WO2015174737A1 - 자체 확경 말뚝 및 이의 시공 방법 - Google Patents

자체 확경 말뚝 및 이의 시공 방법 Download PDF

Info

Publication number
WO2015174737A1
WO2015174737A1 PCT/KR2015/004804 KR2015004804W WO2015174737A1 WO 2015174737 A1 WO2015174737 A1 WO 2015174737A1 KR 2015004804 W KR2015004804 W KR 2015004804W WO 2015174737 A1 WO2015174737 A1 WO 2015174737A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
pile
diameter
self
enlarged
Prior art date
Application number
PCT/KR2015/004804
Other languages
English (en)
French (fr)
Inventor
임성대
Original Assignee
(주)삼일이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140057529A external-priority patent/KR20150065129A/ko
Application filed by (주)삼일이엔씨 filed Critical (주)삼일이엔씨
Publication of WO2015174737A1 publication Critical patent/WO2015174737A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/54Piles with prefabricated supports or anchoring parts; Anchoring piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/20Placing by pressure or pulling power

Definitions

  • the present invention relates to a self-expansion pile and its construction method used for construction basic construction, structure fixing, etc. More specifically, it is possible to form a diameter-cutting and pile enlargement as large as the specifications designed by the pile itself without a diameter drill, In addition, it is possible to form a pile expansion portion of the desired size even in a solid rock layer relates to a self-expansion pile and its construction method that can increase the bearing capacity reliably.
  • piles installed in the ground for the foundation or fixing of various construction and civil structures such as ground structures and offshore structures are designed to receive mainly compressive force at the tip end. It is necessary to increase the permissible bearing capacity by extending around the pile tip.
  • the expansion body is radially expanded as it is lower than the tip of the pile body, thereby resisting the axial force mainly in the area of either the perforated portion or the pile expansion portion in the lower portion of the pile body. It was difficult to increase the allowable load.
  • the present invention in order to improve the permissible bearing capacity of the pile installed in the ground, can be installed in the pile expansion portion of the largest area in the pre-designed standard as well as the soil layer and the solid rock layer and its construction To provide a method.
  • the present invention has a diameter cutting function, but can support the diameter hole at the same time as the diameter to provide a self-expansion pile and its construction method that can prevent relaxation or collapse of the expansion hole.
  • the present invention is to provide a self-expansion pile and its construction method which is excellent in economic efficiency by configuring the expansion body to be expanded to the diameter-cut ground, made of a hard and inexpensive material such as high-strength concrete.
  • the present invention is to provide a self-expansion pile and its construction method that can be expanded to serve as a drill bit and can be expanded in a hard rock to form a pile expansion in any stratum.
  • the present invention constitutes a pressing force for radially expanding the expansion body to form a pile expansion part as a grout pressure, thereby enabling rapid diameter cutting at a high pressure without damaging the expansion body and forming an integrated pile expansion part thereof and its expansion diameter.
  • the present invention according to a preferred embodiment relates to a pile body installed in the ground, a diameter expansion sphere while being coupled to the lower portion of the pile body and a self-expansion pile consisting of a pressure body for expanding the diameter of the expansion sphere,
  • the enlarged diameter sphere has a cylindrical shape in which a pressing body accommodating space is formed therein, a wing accommodating space is formed along an outer circumferential surface thereof, and a plurality of guide holes are formed to communicate with the pressing body accommodating space and the wing accommodating space.
  • Enlarged oral body Enlarged oral body; And an expansion body configured to be accommodated in the wing portion receiving space, and to have an arc-shaped wing portion having a cutting tip coupled to the outside thereof, and a pressing portion inserted into the guide hole to protrude at the rear end of the wing portion. Consists of, the pressurizing body pressurizes the end portion of the pressurizing portion in the direction of the guide hole in the pressurizing body receiving space to provide a self-expansion pile, characterized in that the enlarged oral diameter is enlarged by sliding the radially outward expansion of the main body.
  • an end portion of the wing of the expansion body is located in the pressurizing body receiving space, and the pressurizing body has a conical shape at the bottom thereof, and the enlarged oral body has an upper portion of the pressurizing body receiving space opened to pressurize the pressurizing body. It provides a self-expansion pile characterized in that the expansion body is slid to the outside by moving the pressing body downward through the open space of the sieve receiving the pressing portion end portion of the expansion body.
  • the present invention according to another preferred embodiment of the present invention is characterized in that the side of the pressing body is further provided with a plurality of horizontal auxiliary pressurizing body which slides to protrude to the outside of the pressing body and further presses and pushes the pressing portion end of the expansion body. Provide stakes.
  • the pressurized body is a fluid
  • a fluid pressure supply passage is formed in communication with the pressurized body receiving space at an upper portion of the pressurized body receiving space of the enlarged-diameter body.
  • At least one or more of the side of the wing portion or the side of the guide hole provides a self-expansion pile, characterized in that the fluid movement passage is discharged to the outside.
  • a locking groove having a predetermined length is formed on an upper surface of the expansion body along a direction of expansion of the expansion body, and an extension length of the wing is inserted into the locking groove at an upper portion of the wing portion receiving space. It provides a self-expansion pile characterized in that the restricting stopper is formed to protrude.
  • an upper portion or a lower portion between the wings of the adjacent extensions extends to the outside by moving the wings when the extensions protrude outwards to close the space between adjacent wings. It provides a self-expansion pile characterized in that the expansion body is further provided.
  • the pile body is a concrete pile in which a hollow is formed in a vertical direction therein, and the enlarged sphere provides a self-expanding pile, which is integrally formed at the bottom of the pile body with concrete.
  • the enlarged sphere provides a diameter expansion pile having a larger outer diameter than the pile body.
  • the present invention according to another preferred embodiment provides a self-expansion pile, characterized in that the reinforcing plate is coupled to the upper surface of the wing portion receiving space and the inner surface of the guide hole.
  • the present invention according to another preferred embodiment provides a self-expansion pile, characterized in that the lower portion of the diameter of the bulge slime inlet is pointed separably coupled by the pressure of the pressing body.
  • the present invention according to another preferred embodiment provides a self-expansion pile, characterized in that the upper one side of the pile body is further provided with an eccentric prevention protrusion protruding out of the pile body.
  • the enlarged sphere provides its own diameter pile, characterized in that it is formed of high-strength concrete than the pile body.
  • the present invention according to another preferred embodiment provides a self-expansion pile, characterized in that a mesh member is provided between the pile body and the enlarged sphere.
  • the present invention according to another preferred embodiment provides a self-expansion pile, characterized in that the support groove is formed along the circumference of the upper outer peripheral surface of the wing portion receiving space of the enlarged sphere body.
  • the present invention according to a preferred embodiment relates to a method for constructing the self-diameter piles (a) forming a hole in the ground; (b) inserting a self-expansion pile having a diameter-expansion coupled to the bottom of the pile body into a drilling hole; And (c) inserting a press body into the press body accommodating space while rotating the enlarged sphere to press the end portion of the press unit so that the expander extends outside the enlarged sphere body while cutting the ground. It provides a construction method of the self-expansion pile, characterized in that comprising a.
  • the present invention according to a preferred embodiment relates to a method for constructing a diameter pile, (a) forming a hole in the ground; (b) inserting the enlarged orifice into the lower portion of the drilling hole; (c) inserting a press body into the press body accommodating space while rotating the enlarged sphere to press the end portion of the press unit so that the expander extends out of the enlarged sphere body while cutting the ground; And (d) pouring concrete on the enlarged sphere to form a cast-in-place pile; It provides a construction method of the self-expansion pile, characterized in that comprising a.
  • the present invention according to a preferred embodiment relates to a method for constructing a diameter pile, (a) inserting a diameter expansion pile coupled to the bottom of the pile body into the ground by type, press-fitting or rotational penetration; (b) inserting a press body into the press body accommodating space while rotating the enlarged sphere to press the end portion of the press unit so that the expander extends out of the enlarged sphere body while cutting the ground; It provides a construction method of the self-expansion pile, characterized in that comprising a.
  • the expansion body equipped with a rotary cutting tip serves as a drill bit to form pile expansions in various strata from the general soil layer to the hard rock layer, which can greatly increase the allowable bearing capacity of the pile, thereby reducing the construction quantity of the pile. Therefore, the range of pile application can be very wide, such as reducing the construction cost of buildings and bridges and shortening the air, as well as changing the construction of the existing groundwork or direct foundation into pile foundations with excellent economic efficiency.
  • the cutting tip provides a pile enlargement cross section with precisely designed dimensions without undue cutting, thus significantly increasing bearing capacity and pullout resistance with minimal cutting effort and minimum number of extensions.
  • the material cost can be reduced when the diameter-expansion hole for diameter-cutting the drill hole is made of a cheap material such as concrete.
  • the curable fluid that is completely filled in the enlarged oral cavity integrates all the members of the enlarged oral cavity so that the durability of all the members constituting the enlarged oral cavity is greatly improved.
  • FIG. 1 is a perspective view of the present invention diameter expansion pile.
  • FIG. 2 is a cross-sectional perspective view of the enlarged oral cavity main body.
  • FIG. 3 is a perspective view of the expander
  • Figure 4 is a cross-sectional perspective view of the present invention diameter expansion pile equipped with a horizontal auxiliary pressing body.
  • Figure 5 is a cross-sectional perspective view of the pressing body showing the operation of the horizontal auxiliary pressing body.
  • Figure 6 is a cross-sectional view of the present invention diameter expansion pile showing the expansion process of the expansion body.
  • Fig. 7 is a sectional perspective view showing another embodiment of the press body.
  • FIG. 8 is a cross-sectional view of the present invention diameter expansion pile showing the recovery process of the pressing body.
  • Figure 9 is a cross-sectional perspective view showing an embodiment of the present invention diameter expansion pile corresponding to the case where the press body is a fluid.
  • FIG. 10 is a perspective view showing an embodiment of a magnifier having a non-expansion body.
  • Figure 11 is a cross-sectional perspective view of the present invention diameter expansion pile having a pile body formed therein hollow.
  • FIG. 12 is a cross-sectional perspective view of the present invention diameter expansion pile provided with a reinforcing plate.
  • FIG. 13 is a perspective view of a reinforcing plate.
  • FIG. 14 is a perspective view showing a reinforcement plate to which a filler is attached at the bottom.
  • Figure 15 (a) is a perspective view of the self-expansion pile of the present invention is configured to overlap the adjacent expansion body
  • Figure 15 (b) is a perspective view of the self-expansion pile of the present invention formed on the surface corresponding to the guide projection and the guide groove.
  • Figure 16 is a perspective view of the self-expansion pile of the present invention provided with an eccentric prevention.
  • Figure 17 is a perspective view of the present invention self-diagnosis pile equipped with a mesh member.
  • FIG. 18 is a cross-sectional perspective view of the present invention diameter expansion pile equipped with a removable hook.
  • FIG. 19 is a diagram showing the step-by-step process of the method of manufacturing the present invention diameter expansion pile for the case of pre-production of the diameter sphere.
  • 20 and 21 is a cross-sectional perspective view of the present invention diameter expansion pile provided with a coupling.
  • Figure 22 is a view showing the present invention diameter expansion pile provided with a support groove.
  • Figure 23 is a cross-sectional view showing an embodiment of the present invention for rotating a magnifying sphere.
  • the self-expansion pile and the construction method thereof according to the present invention are rotated to be coupled to the pile body installed in the ground, the pile body lower, and to expand the diameter of the enlarged diameter and enlarged diameter while expanding the diameter.
  • a self-expansion pile consisting of a pressing body, the enlarged sphere, the pressing body receiving space is formed therein, the wing portion storage space is formed along the outer circumferential surface on the side, the pressing body receiving space and the wing portion storage space
  • a cylindrical enlarged sphere body in which a plurality of guide holes are formed to communicate with each other;
  • an expansion body configured to be accommodated in the wing portion receiving space, and to have an arc-shaped wing portion having a cutting tip coupled to the outside thereof, and a pressing portion inserted into the guide hole to protrude at the rear end of the wing portion.
  • the pressurized body is characterized in that the enlarged diameter sphere by expanding the sliding portion radially outside the enlarged diameter sphere by pressing the end portion of the pressing portion in the direction of the guide hole in the pressing body receiving space.
  • Figure 1 is a perspective view of the present invention diameter expansion pile
  • Figure 2 is a cross-sectional perspective view of the enlarged sphere body
  • Figure 3 is a perspective view of the expansion body.
  • the diameter of the self-expanded pile of the present invention is coupled to the pile body (1), the pile body (1) is installed in the ground that the diameter is expanded while rotating It consists of the enlarged diameter sphere 2 and the press body 3 for extending the diameter of the enlarged diameter sphere 2.
  • the self-expanding pile of the present invention is widely applicable to ready-made piles and cast-in-place piles such as steel pipe piles, PHC piles, H-shaped steel piles, composite piles, and composite piles.
  • the enlarged sphere 2 is mounted to the tip of the pile body 1, it is possible to secure additional support force in addition to the bearing force of the pile body 1 through the pile enlarged portion formed by the enlarged sphere (2).
  • the enlarged sphere (2) can be configured to be integrated with the pile body (1) or to be integrated with the pile body (1) after manufacturing the enlarged sphere (2).
  • the expansion hole (2) separated from the pile body (1) is entered into the drilling hole to form the pile expansion portion independently, and then the ready-made pile or the site-pouring pile can be coupled to the upper portion of the expansion hole (2).
  • the expansion diameter 2 may be rotated according to the rotation of the pile main body 1, and the pile body 1 may have a bearing structure or the like.
  • the diameter and diameter (2) can be cut diameter diameter ground by rotating only the diameter sphere (2) separate from the pile body (1).
  • the enlarged oral cavity 2 is composed of an enlarged oral body 21 and an expander 22.
  • the enlarged oral body 21 is formed with a pressurizing body receiving space 211 therein, and a wing portion receiving space 212 along an outer circumferential surface thereof. Is formed, a plurality of guide holes 213 are formed to communicate with the pressurizing body receiving space 211 and the wing portion receiving space 212, it is made of a cylindrical shape.
  • the enlarged oral body 21 may be manufactured by curing or injecting various materials such as synthetic resin and metal, but most preferably, cement grout, mortar, concrete, or the like.
  • the enlarged oral cavity main body 21 may be configured as a single unitary body, and in this case, the weak part due to the joining of the member does not occur, which is advantageous for load transfer.
  • the expansion diameter body 21 is made of concrete using a mold can reduce the cost and production time.
  • a reinforcement such as reinforcement in the interior of the concrete, or evenly distributed fiber reinforcement can increase the toughness of the member can prevent breakage of the expansion sphere (2).
  • a portion of the enlarged orifice body 21 positioned above and below the wing portion receiving space 212 guides the expansion direction of the expander 22 and simultaneously transfers an upper load to the lower ground of the pile expansion unit.
  • the expansion body 22 is accommodated in the wing accommodating space 212, and has an arc-shaped wing portion 221 and the wing portion having a cutting tip T coupled to the outside thereof. 221 is formed to protrude in the rear end is composed of a pressing portion 222 inserted into the guide hole (213).
  • the expansion body 22 is provided so as to contact each other with the wing portion 221 of the adjacent expansion body 22 in a state in which the wing portion 221 is accommodated in the wing portion receiving space 212, As can be seen in (a) it can be configured so that the wings 221 of the adjacent expansion body 22 overlap each other.
  • the expansion body 22 may be formed of concrete (FIG. 3A) or may be configured in a plate shape using steel materials (FIG. 3B).
  • An inclined surface may be formed at a rear end of the expander 22 in a shape corresponding to the lower end of the press body 3.
  • the press body 3 presses an end portion of the press part 222 in the direction of the guide hole 213 in the press body accommodating space 211, so that the expander 22 is radial.
  • the expansion sphere main body 21 By sliding to the outside of the expansion sphere main body 21 to enlarge the diameter sphere (2) is to form a pile expansion in the ground.
  • the expansion body 22 serves as a permanent support member of the pile expansion portion in an enlarged state when the construction of the pile including the pile expansion portion is completed.
  • the press body 3 may be configured in the form of a cylinder having a conical shape at the bottom.
  • the wing portion 221 of the expansion body 22 is positioned so that the end is located in the pressing body receiving space 211, the enlarged diameter body 21 is configured to open the upper portion of the pressing body receiving space 211
  • the pressurizing body 3 is moved downward through the open space of the pressurizing body accommodating space 211 to press the end of the pressurizing part 222 of the expander 22 so that the expander 22 slides outward.
  • the enlarged oral body 21 may be configured to open the lower portion of the pressing body accommodating space 211 as shown in FIG. 2 (a) or closed by the lower member 29 as shown in FIG. .
  • a groove may be formed in the upper portion of the lower member 29 so that the lower end of the pressing body 3 may be seated, and the pile is raised by buoyancy due to groundwater. It is preferable to form a buoyancy prevention hole (291) through which groundwater flows so as not to interfere with the pile entry.
  • the buoyancy prevention hole (291) is preferably formed in the lateral direction of the lower member 29 in order to prevent clogging when the pile is hit.
  • the upper portion of the enlarged oral body 21 may be formed in the upper portion of the automatic supply line 217 for injecting a hardenable bonding material into the enlarged sphere (2).
  • the joining filler material may be supplied to the empty space generated by the expansion body 22 radially expanding while the pile is inserted into the drilling hole.
  • FIG. 4 is a cross-sectional perspective view of the self-expansion pile according to the present invention having a horizontal auxiliary pressurizer
  • FIG. 5 is a cross-sectional perspective view of a pressurizing body showing an operation process of the horizontal auxiliary pressurizer
  • FIG. It is sectional drawing of this invention diameter expansion pile shown.
  • the side of the pressing body (3) is slid to protrude out of the pressing body (3) to further press and push the end of the pressing portion 222 of the expansion body (22)
  • a plurality of horizontal auxiliary pressing body 33 may be further provided.
  • the horizontal auxiliary pressing body 33 serves to further expand the extension range of the expansion body (22).
  • a vertical hole 31 extending to the upper surface of the press body 3 is formed in the press body 3, and the water is formed on the side of the press body 3.
  • a plurality of entrance and exit holes 32 in which the horizontal auxiliary pressing body 33 is accommodated are formed in a horizontal direction such that a part of the end portion of the horizontal auxiliary pressing body 33 is located in the vertical hole 31.
  • the vertical auxiliary pressurizer 34 which is vertically movable in the vertical hole 31, pressurizes the end portion of the horizontal auxiliary pressurizer 33 so that the horizontal auxiliary pressurizer 33 moves outside the pressurizer 3. It can be configured to press the end of the pressing portion 222 of the expansion body 22 by projecting.
  • inclined portions 331 and 332 may be formed at upper and lower ends of the horizontal auxiliary pressurizer 33.
  • the lower inclined portion 332 is a portion that allows the horizontal auxiliary pressurizer 33 to be pressed more easily.
  • the upper inclined portion 331 causes the horizontal auxiliary pressurizer 33 to be caught by the upper end of the guide hole 213 of the enlarged oral cavity body 21 when the pressure body 3 is recovered and slides back to the entrance and exit hole 32. That is, the horizontal auxiliary pressurizing body 33 serves to receive the guide hole 213 when the pressurizing body 3 is collected by accommodating the entrance and exit hole 32 again.
  • the enlarged sphere 2 is pulled by the lower portion of the pile body 1 and the steel wire ST to introduce prestresses, and the enlarged sphere 2 is piled without welding. ) Can be combined. In this case, it is also possible to combine with a steel bar in addition to the steel wire (ST).
  • Figure 8 is a cross-sectional view of the present invention diameter expansion pile showing the recovery process of the pressing body.
  • the upper side of the pressing body 3 is formed with a through hole 35 through which the locking hole 36 is inserted, and the side of the vertical auxiliary pressing body 34
  • the end of the locking hole 36 is inserted into the locking hole insertion groove 341 is formed in the vertical direction, when the vertical auxiliary pressing body 34 is lifted, the entire pressing body 3 may be lifted and recovered.
  • FIG. 9 is a cross-sectional perspective view showing an embodiment of the present invention diameter expansion pile corresponding to the case where the press body is a fluid.
  • the pressurizer 3 is a fluid, and a fluid pressure supply passage 214 is provided on the pressurizer receiving space 211 of the enlarged orifice body 21. And the fluid is supplied to the pressurizing body accommodating space 211 through the fluid pressure supply passage 214 to press the end of the pressurizing part 222 of the expander 22 by the pressure of the fluid.
  • the 22 may be configured to slide outward.
  • the fluid may be water, air, or the like or mortar.
  • the fluid when the fluid is mortar, the fluid is cured inside to integrate with the enlarged sphere 2.
  • the expansion body 22 radially expands due to the pressure of the fluid, and expands the ground to form a pile enlargement along with diameter cutting.
  • the ground can be solidified to increase the density.
  • At least one or more of the side surface of the wing portion 221 or the side surface of the guide hole 213 may be formed with a fluid movement passage (G) for discharging the fluid to the outside.
  • the slime discharge fluid is quickly discharged to the outside through the diameter-cut slime through the fluid movement passage (G).
  • the fluid movement path (G) also serves as a movement passage of the bonding filler when the expansion body 22 is pushed out using the hardenable bonding filler.
  • a locking groove 223 having a predetermined length is formed in the upper surface of the expansion body 22 along the expansion direction of the expansion body 22, and is inserted into the locking groove 223 in the upper portion of the wing accommodating space 212.
  • the stopper 215 may be protruded to limit the extension length of the wing 221.
  • the extension distance of the expander 22 is determined by the diameter of the press body 3.
  • the maximum extend distance of the expander 22 cannot be adjusted so that the expander 22 is released according to the ground conditions. May occur.
  • FIG. 10 is a perspective view showing an embodiment of a magnifying sphere equipped with a sub-expansion body.
  • the upper or lower portion between the wings 221 of the adjacent expansion body 22 is moved to the outside by the movement of the wing 221 when the expansion body 22 is protruded to the outside
  • a sub-expansion body 23 for closing the space between the adjacent wing portion 221 may be further provided.
  • the sub-expansion body 23 is provided between the adjacent expansion body 22 is disposed so that both sides overlap with a portion of the expansion body (22).
  • the expansion body 22 is composed of the wing 221 and the pressing portion 222, while the sub-expansion body 23 is composed of only the wing without a pressing portion.
  • the sub-expansion body 23 protrudes to the outside according to the movement of the expanding body 22.
  • the location of the guide hole 213 of the enlarged oral cavity main body 21 can be reduced by the number of the sub-expansion bodies 23, and the configuration of the enlarged oral cavity main body 21 is simple.
  • pressurization is easy.
  • the fitting groove 224 on the upper surface of the expansion body 22, the fitting protrusions 231 are formed on the lower surface of the sub-expansion body 23, or vice versa (22)
  • the fitting protrusions and The fitting protrusions interlock with each other.
  • the sub-expansion body 23 protrudes to the outside as the expansion body 22 expands to form a continuous expansion body in plan, the large external force acting on the pile expansion part can be supported.
  • the hardenable joint filler filled in the empty space on the back of the expander 22 generated by the radial expansion of the expander 22 has no gap to leak due to the continuous pile enlargement, the periphery of the pile enlargement is very dense. This can prevent the settlement of piles.
  • FIG. 11 is a cross-sectional perspective view of the present invention diameter expansion pile having a pile body having a hollow formed therein.
  • the pile body 1 is a concrete pile having a hollow 11 formed in a vertical direction therein, and the enlarged sphere 2 is configured to be integrally formed at the bottom of the pile body 1 with concrete. Can be.
  • the enlarged sphere (2) may be manufactured separately from the pile body (1) may be connected to the lower portion of the pile body (1), but the formwork and enlarged sphere of the pile body (1) in terms of convenience, such as manufacturing It is also possible to integrally form the formwork of 2) and to manufacture the enlarged orifice 2 together with the pile body 1 integrally with concrete.
  • the pressing body receiving space 211 of the enlarged oral cavity body 21 is formed integrally to communicate with the hollow 11 of the pile body (1).
  • the hollow 11 may serve as an entrance passage of a cylindrical pressurized body 3 having a conical tip or a pressurized body 3 that is a fluid.
  • the expansion diameter (2) may have a larger outer diameter than the pile body (1).
  • the diameters of the outer diameter and the inner diameter are determined, and the thickness is somewhat insufficient to accommodate the expansion body 22 only by the thickness of the pile.
  • FIG. 12 is a cross-sectional perspective view of the present invention diameter expansion pile provided with a reinforcement plate
  • Figure 13 is a perspective view of the reinforcement plate
  • Figure 14 is a perspective view showing a reinforcement plate attached to the lower portion.
  • the reinforcing plate 24 may be coupled to the upper surface of the wing portion receiving space 212 and the inner surface of the guide hole 213.
  • the wing portion 221 of the expansion body 22 is subjected to upward reaction.
  • the enlarged oral cavity 2 is made of concrete
  • the enlarged oral cavity main body 21 in particular, the wing storage space may be caused by friction or impact with the lower portion of the wing storage space 212 while the wing portion 221 receives a load upward. There is a fear that breakage occurs at 212.
  • the expansion body 22 is subjected to the reaction in the lateral direction.
  • the pressing portion 222 may be damaged in the enlarged orifice body 21 due to friction or impact with the guide hole 213.
  • the upper surface of the wing portion receiving space 212 and the inner surface of the guide hole 213 may be reinforced with a steel sheet in order to prevent damage of the enlarged oral body 21.
  • the reinforcement plate 24 may be configured of a lower plate 241, a side plate 242, and a wing portion storage space protection plate 243.
  • the reinforcing plate 24 may also serve as a formwork when manufacturing the enlarged sphere (2).
  • the formwork or filler (25) for forming the wing receiving space 212 is attached to the lower reinforcing plate 24 to pour the concrete.
  • the formwork or filler 25 may be configured in the same ring shape as the outer circumferential surface of the reinforcing plate 24.
  • the ring is divided and assembled for demolding, and a release agent is applied to the surface, and when used as a filler 25 such as styrofoam, the styrofoam may be removed after the concrete is hardened without having to divide.
  • the slime inflow prevention device 26 having a sharp bottom may be detachably coupled to the lower portion of the enlarged oral cavity main body 21 by pressing the pressing body 3.
  • the slime inlet preventer 26 prevents the lower slime from flowing into the enlarged sphere 2 at the initial stage of pressurization of the pressurized body 3.
  • the pressurizer 3 closes the pressurizer receiving space 211 inside the enlarged oral body 21 so that the lower slime is enlarged oral. (2) It does not flow inside.
  • the slime inlet 26 is a tag welded to or fitted to the mating plate 27 of the lower pile.
  • Figure 15 (a) is a perspective view of the self-expansion pile of the present invention is configured to overlap adjacent expansion bodies
  • Figure 15 (b) is a perspective view of the self-expansion pile of the present invention formed on a surface corresponding to the guide projection and the guide groove.
  • the expander 22 overlaps the wing 221 of the expander 22 adjacent to each other in a state where the wing 221 is stored in the wing accommodating space 212.
  • the upper or lower surface of the expansion body 22 to form a guide groove or guide protrusion 225 and the corresponding surface of the guide hole 213 guide protrusion or guide groove ( 216 may be formed to guide the expansion direction of the expansion body 22.
  • Figure 16 is a perspective view of the self-expansion pile of the present invention provided with an eccentric prevention.
  • the upper one side of the pile body (1) may be further provided with an eccentric prevention hole 12 protruding out of the pile body (1).
  • the diameter of the expansion hole (2) When the diameter of the expansion hole (2) is large, the diameter of the drilled hole must be somewhat increased for the access of the pile, and in this case, the gap between the pile diameter and the drilled hole is increased in the upper portion of the pile, which may cause eccentricity in the pile.
  • the eccentric prevention tool 12 it is preferable to prevent the eccentricity of the pile by combining the eccentric prevention tool 12 so as to have a size similar to the outer diameter of the expansion diameter (2) on the upper one side of the pile body (1).
  • a predetermined space for injection of grout material should be secured between the eccentric prevention hole 12 and the hole.
  • FIG. 16 (a) extends the plate on the top of the pile body 1 to form an eccentric prevention 12 as steel
  • Figure 16 (c) is when the eccentric prevention 12 of the elastic C-shaped ring, such as rubber is inserted in the pile body (1) Example.
  • Figure 17 is a perspective view of the present invention diameter expansion pile provided with a mesh member.
  • the expansion sphere 2 may be formed of a higher strength concrete than the pile body (1).
  • the pile body (1) uses a high-strength concrete of the general PHC pile, expansion diameter (2) is not to be damaged by the impact of the expansion body 22 during ground cutting, it is possible to use ultra-high strength concrete.
  • the enlarged sphere 2 also serves to reinforce the pile tip.
  • a mesh member 28 may be provided between the pile body 1 and the enlarged sphere 2.
  • the mesh member 28 acts as a separator for the concrete part of the pile body 1 and the enlarged sphere 2 during the manufacturing process and hardened Afterwards, it contributes to the integration by increasing the bonding force of the joint.
  • the pile body (1) and the enlarged sphere (2) can be produced integrally by filling the concrete in the lower portion of the circular mold and by rotating the mold by centrifugal molding, the ultra-high strength concrete, pile body (1) in the enlarged sphere (2) It can be produced by filling and rotating the high-strength concrete pile body (1) and expansion sphere (2).
  • FIG. 18 is a cross-sectional perspective view of the self-diagnosis pile of the present invention provided with a detachable locking portion.
  • the upper portion of the enlarged oral cavity 2 may include a detachable catching part 218 capable of fitting a ground rotating device. Accordingly, by attaching the rotary equipment to the detachable locking portion 218 to transmit the rotational force can rotate the enlarged sphere (2).
  • the rotating equipment After completing the expansion of the pile by the expansion of the expansion hole (2), the rotating equipment while spraying the bonding filler for the site-placement pile in a state that prevents the remaining slime and foreign substances in the drilling hole to enter the pile body (1) To the ground.
  • 19 is a diagram showing the step-by-step process of the method of manufacturing the self-diagnosis pile according to the present invention for the case of pre-fabrication of the diameter sphere.
  • expansion sphere (2) After manufacturing the expansion sphere (2) first, as shown in Figure 19 (a), as shown in Figure 19 (b) is installed a formwork (F) for manufacturing the pile body (1) on the upper diameter sphere (2) do. At this time, the expansion sphere 2 serves as a lower formwork of the pile body (1).
  • the steel wire (ST) can be installed in advance in the expansion sphere (2) before the installation of the formwork (F), and after tensioning the steel wire (ST) after the installation of the formwork (F), as shown in FIG. As in d), the concrete can be poured into the form (F) by centrifugal molding and cured, and then the form (F) can be demolded to complete the pile production.
  • the enlarged sphere 2 is smaller in size than the pile body 1, when the enlarged sphere 2 is first produced, the enlarged sphere 2 can be produced in large quantities from the outside, thereby maximizing production efficiency.
  • 20 and 21 is a cross-sectional perspective view of the present invention diameter expansion pile provided with a coupling portion.
  • 20 is an embodiment of the coupling portion when the pile body (1) is a steel pipe pile, the upper steel plate fixed to the upper surface of the expansion sphere (2) as the coupling portion 4 to the steel pipe pile tip to the coupling portion (4) Weld to combine.
  • FIG. 21 is another embodiment of the coupling portion when the pile body (1) is PHC piles, the screw grooves to the steel plate coupled to the PHC pile bottom, bolts and then coupled to the upper surface of the expansion sphere (2) in advance
  • the female thread is formed in the fastening bolts in the pipe filled with an adhesive therein to couple the pile body (1) and the expansion sphere (2).
  • FIG. 22 is a view showing the present invention diameter expansion pile provided with a support groove.
  • the support groove 219 can be formed along the circumference of the upper outer peripheral surface of the wing portion receiving space 212 of the enlarged sphere body 21.
  • the self-expansion pile can be inserted into the drilling hole 6, and thereafter, sufficient filling and filling of the bonding filler between the diameter expansion hole 2 and the drilling hole 6 can be performed. Even when the enlarged portion cannot be formed, it is possible to prevent the material of the bottom surface of the pile enlarged portion from being caught by the support groove 219 and rising to the upper portion of the punched hole 6.
  • the self-expansion pile of the present invention may form the pile body 1 as a ready-made pile or may be formed as a cast-in-place pile.
  • the construction method of the self-expansion pile of the present invention is first (a) forming a perforation hole in the ground, and (b) the diameter-ball (2) is coupled to the bottom of the pile body (1) It proceeds in the order of inserting the self-expanding pile into the inside of the drilled hole formed in the ground.
  • the drilling hole may be formed by various methods such as boring or hitting.
  • the enlarged diameter sphere 2 may be rotated by the rotation of the pile body 1, it is also possible to rotate only the diameter sphere 2 separately from the pile body (1).
  • the pressing body (3) After expansion of the enlarged oral cavity (2), the pressing body (3) is recovered and the construction is completed by a process of filling the filling material in the empty space in the pile.
  • the pile body (1) is a cast-in-place pile
  • the method of constructing the self-expansion pile of the present invention first, (a) a perforation hole is formed in the ground, and (b) a drill hole (2) is formed in the perforation hole. Insertion process inside should be done.
  • FIG. 23 is a cross-sectional view showing an embodiment of the present invention for rotating a magnifying sphere.
  • the expansion diameter 2 can be configured to be able to rotate only.
  • the magley steel plate 13 at the bottom of the pile body 1 is caught by the wing portion receiving space 213 of the enlarged sphere body 21 so that the enlarged sphere 2 is connected to the pile body 1.
  • the engaging projection (P) formed in the upper diameter sphere main body 21 is coupled to the rotary sphere (7) of the upper diameter sphere (2) by the driving of the rotary sphere (7) To rotate.
  • the rotary ball 7 may use a rotary motor, a rotary rod, or the like.
  • Self-expansion pile and its construction method of the present invention can increase the permissible bearing capacity of the pile by forming a pile enlargement in various strata from the general soil layer to a solid rock layer by the role of the drill bit is equipped with a rotary cutting tip.
  • the present invention has industrial applicability in that the application range of the pile can be widened, such as changing the construction to the foundation of the foundation, which has been previously treated with earthwork or directly based on the excellent economic efficiency.

Abstract

본 발명은 확경 드릴 없이 말뚝 자체로 확경 절삭 및 말뚝 확대부 형성이 가능하며, 토사층뿐만 아니라 단단한 암반층에서도 원하는 크기의 말뚝 확대부 형성이 가능하여 지지력을 신뢰성 있게 증가시킬 수 있는 자체 확경 말뚝 및 이의 시공 방법에 관한 것이다. 본 발명의 자체 확경 말뚝은 지중에 설치되는 말뚝 본체, 말뚝 본체 하부에 결합되어 말뚝 본체의 회전과 함께 회전되면서 지름이 확장되는 확경구 및 확경구의 지름을 확장하기 위한 가압체로 구성되는 자체 확경 말뚝에 관한 것으로, 상기 확경구는, 내부에 가압체 수납공간이 형성되고, 측면에 외주면을 따라 날개부 수납공간이 형성되며, 상기 가압체 수납공간과 날개부 수납공간에 연통되도록 복수의 가이드공이 형성되는 원기둥 형상의 확경구 본체; 및 상기 날개부 수납공간에 수납되는 것으로 외측에 절삭팁이 결합된 호 형상의 날개부와 상기 날개부 후단에 돌출 형성되는 것으로 상기 가이드공을 관통하여 단부가 가압체 수납공간 내에 위치하는 가압부로 구성되는 확장체; 로 구성되되, 상기 가압체가 가압체 수납공간에서 가압부의 단부를 가압하여 확장체가 방사상으로 확경구 본체 외부로 슬라이딩 이동됨으로써 확경구가 확경되는 것을 특징으로 한다.

Description

자체 확경 말뚝 및 이의 시공 방법
본 발명은 건설 기초공사용, 구조물 고정용 등으로 사용되는 자체 확경 말뚝 및 이의 시공 방법에 관한 것으로, 더욱 상세하게는 확경 드릴 없이 말뚝 자체로 설계된 규격만큼 확경 절삭 및 말뚝 확대부 형성이 가능하며, 토사층뿐만 아니라 단단한 암반층에서도 원하는 크기의 말뚝 확대부 형성이 가능하여 지지력을 신뢰성 있게 증가시킬 수 있는 자체 확경 말뚝 및 이의 시공 방법에 관한 것이다.
일반적으로 지상구조물이나 해양구조물 등 각종 건축·토목 구조물의 기초 또는 고정용으로 지중에 설치되는 말뚝은 선단부에서 주로 압축력을 받도록 설계되는데, 재료 면에서 낭비가 큰 말뚝을 효율적으로 사용하기 위해서는 지층이 견고한 말뚝 선단부 주변을 확장하여 허용지지력을 증대시킬 필요가 있다.
종래 말뚝 선단부를 확대하는 방법이 다수 있었는바, 연약층에 설계 예측이 힘든 불규칙한 확대부를 말뚝 선단에 형성하는 경우가 있기도 하였다.
말뚝 선단부를 확대하는 대부분의 경우는 풍화함 이상의 암반층까지 말뚝을 근입해야 하므로, 직천공 드릴로 암반층까지의 수직 천공을 완료하고 별도의 확공 드릴로 천공홀의 선단을 확경하는 과정을 필요로 한다. 그 다음에는 천공홀 선단부에 있는 잔여슬라임을 깨끗이 제거하고 확경홀의 공벽 이완을 안정화시킨 후 말뚝 확대부 설치 공간에 콘크리트를 타설한다. 이와 같은 과정을 통하여 천공홀에 근입된 말뚝 선단에 확대된 콘크리트 보강부가 형성된다.
하지만 상기와 같은 종래기술은 사용 장비의 투입이 많고 천공량이 필요 이상으로 많아질 뿐만 아니라, 선단부 확장을 위한 천공 작업 중 확경홀의 공벽이 이완되거나 무너지는 것을 방지하기 어려워 사용하기가 곤란하였다.
더욱이 말뚝 확대부를 형성할 확경 공간에는 절삭된 슬라임과 지하수가 자연스럽게 혼입되므로, 여기에 타설되는 콘크리트의 품질은 말뚝 확대부가 요구하는 수준을 보장하기 어려운 것이 또 하나의 문제였다.
종래 기술의 다른 사례로 보면, 말뚝 본체 선단부에 설치된 쐐기에 의해 확장체가 방사상 확장하여 말뚝 확대부를 형성하는 경우가 있다(공개특허 제10-2013-0002731호 등). 그러나 상기 기술은 경질의 확장체가 확장 완료된 후에 인접 확장체들 간에 틈이 존재하므로, 연속적인 말뚝 확대부를 형성하기 어려워 말뚝 확대부의 지지 면적이 제한되는 단점이 있다. 또한, 말뚝 확대부에 콘크리트를 타설하더라도 확장체들 사이에 슬라임이 들어차게 되므로, 말뚝 본체와 확장체가 일체화되기 어려웠다. 이로 인하여 말뚝이 하중을 받으면 확장체가 덜렁거리게 되고, 구조물 완성 후 사용하중 재하시 말뚝의 침하량이 증가하는 문제가 있었다. 아울러 말뚝 확대부를 형성한 후 콘크리트를 압력 주입하더라도 확장체 사이의 틈으로 콘크리트가 새어나와 말뚝 본체 외주면과 천공홀 사이로 누출됨에 따라 밀실하게 말뚝 확대부를 형성할 수 없었다.
뿐만 아니라, 쐐기 작용에 의해 확장체가 확장되는 동안 확장체가 말뚝 본체의 선단부보다 점점 낮아지면서 방사상 확장되어, 말뚝 본체 하부의 직천공 부분과 말뚝 확대부 중 어느 하나의 면적 위주로 축력에 저항하게 되므로 실질적인 말뚝의 허용 하중 증가가 이루어지기 어려웠다.
특히, 절삭팁을 가지는 확장체의 회전에 의해 지반을 절삭하는 구조가 아니라 확장체가 방사상으로 지반에 압입 또는 타입만 되는 형태여서 약한 지반 위주로 적용 가능한 한계가 있었다.
상기와 같은 과제를 해결하기 위하여 본 발명은 지중에 설치되는 말뚝의 허용지지력을 개선하기 위하여 토사층뿐만 아니라 단단한 암반층에도 미리 설계한 규격으로 최대 면적의 말뚝 확대부를 시공할 수 있는 자체 확경 말뚝 및 이의 시공 방법을 제공하고자 한다.
본 발명은 확경 절삭 기능을 가지되 확경과 동시에 확경홀을 지지할 수 있어 확공홀의 이완이나 붕괴를 방지할 수 있는 자체 확경 말뚝 및 이의 시공 방법을 제공하고자 한다.
본 발명은 확경 절삭된 지반에 근입되는 확장체를 고강도 콘크리트와 같이 단단하고 저렴한 재질로 구성하여 경제성이 뛰어난 자체 확경 말뚝 및 이의 시공 방법을 제공하고자 한다.
본 발명은 확장체가 드릴비트와 같은 역할을 하여 단단한 암반에서도 확경이 가능하여 어떠한 지층에서도 말뚝 확대부 형성이 가능한 자체 확경 말뚝 및 이의 시공 방법을 제공하고자 한다.
본 발명은 말뚝 확대부 형성을 위해 확장체를 방사상 확장시키는 가압력을 그라우트 압력으로 구성하여, 확장체의 파손 없이 고압으로 신속한 확경 절삭이 가능하고 일체화된 말뚝 확대부를 형성할 수 있는 자체 확경 말뚝 및 이의 시공 방법을 제공하고자 한다.
바람직한 실시예에 따른 본 발명은 지중에 설치되는 말뚝 본체, 말뚝 본체 하부에 결합되는 것으로 회전하면서 지름이 확장되는 확경구 및 확경구의 지름을 확장하기 위한 가압체로 구성되는 자체 확경 말뚝에 관한 것으로, 상기 확경구는, 내부에 가압체 수납공간이 형성되고, 측면에 외주면을 따라 날개부 수납공간이 형성되며, 상기 가압체 수납공간과 날개부 수납공간에 연통되도록 복수의 가이드공이 형성되는 원기둥 형상의 확경구 본체; 및 상기 날개부 수납공간에 수납되는 것으로 외측에 절삭팁이 결합된 호 형상의 날개부와 상기 날개부 후단에 돌출 형성되는 것으로 상기 가이드공에 삽입되는 가압부로 구성되는 확장체; 로 구성되되, 상기 가압체가 가압체 수납공간에서 가이드공 방향으로 가압부의 단부를 가압하여 확장체가 방사상으로 확경구 본체 외부로 슬라이딩 이동됨으로써 확경구가 확경되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 확장체의 날개부는 단부가 가압체 수납공간 내에 위치하고, 상기 가압체는 하단이 원뿔 모양으로, 상기 확경구 본체는 가압체 수납공간의 상부가 개방되어 상기 가압체 수납공간의 개방된 공간을 통해 가압체를 하부로 이동시켜 확장체의 가압부 단부를 가압함으로써 확장체가 외부로 슬라이딩 이동되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 가압체의 측면에는 가압체 외부로 돌출되도록 슬라이딩되어 확장체의 가압부 단부를 추가적으로 가압하여 밀어주는 복수의 수평보조가압체가 더 구비되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 가압체는 유체로, 상기 확경구 본체의 가압체 수납공간 상부에는 유체 압력공급통로가 가압체 수납공간과 연통되도록 형성되어 상기 유체 압력공급통로를 통해 유체를 가압체 수납공간으로 공급하여 유체의 압력에 의해 확장체의 가압부 단부를 가압함으로써 확장체가 외부로 슬라이딩 이동되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 날개부의 측면 또는 가이드공의 측면 중 적어도 어느 하나 이상에는 상기 유체가 외부로 배출되는 유체 이동통로가 형성되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 확장체의 상면에는 확장체의 확장 방향을 따라 일정 길이의 걸림홈이 형성되고, 상기 날개부 수납공간의 상부에는 상기 걸림홈에 삽입되어 날개부의 확장 길이를 제한하는 스토퍼가 돌출 형성되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 인접하는 확장체의 날개부 사이의 상부 또는 하부에는 확장체가 외부로 돌출될 때 날개부의 이동에 의해 같이 외부로 이동하여 인접하는 날개부의 사이 공간을 폐쇄하는 부확장체가 더 구비되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 말뚝 본체는 내부에 수직 방향으로 중공이 형성된 콘크리트 말뚝이고, 상기 확경구는 콘크리트로 말뚝 본체 하단에 일체로 형성되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 확경구는 말뚝 본체보다 외경이 크게 형성되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 날개부 수납공간의 상면 및 가이드공의 내면에는 보강판이 결합되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 확경구 본체의 하부에는 하부가 뾰족한 슬라임 유입방지구가 가압체의 가압에 의해 분리 가능하게 결합되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 말뚝 본체의 상부 일측에는 말뚝 본체 외측으로 돌출된 편심방지구가 더 구비되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 확경구는 말뚝 본체보다 고강도 콘크리트로 형성되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 말뚝 본체와 확경구의 사이에는 메쉬부재가 구비되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 확경구 본체의 날개부 수납공간 상부 외주면에는 원주를 따라 지지홈이 형성되는 것을 특징으로 하는 자체 확경 말뚝을 제공한다.
바람직한 실시예에 따른 본 발명은 상기 자체 확경 말뚝을 시공하는 방법에 관한 것으로 (a) 지반에 천공홀을 형성하는 단계; (b) 말뚝 본체 저면에 확경구가 결합된 자체 확경 말뚝을 천공홀 내부에 삽입하는 단계; 및 (c) 확경구를 회전시키면서 가압체 수납공간에 가압체를 삽입하여 가압부의 단부를 가압하여 확장체가 지반을 절삭하면서 확경구 본체 외부로 확장되도록 하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 자체 확경 말뚝의 시공 방법을 제공한다.
바람직한 실시예에 따른 본 발명은 확경 말뚝을 시공하는 방법에 관한 것으로 (a) 지반에 천공홀을 형성하는 단계; (b) 확경구를 천공홀 하부에 삽입 설치하는 단계; (c) 확경구를 회전시키면서 가압체 수납공간에 가압체를 삽입하여 가압부의 단부를 가압하여 확장체가 지반을 절삭하면서 확경구 본체 외부로 확장되도록 하는 단계; 및 (d) 상기 확경구 상부에 콘크리트를 타설하여 현장타설말뚝을 형성하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 자체 확경 말뚝의 시공 방법을 제공한다.
바람직한 실시예에 따른 본 발명은 확경 말뚝을 시공하는 방법에 관한 것으로 (a) 말뚝 본체 저면에 확경구가 결합된 자체 확경 말뚝을 타입, 압입 또는 회전관입에 의해 지중에 삽입하는 단계; (b) 확경구를 회전시키면서 가압체 수납공간에 가압체를 삽입하여 가압부의 단부를 가압하여 확장체가 지반을 절삭하면서 확경구 본체 외부로 확장되도록 하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 자체 확경 말뚝의 시공 방법을 제공한다.
본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 회전절삭팁이 장착된 확장체가 드릴비트 역할을 하여 일반 토사층에서 단단한 암반층까지 다양한 지층에서 말뚝 확대부를 형성하여 말뚝의 본당 허용지지력을 크게 증가시킬 수 있으므로 말뚝의 시공 수량을 줄일 수 있다. 따라서 건축물이나 교량 등의 말뚝 공사비를 절감하고 공기를 단축시킬 뿐만 아니라 뛰어난 경제성으로 기존에 토공으로 처리하거나 직접 기초로 하던 공사를 말뚝 기초로 변경하는 등 말뚝 적용 범위가 매우 넓어질 수 있다.
둘째, 확경구의 확장체에 장착된 회전절삭팁으로 지반을 확경 절삭하는 동안 확경홀에 연속된 말뚝 확대부가 곧바로 형성되므로 확경 작업 중 확경홀의 공벽이 이완되거나 무너질 염려가 없으며, 말뚝 시공 완료 후 최대 면적의 연속적인 말뚝 확대부 형성이 가능하여 최대의 말뚝지지력을 얻을 수 있다.
셋째, 절삭팁은 과도한 절삭 없이 정확하게 설계된 치수의 말뚝 확대부 단면을 제공해 주므로, 최소의 절삭 작업량과 최소의 확장체 수량으로 지지력과 인발저항력을 크게 증가시킬 수 있다.
넷째, 천공홀을 확경 절삭하는 확경구를 콘크리트와 같은 값싼 소재로 구성하는 경우 재료비를 절감할 수 있다.
다섯째, 인접하는 확장체의 날개부를 서로 접하도록 구성하거나 인접하는 날개부 사이 공간을 폐쇄하는 부확장체가 더 구비되는 경우에는 확장체들 사이에 슬라임이 유입되지 않아 말뚝 본체와 확장체를 더욱 일체화시킬 수 있으며, 구조물에 하중이 재하 되더라도 말뚝의 침하량이 증가하지 않는다.
여섯째, 가압체의 측면에 수평보조가압체가 구비되는 경우에는 확장체의 확장 범위를 증가시켜 말뚝의 허용지지력을 더욱 향상시킬 수 있다.
일곱째, 확경구 내부에 완전하게 채워지는 경화 가능한 유체는 확경구의 모든 부재를 일체화하여 확경구를 구성하는 모든 부재의 내구력이 크게 개선된다.
여덟째, 기성말뚝뿐만 아니라 현장타설말뚝에도 연속적인 말뚝 확대부를 형성할 수 있어 안전하고 경제적인 시공이 가능하다.
도 1은 본 발명 자체 확경 말뚝의 사시도.
도 2는 확경구 본체의 단면사시도.
도 3은 확장체의 사시도.
도 4는 수평보조가압체가 구비된 본 발명 자체 확경 말뚝의 단면사시도.
도 5는 수평보조가압체의 작동 과정을 나타내는 가압체의 단면사시도.
도 6은 확장체의 확장 과정을 나타내는 본 발명 자체 확경 말뚝의 단면도.
도 7은 가압체의 다른 실시예를 도시하는 단면사시도.
도 8은 가압체의 회수 과정을 나타내는 본 발명 자체 확경 말뚝의 단면도.
도 9는 가압체가 유체인 경우에 해당하는 본 발명 자체 확경 말뚝의 실시예를 도시하는 단면사시도.
도 10은 부확장체가 구비된 확경구의 실시예를 도시하는 사시도.
도 11은 내부에 중공이 형성된 말뚝 본체가 구비된 본 발명 자체 확경 말뚝의 단면사시도.
도 12는 보강판이 구비된 본 발명 자체 확경 말뚝의 단면사시도.
도 13은 보강판의 사시도.
도 14는 하부에 충전재가 부착되는 보강판을 도시하는 사시도.
도 15의 (a)는 인접 확장체가 서로 겹쳐지게 구성된 본 발명 자체 확경 말뚝의 사시도이고, 도 15의 (b)는 가이드돌기와 가이드홈이 대응되는 면에 형성된 본 발명 자체 확경 말뚝의 사시도.
도 16은 편심방지구가 구비된 본 발명 자체 확경 말뚝의 사시도.
도 17은 메쉬부재가 구비된 본 발명 자체 확경 말뚝의 사시도.
도 18은 착탈걸림부가 구비된 본 발명 자체 확경 말뚝의 단면사시도.
도 19는 확경구를 선제작하는 경우에 대한 본 발명 자체 확경 말뚝을 제작 방법의 단계별 공정을 도시하는 도면.
도 20 및 도 21은 결합부가 구비된 본 발명 자체 확경 말뚝의 단면사시도.
도 22는 지지홈이 구비된 본 발명 자체 확경 말뚝을 나타내는 도면.
도 23은 확경구를 회전시키기 위한 본 발명의 실시예를 나타내는 단면도.
상기와 같은 목적을 달성하기 위하여 본 발명의 자체 확경 말뚝 및 이의 시공 방법은 지중에 설치되는 말뚝 본체, 말뚝 본체 하부에 결합되는 것으로 회전하면서 지름이 확장되는 확경구 및 확경구의 지름을 확장하기 위한 가압체로 구성되는 자체 확경 말뚝에 관한 것으로, 상기 확경구는, 내부에 가압체 수납공간이 형성되고, 측면에 외주면을 따라 날개부 수납공간이 형성되며, 상기 가압체 수납공간과 날개부 수납공간에 연통되도록 복수의 가이드공이 형성되는 원기둥 형상의 확경구 본체; 및 상기 날개부 수납공간에 수납되는 것으로 외측에 절삭팁이 결합된 호 형상의 날개부와 상기 날개부 후단에 돌출 형성되는 것으로 상기 가이드공에 삽입되는 가압부로 구성되는 확장체; 로 구성되되, 상기 가압체가 가압체 수납공간에서 가이드공 방향으로 가압부의 단부를 가압하여 확장체가 방사상으로 확경구 본체 외부로 슬라이딩 이동됨으로써 확경구가 확경되는 것을 특징으로 한다.
이하, 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.
도 1은 본 발명 자체 확경 말뚝의 사시도이고, 도 2는 확경구 본체의 단면사시도이며, 도 3은 확장체의 사시도이다.
도 1의 (a) 내지 (b)에서 볼 수 있는 바와 같이, 본 발명의 자체 확경 말뚝은 지중에 설치되는 말뚝 본체(1), 말뚝 본체(1) 하부에 결합되는 것으로 회전하면서 지름이 확장되는 확경구(2) 및 확경구(2)의 지름을 확장하기 위한 가압체(3)로 구성된다.
본 발명의 자체 확경 말뚝은 강관말뚝, PHC말뚝, H형강말뚝, 합성말뚝, 복합말뚝과 같은 기성말뚝과 현장타설말뚝에 널리 적용 가능하다.
상기 확경구(2)는 말뚝 본체(1)의 선단에 장착되는 것으로, 확경구(2)에 의해 형성된 말뚝 확대부를 통해 말뚝 본체(1)의 지지력 외에 추가 지지력을 확보할 수 있다.
상기 확경구(2)는 말뚝 본체(1)와 일체로 제작하거나 확경구(2) 제작 후 말뚝 본체(1)와 결합하여 일체로 거동하도록 구성할 수 있다.
후자의 경우, 말뚝 본체(1)와 분리된 확경구(2)를 천공홀에 근입하여 독립적으로 말뚝 확대부를 형성한 다음, 확경구(2) 상부에 기성말뚝이나 현장타설말뚝을 결합할 수 있다. 이 경우, 말뚝 본체(1)와 확경구(2)의 상대적인 회전이 방지되도록 결합하면 말뚝 본체(1)의 회전에 따라 확경구(2)를 회전시킬 수 있으며, 베어링 구조 등으로 말뚝 본체(1)와 확경구(2)의 상대적인 회전이 가능하도록 결합하면 말뚝 본체(1)와 별도로 확경구(2)만 회전시켜 지반을 확경 절삭할 수 있다.
상기 확경구(2)는 확경구 본체(21)와 확장체(22)로 구성된다.
상기 확경구 본체(21)는 도 2의 (a) 내지 (b)에서 볼 수 있는 바와 같이, 내부에 가압체 수납공간(211)이 형성되고, 측면에 외주면을 따라 날개부 수납공간(212)이 형성되며, 상기 가압체 수납공간(211)과 날개부 수납공간(212)에 연통되도록 복수의 가이드공(213)이 형성되는 것으로, 원기둥 형상으로 이루어진다.
상기 확경구 본체(21)는 합성수지, 금속 등 다양한 재료를 경화 또는 사출하여 제작 가능하나 가장 바람직하게는 시멘트 그라우트, 모르타르, 콘크리트 등으로 제작할 수 있다.
상기 확경구 본체(21)는 단일의 일체형으로 구성할 수 있으며, 이 경우 부재 접합에 따른 취약부가 발생하지 않아 하중 전달에 유리하다.
확경구 본체(21)는 형틀을 이용하여 콘크리트로 제작할 경우 비용 및 제작 시간을 단축할 수 있다. 특히, 콘크리트 등의 내부에 철근과 같은 보강재를 설치하거나 섬유보강재를 골고루 분산시켜 주면 부재의 인성이 늘어나 확경구(2)의 파손을 방지할 수 있다.
상기 날개부 수납공간(212)의 상하에 위치하는 확경구 본체(21) 부분은 확장체(22)의 확장 방향을 안내함과 동시에 상부 하중을 말뚝 확대부의 하부 지반으로 전달한다.
상기 확장체(22)는 도 3에서 볼 수 있는 바와 같이, 상기 날개부 수납공간(212)에 수납되는 것으로 외측에 절삭팁(T)이 결합된 호 형상의 날개부(221)와 상기 날개부(221) 후단에 돌출 형성되는 것으로 상기 가이드공(213)에 삽입되는 가압부(222)로 구성된다.
상기 확장체(22)는 날개부(221)가 날개부 수납공간(212) 내에 수납된 상태에서 인접하는 확장체(22)의 날개부(221)와 서로 접하도록 구비되거나, 후술할 도 15의 (a)에서 볼 수 있는 바와 같이 인접하는 확장체(22)의 날개부(221)가 상호 겹쳐지도록 구성할 수 있다.
상기 확장체(22)는 콘크리트로 형성하거나(도 3의 (a)), 강재를 이용하여 판 형상으로 구성할 수 있다(도 3의 (b)).
상기 확장체(22)의 후단에는 가압체(3)의 하단과 대응되는 형상으로 경사면을 형성할 수 있다.
도 1의 (b)에서와 같이, 상기 가압체(3)는 가압체 수납공간(211)에서 가이드공(213) 방향으로 가압부(222)의 단부를 가압하여, 확장체(22)가 방사상으로 확경구 본체(21) 외부로 슬라이딩 이동됨으로써 확경구(2)가 확경되어 지반에 말뚝 확대부를 형성하게 된다.
상기 확장체(22)는 말뚝 확대부를 포함한 말뚝의 시공이 완료되면 확대된 상태로 말뚝 확대부의 영구적인 지지부재 역할을 담당한다.
상기 가압체(3)는 하단이 원뿔 모양인 원기둥 형태로 구성할 수 있다. 이 경우 확장체(22)의 날개부(221)는 단부가 가압체 수납공간(211) 내에 위치하도록 하고, 상기 확경구 본체(21)는 가압체 수납공간(211)의 상부가 개방되도록 구성하여 상기 가압체 수납공간(211)의 개방된 공간을 통해 가압체(3)를 하부로 이동시켜 확장체(22)의 가압부(222) 단부를 가압함으로써 확장체(22)가 외부로 슬라이딩 이동되도록 구성할 수 있다.
이때, 확경구 본체(21)는 가압체 수납공간(211)의 하부를 도 2의 (a)와 같이 개방하거나, 도 2의 (b)와 같이 하부부재(29)로 폐쇄하도록 구성할 수 있다.
특히, 가압체 수납공간(211)의 하부가 폐쇄되는 경우에는 하부부재(29)의 상부에 가압체(3)의 하단이 안착될 수 있도록 홈을 형성할 수 있으며, 지하수 등에 의한 부력으로 말뚝이 상승하거나 말뚝 근입에 방해가 되지 않도록 지하수가 유입되는 부력 방지공(291)을 형성하는 것이 바람직하다.
상기 부력 방지공(291)은 말뚝 경타시 막히는 것을 방지하기 위하여, 하부부재(29)의 측면 방향으로 형성하는 것이 바람직하다.
아울러 도 2의 (a)에서 볼 수 있는 바와 같이, 확경구 본체(21)의 상부에는 확경구(2) 내부로 경화 가능한 접합채움재를 주입하기 위한 자동공급라인(217)을 형성할 수 있다.
상기 자동공급라인(217)을 이용하면 말뚝을 천공홀에 근입하면서 확장체(22)가 방사상 확장함에 따라 생기는 빈 공간에 접합채움재를 공급할 수 있다.
도 4는 수평보조가압체가 구비된 본 발명 자체 확경 말뚝의 단면사시도이고, 도 5는 수평보조가압체의 작동 과정을 나타내는 가압체의 단면사시도이며, 도 6은 확장체(22)의 확장 과정을 나타내는 본 발명 자체 확경 말뚝의 단면도이다.
도 4 내지 도 6에서 볼 수 있는 바와 같이, 상기 가압체(3)의 측면에는 가압체(3) 외부로 돌출되도록 슬라이딩되어 확장체(22)의 가압부(222) 단부를 추가적으로 가압하여 밀어주는 복수의 수평보조가압체(33)가 더 구비될 수 있다.
상기 수평보조가압체(33)는 확장체(22)의 확장 범위를 더욱 확대하는 역할을 한다.
즉, 가압체(3)가 확장체(22)를 가압하기 시작한 다음(도 6의 (a)), 수평보조가압체(33)가 확장체(22)와 동일한 높이에 위치되면(도 6의 (b)), 이후 수평보조가압체(33)가 확장체(22)를 가압하여 확장체(22)의 확장 범위를 더욱 확대한다(도 6의 (c)).
도 5의 (a) 내지 (b)에서와 같이 상기 가압체(3) 내부에는 가압체(3) 상면까지 연장되는 수직공(31)이 형성되고, 상기 가압체(3)의 측면에는 상기 수직공(31)과 연통되는 것으로 상기 수평보조가압체(33)의 단부 일부가 수직공(31) 내에 위치하도록 수평보조가압체(33)가 수납되는 진출입공(32)이 수평 방향으로 복수 개 형성되어, 상기 수직공(31) 내에 상하 이동 가능하게 구비되는 수직보조가압체(34)가 수평보조가압체(33)의 단부를 가압하여 수평보조가압체(33)가 가압체(3) 외부로 돌출되도록 함으로써 확장체(22)의 가압부(222) 단부를 가압하도록 구성할 수 있다.
이때, 상기 수평보조가압체(33)의 외측 단부에는 상부와 하부에 경사부(331, 332)가 형성될 수 있다.
여기에서 하부 경사부(332)는 수평보조가압체(33)가 보다 용이하게 가압되도록 하는 부분이다. 그리고 상부 경사부(331)는 가압체(3) 회수시 수평보조가압체(33)가 확경구 본체(21)의 가이드공(213) 상단에 걸려 진출입공(32)으로 다시 슬라이딩 이동하도록 한다. 즉, 수평보조가압체(33)를 다시 진출입공(32)에 수납하여 가압체(3) 회수시 가이드공(213)에 걸리지 않도록 하는 역할을 한다.
도 4의 (b)에 도시된 실시예는 확경구(2)를 말뚝 본체(1) 하부와 강선(ST)으로 인장하여 프리스트레스를 도입하여 결합한 것으로 용접 없이 확경구(2)를 말뚝 본체(1)와 결합할 수 있다. 이 경우 강선(ST) 외에 강봉으로 결합하는 것도 가능하다.
도 7은 가압체의 다른 실시예를 도시하는 단면사시도이고, 도 8은 가압체의 회수 과정을 나타내는 본 발명 자체 확경 말뚝의 단면도이다.
도 7에서 볼 수 있는 바와 같이, 상기 가압체(3)의 상부 일측면에는 걸림구(36)가 삽입 관통되는 관통공(35)이 형성되고, 상기 수직보조가압체(34)의 측면에는 상기 걸림구(36)의 단부가 삽입되어 걸림되는 걸림구삽입홈(341)이 수직 방향으로 형성되어 수직보조가압체(34) 인양시 가압체(3) 전체가 인양되어 회수될 수 있다.
즉, 수평보조가압체(33)의 가압이 완료된 다음(도 8의 (a)), 수직보조가압체(34)를 들어 올리면 수평보조가압체(33)가 제자리로 돌아오게 되고(도 8의 (b) 내지 (c)), 이후 걸림구(36)가 걸림구삽입홈(341) 하단에 걸려 가압체(3) 전체를 들어 올릴 수 있다(도 8의 (d)).
이에 따라 가압체(3)의 회수가 용이하다.
도 9는 가압체가 유체인 경우에 해당하는 본 발명 자체 확경 말뚝의 실시예를 도시하는 단면사시도이다.
도 9에서 볼 수 있는 바와 같이, 상기 가압체(3)는 유체로, 상기 확경구 본체(21)의 가압체 수납공간(211) 상부에는 유체 압력공급통로(214)가 가압체 수납공간(211)과 연통되도록 형성되어 상기 유체 압력공급통로(214)를 통해 유체를 가압체 수납공간(211)으로 공급하여 유체의 압력에 의해 확장체(22)의 가압부(222) 단부를 가압함으로써 확장체(22)가 외부로 슬라이딩 이동되도록 구성할 수 있다.
상기 유체는 물, 공기 등이거나 모르타르일 수 있다.
특히, 상기 유체가 모르타르일 경우, 유체는 내부에서 경화되어 확경구(2)와 일체화된다.
도 9의 실시예는 유체의 압력에 의하여 확장체(22)가 방사상 확장하면서 지반을 확경 절삭과 함께 말뚝 확대부를 형성하며, 말뚝 확대부 주변에 접합채움재를 밀실하게 채움과 함께 확경홀의 바닥면에 접합채움재가 고압으로 분사됨에 따라 지반을 견고히 다져 밀도를 높일 수 있다.
아울러 연속된 말뚝 확대부를 형성하여 하부 지반으로 채움재가 빠져나갈 틈을 없앤 다음, 하부 지반에 채움재를 채우면서 가압체(3)로 다지거나 말뚝 확대부 하부 지반에 골재나 접합채움재와 같은 채움재를 압력 주입하여 하부 지반의 밀도를 증가시킬 수도 있다.
상기 날개부(221)의 측면 또는 가이드공(213)의 측면 중 적어도 어느 하나 이상에는 상기 유체가 외부로 배출되는 유체 이동통로(G)가 형성될 수 있다.
상기 유체 이동통로(G)를 통하여 슬라임 배출용 유체가 확경 절삭된 슬라임을 외부로 신속하게 배출할 수 있다.
상기 유체 이동통로(G)는 경화 가능한 접합채움재를 이용하여 확장체(22)를 밀어내는 경우에 접합채움재의 이동통로 역할도 한다.
상기 확장체(22)의 상면에는 확장체(22)의 확장 방향을 따라 일정 길이의 걸림홈(223)이 형성되고, 상기 날개부 수납공간(212)의 상부에는 상기 걸림홈(223)에 삽입되어 날개부(221)의 확장 길이를 제한하는 스토퍼(215)가 돌출 형성될 수 있다.
앞서 도 1과 관련하여 설명한 하단이 원뿔인 가압체(3)의 경우, 확장체(22)의 확장 거리가 가압체(3)의 지름에 의해 정해진다. 그러나 도 9의 실시예에서와 같이 유체의 압력에 의하여 확장체(22)를 가압할 경우, 확장체(22)의 최대 확장 거리를 조절할 수 없어 지반 여건에 따라 확장체(22)가 이탈되는 경우가 발생할 수 있다.
따라서 날개부 수납공간(212)의 상부에 스토퍼(215)를 설치하여 확장체(22)의 확장 거리를 조절 또는 제한할 수 있도록 하였다.
도 10은 부확장체가 구비된 확경구의 실시예를 도시하는 사시도이다.
도 10에서와 같이, 상기 인접하는 확장체(22)의 날개부(221) 사이의 상부 또는 하부에는 확장체(22)가 외부로 돌출될 때 날개부(221)의 이동에 의해 같이 외부로 이동하여 인접하는 날개부(221)의 사이 공간을 폐쇄하는 부확장체(23)가 더 구비될 수 있다.
상기 부확장체(23)는 인접하는 확장체(22) 사이에 구비되는 것으로 양측이 상기 확장체(22)의 일부와 겹치도록 배치된다. 확장체(22)는 날개부(221)와 가압부(222)로 구성되는 반면, 부확장체(23)는 가압부 없이 날개부만으로 구성된다.
이에 따라 확장체(22)의 가압부(222)가 가압되어 날개부(221)가 외부로 돌출되면, 확장체(22)의 이동에 따라 부확장체(23)가 외부로 돌출된다.
이 경우 부확장체(23)의 수만큼 확경구 본체(21)의 가이드공(213) 개소를 줄일 수 있어 확경구 본체(21)의 구성이 간단하다. 또한, 확장체(22)의 가압부(222)만 가압하면 되므로 가압이 용이하다.
도 10의 (b) 내지 (c)에서 볼 수 있는 바와 같이, 확장체(22) 상면에 끼움홈부(224), 부확장체(23) 하면에 끼움돌부(231)를 각각 형성하거나 반대로 확장체(22) 상면에 끼움돌부, 부확장체(23) 하면에 끼움홈부를 각각 형성하는 경우에는 끼움홈부와 끼움돌부가 상호 맞물리게 된다.
따라서 확장체(22)의 확장에 따라 부확장체(23)가 같이 외부로 돌출되어 평면상 연속적인 확장체를 구성할 수 있으므로, 말뚝 확대부에 작용하는 큰 외력을 지지할 수 있다. 또한, 확장체(22)의 방사상 확장에 따라 생기는 확장체(22) 배면의 빈 공간에 채워지는 경화 가능한 접합채움재가 연속된 말뚝 확대부로 인해 새어나갈 틈이 없어지므로, 말뚝 확대부 주변이 매우 치밀해지며 말뚝의 침하를 방지할 수 있다.
도 11은 내부에 중공이 형성된 말뚝 본체가 구비된 본 발명 자체 확경 말뚝의 단면사시도이다.
도 11에서와 같이, 상기 말뚝 본체(1)는 내부에 수직 방향으로 중공(11)이 형성된 콘크리트 말뚝이고, 상기 확경구(2)는 콘크리트로 말뚝 본체(1) 하단에 일체로 형성되도록 구성할 수 있다.
전술한 바와 같이, 상기 확경구(2)는 말뚝 본체(1)와 별도로 제작하여 말뚝 본체(1) 하부에 연결할 수도 있으나, 제작의 편의성 등의 면에서 말뚝 본체(1)의 거푸집과 확경구(2)의 거푸집을 일체로 구성하고 확경구(2)를 말뚝 본체(1)와 함께 콘크리트로 일체로 제작하는 것도 가능하다.
특히, 강선을 사용하지 않는 콘크리트 기성말뚝과 확경구(2)를 일체로 제작하는 것은 더욱 용이하다.
이때, 확경구 본체(21)의 가압체 수납공간(211)은 말뚝 본체(1)의 중공(11)과 연통되도록 일체로 형성한다.
상기 중공(11)은 선단이 원뿔형인 원기둥 형상의 가압체(3) 또는 유체인 가압체(3)의 진입 통로 역할을 할 수 있다.
아울러 상기 확경구(2)는 말뚝 본체(1)보다 외경을 크게 형성할 수 있다.
콘크리트 말뚝의 경우 외경과 내경의 지름이 정해져 있어 말뚝의 두께만으로 확장체(22)를 수납하기에는 두께가 다소 부족하다.
따라서 확경구(2)의 외경을 더욱 크게 제작하여 확장체(22)가 날개부 수납공간(212) 내에 충분히 수납되도록 함이 바람직하다.
도 12는 보강판이 구비된 본 발명 자체 확경 말뚝의 단면사시도이고, 도 13은 보강판의 사시도이며, 도 14는 하부에 충전재가 부착되는 보강판을 도시하는 사시도이다.
도 12 내지 도 14에서 볼 수 있는 바와 같이, 상기 날개부 수납공간(212)의 상면 및 가이드공(213)의 내면에는 보강판(24)을 결합할 수 있다.
일반적으로 말뚝이 하부로 수직하중을 받으면 확장체(22)의 날개부(221)는 상향의 반력을 받게 된다. 이때 확경구(2)가 콘크리트로 이루어진 경우에는 날개부(221)가 상부로 하중을 받으면서 날개부 수납공간(212)의 하부와 마찰 또는 충격에 의해 확경구 본체(21), 특히 날개부 수납공간(212)에 파손이 발생할 우려가 있다.
또한 상기 확경구(2)는 회전과 동시에 확경을 진행하게 되므로 확장체(22)가 횡방향으로 반력을 받게 된다. 이때 날개부(221)가 평면상 회전하면서 가압부(222)가 가이드공(213)과 마찰 또는 충격에 의해 확경구 본체(21)에 파손이 발생할 우려가 있다.
따라서 이러한 확경구 본체(21)의 파손을 방지하기 위해 날개부 수납공간(212)의 상면과 가이드공(213) 내면을 강판으로 보강할 수 있다.
도 13에서 볼 수 있는 바와 같이, 상기 보강판(24)은 하판(241), 측판(242), 날개부 수납공간 보호판(243)으로 구성할 수 있다.
또한, 상기 보강판(24)은 확경구(2) 제작시 거푸집 역할을 겸용할 수도 있다.
이 경우 도 14에서와 같이, 보강판(24) 하부에 날개부 수납공간(212) 형성을 위한 거푸집 또는 충전재(25)를 부착하여 콘크리트를 타설하도록 한다.
상기 거푸집 또는 충전재(25)는 보강판(24)의 외주면과 같은 링 형상으로 구성할 수 있다.
거푸집으로 할 경우 탈형을 위해 링을 분할하여 조립하고 표면에 박리제 도포하며, 스티로폼 등의 충전재(25)로 사용할 경우 분할할 필요 없이 콘크리트 경화 후 스티로폼을 부셔서 제거하면 된다.
도 12에서와 같이, 상기 확경구 본체(21)의 하부에는 하부가 뾰족한 슬라임 유입방지구(26)를 가압체(3)의 가압에 의해 분리 가능하게 결합할 수 있다.
상기 슬라임 유입방지구(26)는 가압체(3)의 가압 초기에는 하부슬라임이 확경구(2) 내로 유입되는 것을 방지한다.
그리고 가압체(3)가 하부로 이동하여 확장체(22)가 확장된 직후에는 가압체(3)가 확경구 본체(21) 내부의 가압체 수납공간(211)을 폐쇄하므로 하부슬라임이 확경구(2) 내부로 유입되지 않는다.
이후 가압체(3)가 보다 하향 이동하여 슬라임 유입방지구(26)가 확경구 본체(21)로부터 탈락하면, 압력 유체가 확경구 본체(21) 하부와 슬라임 유입방지구(26) 사이로 배출되므로 절삭슬라임의 배출을 도와 해머비트의 원활한 작동이 가능하다.
상기 슬라임 유입방지구(26)는 말뚝 하부의 마구리판(27)에 태그 용접하거나 끼움 결합 가능하다.
도 15의 (a)는 인접 확장체가 서로 겹쳐지게 구성된 본 발명 자체 확경 말뚝의 사시도이고, 도 15의 (b)는 가이드돌기와 가이드홈이 대응되는 면에 형성된 본 발명 자체 확경 말뚝의 사시도이다.
도 15의 (a)에서와 같이, 상기 확장체(22)는 날개부(221)가 날개부 수납공간(212) 내 수납 상태에서 인접하는 확장체(22)의 날개부(221)와 서로 겹쳐지도록 구성할 수 있다.
이 경우 확장체(22)의 확장시 지반에 연속적인 말뚝 형성부를 구성할 수 있다.
아울러 도 15의 (b)에서 볼 수 있는 바와 같이, 확장체(22) 상면 또는 하면에는 가이드홈 또는 가이드돌기(225)를 형성하고 가이드공(213)의 대응되는 면에는 가이드돌기 또는 가이드홈(216)을 형성하여, 확장체(22)의 확장 방향을 안내하도록 구성할 수도 있다.
도 16은 편심방지구가 구비된 본 발명 자체 확경 말뚝의 사시도이다.
도 16에서 볼 수 있는 바와 같이, 상기 말뚝 본체(1)의 상부 일측에는 말뚝 본체(1) 외측으로 돌출된 편심방지구(12)가 더 구비될 수 있다.
상기 확경구(2) 외경이 큰 경우 말뚝 근입을 위해 천공홀의 지름이 다소 커질 수밖에 없으며, 이 경우 말뚝 상부에는 말뚝 지름과 천공홀 사이의 간격이 커져 말뚝에 편심이 발생할 우려가 있다.
따라서 말뚝 본체(1)의 상부 일측에 확경구(2) 외경과 유사한 크기가 되도록 편심방지구(12)를 결합하여 말뚝의 편심을 방지하는 것이 바람직하다.
상기 편심방지구(12)와 천공홀 사이에는 그라우트재 주입을 위한 소정의 공간이 확보되어야 한다.
상기 편심방지구(12)는 콘크리트, 강재, 탄성링 등 다양한 실시예가 가능하다. 도 16의 (a)는 말뚝 본체(1) 상부의 마구리판을 연장하여 강재로 편심방지구(12)를 형성하였고, 도 16의 (b)는 콘크리트 재질의 편심방지구(12)로 말뚝 본체(1)와 일체로 제작하거나 말뚝 본체(1)에 후 부착 가능하며, 도 16의 (c)는 고무 등 탄성 C형 링의 편심방지구(12)를 말뚝 본체(1) 상부에 끼워 넣은 경우에 대한 실시예이다.
도 17은 메쉬부재가 구비된 본 발명 자체 확경 말뚝의 사시도이다.
상기 확경구(2)는 말뚝 본체(1)보다 고강도 콘크리트로 형성할 수 있다.
일례로 말뚝 본체(1)는 일반 PHC 파일의 고강도 콘크리트를 사용하고, 확경구(2)는 지반 절삭시 확장체(22)의 충격에 파손되면 안 되므로 초고강도 콘크리트 사용하는 것이 가능하다.
이 경우 상기 확경구(2)는 말뚝 선단부를 보강하는 기능도 겸한다.
아울러 도 17에서와 같이, 상기 말뚝 본체(1)와 확경구(2)의 사이에는 메쉬부재(28)가 구비될 수 있다.
말뚝 본체(1)와 확경구(2) 중 한쪽을 먼저 타설하여 경화한 후 나머지를 타설하는 분리 타설도 가능하나, 이는 제작 시간이 오래 소요된다.
따라서 말뚝 본체(1)와 확경구(2)를 동시에 타설하는 것이 바람직한데, 메쉬부재(28)는 제작 과정에서 말뚝 본체(1)와 확경구(2)의 콘크리트 부분에 대한 분리막 역할을 하며 경화 후에는 접합부의 접합력을 증대하여 일체화하는데 기여한다.
일례로 말뚝 본체(1)와 확경구(2)는 원형 몰드 하부에 콘크리트를 채우고 몰드를 회전하여 원심 성형하여 일체로 제작할 수 있으며, 확경구(2) 부위에는 초고강도 콘크리트, 말뚝 본체(1)에는 고강도 콘크리트를 채우고 회전시켜 말뚝 본체(1)와 확경구(2)를 제작할 수 있다.
물론, PHC 파일의 경우 강선 긴장 후 원심 성형을 진행한다.
도 18은 착탈걸림부가 구비된 본 발명 자체 확경 말뚝의 단면사시도이다.
도 18에서와 같이, 확경구(2) 상부에는 지상의 회전 장비를 끼움 결합할 수 있는 착탈걸림부(218)를 형성할 수 있다. 이에 따라 상기 착탈걸림부(218)에 회전 장비를 장착하여 회전력을 전달함으로써 확경구(2)를 회전시킬 수 있다.
확경구(2)의 회전에 의해 말뚝 확대부 형성을 완료한 후에는 천공홀 내의 잔여슬라임과 이물질이 말뚝 본체(1)로 유입되는 것을 방지한 상태에서 현장타설말뚝용 접합채움재를 분사하면서 회전 장비를 지상으로 회수한다.
도 19는 확경구를 선제작하는 경우에 대한 본 발명 자체 확경 말뚝을 제작 방법의 단계별 공정을 도시하는 도면이다.
도 19의 (a)에서와 같이 확경구(2)를 먼저 제작한 후, 도 19의 (b)에서와 같이 확경구(2) 상부에 말뚝 본체(1) 제작을 위한 거푸집(F)을 설치한다. 이때 상기 확경구(2)는 말뚝 본체(1)의 하부 거푸집 역할을 한다.
상기 거푸집(F) 설치 전에 미리 확경구(2)에 강선(ST)을 설치할 수 있으며, 도 19의 (c)에서와 같이 거푸집(F) 설치 후에 강선(ST)을 긴장한 후, 도 19의 (d)에서와 같이 거푸집(F) 내에 콘크리트를 타설하여 원심 성형하고 양생한 후 거푸집(F)을 탈형하여 말뚝 제작을 완료할 수 있다.
확경구(2)는 말뚝 본체(1)에 비해 크기가 작으므로, 확경구(2)를 먼저 제작할 경우 확경구(2)를 외부에서 대량으로 생산할 수 있으므로 생산 효율을 극대화할 수 있다.
도 20 및 도 21은 결합부가 구비된 본 발명 자체 확경 말뚝의 단면사시도이다.
확경구(2)와 말뚝 본체(1)를 별도로 제작하는 경우, 확경구(2) 상부에 말뚝 본체(1)를 결합하기 위해서는 이들을 상호 용접 또는 접착제로 결합하거나 별도의 결합부(4)로 결합할 수 있다.
도 20은 결합부의 일실시예로 말뚝 본체(1)가 강관말뚝인 경우, 확경구(2)의 상면에 고정된 상부 강판을 결합부(4)로 하여 결합부(4)에 강관 말뚝 선단을 용접 결합한다.
그리고 도 21은 결합부의 다른 실시예로 말뚝 본체(1)가 PHC말뚝인 경우, PHC말뚝 저면에 결합된 강판에 나사홈을 내고 볼트를 결합한 다음 확경구(2)의 상면에 미리 결합된 것으로 내주면에 암나사산이 형성되고 내부에 접착제가 채워진 파이프 내에 볼트를 체결하여 말뚝 본체(1)와 확경구(2)를 결합한다.
도 22는 지지홈이 구비된 본 발명 자체 확경 말뚝을 나타내는 도면이다.
도 22의 (a) 내지 (b)에서와 같이, 상기 확경구 본체(21)의 날개부 수납공간(212) 상부 외주면에는 원주를 따라 지지홈(219)이 형성될 수 있다.
이로써, 자체 확경 말뚝을 천공홀(6) 내에 근입한 후 확경구(2)와 천공홀(6) 사이에 접합채움재 등을 충분히 주입 충전할 수 있으므로, 부확장체(23)가 없어 연속적인 말뚝 확대부를 형성할 수 없는 경우에도 말뚝 확대부 저면의 물질이 지지홈(219)에 걸려 천공홀(6) 상부로 상승하는 것을 방지할 수 있다.
이때 지지홈(219) 내에는 고정액(5)을 충전함으로써, 고정액(5)의 상승을 방지하여 말뚝 확대부 지반의 하부 물질이 상승하지 않도록 할 수 있다.
본 발명의 자체 확경 말뚝은 말뚝 본체(1)를 기성말뚝으로 형성할 수도 있고, 현장타설말뚝으로 형성할 수도 있다.
말뚝 본체(1)가 기성말뚝인 경우 본 발명의 자체 확경 말뚝의 시공 방법은 먼저 (a) 지반에 천공홀을 형성하고, (b) 말뚝 본체(1) 저면에 확경구(2)가 결합된 자체 확경 말뚝을 지반에 형성된 천공홀 내부에 삽입 설치하는 순서로 진행된다. 이때, 천공홀은 보링 또는 타격 등 다양한 방법에 의해 형성 가능하다.
이후 (c) 확경구를 회전시키면서 가압체 수납공간(211)에 선단이 원뿔형인 가압체(3) 또는 유체인 가압체(3)를 삽입하여 가압부(222)의 단부를 가압하여 확장체(22)가 천공홀 하부의 주변 지반을 절삭하면서 확경구 본체(21) 외부로 확장되도록 한다.
이때, 확경구(2)는 말뚝 본체(1)의 회전에 의해 회전될 수도 있고, 말뚝 본체(1)와는 별개로 확경구(2) 만을 회전시키는 것도 가능하다.
확경구(2) 확장 후에는 가압체(3)를 회수하고 말뚝 내 빈 공간에 채움재를 충전하는 과정을 거쳐 시공을 마무리한다.
아울러 말뚝 본체(1)가 현장타설말뚝인 경우 본 발명의 자체 확경 말뚝의 시공 방법에서는 먼저 (a) 지반에 천공홀을 형성하고, (b) 확경구(2)를 천공홀 지반에 형성된 천공홀 내부에 삽입 설치하는 과정이 진행되어야 한다.
그리고 (c) 확경구(2)를 회전시키면서 가압체 수납공간(211)에 선단이 원뿔형인 가압체(3) 또는 유체인 가압체(3)를 삽입하여 가압부(222)의 단부를 가압하여 확장체(22)가 천공홀 하부의 주변 지반을 절삭하면서 확경구 본체(21) 외부로 확장되도록 한다.
마지막으로 (d) 확경구(2) 상부에 콘크리트를 타설하여 현장타설말뚝을 완성하는데, 콘크리트 타설 전에 철근망, FRP 등의 보강재를 설치하는 것도 가능하다.
또한, 지반에 미리 천공홀을 미리 형성하지 않고, 말뚝을 직접 지반에 삽입할 수도 있는데 이 경우 (a) 말뚝 본체(1) 저면에 확경구(2)가 결합된 자체 확경 말뚝을 타입, 압입 또는 회전관입에 의해 지중에 삽입하고, 이후 (b) 확경구를 회전시키면서 가압체 수납공간(211)에 선단이 원뿔형인 가압체(3) 또는 유체인 가압체(3)를 삽입하여 가압부(222)의 단부를 가압하여 확장체(22)가 지반을 절삭하면서 확경구 본체(21) 외부로 확장되도록 한다.
도 23은 확경구를 회전시키기 위한 본 발명의 실시예를 나타내는 단면도이다.
말뚝을 직접 지반에 삽입하여 말뚝 본체(1)와 지반과의 마찰 때문에 말뚝 본체(1)를 회전시키는 것이 곤란한 경우 등에는 확경구(2)만을 회전시킬 수 있도록 구성할 수 있다.
도 23에 도시된 바와 같이 말뚝 본체(1) 하단의 마구리강판(13)이 확경구 본체(21)의 날개부 수납공간(213)에 걸리도록 하여 확경구(2)가 말뚝 본체(1)와 회전 가능하게 결합되고, 확경구 본체(21) 상부에 형성된 걸림턱(P)을 확경구(2) 상부의 회전구(7)에 결합하여 회전구(7)의 구동에 의해 확경구(2)가 회전되도록 한다.
상기 회전구(7)는 회전 모터, 회전 로드 등을 이용할 수 있다.
본 발명의 자체 확경 말뚝 및 이의 시공 방법은 회전절삭팁이 장착된 확장체가 드릴비트 역할을 하여 일반 토사층에서 단단한 암반층까지 다양한 지층에서 말뚝 확대부를 형성하여 말뚝의 본당 허용지지력을 크게 증가시킬 수 있다.
이에 따라 말뚝의 시공 수량을 줄여 말뚝 공사비를 절감하고, 공기 단축시킬 수 있다. 따라서 뛰어난 경제성으로 기존에 토공으로 처리하거나 직접 기초로 하던 공사를 말뚝 기초로 변경하는 등 말뚝 적용범위가 넓어질 수 있다는 점에서, 본 발명은 산업상 이용 가능성이 있다.

Claims (18)

  1. 지중에 설치되는 말뚝 본체(1), 말뚝 본체(1) 하부에 결합되는 것으로 회전하면서 지름이 확장되는 확경구(2) 및 확경구(2)의 지름을 확장하기 위한 가압체(3)로 구성되는 자체 확경 말뚝에 관한 것으로,
    상기 확경구(2)는, 내부에 가압체 수납공간(211)이 형성되고, 측면에 외주면을 따라 날개부 수납공간(212)이 형성되며, 상기 가압체 수납공간(211)과 날개부 수납공간(212)에 연통되도록 복수의 가이드공(213)이 형성되는 원기둥 형상의 확경구 본체(21); 및 상기 날개부 수납공간(212)에 수납되는 것으로 외측에 절삭팁(T)이 결합된 호 형상의 날개부(221)와 상기 날개부(221) 후단에 돌출 형성되는 것으로 상기 가이드공(213)에 삽입되는 가압부(222)로 구성되는 확장체(22); 로 구성되되,
    상기 가압체(3)가 가압체 수납공간(211)에서 가이드공(213) 방향으로 가압부(222)의 단부를 가압하여 확장체(22)가 방사상으로 확경구 본체(21) 외부로 슬라이딩 이동됨으로써 확경구(2)가 확경되는 것을 특징으로 하는 자체 확경 말뚝.
  2. 제1항에서,
    상기 확장체(22)의 날개부(221)는 단부가 가압체 수납공간(211) 내에 위치하고, 상기 가압체(3)는 하단이 원뿔 모양으로,
    상기 확경구 본체(21)는 가압체 수납공간(211)의 상부가 개방되어 상기 가압체 수납공간(211)의 개방된 공간을 통해 가압체(3)를 하부로 이동시켜 확장체(22)의 가압부(222) 단부를 가압함으로써 확장체(22)가 외부로 슬라이딩 이동되는 것을 특징으로 하는 자체 확경 말뚝.
  3. 제2항에서,
    상기 가압체(3)의 측면에는 가압체(3) 외부로 돌출되도록 슬라이딩되어 확장체(22)의 가압부(222) 단부를 추가적으로 가압하여 밀어주는 복수의 수평보조가압체(33)가 더 구비되는 것을 특징으로 하는 자체 확경 말뚝.
  4. 제1항에서,
    상기 가압체(3)는 유체로, 상기 확경구 본체(21)의 가압체 수납공간(211) 상부에는 유체 압력공급통로(214)가 가압체 수납공간(211)과 연통되도록 형성되어 상기 유체 압력공급통로(214)를 통해 유체를 가압체 수납공간(211)으로 공급하여 유체의 압력에 의해 확장체(22)의 가압부(222) 단부를 가압함으로써 확장체(22)가 외부로 슬라이딩 이동되는 것을 특징으로 하는 자체 확경 말뚝.
  5. 제4항에서,
    상기 날개부(221)의 측면 또는 가이드공(213)의 측면 중 적어도 어느 하나 이상에는 상기 유체가 외부로 배출되는 유체 이동통로(G)가 형성되는 것을 특징으로 하는 자체 확경 말뚝.
  6. 제4항에서,
    상기 확장체(22)의 상면에는 확장체(22)의 확장 방향을 따라 일정 길이의 걸림홈(223)이 형성되고, 상기 날개부 수납공간(212)의 상부에는 상기 걸림홈(223)에 삽입되어 날개부(221)의 확장 길이를 제한하는 스토퍼(215)가 돌출 형성되는 것을 특징으로 하는 자체 확경 말뚝.
  7. 제1항에서,
    상기 인접하는 확장체(22)의 날개부(221) 사이의 상부 또는 하부에는 확장체(22)가 외부로 돌출될 때 날개부(221)의 이동에 의해 같이 외부로 이동하여 인접하는 날개부(221)의 사이 공간을 폐쇄하는 부확장체(23)가 더 구비되는 것을 특징으로 하는 자체 확경 말뚝.
  8. 제2항 또는 제4항에서,
    상기 말뚝 본체(1)는 내부에 수직 방향으로 중공(11)이 형성된 콘크리트 말뚝이고, 상기 확경구(2)는 콘크리트로 말뚝 본체(1) 하단에 일체로 형성되는 것을 특징으로 하는 자체 확경 말뚝.
  9. 제8항에서,
    상기 확경구(2)는 말뚝 본체(1)보다 외경이 크게 형성되는 것을 특징으로 하는 자체 확경 말뚝.
  10. 제8에서,
    상기 날개부 수납공간(212)의 상면 및 가이드공(213)의 내면에는 보강판(24)이 결합되는 것을 특징으로 하는 자체 확경 말뚝.
  11. 제8항에서,
    상기 확경구 본체(21)의 하부에는 하부가 뾰족한 슬라임 유입방지구(26)가 가압체(3)의 가압에 의해 분리 가능하게 결합되는 것을 특징으로 하는 자체 확경 말뚝.
  12. 제9항에서,
    상기 말뚝 본체(1)의 상부 일측에는 말뚝 본체(1) 외측으로 돌출된 편심방지구(12)가 더 구비되는 것을 특징으로 하는 자체 확경 말뚝.
  13. 제8항에서,
    상기 확경구(2)는 말뚝 본체(1)보다 고강도 콘크리트로 형성되는 것을 특징으로 하는 자체 확경 말뚝.
  14. 제13항에서,
    상기 말뚝 본체(1)와 확경구(2)의 사이에는 메쉬부재(28)가 구비되는 것을 특징으로 하는 자체 확경 말뚝.
  15. 제9항에서,
    상기 확경구 본체(21)의 날개부 수납공간(212) 상부 외주면에는 원주를 따라 지지홈(219)이 형성되는 것을 특징으로 하는 자체 확경 말뚝.
  16. 제1항에 의한 자체 확경 말뚝을 시공하는 방법에 관한 것으로,
    (a) 지반에 천공홀을 형성하는 단계;
    (b) 말뚝 본체(1) 저면에 확경구(2)가 결합된 자체 확경 말뚝을 천공홀 내부에 삽입하는 단계; 및
    (c) 확경구를 회전시키면서 가압체 수납공간(211)에 가압체(3)를 삽입하여 가압부(222)의 단부를 가압하여 확장체(22)가 지반을 절삭하면서 확경구 본체(21) 외부로 확장되도록 하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 자체 확경 말뚝의 시공 방법.
  17. 제1항에 의한 자체 확경 말뚝을 시공하는 방법에 관한 것으로,
    (a) 지반에 천공홀을 형성하는 단계;
    (b) 확경구(2)를 천공홀 하부에 삽입 설치하는 단계;
    (c) 확경구(2)를 회전시키면서 가압체 수납공간(211)에 가압체(3)를 삽입하여 가압부(222)의 단부를 가압하여 확장체(22)가 지반을 절삭하면서 확경구 본체(21) 외부로 확장되도록 하는 단계; 및
    (d) 상기 확경구(2) 상부에 콘크리트를 타설하여 현장타설말뚝을 형성하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 자체 확경 말뚝의 시공 방법.
  18. 제1항에 의한 자체 확경 말뚝을 시공하는 방법에 관한 것으로,
    (a) 말뚝 본체(1) 저면에 확경구(2)가 결합된 자체 확경 말뚝을 타입, 압입 또는 회전관입에 의해 지중에 삽입하는 단계;
    (b) 확경구를 회전시키면서 가압체 수납공간(211)에 가압체(3)를 삽입하여 가압부(222)의 단부를 가압하여 확장체(22)가 지반을 절삭하면서 확경구 본체(21) 외부로 확장되도록 하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 자체 확경 말뚝의 시공 방법.
PCT/KR2015/004804 2014-05-14 2015-05-13 자체 확경 말뚝 및 이의 시공 방법 WO2015174737A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0057529 2014-05-14
KR1020140057529A KR20150065129A (ko) 2013-12-03 2014-05-14 자체확경말뚝 및 그 시공방법
KR10-2014-0158319 2014-11-13
KR1020140158319A KR20150131911A (ko) 2014-05-14 2014-11-13 자체 확경 말뚝 및 이의 시공 방법

Publications (1)

Publication Number Publication Date
WO2015174737A1 true WO2015174737A1 (ko) 2015-11-19

Family

ID=54480218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004804 WO2015174737A1 (ko) 2014-05-14 2015-05-13 자체 확경 말뚝 및 이의 시공 방법

Country Status (2)

Country Link
KR (1) KR20150131911A (ko)
WO (1) WO2015174737A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113250191A (zh) * 2021-07-01 2021-08-13 昆明理工大学 一种膨胀式让压锚杆
CN113944161A (zh) * 2021-10-30 2022-01-18 湖南梅溪湖建设有限公司 一种软土地层抗浮锚杆施工方法
LU502585B1 (en) * 2022-02-10 2023-08-10 Univ Jiangsu Open Prefabricated pipe pile suitable for soft soil stratum to effectively enhance bearing capacity and construction method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110099A (ko) * 2004-05-17 2005-11-22 이엑스티 유한회사 헤드 확장형 파일의 가변 확장부재
KR20100121109A (ko) * 2009-05-08 2010-11-17 주식회사 백산공영 확장쐐기형 선단부를 가지는 말뚝
KR101027963B1 (ko) * 2010-12-29 2011-04-13 (주)삼일이엔씨 건설공사용 말뚝 및 인장부재를 위한 천공 확대부 콘크리트 시공방법
KR20130002731A (ko) * 2011-06-29 2013-01-08 이대동 선단확장형 파일

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050110099A (ko) * 2004-05-17 2005-11-22 이엑스티 유한회사 헤드 확장형 파일의 가변 확장부재
KR20100121109A (ko) * 2009-05-08 2010-11-17 주식회사 백산공영 확장쐐기형 선단부를 가지는 말뚝
KR101027963B1 (ko) * 2010-12-29 2011-04-13 (주)삼일이엔씨 건설공사용 말뚝 및 인장부재를 위한 천공 확대부 콘크리트 시공방법
KR20130002731A (ko) * 2011-06-29 2013-01-08 이대동 선단확장형 파일

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113250191A (zh) * 2021-07-01 2021-08-13 昆明理工大学 一种膨胀式让压锚杆
CN113944161A (zh) * 2021-10-30 2022-01-18 湖南梅溪湖建设有限公司 一种软土地层抗浮锚杆施工方法
CN113944161B (zh) * 2021-10-30 2022-11-29 湖南梅溪湖建设有限公司 一种软土地层抗浮锚杆施工方法
LU502585B1 (en) * 2022-02-10 2023-08-10 Univ Jiangsu Open Prefabricated pipe pile suitable for soft soil stratum to effectively enhance bearing capacity and construction method thereof

Also Published As

Publication number Publication date
KR20150131911A (ko) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2018221933A1 (ko) 지반 굴착기용 케이싱 가이드 장치 및 이를 이용한 굴착방법
WO2017090975A1 (ko) 선지보와 후지보를 이용한 터널 공법 및 이에 적합한 장치
WO2015152537A1 (ko) 콘크리트 내설용 복합 인서트장치
WO2015174737A1 (ko) 자체 확경 말뚝 및 이의 시공 방법
AU2003274706B8 (en) Method of constructing a pile foundation
JP4927662B2 (ja) 既設覆工物の補修方法
WO2017057804A1 (ko) 하부 개방형 관입 콘크리트 말뚝 및 이의 시공방법
KR101415106B1 (ko) 터널의 공동 채움 시공 장치
WO2011142534A2 (ko) 콘크리트파일 및 그 제조방법
WO2023106764A1 (ko) 확대선단보강부가 구비된 회전관입형 복합 강관말뚝 및 이의 시공 방법
EP3318677A1 (en) Method for forming a reinforced pile and accessory for use therein
KR101840226B1 (ko) 지반굴착기의 오거용 가이드홀 거푸집
WO2023090543A1 (ko) 선단보강부가 구비된 복합 강관말뚝 및 이의 시공 방법
WO2017043709A1 (ko) 관입 콘크리트 말뚝 및 이의 시공방법
KR20140089680A (ko) 자체 확경이 가능한 말뚝 및 그 시공방법
WO2015174740A1 (ko) 선단 확장형 말뚝 및 이의 시공 방법
WO2015122731A1 (ko) 선단 확경 말뚝을 이용하여 말뚝 기초지반을 보강하는 시공방법, 선단 확경 말뚝용 확경구 및 확경구 회전가압장치
CN114635712A (zh) 用于地铁暗挖区间双线大断面分体式衬砌台车的施工工艺
JP4341029B2 (ja) 杭基礎工法
WO2016024673A1 (ko) 확장형 말뚝 확경 시스템
JP2006307534A (ja) コンクリート構造物の止水工法
WO2016021780A1 (ko) 선단 연속 확장 말뚝
KR100609335B1 (ko) 지중에의 보강재 시공방법
CN113585263B (zh) 一种桩头破除设备及方法
JP2009013660A (ja) 地中構造物の外部補強方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793194

Country of ref document: EP

Kind code of ref document: A1