WO2019027233A1 - 무선 통신 시스템에서 v2x ue가 rat 변경에 관련된 동작을 수행하는 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 v2x ue가 rat 변경에 관련된 동작을 수행하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2019027233A1 WO2019027233A1 PCT/KR2018/008695 KR2018008695W WO2019027233A1 WO 2019027233 A1 WO2019027233 A1 WO 2019027233A1 KR 2018008695 W KR2018008695 W KR 2018008695W WO 2019027233 A1 WO2019027233 A1 WO 2019027233A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rat
- information
- group
- switch
- group communication
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/18—Selecting a network or a communication service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
Definitions
- the following description relates to a wireless communication system, and more particularly, to a method and apparatus for efficiently providing a V2X service through a 3GPP 5G System (5G mobile communication system, next generation mobile communication system) and EPS.
- 5G mobile communication system next generation mobile communication system
- EPS evolved Node B
- a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, a single carrier frequency division multiple access (MC-FDMA) system, and a multi-carrier frequency division multiple access (MC-FDMA) system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- MC-FDMA single carrier frequency division multiple access
- MC-FDMA multi-carrier frequency division multiple access
- a V2X UE performs an operation related to RAT change.
- a method for a V2X (Vehicle to Everything) terminal in a wireless communication system comprising: confirming mapping information of a first UE; Selecting a first RAT according to the mapping information; And transmitting, to all UEs belonging to a group, a message including one of information indicating that the first RAT is selected or information indicating a switch to the first RAT, , And one or more RATs are mapped to each V2X service.
- An embodiment of the present invention is a V2X terminal apparatus for performing an operation related to RAT change in a wireless communication system, comprising: a transceiver; And a processor, wherein the processor is configured to: determine a first RAT according to the mapping information; determine whether the first RAT has been selected or a switch to the first RAT; And the mapping information is a V2X terminal device in which one or more RATs are mapped to the Geographical Area for each V2X service.
- the method may further include receiving a response to the instruction or the selection from all the terminals belonging to the group.
- the selection of the first RAT or the switch to the first RAT may not be performed.
- the method may further comprise performing a RAT switch with the first RAT.
- the mapping information may include at least one of time information on which each of the one or more RATs can be used, a QoS parameter to be satisfied in each of the one or more RATs, and congestion of each of the one or more RATs.
- the QoS parameter may include at least one of a latency, a delay budget, a transmission delay, a Packet Error Loss Rate, a transmission failure rate, a transmission success rate related value, and a data rate related value.
- the message indicates whether Target RAT information, information related to a time to perform a switch to the first RAT, information indicating that the message selected the first RAT, or information indicating a switch to the first RAT Identification information for the group communication, and identification information for the representative UE.
- the identification information for the group communication may be identification information for the V2X service, identification information for the V2X application, identification information for the group, identification information for the group communication, and address information for use in the group communication.
- the identification information for the representative UE may be one of identification information for a UE used in an application layer and address information used for group communication.
- the first UE may be a representative UE of the group.
- the representative UE may be one of a leader of the group communication, a UE at the head of the progress direction among the UEs performing group communication, a UE that initiated group communication, and a UE designated / elected to operate as a representative UE.
- the one or more RATs may include E-UTRA and NR (New Radio).
- RAT change can be performed while supporting a service specific to V2X.
- EPS evolved packet system
- EPC Evolved Packet Core
- FIG. 2 is an exemplary diagram illustrating an architecture of a general E-UTRAN and an EPC.
- 3 is an exemplary diagram illustrating the structure of a radio interface protocol in a control plane.
- FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane.
- 5 is a flowchart for explaining the random access procedure.
- RRC radio resource control
- FIG. 7 is a diagram for explaining a 5G system.
- FIG. 9 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
- each component or characteristic may be considered optional unless otherwise expressly stated.
- Each component or feature may be implemented in a form that is not combined with other components or features.
- some of the elements and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of certain embodiments may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
- Embodiments of the present invention may be supported by standard documents disclosed in connection with at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, the steps or portions of the embodiments of the present invention that are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
- IEEE Institute of Electrical and Electronics Engineers
- Universal Mobile Telecommunications System A third generation (3G) mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
- EPS Evolved Packet System
- EPC Evolved Packet Core
- PS packet switched core network
- IP Internet Protocol
- UMTS is an evolved form of network.
- Node B base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell scale.
- - eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell scale.
- the UE may be referred to as a terminal, a mobile equipment (ME), a mobile station (MS), or the like.
- the UE may be a portable device such as a notebook, a mobile phone, a PDA (Personal Digital Assistant), a smart phone, a multimedia device, or the like, or a non-portable device such as a PC (Personal Computer) or a vehicle-mounted device.
- the term UE or terminal may refer to an MTC device.
- Home NodeB Home NodeB
- Home NodeB It is installed in indoor area as a base station of UMTS network, and the coverage is micro cell scale.
- - HeNB Home eNodeB: Installed indoors as a base station of EPS network, the coverage is micro cell scale.
- Mobility Management Entity A network node in the EPS network that performs Mobility Management (MM) and Session Management (SM) functions.
- MM Mobility Management
- SM Session Management
- - PDN-GW / PGW A network node in the EPS network that performs UE IP address allocation, packet screening and filtering, and charging data collection functions.
- SGW Serving Gateway: A network node in the EPS network that performs mobility anchor, packet routing, idle mode packet buffering, triggering the MME to page the UE, and so on.
- Non-Access Stratum The upper stratum of the control plane between the UE and the MME.
- Packet Data Network A network in which a server supporting a specific service (for example, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
- MMS Multimedia Messaging Service
- WAP Wireless Application Protocol
- - PDN connection a logical connection between the UE and the PDN, expressed as one IP address (one IPv4 address and / or one IPv6 prefix).
- Radio Access Network A unit that includes NodeB, eNodeB and RNC (Radio Network Controller) controlling them in 3GPP network. Lt; / RTI > between UEs and provides connectivity to the core network.
- RNC Radio Network Controller
- HLR Home Location Register
- HSS Home Subscriber Server
- PLMN Public Land Mobile Network
- Proximity Service A service that enables discovery and mutual direct communication between physically adjacent devices, or communication via a base station or communication via a third device. At this time, user plane data is exchanged via a direct data path without going through a 3GPP core network (e.g., EPC).
- EPC 3GPP core network
- EPC Evolved Packet Core
- EPS evolved packet system
- EPC Evolved Packet Core
- SAE System Architecture Evolution
- SAE is a research project that determines the network structure that supports mobility between various types of networks.
- SAE aims to provide an optimized packet-based system, such as, for example, supporting various wireless access technologies on an IP-based basis and providing improved data transfer capabilities.
- the EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services.
- a conventional mobile communication system i.e., a second- or third-generation mobile communication system
- CS Circuit-Switched
- Packet- Function has been implemented.
- the 3GPP LTE system which is an evolution of the 3G mobile communication system
- the CS and PS sub-domains are unified into one IP domain.
- the connection between the terminal and the terminal having the IP capability is established between an IP-based base station (eNodeB (evolved Node B), an EPC, an application domain (for example, IMS IP Multimedia Subsystem).
- eNodeB evolved Node B
- EPC an application domain
- IMS IP Multimedia Subsystem IMS IP Multimedia Subsystem
- the EPC may include various components.
- a Serving Gateway SGW
- PDN GW Packet Data Network Gateway
- MME Mobility Management Entity
- ePDG Enhanced Packet Data Gateway
- the SGW (or S-GW) is an element that functions as a boundary point between the radio access network (RAN) and the core network and functions to maintain the data path between the eNodeB and the PDN GW.
- the SGW acts as a local mobility anchor point. That is, the packets can be routed through the SGW for mobility within the E-UTRAN (Evolved-Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network defined after 3GPP Release-8).
- the SGW can also provide mobility to other 3GPP networks (RANs defined before 3GPP Release-8, for example UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data Rates for Global Evolution) As an anchor point.
- the PDN GW corresponds to the termination point of the data interface towards the packet data network.
- the PDN GW can support policy enforcement features, packet filtering, and charging support.
- mobility management with 3GPP networks and non-3GPP networks e.g., untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) It can serve as an anchor point for.
- untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax
- I-WLAN Interworking Wireless Local Area Network
- CDMA Code Division Multiple Access
- WiMax trusted networks
- the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to the Single Gateway Configuration Option.
- the MME is an element that performs signaling and control functions to support UE access to network connections, allocation, tracking, paging, roaming, and handover of network resources.
- the MME controls the control plane functions related to subscriber and session management.
- the MME manages a large number of eNodeBs and performs signaling for selection of conventional gateways for handover to other 2G / 3G networks.
- the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
- the SGSN handles all packet data such as the user's mobility management and authentication to another 3GPP network (e.g., GPRS network).
- 3GPP network e.g., GPRS network
- ePDG acts as a secure node for an untrusted Non-3GPP network (e.g., I-WLAN, WiFi hotspot, etc.).
- an untrusted Non-3GPP network e.g., I-WLAN, WiFi hotspot, etc.
- a terminal having IP capability can access an IP service network (not shown) provided by a provider (i.e., an operator) via various elements in the EPC, (E. G., IMS). ≪ / RTI >
- FIG. 1 also shows various reference points (e.g., S1-U, S1-MME, etc.).
- reference points e.g., S1-U, S1-MME, etc.
- 3GPP system a conceptual link connecting two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
- Table 1 summarizes the reference points shown in FIG.
- various reference points may exist depending on the network structure.
- Reference point Explanation S1-MME A reference point for the control plane protocol between the E-UTRAN and the MME (reference point for the control plane protocol between the E-UTRAN and the MME)
- S1-U A reference point between E-UTRAN and SGW for path switching between eNBs during handover and user plane tunneling per bearer (reference point between E-UTRAN and Serving GW for inter-eNodeB path switching during handover)
- S3 A reference point between the MME and the SGSN that provides user and bearer information exchange for 3GPP access network mobility in an idle and / or active state.
- This reference point may be used in PLMN- or PLMN- (for example, in the case of a PLMN-to-PLMN handover)) (It is user and bearer information exchange for inter-3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).
- S4 A reference point between the SGW and the SGSN that provides the associated control and mobility support between the GPRS core and the 3GPP anchor function of the SGW, and also provides user plane tunneling if a direct tunnel is not established. and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
- S5 A reference point that provides user plane tunneling and tunnel management between the SGW and the PDN GW. It is used for SGW relocation because of terminal mobility and connection to PDN GW where SGW is not located together for required PDN connectivity. It is used for Serving GW and PDN GW. Serving GW relocation due to UE mobility and if Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.
- the PDN may be an operator external public or private PDN or, for example, an operator-in-PDN for the provision of an IMS service.
- This reference point corresponds to Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra-operator packet data network, eg for provision of IMS services. This reference point corresponds to 3G for 3GPP accesses.)
- S2a and S2b correspond to a Non-3GPP interface.
- S2a is a reference point that provides the user plane with the associated control and mobility support between trusted Non-3GPP access and PDN GW.
- S2b is a reference point providing the user plane with the associated control and mobility support between the ePDG and the PDN GW.
- FIG. 2 is an exemplary diagram illustrating an architecture of a general E-UTRAN and an EPC.
- the eNodeB is responsible for routing to the gateway, scheduling and transmission of paging messages, scheduling and transmission of the Broadcast Channel (BCH), and resources in the uplink and downlink, while the RRC (Radio Resource Control) To the UE, to perform functions such as setting and providing for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control.
- RRC Radio Resource Control
- paging can occur, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
- FIG. 3 is a diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
- FIG. 4 is a diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station .
- the air interface protocol is based on the 3GPP radio access network standard.
- the wireless interface protocol horizontally comprises a physical layer, a data link layer, and a network layer, and vertically includes a user plane for data information transmission and a control plane And a control plane for signal transmission.
- the protocol layers are classified into L1 (first layer), L2 (second layer) and L3 (third layer) based on the lower three layers of an Open System Interconnection (OSI) ).
- OSI Open System Interconnection
- the physical layer which is the first layer, provides an information transfer service using a physical channel.
- the physical layer is connected to an upper Medium Access Control layer through a transport channel, and data is transmitted between the medium access control layer and the physical layer through the transport channel. Data is transmitted between the different physical layers, that is, between the transmitting side and the receiving side physical layer through the physical channel.
- a physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
- one sub-frame is composed of a plurality of symbols and a plurality of sub-carriers on the time axis.
- One subframe is composed of a plurality of resource blocks, and one resource block is composed of a plurality of symbols and a plurality of subcarriers.
- the transmission time interval (TTI) which is the unit time at which data is transmitted, is 1 ms corresponding to one subframe.
- the physical channels existing in the physical layer of the transmitter and the receiver can be classified into a Physical Downlink Shared Channel (PDSCH), a Physical Uplink Shared Channel (PUSCH) and a Physical Downlink Control Channel (PDCCH)
- PDSCH Physical Downlink Shared Channel
- PUSCH Physical Uplink Shared Channel
- PDCCH Physical Downlink Control Channel
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- PUCCH Physical Uplink Control Channel
- the Medium Access Control (MAC) layer of the second layer maps various logical channels to various transport channels, and also performs logical channel multiplexing (Multiplexing).
- the MAC layer is connected to an RLC layer, which is an upper layer, through a logical channel.
- a logical channel includes a control channel for transmitting control plane information according to the type of information to be transmitted, And a traffic channel for transmitting information of a user plane (User Plane).
- the Radio Link Control (RLC) layer of the second layer divides and concatenates the data received from the upper layer to adjust the data size so that the lower layer is suitable for transmitting data in the radio section .
- RLC Radio Link Control
- the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP (Packet Data Convergence Protocol) layer that is relatively large and contains unnecessary control information in order to efficiently transmit IP packets, such as IPv4 or IPv6, It performs header compression to reduce packet header size.
- IP Packet Data Convergence Protocol
- the PDCP layer also performs a security function, which consists of ciphering to prevent third party data interception and integrity protection to prevent third party data manipulation.
- a radio resource control (RRC) layer located at the uppermost level of the third layer is defined only in the control plane and includes a configuration of a radio bearer (RB), a re- -configuration and release of the logical channel, the transport channel, and the physical channel.
- the RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
- the UE If there is an RRC connection between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC Connected Mode, and if not, it is in an RRC Idle Mode.
- the RRC state refers to whether or not the RRC of the UE is a logical connection with the RRC of the E-UTRAN. If the RRC is connected, it is called the RRC_CONNECTED state, and if it is not connected, it is called the RRC_IDLE state. Since the UE in the RRC_CONNECTED state has the RRC connection, the E-UTRAN can grasp the existence of the UE in the cell unit, and thus can effectively control the UE.
- the terminal in the RRC_IDLE state can not grasp the existence of the terminal in the E-UTRAN, and the core network manages the TA (Tracking Area) unit, which is a larger area unit than the cell. That is, the UE in the RRC_IDLE state only knows whether the corresponding UE is present in a larger area than the cell, and the UE must transition to the RRC_CONNECTED state in order to receive ordinary mobile communication services such as voice or data.
- Each TA is identified by a tracking area identity (TAI).
- a terminal can construct a TAI through a tracking area code (TAC), which is information broadcast in a cell.
- TAI tracking area identity
- the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, establishes an RRC connection in the corresponding cell, and registers the terminal information in the core network. Thereafter, the terminal remains in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects (re-selects) the cell as needed and checks the system information and paging information. It is said to camp on the cell.
- the terminal When a terminal that has stayed in the RRC_IDLE state needs to establish an RRC connection, the terminal establishes an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and transitions to the RRC_CONNECTED state.
- the UE in the RRC_IDLE state needs to make an RRC connection. For example, when the UE needs a call attempt or a data transmission attempt, or receives a paging message from the E-UTRAN, Response message transmission, and the like.
- a non-access stratum (NAS) layer located at an upper level of the RRC layer performs functions such as session management and mobility management.
- NAS non-access stratum
- the NAS layer shown in FIG. 3 will be described in detail below.
- ESM Evolved Session Management
- the NAS layer performs functions such as default bearer management and dedicated bearer management, and the terminal is responsible for controlling the PS service from the network.
- the default bearer resource is allocated from the network when it is first connected to a specific Packet Data Network (PDN) when connected to the network.
- PDN Packet Data Network
- the network allocates available IP addresses to the UE so that the UE can use the data service, and allocates the QoS of the default bearer.
- LTE supports two types of bearers: Guaranteed bit rate (GBR) QoS, which guarantees a specific bandwidth for data transmission and reception, and Non-GBR bearer, which has best effort QoS without bandwidth guarantee.
- GBR Guaranteed bit rate
- Non-GBR bearer which has best effort QoS without bandwidth guarantee.
- a non-GBR bearer is allocated.
- bearers having QoS characteristics of GBR or non-GBR can be allocated.
- a bearer assigned to a terminal in the network is called an evolved packet service (EPS) bearer.
- EPS evolved packet service
- the network assigns an ID. This is called EPS Bearer ID.
- An EPS bearer has QoS characteristics of a maximum bit rate (MBR) and / or a guaranteed bit rate (GBR).
- 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
- the random access procedure is used for the UE to obtain UL synchronization with the base station or to allocate UL radio resources.
- the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
- PRACH physical random access channel
- Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
- ZC Zadoff-Chu
- the transmission of the random access preamble is limited to specific time and frequency resources for each cell.
- the PRACH setting index indicates a specific subframe and a preamble format in which a random access preamble can be transmitted.
- the UE transmits the randomly selected random access preamble to the eNodeB.
- the UE selects one of 64 candidate random access preambles.
- the corresponding subframe is selected by the PRACH setting index.
- the UE transmits the selected random access preamble in the selected subframe.
- the eNodeB receiving the random access preamble sends a random access response (RAR) to the UE.
- the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE receives a random access response in a Medium Access Control (MAC) PDU (Protocol Data Unit) on the PDSCH indicated by the detected PDCCH.
- MAC Medium Access Control
- FIG. 6 shows a connection procedure in the radio resource control (RRC) layer.
- RRC radio resource control
- the RRC state is shown depending on whether the RRC is connected or not.
- the RRC state refers to whether or not an entity of the RRC layer of the UE is a logical connection with an entity of the RRC layer of the eNodeB. If the entity is connected, it is referred to as an RRC connected state, Is referred to as an RRC idle state.
- the E-UTRAN can grasp the existence of the corresponding UE on a cell basis, and thus can effectively control the UE.
- UEs in an idle state can not be grasped by an eNodeB, but are managed by a core network in a tracking area unit, which is an area unit larger than a cell.
- the tracking area is a set of cells. That is, an idle state UE is only detected in a large area, and in order to receive normal mobile communication services such as voice and data, the UE must transition to a connected state.
- the UE When the user first turns on the power of the UE, the UE first searches for an appropriate cell and stays in an idle state in the corresponding cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through the RRC connection procedure and transitions to the RRC connected state .
- the UE in the idle state needs to make an RRC connection. For example, when a user needs a call attempt or uplink data transmission or receives a paging message from the EUTRAN And sending a response message to the user.
- the RRC connection process includes a process of transmitting an RRC connection request message to the eNodeB by the UE, a process of transmitting an RRC connection setup message to the UE by the eNodeB, a process of establishing an RRC connection setup with the eNodeB (RRC connection setup complete) message. This process will be described in more detail with reference to FIG.
- the UE When the UE in an idle state tries to make an RRC connection for a reason such as a call attempt, a data transmission attempt, or a response to paging of an eNodeB, the UE first transmits an RRC connection request message eNodeB.
- the eNB Upon receiving the RRC connection request message from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message (RRC connection setup message) as a response message to the UE .
- RRC connection setup message RRC connection setup message
- the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection setup message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connection mode.
- the MME is separated into AMF (Core Access and Mobility Management Function) and SMF (Session Management Function) in the Next Generation system (or 5G CN (Core Network)). Therefore, the NAS interaction with the UE and the MM (Mobility Management) are performed by the AMF, and the SM (Session Management) is performed by the SMF.
- the SMF manages UPF (User Plane Function), which is a gateway that has a user plane function, that is, a gateway for routing user traffic.
- UPF User Plane Function
- the control plane portion of the S-GW and the P- The user-plane portion can be regarded as the UPF.
- UPF User Plane Function
- DN Data Network
- UPF User Plane Function
- TR 23.786 defines the agenda listed in Table 4 below.
- a UE can perform a PC 5 (D2D: Device to Device, or ProSe: interface defined in 3GPP for Proximity based Service) using a plurality of RATs (Radio Access Technology), a specific V2X application
- RATs Radio Access Technology
- LTE i.e., E-UTRA
- NR Radio Access Technology
- the most important factor in the V2X service is the interaction between the UEs. That is, other UEs running around the V2X message transmitted by the first UE and / or member UEs of the group to which the first UE belongs should be receivable. This not only realizes road safety, but also enables cooperative driving such as platooning. Accordingly, in the present invention, a mechanism for selecting a RAT to be used for the PC 5 operation by the V2X application is proposed.
- the first UE can check the mapping information and select the first RAT according to the mapping information. Then, a message including one of information indicating that the first RAT is selected or information indicating a switch to the first RAT may be transmitted to all UEs belonging to the group. In the case of a switch, all the UEs (i.e., another UE (s) participating in the group communication including the UE) participating in the group communication of the representative UE perform the group communication with the RAT from the first PC 5 RAT to the second PC5 Indicates to switch to RAT.
- all the UEs i.e., another UE (s) participating in the group communication including the UE
- the representative UE perform the group communication with the RAT from the first PC 5 RAT to the second PC5 Indicates to switch to RAT.
- all UEs i.e., other UEs (s) participating in the group communication including themselves
- that the representative UE participates in group communication select a RAT to be used / applied for performing the group communication And announce it.
- the group communication may be interpreted as a V2X service for performing group communication.
- mapping information may be one or more RATs mapped to the Geographical Area for each V2X service. Details of the mapping information will be described later.
- the first UE may perform RAT selection / switch to the first RAT after transmitting information related to the selection / switch of the first RAT. If the first RAT does not support any one of the UEs belonging to the group, the selection / selection of the first RAT is performed in response to a response to the instruction or selection from all the UEs belonging to the group. The switch to the first RAT may not be performed. All UEs participating in group communication, including the representative UE, perform RAT selection / switch with the same target RAT at the same time. In the case of use (selection), all UEs participating in group communication including the representative UE select and use the same RAT.
- all UEs participating in group communication including a representative UE perform a RAT switch with the same target RAT at the same time.
- the UE receiving the RAT switch indication / request from the representative UE may transmit the ACK / response to the representative UE.
- all the UEs may perform a RAT switch operation only after the representative UE transmits an acknowledgment message to the other UEs through the PC 5 after receiving ACK / response from all other UEs participating in the group communication.
- the UE receiving the RAT use indication / request from the representative UE may transmit an ACK / response to the representative UE.
- all the UEs may perform the RAT use (select) operation only after the representative UE transmits an acknowledgment message to the other UEs through the PC 5 after receiving ACK / response from all other UEs participating in the group communication have.
- the RAT support capability of all UEs may not be the same. That is, if there is a UE (s) that does not support the first RAT in the group and the remaining UEs switch to the first RAT, V2X communication with the UE that does not support the first RAT is impossible and platooning itself may not be possible. Therefore, the problem of the unevenness of the RAT support capability can be solved through the above configuration.
- the message indicates whether Target RAT information, information related to a time to perform a switch to the first RAT, information indicating that the message selected the first RAT, or information indicating a switch to the first RAT Identification information for the group communication, and identification information for the representative UE.
- the representative UE may send a PC5 message to instruct another UE (s) to switch the RAT performing group communication or to inform the selected RAT.
- This PC5 message may contain the above-described information (s).
- Such a PC5 message may be transmitted once or periodically for a valid time.
- Target RAT information This is the PC5 RAT information that is the target of which PC5 RAT should be switched or which PC5 RAT should be used (selected).
- Switch / Information on when to use (select) This can be specified as soon as switch / usage is directed (implicitly by explicitly or not including this information), or a specific time / time . In the latter case, it may be given as a few seconds after the instruction is given, or it may provide a specific time at several hours and minutes. Or in the latter case, after several (after) subframes after being instructed.
- Identification information of group communication This is identification information of V2X service, identification information of V2X application, identification information of group, identification information of group communication, address information (source / destination Layer- 2 ID, source / destination IP address, etc.). It may also be more than one.
- Identification information for the representative UE This may be in various forms such as identification information about the UE used in the application layer, address information used in group communication (source Layer-2 ID, source IP address, etc.). It may also be more than one.
- the first UE may be a representative UE of the group.
- the representative UE is a UE that is a leader of a group communication (e.g., a leading UE exists in a platooning or a Cooperative Adaptive Cruise Control (CACC)), a UE at the forefront of the direction of the group,
- the UE may be one of the UEs designated / elected to operate as the representative UE (this may be designated by the UE itself and informed to other UEs, or may be specified by the network or the UE-type RSU).
- the above information (eg, the information that it is the leader) can be obtained from the V2X application by the UE or acquired from the layer managed by 3GPP.
- the UE may determine that the representative UE determines the RAT switch or use (selection), and may determine and indicate by the network or UE-type RSU.
- the representative UE transmits a PC5 message instructing RAT switch or use (selection) to another UE
- a new PDCP SDU type is defined in the PC 5-U (e.g., 'RAT switch', 'RAT selection', 'RAT configuration' ', Etc.) can be used.
- the RAT selection or switch method for group communication described above is also applicable to unicast communication. This is because the unicast communication can be regarded as a group communication with two UEs participating. And group communication can be interpreted as multicast communication.
- a Geographical Area can be added to Solution # 12: 3GPP PC5 RAT selection for V2X application of TR 23.786v0.6.0, section 6.12, as follows. That is, add a Geographical Area to the configuration / mapping of 'Tx Profiles' associated with the V2X services. This means setting / configuring the Tx Profile (s) that should be used for a specific V2X service in a geographical area. You can list available Tx profiles per Geographical Area, or list the available Geographical Areas per Tx Profile. If a particular Tx Profile is available regardless of region, it can also be set to a value that does not contain geographical area information or points to a whole area (such as all or *).
- the V2X services may be, for example, PSIDs or ITS-AIDs of the V2X applications.
- Tx Profile-based PC5 RAT selection can be applied to broadcast, as well as unicast, multicast, and groupcast. As described above, the addition of the geographical area can be applied to the broadcast V2X service and / or the unicast V2X service and / or the multicast V2X service and / or the groupcast V2X service.
- the method of switching / selecting the RAT to be used / applied to group communication can be applied not only to RAT but also to various UEs used for group communication.
- the method of switching / selecting the RAT of the UEs participating in the group communication has been described.
- this is a method of switching / selecting the RAT used / applied to the specific V2X service or all the V2X services of all UEs located in a specific area Extension can be applied.
- the mapping information may include at least one of time information on which each of the one or more RATs can be used, a QoS parameter to be satisfied in each of the one or more RATs, and congestion of each of the one or more RATs.
- Time information For example, it can be displayed in intervals of time in seconds with the corresponding RAT in a day. (For example, from several hours to a few seconds to several seconds and a few seconds, meaning that the corresponding RAT is used at the time corresponding to this interval)
- QoS parameters This may be various QoS values that must be satisfied in PC 5 operation using the RAT. Examples include latency (or delay budget, or transmission delay) related values, Packet Error Loss Rate (or transmission failure rate or transmission success rate) related values, and data rate related values. A time window may be provided to indicate what time unit is to be measured for these values. Each parameter or common. This measurement may then be provided to the UE and / or obtained from another UE whether the UE is performing directly and / or measuring the network.
- Congestion of RAT It is information indicating whether RAT is congested, and can be expressed in various ways such as the share of radio resource of RAT.
- mapping information when there are a plurality of RATs in the mapping information (for example, a plurality of RATs are set in a specific geographical area), various conditions that each RAT can be used / selected are provided together with the mapping information . This may be provided by RAT or may be provided to all RATs in common. This condition may also be used to determine that when the currently used / applying RAT does not satisfy the condition, it should switch to another RAT meeting the above conditions. In addition, the above conditions can be used to determine which RAT to use / select for the V2X service.
- the 3GPP PC5 RAT (s) for the appropriate V2X applications [see the mapping of V2X services (for example, PSID or ITS-AIDs of the V2X applications ) to 3GPP PC5 RAT (s) with Geographical Area (s).] parameters.
- This parameter may be preset in the UE or, if in coverage, it can be provisioned by signaling on the V3 reference point from the V2X Control Function in the HPLMN. This method is based on the assumption that the V2X Control Function and V3 reference point defined for EPS also apply to the 5G System. Alternatively, the above provisioning may be performed in the network using an NAS message.
- the above information can be used / selected (or the use / selection is authorized or allowed to be used / selected) for a particular V2X service in any region.
- Geographical Area may be a shape as shown in FIG. 8 defined in TS 24.385, that is, a coordinate value, a PLMN unit, a TA (Tracking Area) unit, a cell unit, And the like.
- TA Track Area
- a cell unit a cell unit
- the like if there is no geographical area in the mapping information, it can be interpreted that any PC 5 RAT (s) can be used for the corresponding V2X service regardless of the region. This can be applied throughout the present invention.
- PC5 RAT typically LTE (i.e., E-UTRA) and NR.
- LTE i.e., E-UTRA
- NR i.e., NR
- the present invention is not limited to this, and all RATs capable of operating the PC 5 may be applicable.
- the RAT that is displayed at the first (listed) is the RAT having the highest priority in use / application (this may be the default RAT concept)
- Listed RAT may be the lowest priority RAT when used / applied. Or vice versa.
- priority values may be explicitly given to each RAT and may be provided together with the mapping information. At this time, the highest priority RAT can be considered as the default RAT.
- mapping information If there are a plurality of RATs in the mapping information, one or more of the following information may be additionally provided.
- Whether the UE is able to switch the RAT used / applied to the PC5 operation This indicates whether the UE is allowed to change the currently used / applied PC5 RAT to another RAT. This may be provided more or less separately, whether or not the RAT that is used / applied to the PC5 operation is switchable only when the UE is acting as a leader in group communication. This may include an operation in which a UE acting as a leader can direct RAT changes to group members of the group communication. This may also be provided, more or less separately, as to whether the UE is able to switch the RAT that it uses / applies for PC5 operation when operating as a UE-type RSU.
- This may include an operation in which the UE operating in the UE-type RSU can instruct the general UE (vehicle UE, pedestrian UE) to change the RAT. Or, it may mean an operation that can instruct RAT change to ordinary UEs without changing the RAT. The absence of this information may implicitly consider the RAT that the UE is using / applying for PC5 operation to be switchable.
- the network is able to switch the RAT used / applied to the PC5 operation: whether it should be instructed to change the RAT from the network, in this case the network instructs the other RAT to be used / applied.
- the network can be one or more of RAN, function included in Core Network, and V2X Application Server.
- UE-type RSU is able to switch the RAT used / applied to the PC5 operation: whether it should be instructed to change the RAT from the UE-type RSU. In this case, the UE- When instructed to use / apply, the UE follows it.
- Whether the UE can select the RAT to use / apply for PC5 operation This indicates whether the UE is allowed to select the PC5 RAT to use / apply. This may be provided in more detail or separately whether the RAT to use / apply for the PC5 operation is selectable only if the UE is acting as a leader in group communication. This may include the operation of the UE acting as a leader to inform the group members of the group communication of the selected RAT. It may also be provided in more detail or separately whether the UE is able to select the RAT to use / apply in PC5 operation when operating as a UE-type RSU.
- This may include an operation in which a UE operating in a UE-type RSU can notify a general UE (vehicle UE, pedestrian UE) of a selected RAT. Because of this lack of information, implicitly the UE may consider the RAT to be used / applied for PC5 operation to be selectable.
- the network is able to select the RAT to use / apply for PC5 operation: whether it should be directed to the selected RAT from the network, in which case the UE uses the RAT if the network notifies the selected RAT.
- the network can be one or more of RAN, function included in Core Network, and V2X Application Server.
- the UE-type RSU is able to select a RAT to be used / applied in the PC 5 operation: whether it should be instructed on the RAT selected from the UE-type RSU, in which case the UE- I use that RAT.
- Changing (or switching) the RAT that is used / applied to the V2X service to another RAT would correspond to if the PC5 RAT is simply two types: LTE, NR, or LTE, then change to NR, or vice versa. It can also be changed to a non-default RAT if the default RAT was used, or vice versa. Also, this could be a change to a lower priority RAT if the higher priority RAT was used, or vice versa.
- the criteria / considerations for selecting a candidate RAT, except for the RAT currently in use when changing (or switching) to another RAT are one or more of the following.
- selecting one of the RATs means selecting a RAT satisfying the above conditions. If there are many RATs satisfying the condition, it means that the RAT having the highest priority is selected. This applies throughout the present invention.
- the second embodiment is a method in which a representative UE among UEs participating in group communication requests to switch the PC 5 RAT to the infrastructure or to indicate the selected RAT.
- the second embodiment is based on the contents described in Embodiment 1, and the difference is that instead of instructing the representative UE to switch the PC5 RAT to another UE (s) through the PC5 message,
- the infrastructure is asking for it.
- the infrastructure may be one of RAN, V2X Control Function, V2X Application Server, Core Network function, and UE-type RSU. This applies throughout the present invention.
- the representative UE may not include additional information when requesting a RAT switch or a selected RAT indication request to the infrastructure.
- the representative UE may include additional information such as A), B), C), D), and E)
- the UEs may include one or more of the identification information of the UEs.
- the infrastructure receiving the request from the representative UE instructs the UEs participating in the group communication to switch to the same target RAT at the same time for the corresponding V2X service.
- the infrastructure receiving the request from the representative UE instructs the UEs participating in the group communication to use / apply the same target RAT to the V2X service at the same time.
- the infrastructure can be broadcast or dedicated signaling to each UE. If the infrastructure is a V2X Control Function, it can instruct each UE through the V3 interface. If the infrastructure is a V2X Application Server, it may instruct each UE to unicast or MBMS that the UEs can receive. If the infrastructure is a CN function, it can signal to each UE through signaling (eg, NAS message) or to the MBMS that the UEs can receive. If the infrastructure is a UE-type RSU, it can indicate via a PC5 message (similar to what the representative UE indicated in the previous description via the PC5 message). The method of transmitting the information indicated by the infrastructure to the UE as described above is applied throughout the present invention.
- the infrastructure may transmit the indication message once or periodically for a valid period of time.
- the validity time may be provided by the representative UE at the time of the request, or may be terminated by the representative UE explicitly requesting the end of the indication. Alternatively, the infrastructure may decide to terminate itself.
- All UEs participating in group communication including the representative UE perform RAT switch or RAT use / application with the same target RAT at the same time.
- the Infrastructure monitors whether the RAT currently in use / application for a particular group communication is appropriate. Whether this is appropriate may be, for example, whether or not it meets the conditions described above, such as a) time information, b) QoS parameters, and c) RAT congestion.
- the infrastructure may collect measurement and / or measurement information from the UEs themselves to determine whether they meet the above conditions.
- the Infrastructure instructs all UEs participating in the group communication to switch the RAT being used / applied from the first RAT to the second RAT. At this time, it may include one or more of the information A), B), C), D), and E) of the first embodiment.
- the Infrastructure monitors the status of available RATs to select the RATs to use / apply for specific group communications and determines whether the use is appropriate. Whether or not the above is appropriate may be whether or not it satisfies the conditions, for example, a), b) and c) described above.
- the infrastructure may collect measurement and / or measurement information from the UEs themselves to determine whether they meet the above conditions.
- the infrastructure selects an appropriate RAT and instructs the RAT to be used / applied to all UEs participating in the group communication. At this time, it may include one or more of the information A), B), C), D), and E) of the first embodiment. If multiple RATs are appropriate, you can choose a higher or higher priority RAT. Alternatively, you can choose RAT with lower congestion.
- the infrastructure may transmit the indication message once or periodically for a valid period of time.
- the operation of switching the RAT used / applied in a specific region or a specific group for the V2X service from the first RAT to the second RAT is performed by all the UEs participating in the communication for the V2X service It may be based on the assumption of support.
- the operation of selecting a RAT to be used / applied in a specific region or a specific group for the V2X service may be based on the assumption that all the UEs participating in the communication for the V2X service support the operation.
- the V2X service is used in combination with the V2X application.
- the PC5 operation may also include PC5 search (or D2D search, or direct discovery, or ProSe discovery) as well as PC5 communication (or D2D communication, or direct communication, or ProSe communication). It also includes all operations using the PC5.
- the operation of the PC 5 in the V2X includes, for example, sending and receiving a V2X message via the PC 5, transmitting and receiving various data generated by the V2X application via the PC 5, and transmitting and receiving various information associated with the V2X via the PC 5 An operation in which the UE establishes a link or a 1: 1 connection with another UE via the PC 5, and an operation in which the UE searches for another UE via the PC 5.
- the contents presented in the present invention are not limited by the names used in the current 5G system.
- the interface name defined for D2D communication may not be PC5.
- Those skilled in the art can understand the present invention by applying the newly defined interface name for D2D communication will be.
- various interfaces eg, V1, V2, V3, etc.
- previously defined in the EPS may be used in the same 5G system or may be defined with a new name in whole or in part. The invention must be understood.
- the UE may be a UE, such as a vehicle UE, a pedestrian UE, or a UE-type RSU. That is, it includes all the devices that can operate in the UE type or can perform the PC5 operation.
- a UE such as a vehicle UE, a pedestrian UE, or a UE-type RSU. That is, it includes all the devices that can operate in the UE type or can perform the PC5 operation.
- Each of the above-described proposals of the present invention for efficiently providing the V2X service through the 5G system (5G mobile communication system, next generation mobile communication system) and EPS can be configured by a combination of one or more operations / configurations / steps.
- FIG. 9 is a diagram showing a configuration of a preferred embodiment of a terminal apparatus and a network node apparatus according to an example of the present invention.
- a terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
- the transceiver 110 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information from the external device.
- the terminal device 100 may be connected to an external device by wire and / or wirelessly.
- the processor 120 may control the overall operation of the terminal device 100 and may be configured to perform a function of computing and processing information to be transmitted and received with the external device.
- the memory 130 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
- the processor 120 may be configured to perform the terminal operation proposed in the present invention.
- the process includes the steps of: the first UE verifies the mapping information, selects the first RAT according to the mapping information, selects one of the information indicating that the first RAT has been selected or the switch indicating the switch to the first RAT To the UEs belonging to the group, and the mapping information may include one or more RATs mapped to the Geographical Area for each V2X service.
- the network node apparatus 200 may include a transceiver 210, a processor 220, and a memory 230.
- the transceiver 210 may be configured to transmit various signals, data, and information to an external device and receive various signals, data, and information to an external device.
- the network node device 200 may be connected to an external device in a wired and / or wireless manner.
- the processor 220 may control the operation of the entire network node apparatus 200 and may be configured to perform a function of operating the network node apparatus 200 to process information to be transmitted and received with the external apparatus.
- the memory 230 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
- the processor 220 may be configured to perform the network node operations proposed in the present invention.
- the specific configurations of the terminal device 100 and the network device 200 may be implemented independently of those described in the various embodiments of the present invention, or two or more embodiments may be applied at the same time, The description is omitted for the sake of clarity.
- embodiments of the present invention can be implemented by various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- the method according to embodiments of the present invention may be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to embodiments of the present invention may be implemented in the form of an apparatus, a procedure, or a function for performing the functions or operations described above.
- the software code can be stored in a memory unit and driven by the processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명의 일 실시예는, 무선통신시스템에서 V2X(Vehicle to Everything) 단말이 RAT(Radio Access Technology) 변경에 관련된 동작을 수행하는 방법에 있어서, 제1 UE가 매핑 정보를 확인하는 단계; 상기 매핑 정보에 따라 제1 RAT을 선택하는 단계; 및 상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송하는 단계를 포함하며, 상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것인, RAT 변경 관련 동작 수행 방법이다.
Description
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 3GPP 5G System (5G 이동통신 시스템, 차세대 이동통신 시스템)과 EPS를 통해 V2X 서비스를 효율적으로 제공하는 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 V2X UE가 RAT 변경에 관련된 동작을 수행하는 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 V2X(Vehicle to Everything) 단말이 RAT(Radio Access Technology) 변경에 관련된 동작을 수행하는 방법에 있어서, 제1 UE가 매핑 정보를 확인하는 단계; 상기 매핑 정보에 따라 제1 RAT을 선택하는 단계; 및 상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송하는 단계를 포함하며, 상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것인, RAT 변경 관련 동작 수행 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 RAT 변경에 관련된 동작을 수행하는 V2X 단말 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, 제1 UE가 매핑 정보를 확인하고, 상기 매핑 정보에 따라 제1 RAT을 선택하며, 상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송하며, 상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것인, V2X 단말 장치이다.
상기 방법은 상기 그룹에 속한 모든 단말로부터, 지시 또는 선택에 대한 응답을 수신하는 단계를 더 포함할 수 있다.
만약, 상기 그룹에 속한 단말 중 어느 한 단말이라도 상기 제1 RAT이 지원하지 않는 경우, 상기 제1 RAT의 선택 또는 상기 제1 RAT으로의 switch는 수행되지 않을 수 있다.
상기 방법은 상기 제1 RAT으로 RAT switch를 수행하는 단계를 더 포함 수 있다.
상기 매핑 정보는, 상기 하나 이상의 RAT 각각이 사용될 수 있는 시간 정보, 상기 하나 이상의 RAT 각각에서 만족되어야 하는 QoS 파라미터, 상기 하나 이상의 RAT 각각의 혼잡도 중 하나 이상을 포함할 수 있다.
상기 QoS 파라미터는, latency, delay budget, 전송 지연, Packet Error Loss Rate, 전송실패율, 전송성공율 관련 값, data rate 관련 값 중 하나 이상을 포함할 수 있다.
상기 메시지는, Target RAT 정보, 상기 제1 RAT으로의 switch를 수행하는 시간에 관련된 정보, 상기 메시지가 상기 제1 RAT을 선택했다는 정보인지 상기 제1 RAT으로의 switch를 지시하는 정보인지를 지시하는 정보, 그룹 커뮤니케이션에 대한 식별 정보, 대표 UE에 대한 식별 정보 중 하나 이상을 포함할 수 있다.
상기 그룹 커뮤니케이션에 대한 식별 정보는, V2X service에 대한 식별 정보, V2X application에 대한 식별 정보, group에 대한 식별 정보, 그룹 커뮤니케이션에 대한 식별 정보, 그룹 커뮤니케이션 시 사용하는 주소정보 중 하나일 수 있다.
상기 대표 UE에 대한 식별 정보는, application layer에서 사용되는 UE에 대한 식별 정보, 그룹 커뮤니케이션 시 사용하는 주소정보 중 하나일 수 있다.
상기 제1 UE는 상기 그룹의 대표 UE일 수 있다.
상기 대표 UE는, 그룹 커뮤니케이션의 leader, 그룹 커뮤니케이션을 수행하는 UE들 중 진행 방향의 가장 선두에 있는 UE, 그룹 커뮤니케이션을 개시한 UE, 대표 UE로 동작하도록 지정/선출된 UE 중 하나일 수 있다.
상기 하나 이상의 RAT은, E-UTRA 및 NR(New Radio)을 포함할 수 있다.
본 발명에 따르면, V2X 특유의 서비스를 지원하면서 RAT 변경을 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에서의 매핑 정보의 예를 나타낸다.
도 9는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 | 설명 |
S1-MME | E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME) |
S1-U | 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover) |
S3 | 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).) |
S4 | (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.) |
S5 | SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.) |
S11 | MME와 SGW 간의 레퍼런스 포인트 |
SGi | PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.) |
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
한편, 3GPP에서는 다음 표 2에 기재된 scope으로 advanced V2X에 대한 architecture enhancements 스터디를 진행 중에 있다 (3GPP SP-170590 참고). 이러한 스터디 내용은 TR 23.786에 기술되고 있다.
advanced V2X에 대한 architecture enhancements 스터디는 TS 22.186에 기술된 서비스 요구사항을 만족시키고자 한다. 이러한 서비스 요구사항 중, 다음 표 3과 같은 요구사항이 있다.
상기의 서비스 요구사항을 만족시키는 솔루션을 찾고자 TR 23.786에는 다음 표 4에 기재된 의제를 정의하고 있다.
살펴본 바와 같이 UE가 다수의 RAT(Radio Access Technology)을 이용하여 PC5 (이는 D2D: Device to Device, 또는 ProSe: Proximity based Service를 위해 3GPP에서 정의한 인터페이스) 동작을 수행할 수 있을 때, 특정 V2X application에 대해 어떠한 RAT을 사용하면 되는지에 대한 메커니즘이 요구된다. 상기에서 RAT의 종류로는 대표적으로 LTE (즉, E-UTRA)와 NR 이 있는데, 여기에 국한되는 것은 아니며 PC5 동작이 가능한 모든 RAT이 될 수 있다.
V2X 서비스에서 가장 중요한 요소는 UE 간의 상호작용이다. 즉, 제 1 UE가 송신한 V2X 메시지를 주변을 운행하는 다른 UE들 및/또는 제 1 UE가 속한 group의 멤버 UE들이 수신 가능해야 한다. 그래야 road safety가 실현될 뿐만 아니라, platooning과 같은 협력주행이 가능해진다. 이에 이러한 사항을 고려하여, 본 발명에서는 V2X application이 PC5 동작을 위해 사용해야 하는 RAT을 선택하는 메커니즘을 제안한다.
실시예
1
본 발명의 일 실시예에 의한 제1 UE는 매핑 정보를 확인하고, 상기 매핑 정보에 따라 제1 RAT을 선택할 수 있다. 그리고, 상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송할 수 있다. Switch의 경우, 상기 대표 UE가 그룹 커뮤니케이션에 참여하는 모든 UE (즉, 자신을 포함하여 해당 그룹 커뮤니케이션에 참여하는 다른 UE(s))가 상기 그룹 커뮤니케이션을 수행하는 RAT을 제 1 PC5 RAT에서 제 2 PC5 RAT으로 switch할 것을 지시한다. RAT 선택의 경우, 상기 대표 UE가 그룹 커뮤니케이션에 참여하는 모든 UE (즉, 자신을 포함하여 해당 그룹 커뮤니케이션에 참여하는 다른 UE(s))가 상기 그룹 커뮤니케이션을 수행하기 위해 사용/적용할 RAT을 선택하고, 이를 알린다. 상기 그룹 커뮤니케이션은 그룹 커뮤니케이션을 수행하도록 하는 V2X service로 해석될 수 있다.
여기서, 상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것일 수 있다. 매핑 정보의 구체적인 내용에 대해서는 후술하기로 한다.
상기와 같이, 제1 UE는 제1 RAT의 선택/switch와 관련된 정보를 전송한 후, 상기 제1 RAT으로 RAT 선택/switch를 수행할 수 있다. 다만, 상기 그룹에 속한 모든 단말로부터, 지시 또는 선택에 대한 응답을 수신하되, 만약, 상기 그룹에 속한 단말 중 어느 한 단말이라도 상기 제1 RAT이 지원하지 않는 경우, 상기 제1 RAT의 선택/상기 제1 RAT으로의 switch는 수행되지 않을 수 있다. 대표 UE를 포함하여 그룹 커뮤니케이션에 참여하는 모든 UE는 동일 시점에 동일한 target RAT으로 RAT 선택/switch를 수행하게 된다. 사용(선택)의 경우, 대표 UE를 포함하여 그룹 커뮤니케이션에 참여하는 모든 UE는 동일한 RAT을 선택하여 사용하게 된다. Switch의 경우, 대표 UE를 포함하여 그룹 커뮤니케이션에 참여하는 모든 UE는 동일 시점에 동일한 target RAT으로 RAT switch를 수행하게 된다. 그룹에 속한 단말들의 응답과 관련하여, 대표 UE로부터 상기의 RAT switch 지시/요청을 수신한 UE는 대표 UE로 ACK/응답을 전송할 수도 있다. 추가적으로는 대표 UE가 해당 그룹 커뮤니케이션에 참여하는 다른 모든 UE들로부터 ACK/응답을 받은 후에 다른 UE들에게 confirmation message를 PC5를 통해 전송한 후에야 비로소 모든 UE들은 RAT switch 동작을 수행하도록 할 수도 있다. 대표 UE로부터 상기의 RAT 사용(선택) 지시/요청을 수신한 UE는 대표 UE로 ACK/응답을 전송할 수도 있다. 추가적으로는 대표 UE가 해당 그룹 커뮤니케이션에 참여하는 다른 모든 UE들로부터 ACK/응답을 받은 후에 다른 UE들에게 confirmation message를 PC5를 통해 전송한 후에야 비로소 모든 UE들은 RAT 사용(선택) 동작을 수행하도록 할 수도 있다.
상술한 구성을 통해 V2X 그룹에서 RAT 변경시 발생할 수 있는 문제점을 해결할 수 있다. 구체적으로, Platooning의 경우, 즉, 상기 그룹이 platooning(군집 주행)을 수행하는 그룹인 경우, 모든 UE들의 RAT 지원 capability가 동일하지 않을 수 있다. 즉 그룹 내 상기 제1 RAT을 지원하지 못하는 UE(s)가 존재하는데 나머지 UE들이 제1 RAT으로 스위치하면 상기 제1 RAT을 지원하지 못하는 UE와의 V2X communication이 불가하여 platooning 자체가 불가할 수 있다. 따라서, 이러한 RAT 지원 capability 불균등의 문제를 상기 구성을 통해 해결할 수 있다.
상기 메시지는, Target RAT 정보, 상기 제1 RAT으로의 switch를 수행하는 시간에 관련된 정보, 상기 메시지가 상기 제1 RAT을 선택했다는 정보인지 상기 제1 RAT으로의 switch를 지시하는 정보인지를 지시하는 정보, 그룹 커뮤니케이션에 대한 식별 정보, 대표 UE에 대한 식별 정보 중 하나 이상을 포함할 수 있다. 대표 UE가 다른 UE(s)에게 그룹 커뮤니케이션을 수행하는 RAT을 switch하도록 지시하기 위해 또는 선택된 RAT을 알리기 위해 PC5 메시지를 전송할 수 있다. 이러한 PC5 메시지는 상술한 정보(들)를 포함할 수 있는 것이다. 이러한 PC5 메시지는 한번 전송될 수도 있고, 유효한 시간 동안 주기적으로 전송될 수도 있다. 위 열거된 정보들에 대한 구체적인 설명은 다음과 같다.
A) Target RAT 정보: 이는 어떠한 PC5 RAT으로 switch해야 하는지 또는 어떠한 PC5 RAT을 사용(선택)해야 하는지 target이 되는 PC5 RAT 정보임.
B) Switch/사용(선택) 시점에 대한 정보: 이는 switch/사용을 지시받자마자로 지정할 수도 있고 (명시적으로 또는 이런 정보를 포함하지 않음으로써 암시적으로), 특정 시각/시간을 지정할 수도 있다. 후자의 경우, 지시를 받은 몇초후와 같이 제공할 수도 있고, 몇시 몇분 몇초에로 특정 시각을 제공할 수도 있다. 또는 후자의 경우, 지시를 받은 후 몇 개의 (전송) subframe 후에와 같이 제공할 수도 있다.
C) 상기 정보가 switch에 대한 것인지 아니면 사용(선택)에 대한 것인지를 나타내는 정보
D) 그룹 커뮤니케이션에 대한 식별 정보: 이는 V2X service에 대한 식별 정보, V2X application에 대한 식별 정보, group에 대한 식별 정보, 그룹 커뮤니케이션에 대한 식별 정보, 그룹 커뮤니케이션 시 사용하는 주소정보 (source/destination Layer-2 ID, source/destination IP 주소 등) 등 다양한 형태일 수 있다. 또한, 하나 이상일 수도 있다.
E) 대표 UE에 대한 식별 정보: 이는 application layer에서 사용되는 UE에 대한 식별 정보, 그룹 커뮤니케이션 시 사용하는 주소정보 (source Layer-2 ID, source IP 주소 등) 등 다양한 형태일 수 있다. 또한, 하나 이상일 수도 있다.
상기 제1 UE는 상기 그룹의 대표 UE일 수 있다. 상기 대표 UE는, 그룹 커뮤니케이션의 leader(예, platooning 또는 CACC(Cooperative Adaptive Cruise Control)에서 leading UE가 존재), 그룹 커뮤니케이션을 수행하는 UE들 중 진행 방향의 가장 선두에 있는 UE, 그룹 커뮤니케이션을 개시한 UE, 대표 UE로 동작하도록 지정/선출된 UE(이는 UE 스스로 지정하여 다른 UE들에게 알릴 수도 있고, network 또는 UE-type RSU가 지정할 수도 있다) 중 하나일 수 있다. 위의 정보 (예, 자신이 leader라는 정보 등)는 UE가 V2X application으로부터 획득할 수도 있고, 3GPP에서 관리하는 layer로부터 획득할 수도 있다.
대표 UE가 RAT switch 또는 사용(선택)을 결정하는 것은 UE가 결정할 수도 있고, network 또는 UE-type RSU가 지시하여 결정할 수도 있다. 상기에서 대표 UE가 다른 UE로 RAT switch 또는 사용(선택)을 지시하는 PC5 메시지를 전송 시, 이러한 PC5 메시지는 PC5-D 메시지이거나, PC5-S 메시지이거나, PC5-U 메시지이거나, 본 발명의 목적을 위해 새롭게 정의된 형태의 PC5 메시지일 수 있다. 본 발명의 목적을 위해 새롭게 정의된 형태의 PC5 메시지인 경우, 예를 들면 PC5-U에서 PDCP SDU type을 새롭게 정의하여 (예, ‘RAT switch’, ‘RAT selection’, ‘RAT configuration’, ‘RAT’ 등) 사용할 수 있다.
상술한 group communication을 위한 RAT 선택 또는 switch 방법은 unicast communication에도 적용가능하다. 이는 unicast communication을 참여하는 UE가 2개인 group communication으로 간주할 수 있기 때문이다. 그리고 group communication은 multicast communication으로 해석될 수도 있다.
한편, 상기 매핑 정보와 관련해, TR 23.786v0.6.0의 6.12절에 있는 Solution #12: 3GPP PC5 RAT selection for a V2X application에 Geographical Area가 다음과 같이 추가될 수 있다. 즉, configuration/mapping of ‘Tx Profiles’ associated with the V2X services에 Geographical Area를 추가하는 것이다. 이는 특정 지역(Geographical Area)에서 특정 V2X service를 위해 사용해야 하는 Tx Profile(s)을 설정/구성하는 것을 의미한다. Geographical Area 당 사용 가능한 Tx Profile을 리스트할 수도 있고, Tx Profile 당 사용가능한 Geographical Area가 리스트될 수도 있다. 특정 Tx Profile이 지역에 상관없이 사용가능한 경우 Geographical Area 정보를 포함하지 않거나 전지역을 가리키는 값 (예, all 또는 * 등)으로 설정할 수도 있다. 상기 V2X services는 예를 들어, PSID or ITS-AIDs of the V2X applications일 수 있다.
Tx Profile 기반 PC5 RAT selection은 broadcast 뿐만 아니라 unicast, multicast, groupcast에도 적용될 수 있다. 상기와 같이 Geographical Area의 추가는 broadcast되는 V2X service 및/또는 unicast되는 V2X service 및/또는 multicast되는 V2X service 및/또는 groupcast되는 V2X service에 적용되도록 할 수 있다.
한편, 그룹 커뮤니케이션에 사용/적용되는 RAT을 switch/선택하는 방법은 비단 RAT 뿐만이 아니라 그룹 커뮤니케이션에 사용/적용되는 다양한 configuration을 모든 UE에 대해 update 시 적용할 수 있다. 상술한 설명에서는 그룹 커뮤니케이션에 참여하는 UE들의 RAT을 switch/선택하는 방법 위주로 설명하였으나, 이는 특정 지역에 위치한 모든 UE들의 특정 V2X service 또는 모든 V2X service에 사용/적용하는 RAT을 switch/선택하는 방법으로 확장 적용될 수 있다.
한편, 상기 매핑 정보는, 상기 하나 이상의 RAT 각각이 사용될 수 있는 시간 정보, 상기 하나 이상의 RAT 각각에서 만족되어야 하는 QoS 파라미터, 상기 하나 이상의 RAT 각각의 혼잡도 중 하나 이상을 포함할 수 있다. 이하, 각각에 대해 상세히 설명한다.
a) 시간 정보 : 예를 들어, 하루 중 해당 RAT이 사용될 수 있는 시간대로 시분초의 구간 단위로 표시될 수 있다. (예를 들어, 몇시 몇분 몇초 ~ 몇시 몇분 몇초와 같이 표현 하고, 이 구간에 해당되는 시간에서 해당 RAT이 사용됨을 의미)
b) QoS parameters : 이는 상기 RAT을 이용하여 PC5 동작시 만족되어야 하는 다양한 QoS 값일 수 있다. 그 예로는 latency (또는 delay budget, 또는 전송 지연) 관련 값, Packet Error Loss Rate (또는 전송실패율 또는 전송성공율) 관련 값, data rate 관련 값 등이 될 수 있다. 이러한 값에 대해 어느 시간단위로 측정하면 되는지에 대해 time window가 함께 제공될 수도 있다. 각 parameter 별로 또는 공통으로. 그리고, 이러한 측정은 UE가 직접 수행 및/또는 네트워크가 측정하여 만족하는지 여부를 UE에게 제공 및/또는 다른 UE로부터 획득할 수 있다.
c) RAT의 혼잡도: RAT이 혼잡한지 여부를 지시하는 정보로써, RAT의 radio resource 점유율 등 다양하게 표현될 수 있다.
이와 같이, 매핑 정보에서 다수의 RAT이 존재하는 경우(예를 들어, 특정 Geographical area 에 다수의 RAT이 설정되어 있는 경우), 각 RAT이 사용/선택될 수 있는 다양한 조건이 매핑 정보에 함께 제공될 수 있다. 이는 RAT 별로 제공될 수도 있고 모든 RAT에 common하게 제공될 수도 있다. 또한, 이러한 조건은 현재 사용/적용 중인 RAT이 상기 조건을 만족하지 못할 때, 상기의 조건을 만족하는 다른 RAT으로 switch 해야 함을 결정하기 위해 사용될 수 있다. 또한, 상기의 조건은 V2X service를 위해 어떤 RAT을 사용/선택해야 하는지 결정하기 위해 사용될 수 있다.
PC5 인터페이스 상에서 LTE와 NR을 포함하는 멀티 RAT을 지원하는 UE을 위해, 적절한 V2X applications 을 위한 3GPP PC5 RAT(s)이 [The mapping of V2X services (예를 들어, PSID or ITS-AIDs of the V2X applications) to 3GPP PC5 RAT(s) with Geographical Area(s).] 파라미터와 함께 프로비젼(provision)될 수 있다. 이 파라미터는 UE 에 미리 설정되어 있을 수도 있고, 만약 인커버리지인 경우, HPLMN내 V2X Control Function으로부터 V3 reference point 상의 시그널링에 의해 프로비젼될 수 있다. 이 방법은, EPS를 위해 정의된 V2X Control Function와 V3 reference point가 5G System에도 적용된다는 가정 하에서이다. 또는 network에서 상기의 provisioning을 NAS message를 이용하여 수행할 수도 있다.
상기의 정보는 어떠한 지역에서 특정 V2X service에 대해 어떠한 PC5 RAT(s)을 사용/선택할 수 있다 (또는 사용/선택이 authorize된다 또는 사용/선택이 허용된다)이다. 상기에서 Geographical Area는 TS 24.385에 정의된, 도 8에 도시된 바와 같은 형태, 즉 좌표값일 수도 있고, PLMN 단위일 수도 있고, TA(Tracking Area) 단위일 수도 있고, cell 단위일 수도 있고, 기지국 단위일 수도 있는 등 다양한 형태로 표현 가능하다. 또한, 상기의 매핑 정보에서 Geographical Area가 존재하지 않는 경우, 지역에 상관없이 해당 V2X service에 대해 어떠한 PC5 RAT(s)을 사용할 수 있다로 해석될 수 있다. 이는 본 발명 전반에 걸쳐 적용될 수 있다.
상기에서 PC5 RAT의 종류로는 대표적으로 LTE (즉, E-UTRA)와 NR이 있다. 그러나, 여기에 국한하지 않고 PC5 동작이 가능한 모든 RAT이 이에 해당될 수 있다.
상기의 매핑 정보에서 다수의 RAT이 존재하는 경우, 가장 첫 번째에 표시(리스트)된 RAT이 사용/적용 시 우선순위가 가장 높은 RAT (이는 default RAT 개념일 수 있음)이고, 가장 마지막에 표시(리스트)된 RAT이 사용/적용 시 우선순위가 가장 낮은 RAT일 수 있다. 또는 그 반대일 수 있다. 이와 다르게 상기의 매핑 정보에서 다수의 RAT이 존재하는 경우 명시적으로 각 RAT에 우선순위 정보 (precedence value, priority value)를 부여하여 매핑 정보에 함께 제공할 수 있다. 이때 우선순위가 가장 높은 RAT이 default RAT으로 고려될 수 있다.
상기의 매핑 정보에서 다수의 RAT이 존재하는 경우, 다음 중 하나 이상의 정보가 추가로 제공될 수도 있다.
i) UE가 PC5 동작에 사용/적용하는 RAT을 변경 (switch) 가능한지 여부: 이는 UE가 현재 사용/적용 중인 PC5 RAT을 다른 RAT으로 변경하도록 허용되는지를 나타낸다. 이는 좀 더 세부적으로 또는 별도로, UE가 그룹 커뮤니케이션에서 leader 역할을 수행하고 있을 때에만 PC5 동작에 사용/적용하는 RAT을 변경 (switch) 가능한지 여부로 제공될 수도 있다. 이는 leader 역할을 수행 중인 UE가 그룹 커뮤니케이션의 그룹 멤버들에게 RAT 변경을 지시할 수 있는 동작을 포함할 수 있다. 또한, 이는 좀 더 세부적으로 또는 별도로, UE가 UE-type RSU로 동작시 PC5 동작에 사용/적용하는 RAT을 변경 (switch) 가능한지 여부로 제공될 수도 있다. 이는 UE-type RSU로 동작 중인 UE가 일반 UE (vehicle UE, pedestrian UE)들에게 RAT 변경을 지시할 수 있는 동작을 포함할 수 있다. 또는, 자신은 RAT을 변경하지 않으면서 일반 UE들에게 RAT 변경을 지시할 수 있는 동작을 의미할 수도 있다. 이러한 정보가 없음으로 인해 암시적으로 UE가 PC5 동작에 사용/적용하는 RAT을 변경 (switch) 가능한 것으로 간주할 수도 있다.
ii) Network이 PC5 동작에 사용/적용하는 RAT을 변경 (switch) 가능한지 여부: 이는 network으로부터 RAT을 변경하라는 지시를 받아야 하는지 여부로, 이 경우 network이 다른 RAT을 사용/적용할 것을 지시하면 UE는 거기에 따른다. 상기에서 network은 RAN, Core Network에 포함되는 function, V2X Application Server 중 하나 이상이 될 수 있다.
iii) UE-type RSU가 PC5 동작에 사용/적용하는 RAT을 변경 (switch) 가능한지 여부: 이는 UE-type RSU로부터 RAT을 변경하라는 지시를 받아야 하는지 여부로, 이 경우 UE-type RSU가 다른 RAT을 사용/적용할 것을 지시하면 UE는 거기에 따른다.
iv) UE가 PC5 동작에 사용/적용하는 RAT을 선택 가능한지 여부: 이는 UE가 사용/적용할 PC5 RAT을 선택하도록 허용되는지를 나타낸다. 이는 좀 더 세부적으로 또는 별도로, UE가 그룹 커뮤니케이션에서 leader 역할을 수행하고 있을 때에만 PC5 동작에 사용/적용할 RAT을 선택 가능한지 여부로 제공될 수도 있다. 이는 leader 역할을 수행 중인 UE가 그룹 커뮤니케이션의 그룹 멤버들에게 선택된 RAT을 알릴 수 있는 동작을 포함할 수 있다. 또한, 이는 좀 더 세부적으로 또는 별도로, UE가 UE-type RSU로 동작시 PC5 동작에 사용/적용할 RAT을 선택 가능한지 여부로 제공될 수도 있다. 이는 UE-type RSU로 동작 중인 UE가 일반 UE (vehicle UE, pedestrian UE)들에게 선택된 RAT을 알릴 수 있는 동작을 포함할 수 있다. 이러한 정보가 없음으로 인해 암시적으로 UE가 PC5 동작에 사용/적용할 RAT을 선택 가능한 것으로 간주할 수도 있다.
v) Network이 PC5 동작에 사용/적용할 RAT을 선택 가능한지 여부: 이는 network으로부터 선택된 RAT에 대해 지시를 받아야 하는지 여부로, 이 경우 network이 선택된 RAT을 알리면 UE는 해당 RAT을 사용한다. 상기에서 network은 RAN, Core Network에 포함되는 function, V2X Application Server 중 하나 이상이 될 수 있다.
vi) UE-type RSU가 PC5 동작에 사용/적용할 RAT을 선택 가능한지 여부: 이는 UE-type RSU로부터 선택된 RAT에 대해 지시를 받아야 하는지 여부로, 이 경우 UE-type RSU가 선택된 RAT을 알리면 UE는 그 RAT을 사용한다.
V2X service에 사용/적용되는 RAT을 다른 RAT으로 변경 (또는 switch)하는 것은 만약 PC5 RAT이 simple하게 2 종류라면, 즉 LTE와 NR, LTE를 사용하다가 NR로 변경하는 것 또는 그 반대에 해당하겠다. 또한 이는 default RAT을 사용하고 있었다면 non-default RAT으로 변경하는 것 또는 그 반대에 해당할 수 있다. 또한, 이는 우선순위가 높은 RAT을 사용하고 있었다면 우선순위가 낮은 RAT으로 변경하는 것 또는 그 반대에 해당할 수 있다.
만약 PC5 RAT이 3종류 이상이라면, 다른 RAT으로 변경 (또는 switch) 시 현재 사용 중인 RAT을 제외하고 후보 RAT을 선택하는 기준/고려사항은 다음 중 하나 이상이다.
- 현재 사용 중인 RAT을 제외하고 우선순위가 높은 RAT을 먼저 고려
- 현재 사용 중인 RAT이 default RAT이 아니라면 default RAT을 먼저 고려
- 조건 (상기 a), b)가 가용하면)을 만족하는 RAT을 먼저 고려
상기한 V2X service에 사용/적용되는 RAT을 다른 RAT으로 변경 (또는 switch)하는 것에 대한 설명은 본 발명 전반에 걸쳐 적용된다.
V2X service에 사용/적용할 수 있는 PC5 RAT이 다수인 경우 그 중 하나의 RAT을 선택(select)하는 것은 상기한 조건을 만족하는 RAT을 선택함을 의미한다. 만약 조건을 만족하는 RAT이 다수라면, 그 중 우선순위가 높은 RAT을 선택함을 의미한다. 이는 본 발명 전반에 걸쳐 적용된다.
실시예
2
두 번째 실시예는, 그룹 커뮤니케이션에 참여하는 UE 중 대표 UE가 infrastructure로 PC5 RAT을 switch해 줄 것을 요청 또는 선택한 RAT을 지시해 줄 것을 요청하는 방법이다. 두 번째 실시예는 실시예 1에 설명된 내용을 기반으로 하며, 차이는 상기 대표 UE가 PC5 메시지를 통해 다른 UE(s)에게 PC5 RAT을 switch하는 것을 지시하는 대신 또는 선택된 RAT을 지시하는 대신 이를 infrastructure가 해줄 것을 요청하는 것이다. 상기 infrastructure는 RAN, V2X Control Function, V2X Application Server, Core Network function, UE-type RSU 중 하나일 수 있다. 이는 본 발명 전반에 걸쳐 적용된다.
상기 대표 UE는 infrastructure로 RAT switch 요청 시 또는 선택된 RAT 지시 요청 시, 추가 정보를 포함하지 않을 수도 있고, 상기 실시예 1 의 A), B), C), D), E), 그룹 커뮤니케이션에 참여하는 UE들의 식별 정보 중 하나 이상의 정보를 포함할 수도 있다.
Switch 요청의 경우, 상기 대표 UE로부터 요청을 수신한 infrastructure는 그룹 커뮤니케이션에 참여하는 UE들이 해당 V2X service에 대해 동일한 시점에 동일한 target RAT으로 switch를 할 수 있도록 지시한다. 선택한 RAT에 대한 지시 요청의 경우, 상기 대표 UE로부터 요청을 수신한 infrastructure는 그룹 커뮤니케이션에 참여하는 UE들이 해당 V2X service에 대해 동일한 시점에 동일한 target RAT을 사용/적용할 수 있도록 지시한다.
상기 infrastructure가 RAN인 경우 broadcast 또는 각 UE로의 dedicated signaling을 통해 지시할 수 있다. 상기 infrastructure가 V2X Control Function인 경우 각 UE로 V3 인터페이스를 통해 지시할 수 있다. 상기 infrastructure가 V2X Application Server인 경우 각 UE로 unicast로 또는 해당 UE들이 수신 가능한 MBMS로 지시할 수 있다. 상기 infrastructure가 CN function인 경우 각 UE로 signaling을 통해 (예, NAS 메시지) 또는 해당 UE들이 수신 가능한 MBMS로 지시할 수 있다. 상기 infrastructure가 UE-type RSU인 경우 PC5 메시지를 통해 (이는 상기 앞서 설명에서 대표 UE가 PC5 메시지를 통해 지시한 것과 유사하게) 지시할 수 있다. 이와 같이 infrastructure가 UE로 지시하는 정보를 전송하는 방법은 본 발명 전반에 걸쳐 적용된다.
상기 infrastructure는 상기 지시 메시지를 한번 전송할 수도 있고, 유효한 시간 동안 주기적으로 전송할 수도 있다. 유효시간은 대표 UE가 지시를 요청시 제공할 수도 있고, 대표 UE가 지시 종료를 명시적으로 요청함으로써 종료될 수도 있다. 또는 infrastructure가 스스로 종료를 결정할 수도 있다.
대표 UE를 포함하여 그룹 커뮤니케이션에 참여하는 모든 UE는 동일 시점에 동일한 target RAT으로 RAT switch 또는 RAT 사용/적용을 수행하게 된다.
실시예
3
실시예 3은, Infrastructure에서 그룹 커뮤니케이션에 사용/적용되는 RAT을 switch할 것을 결정 또는 사용/적용할 RAT을 선택. 이를 그룹 커뮤니케이션에 참여하는 UE들에게 지시하는 것이다.
먼저 Switch의 경우, Infrastructure가 특정 그룹 커뮤니케이션에 대해 현재 사용/적용중인 RAT이 적절한지 여부를 모니터링한다. 상기 적절한지 여부는 예를 들면, 앞서 기술한 a) 시간 정보, b) QoS parameters, c) RAT 혼잡도와 같은 조건을 만족하는지 여부일 수 있다. Infrastructure는 상기 조건을 만족하는지 여부를 판단하기 위해 스스로 측정 및/또는 측정 정보를 UE로부터 수집할 수 있다.
적절하지 않은 걸로 판단되면, Infrastructure는 상기 그룹 커뮤니케이션에 참여하는 모든 UE들에게 사용/적용중인 RAT을 제 1 RAT에서 제 2 RAT으로 switch할 것을 지시한다. 이 때 상기 실시예 1 의 A), B), C), D), E) 정보 중 하나 이상을 포함하여 지시할 수도 있다.
두 번째로, RAT 선택의 경우, Infrastructure가 특정 그룹 커뮤니케이션에 대해 사용/적용할 RAT을 선택하기 위해 사용 가능한 RAT의 상태를 모니터링하고 사용이 적절한지 여부를 판단한다. 상기 적절한지 여부는 예를 들면, 상술한 a), b), c)와 같은 조건을 만족하는지 여부일 수 있다. Infrastructure는 상기 조건을 만족하는지 여부를 판단하기 위해 스스로 측정 및/또는 측정 정보를 UE로부터 수집할 수 있다.
Infrastructure는 적절한 하나의 RAT을 선택하여 상기 그룹 커뮤니케이션에 참여하는 모든 UE들에게 사용/적용할 RAT을 지시한다. 이 때 상기 실시예 1의 A), B), C), D), E) 정보 중 하나 이상을 포함하여 지시할 수도 있다. 만약, 다수의 RAT이 적절하다면 우선순위가 높거나 default인 RAT을 선택할 수 있다. 또는 혼잡도가 더 낮은 RAT을 선택할 수도 있다.
상기 실시예 2, 실시예 3 설명에서 infrastructure는 상기 지시 메시지를 한번 전송할 수도 있고, 유효한 시간 동안 주기적으로 전송할 수도 있다.
상술한 설명에서, V2X service에 대해 특정 지역에서 또는 특정 group에서 사용/적용되는 RAT을 제 1 RAT에서 제 2 RAT으로 switch하는 동작은 상기의 V2X service를 위한 통신에 참여하는 모든 UE가 상기 동작을 지원한다는 가정에 기반한 것일 수 있다. 또한, 상기에서 V2X service에 대해 특정 지역에서 또는 특정 group에서 사용/적용되는 RAT을 선택하는 동작은 상기의 V2X service를 위한 통신에 참여하는 모든 UE가 상기 동작을 지원한다는 가정에 기반한 것일 수 있다.
상술한 설명에서, V2X service는 V2X application과 혼용되어 사용된다. 또한, PC5 동작은 PC5 통신 (또는 D2D 통신, 또는 direct communication, 또는 ProSe communication) 뿐만 아니라 PC5 탐색 (또는 D2D 탐색, 또는 direct discovery, 또는 ProSe discovery)도 포함할 수 있다. 또한, 이외에도 PC5를 이용하는 모든 operation (동작)을 포함하는 의미이다. V2X에서 PC5 동작은 예를 들면 UE가 PC5를 통해 V2X 메시지를 송수신하는 것, UE가 PC5를 통해 V2X application이 생성한 다양한 data를 송수신하는 것, UE가 PC5를 통해 V2X와 연관된 다양한 정보를 송수신하는 것, UE가 PC5를 통해 다른 UE와 link 또는 1:1 연결을 맺는 동작, UE가 PC5를 통해 다른 UE를 탐색하는 동작 등을 의미한다.
또한, 본 발명에서 제시되는 내용들은 현재 5G system에서 사용되는 명칭에 의해 제한되지 않는다. EPS와 달리 5G system에서는 D2D 통신을 위해 정의하는 인터페이스 명칭이 PC5가 아닐 수도 있는데, 당해 기술분야에서 통상의 지식을 가진 자는 D2D 통신을 위해 새롭게 정의되는 그 인터페이스 명칭을 적용하여 본 발명을 이해할 수 있을 것이다. 또한, PC5 인터페이스 외에도 기존에 EPS에서 정의되었던 다양한 인터페이스 (예, V1, V2, V3 등)는 5G system에서 모두 동일하게 사용될 수도 있고, 일부 또는 전부 새로운 이름으로 정의될 수도 있는 바, 이를 고려하여 본 발명을 이해해야 한다.
본 발명에서 UE는 vehicle UE, pedestrian UE와 같은 UE일 수도 있고, UE-type RSU일 수도 있다. 즉, UE 형태로 동작할 수 있거나 PC5 동작을 할 수 있는 모든 기기를 포함한다. 5G System (5G 이동통신 시스템, 차세대 이동통신 시스템)과 EPS를 통해 V2X 서비스를 효율적으로 제공하는 본 발명의 상기 각 제안들은 하나 이상의 동작/구성/단계의 조합으로 구성될 수 있다.
다음 표 5 내지 표 6은 본 발명과 관련하여, 발명자에 의해 제출된 기고 문서의 내용이다.
도 9는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 9를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세스는, 제1 UE가 매핑 정보를 확인하고, 상기 매핑 정보에 따라 제1 RAT을 선택하며, 상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송하며, 상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것일 수 있다.
도 9를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.
Claims (13)
- 무선통신시스템에서 V2X(Vehicle to Everything) 단말이 RAT(Radio Access Technology) 변경에 관련된 동작을 수행하는 방법에 있어서,제1 UE가 매핑 정보를 확인하는 단계;상기 매핑 정보에 따라 제1 RAT을 선택하는 단계; 및상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송하는 단계;를 포함하며,상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것인, RAT 변경 관련 동작 수행 방법.
- 제1항에 있어서,상기 그룹에 속한 모든 단말로부터, 지시 또는 선택에 대한 응답을 수신하는 단계;를 더 포함하는, RAT 변경 관련 동작 수행 방법.
- 제2항에 있어서,만약, 상기 그룹에 속한 단말 중 어느 한 단말이라도 상기 제1 RAT이 지원하지 않는 경우, 상기 제1 RAT의 선택 또는 상기 제1 RAT으로의 switch는 수행되지 않는, RAT 변경 관련 동작 수행 방법.
- 제1항에 있어서,상기 제1 RAT으로 RAT switch를 수행하는 단계;를 더 포함하는, RAT 변경 관련 동작 수행 방법.
- 제1항에 있어서,상기 매핑 정보는, 상기 하나 이상의 RAT 각각이 사용될 수 있는 시간 정보, 상기 하나 이상의 RAT 각각에서 만족되어야 하는 QoS 파라미터, 상기 하나 이상의 RAT 각각의 혼잡도 중 하나 이상을 포함하는, RAT 변경 관련 동작 수행 방법.
- 제5항에 있어서,상기 QoS 파라미터는, latency, delay budget, 전송 지연, Packet Error Loss Rate, 전송실패율, 전송성공율 관련 값, data rate 관련 값 중 하나 이상을 포함하는, RAT 변경 관련 동작 수행 방법.
- 제1항에 있어서,상기 메시지는, Target RAT 정보, 상기 제1 RAT으로의 switch를 수행하는 시간에 관련된 정보, 상기 메시지가 상기 제1 RAT을 선택했다는 정보인지 상기 제1 RAT으로의 switch를 지시하는 정보인지를 지시하는 정보, 그룹 커뮤니케이션에 대한 식별 정보, 대표 UE에 대한 식별 정보 중 하나 이상을 포함하는, RAT 변경 관련 동작 수행 방법.
- 제7항에 있어서,상기 그룹 커뮤니케이션에 대한 식별 정보는, V2X service에 대한 식별 정보, V2X application에 대한 식별 정보, group에 대한 식별 정보, 그룹 커뮤니케이션에 대한 식별 정보, 그룹 커뮤니케이션 시 사용하는 주소정보 중 하나인, RAT 변경 관련 동작 수행 방법.
- 제7항에 있어서,상기 대표 UE에 대한 식별 정보는, application layer에서 사용되는 UE에 대한 식별 정보, 그룹 커뮤니케이션 시 사용하는 주소정보 중 하나인, RAT 변경 관련 동작 수행 방법.
- 제1항에 있어서,상기 제1 UE는 상기 그룹의 대표 UE인, RAT 변경 관련 동작 수행 방법.
- 제10항에 있어서,상기 대표 UE는, 그룹 커뮤니케이션의 leader, 그룹 커뮤니케이션을 수행하는 UE들 중 진행 방향의 가장 선두에 있는 UE, 그룹 커뮤니케이션을 개시한 UE, 대표 UE로 동작하도록 지정/선출된 UE 중 하나인, RAT 변경 관련 동작 수행 방법.
- 제1항에 있어서,상기 하나 이상의 RAT은, E-UTRA 및 NR(New Radio)을 포함하는, RAT 변경 관련 동작 수행 방법.
- 무선통신시스템에서 RAT 변경에 관련된 동작을 수행하는 V2X 단말 장치에 있어서,송수신 장치; 및프로세서를 포함하고,상기 프로세서는, 제1 UE가 매핑 정보를 확인하고, 상기 매핑 정보에 따라 제1 RAT을 선택하며, 상기 제1 RAT을 선택했다는 정보 또는 상기 제1 RAT으로의 switch를 지시하는 정보 중 하나를 포함하는 메시지를 그룹에 속한 모든 UE에게 전송하며,상기 매핑 정보는, Geographical Area에 대해, V2X service 별로 하나 이상의 RAT이 매핑되어 있는 것인, V2X 단말 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/635,712 US11218954B2 (en) | 2017-07-31 | 2018-07-31 | Method and device for performing, by vehicle-to-everything user equipment, operation related to radio access technology switch in wireless communication system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762539506P | 2017-07-31 | 2017-07-31 | |
US62/539,506 | 2017-07-31 | ||
US201762541057P | 2017-08-03 | 2017-08-03 | |
US62/541,057 | 2017-08-03 | ||
KR20180070538 | 2018-06-20 | ||
KR10-2018-0070538 | 2018-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019027233A1 true WO2019027233A1 (ko) | 2019-02-07 |
Family
ID=65233015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/008695 WO2019027233A1 (ko) | 2017-07-31 | 2018-07-31 | 무선 통신 시스템에서 v2x ue가 rat 변경에 관련된 동작을 수행하는 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11218954B2 (ko) |
WO (1) | WO2019027233A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3823325A1 (en) | 2019-11-13 | 2021-05-19 | Volkswagen Aktiengesellschaft | Vehicle, apparatus, method, and computer program for user equipment of a mobile communication system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3777260B1 (en) * | 2018-04-09 | 2024-10-16 | Lenovo (Singapore) Pte. Ltd. | V2x communication over multiple radio access types |
WO2020019910A1 (zh) * | 2018-07-26 | 2020-01-30 | Oppo广东移动通信有限公司 | 一种车联网中的通信方法及终端设备、网络设备 |
WO2020032181A1 (en) * | 2018-08-08 | 2020-02-13 | Sharp Kabushiki Kaisha | Selection of radio access technologies for v2x messages |
CN111817824B (zh) * | 2019-07-24 | 2022-05-31 | 维沃移动通信有限公司 | 一种信息传输方法、终端设备和控制节点 |
WO2021022408A1 (zh) * | 2019-08-02 | 2021-02-11 | 北京小米移动软件有限公司 | 随机接入消息发送方法、装置及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130088983A1 (en) * | 2011-10-07 | 2013-04-11 | Interdigital Patent Holdings, Inc. | Method and apparatus for integrating different radio access technologies using carrier aggregation |
US20150004966A1 (en) * | 2013-06-26 | 2015-01-01 | Qualcomm Incorporated | Method and apparatus for an optimized search for service when a multi-mode ue goes out of service |
KR101579636B1 (ko) * | 2008-09-22 | 2015-12-22 | 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) | 라디오 액세스 기술 선택 |
KR101729476B1 (ko) * | 2013-05-02 | 2017-04-24 | 퀄컴 인코포레이티드 | 사용자 장비들의 그룹을 위한 안전 메시지들의 효율적인 통신 |
KR20170068976A (ko) * | 2015-12-10 | 2017-06-20 | 삼성전자주식회사 | 무선 통신 시스템에서 단말의 무선 연결 장치 및 방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105594277B (zh) * | 2013-10-03 | 2019-03-08 | Lg电子株式会社 | 无线通信系统中使用用于d2d操作的资源的方法和设备 |
US10554708B2 (en) * | 2015-03-27 | 2020-02-04 | Qualcomm Incorporated | Point-to-multipoint broadcast assisted vehicle-to-X broadcast |
US20160295624A1 (en) * | 2015-04-02 | 2016-10-06 | Samsung Electronics Co., Ltd | Methods and apparatus for resource pool design for vehicular communications |
US20190124489A1 (en) * | 2016-03-30 | 2019-04-25 | Interdigital Patent Holdings, Inc. | Method and wireless unit for v2x communication |
WO2018022225A1 (en) * | 2016-07-26 | 2018-02-01 | Intel IP Corporation | Device for and method of radio access technology selection among multiple radio access technologies |
CN110199533B (zh) * | 2016-12-23 | 2022-05-24 | Lg电子株式会社 | 用于在无线通信系统中执行v2x通信的方法及其设备 |
WO2018227039A1 (en) * | 2017-06-09 | 2018-12-13 | Convida Wireless, Llc | Efficient vehicular services |
US10694427B2 (en) * | 2017-09-27 | 2020-06-23 | Intel IP Corporation | Solution for vehicle-to-everything (V2X) communication authorization in 5G system |
-
2018
- 2018-07-31 WO PCT/KR2018/008695 patent/WO2019027233A1/ko active Application Filing
- 2018-07-31 US US16/635,712 patent/US11218954B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101579636B1 (ko) * | 2008-09-22 | 2015-12-22 | 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) | 라디오 액세스 기술 선택 |
US20130088983A1 (en) * | 2011-10-07 | 2013-04-11 | Interdigital Patent Holdings, Inc. | Method and apparatus for integrating different radio access technologies using carrier aggregation |
KR101729476B1 (ko) * | 2013-05-02 | 2017-04-24 | 퀄컴 인코포레이티드 | 사용자 장비들의 그룹을 위한 안전 메시지들의 효율적인 통신 |
US20150004966A1 (en) * | 2013-06-26 | 2015-01-01 | Qualcomm Incorporated | Method and apparatus for an optimized search for service when a multi-mode ue goes out of service |
KR20170068976A (ko) * | 2015-12-10 | 2017-06-20 | 삼성전자주식회사 | 무선 통신 시스템에서 단말의 무선 연결 장치 및 방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3823325A1 (en) | 2019-11-13 | 2021-05-19 | Volkswagen Aktiengesellschaft | Vehicle, apparatus, method, and computer program for user equipment of a mobile communication system |
WO2021094267A1 (en) | 2019-11-13 | 2021-05-20 | Volkswagen Aktiengesellschaft | Vehicle, apparatus, method, and computer program for user equipment of a mobile communication system |
Also Published As
Publication number | Publication date |
---|---|
US20210136671A1 (en) | 2021-05-06 |
US11218954B2 (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018155934A1 (ko) | 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치 | |
WO2017191973A1 (ko) | 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치 | |
WO2019160376A1 (ko) | 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치 | |
WO2018084635A1 (ko) | 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치 | |
WO2019022442A9 (ko) | 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치 | |
WO2019066544A1 (ko) | 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치 | |
WO2017188787A2 (ko) | 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치 | |
WO2016190670A1 (ko) | 무선 통신 시스템에서 데이터 트래픽을 전송하는 방법 및 단말 | |
WO2017171427A1 (ko) | 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기 | |
WO2017126948A1 (ko) | 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치 | |
WO2015174702A1 (ko) | 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치 | |
WO2018169281A1 (ko) | 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국 | |
WO2015002456A1 (ko) | 근접 서비스를 위해 중계기를 선택 또는 재선택하는 방법 | |
WO2014129794A1 (ko) | 정책에 기반한 액세스 결정 방법 및 단말 | |
WO2015105301A1 (ko) | 다운링크 데이터 전달 방법 및 위치 갱신 절차 수행 방법 | |
WO2017026872A1 (ko) | 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치 | |
WO2017086618A1 (ko) | 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치 | |
WO2018008922A2 (ko) | 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치 | |
WO2014137098A1 (ko) | 근접 서비스 범위 조정 방법 및 필터링 방법 | |
WO2017171514A1 (ko) | 무선 통신 시스템에서 v2x 메시지를 송수신하는 ue의 연결 관리 방법 및 이를 위한 장치 | |
WO2018221943A1 (ko) | 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2017138780A1 (ko) | 데이터 전송 방법 및 사용자기기, 및 데이터 수신 방법 및 기지국 | |
WO2016144009A1 (ko) | 무선 통신 시스템에서 네트워크 트래픽을 제어하는 방법 및 단말 | |
WO2019027233A1 (ko) | 무선 통신 시스템에서 v2x ue가 rat 변경에 관련된 동작을 수행하는 방법 및 이를 위한 장치 | |
WO2019074250A1 (ko) | 무선 통신 시스템에서 등록 해제 관련 메시지 송수신 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18841340 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18841340 Country of ref document: EP Kind code of ref document: A1 |