WO2015174803A1 - 무선 통신 시스템에서 패킷 데이터 네트워크 연결 절차 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 패킷 데이터 네트워크 연결 절차 및 이를 위한 장치 Download PDF

Info

Publication number
WO2015174803A1
WO2015174803A1 PCT/KR2015/004959 KR2015004959W WO2015174803A1 WO 2015174803 A1 WO2015174803 A1 WO 2015174803A1 KR 2015004959 W KR2015004959 W KR 2015004959W WO 2015174803 A1 WO2015174803 A1 WO 2015174803A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pdn connection
service
information
network
Prior art date
Application number
PCT/KR2015/004959
Other languages
English (en)
French (fr)
Inventor
김현숙
류진숙
김래영
김재현
김태훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/311,468 priority Critical patent/US10299298B2/en
Publication of WO2015174803A1 publication Critical patent/WO2015174803A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/186Processing of subscriber group data

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a packet data network (PDN) connection procedure and apparatus.
  • PDN packet data network
  • Machine Type Communications refers to a communication method including one or more machines, and may also be referred to as machine-to-machine communication or thing communication.
  • a machine refers to an entity that does not require human direct manipulation or intervention.
  • a device such as a meter or vending machine equipped with a mobile communication module, as well as a user device such as a smartphone that can automatically connect and communicate with a network without a user's operation / intervention, This may correspond to an example.
  • MTC devices or terminals Various examples of such machines are referred to herein as MTC devices or terminals. That is, MTC means communication performed by one or more machines (ie, MTC devices) without human intervention / intervention.
  • the MTC may include communication between MTC devices (eg, device-to-device communication), and communication between an MTC device and an MTC application server (AS).
  • MTC devices eg, device-to-device communication
  • AS MTC application server
  • Examples of communication between the MTC device and the MTC application server (AS) include communication between a vending machine and a server, a point of sale (POS) device and a server, and an electricity, gas or water meter and a server.
  • applications based on MTC may include security, transportation, health care, and the like.
  • the MTC device may wait without establishing a connection for data transmission and reception in order to minimize power consumption, and then establish a connection by request or indication. Such a request or indication may be referred to as an MTC device triggering message.
  • a method for processing access of a UE corresponding to a plurality of groups is a technical problem.
  • a first technical aspect of the present invention is a method for performing a PDN connection procedure by a user equipment (UE) in a wireless communication system, the method comprising: transmitting a first PDN connection request to a mobility management entity (MME); And receiving a response to the first PDN connection request from the MME, wherein the first PDN connection request includes information about a group, and wherein the response to the first PDN connection request is one of a plurality of groups.
  • MME mobility management entity
  • a method of performing a PDN connection procedure comprising one or more of information on blocked group (s) or information on unblocked group (s) of a plurality of groups.
  • the method may further include transmitting a second PDN connection request to the MME.
  • the second PDN connection request may include information on groups other than the blocked group (s).
  • the group may be classified for each service provided by an access point name (APN).
  • APN access point name
  • the group may be different for each service provided by the UE.
  • the group may be the same as the group included in the subscriber information.
  • a method of performing a PDN connection procedure by a mobility management entity (MME) in a wireless communication system comprising: receiving a first PDN connection request from a user equipment (UE); And transmitting a response to the first PDN connection request to the UE, wherein the first PDN connection request includes information about a group, and wherein the response to the first PDN connection request is one of a plurality of groups. And at least one of information on blocked group (s) or information on unblocked group (s) of the plurality of groups.
  • MME mobility management entity
  • the MME may further include receiving a second PDN connection request from the UE.
  • the second PDN connection request may include information on groups other than the blocked group (s).
  • the MME may determine whether to reject the PDN connection request by using the information on the group included in the first PDN connection request.
  • the group may be classified for each service provided by an access point name (APN).
  • APN access point name
  • the group may be different for each service provided by the UE.
  • the group may be the same as the group included in the subscriber information.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • 7 to 8 are diagrams illustrating a congestion control method.
  • 9 to 10 are diagrams for explaining a PDN connection procedure according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration of a terminal device and a network node device according to an example of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Machine Type Communications Communication performed by a machine without human intervention.
  • the MTC device UE for performing MTC.
  • the MTC device may communicate with the MTC server (s) and / or other MTC device (s) via the PLMN.
  • the MTC device may be referred to as an MTC UE, a UE used for MTC, or a UE configured for MTC.
  • MTC Interworking Function An entity that provides a gateway role for transmitting control signals or data for MTC through a 3GPP network including EPS or IMS.
  • the MTC-IWF may relay or translate the signaling protocol used on the Tsp reference point to invoke specific functionality within the PLMN.
  • SCS Services Capability Server
  • MTC server A server on a network that manages an MTC terminal, which may communicate with the PLMN itself or with the MTC device through the PLMN. It may have an interface that an MTC user can access. MTC server may also provide MTC related services to other servers (in the form of SCS), or it may be an MTC application server (AS).
  • SCS server on a network that manages an MTC terminal
  • AS MTC application server
  • MTC application Services to which MTC applies (eg, remote meter reading, volume movement tracking, etc.)
  • MTC AS MTC Application Server
  • MTC feature A function of the network to support MTC applications.
  • MTC monitoring is a feature for preparing for lost equipment in MTC applications such as remote meter reading
  • low mobility is a feature for MTC applications for MTC devices such as vending machines.
  • MTC User A user using a service provided by an MTC server.
  • MTC subscriber An entity having a connection with a network operator and providing a service to one or more MTC terminals.
  • MTC Group A group of MTC terminals sharing at least one MTC feature and belonging to an MTC subscriber.
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection When there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in an RRC connected state (Connected Mode), otherwise it is in an RRC idle mode (Idle Mode).
  • RRC connection RRC connection
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays idle in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the UE When the UE in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to an eNodeB's paging, the UE first sends an RRC connection request message. Send to eNodeB.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • Multiple devices can subscribe to a particular service.
  • the misbehaviour of multiple devices can cause congestion of the network. For example, this may be the case when multiple devices repeatedly perform an attach request. If the MTC goes down to a server providing a particular service, the MTC devices will continue to reboot and reconnect. As another example, a large amount of signaling overhead may occur with respect to a particular subscription / service.
  • group-specific congestion control As a conventional method of solving such a congestion situation, group-specific congestion control, APN-based congestion control, etc. may be performed (some of SA WG2 Meeting # 103, S2-141771, Discussion of Group-specific Congestion Control, NTT DOCOMO). Quotation ).
  • group specific congestion control is illustrated
  • FIG. 7B APN based congestion control is illustrated.
  • the UE may be provided with service 1 or service 2 in one APN A.
  • the UE may be included in at least one or more groups of Group 1 or Group 2, and the groups may be classified by services. If a problem occurs in a server providing service 2, the MME may perform congestion control by blocking access of members of group 2.
  • FIG. 7B when services are classified by APNs and a problem occurs in a server providing service 2, the MME may perform congestion control by blocking an APN corresponding to service 2 (APN A.2).
  • a problem may occur when one terminal corresponds to (included) a plurality of groups. It demonstrates with reference to FIG. In FIG. 8, it is assumed that UE 1 belongs to group 1 and UE 2 belongs to group 1 and group 2 simultaneously. Group 1 is associated with service 1, and group 2 is associated with service 2. In this situation, when a problem occurs in the server providing the service 2, the MME may block the access of the terminal belonging to the group 2. Thus, access for service 2 of UE 2 is blocked. In this case, however, since the MME blocks the access of the UE on a group basis, the access for the service 1 of the UE 2 is also blocked.
  • step S901 the UE may transmit a first PDN connection request for access to a network / specific service to the MME.
  • This PDN connection request may have occurred independently or independently of the initial attach procedure.
  • the MME may determine whether to reject the PDN connection request by using the information on the group included in the first PDN connection request. That is, acceptance is performed based on subscriber information and operator / network control information (configuration of a blocking service or operator management command, network congestion situation, etc.) in a network node (for example, MME) that controls access of a UE. ) Or reject, and inform the terminal of the result.
  • a network node for example, MME
  • MME Mobility Management Entity
  • the terminal may receive a response to the first PDN connection request from the MME.
  • the first PDN connection request may include information about the group. In other words, it may include information indicating that a service corresponding to the service group 1 is requested.
  • the PDN request further includes information on the group.
  • the response to the first PDN connection request may include information about a blocked group and / or information about a group not blocked among the plurality of groups. For example, as shown in step S902 of FIG.
  • the MME in response to a PDN connection request, is responsible for: i) information about a service group that is currently under control / uncontrolled blocking in the network regardless of the request, ii) currently in the network regardless of the subscriber information of the UE. information on service groups that are under / not being controlled for blocking, iii) information on service groups which are currently under group blocking / not controlled by the network among groups subscribed to subscriber information of the UE It may include. This example may be sent to the UE regardless of whether the PDN connection request is accept or reject, and may use a back-off timer in combination with / in combination with the prior art.
  • the UE After receiving the response to the PDN connection request, the UE can recognize the service group blocked in the network. The UE may evaluate the blocked service based on the received response. That is, it determines which service request should wait or which service request can be attempted. Perceived matters can be delivered to the application layer for use in user interaction. That is, in addition to attempting another request with information configured inside the UE, another request may be attempted by user interaction.
  • the second PDN connection request may be transmitted to the MME.
  • the second PDN connection request includes information on groups other than the blocked group (s). That is, the UE may attempt a service request that is not blocked by the network.
  • traffic for a service is generated at the application layer, the UE directly or indirectly transmits information about which service corresponds to the traffic to the NAS layer.
  • the NAS layer of the UE transmits a PDN connection establishment request message for another service to the network based on the information received in the previous step.
  • the UE may recognize a service group capable of requesting a current service for a specific service based on information received from an application layer prior to transmitting a PDN connection request and pre-configuration information received from an operator / network. For example, it can be determined that the app numbers xx and yy received from the application layer are mapped to the service group 1 'Naver web browsing service'.
  • the group may be classified according to services provided by the APN. (It does not need to be 1: 1 mapping with the group defined in the subscriber information.) That is, a plurality of service groups can be created for each type of service that can be provided by one APN.
  • the service group is not simply limited to a specific application of the terminal (for example, a specific app of a smartphone). It can be classified according to a specific service. For example, you can use the Naver app to connect to the Naver server, but you can also use the Google Browsing app. That is, one app may be a service group, but a plurality of apps may be a service group.
  • the group may be the same as the group included in the subscriber information.
  • the group may be different for each service provided by the UE.
  • one UE may provide both a service as a bending machine and a service as a ticketing machine, and in this case, the group may be preset according to the type of service that the UE can provide.
  • groups may be divided according to user rights. For example, when attempting to connect to a VPN service, users of individual UEs may belong to several groups. That is, when a member of a company has general authority and at the same time has a specific user authority as a member of a specific department or a specific community, it can be classified according to which member's qualification is requested for each individual request.
  • the service group participant may be a terminal / user who wants / receives a specific service provided by a specific APN.
  • the service group participant is different from the CSG member used in the femto cell.
  • a participant of a service group is dynamically formed according to a specific service that a UE wants to receive / services, while a CSG is fixed to subscriber information and can be given meaning only in a cell supporting the CSG group.
  • the low access priority of the prior art can be viewed as a group defined by a provider / network, and can be divided into a group that applies a low access priority and a group that can apply a dual priority.
  • the network controls access by specifying a priority request. That is, the group with low access priority and the group without setting have a relative priority, and the relative priority has already been specified in the request message. That is, the first embodiment described above may be distinguished from the conventional low access priority in that there is no priority between service groups. It is not possible to see which service group takes precedence in any situation because the access permission / disallowability of the service group is determined according to the network environment. Low access priority technology alone cannot reflect the increasingly dynamic service-related network failure / congestion situation.
  • the fixed priority of a particular service relative to another service can be a problem in service operation. Therefore, it is necessary to be able to control the network connection to a specific service group by reflecting the network situation at a certain point of time.
  • changing the low access priority setting is a change in the relative priority of the 'request' for the same service, while changing the service group setting is a request for an acceptable 'other' service. From a PDN connection establishment point of view, changing the low access priority setting attempts to establish the same PDN connection, while changing the service group setting attempts to establish another PDN connection.
  • Embodiment 2 is a method in which the control of the network is more emphasized than in Embodiment 1. This will be described with reference to FIG. 10.
  • a UE serving as a plurality of service group participants may request a PDN connection for accessing a network or for a specific service.
  • the information indicating the request for the service corresponding to the service group 1 may be included.
  • the PDN connection request may occur with or without the initial attach procedure.
  • the UE can recognize a service group that can request a current service for a specific service based on the information received from the application layer and the pre-configuration information received from the operator / network. For example, it may be determined that the app number xx received from the application layer is mapped to the service group 1 and the app number yy to the service group 2.
  • a network node that controls the access of the UE determines the acceptance or rejection based on subscriber information and operator / network control information (such as configuration for blocking services or operator management commands, or network congestion). And, the result can be informed to the terminal.
  • the MME is configured with mapping information between app information and a service group capable of providing a specific service. Therefore, in step S1002, when the network node sends a rejection to the terminal, a new request / instruction can be sent together so that the terminal can change the service group and perform the re-request as a follow-up action after receiving the rejection message. That is, to control directly in the network rather than active evaluation / judgment in the terminal.
  • the terminal may manually change the service group and re-request according to the network instruction.
  • the service group information changed from the network may be delivered to the application layer and used for user interaction. That is, in addition to attempting another request by information configured inside the UE, it is possible to try another request by user interaction.
  • the terminal may receive a PDN connection acceptance in step S1004.
  • the UE sends information to the network along with the attach request, i) a group to which a specific service / application to be serviced belongs, ii) a specific service / application to be serviced among the services requested or provided by the default APN.
  • the network node (for example, MME) that controls the access of the UE informs the UE of attach accept or attach reject based on the subscriber information and the operator's control.
  • attach rejection the MM backoff timer value of the prior art is given to prevent retry for a predetermined time.
  • i), ii) information received with the attach request, and information on association / relationship between a group and a service set in advance may be used to determine attach rejection / acceptance and / or determine MM backoff timer value. have.
  • the network node may transmit one or more of the following information to the terminal to the network.
  • the information below can be conveyed in an implicit manner that can be directly delivered or inferred by a combination of other information at the UE.
  • the attach rejection is sent, i) information on whether the network is currently receiving group blocking control, ii) information on the group / service currently receiving group blocking control on the network regardless of the subscriber information of the UE, iii) Information about groups / services that are not currently receiving group blocking control in the network among groups subscribed to the subscriber information of the UE (i.e., even if a send reject request for a current request is provided, services provided to another group are blocked). If you receive a rejection message, you can send it to another group / service request. An example of such information may be sent to the UE in either case irrespective of the accept / deny message.
  • the UE that has received the attachment acceptance or rejection can recognize the blocked group / service in the network.
  • the UE may evaluate the blocked group / service based on the information received from the network in this step. Determine which group / service request to wait and which group / service request to try. For example, even if a group / service receives information about an attach rejection and an MM backoff timer, it is determined that an attach request message can be transmitted to the network for a group / service even before the value of the backoff timer expires.
  • the UE may then attempt a connection to request a group / service that is not blocked to the network.
  • traffic for a service is generated at the application layer
  • the UE directly or indirectly transmits information about which application / group / service is traffic to the NAS layer.
  • the NAS layer of the UE may transmit an attach request message for a specific group / service to the network based on the information received in the previous step.
  • TAU procedures affected by the MM backoff timer. It can also be extended in procedures affected by the SM backoff timer.
  • FIG. 11 is a diagram illustrating a configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transmission / reception module 110, a processor 120, and a memory 130.
  • the transmission / reception module 110 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node apparatus 200 may include a transmission / reception module 210, a processor 220, and a memory 230.
  • the transmission / reception module 210 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 발명의 실시예는, 무선통신시스템에서 UE(User Equipment)가 PDN 연결 절차를 수행하는 방법에 있어서, MME(Mobility Management Entity)로 제1 PDN 연결 요청을 전송하는 단계; 및 상기 MME로부터 상기 제1 PDN 연결 요청에 대한 응답을 수신하는 단계를 포함하며, 상기 제1 PDN 연결 요청은 그룹에 대한 정보를 포함하며, 상기 제1 PDN 연결 요청에 대한 응답은 복수의 그룹 중 차단된(blocked) 그룹(들)에 대한 정보 또는 복수의 그룹 중 차단되지 않은 그룹(들)에 대한 정보 중 하나 이상을 포함하는, PDN 연결 절차 수행 방법이다.

Description

무선 통신 시스템에서 패킷 데이터 네트워크 연결 절차 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 PDN(Packet Data Network) 연결 절차 및 장치에 대한 것이다.
MTC(Machine Type Communications)는 하나 이상의 머신(Machine)이 포함되는 통신 방식을 의미하며, M2M(Machine-to-Machine) 통신이나 사물 통신으로 칭하여지기도 한다. 여기서, 머신이란 사람의 직접적인 조작이나 개입을 필요로 하지 않는 개체(entity)를 의미한다. 예를 들어, 이동 통신 모듈이 탑재된 검침기(meter)나 자동 판매기와 같은 장치는 물론, 사용자의 조작/개입 없이 자동으로 네트워크에 접속하여 통신을 수행할 수 있는 스마트폰과 같은 사용자 기기도 머신의 예시에 해당할 수 있다. 이러한 머신의 다양한 예시들을 본 문서에서는 MTC 디바이스(device) 또는 단말이라고 칭한다. 즉, MTC는 사람의 조작/개입 없이 하나 이상의 머신(즉, MTC 디바이스)에 의해서 수행되는 통신을 의미한다.
MTC는 MTC 디바이스들 간의 통신(예를 들어, D2D(Device-to-Device) 통신), MTC 디바이스와 MTC 애플리케이션 서버(application server; AS) 간의 통신을 포함할 수 있다. MTC 디바이스와 MTC 애플리케이션 서버(AS) 간의 통신의 예시로, 자동 판매기와 서버, POS(Point of Sale) 장치와 서버, 전기, 가스 또는 수도 검침기와 서버 간의 통신을 들 수 있다. 그 외에도 MTC에 기반한 애플리케이션(application)에는, 보안(security), 운송(transportation), 헬스 케어(health care) 등이 포함될 수 있다.
MTC 디바이스는 전력 소모를 최소화하기 위해서 데이터 송수신을 위한 연결을 수립하지 않은 상태로 대기하다가, 요청 또는 지시에 의해서 연결을 수립할 수 있다. 이러한 요청 또는 지시를 MTC 디바이스 트리거링 메시지라고 할 수 있다.
본 발명에서는 그룹 특정 혼잡 제어가 적용되는 경우 복수의 그룹에 해당하는 UE의 액세스를 처리하는 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 기술적인 측면은, 무선통신시스템에서 UE(User Equipment)가 PDN 연결 절차를 수행하는 방법에 있어서, MME(Mobility Management Entity)로 제1 PDN 연결 요청을 전송하는 단계; 및 상기 MME로부터 상기 제1 PDN 연결 요청에 대한 응답을 수신하는 단계를 포함하며, 상기 제1 PDN 연결 요청은 그룹에 대한 정보를 포함하며, 상기 제1 PDN 연결 요청에 대한 응답은 복수의 그룹 중 차단된(blocked) 그룹(들)에 대한 정보 또는 복수의 그룹 중 차단되지 않은 그룹(들)에 대한 정보 중 하나 이상을 포함하는, PDN 연결 절차 수행 방법이다.
상기 PDN 연결 요청이 거절되고, 상기 UE가 상기 차단된 그룹(들) 이외의 그룹에도 해당하는 경우, 상기 MME로 제2 PDN 연결 요청을 전송하는 단계를 더 포함할 수 있다.
상기 제2 PDN 연결 요청은 상기 차단된 그룹(들) 이외의 그룹에 대한 정보를 포함할 수 있다.
상기 그룹은 APN(Access Point Name)에서 제공하는 서비스 별로 구분되는 것일 수 있다.
상기 그룹은 상기 UE가 제공하는 서비스별로 상이한 것일 수 있다.
상기 그룹은 가입자 정보에 포함되어 있는 그룹과 동일한 것일 수 있다.
본 발명의 제2 기술적인 측면은, 무선통신시스템에서 MME(Mobility Management Entity)가 PDN 연결 절차를 수행하는 방법에 있어서, UE(User Equipment)로부터 제1 PDN 연결 요청을 수신하는 단계; 및 상기 제1 PDN 연결 요청에 대한 응답을 상기 UE로 전송하는 단계를 포함하며, 상기 제1 PDN 연결 요청은 그룹에 대한 정보를 포함하며, 상기 제1 PDN 연결 요청에 대한 응답은 복수의 그룹 중 차단된(blocked) 그룹(들)에 대한 정보 또는 복수의 그룹 중 차단되지 않은 그룹(들)에 대한 정보 중 하나 이상을를 포함하는, PDN 연결 절차 수행 방법이다.
상기 MME가 상기 PDN 연결 요청을 거절하고, 상기 UE가 상기 차단된 그룹(들) 이외의 그룹에도 해당하는 경우, 상기 UE로부터 제2 PDN 연결 요청을 수신하는 단계를 더 포함할 수 있다.
상기 제2 PDN 연결 요청은 상기 차단된 그룹(들) 이외의 그룹에 대한 정보를 포함할 수 있다.
상기 MME는 상기 제1 PDN 연결 요청에 포함된 그룹에 대한 정보를 사용하여 PDN 연결 요청을 거절할지 여부를 결정할 수 있다.
상기 그룹은 APN(Access Point Name)에서 제공하는 서비스 별로 구분되는 것일 수 있다.
상기 그룹은 상기 UE가 제공하는 서비스별로 상이한 것일 수 있다.
상기 그룹은 가입자 정보에 포함되어 있는 그룹과 동일한 것일 수 있다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7 내지 도 8은 혼잡 제어 방법을 설명하는 도면이다.
도 9 내지 도 10은 본 발명의 실시예에 의한 PDN 연결 절차를 설명하기 위한 도면이다.
도 11은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- MTC(Machine Type Communications): 사람의 개입 없이 머신에 의해 수행되는 통신.
- MTC 디바이스(MTC device): MTC를 수행하기 위한 UE. MTC 디바이스는 PLMN을 통하여 MTC 서버(들) 및/또는 다른 MTC 디바이스(들)과 통신할 수 있다. MTC 디바이스는 MTC UE, MTC를 위해서 사용되는 UE, MTC를 위해서 설정된 UE 등으로 칭할 수 있다.
- MTC-IWF(MTC InterWorking Function): EPS나 IMS가 포함된 3GPP 네트워크를 통해 MTC를 위한 제어신호나 데이터를 전송하도록 하는 관문(Gateway) 역할을 제공하는 개체. MTC-IWF는 PLMN 내에서 특정 기능을 구현(invoke)하기 위해서 Tsp 레퍼런스 포인트 상에서 사용되는 시그널링 프로토콜을 중계(relay)하거나 번역(translate)할 수 있다.
- SCS(Services Capability Server): HPLMN(Home PLMN(Public Land Mobile Network)에 있는 MTC 디바이스와 MTC-IWF를 이용하는 MTC 디바이스와의 통신을 위해서 3GPP 네트워크에 연결되는 서버. SCS는 하나 또는 복수의 애플리케이션 사용을 위한 캐퍼빌리티(Capability)를 제공한다.
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버이며, PLMN 자체와 통신하거나 PLMN을 통하여 MTC 디바이스와 통신할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한 MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고 (SCS의 형태), 자신이 MTC 애플리케이션 서버(AS)일 수도 있다.
- MTC 애플리케이션(MTC application): MTC가 적용되는 서비스 (예를 들어, 원격 검침, 물량 이동 추적 등)
- MTC 애플리케이션 서버(MTC AS): MTC 애플리케이션이 실행되는 네트워크 상의 서버.
- MTC 특징(MTC feature): MTC 애플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 애플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 디바이스에 대한 MTC 애플리케이션을 위한 특징이다.
- MTC 사용자(MTC User): MTC 서버에 의해서 제공되는 서비스를 사용하는 사용자.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 갖고 있으며 하나 이상의 MTC 단말에게 서비스를 제공하는 개체.
- MTC 그룹(MTC Group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어저 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴상태(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 상태(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 상태(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 상태(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
그룹 특정 혼잡 제어(group-specific congestion control)
다수의 장치들은 특정 서비스를 서브스크라이브 할 수 있다. 이러한 경우, 다수의 장치들의 바람직하지 않은 동작(misbehaviour)는 네트워크의 혼잡(congestion)을 일으킬 수 있다. 예를 들어, 다수 장치들이 반복적으로 어태치 요청을 수행하는 하는 경우가 이에 해당할 수 있다. MTC에서 특정 서비스를 제공하는 서버에 문제가 생긴(goes down)난 경우 MTC 장치들은 계속적으로 재부팅, 재연결 요청을 수행할 것이다. 또 다른 예로써, 특정 서브스크립션/서비스에 관련하여 많은 양의 시그널링 오버헤드가 발생할 수도 있다.
이와 같은 혼잡 상황을 해결하는 종래의 방법으로써, 그룹 특정 혼잡 제어, APN 기반 혼잡 제어 등이 수행될 수 있다(SA WG2 Meeting #103, S2-141771, Discussion of Group-specific Congestion Control , NTT DOCOMO 중 일부 인용). 도 7(a)에는 그룹 특정 혼잡 제어가 도 7(b)에는 APN 기반 혼잡 제어가 예시되어 있다. 도 7(a)를 참조하면, UE는 하나의 APN A에서 서비스 1 또는 서비스 2를 제공받을 수 있다. 그리고, UE는 그룹 1 또는 그룹 2 중 적어도 하나 이상의 그룹에 포함될 수 있고, 그룹은 서비스 별로 구분되는 것일 수 있다. 만약 서비스 2를 제공하는 서버에 문제가 생긴 경우, MME는 그룹 2의 멤버(member of group 2)의 액세스를 차단(block)함으로써, 혼잡 제어를 수행할 수 있다. 도 7(b)에는 서비스가 APN 별로 구분되고, 서비스 2를 제공하는 서버에 문제가 생긴 경우, MME가 서비스 2에 해당하는 APN(APN A.2)을 차단함으로써 혼잡 제어를 수행할 수 있다.
상술한 방법들 중, 특히 그룹 특정 혼잡 제어의 경우 하나의 단말이 복수의 그룹에 해당하는(포함되는) 경우 문제가 발생할 수 있다. 도 8을 참조하여 설명한다. 도 8에서 UE 1은 그룹 1에 속하고, UE 2는 그룹 1 및 그룹 2에 동시에 속하는 것으로 전제되었다. 그리고, 그룹 1은 서비스 1과 연계되고, 그룹 2는 서비스 2와 연계된다. 이러한 상황에서, 서비스 2를 제공하는 서버에 문제가 생긴 경우, MME는 그룹 2에 속하는 단말의 액세스를 차단할 수 있다. 따라서, UE 2의 서비스 2를 위한 액세스는 차단된다. 다만, 이러한 경우, MME는 그룹 기반으로 UE의 액세스를 차단하므로, UE 2의 서비스 1을 위한 액세스도 역시 차단된다. 서비스 1을 제공하는 서버에 문제가 있는 것은 아니므로 UE 2가 차단된 그룹(들)에 속해 있다는 사실만으로 차단되지 않은 그룹에 해당하는 서비스로의 액세스까지 일정시간 허용되지 않는 것은 비효율적이다. 이하에서는 이러한 문제를 해결하기 위한 본 발명의 실시예에 대해 살펴본다.
실시예 1
도 9에는 실시예 1에 의한 PDN 연결 절차가 예시되어 있다. 도 9를 참조하면, 단계 S901에서 단말은 MME로 네트워크에 접속/특정 서비스를 위한 제1 PDN 연결 요청을 전송할 수 있다. 이 PDN 연결 요청은 초기 어태치 절차와 함께 또는 독립적으로 발생한 것일 수 있다.
MME는 상기 제1 PDN 연결 요청에 포함된 그룹에 대한 정보를 사용하여 PDN 연결 요청을 거절할지 여부를 결정할 수 있다. 즉, UE의 접속을 제어하는 네트워크 노드(예를 들어, MME)에서 가입자 정보와 사업자/네트워크의 제어 정보 (blocking서비스에 대한 configuration 혹은 사업자 management command, 혹은 네트워크 congestion 상황 등)에 기반하여 승낙(accept) 또는 거절(reject)을 결정하며, 그 결과를 단말에게 알릴 수 있다.
단말은 MME로부터 상기 제1 PDN 연결 요청에 대한 응답을 수신할 수 있다. 여기서, 제1 PDN 연결 요청은 그룹에 대한 정보를 포함할 수 있다. 다시 말해 서비스 그룹 1에 해당하는 서비스를 요청한다는 정보를 포함시킬 수 있다. 종래 PDN요청이 APN, PDN Type, Protocol Configuration Options, Request Type 등의 정보를 포함하는 것과 비교해, 그룹에 대한 정보를 더 포함하는 것이다. 그리고, 제1 PDN 연결 요청에 대한 응답은 복수의 그룹 중 차단된(blocked) 그룹에 대한 정보 및/또는 차단되지 않은 그룹에 대한 정보를 포함할 수 있다. 예를 들어, 도 9의 단계 S902와 같이, PDN 연결 요청에 대한 응답 중 하나인 PDN 연결 거절은 차단된 그룹(들)에 대한 정보(Blocking service group=1 naver service ) 및 차단되지 않은 그룹에 대한 정보(Unblocking service group =2 U-tube )를 포함할 수 있다. 상세하면, MME는 PDN 연결 요청에 대한 응답에 i) 요청과 관계없이 네트워크에서 현재 blocking 제어를 받고 있는/제어를 받지 않고 있는 서비스 그룹에 관한 정보, ii) UE의 가입자 정보와 관계없이 네트워크에서 현재 blocking 제어를 받고 있는/제어를 받지 않고 있는 서비스 그룹에 관한 정보, iii) UE의 가입자 정보에 가입되어 있는 group 중 네트워크에서 현재 group blocking 제어를 받고 있는/제어를 받지 않고 있는 서비스 그룹에 관한 정보 등을 포함시킬 수 있다. 이러한 예시는 PDN 연결 요청이 승낙인지 거절인지 여부에 관계없이 UE로 전송될 수 있으며, 종래기술과 병행하여/결합하여 back-off timer를 사용할 수 있다.
UE는 PDN 연결 요청에 대한 응답을 수신한 후, 네트워크에서 차단된 서비스 그룹을 인지할 수 있다. UE는 상기 수신된 응답에 기반하여, 차단된 서비스를 평가할 수 있다. 즉, 어떤 서비스 요청은 기다려야 하는지 또는 어떤 서비스 요청은 시도할 수 있는지 등을 판단한다. 인지된 사항들은 애플리케이션 레이어로 전달되어 사용자 상호작용(user interaction)에 활용될 수 있다. 즉, UE 내부에 설정(configuration)된 정보에 의해 또 다른 요청을 시도하는 것뿐만 아니라, 사용자 상호작용에 의해 다른 요청을 시도할 수 있다.
계속해서, PDN 연결 요청이 거절되고, UE가 차단된 그룹(들) 이외의 그룹에도 해당하는 경우, MME로 제2 PDN 연결 요청을 전송할 수 있다. 여기서, 제2 PDN 연결 요청은 차단된 그룹(들) 이외의 그룹에 대한 정보를 포함한다. 즉, UE는 네트워크로 차단되지 않은 서비스 요청을 시도할 수 있다. 애플리케이션 레이어에서 서비스를 위한 트래픽이 생성되면, UE는 NAS 레이어로 어떤 서비스에 해당되는 트래픽인지 등에 관한 정보를 직/간접적으로 전달한다. UE의 NAS 레이어는 이전 단계에서 받은 정보들을 기반으로 UE는 또 다른 서비스를 위한 PDN connection establishment 요청 메시지를 네트워크로 전송한다.
도 9의 절차에서 UE는 PDN 연결 요청을 전송하기 이전 애플리케이션 레이어로부터 받은 정보와 사업자/네트워크로부터 받은 pre-configuration 정보에 의해 특정 서비스를 위해 현재 서비스를 요청할 수 있는 서비스 그룹을 인지할 수 있다. 예를 들어 애플리케이션 레이어로부터 받은 app 번호 xx, yy의 경우 서비스 그룹 1 'Naver web browsing 서비스'에 매핑됨을 판단할 수 있다.
상술한 설명에서 그룹은 APN에서 제공하는 서비스 별로 구분되는 것일 수 있다. (가입자 정보에 정의되어 있는 그룹과 반드시 1:1 매핑이 될 필요는 없다) 즉, 하나의 APN 으로 제공 가능한 서비스의 종류별로 다수의 서비스 그룹이 생성 가능하다. 서비스 그룹은 단순히 단말의 특정 application (예를 들어, 스마트폰의 특정 앱)에 한정되는 것은 아니라. 특정 서비스에 따라 구분될 수 있다. 예를 들어 네이버 서버에 접속하기 위해서는 네이버 앱을 사용할 수도 있으나, 구글 브라우징 앱을 사용할 수도 있기 때문이다. 즉, 하나의 앱이 하나의 서비스 그룹이 될 수도 있으나, 다수의 앱이 하나의 서비스 그룹이 될 수도 있다.
또는, 그룹은 가입자 정보에 포함되어 있는 그룹과 동일한 것일 수도 있다. 또는, 그룹은 UE가 제공하는 서비스 별로 상이한 것일 수도 있다. 예를 들어, 하나의 UE가 벤딩 머신으로써의 서비스와 티켓팅 머신으로써의 서비스를 모두 제공할 수 있고, 이러한 경우, UE가 제공 가능한 서비스의 종류에 따라 그룹이 미리 설정되어 있을 수 있다. 또한, 그룹은 사용자 권한에 따라 구분되어 있는 것일 수도 있다. 예를 들어, VPN 서비스 접속을 시도하는 경우, 개별 UE의 사용자가 여러 그룹에 속할 수 있다. 즉, 한 회사의 멤버로써 일반적인 권한을 가지는 것과 동시에 특정 부서 혹은 특정 커뮤니티의 구성원으로써 특정 사용자 권한을 가진 경우, 개별 요청마다 어떤 구성원의 자격으로 요청 하는지에 따라 구분 될 수 있다.
한편 상술한 설명에서, 서비스 그룹 참가자는 현재 특정 APN이 제공하는 특정 서비스를 받고자 하는/받고 있는 단말/사용자가 될 수 있다. 서비스 그룹 참가자는 펨토 셀(Femto cell)에서 사용하는 CSG 멤버와는 다르다. 서비스 그룹의 참가자는 현재 단말이 서비스 받고자 하는/서비스 받고 있는 특정 서비스에 따라 dynamic하게 형성 되는 반면, CSG는 가입자 정보에 고정되어 있으며, 해당 CSG 그룹을 지원하는 cell에서만 의미를 부여할 수 있다.
종래기술의 Low Access Priority 는 사업자/네트워크에 의해 정의되는 그룹으로 볼 수 있으며, low access priority를 적용하는 그룹과 dual priority를 적용할 수 있는 그룹으로 나눠진다고 볼 수 있으며, 같은 서비스를 요청할 때 어떤 상대적인 우선순위를 명시하여 요청하느냐에 의해 네트워크가 접속을 제어한다. 즉, low access priority를 세팅한 그룹과 세팅하지 않은 그룹은 상대적인 우선 순위가 있다고 보여지며, 요청 메시지에 이미 상대적인 우선순위가 명기되었다고 볼 수 있다. 즉, 상술한 실시예 1은 서비스 그룹 사이에는 우선순위가 있는 것이 아니라는 점에서 종래 Low Access Priority 와는 구별될 수 있다. 네트워크 환경에 다라 서비스 그룹의 접속 허가/불가 등이 결정되는 것이므로 어떤 상황에서 어떤 서비스 그룹이 우선한다고 볼 수 없다. Low access priority 기술만으로는 점차 더 동적으로 변하고 있는 서비스 관련 네트워크 장애/혼잡 상황을 반영하기 어렵다. 특히 특정 서비스에 대해 또 다른 서비스와의 상대적인 우선 순위를 고정적으로 정해놓는 것은 서비스 운영에 문제가 될 수 있다. 따라서, 어느 특점 시점에 네트워크 상황을 반영하여 어느 특정 서비스 그룹에 대해서 네트워크 접속을 제어할 수 있어야 한다. 또 다른 하나의 차이점은 low access priority 세팅의 변경은 같은 서비스에 대해 '요청'에 대한 상대적인 우선순위의 변경인 반면, 서비스 그룹 세팅의 변경은 허가 가능한 '다른' 서비스에 대한 요청이다. PDN 연결 수립 관점에서 보면, low access priority 세팅의 변경은 같은 PDN 연결 수립을 시도하는 반면, 서비스 그룹 세팅의 변경은 또 다른 PDN 연결 수립을 시도하는 것이다.
실시예 2
실시예 2는 실시예 1과 비교해, 네트워크의 제어가 좀더 강조되는 방식이다. 이에 대해 도 10을 참조하여 살펴본다.
단계 S1001에서 다수의 서비스 그룹 참가자인 UE가 네트워크에 접속하기 위한 또는 특정 서비스를 위한 PDN 연결을 요청할 수 있다. 이때, 서비스 그룹 1에 해당하는 서비스를 요청한다는 정보를 포함시킬 수 있다. PDN 연결 요청은 초기 어태치 절차와 함께 또는 독립적으로 발생할 수 있다. 상기 단계 S1001 이전, UE는 애플리케이션 레이어로부터 받은 정보와 사업자/네트워크로부터 받은 pre-구성 정보에 의해 특정 서비스를 위해 현재 서비스를 요청할 수 있는 서비스 그룹을 인지할 수 있다. 예를 들어 애플리케이션 레이어로부터 받은 app 번호 xx의 경우 서비스 그룹 1, app 번호 yy의 경우 서비스 그룹 2에 매핑 됨을 판단할 수 있다.
UE의 접속을 제어하는 네트워크 노드(예를 들어, MME)에서 가입자 정보와 사업자/네트워크의 제어 정보 (blocking 서비스에 대한 구성 또는 사업자 management command, 또는 네트워크 혼잡 상황 등)에 기반하여 승낙 또는 거절을 결정하며, 그 결과를 단말에게 알려줄 수 있다. 본 발명에서는 MME는 특정 서비스를 제공할 수 있는 앱 정보 및 서비스 그룹 간의 매핑 정보를 구성 되어 있다고 가정한다. 따라서, 단계 S1002에서, 네트워크 노드가 단말에게 거절을 보내는 경우, 단말이 거절 메시지를 받은 이후 후속 조치로써 서비스 그룹을 변경하여 재 요청을 수행할 수 있도록 새로운 요청/지시를 함께 보낼 수 있다. 즉, 단말에서 적극적인 평가/판단보다는 네트워크에서 직접적으로 제어를 하기 위함이다.
단계 S1003에서, 단말은 수동적으로 네트워크의 지시에 따라 서비스 그룹을 변경하여 재요청을 실시할 수 있다. 여기서, 네트워크로부터 변경된 서비스 그룹 정보는 애플리케이션 레이어로 전달되어 사용자 상호작용에 활용될 수 있다. 즉, UE 내부에 구성된 정보에 의해 또 다른 요청을 시도하는 것뿐만 아니라, 사용자 상호작용에 의해 다른 요청을 시도할 수 있다.
이후, 단말은 단계 S1004에서 PDN 연결 승낙을 수신할 수 있다.
실시예 3
어태치 절차에서, UE는 어태치 요청과 함께 i) 서비스 받고자 하는 특정 서비스/어플리케이션이 속한 그룹, ii) 요청하는 또는 default APN에서 제공하는 서비스 중 서비스 받고자 하는 특정 서비스/어플리케이션 등의 정보를 네트워크로 전송할 수 있다.
UE의 접속을 제어하는 네트워크 노드(예를 들어, MME)에서 가입자 정보와 사업자의 제어에 기반하여 어태치 승낙(attach accept) 또는 어태치 거절(attach reject)을 단말에게 알린다. 어태치 거절인 경우, 종래 기술의 MM backoff timer 값을 주어 일정 시간 동안 재시도를 하지 못하게 한다. 여기서, 어태치 거절/승낙의 결정 및/또는 MM backoff timer 값의 결정에는 상기 어태치 요청과 함께 받은 i), ii) 정보, 미리 설정되어 있는 그룹과 서비스의 연관성/관계에 관한 정보가 사용될 수 있다.
네트워크 노드는 단말에게 아래의 정보들 중 하나 이상의 정보를 네트워크로 전송할 수 있다. 아래 정보는 직접적으로 전달 또는 UE에서 다른 정보의 조합으로 유추할 수 있는 함축적인 방법으로 전달될 수 있다.
어태치 승낙을 보내는 경우, ii) 네트워크에서 현재 그룹 blocking 제어를 받고 있는지에 관한 정보, iii) UE의 가입자 정보와 관계없이 네트워크에서 현재 그룹 blocking 제어를 받고 있는 그룹/서비스에 관한 정보, iv) UE의 가입자 정보에 가입되어 있는 그룹 중 네트워크에서 현재 그룹 blocking 제어를 받고 있는 그룹/서비스에 관한 정보 (즉, 현재 요청에 대한 attach accept을 보내는 경우라도, 또 다른 그룹 에게 제공하고 있는 서비스는 blocking 되고 있다는 부가 정보를 보내주고자 함, attach 이후 다른 그룹/서비스 요청 사항에 활용하고자 하는 의도)를 전송할 수 있다.
만약, attach 거절을 보내는 경우, i) 네트워크에서 현재 그룹 blocking 제어를 받고 있는지에 관한 정보, ii) UE의 가입자 정보와 관계없이 네트워크에서 현재 그룹 blocking 제어를 받고 있는 그룹/서비스에 관한 정보, iii) UE의 가입자 정보에 가입되어 있는 그룹 중 네트워크에서 현재 그룹 blocking 제어를 받고 있지 않는 그룹/서비스에 관한 정보(즉, 현재 요청에 대한 attach 거절을 보내는 경우라도, 또 다른 그룹 에게 제공하고 있는 서비스는 blocking 되어 있지 않다는 부가 정보를 보내주고자 함. 거절 메시지를 받은 경우라도 다른 그룹/service 요청 사항에 활용하고자 하는 의도)를 전송할 수 있다. 상기 정보들에 대한 예시는 승낙/거절 메시지와 상관없이 어느 경우이든 UE로 전송 될 수도 있다.
어태치 승낙 또는 거절을 받은 UE는 네트워크에서 차단된 그룹/서비스를 인지할 수 있다. UE는 상기 단계에서 네트워크로부터 받은 정보에 기반하여, 차단된 그룹/서비스를 평가할 수 있다. 어떤 그룹/서비스 요청은 기다려야 할지, 어떤 그룹/서비스 요청은 시도할 수 있는지 판단한다. 예를 들어, 어떤 그룹/서비스에 대해 attach 거절 및 MM backoff timer에 관한 정보를 받았다 하더라도, backoff timer 값이 끝나기 전이라도 어떤 그룹/서비스를 위해 attach request 메시지를 네트워크로 전송할 수 있음을 판단한다.
이후, UE는 네트워크로 차단되지 않은 그룹/서비스를 요청하기 위한 접속을 시도할 수 있다. 애플리케이션 레이어에서 서비스를 위한 트래픽이 생성되면, UE는 NAS 레이어로 어떤 application/그룹/서비스 에 해당되는 트래픽 인지에 관한 정보를 직/간접적으로 전달한다. UE의 NAS 레이어는 이전 단계에서 받은 정보들을 기반으로 UE는 특정 그룹/서비스를 위한 어태치 요청 메시지를 네트워크로 전송할 수 있다.
상술한 설명은 MM backoff timer의 영향을 받는 TAU와 같은 여러 절차들 상에서 확장 적용될 수 있다. 또한 SM backoff timer의 영향을 받는 절차 상에서도 확장 적용될 수 있다.
도 11은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 11을 참조하여 본 발명에 따른 단말 장치(100)는, 송수신모듈(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신모듈(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
도 11을 참조하여 본 발명에 따른 네트워크 노드 장치(200)는, 송수신모듈(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신모듈(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (13)

  1. 무선통신시스템에서 UE(User Equipment)가 PDN 연결 절차를 수행하는 방법에 있어서,
    MME(Mobility Management Entity)로 제1 PDN 연결 요청을 전송하는 단계; 및
    상기 MME로부터 상기 제1 PDN 연결 요청에 대한 응답을 수신하는 단계;
    를 포함하며,
    상기 제1 PDN 연결 요청은 그룹에 대한 정보를 포함하며,
    상기 제1 PDN 연결 요청에 대한 응답은 복수의 그룹 중 차단된(blocked) 그룹(들)에 대한 정보 또는 복수의 그룹 중 차단되지 않은 그룹(들)에 대한 정보 중 하나 이상을 포함하는, PDN 연결 절차 수행 방법.
  2. 제1항에 있어서,
    상기 PDN 연결 요청이 거절되고, 상기 UE가 상기 차단된 그룹(들) 이외의 그룹에도 해당하는 경우, 상기 MME로 제2 PDN 연결 요청을 전송하는 단계;
    를 더 포함하는, PDN 연결 절차 수행 방법.
  3. 제1항에 있어서,
    상기 제2 PDN 연결 요청은 상기 차단된 그룹(들) 이외의 그룹에 대한 정보를 포함하는, PDN 연결 절차 수행 방법.
  4. 제1항에 있어서,
    상기 그룹은 APN(Access Point Name)에서 제공하는 서비스 별로 구분되는 것인, PDN 연결 절차 수행 방법.
  5. 제1항에 있어서,
    상기 그룹은 상기 UE가 제공하는 서비스별로 상이한 것인, PDN 연결 절차 수행 방법.
  6. 제1항에 있어서,
    상기 그룹은 가입자 정보에 포함되어 있는 그룹과 동일한 것인, PDN 연결 절차 수행 방법.
  7. 무선통신시스템에서 MME(Mobility Management Entity)가 PDN 연결 절차를 수행하는 방법에 있어서,
    UE(User Equipment)로부터 제1 PDN 연결 요청을 수신하는 단계; 및
    상기 제1 PDN 연결 요청에 대한 응답을 상기 UE로 전송하는 단계;
    를 포함하며,
    상기 제1 PDN 연결 요청은 그룹에 대한 정보를 포함하며,
    상기 제1 PDN 연결 요청에 대한 응답은 복수의 그룹 중 차단된(blocked) 그룹(들)에 대한 정보 또는 복수의 그룹 중 차단되지 않은 그룹(들)에 대한 정보 중 하나 이상을를 포함하는, PDN 연결 절차 수행 방법.
  8. 제7항에 있어서,
    상기 MME가 상기 PDN 연결 요청을 거절하고, 상기 UE가 상기 차단된 그룹(들) 이외의 그룹에도 해당하는 경우, 상기 UE로부터 제2 PDN 연결 요청을 수신하는 단계;
    를 더 포함하는, PDN 연결 절차 수행 방법.
  9. 제7항에 있어서,
    상기 제2 PDN 연결 요청은 상기 차단된 그룹(들) 이외의 그룹에 대한 정보를 포함하는, PDN 연결 절차 수행 방법.
  10. 제7항에 있어서,
    상기 MME는 상기 제1 PDN 연결 요청에 포함된 그룹에 대한 정보를 사용하여 PDN 연결 요청을 거절할지 여부를 결정하는, PDN 연결 절차 수행 방법.
  11. 제7항에 있어서,
    상기 그룹은 APN(Access Point Name)에서 제공하는 서비스 별로 구분되는 것인, PDN 연결 절차 수행 방법.
  12. 제7항에 있어서,
    상기 그룹은 상기 UE가 제공하는 서비스별로 상이한 것인, PDN 연결 절차 수행 방법.
  13. 제7항에 있어서,
    상기 그룹은 가입자 정보에 포함되어 있는 그룹과 동일한 것인, PDN 연결 절차 수행 방법.
PCT/KR2015/004959 2014-05-16 2015-05-18 무선 통신 시스템에서 패킷 데이터 네트워크 연결 절차 및 이를 위한 장치 WO2015174803A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/311,468 US10299298B2 (en) 2014-05-16 2015-05-18 Packet data network connection process in wireless communication system, and apparatus for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461994204P 2014-05-16 2014-05-16
US61/994,204 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015174803A1 true WO2015174803A1 (ko) 2015-11-19

Family

ID=54480271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004959 WO2015174803A1 (ko) 2014-05-16 2015-05-18 무선 통신 시스템에서 패킷 데이터 네트워크 연결 절차 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10299298B2 (ko)
WO (1) WO2015174803A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138757A1 (ko) * 2016-02-11 2017-08-17 엘지전자(주) 무선 통신 시스템에서 다수의 통신 장치들을 이용하여 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2017218775A1 (en) * 2016-06-15 2017-12-21 Intel Corporation Services provisioning for internet-of-things devices in cellular networks

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3238057A1 (en) 2014-12-24 2017-11-01 Koninklijke KPN N.V. Method for controlling on-demand service provisioning
WO2017114757A1 (en) * 2015-12-28 2017-07-06 Koninklijke Kpn N.V. Method for providing a service to a user equipment connected to a first operator network via a second operator network
CN108886831A (zh) * 2016-03-31 2018-11-23 华为技术有限公司 一种接入方法及装置
PL3485696T3 (pl) * 2017-08-10 2023-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Kontrola przerwy w usługach dla urządzenia bezprzewodowego

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008554A1 (en) * 2009-01-08 2012-01-12 Samsung Electronics Co., Ltd. Local pdn access method in wireless communication system
WO2013105817A1 (ko) * 2012-01-11 2013-07-18 삼성전자 주식회사 이동 통신 시스템에서 패킷 데이터 네트워크 연결 장치 및 방법
WO2014069925A1 (ko) * 2012-10-31 2014-05-08 삼성전자주식회사 무선 통신 시스템에서 로컬 영역 패킷 데이터 네트워크 연결을 관리하는 방법 및 장치
WO2014073866A1 (ko) * 2012-11-06 2014-05-15 엘지전자 주식회사 무선 통신 시스템에서 접근 제어 방법 및 이를 지원하는 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566455B1 (en) * 2008-12-17 2013-10-22 Marvell International Ltd. Method and apparatus for supporting multiple connections in 3GPP systems
CN103125142B (zh) * 2010-05-07 2016-01-20 爱立信(中国)通信有限公司 为移动实体的群组实施共同服务质量
JP2012129957A (ja) * 2010-12-17 2012-07-05 Ntt Docomo Inc 移動通信方法及び移動管理ノード
WO2012135680A1 (en) * 2011-04-01 2012-10-04 Interdigital Patent Holdings, Inc. System and method for sharing a common pdp context
EP3324671A1 (en) * 2011-09-30 2018-05-23 Nec Corporation Communication system, method, and apparatus
CN104854773B (zh) * 2013-01-14 2018-05-11 英特尔Ip公司 无线网络中的能量采集设备
CN103269282A (zh) * 2013-04-25 2013-08-28 杭州华三通信技术有限公司 网络配置自动部署方法和装置
KR20150115674A (ko) * 2014-04-03 2015-10-14 삼성전자주식회사 롱 텀 에볼루션 네트워크에서 보이스 오버 롱 텀 에볼루션을 위한 등록 향상 방법 및 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008554A1 (en) * 2009-01-08 2012-01-12 Samsung Electronics Co., Ltd. Local pdn access method in wireless communication system
WO2013105817A1 (ko) * 2012-01-11 2013-07-18 삼성전자 주식회사 이동 통신 시스템에서 패킷 데이터 네트워크 연결 장치 및 방법
WO2014069925A1 (ko) * 2012-10-31 2014-05-08 삼성전자주식회사 무선 통신 시스템에서 로컬 영역 패킷 데이터 네트워크 연결을 관리하는 방법 및 장치
WO2014073866A1 (ko) * 2012-11-06 2014-05-15 엘지전자 주식회사 무선 통신 시스템에서 접근 제어 방법 및 이를 지원하는 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO ET AL.: "Discussion of group-specific congestion control", S 2-141771 , 3GPP TSG SA WG2 MEETING #103, 13 May 2014 (2014-05-13), Phoenix, Arizona, USA, XP050805124 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138757A1 (ko) * 2016-02-11 2017-08-17 엘지전자(주) 무선 통신 시스템에서 다수의 통신 장치들을 이용하여 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
US10735943B2 (en) 2016-02-11 2020-08-04 Lg Electronics Inc. Method for transmitting and receiving data using multiple communication devices in wireless communication system, and device supporting same
WO2017218775A1 (en) * 2016-06-15 2017-12-21 Intel Corporation Services provisioning for internet-of-things devices in cellular networks

Also Published As

Publication number Publication date
US20170086231A1 (en) 2017-03-23
US10299298B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2017142362A1 (ko) 무선 통신 시스템에서 위치 등록 관련 메시지 송수신 방법 및 이를 위한 장치
WO2016186414A1 (ko) 무선 통신 시스템에서 브로드캐스트 서비스를 제공하는 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2017191973A1 (ko) 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치
WO2016126092A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2015174803A1 (ko) 무선 통신 시스템에서 패킷 데이터 네트워크 연결 절차 및 이를 위한 장치
WO2014137098A1 (ko) 근접 서비스 범위 조정 방법 및 필터링 방법
WO2016163635A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치
WO2018009025A1 (ko) 무선 통신 시스템에서 pdn 연결 관련 신호 송수신 방법 및 이를 위한 장치
WO2017138780A1 (ko) 데이터 전송 방법 및 사용자기기, 및 데이터 수신 방법 및 기지국
WO2016003199A1 (ko) 무선 통신 시스템에서 d2d 통신 수행 방법 및 이를 위한 장치
WO2018143758A1 (ko) 무선 통신 시스템에서 제1 ue와 연결을 가진 제2 ue의 페이징 관련 동작을 수행하는 방법 및 이를 위한 장치
WO2019194537A1 (ko) 무선 통신 시스템에서 숏 메시지 관련 신호 송수신 방법 및 이를 위한 장치
WO2017086617A1 (ko) 무선 통신 시스템에서 혼잡한 네트워크 상황에서 동작하는 단말의 동작 방법 및 이를 위한 장치
WO2017164686A1 (ko) 무선 통신 시스템에서 v2x 메시지 전송에 관련된 동작을 수행하는 방법 및 이를 위한 장치
WO2016126088A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치
WO2016126093A1 (ko) 무선 통신 시스템에서 단말의 plmn 선택 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15311468

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792544

Country of ref document: EP

Kind code of ref document: A1