电子平均自由程 A f和膜厚 t有关。 在 t< A f时, 如果膜层为岛状, 则 电阻率极大, 当 t增大到数十纳米后, 电阻率急剧下降; 当 t A f时, 薄膜的电阻率与体 材料接近, 但比体材料大。
氧化物保护层 5为二氧化硅薄膜, 厚度为 150纳米, 其作用主要是保护纳米金属层。 涂料保护层 6采用高固体含量的 UV漆或 PU漆, 喷涂在工件表面, 厚度控制在 25微 米。 UV漆需用紫外光照射固化。 本产品的制造工艺主要有注塑、 前处理、 烫印、 磁控溅射镀或真空蒸发镀、 中频率孪生 靶磁控溅射法或电子束真空蒸镀法、 喷涂或固化、 点胶、 铣浇口、 检验、 包装等。 工艺路线 见图 2。
注塑: 按产品要求开制注塑模具, 选定所需要锁模力的注塑机, 无级调速多级注塑。 转送上线: 注塑件经机械手下件后, 放置在转送带上线。
烘烤: 经烘烤, 基板与底涂层、 面涂层有更好的结合力。
前处理: 静电除尘, 即中和零件表面静电, 用高速气流带走零件表面灰尘, 然后再采用 毛刷特别是鸵鸟毛毛刷机械作用于零件表面, 通过扰动冲刷作用, 使零件表面灰尘脱离, 并 且被气流带走, 最后采用干冰对注塑体进行清洗, 保障工件清洁进入下道工序。 使前处理进 行彻底, 以防止其表面硬度、 强度和耐腐蚀性能受影响, 提高其使用寿命。
底涂: 用高固体含量的 UV漆喷涂到工件表面。
UV固化: 用紫外光使工件表面的 UV漆固化成膜。
烫印: 利用工装掩盖下道工序要镀纳米金属层的区域, 然后在工件表面烫黑膜或印刷彩 色膜层。
第一次镀: 用磁控溅射法或真空蒸镀法, 镀制纳米铟合金层, 严格控制其厚度在 30nm 且表面电阻大于 20兆欧 /口。 第二次镀: 用中频率孪生靶磁控溅射法或电子束真空蒸镀法, 镀制二氧化硅薄膜, 厚度 为 150nm。
喷涂: 在二氧化硅薄膜表面再喷涂高固体含量的 UV漆或 PU漆; 在基板 PC的另一表面 也喷涂高固体含量的 UV漆或 PU漆或真空镀膜。
UV固化: 如果面涂为 UV漆, 则要经紫外光照射固化。
点胶: 用点胶法使聚碳酸酯底座与前盖紧密结合。
铣浇口: 把注塑体上多余的料柄铣切去掉。
转送下线: 产品经机械手放置在转送带上, 送往检验包装工序。
检验包装: 产品经检验合格后贴上标识, 送至产品仓库。
经检测, 所制备的雷达保护罩使雷达发射的毫米波来回穿越该保护罩的衰减率为 2db以 下。 实施例三
某型号汽车的雷达保护罩,包括带有前表面和后表面的基板。 基板材料为透明耐热抗冲 击、 综合性能优良的塑性材料, 例如聚碳酸酯板。 对基板的两个表面分别进行处理, 该雷达 保护罩的剖面结构见图 1。
基板 1和底座 7表面处理后通过粘结剂或二次注塑方式相互连接, 基板 1和底座 7的总 厚度为 5mm。
加强层 2采用高固体含量的 UV漆或 PU漆, 喷涂在工件表面, 厚度控制在 18微米。 UV 漆需用紫外光照射固化。
有色层 3为烫印黑膜或印刷彩色膜层, 根据实际需要而定, 厚度为 0. 6微米。
纳米金属层 4为含 3% (质量分数) 镓的铟合金, 铟和银的纯度都为 99. 99%。 该膜层厚 度为 50纳米。 其作用是具有良好的金属光泽和可见光反射率, 同时雷达发射的毫米波来回 穿越该保护罩时衰减率很小。
纳米金属层 4很薄, 厚度为 50nm, 膜层的微观结构以 "岛屿"结构为主, 从而保证具 有很高的电阻, 对来回穿越的雷达毫米波衰减率很小。
薄膜的导电性与电子平均自由程 A f和膜厚 t有关。 在 t< A f时, 如果膜层为岛状, 则 电阻率极大, 当 t增大到数十纳米后, 电阻率急剧下降; 当 t A f时, 薄膜的电阻率与体 材料接近, 但比体材料大。
氧化物保护层 5为二氧化硅薄膜, 厚度为 120纳米, 其作用主要是保护纳米金属层。 涂料保护层 6采用高固体含量的 UV漆或 PU漆, 喷涂在工件表面, 厚度控制在 20微 米。 uv漆需用紫外光照射固化。 本产品的制造工艺主要有注塑、 前处理、 喷涂及固化、 烫印、 磁控溅射镀或真空蒸发 镀、 中频率孪生靶磁控溅射法或电子束真空蒸镀法、 喷涂或固化、 点胶、 铣浇口、 检验、 包 装等。 工艺路线见图 2。
注塑: 按产品要求开制注塑模具, 选定所需要锁模力的注塑机, 无级调速多级注塑。 转送上线: 注塑件经机械手下件后, 放置在转送带上线。
烘烤: 经烘烤, 基板与底涂层、 面涂层有更好的结合力。
前处理: 静电除尘, 即中和零件表面静电, 用高速气流带走零件表面灰尘, 然后再采用 毛刷特别是鸵鸟毛毛刷机械作用于零件表面, 通过扰动冲刷作用, 使零件表面灰尘脱离, 并 且被气流带走, 最后采用干冰对注塑体进行清洗, 保障工件清洁进入下道工序。 使前处理进 行彻底, 以防止其表面硬度、 强度和耐腐蚀性能受影响, 提高其使用寿命。
底涂: 用高固体含量的 UV漆喷涂到工件表面。
UV固化: 用紫外光使工件表面的 UV漆固化成膜。
烫印: 利用工装掩盖下道工序要镀纳米金属层的区域, 然后在工件表面烫黑膜或印刷彩 色膜层。
第一次镀: 用磁控溅射法或真空蒸镀法, 镀制纳米铟合金层, 严格控制其厚度在 50nm 且表面电阻大于 20兆欧 /口。
第二次镀: 用中频率孪生靶磁控溅射法或电子束真空蒸镀法, 镀制二氧化硅薄膜, 厚度 为 120nm。
喷涂: 在二氧化硅薄膜表面再喷涂高固体含量的 UV漆或 PU漆; 在基板 PC的另一表面 也喷涂高固体含量的 UV漆或 PU漆或真空镀膜。
UV固化: 如果面涂为 UV漆, 则要经紫外光照射固化。
点胶: 用点胶法使聚碳酸酯底座与前盖紧密结合。
铣浇口: 把注塑体上多余的料柄铣切去掉。
转送下线: 产品经机械手放置在转送带上, 送往检验包装工序。
检验包装: 产品经检验合格后贴上标识, 送至产品仓库。
经检测, 所制备的雷达保护罩使雷达发射的毫米波来回穿越该保护罩的衰减率为 2db以 下。 实施例四 同实施例一, 不同的是第一次真空蒸镀纳米铟合金层的工艺是在真空度为 1 X 10— 2Pa的 真空度下连续进行三个阶段蒸发, 第一阶段蒸发是在 1. 5伏下蒸发 10s, 第二阶段蒸发是在 3. 5伏下蒸发68, 第三阶段是在 5. 5伏下蒸发 3s, 镀制厚度为 5nm的纳米金属层 4。
第二次真空蒸镀法镀制所述二氧化硅薄膜的具体方法是;
① 将基板与膜料放入真空室内, 关闭真空室门, 抽气到 5 X 10— 3Pa;
② 开启磁场电源, 调到预定的磁场电流, 确定磁场强度, 以保证电子束能打到坩埚 上;
③ 开启灯丝加热电源, 加热灯丝;
④ 开启电子枪的高压加速电源, 电压调到 6KV;
⑤ 调节灯丝的加热电流和磁场电流, 使电子束斑点位于坩埚中央;
⑥ 调节束流扫描控制器, 以 x-y横纵双向驱动束流, 并且调节振幅和频率;
⑦ 在加速电压 6KV、 束流 0. 3A、 沉积速率 0. 3nm/s的参数下蒸镀二氧化硅薄膜;
⑧ 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 lOOnm时镀膜结束。
由于热蒸发的原子或分子在沉积时能量很低, 约为 0. 2ev, 其表面迁移率也就很低, 加 上已经沉积的原子或分子对后来沉积的原子或分子会造成阴影效果, 使蒸镀薄膜呈含有较多 孔隙的柱状颗粒聚集体结构, 二氧化硅薄膜的保护作用显著降低。 因此在二氧化硅薄膜过程 中采用离子束辅助沉积法 (Ion beam assisted exposition,简写 IBAD), 可显著提高二氧 化硅薄膜致密度和附着力, 从而大大增强二氧化硅薄膜的保护作用。
在二氧化硅沉积过程中采用离子束辅助沉积法以提高二氧化硅薄膜的致密度和附着力, 具体是:
a.在真空室内放置离子源, 工作电流 16A, 放电功率 100W, 工作气体为氩气; b . 离子束辅助沉积所用的离子束能量为 400ev的氩离子束, 在镀膜前先用所述氩离子 束对所述基板进行轰击 lmin, 使所述基板表面清洁和活化;
c 在沉积二氧化硅薄膜的同时, 用 400ev的氩离子束轰击沉积表面;
d. 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 lOOnm时镀膜结束。
在沉积二氧化硅薄膜的同时, 用 400ev的氩离子束轰击沉积表面; 通过离子与成膜原子 的动量交换和界面混合, 从而显著提高二氧化硅膜层的致密度和附着力。 实施例五
同实施例一, 不同的是第一次真空蒸镀纳米铟合金层的工艺是在真空度为 2 X 10— 2Pa的 真空度下连续进行三个阶段蒸发, 第一阶段蒸发是在 2. 5伏下蒸发 12s, 第二阶段蒸发是在 4. 5伏下蒸发6-108, 第三阶段是在 6. 5伏下蒸发 4s。
第二次真空蒸镀法镀制所述二氧化硅薄膜的具体方法是;
① 将基板与膜料放入真空室内, 关闭真空室门, 抽气到 8 X 10— 3Pa;
② 开启磁场电源, 调到预定的磁场电流, 确定磁场强度, 以保证电子束能打到坩埚 上;
③ 开启灯丝加热电源, 加热灯丝;
④ 开启电子枪的高压加速电源, 电压调到 30KV;
⑤ 调节灯丝的加热电流和磁场电流, 使电子束斑点位于坩埚中央;
⑥ 调节束流扫描控制器, 以 x-y横纵双向驱动束流, 并且调节振幅和频率;
⑦ 在加速电压 30KV、 束流 1A、 沉积速率 0. 4nm/s的参数下蒸镀二氧化硅薄膜;
⑧ 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 150nm时镀膜结束。
由于热蒸发的原子或分子在沉积时能量很低, 约为 0. 2ev, 其表面迁移率也就很低, 加 上已经沉积的原子或分子对后来沉积的原子或分子会造成阴影效果, 使蒸镀薄膜呈含有较多 孔隙的柱状颗粒聚集体结构, 二氧化硅薄膜的保护作用显著降低。 因此在二氧化硅薄膜过程 中采用离子束辅助沉积法 (Ion beam assisted exposition,简写 IBAD), 可显著提高二氧 化硅薄膜致密度和附着力, 从而大大增强二氧化硅薄膜的保护作用。
在二氧化硅沉积过程中采用离子束辅助沉积法以提高二氧化硅薄膜的致密度和附着力, 具体是:
a.在真空室内放置离子源, 工作电流 20A, 放电功率 150W, 工作气体为氩气; b . 离子束辅助沉积所用的离子束能量为 800ev的氩离子束, 在镀膜前先用所述氩离子 束对所述基板进行轰击 3min, 使所述基板表面清洁和活化;
c 在沉积二氧化硅薄膜的同时, 用 800ev的氩离子束轰击沉积表面;
d. 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 150nm时镀膜结束。
在沉积二氧化硅薄膜的同时, 用 800ev的氩离子束轰击沉积表面; 通过离子与成膜原子 的动量交换和界面混合, 从而显著提高二氧化硅膜层的致密度和附着力。
对比实施例一
同实施例一, 不同的是纳米金属层 4为锌金属层, 厚度为 80nm。 经检测, 所制备的雷 达保护罩使雷达发射的毫米波来回穿越该保护罩的衰减率为 3%以上。
本具体实施例仅仅是对本发明的解释, 其并不是对本发明的限制, 本领域技术人员在阅 读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改, 但只要在本发明的权 利要求范围内都受到专利法的保护。

Claims

权 利 要 求 书
1.一种雷达保护罩的制备方法, 其特征在于依次包括步骤:
(1) 前处理: 对基板 (1) 进行除尘清洁;
(2) 烫印: 掩盖下道工序要镀纳米金属层的区域, 然后在基板 (1) 上烫印或印刷有 色层 (3);
(3) 第一次镀: 采用磁控溅射法或真空蒸镀法在所述有色层 (3) 周围未烫印或印刷 的区域镀制纳米铟合金层, 形成厚度为 5-50nm的纳米金属层 (5);
(4) 喷涂及固化: 在所述纳米金属层 (4) 上喷 UV漆或 PU漆, 固化后形成涂料保护 层 (6);
(5) 面涂或真空镀: 在所述基板 (1) 的另一表面上喷涂 UV漆或 PU漆或真空镀膜形 成加强层 (2)。
2. 根据权利要求 1所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (1) 前 处理具体是先将所得注塑体先静电除尘, 然后用毛刷除尘, 最后采用干冰清洗。
3. 根据权利要求 2所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (2) 掩 盖下道工序要镀纳米金属层的区域, 然后在基板 (1) 上烫印或印刷 0.1-1微米厚度的黑膜或 彩色膜层形成有色层 (3)。
4. 根据权利要求 3所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (3) 纳 米金属层 (4) 的金属成分为铟及占质量百分数为 0-10%的锡、 镓、 银、 锗的一种或多种。
5. 根据权利要求 4所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (3) 采 用磁控溅射法或真空蒸镀法在所述有色层 (3) 上形成岛状结构的、 厚度为 5-50nm且表面电 阻大于 20兆欧 /口的纳米铟合金层。
6. 根据权利要求 5所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (3) 纳 米金属层 (4) 的金属成分为含 5%质量银的铟合金。
7. 根据权利要求 6所述的一种雷达保护罩的制备方法, 其特征在于: 采用真空蒸镀法镀 制所述纳米金属层 (4) 的工艺是在真空度为 (1-2) X 10— 2Pa的真空度下连续进行三个阶段蒸 发, 第一阶段蒸发是在 1.5-2.5伏下蒸发 10-12s, 第二阶段蒸发是在 3.5-4.5伏下蒸发 6- 10s, 第三阶段是在 5.5-6.5伏下蒸发 3-4s。
8. 根据权利要求 1-7任一项所述的一种雷达保护罩的制备方法, 其特征在于: 所述制备 方法还包括在所述第一次镀之后进行第二次镀: 采用中频孪生靶磁控溅射法或电子束真空蒸 镀法在所述纳米金属层 (4) 上镀制厚度为 100-150nm的氧化物保护膜, 形成氧化物保护层
(5)。
9. 根据权利要求 8所述的一种雷达保护罩的制备方法, 其特征在于: 所述氧化物保护膜 为二氧化硅薄膜。
10. 根据权利要求 9所述的一种雷达保护罩的制备方法, 其特征在于: 采用电子束真空 蒸镀法镀制所述二氧化硅薄膜的设备中, 主体部件是包括电子枪、 磁场线圈和坩埚的蒸发 源, 所述电子枪包括发射电子的灯丝、 汇聚电子的聚焦极和加速电子的阳极; 所述磁场线圈 与加速电场相垂直。
11. 根据权利要求 10所述的一种雷达保护罩的制备方法, 其特征在于: 所述电子枪的灯 丝并联高压加速电源的负极, 电压为 6-30KV, 电子在高压电场作用下加速运动形成电子束, 束流为 0. 3-1Α。
12. 根据权利要求 11所述的一种雷达保护罩的制备方法, 其特征在于: 所述坩埚为无氧 铜坩埚。
13. 根据权利要 9-12任一项所述的一种雷达保护罩的制备方法, 其特征在于: 采用真空 蒸镀法镀制所述二氧化硅薄膜的方法是:
① 将基板与膜料放入真空室内, 关闭真空室门, 抽气到 (5-8 ) X 10¾;
② 开启磁场电源, 调到预定的磁场电流, 确定磁场强度, 以保证电子束能打到坩埚上;
③ 开启灯丝加热电源, 加热灯丝;
④ 开启电子枪的高压加速电源, 电压调到 6-30KV;
⑤ 调节灯丝的加热电流和磁场电流, 使电子束斑点位于坩埚中央;
⑥ 调节束流扫描控制器, 以 x-y横纵双向驱动束流, 并且调节振幅和频率;
⑦ 在加速电压 6-30KV、 束流 0. 3-1Α、 沉积速率 0. 3-0. 4nm/s的参数下蒸镀二氧化硅薄 膜;
⑧ 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 100-150nm时镀膜结束。
14. 根据权利要求 13所述的一种雷达保护罩的制备方法, 其特征在于: 在二氧化硅沉积 过程中采用离子束辅助沉积法以提高二氧化硅薄膜的致密度和附着力, 具体是:
a.在真空室内放置离子源, 工作电流 16-20A, 放电功率 100-150W, 工作气体为氩气; b . 离子束辅助沉积所用的离子束能量为 400-800ev的氩离子束, 在镀膜前先用所述氩离 子束对所述基板进行轰击 l-5min, 使所述基板表面清洁和活化;
c 在沉积二氧化硅薄膜的同时, 用 400-800ev的氩离子束轰击沉积表面;
d. 用石英晶体振荡膜厚仪控制二氧化硅薄膜的沉积厚度, 至 100-150nm时镀膜结束。
15. 根据权利要求 8所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (4) 在 所述氧化物保护层 (5) 上喷涂 10-25微米厚度的 UV漆或 PU漆形成涂料保护层 (6)。
16. 根据权利要求 8所述的一种雷达保护罩的制备方法, 其特征在于: 所述步骤 (5) 在 所述基板 (1) 的另一表面上喷涂 10-25微米厚度的 UV漆或 PU漆或真空镀膜形成加强层
(2)。
17. 根据权利要求 1-7任一项所述的一种雷达保护罩的制备方法, 其特征在于: 所述制 备方法还包括在前处理步骤之前进行烘烤。
18. 根据权利要求 1-7 任一项所述的一种雷达保护罩的制备方法, 其特征在于: 所述雷 达保护罩还包括设置在所述基板 (1) 后方的底座 (7), 所述基板 (1) 和所述底座 (7) 为聚 碳酸酯板, 所述基板 (1) 和所述底座 (7) 通过点胶法进行紧密结合。
PCT/CN2014/077839 2014-05-20 2014-05-20 一种雷达保护罩的制备方法 WO2015176219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077839 WO2015176219A1 (zh) 2014-05-20 2014-05-20 一种雷达保护罩的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077839 WO2015176219A1 (zh) 2014-05-20 2014-05-20 一种雷达保护罩的制备方法

Publications (1)

Publication Number Publication Date
WO2015176219A1 true WO2015176219A1 (zh) 2015-11-26

Family

ID=54553177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077839 WO2015176219A1 (zh) 2014-05-20 2014-05-20 一种雷达保护罩的制备方法

Country Status (1)

Country Link
WO (1) WO2015176219A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328358B1 (en) * 1998-09-24 2001-12-11 Daimlerchrysler Ag Cover part located within the beam path of a radar
EP1750329A1 (de) * 2005-07-30 2007-02-07 Hella KG Hueck & Co. Radom für ein Radarsystem eines Kraftfahrzeugs und Verfahren zur Herstellung eines Radoms
CN1838482B (zh) * 2005-03-25 2010-05-12 丰田自动车株式会社 用于雷达装置的射束路径中的金属光泽层装饰成形品
CN102390134A (zh) * 2011-09-23 2012-03-28 湖州金泰科技股份有限公司 一种聚碳酸酯制品
CN103367913A (zh) * 2012-04-06 2013-10-23 湖州赫特金泰汽车零部件有限公司 一种雷达保护罩的制造方法
CN103380539A (zh) * 2011-02-22 2013-10-30 丰田自动车株式会社 装饰涂层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328358B1 (en) * 1998-09-24 2001-12-11 Daimlerchrysler Ag Cover part located within the beam path of a radar
CN1838482B (zh) * 2005-03-25 2010-05-12 丰田自动车株式会社 用于雷达装置的射束路径中的金属光泽层装饰成形品
EP1750329A1 (de) * 2005-07-30 2007-02-07 Hella KG Hueck & Co. Radom für ein Radarsystem eines Kraftfahrzeugs und Verfahren zur Herstellung eines Radoms
CN103380539A (zh) * 2011-02-22 2013-10-30 丰田自动车株式会社 装饰涂层
CN102390134A (zh) * 2011-09-23 2012-03-28 湖州金泰科技股份有限公司 一种聚碳酸酯制品
CN103367913A (zh) * 2012-04-06 2013-10-23 湖州赫特金泰汽车零部件有限公司 一种雷达保护罩的制造方法

Similar Documents

Publication Publication Date Title
CN103956573B (zh) 一种雷达保护罩的制备方法
US11891700B2 (en) Cold spray metallic coating and methods
US5135773A (en) Method of chemically etching an article of thermoplastic resin and conductive filler, rinsing the article, and electrostatically spray coating it
RU2477339C2 (ru) Способ нанесения металлического покрытия и элемент конструкции летательного аппарата
EP3614403B1 (en) Method for preparing rare earth permanent magnet material
KR20080053439A (ko) 유기 el 디스플레이 및 그 제조 방법
JPH04359932A (ja) 加速プラズマ又はイオンによる表面改質
CA2686242A1 (en) Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made there from
US20230212756A1 (en) Molding composite part with metal layer
Behera et al. Magnetron sputtering for development of nanostructured materials
CN103956574B (zh) 一种雷达保护罩
EP2315495B1 (en) Process to apply heater function to plastic glass
WO2015176219A1 (zh) 一种雷达保护罩的制备方法
WO2015176217A1 (zh) 一种雷达保护罩
CN111378964A (zh) 一种超音速激光沉积制备纳米碳管增强涂层的方法
CN104419896A (zh) 用于制造金属膜的方法
US9039872B2 (en) Method for producing a transparent and conductive metal oxide layer by highly ionized pulsed magnetron sputtering
KR101306224B1 (ko) 고속성막장치 및 이를 이용한 성막방법
TWI438295B (zh) 具有均勻隨機結晶定向之細粒非帶狀耐熔金屬濺擊目標,製造此膜之方法,及由此製造之薄膜式裝置及產品
KR101028514B1 (ko) 태양광 차단용 필름의 제조 방법
KR960000481B1 (ko) 플라스틱에 전자파 방해 차단용 금속 피막 형성방법
US20230313384A1 (en) Composite laminates with metal layers and methods thereof
US20120225297A1 (en) Gas/plasma spray coating
CN113817988A (zh) 一种pvd复合镀膜的生产工艺
Tupik et al. Improving the quality of nanofilms produced by magnetron sputtering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892518

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892518

Country of ref document: EP

Kind code of ref document: A1