WO2015174219A1 - Solar power generation module and production method for solar power generation module - Google Patents

Solar power generation module and production method for solar power generation module Download PDF

Info

Publication number
WO2015174219A1
WO2015174219A1 PCT/JP2015/062034 JP2015062034W WO2015174219A1 WO 2015174219 A1 WO2015174219 A1 WO 2015174219A1 JP 2015062034 W JP2015062034 W JP 2015062034W WO 2015174219 A1 WO2015174219 A1 WO 2015174219A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode substrate
thermosetting
conductive material
conductive film
ultraviolet curable
Prior art date
Application number
PCT/JP2015/062034
Other languages
French (fr)
Japanese (ja)
Inventor
中井康晴
和田好史
三好正子
倉谷康浩
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015174219A1 publication Critical patent/WO2015174219A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photovoltaic module that generates power by irradiated light and a method for manufacturing the photovoltaic module.
  • a conventional dye-sensitized photovoltaic module has a structure as shown in Patent Document 1, for example.
  • a conventional dye-sensitized photovoltaic module uses a first substrate on which a porous semiconductor film carrying a dye is formed and a second substrate on which a catalyst layer is formed.
  • the first substrate and the second substrate are bonded using a sealing material so that the porous semiconductor film side and the catalyst layer side face each other and the porous semiconductor film and the catalyst layer are separated from each other.
  • An electrolytic solution is sealed in a hollow portion formed by bonding the first and second substrates.
  • Electrodes for taking out the current generated by the photovoltaic module are formed on the surface of the first substrate on which the porous semiconductor film is formed and on the surface of the second substrate on which the catalyst layer is formed. .
  • an ultraviolet curable material is often used as the sealing material without using a thermosetting material.
  • substrate to the exterior as needed is inside. May have.
  • the ultraviolet curable material has a lower adhesive strength of the sealing material to the substrate than the thermosetting material, and the adhesion reliability is reduced as compared to the case where the thermosetting material is used. .
  • each electrode of the first substrate formed inside the photovoltaic module and the conductor pattern extending in the thickness direction drawn to the second substrate side are made of an ultraviolet curable material, each electrode is formed as in the case of the sealing material. The adhesive strength of the conductor pattern with respect to is reduced.
  • an object of the present invention is to provide a photovoltaic module having higher reliability than the conventional configuration and a method for manufacturing the photovoltaic module.
  • the photovoltaic module of the present invention includes a working electrode substrate, a counter electrode substrate, a sealing material, and an electrolyte layer.
  • the working electrode substrate includes a first conductive film formed on at least a part of the surface of the first insulating substrate, and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film.
  • the counter electrode substrate includes a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film.
  • the sealing material bonds the working electrode substrate and the counter electrode substrate in a state where the photoelectric conversion layer and the catalyst layer face each other with a space therebetween.
  • the sealing material is disposed so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view.
  • the electrolyte layer is sealed with a working electrode substrate, a counter electrode substrate, and a sealing material.
  • the sealing material has at least two layers of a thermosetting insulating material and an ultraviolet curable insulating material in the height direction orthogonal to the flat plate surfaces of the working electrode substrate and the counter electrode substrate.
  • thermosetting insulating material an effect of suppressing deterioration in characteristics of the electrolyte layer and the photoelectric conversion layer by using an ultraviolet curable insulating material.
  • an ultraviolet curable insulating material an ultraviolet curable insulating material
  • the photovoltaic module of the present invention preferably has the following configuration.
  • the photovoltaic module sealing material is orthogonal to the first thermosetting insulating material that contacts the working electrode substrate, the second thermosetting insulating material that contacts the counter electrode substrate, and the flat surfaces of the working electrode substrate and the counter electrode substrate.
  • An ultraviolet curable insulating material sandwiched between a first thermosetting insulating material and a second thermosetting insulating material is provided along the height direction.
  • the adhesion between the sealing material, the working electrode substrate and the counter electrode substrate can be further improved.
  • the photovoltaic module of the present invention preferably has the following configuration.
  • the photovoltaic module electrically connects the second conductive film for wiring formed on the surface of the second insulating substrate and the first conductive film, or the first formed on the surface of the first insulating substrate.
  • An internal wiring conductor that conducts the conductive film for wiring and the second conductive film.
  • the internal wiring conductor has at least two layers of a thermosetting conductive material and an ultraviolet curable conductive material in the height direction.
  • the adhesiveness is improved by using the thermosetting insulating material and the thermosetting conductive material, and the characteristics of the electrolyte layer and the photoelectric conversion layer are deteriorated by using the ultraviolet curable insulating material and the ultraviolet curable conductive material. Together with the suppression effect. Thereby, the reliability of the photovoltaic module can be improved.
  • the photovoltaic module of the present invention may have the following configuration.
  • the photovoltaic module includes a working electrode substrate, a counter electrode substrate, a sealing material, an electrolyte layer, and an internal wiring conductor.
  • the working electrode substrate includes a first conductive film formed on at least a part of the surface of the first insulating substrate, and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film.
  • the counter electrode substrate includes a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film.
  • the sealing material bonds the working electrode substrate and the counter electrode substrate in a state where the photoelectric conversion layer and the catalyst layer face each other with a space therebetween.
  • the sealing material is disposed so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view.
  • the electrolyte layer is sealed with a working electrode substrate, a counter electrode substrate, and a sealing material.
  • the internal wiring conductor conducts a conductive film different from the second conductive film formed on the surface of the second insulating substrate and the first conductive film. Alternatively, the internal wiring conductor conducts a conductive film different from the first conductive film formed on the surface of the first insulating substrate and the second conductive film.
  • the internal wiring conductor has at least two layers of a thermosetting conductive material and an ultraviolet curable conductive material in a height direction orthogonal to the flat plate surfaces of the working electrode substrate and the counter electrode substrate.
  • thermosetting conductive material an effect of suppressing deterioration in characteristics of the electrolyte layer and the photoelectric conversion layer by using an ultraviolet curable conductive material.
  • an ultraviolet curable conductive material an ultraviolet curable conductive material
  • the internal wiring conductor preferably has the following configuration.
  • the internal wiring conductor includes a first thermosetting conductive material that adheres to the working electrode substrate, a second thermosetting conductive material that adheres to the counter electrode substrate, a first thermosetting conductive material, and a second thermosetting conductive material. And an ultraviolet curable conductive material provided between the two.
  • thermosetting conductive material and the second thermosetting conductive material is narrower than the ultraviolet curable conductive material.
  • the manufacturing method of the photovoltaic module of this invention has the following processes.
  • This method of manufacturing a photovoltaic module has a step of forming and curing a thermosetting conductive material on at least one of the surface of the working electrode substrate and the surface of the counter electrode substrate.
  • This method for manufacturing a photovoltaic module includes a step of forming an ultraviolet curable conductive material at a position where the working electrode substrate and the counter electrode substrate are bonded to the thermosetting conductive material.
  • This method of manufacturing a photovoltaic module has a step of forming an ultraviolet curable insulating material in conformity with the shape of the sealing material on at least one of the working electrode substrate and the counter electrode substrate.
  • This method of manufacturing a photovoltaic module includes a step of bonding a working electrode substrate and a counter electrode substrate together with a thermosetting conductive material, an ultraviolet curable conductive material, and an ultraviolet curable insulating material.
  • This method for manufacturing a photovoltaic module includes a step of irradiating ultraviolet rays to an ultraviolet curable insulating material and an ultraviolet curable conductive material.
  • thermosetting conductive material in this manufacturing method, it is possible to achieve both the improvement in adhesion by using a thermosetting conductive material and the effect of suppressing deterioration of characteristics of the electrolyte layer and the photoelectric conversion layer by using an ultraviolet curable conductive material. Thereby, a photovoltaic module with high reliability can be manufactured.
  • the manufacturing method of the photovoltaic module of this invention has the following processes.
  • the step of forming and curing the thermosetting conductive material includes the step of forming and curing the first thermosetting conductive material on the surface of the working electrode substrate, and the formation of the second thermosetting conductive material on the surface of the counter electrode substrate. And curing.
  • the ultraviolet curable conductive material is formed at the tip of the cured first thermosetting conductive material or the second thermosetting conductive material.
  • thermosetting conductive material is bonded to both surfaces of the working electrode substrate and the counter electrode substrate, the reliability of bonding between the substrate and the conductive material can be improved.
  • the photovoltaic module manufacturing method of the present invention may include the following steps.
  • the step of forming and curing the thermosetting conductive material includes the step of forming and curing the first thermosetting conductive material on the surface of the working electrode substrate, and the step of forming the ultraviolet curable conductive material on the surface of the counter electrode substrate. And having.
  • the photovoltaic module manufacturing method of the present invention may include the following steps.
  • the step of forming and curing the thermosetting conductive material includes the step of forming and curing the second thermosetting conductive material on the surface of the counter electrode substrate, and the step of forming the ultraviolet curable conductive material on the surface of the working electrode substrate. And having.
  • the manufacturing method of the photovoltaic module of this invention has the following processes.
  • the thermosetting conductive material and the ultraviolet curable conductive material are layered between the working electrode substrate and the counter electrode substrate.
  • a step of forming a thermosetting conductive material and an ultraviolet curable conductive material when the working electrode substrate and the counter electrode substrate are bonded together, the thermosetting insulating material and the ultraviolet curable insulating material are layered between the working electrode substrate and the counter electrode substrate.
  • a step of forming a thermosetting insulating material and an ultraviolet curable insulating material when the working electrode substrate and the counter electrode substrate are bonded together.
  • This method for manufacturing a photovoltaic module includes a step of bonding a working electrode substrate and a counter electrode substrate together with a thermosetting conductive material and an ultraviolet curable conductive material, and a thermosetting insulating material and an ultraviolet curable insulating material.
  • This method for manufacturing a photovoltaic module includes a step of irradiating ultraviolet rays to an ultraviolet curable insulating material and an ultraviolet curable conductive material.
  • thermosetting insulating material an effect of suppressing deterioration of characteristics of an electrolyte layer and a photoelectric conversion layer by using an ultraviolet curable insulating material.
  • an ultraviolet curable insulating material an ultraviolet curable insulating material
  • the manufacturing method of the photovoltaic module of this invention has the following processes.
  • the step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes the step of forming and curing the first thermosetting insulating material on the surface of the working electrode substrate, and the counter electrode substrate. Forming a second thermosetting insulating material on the surface of the substrate and curing it.
  • the step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes a step of forming the ultraviolet curable conductive material at the tip of the cured first thermosetting conductive material or second thermosetting conductive material.
  • thermosetting insulating material is bonded to both surfaces of the working electrode substrate and the counter electrode substrate, the reliability of bonding between the substrate and the conductive material can be improved.
  • the photovoltaic module manufacturing method of the present invention may include the following steps.
  • the step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes a step of forming and curing a first thermosetting insulating material on the surface of the working electrode substrate, and an ultraviolet curable insulating material on the surface of the counter electrode substrate. Forming.
  • the photovoltaic module manufacturing method of the present invention may include the following steps.
  • the step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes a step of forming and curing a second thermosetting insulating material on the surface of the counter electrode substrate, and an ultraviolet curable insulating material on the surface of the working electrode substrate. Forming.
  • the width of at least one of the first thermosetting conductive material and the second thermosetting conductive material is narrower than the ultraviolet curable conductive material. It is preferable.
  • the irradiation efficiency of ultraviolet rays with respect to the ultraviolet curable conductive material can be improved.
  • a photovoltaic module with higher reliability than the conventional configuration can be realized.
  • the photovoltaic module concerning the 4th Embodiment of this invention it is side sectional drawing which shows the state before affixing the working electrode board
  • the photovoltaic module which concerns on the 5th Embodiment of this invention it is side sectional drawing which shows the state before affixing the working electrode board
  • FIG. 1A is a side sectional view showing the configuration of the photovoltaic module according to the first embodiment of the present invention.
  • FIG. 1B is a side sectional view showing a state before the conductive material and the insulating material of the photovoltaic module according to the first embodiment of the present invention are cured.
  • the photovoltaic module 10 includes a substantially flat working electrode substrate 21 and a counter electrode substrate 22 having a pair of main surfaces facing each other.
  • the working electrode substrate 21 and the counter electrode substrate 22 have the same outer shape (the outer peripheral shape of a flat plate in plan view in the direction orthogonal to the main surface).
  • the working electrode substrate 21 and the counter electrode substrate 22 are disposed so as to face each other so that the flat plate surfaces thereof are parallel to each other and the end sides thereof coincide with each other in plan view.
  • the working electrode substrate 21 and the counter electrode substrate 22 are bonded together by a sealing material 60.
  • the sealing material 60 is formed in an annular shape having a predetermined width along the end sides of the working electrode substrate 21 and the counter electrode substrate 22.
  • the sealing material 60 is made of an insulating material.
  • the sealing material 60 is made of UV curable resin (corresponding to “ultraviolet curable insulating material” of the present invention).
  • the working electrode substrate 21 includes a first insulating substrate 211, a first conductive film 212, and a photoelectric conversion layer 213.
  • the first insulating substrate 211 is made of a material having insulating properties and translucency.
  • the first insulating substrate 211 is made of, for example, glass, PET, or PEN.
  • the first conductive film 212 is formed on the surface of the first insulating substrate 211.
  • the first conductive film 212 is made of a material having conductivity and translucency.
  • the first conductive film 212 is made of FTO, ITO, metal mesh, or the like.
  • the first conductive film 212 is formed on substantially the entire surface of the first insulating base material 211, but is not formed in a region in contact with the first sealing wall 61 on one side of the sealing material 60. In other words, the first sealing wall 61 is in contact with a region where the first conductive film 212 is not formed in the working electrode substrate 21. Note that the first conductive film 212 has a shape that abuts against the first sealing wall 61 (a shape that overlaps in the height direction of the photovoltaic module 10) as long as the first conductive film 212 has a shape excluding at least a region where an opening 901 described later is formed. ). In this case, the bonding strength between the first sealing wall 61 and the working electrode substrate 21 can be improved.
  • the photoelectric conversion layer 213 is formed on the surface of the first conductive film 212.
  • the photoelectric conversion layer 213 is formed in a region between a region where the first sealing wall 61 is in contact with the working electrode substrate 21 and a region where the second sealing wall 62 is in contact with the first conductive film 212.
  • the photoelectric conversion layer 213 is made of a porous oxide semiconductor that has adsorbed a sensitizing dye.
  • the porous oxide semiconductor is made of, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO), or the like.
  • the sensitizing dye includes a Ru complex dye, an indoline dye, a coumarin dye, and the like.
  • the counter electrode substrate 22 includes a second insulating substrate 221, a second conductive film 222, a conductive film 232 for wiring, and a catalyst layer 223.
  • the second insulating substrate 221 is made of a material having insulating properties and translucency.
  • the second insulating substrate 221 is made of, for example, glass, PET, or PEN. Note that at least one of the counter electrode substrate 22 and the working electrode substrate 21 may be made of a light-transmitting material.
  • the second conductive film 222 is formed on the surface of the second insulating substrate 221.
  • the second conductive film 222 and the conductive film 232 for wiring are made of a material having conductivity and translucency.
  • the second conductive film 222 and the conductive film 232 for wiring are made of FTO, ITO, metal mesh, or the like.
  • the second conductive film 222 is formed on substantially the entire surface of the second insulating substrate 221 except for a partial region including a region in contact with the second sealing wall 62.
  • the wiring conductive film 232 is formed in a partial region of the second insulating substrate 221 excluding the formation region of the second conductive film 222.
  • the conductive film 232 for wiring is separated from the second conductive film 222.
  • the catalyst layer 223 is formed on the surface of the second conductive film 222.
  • the catalyst layer 223 is formed in a region between a region where the first sealing wall 61 is in contact with the second conductive film 222 and a region where the second sealing wall 62 is in contact with the counter electrode substrate 22.
  • the catalyst layer 223 is made of a material that promotes the reduction reaction of elements of the electrolyte layer 51 (described later). For example, it is made of platinum (Pt), carbon, PEDOT or the like.
  • the electrolyte layer 51 is disposed so as to fill a hollow surrounded by the sealing material 60, the photoelectric conversion layer 213, and the catalyst layer 223. In other words, the electrolyte layer 51 is enclosed by the working electrode substrate 21, the counter electrode substrate 22, and the sealing material 60.
  • the electrolyte layer 51 is made of a solvent containing redox for reducing the dye that has been oxidized by the photoelectric effect of the photoelectric conversion layer 213.
  • redox used here is iodine redox (I ⁇ / I 3 ⁇ ), and examples of the solvent include organic solvents such as acetonitrile and propylene carbonate, and ionic liquids.
  • An opening 901 (corresponding to the “first opening” of the present invention) is formed in a region where the working electrode substrate 21 and the counter electrode substrate 22 are bonded by the first sealing wall 61 (overlapping region). Has been.
  • the opening 901 has a shape that penetrates the working electrode substrate 21 and the first sealing wall 61.
  • the second conductive film 222 is exposed on the bottom surface of the opening 901.
  • An external connection conductor 91 is formed on the surface of the second conductive film 222 constituting the bottom surface of the opening 901.
  • An opening 902 (corresponding to the “second opening” in the present invention) is formed in a region where the working electrode substrate 21 and the counter electrode substrate 22 are bonded by the second sealing wall 62 (overlapping region). Has been.
  • the opening 902 has a shape that penetrates the working electrode substrate 21 and the second sealing wall 62.
  • a conductive film 232 for wiring is exposed on the bottom surface of the opening 902.
  • An external connection conductor 92 is formed on the surface of the conductive film 232 for wiring that constitutes the bottom surface of the opening 902.
  • An internal wiring conductor 922 is formed on the photoelectric conversion layer 213, the catalyst layer 223, and the electrolyte layer 51 side of the second sealing wall 62.
  • the internal wiring conductor 922 has a shape extending in the height direction of the photovoltaic module 10 (a direction perpendicular to the flat surfaces of the working electrode substrate 21 and the counter electrode substrate 22), and the first conductive film 212, the conductive film 232 for wiring, Is connected.
  • the internal wiring conductor 922 includes thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223.
  • One end of the thermosetting conductive material 9221 in the height direction is in contact with the working electrode substrate 21.
  • One end of the thermosetting conductive material 9222 in the height direction is in contact with the counter electrode substrate 22.
  • the ultraviolet curable conductive material 9223 is disposed between the thermosetting conductive material 9221 and the thermosetting conductive material 9222 along the height direction.
  • the ultraviolet curable conductive material 9223 is connected to the other end of the thermosetting conductive material 9221 and the other end of the thermosetting conductive material 9222.
  • thermosetting conductive materials 9221 and 9222 and the ultraviolet curable conductive material 9223 are integrated through an after-mentioned bonding process and ultraviolet irradiation process to be an internal wiring conductor 922.
  • the internal sealing wall 63 is formed on the photoelectric conversion layer 213, the catalyst layer 223, and the electrolyte layer 51 side of the internal wiring conductor 922.
  • One end in the height direction of the internal sealing wall 63 is in contact with the surface of the first conductive film 212.
  • the other end in the height direction of the inner sealing wall 63 is in contact with the surface of the second insulating substrate 221 where the second conductive film 222 and the conductive film 232 for wiring are separated.
  • the internal sealing wall 63 physically separates the wiring conductive film 232 and the internal wiring conductor 922 from the photoelectric conversion layer 213, the catalyst layer 223, and the electrolyte layer 51.
  • the second conductive film 222 may be formed so that at least a part thereof overlaps with the inner sealing wall 63 and the photovoltaic module 10 in the height direction as long as the second conductive film 222 does not contact the conductive film 232 for wiring. In this case, the bonding strength between the internal sealing wall 63 and the counter electrode substrate 22 can be improved.
  • the bonding strength of the internal wiring conductor 922 to the working electrode substrate 21 and the counter electrode substrate 22 can be kept high. Further, the connection reliability of the internal wiring conductor 922 can be kept high. Thereby, the photovoltaic module 10 with high reliability is realizable.
  • FIG. 2 is a flowchart showing a method for manufacturing a photovoltaic module according to the first embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view showing a state in each manufacturing process of the working electrode substrate of the photovoltaic module according to the first embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view showing a state in each manufacturing process of the counter electrode substrate of the photovoltaic module according to the first embodiment of the present invention.
  • FIG. 5 is a side cross-sectional view showing a state in each manufacturing process of making the photovoltaic module according to the first embodiment of the present invention into a cell.
  • a first insulating substrate 211 is prepared, and a transparent conductive film 212 ⁇ / b> P that becomes the first conductive film 212 is formed on the surface of the first insulating substrate 211.
  • the transparent conductive film 212P is made of, for example, ITO.
  • thermosetting conductive material 9221 is formed on the surface of the transparent conductive film 212P.
  • the thermosetting conductive material 9221 is made of, for example, a silver paste (Ag paste).
  • the thermosetting conductive material 9221 is heat-treated under a desired heating condition and cured from a paste.
  • the heating condition is, for example, 130 ° C. ⁇ 30 minutes.
  • the transparent conductive film 212P is patterned by a known method to form the first conductive film 212.
  • the conductive film non-forming portion 610 is provided in a region where the conductive film is not formed in the region where the first sealing wall 61 is disposed on the surface of the first insulating base material 211.
  • a photoelectric conversion layer 213 is formed on the surface of the first conductive film 212.
  • the photoelectric conversion layer 213 is formed by the following method, for example.
  • a zinc oxide (ZnO) paste containing ethanol as a main solvent is applied to the surface of the first conductive film 212 to form a ZnO porous layer.
  • the ZnO porous layer is immersed in a staining solution obtained by dissolving the dye D149 in ethanol for 2 hours in a room temperature atmosphere. Thereafter, excess pigment and staining solution are washed with ethanol and dried.
  • thermosetting conductive material 9221 is cured and formed is formed.
  • step S103 as shown in FIG. 4A, a second insulating substrate 221 is prepared, and a transparent conductive film 222P to be the second conductive film 222 is formed on the surface of the second insulating substrate 221. .
  • thermosetting conductive material 9222 is formed on the surface of the transparent conductive film 222P.
  • the thermosetting conductive material 9222 is also made of, for example, a silver paste (Ag paste).
  • the transparent conductive film 222P is patterned by a known method to form the second conductive film 222 and the conductive film 232 for wiring.
  • the conductive film non-formation part 630 is provided in a region where the conductive film is not formed in a region where the internal sealing wall 63 is disposed on the surface of the second insulating substrate 221.
  • a catalyst layer 223 is formed on the surface of the second conductive film 222 as shown in FIG.
  • the catalyst layer 223 is formed, for example, by sputtering platinum Pt on the surface of the second conductive film 222.
  • thermosetting conductive material 9222 is cured
  • step S105 as shown in FIG. 5A, the ultraviolet curable insulating materials 61P and 62P that become the sealing material 60 (the first sealing wall 61 and the second sealing wall 62), and the internal sealing are performed.
  • An ultraviolet curable insulating material 63 ⁇ / b> P that forms the stop wall 63 is formed on the surface of the working electrode substrate 21.
  • a material that is cured by ultraviolet irradiation and has an insulating property may be used.
  • “Toyo Ink trade name: REXWIN UA-A1” is used.
  • an ultraviolet curable conductive material is attached to the tip in the height direction (the other end in the extending direction) of the thermosetting conductive material 9222 formed on the counter electrode substrate 22.
  • 9223 is formed.
  • the ultraviolet curable conductive material 9223 a material that is cured by ultraviolet irradiation and has conductivity may be used.
  • “Hisol trade name: Elecolit 3063” is used.
  • step S107 as shown in FIG. 5C, the electrolytic layer 51 is electrolyzed in a space surrounded by a frame-shaped wall including the ultraviolet curable insulating materials 61P and 63P on the surface of the working electrode substrate 21.
  • the liquid is dropped (injected).
  • step S108 as shown in FIG. 5D, the working electrode substrate 21 and the counter electrode substrate 22 are bonded together using ultraviolet curable insulating materials 61P, 62P, and 63P.
  • the thermosetting conductive materials 9221 and 9222 are connected using the ultraviolet curable conductive material 9223.
  • step S109 ultraviolet rays are irradiated to cure the ultraviolet curable insulating materials 61P, 62P, 63P and the ultraviolet curable conductive material 9223.
  • step S110 openings 901 and 902 and external connection conductors 91 and 92 are formed.
  • the photovoltaic module 10 is formed by the manufacturing process as described above.
  • thermosetting conductive materials 9221 and 9222 are hardened at the joining positions of the working electrode substrate 21 and the counter electrode substrate 22 and the internal wiring conductor 922. Therefore, the bonding strength between the working electrode substrate 21 and the counter electrode substrate 22 and the internal wiring conductor 922 can be kept high.
  • thermosetting conductive materials 9221 and 9222 are connected by an ultraviolet curable conductive material 9223. Therefore, the connection reliability of the internal wiring conductor 922 itself can be kept high.
  • the photovoltaic module 10 having excellent power generation efficiency and high reliability can be realized.
  • FIG. 6 is a side cross-sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the second embodiment of the present invention.
  • the photovoltaic module 10 according to the first embodiment described above is an aspect in which one photovoltaic cell including a working electrode substrate, an electrolyte layer, and a counter electrode substrate is arranged.
  • the module 10A has a mode in which a plurality of photovoltaic cells (four in FIG. 6) are arranged. Further, the photovoltaic module according to the present embodiment has a mode in which a plurality of photovoltaic cells are connected in series.
  • the basic configuration of each photovoltaic cell is substantially the same as the configuration of the photovoltaic module 10 of the first embodiment described above.
  • the photovoltaic module 10A includes photovoltaic cells 11A, 12A, 13A, and 14A in one casing.
  • Each photovoltaic cell 11A, 12A, 13A, 14A has a configuration sandwiched between the working electrode substrate 21A and the counter electrode substrate 22A, and has a configuration in which the first sealing wall 61 and the second sealing wall 62 are sequentially arranged. Become.
  • the first photovoltaic cell 11A is partitioned by internal sealing walls 631 and 632, and has a laminated structure of a first conductive film 2121, a photoelectric conversion layer 2131, an electrolyte layer 511, a catalyst layer 2231, and a second conductive film 2221. Become.
  • the second photovoltaic cell 12A is partitioned by internal sealing walls 633 and 634, and has a laminated structure of a first conductive film 2122, a photoelectric conversion layer 2132, an electrolyte layer 512, a catalyst layer 2232, and a second conductive film 2222. Become.
  • the third photovoltaic cell 13A is delimited by internal sealing walls 635 and 636, and has a laminated structure of a first conductive film 2123, a photoelectric conversion layer 2133, an electrolyte layer 513, a catalyst layer 2233, and a second conductive film 2223. Become.
  • the fourth photovoltaic cell 14A is partitioned by the inner sealing wall 637 and the second sealing wall 62, and the first conductive film 2124, the photoelectric conversion layer 2134, the electrolyte layer 514, the catalyst layer 2234, and the second conductive film. It consists of 2224 laminated structures.
  • the first conductive film 2121 of the first photovoltaic cell 11A is connected to the conductive film 2220 for wiring by the internal wiring conductor 922A surrounded by the first sealing wall 61 and the internal sealing wall 631.
  • the external connection conductor 91 is exposed to the outside through an opening 901 provided in the first sealing wall 61 and the working electrode substrate 21A.
  • the internal wiring conductor 922A includes thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223.
  • the thermosetting conductive material 9221 is connected to the first conductive film 2121, and the thermosetting conductive material 9222 is connected to the conductive film 2220 for wiring.
  • the ultraviolet curable conductive material 9223 connects the thermosetting conductive material 9221 and the thermosetting conductive material 9222.
  • the second conductive film 2221 of the first photovoltaic cell 11A and the first conductive film 2122 of the second photovoltaic cell 12A are connected by the internal wiring conductor 922B surrounded by the internal sealing walls 632 and 633. Yes.
  • the internal wiring conductor 922B is also composed of thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223.
  • the first conductive film 2122 corresponds to the “first wiring conductive film” of the present invention
  • the second conductive film 2221 corresponds to the “second wiring conductive film” of the present invention. .
  • the second conductive film 2222 of the second photovoltaic cell 12A and the first conductive film 2123 of the third photovoltaic cell 13A are connected by an internal wiring conductor 922C surrounded by the internal sealing walls 634 and 635. Yes.
  • the internal wiring conductor 922C is also composed of thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223.
  • the first conductive film 2123 corresponds to the “first wiring conductive film” of the present invention
  • the second conductive film 2222 corresponds to the “second wiring conductive film” of the present invention. .
  • the second conductive film 2223 of the third photovoltaic cell 13A and the first conductive film 2124 of the fourth photovoltaic cell 14A are connected by an internal wiring conductor 922D surrounded by internal sealing walls 636 and 637. Yes.
  • the internal wiring conductor 922D is also composed of thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223.
  • the first conductive film 2124 corresponds to the “first wiring conductive film” of the present invention
  • the second conductive film 2223 corresponds to the “second wiring conductive film” of the present invention. .
  • Part of the second conductive film 2224 of the fourth photovoltaic cell 14A is the bottom surface of the opening 902, and the external connection conductor 92 is formed on the surface.
  • the external connection conductor 92 is exposed to the outside through the opening 902 provided in the second sealing wall 62 and the working electrode substrate 21A.
  • FIG. 7A is a side sectional view showing a state before the working electrode substrate and the counter electrode substrate are attached to each other in the photovoltaic module according to the third embodiment of the present invention.
  • FIG. 7B is a side cross-sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the third embodiment of the present invention.
  • the photovoltaic module 10B according to the present embodiment is different from the photovoltaic module 10 according to the first embodiment in the shape of the thermosetting conductive material 9221B constituting the internal wiring conductor. Other configurations are the same as those of the photovoltaic module 10 according to the first embodiment.
  • the internal wiring conductor of the photovoltaic module 10B includes thermosetting conductive materials 9221 and 9222B and an ultraviolet curable conductive material 9223.
  • the width of the thermosetting conductive material 9222B is narrower than the width of the thermosetting conductive material 9221.
  • the ultraviolet curable conductive material 9223 can be effectively irradiated with ultraviolet rays even after the working electrode substrate 21 and the counter electrode substrate 22 are bonded together.
  • substrate 22 narrower than the width
  • thermosetting conductive material of the both sides may be made the thermosetting conductive material of the both sides of an ultraviolet curable conductive material thin.
  • the width of the thermosetting conductive material on both sides may be the same or different.
  • FIG. 8A is a side sectional view showing a state before the working electrode substrate and the counter electrode substrate are attached to each other in the photovoltaic module according to the fourth embodiment of the present invention.
  • FIG. 8B is a side cross-sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the fourth embodiment of the present invention.
  • the photovoltaic module 10C according to the present embodiment is different from the photovoltaic module 10 according to the first embodiment in the combination of the thermosetting conductive material and the ultraviolet curable conductive material constituting the internal wiring conductor. Other configurations are the same as those of the photovoltaic module 10 according to the first embodiment.
  • the internal wiring conductor has a two-layer structure of a thermosetting conductive material 9222 and an ultraviolet curable conductive material 9223. That is, the thermosetting conductive material 9221 is omitted.
  • the ultraviolet curable conductive material 9223 is formed on the surface of the working electrode substrate 21.
  • the bonding strength of the internal wiring conductor to one working electrode substrate 21 can be increased, and the reliability can be improved as compared with the case where all of the internal wiring conductor is formed of an ultraviolet curable conductive material.
  • the ultraviolet curable conductive material 9223 may be formed on the counter electrode substrate.
  • An ultraviolet curable conductive material 9223 may be formed on the light-transmitting substrate side.
  • FIG. 9A is a side sectional view showing a state before the working electrode substrate and the counter electrode substrate are attached to each other in the photovoltaic module according to the fifth embodiment of the present invention.
  • FIG. 9B is a side sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the fifth embodiment of the present invention.
  • the photovoltaic module 10D of this embodiment is a photovoltaic module 10 according to the first embodiment in that the sealing material and the internal sealing wall have a three-layer structure of a thermosetting insulating material and an ultraviolet curable insulating material. And different. Other configurations are the same as those of the photovoltaic module 10 according to the first embodiment.
  • the first sealing wall 61 of the photovoltaic module 10D is composed of thermosetting insulating materials 611P and 612P and an ultraviolet curable insulating material 613P.
  • the second sealing wall 62 is composed of thermosetting insulating materials 621P and 622P and an ultraviolet curable insulating material 623P.
  • the inner sealing wall 63 is composed of thermosetting insulating materials 631P and 632P and an ultraviolet curable insulating material 633P.
  • thermosetting insulating materials 611P, 621P, 631P are formed on the surface of the working electrode substrate 21.
  • the thermosetting insulating materials 612P, 622P, and 632P are formed on the surface of the counter electrode substrate 22.
  • the ultraviolet curable insulating materials 613P, 623P, and 633P are interposed between the thermosetting insulating materials 611P and 612P, between the thermosetting insulating materials 621P and 622P, and between the thermosetting insulating materials 631P and 632P, respectively. Yes.
  • the bonding strength of the sealing material to the working electrode substrate 21 and the counter electrode substrate 22 can be increased. Thereby, reliability can be improved rather than forming a sealing material only with an ultraviolet curable insulating material.
  • FIG. 10 is a flowchart showing a method for manufacturing a photovoltaic module according to the fifth embodiment of the present invention.
  • steps S101 to S104 are the same as those in the first embodiment, description thereof will be omitted.
  • thermosetting insulating materials 611P and 621P that become part of the sealing material and thermosetting insulating material 631P that becomes the internal sealing material are formed on the surface of the working electrode substrate 21.
  • thermosetting insulating materials 612P and 622P that are part of the sealing material and thermosetting insulating material 632P that is the internal sealing material are formed on the surface of the counter electrode substrate 22.
  • step S105 ultraviolet curable insulating materials 613P, 623P, and 633P, which become a part of the sealing material, are formed at the tips in the height direction of the cured thermosetting resins 612P, 622P, and 632P, respectively.
  • step S106 an ultraviolet curable conductive material 9223 is formed at the tip in the height direction of the thermosetting conductive material 9222 formed on the counter electrode substrate 22.
  • step S107 includes a wall made of thermosetting insulating material 612P and ultraviolet curable insulating material 613P on the surface of counter electrode substrate 22, and a wall made of thermosetting insulating material 632P and ultraviolet curable insulating material 633P.
  • An electrolytic solution to be the electrolyte layer 51 is dropped (injected) into a space surrounded by the frame shape.
  • step S108 the working electrode substrate 21 and the counter electrode substrate 22 are bonded together using ultraviolet curable insulating materials 613P, 623P, and 633P.
  • the thermosetting conductive materials 9221 and 9222 are connected using the ultraviolet curable conductive material 9223.
  • step S109 ultraviolet rays are irradiated to cure the ultraviolet curable insulating materials 613P, 623P, 633P and the ultraviolet curable conductive material 9223.
  • the photovoltaic module 10D is formed by the manufacturing process as described above.
  • the sealing material may be formed by a two-layer structure of a thermosetting insulating material and an ultraviolet curable insulating material.
  • the thermosetting insulating material may be in contact with either the working electrode substrate 21 or the counter electrode substrate 22.

Abstract

A solar power generation module (10) provided with: a working electrode substrate (21), a counter electrode substrate (22), an electrolyte layer (51), and a sealing member (60). The working electrode substrate (21) and the counter electrode substrate (22) are adhered by the sealing member (60). The electrolyte layer (51) is enclosed by the working electrode substrate (21), the counter electrode substrate (22), and the sealing member (60). The working electrode substrate (21) includes a first conductive film (212), and the counter electrode substrate (22) includes a second conductive film (222) and a wiring conductive film (232). The first conductive film (212) and the wiring conductive film (232) are connected by an internal wiring conductor (922). The internal wiring conductor (922) comprises a heat-curable conductive material (9221) connecting to the first conductive film (212), a heat-curable conductive material (9222) connecting to the second conductive film (222), and a UV-curable conductive material (9223) connecting the heat-curable conductive materials (9221, 9222).

Description

光発電モジュールおよび光発電モジュールの製造方法Photovoltaic module and photovoltaic module manufacturing method
 本発明は、照射された光によって発電する光発電モジュールおよび光発電モジュールの製造方法に関する。 The present invention relates to a photovoltaic module that generates power by irradiated light and a method for manufacturing the photovoltaic module.
 現在、色素増感型の光発電モジュールが各種考案されている。従来の色素増感型の光発電モジュールとしては、例えば、特許文献1に示すような構造からなる。 Currently, various dye-sensitized photovoltaic modules have been devised. A conventional dye-sensitized photovoltaic module has a structure as shown in Patent Document 1, for example.
 従来の色素増感型の光発電モジュールは、色素を担持させた多孔質半導体膜を形成した第1基板と、触媒層を形成した第2基板とを用いる。これらの第1基板および第2基板は、多孔質半導体膜側と触媒層側が対向するように、且つ、多孔質半導体膜と触媒層とが離間するように、封止材を用いて貼り合わせられる。これらの第1、第2基板を貼り合わせてできる中空部には、電解液が封入されている。 A conventional dye-sensitized photovoltaic module uses a first substrate on which a porous semiconductor film carrying a dye is formed and a second substrate on which a catalyst layer is formed. The first substrate and the second substrate are bonded using a sealing material so that the porous semiconductor film side and the catalyst layer side face each other and the porous semiconductor film and the catalyst layer are separated from each other. . An electrolytic solution is sealed in a hollow portion formed by bonding the first and second substrates.
 第1基板の多孔質半導体膜が形成される面、および、第2基板の触媒層が形成される面には、光発電モジュールが発生する電流を外部に取り出すための電極がそれぞれ形成されている。 Electrodes for taking out the current generated by the photovoltaic module are formed on the surface of the first substrate on which the porous semiconductor film is formed and on the surface of the second substrate on which the catalyst layer is formed. .
 一般的に、電解液と多孔質半導体膜が接触した状態で高温雰囲気に曝されると、多孔質半導体膜から色素が脱離すること等により、特性劣化が生じてしまう。このため、封止材には、熱硬化性材料を用いず、例えば紫外線硬化性材料を用いることが多い。 Generally, when exposed to a high-temperature atmosphere in a state where the electrolytic solution and the porous semiconductor film are in contact with each other, characteristic deterioration occurs due to the detachment of the dye from the porous semiconductor film. For this reason, for example, an ultraviolet curable material is often used as the sealing material without using a thermosetting material.
 また、このような光発電モジュールでは、必要に応じて、第1基板に形成された電極および第2基板に形成された電極から取り出された電流を外部に出力するための導体パターンを、内部に備えていることがある。 Moreover, in such a photovoltaic module, the conductor pattern for outputting the electric current taken out from the electrode formed in the 1st board | substrate and the electrode formed in the 2nd board | substrate to the exterior as needed is inside. May have.
特許第4294244号Patent No. 4294244
 しかしながら、紫外線硬化性材料は、熱硬化性材料と比較して、基板に対する封止材の接着強度が弱く、熱硬化性材料を用いた場合と比較して、接着の信頼性が低下してしまう。 However, the ultraviolet curable material has a lower adhesive strength of the sealing material to the substrate than the thermosetting material, and the adhesion reliability is reduced as compared to the case where the thermosetting material is used. .
 また、光発電モジュールの内部に形成する第1基板の電極と第2基板側に引き回す厚み方向に延びる導体パターンを紫外線硬化性材料とした場合には、封止材の場合と同様に、各電極に対する導体パターンの接着強度が低くなってしまう。 Further, when the electrode of the first substrate formed inside the photovoltaic module and the conductor pattern extending in the thickness direction drawn to the second substrate side are made of an ultraviolet curable material, each electrode is formed as in the case of the sealing material. The adhesive strength of the conductor pattern with respect to is reduced.
 一方、厚み方向に延びる導体パターンを熱硬化性材料で予め塗布、硬化して、一方の基板に形成し、当該厚み方向に延びる導体パターンを電極に当接させる構成がある。また、厚み方向に延びる導体パターンを熱硬化性材料で予め塗布、硬化して、両方の基板に形成し、導体パターンの先端同士を当接させる構成もある。これらの構成では、導体パターンを電極に当接させる態様や、導体パターン同士が当接させる態様であるので、上述の接着する態様と比較して、導体パターンと電極との間、導体パターン間での導通の信頼性が低くなってしまう。 On the other hand, there is a configuration in which a conductor pattern extending in the thickness direction is previously applied and cured with a thermosetting material, formed on one substrate, and the conductor pattern extending in the thickness direction is brought into contact with the electrode. There is also a configuration in which a conductor pattern extending in the thickness direction is previously applied and cured with a thermosetting material, formed on both substrates, and the tips of the conductor patterns are brought into contact with each other. In these configurations, the conductor pattern is in contact with the electrodes and the conductor patterns are in contact with each other. Therefore, compared to the above-described bonding mode, between the conductor pattern and the electrode, between the conductor patterns. As a result, the reliability of conduction will be lowered.
 したがって、本発明の目的は、従来構成よりも信頼性の高い光発電モジュールおよび当該光発電モジュールの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a photovoltaic module having higher reliability than the conventional configuration and a method for manufacturing the photovoltaic module.
 この発明の光発電モジュールは、作用極基板、対極基板、封止材、および電解質層を備える。作用極基板は、第1絶縁性基材の表面の少なくとも一部に形成された第1導電膜、および第1導電膜の表面の少なくとも一部に形成された光電変換層を備える。対極基板は、第2絶縁性基材の表面の少なくとも一部に形成された第2導電膜、および第2導電膜の表面の少なくとも一部に形成された触媒層を備える。封止材は、光電変換層と触媒層とが離間して対向した状態で作用極基板と対極基板を貼り合わせる。封止材は、平面視して光電変換層と前記触媒層との少なくとも一部を囲むように配置されている。電解質層は、作用極基板、対極基板、および封止材によって封入されている。さらに、封止材は、作用極基板と対極基板の平板面に直交する高さ方向に、少なくとも熱硬化性絶縁材と紫外線硬化性絶縁材の2層を有する。 The photovoltaic module of the present invention includes a working electrode substrate, a counter electrode substrate, a sealing material, and an electrolyte layer. The working electrode substrate includes a first conductive film formed on at least a part of the surface of the first insulating substrate, and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film. The counter electrode substrate includes a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film. The sealing material bonds the working electrode substrate and the counter electrode substrate in a state where the photoelectric conversion layer and the catalyst layer face each other with a space therebetween. The sealing material is disposed so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view. The electrolyte layer is sealed with a working electrode substrate, a counter electrode substrate, and a sealing material. Furthermore, the sealing material has at least two layers of a thermosetting insulating material and an ultraviolet curable insulating material in the height direction orthogonal to the flat plate surfaces of the working electrode substrate and the counter electrode substrate.
 この構成では、熱硬化性絶縁材を用いることによる接着性の向上と、紫外線硬化性絶縁材を用いることによる電解質層や光電変換層の特性劣化の抑制効果とをともに実現できる。これにより、光発電モジュールの信頼性を向上することができる。 In this configuration, it is possible to achieve both an improvement in adhesiveness by using a thermosetting insulating material and an effect of suppressing deterioration in characteristics of the electrolyte layer and the photoelectric conversion layer by using an ultraviolet curable insulating material. Thereby, the reliability of the photovoltaic module can be improved.
 また、この発明の光発電モジュールは、次の構成であることが好ましい。光発電モジュールの封止材は、作用極基板に当接する第1熱硬化性絶縁材、対極基板に当接する第2熱硬化性絶縁材、および、作用極基板と対極基板の平板面に直交する高さ方向に沿って第1熱硬化性絶縁材と第2熱硬化性絶縁材に挟まれた紫外線硬化性絶縁材を備える。 Further, the photovoltaic module of the present invention preferably has the following configuration. The photovoltaic module sealing material is orthogonal to the first thermosetting insulating material that contacts the working electrode substrate, the second thermosetting insulating material that contacts the counter electrode substrate, and the flat surfaces of the working electrode substrate and the counter electrode substrate. An ultraviolet curable insulating material sandwiched between a first thermosetting insulating material and a second thermosetting insulating material is provided along the height direction.
 この構成では、封止材と作用極基板および対極基板との接着性をさらに向上させることができる。 In this configuration, the adhesion between the sealing material, the working electrode substrate and the counter electrode substrate can be further improved.
 また、この発明の光発電モジュールは、次の構成であることが好ましい。光発電モジュールは、第2絶縁性基材の表面に形成された第2の配線用導電膜と第1導電膜とを導通する、または、第1絶縁性基材の表面に形成された第1の配線用導電膜と第2導電膜とを導通する内部配線導体を備える。内部配線導体は、高さ方向に、少なくとも熱硬化性導電材と紫外線硬化性導電材の2層を有する。 Further, the photovoltaic module of the present invention preferably has the following configuration. The photovoltaic module electrically connects the second conductive film for wiring formed on the surface of the second insulating substrate and the first conductive film, or the first formed on the surface of the first insulating substrate. An internal wiring conductor that conducts the conductive film for wiring and the second conductive film. The internal wiring conductor has at least two layers of a thermosetting conductive material and an ultraviolet curable conductive material in the height direction.
 この構成では、熱硬化性絶縁材および熱硬化性導電材を用いることによる接着性の向上と、紫外線硬化性絶縁材および紫外線硬化性導電材を用いることによる電解質層や光電変換層の特性劣化の抑制効果とをともに実現できる。これにより、光発電モジュールの信頼性を向上することができる。 In this configuration, the adhesiveness is improved by using the thermosetting insulating material and the thermosetting conductive material, and the characteristics of the electrolyte layer and the photoelectric conversion layer are deteriorated by using the ultraviolet curable insulating material and the ultraviolet curable conductive material. Together with the suppression effect. Thereby, the reliability of the photovoltaic module can be improved.
 また、この発明の光発電モジュールは、次の構成を備えていてもよい。光発電モジュールは、作用極基板、対極基板、封止材、電解質層、および、内部配線導体を備える。作用極基板は、第1絶縁性基材の表面の少なくとも一部に形成された第1導電膜、および第1導電膜の表面の少なくとも一部に形成された光電変換層を備える。対極基板は、第2絶縁性基材の表面の少なくとも一部に形成された第2導電膜、および第2導電膜の表面の少なくとも一部に形成された触媒層を備える。封止材は、光電変換層と触媒層とが離間して対向した状態で作用極基板と対極基板を貼り合わせる。封止材は、平面視して光電変換層と触媒層との少なくとも一部を囲むように配置されている。電解質層は、作用極基板、対極基板、および封止材によって封入されている。内部配線導体は、第2絶縁性基材の表面に形成された第2導電膜と異なる導電膜と第1導電膜とを導通する。または、内部配線導体は、第1絶縁性基材の表面に形成された第1導電膜と異なる導電膜と第2導電膜とを導通する。内部配線導体は、作用極基板と対極基板の平板面に直交する高さ方向に、少なくとも熱硬化性導電材と紫外線硬化性導電材の2層を有する。 Further, the photovoltaic module of the present invention may have the following configuration. The photovoltaic module includes a working electrode substrate, a counter electrode substrate, a sealing material, an electrolyte layer, and an internal wiring conductor. The working electrode substrate includes a first conductive film formed on at least a part of the surface of the first insulating substrate, and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film. The counter electrode substrate includes a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film. The sealing material bonds the working electrode substrate and the counter electrode substrate in a state where the photoelectric conversion layer and the catalyst layer face each other with a space therebetween. The sealing material is disposed so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view. The electrolyte layer is sealed with a working electrode substrate, a counter electrode substrate, and a sealing material. The internal wiring conductor conducts a conductive film different from the second conductive film formed on the surface of the second insulating substrate and the first conductive film. Alternatively, the internal wiring conductor conducts a conductive film different from the first conductive film formed on the surface of the first insulating substrate and the second conductive film. The internal wiring conductor has at least two layers of a thermosetting conductive material and an ultraviolet curable conductive material in a height direction orthogonal to the flat plate surfaces of the working electrode substrate and the counter electrode substrate.
 この構成では、熱硬化性導電材を用いることによる接着性の向上と、紫外線硬化性導電材を用いることによる電解質層や光電変換層の特性劣化の抑制効果とをともに実現できる。これにより、光発電モジュールの信頼性を向上することができる。 In this configuration, it is possible to achieve both an improvement in adhesiveness by using a thermosetting conductive material and an effect of suppressing deterioration in characteristics of the electrolyte layer and the photoelectric conversion layer by using an ultraviolet curable conductive material. Thereby, the reliability of the photovoltaic module can be improved.
 また、この発明の光発電モジュールでは、内部配線導体は、次の構成であることが好ましい。内部配線導体は、作用極基板に接着する第1熱硬化性導電材と、対極基板に接着する第2熱硬化性導電材と、第1熱硬化性導電材と第2熱硬化性導電材との間に設けられた紫外線硬化性導電材と、を備える。 In the photovoltaic module of the present invention, the internal wiring conductor preferably has the following configuration. The internal wiring conductor includes a first thermosetting conductive material that adheres to the working electrode substrate, a second thermosetting conductive material that adheres to the counter electrode substrate, a first thermosetting conductive material, and a second thermosetting conductive material. And an ultraviolet curable conductive material provided between the two.
 この構成では内部配線導体の作用極基板および対極基板への接着性を向上しながら、内部配線導体を硬化して導通するときの電解質層や光電変換層の特性劣化を抑制できる。 In this configuration, it is possible to suppress the deterioration of the characteristics of the electrolyte layer and the photoelectric conversion layer when the internal wiring conductor is cured and conducted while improving the adhesion of the internal wiring conductor to the working electrode substrate and the counter electrode substrate.
 また、この発明の光発電モジュールでは、第1熱硬化性導電材または第2熱硬化性導電材の一方は、紫外線硬化性導電材よりも幅が狭いことが好ましい。 In the photovoltaic module of the present invention, it is preferable that one of the first thermosetting conductive material and the second thermosetting conductive material is narrower than the ultraviolet curable conductive material.
 この構成では、紫外線硬化性導電材に対する紫外線の照射効率を向上することができる。 In this configuration, it is possible to improve the irradiation efficiency of ultraviolet rays to the ultraviolet curable conductive material.
 この発明の光発電モジュールの製造方法は、次の工程を有する。
 この光発電モジュールの製造方法は、作用極基板の表面および対極基板の表面の少なくとも一方に、熱硬化性導電材を形成して硬化する工程を有する。この光発電モジュールの製造方法は、作用極基板と対極基板とを貼り合わせたときに熱硬化性導電材に接合する位置に、紫外線硬化性導電材を形成する工程を有する。この光発電モジュールの製造方法は、作用極基板または対極基板の少なくとも一方に、封止材の形状に合わせた紫外線硬化性絶縁材を形成する工程を有する。この光発電モジュールの製造方法は、作用極基板と対極基板を、熱硬化性導電材および紫外線硬化性導電材と、紫外線硬化性絶縁材とによって貼り合わせる工程を有する。この光発電モジュールの製造方法は、紫外線硬化性絶縁材および紫外線硬化性導電材に紫外線を照射する工程を有する。
The manufacturing method of the photovoltaic module of this invention has the following processes.
This method of manufacturing a photovoltaic module has a step of forming and curing a thermosetting conductive material on at least one of the surface of the working electrode substrate and the surface of the counter electrode substrate. This method for manufacturing a photovoltaic module includes a step of forming an ultraviolet curable conductive material at a position where the working electrode substrate and the counter electrode substrate are bonded to the thermosetting conductive material. This method of manufacturing a photovoltaic module has a step of forming an ultraviolet curable insulating material in conformity with the shape of the sealing material on at least one of the working electrode substrate and the counter electrode substrate. This method of manufacturing a photovoltaic module includes a step of bonding a working electrode substrate and a counter electrode substrate together with a thermosetting conductive material, an ultraviolet curable conductive material, and an ultraviolet curable insulating material. This method for manufacturing a photovoltaic module includes a step of irradiating ultraviolet rays to an ultraviolet curable insulating material and an ultraviolet curable conductive material.
 この製造方法では、熱硬化性導電材を用いることによる接着性の向上と、紫外線硬化性導電材を用いることによる電解質層や光電変換層の特性劣化の抑制効果とをともに実現できる。これにより、信頼性の高い光発電モジュールを製造することができる。 In this manufacturing method, it is possible to achieve both the improvement in adhesion by using a thermosetting conductive material and the effect of suppressing deterioration of characteristics of the electrolyte layer and the photoelectric conversion layer by using an ultraviolet curable conductive material. Thereby, a photovoltaic module with high reliability can be manufactured.
 また、この発明の光発電モジュールの製造方法は、次の工程を有することが好ましい。熱硬化性導電材を形成して硬化する工程は、作用極基板の表面に第1熱硬化性導電材を形成して硬化する工程と、対極基板の表面に第2熱硬化性導電材を形成して硬化する工程と、を有する。紫外線硬化性導電材を形成する工程は、硬化した第1熱硬化性導電材または第2熱硬化性導電材の先端に紫外線硬化性導電材を形成する。 Moreover, it is preferable that the manufacturing method of the photovoltaic module of this invention has the following processes. The step of forming and curing the thermosetting conductive material includes the step of forming and curing the first thermosetting conductive material on the surface of the working electrode substrate, and the formation of the second thermosetting conductive material on the surface of the counter electrode substrate. And curing. In the step of forming the ultraviolet curable conductive material, the ultraviolet curable conductive material is formed at the tip of the cured first thermosetting conductive material or the second thermosetting conductive material.
 この製造方法では、作用極基板と対極基板の両面に熱硬化性導電材が接合するので、基板と導電材との間の接合の信頼性を向上することができる。 In this manufacturing method, since the thermosetting conductive material is bonded to both surfaces of the working electrode substrate and the counter electrode substrate, the reliability of bonding between the substrate and the conductive material can be improved.
 また、この発明の光発電モジュールの製造方法は、次の工程を有していてもよい。熱硬化性導電材を形成して硬化する工程は、作用極基板の表面に第1熱硬化性導電材を形成して硬化する工程と、対極基板の表面に紫外線硬化性導電材を形成する工程と、を有する。 Moreover, the photovoltaic module manufacturing method of the present invention may include the following steps. The step of forming and curing the thermosetting conductive material includes the step of forming and curing the first thermosetting conductive material on the surface of the working electrode substrate, and the step of forming the ultraviolet curable conductive material on the surface of the counter electrode substrate. And having.
 また、この発明の光発電モジュールの製造方法は、次の工程を有していてもよい。熱硬化性導電材を形成して硬化する工程は、対極基板の表面に第2熱硬化性導電材を形成して硬化する工程と、作用極基板の表面に紫外線硬化性導電材を形成する工程と、を有する。 Moreover, the photovoltaic module manufacturing method of the present invention may include the following steps. The step of forming and curing the thermosetting conductive material includes the step of forming and curing the second thermosetting conductive material on the surface of the counter electrode substrate, and the step of forming the ultraviolet curable conductive material on the surface of the working electrode substrate. And having.
 これらの製造方法では、導電材の形成工程を簡素化できる。 These manufacturing methods can simplify the process of forming the conductive material.
 また、この発明の光発電モジュールの製造方法は、次の工程を有する。
 この光発電モジュールの製造方法は、作用極基板と対極基板とを貼り合わせたときに作用極基板と対極基板との間に熱硬化性導電材と紫外線硬化性導電材とが層状になるように、熱硬化性導電材と紫外線硬化性導電材を形成する工程を有する。この光発電モジュールの製造方法は、作用極基板と対極基板とを貼り合わせたときに作用極基板と前記対極基板との間に熱硬化性絶縁材と紫外線硬化性絶縁材とが層状になるように、熱硬化性絶縁材と紫外線硬化性絶縁材を形成する工程を有する。この光発電モジュールの製造方法は、作用極基板と対極基板を、熱硬化性導電材および紫外線硬化性導電材と、熱硬化性絶縁材および紫外線硬化性絶縁材とによって貼り合わせる工程を有する。この光発電モジュールの製造方法は、紫外線硬化性絶縁材および紫外線硬化性導電材に紫外線を照射する工程を有する。
Moreover, the manufacturing method of the photovoltaic module of this invention has the following processes.
In this photovoltaic module manufacturing method, when the working electrode substrate and the counter electrode substrate are bonded together, the thermosetting conductive material and the ultraviolet curable conductive material are layered between the working electrode substrate and the counter electrode substrate. And a step of forming a thermosetting conductive material and an ultraviolet curable conductive material. In this photovoltaic module manufacturing method, when the working electrode substrate and the counter electrode substrate are bonded together, the thermosetting insulating material and the ultraviolet curable insulating material are layered between the working electrode substrate and the counter electrode substrate. And a step of forming a thermosetting insulating material and an ultraviolet curable insulating material. This method for manufacturing a photovoltaic module includes a step of bonding a working electrode substrate and a counter electrode substrate together with a thermosetting conductive material and an ultraviolet curable conductive material, and a thermosetting insulating material and an ultraviolet curable insulating material. This method for manufacturing a photovoltaic module includes a step of irradiating ultraviolet rays to an ultraviolet curable insulating material and an ultraviolet curable conductive material.
 この製造方法では、熱硬化性絶縁材を用いることによる接着性の向上と、紫外線硬化性絶縁材を用いることによる電解質層や光電変換層の特性劣化の抑制効果とをともに実現できる。これにより、信頼性の高い光発電モジュールを製造することができる。 In this manufacturing method, it is possible to achieve both improvement in adhesion by using a thermosetting insulating material and an effect of suppressing deterioration of characteristics of an electrolyte layer and a photoelectric conversion layer by using an ultraviolet curable insulating material. Thereby, a photovoltaic module with high reliability can be manufactured.
 また、この発明の光発電モジュールの製造方法は、次の工程を有することが好ましい。この光発電モジュールの製造方法は、熱硬化性絶縁材および紫外線硬化性絶縁材を形成する工程は、作用極基板の表面に第1熱硬化性絶縁材を形成して硬化する工程と、対極基板の表面に第2熱硬化性絶縁材を形成して硬化する工程とを有する。熱硬化性絶縁材および紫外線硬化性絶縁材を形成する工程は、硬化した第1熱硬化性導電材または第2熱硬化性導電材の先端に紫外線硬化性導電材を形成する工程を有する。 Moreover, it is preferable that the manufacturing method of the photovoltaic module of this invention has the following processes. In this photovoltaic module manufacturing method, the step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes the step of forming and curing the first thermosetting insulating material on the surface of the working electrode substrate, and the counter electrode substrate. Forming a second thermosetting insulating material on the surface of the substrate and curing it. The step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes a step of forming the ultraviolet curable conductive material at the tip of the cured first thermosetting conductive material or second thermosetting conductive material.
 この製造方法では、作用極基板と対極基板の両面に熱硬化性絶縁材が接合するので、基板と導電材との間の接合の信頼性を向上することができる。 In this manufacturing method, since the thermosetting insulating material is bonded to both surfaces of the working electrode substrate and the counter electrode substrate, the reliability of bonding between the substrate and the conductive material can be improved.
 また、この発明の光発電モジュールの製造方法は、次の工程を有していてもよい。熱硬化性絶縁材および紫外線硬化性絶縁材を形成する工程は、作用極基板の表面に第1熱硬化性絶縁材を形成して硬化する工程と、対極基板の表面に紫外線硬化性絶縁材を形成する工程と、を有する。 Moreover, the photovoltaic module manufacturing method of the present invention may include the following steps. The step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes a step of forming and curing a first thermosetting insulating material on the surface of the working electrode substrate, and an ultraviolet curable insulating material on the surface of the counter electrode substrate. Forming.
 また、この発明の光発電モジュールの製造方法は、次の工程を有していてもよい。熱硬化性絶縁材および紫外線硬化性絶縁材を形成する工程は、対極基板の表面に第2熱硬化性絶縁材を形成して硬化する工程と、作用極基板の表面に紫外線硬化性絶縁材を形成する工程と、を有する。 Moreover, the photovoltaic module manufacturing method of the present invention may include the following steps. The step of forming the thermosetting insulating material and the ultraviolet curable insulating material includes a step of forming and curing a second thermosetting insulating material on the surface of the counter electrode substrate, and an ultraviolet curable insulating material on the surface of the working electrode substrate. Forming.
 これらの製造方法では、絶縁材(封止壁)の形成工程を簡素化できる。 These manufacturing methods can simplify the process of forming the insulating material (sealing wall).
 また、この発明の光発電モジュールの製造方法では、第1熱硬化性導電材および第2熱硬化性導電材のうち少なくとも一方の熱硬化性導電材の幅は、紫外線硬化性導電材よりも狭いことが好ましい。 In the method for manufacturing a photovoltaic module according to the present invention, the width of at least one of the first thermosetting conductive material and the second thermosetting conductive material is narrower than the ultraviolet curable conductive material. It is preferable.
 この製造方法では、紫外線硬化性導電材に対する紫外線の照射効率を向上することができる。 In this manufacturing method, the irradiation efficiency of ultraviolet rays with respect to the ultraviolet curable conductive material can be improved.
 この発明によれば、従来構成よりも信頼性の高い光発電モジュールを実現することができる。 According to the present invention, a photovoltaic module with higher reliability than the conventional configuration can be realized.
本発明の第1の実施形態に係る光発電モジュールの構成を示す側面断面図、および導電材および絶縁材の硬化前の状態を示す側面断面図である。It is side surface sectional drawing which shows the structure of the photovoltaic module which concerns on the 1st Embodiment of this invention, and side surface sectional drawing which shows the state before hardening of a electrically conductive material and an insulating material. 本発明の第1の実施形態に係る光発電モジュールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the photovoltaic module which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光発電モジュールの作用極基板の各製造工程での状態を示す側面断面図である。It is side surface sectional drawing which shows the state in each manufacturing process of the working electrode board | substrate of the photovoltaic module which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光発電モジュールの対極基板の各製造工程での状態を示す側面断面図である。It is side surface sectional drawing which shows the state in each manufacturing process of the counter electrode board | substrate of the photovoltaic module which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光発電モジュールのセル化の各製造工程での状態を示す側面断面図である。It is side surface sectional drawing which shows the state in each manufacturing process of the photovoltaic module concerning the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光発電モジュールにおける導電材および絶縁材の硬化前の状態を示す側面断面図である。It is side surface sectional drawing which shows the state before hardening of the electrically conductive material and insulating material in the photovoltaic module which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光発電モジュールにおける作用極基板と対極基板を貼り付ける前の状態を示す側面断面図、および、導電材および絶縁材の硬化前の状態を示す側面断面図である。In the photovoltaic module concerning the 3rd Embodiment of this invention, it is side sectional drawing which shows the state before affixing the working electrode board | substrate and counter electrode board, and side sectional drawing which shows the state before hardening of a electrically conductive material and an insulating material. is there. 本発明の第4の実施形態に係る光発電モジュールにおける作用極基板と対極基板を貼り付ける前の状態を示す側面断面図、および、導電材および絶縁材の硬化前の状態を示す側面断面図である。In the photovoltaic module concerning the 4th Embodiment of this invention, it is side sectional drawing which shows the state before affixing the working electrode board | substrate and counter electrode board, and side sectional drawing which shows the state before hardening of a electrically conductive material and an insulating material. is there. 本発明の第5の実施形態に係る光発電モジュールにおける作用極基板と対極基板を貼り付ける前の状態を示す側面断面図、および、導電材および絶縁材の硬化前の状態を示す側面断面図である。In the photovoltaic module which concerns on the 5th Embodiment of this invention, it is side sectional drawing which shows the state before affixing the working electrode board | substrate and counter electrode board, and side sectional drawing which shows the state before hardening of a electrically conductive material and an insulating material. is there. 本発明の第5の実施形態に係る光発電モジュールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the photovoltaic module which concerns on the 5th Embodiment of this invention.
 本発明の第1の実施形態に係る光発電モジュールおよび光発電モジュールの製造方法について、図を参照して説明する。図1(A)は、本発明の第1の実施形態に係る光発電モジュールの構成を示す側面断面図である。図1(B)は、本発明の第1の実施形態に係る光発電モジュールの導電材および絶縁材の硬化前の状態を示す側面断面図である。 A photovoltaic module and a photovoltaic module manufacturing method according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a side sectional view showing the configuration of the photovoltaic module according to the first embodiment of the present invention. FIG. 1B is a side sectional view showing a state before the conductive material and the insulating material of the photovoltaic module according to the first embodiment of the present invention are cured.
 図1に示すように、光発電モジュール10は、互いに対向する一対の主面を有する略平板状の作用極基板21および対極基板22を備える。作用極基板21と対極基板22の外形(主面に直交する方向で平面視した平板の外周形状)は、同じである。作用極基板21と対極基板22は、それぞれの平板面が平行になり、且つ平面視して各端辺が一致するように、対向して配置されている。 As shown in FIG. 1, the photovoltaic module 10 includes a substantially flat working electrode substrate 21 and a counter electrode substrate 22 having a pair of main surfaces facing each other. The working electrode substrate 21 and the counter electrode substrate 22 have the same outer shape (the outer peripheral shape of a flat plate in plan view in the direction orthogonal to the main surface). The working electrode substrate 21 and the counter electrode substrate 22 are disposed so as to face each other so that the flat plate surfaces thereof are parallel to each other and the end sides thereof coincide with each other in plan view.
 作用極基板21と対極基板22は、封止材60によって貼り合わされている。封止材60は、作用極基板21および対極基板22の端辺に沿って、所定幅を有する環状に形成されている。封止材60は、絶縁性を有する材料からなる。封止材60は、UV硬化樹脂(本発明の「紫外線硬化性絶縁材」に相当する。)からなる。 The working electrode substrate 21 and the counter electrode substrate 22 are bonded together by a sealing material 60. The sealing material 60 is formed in an annular shape having a predetermined width along the end sides of the working electrode substrate 21 and the counter electrode substrate 22. The sealing material 60 is made of an insulating material. The sealing material 60 is made of UV curable resin (corresponding to “ultraviolet curable insulating material” of the present invention).
 作用極基板21は、第1絶縁性基材211、第1導電膜212、および光電変換層213を備える。第1絶縁性基材211は、絶縁性を有し、且つ透光性を有する材料からなる。第1絶縁性基材211は、例えば、ガラス、PET、PENからなる。第1導電膜212は、第1絶縁性基材211の表面に形成されている。第1導電膜212は、導電性を有し且つ透光性を有する材料からなる。例えば、第1導電膜212は、FTO、ITO、金属メッシュ等からなる。第1導電膜212は、第1絶縁性基材211の略全面に形成されているが、封止材60のある一辺となる第1封止壁61に当接する領域には形成されていない。言い換えれば、第1封止壁61は、作用極基板21における第1導電膜212の非形成領域に当接している。なお、第1導電膜212は、少なくとも後述する開口901が形成される領域を除く形状であれば、第1封止壁61に対して当接する形状(光発電モジュール10の高さ方向に重なる形状)であってもよい。この場合、第1封止壁61と作用極基板21との接合強度を向上することができる。 The working electrode substrate 21 includes a first insulating substrate 211, a first conductive film 212, and a photoelectric conversion layer 213. The first insulating substrate 211 is made of a material having insulating properties and translucency. The first insulating substrate 211 is made of, for example, glass, PET, or PEN. The first conductive film 212 is formed on the surface of the first insulating substrate 211. The first conductive film 212 is made of a material having conductivity and translucency. For example, the first conductive film 212 is made of FTO, ITO, metal mesh, or the like. The first conductive film 212 is formed on substantially the entire surface of the first insulating base material 211, but is not formed in a region in contact with the first sealing wall 61 on one side of the sealing material 60. In other words, the first sealing wall 61 is in contact with a region where the first conductive film 212 is not formed in the working electrode substrate 21. Note that the first conductive film 212 has a shape that abuts against the first sealing wall 61 (a shape that overlaps in the height direction of the photovoltaic module 10) as long as the first conductive film 212 has a shape excluding at least a region where an opening 901 described later is formed. ). In this case, the bonding strength between the first sealing wall 61 and the working electrode substrate 21 can be improved.
 光電変換層213は、第1導電膜212の表面に形成されている。光電変換層213は、第1封止壁61が作用極基板21に当接する領域と第2封止壁62が第1導電膜212に当接する領域との間の領域に形成されている。 The photoelectric conversion layer 213 is formed on the surface of the first conductive film 212. The photoelectric conversion layer 213 is formed in a region between a region where the first sealing wall 61 is in contact with the working electrode substrate 21 and a region where the second sealing wall 62 is in contact with the first conductive film 212.
 光電変換層213は、増感型色素を吸着した多孔質酸化物半導体からなる。多孔質酸化物半導体は、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等からなる。増感型色素は、Ru錯体系色素、インドリン系色素、クマリン系色素等からなる。 The photoelectric conversion layer 213 is made of a porous oxide semiconductor that has adsorbed a sensitizing dye. The porous oxide semiconductor is made of, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO), or the like. The sensitizing dye includes a Ru complex dye, an indoline dye, a coumarin dye, and the like.
 対極基板22は、第2絶縁性基材221、第2導電膜222、配線用の導電膜232および触媒層223を備える。第2絶縁性基材221は、絶縁性を有し、且つ透光性を有する材料からなる。第2絶縁性基材221は、例えば、ガラス、PET、PENからなる。なお、対極基板22と作用極基板21は、少なくともいずれか一方が透光性を有する材料からなればよい。第2導電膜222は、第2絶縁性基材221の表面に形成されている。第2導電膜222および配線用の導電膜232は、導電性を有し且つ透光性を有する材料からなる。例えば、第2導電膜222および配線用の導電膜232は、FTO、ITO、金属メッシュ等からなる。第2導電膜222は、第2封止壁62に当接する領域を含む部分的な領域を除いて、第2絶縁性基材221の略全面に形成されている。配線用の導電膜232は、第2絶縁性基材221における第2導電膜222の形成領域を除く部分的な領域に形成されている。配線用の導電膜232は、第2導電膜222と分離されている。 The counter electrode substrate 22 includes a second insulating substrate 221, a second conductive film 222, a conductive film 232 for wiring, and a catalyst layer 223. The second insulating substrate 221 is made of a material having insulating properties and translucency. The second insulating substrate 221 is made of, for example, glass, PET, or PEN. Note that at least one of the counter electrode substrate 22 and the working electrode substrate 21 may be made of a light-transmitting material. The second conductive film 222 is formed on the surface of the second insulating substrate 221. The second conductive film 222 and the conductive film 232 for wiring are made of a material having conductivity and translucency. For example, the second conductive film 222 and the conductive film 232 for wiring are made of FTO, ITO, metal mesh, or the like. The second conductive film 222 is formed on substantially the entire surface of the second insulating substrate 221 except for a partial region including a region in contact with the second sealing wall 62. The wiring conductive film 232 is formed in a partial region of the second insulating substrate 221 excluding the formation region of the second conductive film 222. The conductive film 232 for wiring is separated from the second conductive film 222.
 触媒層223は、第2導電膜222の表面に形成されている。触媒層223は、第1封止壁61が第2導電膜222に当接する領域と第2封止壁62が対極基板22に当接する領域との間の領域に形成されている。触媒層223は、電解質層51(後述)の元素の還元反応を促進する材料からなる。例えば、白金(Pt)、カーボン、PEDOT等からなる。 The catalyst layer 223 is formed on the surface of the second conductive film 222. The catalyst layer 223 is formed in a region between a region where the first sealing wall 61 is in contact with the second conductive film 222 and a region where the second sealing wall 62 is in contact with the counter electrode substrate 22. The catalyst layer 223 is made of a material that promotes the reduction reaction of elements of the electrolyte layer 51 (described later). For example, it is made of platinum (Pt), carbon, PEDOT or the like.
 電解質層51は、封止材60、光電変換層213、および触媒層223に囲まれる中空を充填するように配置されている。言い換えれば、電解質層51は、作用極基板21、対極基板22、および封止材60によって、封入されている。電解質層51は、光電変換層213の光電効果により酸化状態になった色素を還元するためのレドックスを含む溶剤からなる。ここで使用されるレドックスの一例としては、ヨウ素レドックス(I/I )など、溶媒としてはアセトニトリルや炭酸プロピレンなどの有機溶媒、イオン性液体などがある。 The electrolyte layer 51 is disposed so as to fill a hollow surrounded by the sealing material 60, the photoelectric conversion layer 213, and the catalyst layer 223. In other words, the electrolyte layer 51 is enclosed by the working electrode substrate 21, the counter electrode substrate 22, and the sealing material 60. The electrolyte layer 51 is made of a solvent containing redox for reducing the dye that has been oxidized by the photoelectric effect of the photoelectric conversion layer 213. An example of redox used here is iodine redox (I / I 3 ), and examples of the solvent include organic solvents such as acetonitrile and propylene carbonate, and ionic liquids.
 作用極基板21と対極基板22とが第1封止壁61によって貼り付けられている領域(重なっている領域)には、開口901(本発明の「第1開口」に相当する。)が形成されている。開口901は、作用極基板21および第1封止壁61を貫通する形状である。開口901の底面には、第2導電膜222が露出している。開口901の底面を構成する第2導電膜222の表面には、外部接続導体91が形成されている。 An opening 901 (corresponding to the “first opening” of the present invention) is formed in a region where the working electrode substrate 21 and the counter electrode substrate 22 are bonded by the first sealing wall 61 (overlapping region). Has been. The opening 901 has a shape that penetrates the working electrode substrate 21 and the first sealing wall 61. The second conductive film 222 is exposed on the bottom surface of the opening 901. An external connection conductor 91 is formed on the surface of the second conductive film 222 constituting the bottom surface of the opening 901.
 作用極基板21と対極基板22とが第2封止壁62によって貼り付けられている領域(重なっている領域)には、開口902(本発明の「第2開口」に相当する。)が形成されている。開口902は、作用極基板21および第2封止壁62を貫通する形状である。開口902の底面には、配線用の導電膜232が露出している。開口902の底面を構成する配線用の導電膜232の表面には、外部接続導体92が形成されている。 An opening 902 (corresponding to the “second opening” in the present invention) is formed in a region where the working electrode substrate 21 and the counter electrode substrate 22 are bonded by the second sealing wall 62 (overlapping region). Has been. The opening 902 has a shape that penetrates the working electrode substrate 21 and the second sealing wall 62. A conductive film 232 for wiring is exposed on the bottom surface of the opening 902. An external connection conductor 92 is formed on the surface of the conductive film 232 for wiring that constitutes the bottom surface of the opening 902.
 第2封止壁62の光電変換層213、触媒層223および電解質層51側には、内部配線導体922が形成されている。内部配線導体922は、光発電モジュール10の高さ方向(作用極基板21および対極基板22の平板面に直交する方向)に延びる形状であり、第1導電膜212と配線用の導電膜232とを接続している。 An internal wiring conductor 922 is formed on the photoelectric conversion layer 213, the catalyst layer 223, and the electrolyte layer 51 side of the second sealing wall 62. The internal wiring conductor 922 has a shape extending in the height direction of the photovoltaic module 10 (a direction perpendicular to the flat surfaces of the working electrode substrate 21 and the counter electrode substrate 22), and the first conductive film 212, the conductive film 232 for wiring, Is connected.
 内部配線導体922は、熱硬化性導電材9221,9222、および紫外線硬化性導電材9223を備える。熱硬化性導電材9221の高さ方向の一方端は作用極基板21に当接している。熱硬化性導電材9222の高さ方向の一方端は、対極基板22に当接している。紫外線硬化性導電材9223は、高さ方向に沿って、熱硬化性導電材9221と熱硬化性導電材9222との間に配置されている。紫外線硬化性導電材9223は、熱硬化性導電材9221の他方端と熱硬化性導電材9222の他方端とに接続している。 The internal wiring conductor 922 includes thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223. One end of the thermosetting conductive material 9221 in the height direction is in contact with the working electrode substrate 21. One end of the thermosetting conductive material 9222 in the height direction is in contact with the counter electrode substrate 22. The ultraviolet curable conductive material 9223 is disposed between the thermosetting conductive material 9221 and the thermosetting conductive material 9222 along the height direction. The ultraviolet curable conductive material 9223 is connected to the other end of the thermosetting conductive material 9221 and the other end of the thermosetting conductive material 9222.
熱硬化性導電材9221,9222と紫外線硬化性導電材9223は、後述の貼り合せ工程および紫外線照射の工程を経ることで、一体化され、内部配線導体922となる。 The thermosetting conductive materials 9221 and 9222 and the ultraviolet curable conductive material 9223 are integrated through an after-mentioned bonding process and ultraviolet irradiation process to be an internal wiring conductor 922.
 内部配線導体922の光電変換層213、触媒層223および電解質層51側には、内部封止壁63が形成されている。内部封止壁63の高さ方向の一方端は、第1導電膜212の表面に当接している。内部封止壁63の高さ方向の他方端は、第2導電膜222と配線用の導電膜232とが離間している第2絶縁性基材221の表面に当接している。この構成により、内部封止壁63は、配線用の導電膜232および内部配線導体922と、光電変換層213、触媒層223および電解質層51との間を物理的に分離している。 The internal sealing wall 63 is formed on the photoelectric conversion layer 213, the catalyst layer 223, and the electrolyte layer 51 side of the internal wiring conductor 922. One end in the height direction of the internal sealing wall 63 is in contact with the surface of the first conductive film 212. The other end in the height direction of the inner sealing wall 63 is in contact with the surface of the second insulating substrate 221 where the second conductive film 222 and the conductive film 232 for wiring are separated. With this configuration, the internal sealing wall 63 physically separates the wiring conductive film 232 and the internal wiring conductor 922 from the photoelectric conversion layer 213, the catalyst layer 223, and the electrolyte layer 51.
 また、第2導電膜222は、配線用の導電膜232と接触しない限り、少なくとも一部が内部封止壁63と光発電モジュール10の高さ方向に重なるように形成してもよい。この場合、内部封止壁63と対極基板22との接合強度を向上することができる。 Further, the second conductive film 222 may be formed so that at least a part thereof overlaps with the inner sealing wall 63 and the photovoltaic module 10 in the height direction as long as the second conductive film 222 does not contact the conductive film 232 for wiring. In this case, the bonding strength between the internal sealing wall 63 and the counter electrode substrate 22 can be improved.
 このような構成とすることで、光電変換層213に光が照射されると、光電変換層213では電荷が発生する。この電荷による電流を、第1導電膜212、内部配線導体922、および配線用の導電膜232を介して外部接続導体92に達する導電経路と、第2導電膜222および外部接続導体91からなる導電経路とによって、外部に出力することができる。 With such a configuration, when the photoelectric conversion layer 213 is irradiated with light, charges are generated in the photoelectric conversion layer 213. The electric current caused by this electric charge is a conductive path that reaches the external connection conductor 92 through the first conductive film 212, the internal wiring conductor 922, and the wiring conductive film 232, and the conductive film composed of the second conductive film 222 and the external connection conductor 91. Depending on the route, it can be output to the outside.
 そして、本実施形態の構成を用いることで、内部配線導体922の作用極基板21および対極基板22への接合強度を高く保つことができる。また、内部配線導体922の接続信頼性を高く保つことができる。これにより、信頼性の高い光発電モジュール10を実現することができる。 And by using the configuration of the present embodiment, the bonding strength of the internal wiring conductor 922 to the working electrode substrate 21 and the counter electrode substrate 22 can be kept high. Further, the connection reliability of the internal wiring conductor 922 can be kept high. Thereby, the photovoltaic module 10 with high reliability is realizable.
 このような構成からなる光発電モジュール10は、次に示す製造方法によって形成される。図2は、本発明の第1の実施形態に係る光発電モジュールの製造方法を示すフローチャートである。図3は、本発明の第1の実施形態に係る光発電モジュールの作用極基板の各製造工程での状態を示す側面断面図である。図4は、本発明の第1の実施形態に係る光発電モジュールの対極基板の各製造工程での状態を示す側面断面図である。図5は、本発明の第1の実施形態に係る光発電モジュールのセル化の各製造工程での状態を示す側面断面図である。 The photovoltaic module 10 having such a configuration is formed by the following manufacturing method. FIG. 2 is a flowchart showing a method for manufacturing a photovoltaic module according to the first embodiment of the present invention. FIG. 3 is a side cross-sectional view showing a state in each manufacturing process of the working electrode substrate of the photovoltaic module according to the first embodiment of the present invention. FIG. 4 is a side cross-sectional view showing a state in each manufacturing process of the counter electrode substrate of the photovoltaic module according to the first embodiment of the present invention. FIG. 5 is a side cross-sectional view showing a state in each manufacturing process of making the photovoltaic module according to the first embodiment of the present invention into a cell.
 工程S101として、図3(A)に示すように、第1絶縁性基材211を用意し、第1導電膜212となる透明導電膜212Pを、第1絶縁性基材211の表面に形成する。透明導電膜212Pは、例えば、ITOを材料としている。 As step S <b> 101, as shown in FIG. 3A, a first insulating substrate 211 is prepared, and a transparent conductive film 212 </ b> P that becomes the first conductive film 212 is formed on the surface of the first insulating substrate 211. . The transparent conductive film 212P is made of, for example, ITO.
 次に、図3(B)に示すように、透明導電膜212Pの表面に、熱硬化性導電材9221を形成する。熱硬化性導電材9221は、例えば、銀ペースト(Agペースト)からなる。熱硬化性導電材9221は、所望の加熱条件で熱処理されてペースト状から硬化する。加熱条件としては、例えば、130℃×30分である。 Next, as shown in FIG. 3B, a thermosetting conductive material 9221 is formed on the surface of the transparent conductive film 212P. The thermosetting conductive material 9221 is made of, for example, a silver paste (Ag paste). The thermosetting conductive material 9221 is heat-treated under a desired heating condition and cured from a paste. The heating condition is, for example, 130 ° C. × 30 minutes.
 図3(C)に示すように、熱硬化性導電材9221の加熱硬化後、透明導電膜212Pを既知の方法でパターニングして、第1導電膜212を形成する。この際、第1絶縁性基材211の表面における第1封止壁61が配置される領域における導電膜を形成しない領域に、導電膜の非形成部610が設けられる。 3C, after the thermosetting conductive material 9221 is heated and cured, the transparent conductive film 212P is patterned by a known method to form the first conductive film 212. At this time, the conductive film non-forming portion 610 is provided in a region where the conductive film is not formed in the region where the first sealing wall 61 is disposed on the surface of the first insulating base material 211.
 工程S102として、図3(D)に示すように、第1導電膜212の表面に、光電変換層213を形成する。光電変換層213は、例えば、次の方法で形成される。エタノールを主溶媒とする酸化亜鉛(ZnO)ペーストを第1導電膜212の表面に塗布して、ZnO多孔質層を形成する。次に、色素D149をエタノールで溶解した染色液に、ZnO多孔質層を、室温雰囲気で2時間、浸漬する。その後、エタノールで余分な色素や染色液を洗浄し、乾燥する。 As step S102, as shown in FIG. 3D, a photoelectric conversion layer 213 is formed on the surface of the first conductive film 212. The photoelectric conversion layer 213 is formed by the following method, for example. A zinc oxide (ZnO) paste containing ethanol as a main solvent is applied to the surface of the first conductive film 212 to form a ZnO porous layer. Next, the ZnO porous layer is immersed in a staining solution obtained by dissolving the dye D149 in ethanol for 2 hours in a room temperature atmosphere. Thereafter, excess pigment and staining solution are washed with ethanol and dried.
 これにより、熱硬化性導電材9221が硬化して形成された状態の作用極基板21が形成される。 Thereby, the working electrode substrate 21 in a state where the thermosetting conductive material 9221 is cured and formed is formed.
 工程S103として、図4(A)に示すように、第2絶縁性基材221を用意し、第2導電膜222となる透明導電膜222Pを、第2絶縁性基材221の表面に形成する。 As step S103, as shown in FIG. 4A, a second insulating substrate 221 is prepared, and a transparent conductive film 222P to be the second conductive film 222 is formed on the surface of the second insulating substrate 221. .
 次に、図4(B)に示すように、透明導電膜222Pの表面に、熱硬化性導電材9222を形成する。熱硬化性導電材9222も、例えば、銀ペースト(Agペースト)からなる。 Next, as shown in FIG. 4B, a thermosetting conductive material 9222 is formed on the surface of the transparent conductive film 222P. The thermosetting conductive material 9222 is also made of, for example, a silver paste (Ag paste).
 図4(C)に示すように、熱硬化性導電材9222の加熱硬化後、透明導電膜222Pを既知の方法でパターニングして、第2導電膜222および配線用の導電膜232を形成する。この際、第2絶縁性基材221の表面における内部封止壁63が配置される領域における導電膜を形成しない領域に、導電膜の非形成部630が設けられる。 As shown in FIG. 4C, after the thermosetting conductive material 9222 is heat-cured, the transparent conductive film 222P is patterned by a known method to form the second conductive film 222 and the conductive film 232 for wiring. At this time, the conductive film non-formation part 630 is provided in a region where the conductive film is not formed in a region where the internal sealing wall 63 is disposed on the surface of the second insulating substrate 221.
 工程S104として、図4(D)に示すように、第2導電膜222の表面に、触媒層223を形成する。触媒層223は、例えば、第2導電膜222の表面に、白金Ptをスパッタリング成膜することにより形成される。 As step S104, a catalyst layer 223 is formed on the surface of the second conductive film 222 as shown in FIG. The catalyst layer 223 is formed, for example, by sputtering platinum Pt on the surface of the second conductive film 222.
 これにより、熱硬化性導電材9222が硬化して形成された状態の作用極基板21が形成される。 Thereby, the working electrode substrate 21 in a state where the thermosetting conductive material 9222 is cured is formed.
 次に、工程S105として、図5(A)に示すように、封止材60(第1封止壁61と第2封止壁62)となる紫外線硬化性絶縁材61P,62P、および内部封止壁63となる紫外線硬化性絶縁材63Pとを、作用極基板21の表面に形成する。紫外線硬化性絶縁材61P,62P,63Pには、紫外線照射で硬化し、絶縁性を有する材料を用いればよく、例えば、“東洋インキ 商品名:REXWIN UA-A1”を用いる。 Next, as step S105, as shown in FIG. 5A, the ultraviolet curable insulating materials 61P and 62P that become the sealing material 60 (the first sealing wall 61 and the second sealing wall 62), and the internal sealing are performed. An ultraviolet curable insulating material 63 </ b> P that forms the stop wall 63 is formed on the surface of the working electrode substrate 21. For the ultraviolet curable insulating materials 61P, 62P, and 63P, a material that is cured by ultraviolet irradiation and has an insulating property may be used. For example, “Toyo Ink trade name: REXWIN UA-A1” is used.
 次に、工程S106として、図5(B)に示すように、対極基板22に形成された熱硬化性導電材9222の高さ方向の先端(延びる方向の他方端)に、紫外線硬化性導電材9223を形成する。紫外線硬化性導電材9223には、紫外線照射で硬化し、導電性を有する材料を用いればよく、例えば、“ハイソル 商品名:Elecolit 3063”を用いる。 Next, as step S106, as shown in FIG. 5 (B), an ultraviolet curable conductive material is attached to the tip in the height direction (the other end in the extending direction) of the thermosetting conductive material 9222 formed on the counter electrode substrate 22. 9223 is formed. As the ultraviolet curable conductive material 9223, a material that is cured by ultraviolet irradiation and has conductivity may be used. For example, “Hisol trade name: Elecolit 3063” is used.
 次に、工程S107として、図5(C)に示すように、作用極基板21の表面における紫外線硬化性絶縁材61P,63Pを含む枠状の壁によって囲まれる空間に、電解質層51となる電解液を滴下(注入)する。 Next, as step S107, as shown in FIG. 5C, the electrolytic layer 51 is electrolyzed in a space surrounded by a frame-shaped wall including the ultraviolet curable insulating materials 61P and 63P on the surface of the working electrode substrate 21. The liquid is dropped (injected).
 次に、工程S108として、図5(D)に示すように、紫外線硬化性絶縁材61P,62P,63Pを用いて、作用極基板21と対極基板22とを貼り合わせる。同時に、紫外線硬化性導電材9223を用いて、熱硬化性導電材9221,9222を接続する。 Next, as step S108, as shown in FIG. 5D, the working electrode substrate 21 and the counter electrode substrate 22 are bonded together using ultraviolet curable insulating materials 61P, 62P, and 63P. At the same time, the thermosetting conductive materials 9221 and 9222 are connected using the ultraviolet curable conductive material 9223.
 次に、工程S109として、紫外線を照射し、紫外線硬化性絶縁材61P,62P,63Pおよび紫外線硬化性導電材9223を硬化する。 Next, in step S109, ultraviolet rays are irradiated to cure the ultraviolet curable insulating materials 61P, 62P, 63P and the ultraviolet curable conductive material 9223.
 次に、工程S110として、開口901,902および外部接続導体91,92を形成する。 Next, as step S110, openings 901 and 902 and external connection conductors 91 and 92 are formed.
 以上のような製造工程により、光発電モジュール10が形成される。 The photovoltaic module 10 is formed by the manufacturing process as described above.
 このような製造方法を用いることで、電解質層51を構成する電解液が封入された後に、不要な熱が加わらない。したがって、電解質層51の特性劣化を抑制することができる。 By using such a manufacturing method, unnecessary heat is not applied after the electrolytic solution constituting the electrolyte layer 51 is sealed. Therefore, characteristic deterioration of the electrolyte layer 51 can be suppressed.
 また、作用極基板21および対極基板22と内部配線導体922との接合位置では、熱硬化性導電材9221,9222が硬化したものとなる。したがって、作用極基板21および対極基板22と内部配線導体922との接合強度を高く保つことができる。 In addition, the thermosetting conductive materials 9221 and 9222 are hardened at the joining positions of the working electrode substrate 21 and the counter electrode substrate 22 and the internal wiring conductor 922. Therefore, the bonding strength between the working electrode substrate 21 and the counter electrode substrate 22 and the internal wiring conductor 922 can be kept high.
 さらに、熱硬化性導電材9221,9222が紫外線硬化性導電材9223によって接続される。したがって、内部配線導体922自体の接続信頼性を高く保つことができる。 Furthermore, thermosetting conductive materials 9221 and 9222 are connected by an ultraviolet curable conductive material 9223. Therefore, the connection reliability of the internal wiring conductor 922 itself can be kept high.
 以上のように、本実施形態の製造方法を用いることで、発電効率に優れ、信頼性の高い光発電モジュール10を実現することができる。 As described above, by using the manufacturing method of the present embodiment, the photovoltaic module 10 having excellent power generation efficiency and high reliability can be realized.
 次に、本発明の第2の実施形態に係る光発電モジュールおよびその製造方法について、図を参照して説明する。図6は、本発明の第2の実施形態に係る光発電モジュールにおける導電材および絶縁材の硬化前の状態を示す側面断面図である。 Next, a photovoltaic module and a method for manufacturing the photovoltaic module according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a side cross-sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the second embodiment of the present invention.
 上述の第1の実施形態に係る光発電モジュール10は、作用極基板、電解質層、対極基板を組とする光発電セルが1つ配置された態様であったが、本実施形態に係る光発電モジュール10Aは、光発電セルが複数個(図6では4個)配置された態様からなる。また、本実施形態に係る光発電モジュールは、複数の光発電セルが直列接続された態様からなる。各光発電セルの基本構成は、上述の第1実施形態の光発電モジュール10の構成と略同じである。 The photovoltaic module 10 according to the first embodiment described above is an aspect in which one photovoltaic cell including a working electrode substrate, an electrolyte layer, and a counter electrode substrate is arranged. The module 10A has a mode in which a plurality of photovoltaic cells (four in FIG. 6) are arranged. Further, the photovoltaic module according to the present embodiment has a mode in which a plurality of photovoltaic cells are connected in series. The basic configuration of each photovoltaic cell is substantially the same as the configuration of the photovoltaic module 10 of the first embodiment described above.
 光発電モジュール10Aは、光発電セル11A,12A,13A,14Aを1つの筐体に備える。各光発電セル11A,12A,13A,14Aは、作用極基板21Aと対極基板22Aに挟まれた構成からなり、第1封止壁61と第2封止壁62との間で順に並ぶ構成からなる。 The photovoltaic module 10A includes photovoltaic cells 11A, 12A, 13A, and 14A in one casing. Each photovoltaic cell 11A, 12A, 13A, 14A has a configuration sandwiched between the working electrode substrate 21A and the counter electrode substrate 22A, and has a configuration in which the first sealing wall 61 and the second sealing wall 62 are sequentially arranged. Become.
 第1の光発電セル11Aは、内部封止壁631,632によって区切られており、第1導電膜2121、光電変換層2131、電解質層511、触媒層2231、第2導電膜2221の積層構造からなる。 The first photovoltaic cell 11A is partitioned by internal sealing walls 631 and 632, and has a laminated structure of a first conductive film 2121, a photoelectric conversion layer 2131, an electrolyte layer 511, a catalyst layer 2231, and a second conductive film 2221. Become.
 第2の光発電セル12Aは、内部封止壁633,634によって区切られており、第1導電膜2122、光電変換層2132、電解質層512、触媒層2232、第2導電膜2222の積層構造からなる。 The second photovoltaic cell 12A is partitioned by internal sealing walls 633 and 634, and has a laminated structure of a first conductive film 2122, a photoelectric conversion layer 2132, an electrolyte layer 512, a catalyst layer 2232, and a second conductive film 2222. Become.
 第3の光発電セル13Aは、内部封止壁635,636によって区切られており、第1導電膜2123、光電変換層2133、電解質層513、触媒層2233、第2導電膜2223の積層構造からなる。 The third photovoltaic cell 13A is delimited by internal sealing walls 635 and 636, and has a laminated structure of a first conductive film 2123, a photoelectric conversion layer 2133, an electrolyte layer 513, a catalyst layer 2233, and a second conductive film 2223. Become.
 第4の光発電セル14Aは、内部封止壁637および第2封止壁62によって区切られており、第1導電膜2124、光電変換層2134、電解質層514、触媒層2234、第2導電膜2224の積層構造からなる。 The fourth photovoltaic cell 14A is partitioned by the inner sealing wall 637 and the second sealing wall 62, and the first conductive film 2124, the photoelectric conversion layer 2134, the electrolyte layer 514, the catalyst layer 2234, and the second conductive film. It consists of 2224 laminated structures.
 第1の光発電セル11Aの第1導電膜2121は、第1封止壁61と内部封止壁631に囲まれた内部配線導体922Aによって配線用の導電膜2220に接続されている。外部接続導体91は、第1封止壁61および作用極基板21Aに設けられた開口901によって外部に露出されている。内部配線導体922Aは、熱硬化性導電材9221,9222および紫外線硬化性導電材9223からなる。熱硬化性導電材9221は第1導電膜2121に接続し、熱硬化性導電材9222は、配線用の導電膜2220に接続している。紫外線硬化性導電材9223は、熱硬化性導電材9221と熱硬化性導電材9222を接続している。 The first conductive film 2121 of the first photovoltaic cell 11A is connected to the conductive film 2220 for wiring by the internal wiring conductor 922A surrounded by the first sealing wall 61 and the internal sealing wall 631. The external connection conductor 91 is exposed to the outside through an opening 901 provided in the first sealing wall 61 and the working electrode substrate 21A. The internal wiring conductor 922A includes thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223. The thermosetting conductive material 9221 is connected to the first conductive film 2121, and the thermosetting conductive material 9222 is connected to the conductive film 2220 for wiring. The ultraviolet curable conductive material 9223 connects the thermosetting conductive material 9221 and the thermosetting conductive material 9222.
 第1の光発電セル11Aの第2導電膜2221と、第2の光発電セル12Aの第1導電膜2122とは、内部封止壁632,633に囲まれた内部配線導体922Bによって接続されている。内部配線導体922Bも、熱硬化性導電材9221,9222および紫外線硬化性導電材9223からなる。この構成では、第1導電膜2122が本発明の「第1の配線用導電膜」に相当するか、もしくは、第2導電膜2221が本発明の「第2の配線用導電膜」に相当する。 The second conductive film 2221 of the first photovoltaic cell 11A and the first conductive film 2122 of the second photovoltaic cell 12A are connected by the internal wiring conductor 922B surrounded by the internal sealing walls 632 and 633. Yes. The internal wiring conductor 922B is also composed of thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223. In this configuration, the first conductive film 2122 corresponds to the “first wiring conductive film” of the present invention, or the second conductive film 2221 corresponds to the “second wiring conductive film” of the present invention. .
 第2の光発電セル12Aの第2導電膜2222と、第3の光発電セル13Aの第1導電膜2123とは、内部封止壁634,635に囲まれた内部配線導体922Cによって接続されている。内部配線導体922Cも、熱硬化性導電材9221,9222および紫外線硬化性導電材9223からなる。この構成では、第1導電膜2123が本発明の「第1の配線用導電膜」に相当するか、もしくは、第2導電膜2222が本発明の「第2の配線用導電膜」に相当する。 The second conductive film 2222 of the second photovoltaic cell 12A and the first conductive film 2123 of the third photovoltaic cell 13A are connected by an internal wiring conductor 922C surrounded by the internal sealing walls 634 and 635. Yes. The internal wiring conductor 922C is also composed of thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223. In this configuration, the first conductive film 2123 corresponds to the “first wiring conductive film” of the present invention, or the second conductive film 2222 corresponds to the “second wiring conductive film” of the present invention. .
 第3の光発電セル13Aの第2導電膜2223と、第4の光発電セル14Aの第1導電膜2124とは、内部封止壁636,637に囲まれた内部配線導体922Dによって接続されている。内部配線導体922Dも、熱硬化性導電材9221,9222および紫外線硬化性導電材9223からなる。この構成では、第1導電膜2124が本発明の「第1の配線用導電膜」に相当するか、もしくは、第2導電膜2223が本発明の「第2の配線用導電膜」に相当する。 The second conductive film 2223 of the third photovoltaic cell 13A and the first conductive film 2124 of the fourth photovoltaic cell 14A are connected by an internal wiring conductor 922D surrounded by internal sealing walls 636 and 637. Yes. The internal wiring conductor 922D is also composed of thermosetting conductive materials 9221 and 9222 and an ultraviolet curable conductive material 9223. In this configuration, the first conductive film 2124 corresponds to the “first wiring conductive film” of the present invention, or the second conductive film 2223 corresponds to the “second wiring conductive film” of the present invention. .
 第4の光発電セル14Aの第2導電膜2224は、一部が開口902の底面となっており、その表面には、外部接続導体92が形成されている。外部接続導体92は、外部接続導体91は、第2封止壁62および作用極基板21Aに設けられた開口902によって外部に露出されている。 Part of the second conductive film 2224 of the fourth photovoltaic cell 14A is the bottom surface of the opening 902, and the external connection conductor 92 is formed on the surface. The external connection conductor 92 is exposed to the outside through the opening 902 provided in the second sealing wall 62 and the working electrode substrate 21A.
 このように、複数の光発電セルを単一の作用極基板と対極基板の組で形成する態様であっても、上述の第1の実施形態と同様の作用効果を得ることができる。 Thus, even in a mode in which a plurality of photovoltaic cells are formed by a set of a single working electrode substrate and a counter electrode substrate, it is possible to obtain the same effects as those of the first embodiment described above.
 次に、本発明の第3の実施形態に係る光発電モジュールについて、図を参照して説明する。図7(A)は、本発明の第3の実施形態に係る光発電モジュールにおける作用極基板と対極基板を貼り付ける前の状態を示す側面断面図である。図7(B)は、本発明の第3の実施形態に係る光発電モジュールにおける導電材および絶縁材の硬化前の状態を示す側面断面図である。 Next, a photovoltaic module according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 7A is a side sectional view showing a state before the working electrode substrate and the counter electrode substrate are attached to each other in the photovoltaic module according to the third embodiment of the present invention. FIG. 7B is a side cross-sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the third embodiment of the present invention.
 本実施形態に係る光発電モジュール10Bは、内部配線導体を構成する熱硬化性導電材9221Bの形状が、第1の実施形態に係る光発電モジュール10と異なる。他の構成は、第1の実施形態に係る光発電モジュール10と同じである。 The photovoltaic module 10B according to the present embodiment is different from the photovoltaic module 10 according to the first embodiment in the shape of the thermosetting conductive material 9221B constituting the internal wiring conductor. Other configurations are the same as those of the photovoltaic module 10 according to the first embodiment.
 光発電モジュール10Bの内部配線導体は、熱硬化性導電材9221,9222Bおよび紫外線硬化性導電材9223を備える。熱硬化性導電材9222Bの幅は、熱硬化性導電材9221の幅よりも狭い。 The internal wiring conductor of the photovoltaic module 10B includes thermosetting conductive materials 9221 and 9222B and an ultraviolet curable conductive material 9223. The width of the thermosetting conductive material 9222B is narrower than the width of the thermosetting conductive material 9221.
 このような構成とすることで、作用極基板21と対極基板22とを貼り合わせた後であっても、紫外線硬化性導電材9223に対して効果的に紫外線を照射することができる。なお、対極基板22側の熱硬化性導電材のみの幅を硬化後の内部配線導体の幅よりも狭くする態様や、両方の熱硬化性導電材を硬化後の内部配線導体の幅よりも狭くする態様を用いてもよい。少なくとも透光性を有する基板側の熱硬化性導電材の幅が、硬化後の内部配線導体の幅よりも狭ければよい。 With such a configuration, the ultraviolet curable conductive material 9223 can be effectively irradiated with ultraviolet rays even after the working electrode substrate 21 and the counter electrode substrate 22 are bonded together. In addition, the aspect which makes only the thermosetting conductive material width | variety by the side of the counter-electrode board | substrate 22 narrower than the width | variety of the internal wiring conductor after hardening, or the width | variety of the internal wiring conductor after hardening both thermosetting conductive materials You may use the aspect to do. It is sufficient that at least the width of the thermosetting conductive material on the substrate side having translucency is narrower than the width of the cured internal wiring conductor.
 なお、本実施形態では、一方の熱硬化性導電材を細くする態様を示したが、紫外線硬化性導電材の両側の熱硬化性導電材を細くしてもよい。この場合、両側の熱硬化性導電材の幅は同じであっても異なっていてもよい。 In addition, in this embodiment, although the aspect which makes one thermosetting conductive material thin was shown, you may make the thermosetting conductive material of the both sides of an ultraviolet curable conductive material thin. In this case, the width of the thermosetting conductive material on both sides may be the same or different.
 次に、本発明の第4の実施形態に係る光発電モジュールについて、図を参照して説明する。図8(A)は、本発明の第4の実施形態に係る光発電モジュールにおける作用極基板と対極基板を貼り付ける前の状態を示す側面断面図である。図8(B)は、本発明の第4の実施形態に係る光発電モジュールにおける導電材および絶縁材の硬化前の状態を示す側面断面図である。 Next, a photovoltaic module according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 8A is a side sectional view showing a state before the working electrode substrate and the counter electrode substrate are attached to each other in the photovoltaic module according to the fourth embodiment of the present invention. FIG. 8B is a side cross-sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the fourth embodiment of the present invention.
 本実施形態に係る光発電モジュール10Cは、内部配線導体を構成する熱硬化性導電材と紫外線硬化性導電材の組合せが、第1の実施形態に係る光発電モジュール10と異なる。他の構成は、第1の実施形態に係る光発電モジュール10と同じである。 The photovoltaic module 10C according to the present embodiment is different from the photovoltaic module 10 according to the first embodiment in the combination of the thermosetting conductive material and the ultraviolet curable conductive material constituting the internal wiring conductor. Other configurations are the same as those of the photovoltaic module 10 according to the first embodiment.
 本実施形態の光発電モジュール10Cは、内部配線導体が熱硬化性導電材9222と紫外線硬化性導電材9223との2層構造からなる。すなわち、熱硬化性導電材9221を省略したものである。紫外線硬化性導電材9223は、作用極基板21の表面に形成されている。 In the photovoltaic module 10C of this embodiment, the internal wiring conductor has a two-layer structure of a thermosetting conductive material 9222 and an ultraviolet curable conductive material 9223. That is, the thermosetting conductive material 9221 is omitted. The ultraviolet curable conductive material 9223 is formed on the surface of the working electrode substrate 21.
 このような構成であっても、電解質と光電変換層が接触した状態で、高温に曝されることを防止でき、光電変換素子の特性劣化を抑制できる。また、一方の作用極基板21に対する内部配線導体の接合強度を高くすることができ、内部配線導体の全てを紫外線硬化性導電材で形成するよりも、信頼性を向上することができる。 Even in such a configuration, it is possible to prevent exposure to high temperatures in a state where the electrolyte and the photoelectric conversion layer are in contact with each other, and it is possible to suppress deterioration in characteristics of the photoelectric conversion element. Further, the bonding strength of the internal wiring conductor to one working electrode substrate 21 can be increased, and the reliability can be improved as compared with the case where all of the internal wiring conductor is formed of an ultraviolet curable conductive material.
 なお、紫外線硬化性導電材9223を対極基板に形成する態様であってもよい。透光性を有する基板側に、紫外線硬化性導電材9223が形成されればよい。 Note that the ultraviolet curable conductive material 9223 may be formed on the counter electrode substrate. An ultraviolet curable conductive material 9223 may be formed on the light-transmitting substrate side.
 次に、本発明の第5の実施形態に係る光発電モジュールについて、図を参照して説明する。図9(A)は、本発明の第5の実施形態に係る光発電モジュールにおける作用極基板と対極基板を貼り付ける前の状態を示す側面断面図である。図9(B)は、本発明の第5の実施形態に係る光発電モジュールにおける導電材および絶縁材の硬化前の状態を示す側面断面図である。 Next, a photovoltaic module according to the fifth embodiment of the present invention will be described with reference to the drawings. FIG. 9A is a side sectional view showing a state before the working electrode substrate and the counter electrode substrate are attached to each other in the photovoltaic module according to the fifth embodiment of the present invention. FIG. 9B is a side sectional view showing a state before the conductive material and the insulating material are cured in the photovoltaic module according to the fifth embodiment of the present invention.
 本実施形態の光発電モジュール10Dは、封止材および内部封止壁が熱硬化性絶縁材と紫外線硬化性絶縁材の3層構造になる点で、第1の実施形態に係る光発電モジュール10と異なる。他の構成は、第1の実施形態に係る光発電モジュール10と同じである。 The photovoltaic module 10D of this embodiment is a photovoltaic module 10 according to the first embodiment in that the sealing material and the internal sealing wall have a three-layer structure of a thermosetting insulating material and an ultraviolet curable insulating material. And different. Other configurations are the same as those of the photovoltaic module 10 according to the first embodiment.
 光発電モジュール10Dの第1封止壁61は、熱硬化性絶縁材611P,612Pと紫外線硬化性絶縁材613Pとから構成される。第2封止壁62は、熱硬化性絶縁材621P,622Pと紫外線硬化性絶縁材623Pとから構成される。内部封止壁63は、熱硬化性絶縁材631P,632Pと紫外線硬化性絶縁材633Pとから構成される。 The first sealing wall 61 of the photovoltaic module 10D is composed of thermosetting insulating materials 611P and 612P and an ultraviolet curable insulating material 613P. The second sealing wall 62 is composed of thermosetting insulating materials 621P and 622P and an ultraviolet curable insulating material 623P. The inner sealing wall 63 is composed of thermosetting insulating materials 631P and 632P and an ultraviolet curable insulating material 633P.
 熱硬化性絶縁材611P,621P,631Pは、作用極基板21の表面に形成されている。熱硬化性絶縁材612P,622P,632Pは対極基板22の表面に形成されている。紫外線硬化性絶縁材613P,623P,633Pは、熱硬化性絶縁材611P、612Pの間、熱硬化性絶縁材621P、622Pの間、熱硬化性絶縁材631P、632Pの間に、それぞれ介在している。 The thermosetting insulating materials 611P, 621P, 631P are formed on the surface of the working electrode substrate 21. The thermosetting insulating materials 612P, 622P, and 632P are formed on the surface of the counter electrode substrate 22. The ultraviolet curable insulating materials 613P, 623P, and 633P are interposed between the thermosetting insulating materials 611P and 612P, between the thermosetting insulating materials 621P and 622P, and between the thermosetting insulating materials 631P and 632P, respectively. Yes.
 このような構成とすることで、作用極基板21および対極基板22に対する封止材の接合強度を高くすることができる。これにより、封止材を紫外線硬化性絶縁材のみで形成するよりも、信頼性を向上することができる。 With such a configuration, the bonding strength of the sealing material to the working electrode substrate 21 and the counter electrode substrate 22 can be increased. Thereby, reliability can be improved rather than forming a sealing material only with an ultraviolet curable insulating material.
 本実施形態の光発電モジュール10Dは、次に示す製造方法によって形成される。図10は、本発明の第5の実施形態に係る光発電モジュールの製造方法を示すフローチャートである。 The photovoltaic module 10D of this embodiment is formed by the following manufacturing method. FIG. 10 is a flowchart showing a method for manufacturing a photovoltaic module according to the fifth embodiment of the present invention.
 工程S101から工程S104までは、第1の実施形態と同じであるので、説明は省略する。 Since steps S101 to S104 are the same as those in the first embodiment, description thereof will be omitted.
 次に、工程S201として、封止材の一部となる熱硬化性絶縁材611P,621P、および内部封止材となる熱硬化性絶縁材631Pを、作用極基板21の表面に形成する。また、封止材の一部となる熱硬化性絶縁材612P,622P、および内部封止材となる熱硬化性絶縁材632Pを、対極基板22の表面に形成する。これらの熱硬化性絶縁材611P,621P,631P,612P,622P,632Pは、所定条件で熱硬化処理される。 Next, as step S201, thermosetting insulating materials 611P and 621P that become part of the sealing material and thermosetting insulating material 631P that becomes the internal sealing material are formed on the surface of the working electrode substrate 21. In addition, thermosetting insulating materials 612P and 622P that are part of the sealing material and thermosetting insulating material 632P that is the internal sealing material are formed on the surface of the counter electrode substrate 22. These thermosetting insulating materials 611P, 621P, 631P, 612P, 622P, and 632P are subjected to thermosetting treatment under predetermined conditions.
 次に、工程S105として、封止材の一部となるとなる紫外線硬化性絶縁材613P、623P,633Pを硬化後の熱硬化性樹脂612P,622P,632Pの高さ方向の先端にそれぞれ形成する。 Next, as step S105, ultraviolet curable insulating materials 613P, 623P, and 633P, which become a part of the sealing material, are formed at the tips in the height direction of the cured thermosetting resins 612P, 622P, and 632P, respectively.
 次に、工程S106として、対極基板22に形成された熱硬化性導電材9222の高さ方向の先端に、紫外線硬化性導電材9223を形成する。 Next, as step S106, an ultraviolet curable conductive material 9223 is formed at the tip in the height direction of the thermosetting conductive material 9222 formed on the counter electrode substrate 22.
 次に、工程S107として、対極基板22の表面における熱硬化性絶縁材612Pおよび紫外線硬化性絶縁材613Pからなる壁と、熱硬化性絶縁材632Pおよび紫外線硬化性絶縁材633Pからなる壁とを含む枠状によって囲まれる空間に、電解質層51となる電解液を滴下(注入)する。 Next, step S107 includes a wall made of thermosetting insulating material 612P and ultraviolet curable insulating material 613P on the surface of counter electrode substrate 22, and a wall made of thermosetting insulating material 632P and ultraviolet curable insulating material 633P. An electrolytic solution to be the electrolyte layer 51 is dropped (injected) into a space surrounded by the frame shape.
 次に、工程S108として、紫外線硬化性絶縁材613P,623P,633Pを用いて、作用極基板21と対極基板22とを貼り合わせる。同時に、紫外線硬化性導電材9223を用いて、熱硬化性導電材9221,9222を接続する。 Next, as step S108, the working electrode substrate 21 and the counter electrode substrate 22 are bonded together using ultraviolet curable insulating materials 613P, 623P, and 633P. At the same time, the thermosetting conductive materials 9221 and 9222 are connected using the ultraviolet curable conductive material 9223.
 次に、工程S109として、紫外線を照射し、紫外線硬化性絶縁材613P,623P,633Pおよび紫外線硬化性導電材9223を硬化する。 Next, as step S109, ultraviolet rays are irradiated to cure the ultraviolet curable insulating materials 613P, 623P, 633P and the ultraviolet curable conductive material 9223.
 以上のような製造工程により、光発電モジュール10Dが形成される。 The photovoltaic module 10D is formed by the manufacturing process as described above.
 なお、第4の実施形態の内部配線導体の構造に示したように、熱硬化性絶縁材と紫外線硬化性絶縁材との2層構造で封止材を形成してもよい。すなわち、作用極基板21か対極基板22のいずれか一方に熱硬化性絶縁材が当接する態様であってもよい。 Note that, as shown in the structure of the internal wiring conductor of the fourth embodiment, the sealing material may be formed by a two-layer structure of a thermosetting insulating material and an ultraviolet curable insulating material. In other words, the thermosetting insulating material may be in contact with either the working electrode substrate 21 or the counter electrode substrate 22.
10,10A,10B,10C,10D:光発電モジュール
11A,12A,13A,14A:光発電セル
21,21A:作用極基板
22,22A:対極基板
51,511,512,513,514:電解質層
60:封止材
61:第1封止壁
61P,62P,63P:紫外線硬化性絶縁材
62:第2封止壁
63:内部封止壁
63P:紫外線硬化性絶縁材
91,92:外部接続導体
211:第1絶縁性基材
212,2121,2122,2123,2124:第1導電膜
212P:透明導電膜
213,2131,2132,2133,2134:光電変換層
221:第2絶縁性基材
222,2221,2222,2223,2224:第2導電膜
222P:透明導電膜
223,2231,2232,2233,2234:触媒層
232:配線用の導電膜
511,512,513,514:電解質層
611P,621P,631P,612P,622P,632P:熱硬化性絶縁材
613P,623P,633P:紫外線硬化性絶縁材
631,632,633,634,635,636,637:内部封止壁
901,902:開口
922,922A,922B,922C,922D:内部配線導体
9221,9221B,9222,9222B:熱硬化性導電材
9223:紫外線硬化性導電材
10, 10A, 10B, 10C, 10D: photovoltaic modules 11A, 12A, 13A, 14A: photovoltaic cells 21, 21A: working electrode substrate 22, 22A: counter substrate 51, 511, 512, 513, 514: electrolyte layer 60 : Sealing material 61: First sealing walls 61P, 62P, 63P: UV curable insulating material 62: Second sealing wall 63: Internal sealing wall 63P: UV curable insulating materials 91, 92: External connection conductor 211 : First insulating base material 212, 2121, 2122, 2123, 2124: first conductive film 212P: transparent conductive film 213, 2131, 2132, 2133, 2134: photoelectric conversion layer 221: second insulating base material 222, 2221 , 2222, 2223, 2224: second conductive film 222P: transparent conductive film 223, 2231, 2232, 2233, 2234: catalyst layer 232: for wiring Conductive films 511, 512, 513, 514: electrolyte layers 611P, 621P, 631P, 612P, 622P, 632P: thermosetting insulating materials 613P, 623P, 633P: ultraviolet curable insulating materials 631, 632, 633, 634, 635, 636, 637: internal sealing walls 901, 902: openings 922, 922A, 922B, 922C, 922D: internal wiring conductors 9221, 9221B, 9222, 9222B: thermosetting conductive material 9223: ultraviolet curable conductive material

Claims (15)

  1.  第1絶縁性基材の表面の少なくとも一部に形成された第1導電膜、および前記第1導電膜の表面の少なくとも一部に形成された光電変換層を備える作用極基板と、
     第2絶縁性基材の表面の少なくとも一部に形成された第2導電膜、および前記第2導電膜の表面の少なくとも一部に形成された触媒層を備える対極基板と、
     前記光電変換層と前記触媒層とが離間して対向した状態で前記作用極基板と前記対極基板を貼り合わせ、平面視して前記光電変換層と前記触媒層との少なくとも一部を囲むように配置された封止材と、
     前記作用極基板、前記対極基板、および前記封止材によって封入された電解質層と、
     を備えた光発電モジュールであって、
     前記封止材は、前記作用極基板と前記対極基板の平板面に直交する高さ方向に、少なくとも熱硬化性絶縁材と紫外線硬化性絶縁材の2層を有する、
     光発電モジュール。
    A working electrode substrate comprising: a first conductive film formed on at least a part of the surface of the first insulating substrate; and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film;
    A counter electrode substrate comprising a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film;
    The working electrode substrate and the counter electrode substrate are bonded together in a state where the photoelectric conversion layer and the catalyst layer are opposed to each other so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view. An arranged encapsulant; and
    An electrolyte layer encapsulated by the working electrode substrate, the counter electrode substrate, and the sealing material;
    A photovoltaic module comprising:
    The sealing material has at least two layers of a thermosetting insulating material and an ultraviolet curable insulating material in a height direction orthogonal to the flat plate surfaces of the working electrode substrate and the counter electrode substrate.
    Photovoltaic module.
  2.  前記封止材は、
     前記作用極基板に当接する第1熱硬化性絶縁材、前記対極基板に当接する第2熱硬化性絶縁材、および、前記作用極基板と前記対極基板の平板面に直交する高さ方向に沿って前記第1熱硬化性絶縁材と前記第2熱硬化性絶縁材に挟まれた前記紫外線硬化性絶縁材を備える、
     請求項1に記載の光発電モジュール。
    The sealing material is
    A first thermosetting insulating material in contact with the working electrode substrate, a second thermosetting insulating material in contact with the counter electrode substrate, and a height direction perpendicular to the flat surface of the working electrode substrate and the counter electrode substrate The ultraviolet curable insulating material sandwiched between the first thermosetting insulating material and the second thermosetting insulating material,
    The photovoltaic module according to claim 1.
  3.  前記第2絶縁性基材の表面に形成された第2の配線用導電膜と前記第1導電膜とを導通する、または、前記第1絶縁性基材の表面に形成された第1の配線用導電膜と前記第2導電膜とを導通する内部配線導体を備え、
     前記内部配線導体は、前記高さ方向に、少なくとも熱硬化性導電材と紫外線硬化性導電材の2層を有する、
     請求項1または請求項2に記載の光発電モジュール。
    The second wiring conductive film formed on the surface of the second insulating substrate and the first conductive film are electrically connected, or the first wiring formed on the surface of the first insulating substrate. An internal wiring conductor for conducting the conductive film and the second conductive film,
    The internal wiring conductor has at least two layers of a thermosetting conductive material and an ultraviolet curable conductive material in the height direction.
    The photovoltaic module of Claim 1 or Claim 2.
  4.  第1絶縁性基材の表面の少なくとも一部に形成された第1導電膜、および前記第1導電膜の表面の少なくとも一部に形成された光電変換層を備える作用極基板と、
     第2絶縁性基材の表面の少なくとも一部に形成された第2導電膜、および前記第2導電膜の表面の少なくとも一部に形成された触媒層を備える対極基板と、
     前記光電変換層と前記触媒層とが離間して対向した状態で前記作用極基板と前記対極基板を貼り合わせる、平面視して前記光電変換層と前記触媒層との少なくとも一部を囲むように配置された封止材と、
     前記作用極基板、前記対極基板、および前記封止材によって封入された電解質層と、
     を備えた光発電モジュールであって、
     前記第2絶縁性基材の表面に形成された第2の配線用導電膜と前記第1導電膜とを導通する、または、前記第1絶縁性基材の表面に形成された第1の配線用導電膜と前記第2導電膜とを導通する内部配線導体を備え、
     前記内部配線導体は、前記作用極基板と前記対極基板の平板面に直交する高さ方向に、少なくとも熱硬化性導電材と紫外線硬化性導電材の2層を有する、
     光発電モジュール。
    A working electrode substrate comprising: a first conductive film formed on at least a part of the surface of the first insulating substrate; and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film;
    A counter electrode substrate comprising a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film;
    The working electrode substrate and the counter electrode substrate are bonded together in a state in which the photoelectric conversion layer and the catalyst layer are opposed to each other so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view. An arranged encapsulant; and
    An electrolyte layer encapsulated by the working electrode substrate, the counter electrode substrate, and the sealing material;
    A photovoltaic module comprising:
    The second wiring conductive film formed on the surface of the second insulating substrate and the first conductive film are electrically connected, or the first wiring formed on the surface of the first insulating substrate. An internal wiring conductor for conducting the conductive film and the second conductive film,
    The internal wiring conductor has at least two layers of a thermosetting conductive material and an ultraviolet curable conductive material in a height direction perpendicular to the flat surfaces of the working electrode substrate and the counter electrode substrate.
    Photovoltaic module.
  5.  前記内部配線導体は、
     前記作用極基板に接着する第1熱硬化性導電材と、
     前記対極基板に接着する第2熱硬化性導電材と、
     前記第1熱硬化性導電材と前記第2熱硬化性導電材との間に設けられた紫外線硬化性導電材と、
     を備える、請求項3または請求項4に記載の光発電モジュール。
    The internal wiring conductor is
    A first thermosetting conductive material that adheres to the working electrode substrate;
    A second thermosetting conductive material that adheres to the counter electrode substrate;
    An ultraviolet curable conductive material provided between the first thermosetting conductive material and the second thermosetting conductive material;
    The photovoltaic module of Claim 3 or Claim 4 provided with these.
  6.  前記第1熱硬化性導電材および前記第2熱硬化性導電材のうち、少なくとも一方の熱硬化性導電材は、前記紫外線硬化性導電材よりも幅が狭い、
     請求項5に記載の光発電モジュール。
    Of the first thermosetting conductive material and the second thermosetting conductive material, at least one of the thermosetting conductive materials is narrower than the ultraviolet curable conductive material,
    The photovoltaic module according to claim 5.
  7.  第1絶縁性基材の表面の少なくとも一部に形成された第1導電膜、および前記第1導電膜の表面の少なくとも一部に形成された光電変換層を備える作用極基板と、
     第2絶縁性基材の表面の少なくとも一部に形成された第2導電膜、および前記第2導電膜の表面の少なくとも一部に形成された触媒層を備える対極基板と、
     前記光電変換層と前記触媒層とが離間して対向した状態で前記作用極基板と前記対極基板を貼り合わせる、平面視して前記光電変換層と前記触媒層との少なくとも一部を囲むように配置された封止材と、
     前記作用極基板、前記対極基板、および前記封止材によって封入された電解質層と、
     前記第2絶縁性基材の表面に形成された第2の配線用導電膜と前記第1導電膜とを導通する、または、前記第1絶縁性基材の表面に形成された第1の配線用導電膜と前記第2導電膜とを導通する内部配線導体と、
     を備えた光発電モジュールの製造方法であって、
     前記作用極基板の表面および前記対極基板の表面の少なくとも一方に、熱硬化性導電材を形成して硬化する工程と、
     前記作用極基板と前記対極基板とを貼り合わせたときに前記熱硬化性導電材に接合する位置に、紫外線硬化性導電材を形成する工程と、
     前記作用極基板または前記対極基板の少なくとも一方に、前記封止材の形状に合わせた紫外線硬化性絶縁材を形成する工程と、
     前記作用極基板と前記対極基板を、前記熱硬化性導電材および前記紫外線硬化性導電材と、前記紫外線硬化性絶縁材とによって貼り合わせる工程と、
     前記紫外線硬化性絶縁材および前記紫外線硬化性導電材に紫外線を照射する工程と、
     を有する、光発電モジュールの製造方法。
    A working electrode substrate comprising: a first conductive film formed on at least a part of the surface of the first insulating substrate; and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film;
    A counter electrode substrate comprising a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film;
    The working electrode substrate and the counter electrode substrate are bonded together in a state in which the photoelectric conversion layer and the catalyst layer are opposed to each other so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view. An arranged encapsulant; and
    An electrolyte layer encapsulated by the working electrode substrate, the counter electrode substrate, and the sealing material;
    The second wiring conductive film formed on the surface of the second insulating substrate and the first conductive film are electrically connected, or the first wiring formed on the surface of the first insulating substrate. An internal wiring conductor for conducting the conductive film and the second conductive film;
    A method for producing a photovoltaic module comprising:
    Forming and curing a thermosetting conductive material on at least one of the surface of the working electrode substrate and the surface of the counter electrode substrate; and
    Forming an ultraviolet curable conductive material at a position where the working electrode substrate and the counter electrode substrate are bonded to the thermosetting conductive material;
    Forming an ultraviolet curable insulating material in conformity with the shape of the sealing material on at least one of the working electrode substrate or the counter electrode substrate;
    Bonding the working electrode substrate and the counter electrode substrate with the thermosetting conductive material, the ultraviolet curable conductive material, and the ultraviolet curable insulating material;
    Irradiating the ultraviolet curable insulating material and the ultraviolet curable conductive material with ultraviolet rays;
    A method for manufacturing a photovoltaic module, comprising:
  8.  前記熱硬化性導電材を形成して硬化する工程は、
     前記作用極基板の表面に第1熱硬化性導電材を形成して硬化する工程と、
     前記対極基板の表面に第2熱硬化性導電材を形成して硬化する工程と、を有し、
     前記紫外線硬化性導電材を形成する工程は、
     前記硬化した前記第1熱硬化性導電材または前記第2熱硬化性導電材の先端に、紫外線硬化性導電材を形成する、
     請求項7に記載の光発電モジュールの製造方法。
    The step of forming and curing the thermosetting conductive material includes:
    Forming and curing a first thermosetting conductive material on the surface of the working electrode substrate;
    Forming and curing a second thermosetting conductive material on the surface of the counter electrode substrate,
    The step of forming the ultraviolet curable conductive material includes:
    Forming an ultraviolet curable conductive material at a tip of the cured first thermosetting conductive material or the second thermosetting conductive material;
    The manufacturing method of the photovoltaic module of Claim 7.
  9.  前記熱硬化性導電材を形成して硬化する工程は、
     前記作用極基板の表面に第1熱硬化性導電材を形成して硬化する工程と、
     前記対極基板の表面に紫外線硬化性導電材を形成する工程と、を有する、
     請求項7に記載の光発電モジュールの製造方法。
    The step of forming and curing the thermosetting conductive material includes:
    Forming and curing a first thermosetting conductive material on the surface of the working electrode substrate;
    Forming an ultraviolet curable conductive material on the surface of the counter electrode substrate,
    The manufacturing method of the photovoltaic module of Claim 7.
  10.  前記熱硬化性導電材を形成して硬化する工程は、
     前記対極基板の表面に第2熱硬化性導電材を形成して硬化する工程と、
     前記作用極基板の表面に紫外線硬化性導電材を形成する工程と、を有する、
     請求項7に記載の光発電モジュールの製造方法。
    The step of forming and curing the thermosetting conductive material includes:
    Forming and curing a second thermosetting conductive material on the surface of the counter electrode substrate;
    Forming an ultraviolet curable conductive material on the surface of the working electrode substrate,
    The manufacturing method of the photovoltaic module of Claim 7.
  11.  第1絶縁性基材の表面の少なくとも一部に形成された第1導電膜、および前記第1導電膜の表面の少なくとも一部に形成された光電変換層を備える作用極基板と、
     第2絶縁性基材の表面の少なくとも一部に形成された第2導電膜、および前記第2導電膜の表面の少なくとも一部に形成された触媒層を備える対極基板と、
     前記光電変換層と前記触媒層とが離間して対向した状態で前記作用極基板と前記対極基板を貼り合わせる、平面視して前記光電変換層と前記触媒層との少なくとも一部を囲むように配置された封止材と、
     前記作用極基板、前記対極基板、および前記封止材によって封入された電解質層と、
     前記第2絶縁性基材の表面に形成された第2の配線用導電膜と前記第1導電膜とを導通する、または、前記第1絶縁性基材の表面に形成された第1の配線用導電膜と前記第2導電膜とを導通する内部配線導体と、
     を備えた光発電モジュールの製造方法であって、
     前記作用極基板と前記対極基板とを貼り合わせたときに前記作用極基板と前記対極基板との間に熱硬化性導電材と紫外線硬化性導電材とが層状になるように、前記熱硬化性導電材と前記紫外線硬化性導電材を形成する工程と、
     前記作用極基板と前記対極基板とを貼り合わせたときに前記作用極基板と前記対極基板との間に熱硬化性絶縁材と紫外線硬化性絶縁材とが層状になるように、前記熱硬化性絶縁材と前記紫外線硬化性絶縁材を形成する工程と、
     前記作用極基板と前記対極基板を、前記熱硬化性導電材および前記紫外線硬化性導電材と、前記熱硬化性絶縁材および前記紫外線硬化性絶縁材とによって貼り合わせる工程と、
     前記紫外線硬化性絶縁材および前記紫外線硬化性導電材に紫外線を照射する工程と、
     を有する、光発電モジュールの製造方法。
    A working electrode substrate comprising: a first conductive film formed on at least a part of the surface of the first insulating substrate; and a photoelectric conversion layer formed on at least a part of the surface of the first conductive film;
    A counter electrode substrate comprising a second conductive film formed on at least a part of the surface of the second insulating substrate, and a catalyst layer formed on at least a part of the surface of the second conductive film;
    The working electrode substrate and the counter electrode substrate are bonded together in a state in which the photoelectric conversion layer and the catalyst layer are opposed to each other so as to surround at least a part of the photoelectric conversion layer and the catalyst layer in plan view. An arranged encapsulant; and
    An electrolyte layer encapsulated by the working electrode substrate, the counter electrode substrate, and the sealing material;
    The second wiring conductive film formed on the surface of the second insulating substrate and the first conductive film are electrically connected, or the first wiring formed on the surface of the first insulating substrate. An internal wiring conductor for conducting the conductive film and the second conductive film;
    A method for producing a photovoltaic module comprising:
    When the working electrode substrate and the counter electrode substrate are bonded together, the thermosetting conductive material and the ultraviolet curable conductive material are layered between the working electrode substrate and the counter electrode substrate. Forming a conductive material and the ultraviolet curable conductive material;
    The thermosetting so that the thermosetting insulating material and the ultraviolet curable insulating material are layered between the working electrode substrate and the counter electrode substrate when the working electrode substrate and the counter electrode substrate are bonded together. Forming an insulating material and the ultraviolet curable insulating material;
    Bonding the working electrode substrate and the counter electrode substrate with the thermosetting conductive material and the ultraviolet curable conductive material, the thermosetting insulating material and the ultraviolet curable insulating material;
    Irradiating the ultraviolet curable insulating material and the ultraviolet curable conductive material with ultraviolet rays;
    A method for manufacturing a photovoltaic module, comprising:
  12.  前記熱硬化性絶縁材および前記紫外線硬化性絶縁材を形成する工程は、
     前記作用極基板の表面に第1熱硬化性絶縁材を形成して硬化する工程と、
     前記対極基板の表面に第2熱硬化性絶縁材を形成して硬化する工程と、
     前記硬化した前記第1熱硬化性導電材または前記第2熱硬化性導電材の先端に前記紫外線硬化性導電材を形成する工程と、
     請求項11に記載の光発電モジュールの製造方法。
    The step of forming the thermosetting insulating material and the ultraviolet curable insulating material,
    Forming and curing a first thermosetting insulating material on the surface of the working electrode substrate;
    Forming and curing a second thermosetting insulating material on the surface of the counter electrode substrate;
    Forming the ultraviolet curable conductive material at the tip of the cured first thermosetting conductive material or the second thermosetting conductive material;
    The manufacturing method of the photovoltaic module of Claim 11.
  13.  前記熱硬化性絶縁材および前記紫外線硬化性絶縁材を形成する工程は、
     前記作用極基板の表面に第1熱硬化性絶縁材を形成して硬化する工程と、
     前記対極基板の表面に前記紫外線硬化性絶縁材を形成する工程と、を有する、
     請求項11に記載の光発電モジュールの製造方法。
    The step of forming the thermosetting insulating material and the ultraviolet curable insulating material,
    Forming and curing a first thermosetting insulating material on the surface of the working electrode substrate;
    Forming the ultraviolet curable insulating material on the surface of the counter electrode substrate,
    The manufacturing method of the photovoltaic module of Claim 11.
  14.  前記熱硬化性絶縁材および前記紫外線硬化性絶縁材を形成する工程は、
     前記対極基板の表面に第2熱硬化性絶縁材を形成して硬化する工程と、
     前記作用極基板の表面に紫外線硬化性絶縁材を形成する工程と、を有する、
     請求項11に記載の光発電モジュールの製造方法。
    The step of forming the thermosetting insulating material and the ultraviolet curable insulating material,
    Forming and curing a second thermosetting insulating material on the surface of the counter electrode substrate;
    Forming an ultraviolet curable insulating material on the surface of the working electrode substrate,
    The manufacturing method of the photovoltaic module of Claim 11.
  15.  前記第1熱硬化性導電材および前記第2熱硬化性導電材のうち、少なくとも一方の熱硬化性導電材の幅は、前記紫外線硬化性導電材よりも狭い、
     請求項8乃至請求項10のいずれか1項に記載の光発電モジュールの製造方法。
    Of the first thermosetting conductive material and the second thermosetting conductive material, the width of at least one of the thermosetting conductive materials is narrower than the ultraviolet curable conductive material,
    The manufacturing method of the photovoltaic module of any one of Claims 8 thru | or 10.
PCT/JP2015/062034 2014-05-12 2015-04-21 Solar power generation module and production method for solar power generation module WO2015174219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-098444 2014-05-12
JP2014098444 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174219A1 true WO2015174219A1 (en) 2015-11-19

Family

ID=54479763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062034 WO2015174219A1 (en) 2014-05-12 2015-04-21 Solar power generation module and production method for solar power generation module

Country Status (1)

Country Link
WO (1) WO2015174219A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004556A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
JP2008226782A (en) * 2007-03-15 2008-09-25 Fujikura Ltd Photoelectric conversion element and its manufacturing method
WO2011125843A1 (en) * 2010-04-02 2011-10-13 株式会社フジクラ Electronic device and method for manufacturing same
WO2014038570A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004556A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
JP2008226782A (en) * 2007-03-15 2008-09-25 Fujikura Ltd Photoelectric conversion element and its manufacturing method
WO2011125843A1 (en) * 2010-04-02 2011-10-13 株式会社フジクラ Electronic device and method for manufacturing same
WO2014038570A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module

Similar Documents

Publication Publication Date Title
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5185550B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2007018909A (en) Manufacturing method for photoelectric conversion device
US8742248B2 (en) Photoelectric conversion module and method of manufacturing the same
JP5324793B2 (en) Dye-sensitized solar cell
JP4620748B2 (en) Dye-sensitized solar cell
KR101219351B1 (en) Dye-sensitized solar cell module and method for manufacturing the same
JP2015191986A (en) Dye-sensitized solar cell and method for manufacturing the same
WO2015174219A1 (en) Solar power generation module and production method for solar power generation module
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP6005647B2 (en) Vertical electrical connector for photoelectrochemical cells
JP5485425B2 (en) Photoelectric conversion element
JP4376707B2 (en) Transparent solar cell module and manufacturing method thereof
JP6076573B1 (en) Photoelectric conversion element
WO2020203443A1 (en) Dye-sensitized solar cell
TWI639261B (en) Dye-sensitized photovoltaic cell, module, and manufacturing method thereof
JP5214680B2 (en) Photoelectric conversion element and manufacturing method thereof
JP6697335B2 (en) Photoelectric conversion element
CN108231421B (en) Dye-sensitized photovoltaic cell, dye-sensitized photovoltaic module, and method for manufacturing the same
TW201324815A (en) Dye-sensitised solar cell module, component for a dye-sensitised solar cell module and method of manufacturing the same
TW201635611A (en) Dye-sensitized solar cell and method thereof
WO2017188221A1 (en) Base member assembly and method for manufacturing same
JP5160854B2 (en) Method for producing dye-sensitized solar cell element
KR101284808B1 (en) Manufacturing method for flexible solar cell
JP5367670B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15791909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP