WO2015176197A1 - 一种油品深度脱水的方法及装置 - Google Patents

一种油品深度脱水的方法及装置 Download PDF

Info

Publication number
WO2015176197A1
WO2015176197A1 PCT/CN2014/000688 CN2014000688W WO2015176197A1 WO 2015176197 A1 WO2015176197 A1 WO 2015176197A1 CN 2014000688 W CN2014000688 W CN 2014000688W WO 2015176197 A1 WO2015176197 A1 WO 2015176197A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
layer
fiber
shaped
Prior art date
Application number
PCT/CN2014/000688
Other languages
English (en)
French (fr)
Inventor
杨强
卢浩
许萧
王朝阳
杨森
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2015176197A1 publication Critical patent/WO2015176197A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/06Dewatering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to the field of dehydration of petrochemical oils, and in particular to a method and apparatus for deep dewatering of oil products. Background technique
  • Oily water content has a major impact on the safe use of petrochemical production equipment and subsequent refined oil products.
  • the water content in crude oil will increase the transportation volume, and more importantly, it will bring difficulties to crude oil processing, and increase the atmospheric and vacuum distillation.
  • the energy consumption of the device Since the relative molecular energy of water is much smaller than the relative molecular energy of oil, the volume increases rapidly after gasification, so that the pressure drop of the system increases, and the power consumption increases accordingly. Therefore, if the water content in the oil is high, the operation of the device fluctuates, resulting in Punch tower. And the inorganic salts (Cal l2, MgC12) brought in by water will also aggravate the corrosion of the device.
  • the water content in the light fuel oil will increase the freezing point and crystallization point, which will result in the low temperature hydrodynamic deterioration of the oil, causing the oil to analyze the ice particles at low temperature and block the filter and oil circuit, especially in aviation coal and diesel oil.
  • the water content will cause the oil supply to be interrupted and cause a serious accident.
  • Water in the lubricating oil will damage the lubricating film, making the lubrication not work properly and increasing the wear of the parts.
  • the inorganic salts brought in by the water also increase the corrosiveness of the lubricating oil and increase the corrosion of the parts. When using an aqueous lubricating oil to work in a relatively high temperature environment, the lubricating film is destroyed by vaporization of water.
  • the catalyst will be poisoned. Because the excessive water in the oil occupies the acid center of the catalyst, the balance of the acid center metal center is destroyed, and the activity of the catalyst is degraded or even deactivated, which affects the service life of the catalyst.
  • the water in the petroleum product evaporates, it absorbs heat, which will reduce the calorific value; the water in the light shield oil will deteriorate the combustion process, and can bring the dissolved salt into the cylinder to generate carbon deposits and increase the wear of the cylinder; At low temperatures, the water in the fuel will form water, block the fuel conduit and the filter, and hinder the fuel supply to the fuel system of the generator. Water in the petroleum product will accelerate the oxidation of the oil.
  • the main techniques for dehydration of oil physical means are gravity sedimentation, cyclone separation, coalescence filtration, etc., and dehydration by other means such as salt adsorption, flash evaporation, electric field separation and the like.
  • gravity sedimentation it can mainly remove the clear water in the oil, that is, the free water droplets with the particle size larger than ⁇ ⁇ , and the water droplets below ⁇ ⁇ cannot be effectively separated and removed;
  • the cyclone separation technology is suitable for the rapid water containing a large amount of water.
  • water droplets and emulsified water droplets below 15 ⁇ cannot be effectively separated.
  • the potential energy is converted into rotational kinetic energy for separation, and the energy consumption is relatively high.
  • Patent ZL01823742. 8 oil dehydrator discloses a method for oil dehydration by using a membrane, but there is a problem of high cost of use and easy to be contaminated and damaged;
  • the patent application No. 200810042145. 2 discloses a method and a device for dehydrating diesel oil.
  • the patent adopts the cyclone method for separation. Due to the technical characteristics of cyclonic separation, it can only be applied to the separation of free water droplets above 15 ⁇ , and the operation pressure drop is large, and the oil can be efficiently degraded with high efficiency and low consumption;
  • ZL201010145423. 4 discloses a heavy oil and coal tar dewatering machine, which is dewatered by drum evaporation, has relatively high energy consumption and is complicated to operate, and is only suitable for oil dehydration process of a specific medium.
  • ZL200910065725. 8 discloses an electric field. Dehydration method and device, A method and apparatus for dehydration by ultrasonic technology is disclosed in the patent 201010261697.
  • the patent application No. 201310352748. 3 discloses a method for dewatering heavy oil by filtration-swirl-coalescence-swirl method.
  • the above patented technology is only applicable in certain occasions, and has the problems of high energy consumption and narrow adaptation range, and also fails to meet the requirements of deep dewatering of oil products.
  • the present invention provides a method and apparatus for deep dewatering of oil products, and the specific technical solutions are as follows:
  • a method for deep dewatering of oil comprising the following steps:
  • the oil containing trace water is rectified by a fluid rectifier to uniformly distribute the fluid in a radial cross section of the fluid flow; the concentration of trace water in the oil is not more than 1000 mg/L, and the trace water is The water droplets have a particle size of 0.1 to 30 ⁇ and an operating temperature of 5 to 99 ° C;
  • the rectified trace water-containing oil product uniformly enters the X-shaped braid layer formed by interlacing the hydrophilic oleophobic fiber and the oleophilic hydrophobic fiber, and the trace water droplets are captured and aggregated in the X-shaped braid layer. Demulsification and separation of emulsions in the form of large and small water-in-oil. After the process, the particle size of the water droplets grows to 10 ⁇ 50 ⁇ ;
  • step (3) The oil after coalescence separation in step (2) enters the corrugated strengthening separation layer to rapidly grow and separate the water droplets, and the water content of the oil is reduced to 200 mg/L after the process;
  • the oil separated by the step (3) enters the omega-shaped braided layer of the hydrophilic oleophobic fiber and the oleophilic hydrophobic fiber before the outlet, and the undivided dispersed water droplets in the oil are in the ⁇ -shaped braid layer and The emulsified water droplets are deeply replenished and separated, and the water content in the oil is reduced to 20 mg/L after the process.
  • the fluid rectifier is a porous uniformly porous plate, and the hole is a circular hole or a square hole.
  • the opening ratio is 60% or more, and the opening ratio is a percentage of the area of the opening area.
  • the hydrophilic oleophobic fiber in the X-shaped woven layer of the step (2) has an angle of 25 to 60 degrees (clockwise) with respect to the horizontal line, and the X-shaped fiber woven layer fills the entire fluid in one or more pieces.
  • the cross section of the flow is not limited to.
  • the water droplets are subjected to a longer force when the horizontal moving distance is equal, and are more likely to be separated.
  • the angle between the hydrophilic and oleophobic fibers and the horizontal line is between 45 and 60 degrees, it has a good effect on the rapid separation of the dispersed water droplets. Because of the large horizontal angle, the water droplets can more quickly follow the hydrophilicity during horizontal movement. The fibers move down and are quickly separated.
  • the spacing a of the adjacent two oleophilic hydrophobic fibers in the X-shaped woven layer is 1 to 3 times that of the if if giant b of the adjacent two hydrophilic and oleophobic fibers.
  • the corrugated reinforcing separation layer in the step (3) is a hydrophilic material, wherein the corrugated plate has a pitch of 5 to 25 mm, and the trough is provided with a circular hole having a diameter of 5 to 10 ,, and the spacing between the circular holes. Wake up for 50 ⁇ 300.
  • the ratio of the number of the hydrophilic oleophobic fibers to the oleophilic hydrophobic fibers in the ⁇ -shaped woven layer of the step (4) is 3: 2 to 7: 1, and the area of the ⁇ -shaped woven layer is 30 of the fluid flow cross-sectional area.
  • the ⁇ -shaped braid layer is pre-applied to the ⁇ -shaped weaving to focus on the adsorption of the hydrophilic oleophobic fiber, and the ⁇ -shaped woven contact point is
  • the hydrophilic fiber is horizontally corrugated along the direction of oil flow, especially small
  • the water droplets have the function of guiding traction and adsorption, and in the movement to the concave position, the water droplets can accumulate and grow, and then the smaller amount of water droplets in the outlet oil are captured and separated to achieve the effect of deep dehydration, as shown in FIG. .
  • the oleophilic hydrophobic fiber is selected from the group consisting of modified polypropylene, Teflon, and nylon, and the hydrophilic oleophobic fiber is selected from the group consisting of metal and ceramic.
  • a device for implementing any of the above methods comprising a casing, an oil inlet, a fluid rectifier, a fiber coalescing separation layer, a corrugated strengthening separation layer, a fiber coalescence replenishing layer, a water pack, and a purified oil phase outlet;
  • the oil inlet is at an upper end of the casing
  • the purified oil phase outlet is at an upper end of the casing
  • the water is wrapped in a lower portion of the casing, the water bag and the water
  • the purified oil phase outlets are disposed opposite to each other with a slight deviation
  • the water bag has a liquid level meter
  • the bottom of the water bag is provided with a water phase outlet
  • the binding layer is located inside the casing and is arranged in a non-contiguous manner, wherein the fluid rectifier is adjacent to the oil inlet, and the area of the fiber coalescence supplement layer is 30 ⁇ of the fluid flow cross-sectional area. 80% and in the upper section of the fluid flow.
  • the housing is a horizontal round can, or a horizontal rectangular can.
  • the fiber coalescing separation layer is an X-shaped braid layer formed by weaving a oleophilic hydrophobic fiber and a hydrophilic oleophobic fiber, wherein the angle between the hydrophilic oleophobic fiber and the horizontal line is 25 degrees to 60 degrees; and, two adjacent The spacing a of the oleophilic hydrophobic fibers is 1 to 3 times the distance b between two adjacent hydrophilic and oleophobic fibers;
  • the fiber coalescence supplement layer is an omega-shaped braid layer formed by weaving hydrophilic oleophobic fibers and oleophilic hydrophobic fibers, wherein the ratio of the hydrophilic oleophobic fibers to the oleophilic hydrophobic fibers is 3: 2 to 7: 1. Due to the small water content in the oil, the greater the proportion of hydrophilic fibers, the greater the probability of capturing water droplets, and the lower content of water droplets attached to the oil droplets in tiny particles. Therefore, the proportional control is best when it is 1 to 3 times, because some of them need to be separated by the action of hydrophilic oleophobic and oleophilic hydrophobic fiber nodes, and the efficiency is more than 3 times, and the efficiency is not increased. The proportion of water-based fibers is costly and meaningless.
  • the corrugated reinforced separation layer is made of a hydrophilic material, wherein the corrugated plate has a pitch of 5 to 25 mm, and a circular hole having a diameter of 5 to 10 mm is opened at the trough, and the spacing between the circular holes is 50 to 300 ⁇ .
  • the water droplets have been agglomerated and grown in the upper stage. During the corrugation flow, the water droplets accumulate in the concave portion of the corrugated plate due to the high density, and rapidly grow up to sink larger and larger.
  • the invention has the beneficial effects that the fluid is uniformly distributed, the hydrophilic oleophobic and the oleophilic hydrophobic are woven in different combinations, and the demulsification, coalescence and water droplets are quickly guided to sink and separate, and the oil contains water droplets.
  • the characteristics are combined in a targeted separation form, which is characterized by high efficiency and low consumption, and is suitable for the oil dehydration process of different processes.
  • Figure 1 is a schematic diagram of the principle of demulsification separation
  • Figure 2 is a schematic view showing the deep water removal of the ⁇ -shaped braid layer
  • Figure 3 is a schematic structural view of a X-shaped braid layer
  • Figure 4 is a schematic view showing the separation of water droplets on the X-shaped braid layer
  • Figure 5 is a schematic illustration of a weaving process for forming an omega-shaped braided layer of hydrophilic oleophobic fibers and oleophilic hydrophobic fibers;
  • Fig. 6 is a schematic view showing the structure of a device suitable for deep dewatering of oil containing a trace amount of water.
  • FIG. 6 A schematic structural view of the above apparatus is shown in FIG. 6, and includes a casing 1, an oil inlet 2, a fluid rectifier 3, an X-shaped braid layer 4 (fiber coalescing separation layer), a corrugated strengthening separation layer 5, and an ⁇ -shaped braid layer 6 ( Fiber coalescence complement layer), water bag 10 and purified oil phase outlet 7;
  • the oil inlet 2 is at the upper end of the casing 1
  • the purified oil phase outlet 7 is at the other end of the casing 1
  • the water bag 10 is at the lower portion of the casing 1
  • the water bag 10 is opposite or slightly opposite the purified oil phase outlet 7.
  • the water bag 10 has a liquid level meter 8 and the bottom of the water bag 10 is provided with a water phase outlet 9; the fluid rectifier 3, the X-shaped braid layer 4, the corrugated strengthening separation layer 5, and the ⁇ -shaped braid layer 6 are located in the shell
  • the interior of the body 1 is arranged in a non-contiguous manner, wherein the fluid rectifier 3 is adjacent to the oil inlet 2, and the area of the ⁇ -shaped braid layer 6 is 30 to 80% of the cross-sectional area of the fluid flow and is in the upper cross section of the fluid flow.
  • the casing 1 of Fig. 6 of the present embodiment is a horizontal circular can, and a horizontal rectangular can is also used.
  • FIG. 3 The schematic diagram of the structure of the X-shaped braid layer 4 is shown in FIG. 3, wherein the angle between the hydrophilic and oleophobic fibers and the horizontal line may be 25 degrees to 60 degrees; the spacing a of the adjacent two oleophilic hydrophobic fibers is two adjacent ones. 1 to 3 times the pitch b of the hydrophilic and oleophobic fibers;
  • Fig. 1 is a schematic view showing the principle of demulsification separation of the fluid on the X-shaped braid layer 4
  • Fig. 4 is a schematic view showing the separation of water droplets on the X-shaped braid layer 4.
  • FIG. 2 is a schematic diagram of the deep water removal of the ⁇ -shaped braid layer
  • FIG. 5 is a schematic diagram of the weaving process of forming the ⁇ -shaped braid layer by the hydrophilic oleophobic fiber and the oleophilic hydrophobic fiber, wherein the ratio of the hydrophilic oleophobic fiber to the oleophilic hydrophobic fiber is 3: 2-7: 1.
  • the above-mentioned device is used for deep degreasing of wastewater containing low concentration of slop oil.
  • the specific operation process and effects are described as follows: Operating conditions:
  • the oil content in the sewage after degreasing is not more than 80 mg/L.
  • Scheme selection In this scheme, the diesel water content is low, and the sedimentation is separated at the initial stage. Therefore, most of the water droplets are in the form of tiny particles in the diesel oil. Because the oil content needs to be stable to 80mg/L, the fluid rectifier and X shape are used. A combination of fiber braid separation, corrugation-strength separation, and o-shaped fiber braid depth separation is processed.
  • 40° (As shown in Figure 3, the spacing between two adjacent oleophilic hydrophobic fibers is a, the spacing between two adjacent hydrophilic and oleophobic fibers is b; ⁇ is hydrophilic and oleophobic The angle between the fiber and the horizontal line), the angle is suitable for the high-efficiency, rapid replenishment coalescence and rapid diversion separation of the water droplets, and has a partial demulsification effect on the emulsified water droplets; the corrugated reinforcing separation corrugated plate is made of 316L material, and the corrugated plate spacing is 15 let.
  • the water content in the diesel oil is low, so the ratio of the amount of the hydrophilic oleophobic fiber to the oleophilic hydrophobic fiber of the ⁇ -shaped fiber woven layer is 2. 5: 1 , suitable for the demulsification separation and oil of the water droplets which are not demulsified. The addition and separation of trace amounts of water droplets in the product.
  • the X-shaped fiber weaving layer is adopted.
  • the demulsification of the agglomerated and partially emulsified water droplets can also take into account that the difference in density between the diesel and the water is small, and the smaller angle is advantageous for the separation of the water droplets;
  • the corrugated reinforced separation section corrugated board is made of 316L material shield, and the corrugated board has a spacing of 18mm.
  • the ratio of the hydrophilic oleophobic fiber to the oleophilic hydrophobic in the ⁇ -shaped fiber woven layer is 2: 1, which is suitable for the complementary separation of trace water droplets in the oil.
  • the water content of the oil is 45 ⁇ 65mg/L, and the stability is less than 80mg/L.
  • the inlet and outlet pressure drop is 0. OlMPa, energy consumption is higher. Low, meeting design operating conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Removal Of Floating Material (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种油品深度脱水的方法,包括如下步骤:含微量水的油品首先通过整流器使流体均布,其次通过一段或者几段以X形编织的亲油疏水和亲水疏油纤维编织层,接着通过波纹强化沉降分离,最后再通过一段以Ω形编织的亲油疏水和亲水疏油纤维编织层。一种用于上述方法的装置,包括壳体(1)、油品入口(2)、流体整流器(3)、X型编织层(4)、波纹强化分离层(5)、Ω形编织层(6)、水包(10)及净化油相出口(7)。所述方法和装置分离效率高、能耗小、连续运转周期长,可广泛应用于各个含微量水的油品深度脱水过程。

Description

一种油品深度脱水的方法及装置 技术领域 本发明属于石油化工油品脱水领域,具体涉及一种油品深度脱水的方 法及装置。 背景技术
油品含水对石油化工生产装置及后续成品油在发动机的安全使用都 有着重大的影响, 如原油中含水会增大运输量, 更重要的是给原油加工 带来困难, 增加了常减压蒸馏装置的能耗。 因水的相对分子能量比油的 相对分子能量小得多, 气化后体积猛增, 使系统压力降增加, 动力消耗 随之增加, 因此油品中若水含量高, 会使装置操作波动, 造成冲塔。 并 且由于含水带入的无机盐(Cal l2、 MgC12 )还会加剧装置的腐蚀。 轻质 燃料油中含水会使冰点、 结晶点升高, 导致油品低温水动性变差, 造成 油品在低温下分析出冰粒而堵塞过滤器及油路, 尤其是航煤和柴油中的 含水, 会造成供油中断, 酿成严重事故。 润滑油中含水, 会破坏润滑膜, 使润滑不能正常进行, 增加机件的磨损。 水分带入的无机盐还会增加润 滑油的腐蚀性, 加剧机件的腐蚀。 当使用含水的润滑油在温度较高的环 境下工作时, 由于水的汽化就会破坏润滑膜。重整原料油中水含量超标, 会使催化剂中毒, 由于油中过多的水占据了催化剂的酸性中心, 破坏了 酸性中心金属中心的平衡, 使催化剂活性下降甚至失活, 影响催化剂使 用寿命。 石油产品中的水分蒸发时要吸收热量, 会使发热量降低; 轻盾 石油中的水分会使燃烧过程恶化, 并能将溶解的盐带入气缸内, 生成积 炭, 增加气缸的磨损; 在低温情况下, 燃料中的水会结水, 堵塞燃料导 管和滤清器, 阻碍发电机燃料系统的燃料供给; 石油产品中有水会加速 油品的氧化生胶; 润滑油中有水时不但会引起发动机零件的腐蚀, 而且 水和高于 10(TC的金属零件接触时会变成水蒸气, 破坏润滑油膜。 轻盾 油品密度小, 黏度小, 油水容易分离。 而重质油品则相反, 不易分离。 进入常减压蒸熘装置的原油要求含水量不大于 0. 2~0. 5%;成品油的规格 标准要求汽油、 煤油不含水, 轻柴油水分含量不大于痕迹(痕迹一般按 照 300mg/L考虑); 重柴油水分含量不大于 0. 5〜1. 5%; 各种润滑油、 燃 料油都有相应的控制指标。 因此油品深度脱水对石化生产及后续的油品 高效使用都有着重要的影响。
目前油品物理手段脱水主要技术有重力沉降、 旋流分离、 聚结过滤 等方法, 也有通过盐吸附、 闪蒸、 电场分离等其它手段进行脱水。 对于 重力沉降来说, 主要能去除油品中的明水, 即粒径大于 Ι ΟΟμιη的游离水 滴, 对 Ι ΟΟμηι以下的^:水滴不能有效分离去除; 旋流分离技术适用于 含大量水的快速去除过程, 对 15μηι以下水滴及乳化水滴不能有效分离, 因需将势能转化为旋转动能进行分离, 能耗相对较高; 聚结过滤通过渗 透性进行分离, 适应范围较窄, 工厂应用过程存在使用寿命短的问题, 而采用盐吸附、 电场分离、 闪蒸分离则相对能耗及操作复杂, 仅适用于 特定处理介质。 专利 ZL01823742. 8油脱水器公开了一种采用膜进行油脱水的方 法,但存在使用成本高、 易污染损坏的问题; 申请号为 200810042145. 2 的专利公开了一种柴油脱水的方法与装置 ,该专利采用旋流方法进行分 离, 由于旋流分离的技术特性, 仅能适用于 15μιη以上的游离水滴的分 离, 且操作压降较大, 不能实现油品高效且低耗的深度脱水; 专利
ZL201010145423. 4公开了一种重油及煤焦油脱水机, 采用滚筒蒸发形 式脱水, 相对能耗较高, 操作较为复杂, 仅适用于特定介质的油品脱水 过程, ZL200910065725. 8公开了一种采用电场脱水的方法及装置, 专 利 201010261697. X公开了一种采用超声波技术脱水的方法及装置, 申 请号为 201310352748. 3的专利公开了一种采用过滤-旋流-聚结-旋流 的方法进行重污油脱水的方法, 以上专利技术仅在特定的场合适用, 都 存在能耗较高、 适应范围较窄的问题, 也达不到油品深度脱水的要求。
因此本领域迫切需要开发成本低、 操作筒单、 能耗低且效率高的油 品深度脱水技术。 发明内容
为了解决上述现有技术的不足,本发明提供一种油品深度脱水的方法 及装置, 具体技术方案如下:
一种油品深度脱水的方法, 包括如下步骤:
( 1 )首先, 含微量水的油品通过流体整流器进行整流, 使流体在流 体流动的径向截面实现均匀分布; 所述油品中微量水的浓度不大于 1000mg/L,所述微量水的水滴粒径为 0. 1~30μΰΐ, 操作温度为 5~99°C ;
( 2 )经整流后的含微量水油品均匀进入亲水疏油性纤维和亲油疏水 性纤维交错编织形成的 X形编织层, 在所述 X形编织层中进行微量水滴 的捕获、 聚结长大及微量油包水形式乳化液的破乳、 分离, 该过程结束 后水滴粒径长大至 10~50μπι;
( 3 )经步骤(2 )聚结分离后的油品进入波纹强化分离层进行水滴 的快速长大和分离, 经该过程后油品含水量降为 200 mg/L以内;
( 4 )经步骤(3 )分离后的油品在出口前进入亲水疏油纤维和亲油 疏水纤维的 Ω形编织层,在所述 Ω形编织层中对油品中未分离的分散水滴 和乳化水滴进行深度补集分离, 经该过程后油品中含水量降为 20mg/L 以内。
所述流体整流器为一多孔均布的开孔厚板,所述孔为圆孔或方形孔, 开孔率大于等于 60%, 开孔率是开孔面积占板面积的百分比。
步骤(2 ) 的所述 X 形编织层中亲水疏油性纤维与水平线的夹角为 25度至 60度(顺时针), 所述 X形纤维编织层为 1块或者多块地充满整 个流体流动的截面。
经发明人长期研究发现, 当亲水疏油性纤维与水平线(亲油疏水性 纤维) 夹角为 25度至 45度之间时, 对乳化水滴有着高效的分离效率, 因亲水疏油性纤维与水平的亲油疏水性纤维夹角较小, 乳化水滴 (油包 水)运动到两根纤维的节点处时, 如图 1所示, 受亲水疏油及亲油疏水 极性作用力, 水滴受到亲水疏油纤维的拖拽力, 而角度较小时在水平运 动距离相等时水滴受力过程较长, 更容易被分离, 反之, 如果角度大时, 水滴因受力过程短, 而不易分离; 而当亲水疏油性纤维与水平线夹角为 45度至 60度之间时, 对分散水滴的快速分离有着较好的作用, 因水平 角度大, 水平运动时水滴更能快速顺着亲水性纤维向下运动而被快速分 离。
所述 X形编织层中相邻两根亲油疏水性纤维的间距 a是相邻两根亲 水疏油性纤维的间 if巨 b的 1~3倍。
步骤( 3 )中所述波紋强化分离层采用的是亲水性材料, 其中波纹板 的间距为 5〜25mm, 波谷处开有直径 5~10瞧的圆孔, 所述圆孔之间的间 距为 50〜300醒。
步骤( 4 )的所述 Ω形编织层中亲水疏油性纤维与亲油疏水性纤维的 数量比例为 3: 2~7: 1, 所述 Ω形编织层的面积为流体流动截面面积的 30~80%且位于流体流动的上部截面; 另外, 所述 Ω形编织层是预先将亲 该过程采用 Ω形编织更侧重于亲水疏油纤维的吸附作用,采用 Ω形编织接 触点多且为亲水纤维为顺着油品流动方向呈水平波纹形状, 对特别细小 水滴有着导流牵引及吸附的作用, 而在运动到凹部位置又可起到水滴聚 积长大作用, 进而将出口油品中的更微量水滴捕获分离, 达到深度脱水 的效果, 如图 2所示。
所述亲油疏水性纤维选自改性聚丙烯、 特氟龙、 尼龙, 亲水疏油性 纤维选自金属、 陶瓷。
整个过程中油品脱水的压力损失为 0. 01-0. 05MPao
实现上述任一方法的装置, 所述装置包括壳体、 油品入口、 流体整 流器、 纤维聚结分离层、 波纹强化分离层、 纤维聚结补集层、 水包及净 化油相出口;
其中, 所述油品入口在所述壳体的上部一端, 所述净化油相出口在 所述壳体的上部另一端; 所述水包在所述壳体的下部, 该水包与所述净 化油相出口相对或稍有偏差地相对设置, 所述水包具有液面计, 所述水 包的底部设有水相出口; 流体整流器、 纤维聚结分离层、 波纹强化分离 层、纤维聚结补集层位于所述壳体的内部并依次互不相连地排列,其中, 所述流体整流器靠近所述油品入口, 所述纤维聚结补集层的面积为流体 流动截面面积的 30〜80%且处于流体流动的上部截面。
所述壳体是卧式圆形罐, 或卧式长方体罐。
所述纤维聚结分离层是亲油疏水纤维和亲水疏油纤维进行编织形成 的 X形编织层, 其中亲水疏油性纤维与水平线的夹角为 25度至 60度; 并且, 相邻两根亲油疏水性纤维的间距 a是相邻两根亲水疏油性纤维的 间距 b的 1〜3倍;
所述纤维聚结补集层是亲水疏油性纤维和亲油疏水性纤维进行编织 形成的 Ω形编织层, 其中亲水疏油性纤维与亲油疏水性纤维的数量比例 为 3: 2〜7: 1。 由于油品中水含量较小, 因此亲水性纤维的比例越多捕获 水滴的概率也越大,又由于较低含量的水滴以微小颗粒状附着在油滴上, 因此比例控制在 1〜3倍时效果最好, 因一部分需要通过亲水疏油及亲油 疏水纤维节点的作用力进行破乳分离, 而超过 3倍时的效率未见明显提 高, 再增加亲水性纤维比例的话成本较大且无意义。
所述波紋强化分离层采用的是亲水性材料, 其中波纹板的间距为 5~25mm , 波谷处开有直径 5~10mm 的圆孔, 所述圆孔之间的间距为 50~300誦。在此部分水滴已得到上一级的聚结长大,在波纹流动过程中, 水滴由于密度较大而在波紋板的凹处聚积, 迅速长大为更大水滴而下沉 分离。
本发明的有益效果在于, 将流体均布, 亲水疏油及亲油疏水以不同 组合形式进行编织, 起到破乳、 聚结及水滴快速导流下沉分离作用, 且 针对油品含水滴的特性进行针对性的分离形式组合, 具有高效且低耗的 特点, 适用于不同过程的油品脱水过程。
附图说明
图 1是破乳分离原理示意图;
图 2是 Ω形编织层的深度除水示意图;
图 3是 X形编织层的结构示意图;
图 4是水滴在 X形编织层上的分离示意图;
图 5是亲水疏油纤维和亲油疏水纤维形成 Ω形编织层的编织过程示 意图;
图 6是适用于含微量水的油品深度脱水的装置结构示意图。
符号说明:
1 壳体; 2 油品入口; 3 流体整流器; 4、 X形编织层;
5 波纹强化分离层; 6 Ω形编织层; 7 净化油相出口;
8 液面计; 9 水相出口; 10 水包。
具体实施方式 下面结合附图和实施例对本发明进一步说明。 实施例
某石化公司两套柴油加氢装置, 采用了本发明的油品深度脱水的方 法及装置, 对柴油加氢装置分餾塔出来的柴油进行脱水处理, 脱水后的 柴油送往成品油罐。 上述装置的结构示意图如图 6所示, 包括壳体 1、 油品入口 2、 流体 整流器 3、 X形编织层 4 (纤维聚结分离层)、 波紋强化分离层 5、 Ω形编 织层 6 (纤维聚结补集层)、 水包 10及净化油相出口 7;
其中, 油品入口 2在壳体 1的上部一端, 净化油相出口 7在壳体 1 的上部另一端; 水包 10在壳体 1的下部, 水包 10与净化油相出口 7相 对或稍有偏差地相对设置, 水包 10具有液面计 8, 水包 10的底部设有 水相出口 9; 流体整流器 3、 X形编织层 4、 波紋强化分离层 5、 Ω形编织 层 6位于壳体 1的内部并依次互不相连地排列, 其中, 流体整流器 3靠 近油品入口 2, Ω形编织层 6的面积为流体流动截面面积的 30〜80%且处 于流体流动的上部截面。
本实施例的图 6中的壳体 1是卧式圆形罐, 还可以选用卧式长方体 罐。
X形编织层 4的结构示意图如图 3所示, 其中亲水疏油性纤维与水 平线的夹角可为 25度至 60度; 相邻两根亲油疏水性纤维的间距 a是相 邻两根亲水疏油性纤维的间距 b的 1~3倍; 图 1是流体在 X形编织层 4 上的破乳分离原理示意图,图 4是水滴在 X形编织层 4上的分离示意图。
图 2是 Ω形编织层的深度除水示意图, 图 5是亲水疏油纤维和亲油 疏水纤维形成 Ω形编织层的编织过程示意图, 其中亲水疏油纤维与亲油 疏水纤维的数量比例为 3: 2-7: 1。
使用上述装置对含低浓度污油的废水进行深度除油, 其具体运作过 程及效果描述如下: 操作条件:
Figure imgf000010_0001
要求指标: 除油后污水中油含量不大于 80 mg/L。 方案选择: 本方案中柴油含水量较低, 且初期经过了沉降分离, 因 此水滴大多以微小颗粒形态 于柴油中, 因出口要求油含量需稳定不 大于 80mg/L, 因此采用流体整流器、 X形纤维编织层分离、 波纹强化分 离、 Ω形纤维编织层深度分离的组合方法进行处理。
( 1 )柴油加氢装置柴油: 考虑柴油密度较小, 且加氢装置柴油中乳 化水占少量部分, 因此 X形纤维编织层采用一段式, X形纤维编织层的 纤维间距比为 a: b=2. 5 , θ=40° (如图 3所示, 相邻两根亲油疏水性纤 维的间距是 a, 相邻两根亲水疏油性纤维的间距是 b; Θ是亲水疏油性纤 维与水平线的夹角 ),该角度适用于小水滴的高效、快速补集聚结及快速 导流分离, 对乳化水滴有着一部分破乳作用; 波紋强化分离段波纹板采 用 316L材质, 波紋板间距为 15讓。 考虑出口要求柴油中水含量较低, 因此 Ω形纤维编织层亲水疏油纤维与亲油疏水纤维的数量比例为 2. 5: 1 , 适用于未破乳分离的水滴的破乳分离及油品中微量的水滴的补集分离。
( 2 )加氢改质重柴油: 考虑柴油密度较大, 因此 X形纤维编织层采 用两段式, 第一段 X形纤维编织层的纤维间距比为 a: b=2, θ=30° ( a、 b、 Θ的定义如上), 该角度适用于小水滴的高效、 快速补集聚结及部分 乳化水滴的破乳, 另外能兼顾柴油与水密度差较小, 较小角度有利于水 滴的导流分离; 第二段 X形纤维编织层的纤维间距比为 a: b=l. 5 , θ=60 。 (a、 b、 Θ的定义如上), 适用于第一段聚结后的小水滴的快速导流下 沉分离。 波纹强化分离段波纹板采用 316L材盾, 波纹板的间距为 18mm。 考虑出口要求柴油中水含量较低, 因此 Ω形纤维编织层中亲水疏油纤维 与亲油疏水的数量比例为 2: 1, 适用于油品中微量的水滴的补集分离。 结果分析: 柴油加氢装置柴油脱水后, 净化油品中水含量为
30~50mg/L; 加氢改盾重柴油脱水后, 净化油品中水含量为 45~65mg/L, 稳定小于 80 mg/L的分离要求, 进出口压力降为 0. OlMPa, 能耗较低, 满足设计运行条件。
综上所述仅为本发明的较佳实施例而已, 并非用来限制本发明的实 施范围。 及凡依本发明申请专利范围的内容所做的等效变化与修饰, 都 应为本发明的技术范畴。

Claims

权 利 要 求
1、 一种油品深度脱水的方法, 其特征在于, 包括如下步骤:
( 1 )首先, 含微量水的油品通过流体整流器进行整流,使流体在流体流 动的径向截面实现均匀分布; 所述油品中微量水的浓度不大于 1000mg/L, 所述微量水的水滴粒径为 0. 1〜30μιη, 操作温度为 5~99°C ;
( 2 )经整流后的含微量水油品均匀进入亲水疏油性纤维和亲油疏水性纤 维交错编织的 X形编织层, 在所述 X形编织层中进行微量水滴的捕获、 聚结长大及微量油包水形式乳化液的破乳、 分离, 该过程结束后水滴粒 径长大至 10〜50μιη;
( 3 )经步骤(2 )聚结分离后的油品进入波纹强化分离层进行水滴的快 速长大和分离, 经该过程后油品含水量降为 200 mg/L以内;
( 4 )经步骤(3 )分离后的油品在出口前 亲水疏油纤维和亲油疏水 纤维的 Ω形编织层,在所述 Ω形编织层中对油品中未分离的分散水滴和乳 化水滴进行深度补集分离, 经该过程后油品中含水量降为 20mg/L以内。
2、如权利要求 1所述的方法, 其特征在于, 所述流体整流器为一多孔均 布的开孔厚板, 所述孔为圆孔或方形孔, 开孔率大于等于 60%。
3、 如权利要求 1所述的方法, 其特征在于, 步骤(2 ) 的所述 X形编织 层中亲水疏油性纤维与水平线的夹角为 25度至 60度, 所述 X形纤维编 织层为 1块或者多块地充满整个流体流动的截面。
4、如权利要求 1所述的方法, 其特征在于, 所述 X形编织层中相邻两根 亲油疏水性纤维的间距 a是相邻两根亲水疏油性纤维的间距 b的 1~3倍。
5、 如权利要求 1所述的方法, 其特征在于, 步骤(3 ) 中所述波紋强化 分离层采用的是亲水性材料, 其中波紋板的间距为 5~25舰, 波谷处开有 直径 5~10隱的圆孔, 所述圆孔之间的间距为 50〜300隱。
6、 如权利要求 1所述的方法, 其特征在于, 步骤(4 )的所述 Ω形编织 层中亲水疏油性纤维与亲油疏水性纤维的数量比例为 3: 2~7: 1, 所述 Ω 形编织层的面积为流体流动截面面积的 30〜80%且位于流体流动的上部 截面; 所述 Ω形编织层是预先把亲水疏油性纤维与亲油疏水性纤维各自 排列为 Ω形状后交错编织而成。
7、如权利要求 1所述的方法, 其特征在于, 整个过程中油品脱水的压力 损失为 0. 005-0. 05MPa。
8、 一种实现权利要求 1~7 任一所述方法的装置, 其特征在于, 所述装 置包括壳体、 油品入口、 流体整流器、 纤维聚结分离层、 波纹强化分离 层、 纤维聚结补集层、 水包及净化油相出口;
其中, 所述油品入口在所述壳体的上部一端, 所述净化油相出口在 所述壳体的上部另一端; 所述水包在所述壳体的下部, 该水包与所述净 化油相出口相对或稍有偏差地相对设置, 所述水包具有液面计, 所述水 包的底部设有水相出口; 流体整流器、 纤维聚结分离层、 波纹强化分离 层、纤维聚结补集层位于所述壳体的内部并依次互不相连地排列,其中, 所述流体整流器靠近所述油品入口, 所述纤维聚结补集层的面积为流体 流动截面面积的 30〜80%且处于流体流动的上部截面。
9、 如权利要求 8所述的装置, 其特征在于, 所述壳体是卧式圆形罐, 或 卧式长方体罐。
10、 如权利要求 8所述的装置, 其特征在于, 所述纤维聚结分离层是亲 油疏水纤维和亲水疏油纤维进行编织形成的 X形编织层, 其中亲水疏油 性纤维与水平线的夹角为 25度至 60度; 并且, 相邻两根亲油疏水性纤 维的间距 a是相邻两根亲水疏油性纤维的间距 b的 1~3倍;
所述纤维聚结补集层是亲水疏油性纤维和亲油疏水性纤维进行编织 形成的 Ω形编织层, 其中亲水疏油性纤维与亲油疏水性纤维的数量比例 为 3: 2~7: 1。
PCT/CN2014/000688 2014-05-19 2014-07-21 一种油品深度脱水的方法及装置 WO2015176197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410210965.3A CN103980934B (zh) 2014-05-19 2014-05-19 一种油品深度脱水的方法及装置
CN201410210965.3 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015176197A1 true WO2015176197A1 (zh) 2015-11-26

Family

ID=51273107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000688 WO2015176197A1 (zh) 2014-05-19 2014-07-21 一种油品深度脱水的方法及装置

Country Status (2)

Country Link
CN (1) CN103980934B (zh)
WO (1) WO2015176197A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694156B (zh) * 2015-03-12 2017-01-18 崔斌 一种偏心沉降预脱水器和油田油水混合液分离方法
CN105669345B (zh) * 2016-04-05 2018-04-10 华东理工大学 一种碳四深度脱甲醇与水的成套设备
CN105688615A (zh) * 2016-04-05 2016-06-22 华东理工大学 一种组合式丙烯深度脱水的方法及装置
CN106190224B (zh) * 2016-07-04 2018-04-27 中国石油化工股份有限公司 一种对硫酸烷基化反应流出物进行闪蒸取热的方法
CN108786710A (zh) * 2017-05-02 2018-11-13 中国石油化工股份有限公司 一种烷基化反应器和烷基化反应方法
CN107353935A (zh) * 2017-08-04 2017-11-17 上海米素环保科技有限公司 一种木焦油加氢联合装置分步脱水的方法
CN107617231A (zh) * 2017-09-22 2018-01-23 刘超 一种凝聚分离装置
CN109652118B (zh) * 2017-10-10 2020-07-07 中国石油化工股份有限公司 一种洗涤脱盐及油水分离的工艺系统和工艺方法
CN111303931B (zh) * 2018-12-12 2021-07-09 中国石油化工股份有限公司 一种重污油脱水方法
CN109694727B (zh) * 2019-02-21 2024-01-16 上海米素环保科技有限公司 一种加氢装置分馏系统在线工艺防腐的方法
CN110079357A (zh) * 2019-04-12 2019-08-02 华东理工大学 一种异形电场强化纤维模块单元及应用
CN112745910B (zh) * 2019-10-31 2022-04-08 中国石油化工股份有限公司 一种脱悬浮物与油水分离耦合的装置和方法
CN112062216B (zh) * 2020-09-17 2023-07-25 华东理工大学 基于纤维异质结的双乳液滴内循环流动的破乳方法和装置
CN112500886A (zh) * 2020-12-01 2021-03-16 华东理工大学 一种电场协同介质聚结强化油品脱水的方法及装置
CN112552955A (zh) * 2020-12-04 2021-03-26 华东理工大学 一种原料油自动化同步脱固脱水的装置和方法
CN112745906B (zh) * 2020-12-31 2022-03-29 大连理工大学 亲油/亲水微孔膜协同耦合强化的油水分离工艺
CN114477370A (zh) * 2022-01-18 2022-05-13 华东理工大学 一种异性介质聚结过滤的酚氨废水除油除悬的装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762810A (en) * 1996-11-22 1998-06-09 Pelton; Paul Coalescing oil/water separator
CN2325377Y (zh) * 1998-06-03 1999-06-23 大庆油田建设设计研究院 横向流含油污水除油器
CN101215021A (zh) * 2008-01-11 2008-07-09 东南大学 长纤维附聚粗粒化除油器
US20120111797A1 (en) * 2010-11-09 2012-05-10 Carl Lavoie Renewable oil absorbent and method thereof
CN103723790A (zh) * 2014-01-13 2014-04-16 上海米素环保科技有限公司 应用于烷基化装置的高效聚结分离设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280212B (zh) * 2007-04-04 2012-05-09 中国石油化工股份有限公司 利用延迟焦化工艺处理高酸原油的方法
CN103706149B (zh) * 2014-01-13 2016-03-09 上海米素环保科技有限公司 模块化组合高效分离设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762810A (en) * 1996-11-22 1998-06-09 Pelton; Paul Coalescing oil/water separator
CN2325377Y (zh) * 1998-06-03 1999-06-23 大庆油田建设设计研究院 横向流含油污水除油器
CN101215021A (zh) * 2008-01-11 2008-07-09 东南大学 长纤维附聚粗粒化除油器
US20120111797A1 (en) * 2010-11-09 2012-05-10 Carl Lavoie Renewable oil absorbent and method thereof
CN103723790A (zh) * 2014-01-13 2014-04-16 上海米素环保科技有限公司 应用于烷基化装置的高效聚结分离设备

Also Published As

Publication number Publication date
CN103980934A (zh) 2014-08-13
CN103980934B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2015176197A1 (zh) 一种油品深度脱水的方法及装置
WO2015176196A1 (zh) 一种对含低浓度污油的废水进行深度除油的方法及装置
JP5250526B2 (ja) 油水分離装置、油水分離システム、油水分離方法およびそれを用いた水再利用方法
CN103861329B (zh) 一种适用于三相分离的组合方法与装置
US8801921B2 (en) Method of produced water treatment, method of water reuse, and systems for these methods
CN203763912U (zh) 一种三相分离装置
CN202724862U (zh) 一种油净化装置
JP2013185127A (ja) 油水分離方法、含油水の処理方法、ビチェーメンの生産方法およびそれらのシステム
CN104944619B (zh) 重质原油加工过程中电脱盐污水除油方法
CN203947077U (zh) 一种油品深度脱水的装置
AU2015266349A1 (en) Mesh comprising a surface of hydrated aluminum oxides and their use for oil-water separation
CN109652118A (zh) 一种洗涤脱盐及油水分离的工艺系统和工艺方法
CN108609794A (zh) 一种富液脱气除油方法及其装置
CN108002635A (zh) 一种凝结水聚结吸附除油回收的方法及装置
RU78436U1 (ru) Капиллярный сепаратор эмульсий
WO2020001246A1 (zh) 一种酸性水脱气除油方法及其装置
CN101829441A (zh) 三相游离水分离器
CN110317634A (zh) 一种原油脱水脱盐的处理系统及方法
CN203904032U (zh) 聚结分离用整体式波纹滤板箱
CN108070401A (zh) 一种烷基化反应产物的分离方法
CN113307399A (zh) 一种海上油田高含油生产水分级净化的装置和方法
KR101411634B1 (ko) 오일 내 수분 제거 장치
Dai et al. Efficient removal of acid from sulfuric acid alkylation reaction products by fiber coalescence technique: Lab-scale and industrial experiments
CN201880401U (zh) 一种微分振荡油水分离器
CN204569838U (zh) Nsf柴油聚结器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892727

Country of ref document: EP

Kind code of ref document: A1