WO2015174091A1 - Rotating electric machine for internal combustion engine and method for manufacturing same - Google Patents

Rotating electric machine for internal combustion engine and method for manufacturing same Download PDF

Info

Publication number
WO2015174091A1
WO2015174091A1 PCT/JP2015/002437 JP2015002437W WO2015174091A1 WO 2015174091 A1 WO2015174091 A1 WO 2015174091A1 JP 2015002437 W JP2015002437 W JP 2015002437W WO 2015174091 A1 WO2015174091 A1 WO 2015174091A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase coil
winding
phase
magnetic poles
magnetic pole
Prior art date
Application number
PCT/JP2015/002437
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 疋田
金光 憲太郎
陽介 土屋
Original Assignee
デンソートリム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンソートリム株式会社 filed Critical デンソートリム株式会社
Priority to CN201580025471.0A priority Critical patent/CN106464109B/en
Publication of WO2015174091A1 publication Critical patent/WO2015174091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings prior to their mounting into the machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • the invention disclosed herein relates to a rotating electrical machine for an internal combustion engine connected to the internal combustion engine and a method for manufacturing the same.
  • Patent Documents 1-4 disclose a rotating electrical machine for an internal combustion engine connected to the internal combustion engine.
  • This rotating electrical machine can function as a generator and / or a starter.
  • the rotating electrical machine outputs a reference position signal for the ignition device of the internal combustion engine.
  • This rotating electrical machine includes a rotational position sensor for detecting the rotational position of the rotor in order to function as a starter. Further, the rotating electrical machine includes a rotational position sensor for outputting a reference position signal for the ignition device.
  • Patent Document 1 discloses a stator coil that can be used in the rotating electric machine.
  • the stator coil has a plurality of multiphase winding groups, for example, two three-phase winding groups.
  • the stator coil is wound around a salient pole type stator core.
  • Patent Document 1 discloses in detail a winding method of one phase coil of one three-phase winding group.
  • Patent Document 1 does not disclose an efficient arrangement as a whole of the stator coil wound around the stator core.
  • the whole or a part of a phase coil that provides one phase of one three-phase winding group for example, a u-phase coil
  • a phase coil that provides one phase of one three-phase winding group for example, a u-phase coil
  • other phase coils and other groups of coils are wound on the stator core. If a plurality of coils can be wound in a series of winding strokes, the efficiency for manufacturing the entire stator coil can be improved. For example, continuously winding between different groups during different phases contributes to improving the efficiency of the winding process.
  • lead wires at both ends of the coil are provided in the winding process.
  • the wire of the coil is drawn out from the stator core by a predetermined length in the winding process.
  • the coil wire is arranged as a jumper wire so as to extend along the circumferential direction of the stator core.
  • the jumper wire provided in the winding process is cut short to fit the shape of the product. For this reason, in the prior art, the length of the discarded wire may be long.
  • One of the objects of the invention is to provide a rotating electrical machine for an internal combustion engine having a stator coil that can be efficiently manufactured and a method for manufacturing the same.
  • One of the objects of the invention is to provide a rotating electrical machine for an internal combustion engine that can continuously wind a plurality of phase coils and form a lead wire from a short jumper wire between them, and a method for manufacturing the same. is there.
  • One of the objects of the present invention is to provide a rotating electrical machine for an internal combustion engine having a range in which there is neither a leader line nor a jumper line on the end face of the stator core, and a method for manufacturing the same.
  • the rotating electrical machine for an internal combustion engine includes a rotor (21) in which a permanent magnet (23) is disposed on an inner surface of a rotor yoke (22) connected to a rotation shaft of the internal combustion engine (12), and a body (13) of the internal combustion engine (12). ) And a stator core (32) which is arranged inside the rotor and forms a plurality of magnetic poles (32a) facing the permanent magnet on the radially outer side, and a plurality of three-phase winding groups provided on the stator core And a stator (31) having a stator coil (33).
  • one three-phase winding group includes a first phase coil concentratedly wound in a predetermined winding direction with respect to the magnetic pole, and a winding direction opposite to the first phase coil with respect to the magnetic pole And a plurality of phase coils (u1, v1, w1) including a second phase coil concentratedly wound on.
  • the lead wire for the first phase coil and the lead wire for the second phase coil can be arranged apart by one or two magnetic poles.
  • two phase coils belonging to one three-phase winding group can be wound continuously. Therefore, a rotating electrical machine for an internal combustion engine having a stator coil that can be efficiently manufactured is provided.
  • the rotating electrical machine for an internal combustion engine includes a rotor (21) in which a permanent magnet (23) is disposed on an inner surface of a rotor yoke (22) connected to a rotation shaft of the internal combustion engine (12), and a body (13) of the internal combustion engine (12). ) And a stator core (32) which is arranged inside the rotor and forms a plurality of magnetic poles (32a) facing the permanent magnet on the radially outer side, and a plurality of three-phase winding groups provided on the stator core And a stator (31) having a stator coil (33).
  • a first phase coil included in one three-phase winding group is obtained by concentrating winding wires (33a) in the first winding direction with respect to one magnetic pole. From the step (P11, P21) to be formed and the second magnetic pole immediately after the end of winding of the first phase coil, or the second magnetic pole from which one magnetic pole is skipped, in the second winding direction opposite to the first winding direction.
  • the subsequent phase coil is wound on the adjacent magnetic pole or the second magnetic pole from which one magnetic pole is skipped.
  • the distance in the circumferential direction between the two phase coils can be shortened, and these two phase coils can be wound continuously.
  • FIG. 1 It is sectional drawing of the rotary electric machine for internal combustion engines which concerns on 1st Embodiment of invention. It is a typical perspective view which shows a winding machine. It is a winding figure showing the stator coil of a 1st embodiment. It is process drawing which shows a winding process as a symbol. It is a winding figure showing the stator coil of a 2nd embodiment. It is a winding figure showing the stator coil of a 3rd embodiment. It is a winding figure showing the stator coil of a 4th embodiment. It is a winding figure showing the stator coil of a 5th embodiment. It is a winding figure showing the stator coil of a 6th embodiment.
  • stator coil of a 7th embodiment It is a winding figure showing the stator coil of an 8th embodiment. It is a winding figure showing the stator coil of a 9th embodiment. It is a winding figure showing the stator coil of a 10th embodiment. It is a winding figure showing the stator coil of an 11th embodiment. It is a perspective view which shows the stator of 11th Embodiment. It is a connection diagram which shows the stator coil of 11th Embodiment. It is a winding figure showing the stator coil of a 12th embodiment. It is a perspective view which shows the stator of 12th Embodiment.
  • a rotating electrical machine for an internal combustion engine (hereinafter simply referred to as a rotating electrical machine) 10 is also called a generator motor or an AC generator starter.
  • the rotating electrical machine 10 is electrically connected to an electric circuit 11 including an inverter circuit (INV) and a control device (ECU).
  • the electric circuit 11 provides a three-phase power conversion circuit.
  • the electrical circuit 11 provides a rectifier circuit that rectifies the AC power that is output when the rotating electrical machine 10 functions as a generator and supplies power to an electrical load including a battery.
  • the electric circuit 11 provides a signal processing circuit that receives a reference position signal for ignition control supplied from the rotating electrical machine 10.
  • the electric circuit 11 may provide an ignition controller that performs ignition control.
  • the electric circuit 11 provides a drive circuit that causes the rotating electrical machine 10 to function as a starter motor.
  • the electric circuit 11 receives from the rotating electrical machine 10 a rotational position signal for causing the rotating electrical machine 10 to function as an electric motor, and controls the energization of the rotating electrical machine 10 according to the detected rotational position to thereby start the rotating electrical machine 10. It functions as a motor.
  • the rotating electrical machine 10 is assembled to the internal combustion engine 12.
  • the internal combustion engine 12 includes a body 13 and a rotary shaft 14 that is rotatably supported by the body 13 and rotates in conjunction with the internal combustion engine.
  • the rotating electrical machine 10 is assembled to the body 13 and the rotating shaft 14.
  • the body 13 is a structure such as a crankcase or a transmission case of the internal combustion engine 12.
  • the rotating shaft 14 is a crankshaft of the internal combustion engine 12 or a rotating shaft interlocking with the crankshaft.
  • the rotating shaft 14 rotates when the internal combustion engine 12 is operated, and drives the rotating electrical machine 10 to function as a generator.
  • the rotating shaft 14 is a rotating shaft that can start the internal combustion engine 12 by the rotation of the rotating electrical machine 10 when the rotating electrical machine 10 functions as an electric motor.
  • the rotating electrical machine 10 includes a rotor 21, a stator 31, and a sensor unit 41.
  • the entire rotor 21 has a cup shape.
  • the rotor 21 is positioned with its open end facing the body 13.
  • the rotor 21 is fixed to the end of the rotating shaft 14.
  • the rotor 21 rotates together with the rotating shaft 14.
  • the rotor 21 provides a field by a permanent magnet.
  • the rotor 21 has a cup-shaped rotor yoke (rotor core) 22.
  • the rotor yoke 22 is connected to the rotating shaft 14 of the internal combustion engine 12.
  • the rotor yoke 22 has an inner cylinder fixed to the rotating shaft 14, an outer cylinder positioned on the radially outer side of the inner cylinder, and an annular bottom plate extending between the inner cylinder and the outer cylinder.
  • the rotor yoke 22 provides a yoke for a permanent magnet described later.
  • the rotor yoke 22 is made of magnetic metal.
  • the rotor 21 has a permanent magnet 23 disposed on the inner surface of the rotor yoke 22.
  • the permanent magnet 23 is fixed inside the outer cylinder.
  • the permanent magnet 23 has a plurality of segments. Each segment is partially cylindrical.
  • the permanent magnet 23 provides a plurality of N poles and a plurality of S poles inside thereof.
  • the permanent magnet 23 provides at least a field.
  • the permanent magnet 23 also provides a partial special magnetic pole for providing a reference position signal for ignition control.
  • the special magnetic pole is provided by a partial magnetic pole different from the magnetic pole arrangement for the field.
  • the permanent magnet 23 is fixed with respect to the axial direction and the radial direction by a holding cup 24 arranged on the radially inner side.
  • the holding cup 24 is made of a thin nonmagnetic metal.
  • the holding cup 24 is fixed to the rotor yoke 22.
  • the rotor 21 is fixed to the rotating shaft 14.
  • the rotor 21 and the rotating shaft 14 are connected via a positioning mechanism in the rotational direction such as key fitting.
  • the rotor 21 is fixed by being fastened to the rotary shaft 14 by a fixing bolt 25.
  • the stator 31 is an annular member.
  • the stator 31 is disposed between the rotor 21 and the body 13.
  • the stator 31 has a through hole that can receive the rotating shaft 14 and the inner cylinder of the rotor yoke 22.
  • the stator 31 has an outer peripheral surface that faces the inner surface of the rotor 21 via a gap.
  • a plurality of magnetic poles are arranged on the outer peripheral surface. These magnetic poles are arranged opposite to the field of the rotor 21.
  • the stator 31 has an armature winding.
  • the stator 31 has multiphase armature windings.
  • the stator 31 is fixed to the body 13.
  • the stator 31 is a three-phase multipolar stator having a plurality of magnetic poles and three-phase windings.
  • the stator 31 has a stator core 32.
  • the stator core 32 is disposed inside the rotor 21 by being fixed to the body 13 of the internal combustion engine 12.
  • the stator core 32 forms a plurality of magnetic poles facing the permanent magnet 23 on the radially outer side.
  • the stator core 32 is formed by laminating electromagnetic steel sheets formed in a predetermined shape so as to form a plurality of magnetic poles.
  • the stator core 32 provides a plurality of magnetic poles facing the inner surface of the permanent magnet 23. A gap is provided between the plurality of magnetic poles of the stator core 32.
  • the stator 31 has a stator coil 33 wound around a stator core 32.
  • the stator coil 33 provides an armature winding.
  • An insulator made of an insulating material is disposed between the stator core 32 and the stator coil 33.
  • the stator coil 33 is a three-phase winding.
  • the stator coil 33 can selectively function the rotor 21 and the stator 31 as a generator or an electric motor.
  • the stator 31 is fixed to the body 13.
  • the stator 31 and the body 13 are connected via a rotational positioning mechanism, for example, a fixing bolt 34.
  • the stator 31 is fixed by being fastened to the body 13 by a plurality of fixing bolts 34.
  • the sensor unit 41 is fixed to the stator 31.
  • the sensor unit 41 is disposed between the stator core 32 and the body 13.
  • the sensor unit 41 is fixed to one end surface of the stator core 32.
  • the sensor unit 41 is a rotational position detector that detects the rotational position of the rotor 21 by detecting the magnetic flux supplied by the permanent magnet 23 provided in the rotor 21.
  • the sensor unit 41 has a plurality of rotational position sensors 43.
  • the plurality of rotational position sensors 43 are disposed between the magnetic poles and detect the rotational position of the rotor 21 by detecting the magnetic flux of the permanent magnet 23.
  • the plurality of rotational position sensors 43 are disposed away from each other in the circumferential direction with respect to the rotational axis of the rotor 21.
  • the reference position for ignition control is indicated by the position of the special magnetic pole provided by the permanent magnet 23.
  • the rotational position of the rotor 21 is also the rotational position of the rotating shaft 14. Therefore, a reference position signal for ignition control can be obtained by detecting the rotational position of the rotor 21.
  • the rotational position of the rotor 21 is indicated by the position of the field provided by the permanent magnet 23 in the rotational direction. Therefore, the rotating electrical machine 10 can function as an electric motor by detecting the rotational position of the rotor 21 and controlling the energization to the armature winding according to the detected rotational position.
  • the rotational position sensor 43 detects the rotational position of the rotor 21 for causing the rotating electrical machine 10 to function as at least an electric motor.
  • the rotating electrical machine 10 can function as a generator and an electric motor, and can selectively function as either of them.
  • the sensor unit 41 accommodates the circuit component 42.
  • the circuit component 42 includes a substrate, an electric element mounted on the substrate, and an electric wire.
  • the sensor unit 41 accommodates the rotational position sensor 43.
  • the sensor unit 41 is fixed to the stator 31 with fixing bolts 44.
  • the sensor unit 41 is fixed to the stator 31 at the radially inner portion. Further, the sensor unit 41 is positioned between the stator 31 and the body 13 at a radially outer portion.
  • the sensor unit 41 is elastically pressurized between the stator 31 and the body 13 and fixed between them.
  • the sensor unit 41 has a case 51.
  • the case 51 is made of a resin material.
  • the case 51 can partially have a metal part.
  • the case 51 accommodates and holds the circuit component 42 and the rotational position sensor 43.
  • the rotational position sensor 43 is connected to the circuit component 42.
  • the case 51 has a shape corresponding to a cross section of a polygonal cylinder, for example, a trapezoidal cylinder, and has an outer edge extending approximately corresponding to the radially outer edge of the stator 31.
  • the case 51 has a container 52 for accommodating the circuit component 42.
  • the container 52 is made of a resin material.
  • the container 52 has a box shape in which a surface facing the body 13 is opened.
  • the circuit component 42 is accommodated in the container 52 and fixed.
  • the case 51 has at least one cover 53 for accommodating and supporting at least one rotational position sensor 43.
  • the rotational position sensor 43 is fixed in the cover 53.
  • the cover 53 is a bottomed cylindrical member formed so as to extend from the bottom surface of the container 52.
  • the cover 53 is provided on the radially outer side.
  • the cover 53 is inserted into the gap between the magnetic poles.
  • the cover 53 is integrally formed to be continuous from the container 52 with the same resin material as the container 52.
  • the inside of the cover 53 communicates with the inside of the container 52.
  • the sensor unit 41 has a plurality of covers 53.
  • the cover 53 has a shape that can be called a finger shape or a tongue shape extending from the container 52.
  • the cover 53 can also be called a sheath for the rotational position sensor 43.
  • the plurality of covers 53 include one cover 53 for a rotational position sensor for detecting a reference position for ignition control and three covers 53 for rotational position sensors for motor control.
  • Each rotation position sensor 43 is accommodated in each cover 53.
  • the rotational position sensor 43 detects the magnetic flux supplied from the permanent magnet 23.
  • the rotational position sensor 43 is provided by a Hall sensor, an MRE sensor, or the like. This embodiment has one rotational position sensor for ignition control and three rotational position sensors for motor control.
  • the rotational position sensor 43 is electrically connected to the circuit component 42 by a sensor terminal disposed in a cavity in the cover 53.
  • the cover 53 is inserted into the gap between the magnetic poles of the stator core 32.
  • a cover 53 extending from the container 52 accommodates a rotational position sensor 43 therein.
  • the position of the rotational position sensor 43 in the axial direction is set so that the magnetic flux to be detected can be detected.
  • the cover 53, that is, the sensor unit 41 is positioned on the stator core 32 with respect to the axial direction. Details relating to the permanent magnet 23 for ignition control and motor control in this embodiment and details relating to the plurality of rotational position sensors 43 are disclosed in Japanese Patent No. 5064279, Japanese Patent Application Laid-Open No. 2013-233030, or Japanese Patent Application Laid-Open No. 2013-233030. The contents described in JP2013-27252A can be incorporated, and the description can be cited by reference.
  • the case 51 has a tightening portion 54.
  • the tightening portion 54 is provided radially inward of the container 52 with respect to the radial direction of the rotating electrical machine 10 for the internal combustion engine.
  • the tightening portion 54 is fastened to the stator 31 by the fixing bolt 44.
  • a connecting portion 55 is provided between the container 52 and the tightening portion 54 to connect them.
  • the tightening portion 54 and the connecting portion 55 extend radially inward from the container 52 and are positioned in an annular portion formed on the radially inner side of the stator core 32.
  • the fastening portion 54 and the connecting portion 55 are integrally formed so as to be continuous from the container 52 by the same resin material as that of the container 52.
  • the tightening portion 54 is positioned on the surface of the stator core 32 that faces the body 13.
  • the tightening portion 54 is provided with a female screw portion that receives the fixing bolt 44.
  • the female thread portion can be provided by forming a female thread directly in the resin material or by embedding a nut member in the resin material.
  • the fixing bolt 44 fastens the fastening portion 54 to the stator core 32.
  • the fixing bolt 44 is disposed through the stator core 32 from the surface of the stator core 32 opposite to the body 13.
  • the front end portion of the fixing bolt 44 protruding from the stator core 32 is screwed into the female thread portion of the tightening portion 54. Thereby, the sensor unit 41 is fixed to the stator core 32.
  • the sensor unit 41 occupies a fan-shaped range smaller than the circumferential half of the stator core 32. In the circumferential range that the sensor unit 41 occupies at one end of the stator core 32, the lead wire and the connecting wire of the stator coil 33 are not arranged. In other words, the sensor unit 41 is positioned at one end of the stator core 32 and in a range in which neither the lead-out wire nor the crossover wire of the stator coil 33 is arranged. This arrangement makes it possible to arrange the sensor unit 41 in a narrow gap between the stator core 32 and the body 13.
  • the stator 31 has a range in which neither a lead line nor a crossover line exists between the lead line u2b and the lead line v2a.
  • This range is provided as a sensor installation range for arranging the sensor unit 41.
  • This sensor installation range extends over a range corresponding to at least five magnetic poles 32 a in the circumferential direction of the stator core 32.
  • This sensor range includes at least four gaps with respect to the gap formed between the magnetic pole 32a and the magnetic pole 32a.
  • the plurality of rotational position sensors 43 provided in the sensor unit 41 may require four gaps. Therefore, the range where there is neither a lead wire nor a connecting wire provided at one end of the stator core 32 suppresses interference between the sensor unit 41 and the stator coil 33.
  • the container 52 has a bottom surface facing the stator core 32 side, an opening facing the body 13, and a side wall surrounding the bottom surface and the opening.
  • the plurality of covers 53 extend from the bottom surface along the axial direction of the rotating electrical machine 10 toward the gap between the magnetic poles of the stator core 32.
  • a circuit component 42 is accommodated in the container 52.
  • the inside of the container 52 is filled with a protective sealing resin 56.
  • the sealing resin 56 is a potting resin for protecting the electric circuit.
  • the sealing resin 56 is poured into the container 52 in a fluid state and is cured.
  • the inside of the container 52 is completely covered with a sealing resin 56.
  • the liquid level of the sealing resin 56 is substantially equal to or lower than the opening end of the container 52.
  • the case 51 has a stay 57.
  • the stay 57 is fixed to the body 13 by a fixing bolt 58.
  • the stay 57 is integrally formed so as to be continuous from the container 52 by the same resin material as the container 52.
  • the sensor unit 41 has a lead wire 45 for external connection for taking out a signal output from the rotational position sensor 43 to the outside.
  • the sensor unit 41 has a plurality of lead wires 45 for extracting signals from the plurality of rotational position sensors 43.
  • the plurality of lead wires 45 are bundled between the sensor unit 41 and the electric circuit 11 to provide a wire bundle.
  • the rotating electrical machine 10 has a power line 46 that connects the stator coil 33 and the electric circuit 11.
  • the power line 46 is connected to the lead wire of the stator coil 33.
  • the electric power line 46 supplies the electric circuit 11 with electric power induced in the stator coil 33 when the rotating electrical machine 10 functions as a generator.
  • the electric power line 46 supplies electric power for exciting the stator coil 33 from the electric circuit 11 to the stator coil 33 when the rotating electrical machine 10 functions as an electric motor.
  • the power line 46 includes a number of electric wires corresponding to the number of phases of the stator coil 33. For example, when the stator coil 33 has two three-phase winding groups, the power line 46 can include six electric wires. As a result, the six-phase coils are optimally used when functioning as an electric motor and when functioning as a generator.
  • FIG. 2 shows an example of a winding device 70 for the stator coil 33 used in the method for manufacturing the rotating electrical machine 10.
  • the winding device 70 includes an index machine 71, a flyer type winding machine 72, and a jumper wire holder 73.
  • the winding device 70 forms the stator coil 33 by winding a wire 33 a around the stator core 32.
  • the strand 33a is one copper wire or several bundled copper wires.
  • the stator core 32 is a salient pole type iron core having a plurality of magnetic poles 32a protruding outward in the radial direction. In this embodiment, the stator core 32 includes 18 magnetic poles 32a. Eighteen magnetic poles 32a are used to provide two three-phase winding groups.
  • Nine magnetic poles 32a are used to provide one three-phase winding group.
  • one magnetic pole 32a to be subjected to a winding process and two magnetic poles 32a on both sides thereof are shown.
  • the winding device 70 winds the wire 33a around the plurality of magnetic poles 32a based on a predetermined order and a winding direction.
  • the index machine 71 holds the stator core 32.
  • the index machine 71 positions the stator core 32 so that one magnetic pole 32 a of the stator core 32 is positioned at a work position facing the winding machine 72.
  • the relative position between the stator core 32 and the winding machine 72 is changed by the index machine 71.
  • the index machine 71 can be provided by a rotary index table that rotates the stator core 32.
  • the stator core 32 is rotated around the rotation axis IDX.
  • the rotation direction of the stator core 32 by the index machine 71 is also referred to as an index direction or a feed direction.
  • the index machine 71 can rotate the stator core 32 in the first feed direction IDR1 and the second feed direction IDR2 opposite to the first feed direction IDR1.
  • the first feed direction IDR1 is counterclockwise (forward direction +) when viewed from above, and the second feed direction IDR2 is clockwise (reverse direction-).
  • the winding machine 72 is a flyer-type winding machine having a flyer capable of rotating around the magnetic pole 32a.
  • the winding machine 72 includes a supply machine that supplies the wire 33a.
  • the flyer winds the wire 33a around the magnetic pole 32a of interest by rotating around the rotation axis FYX.
  • the winding machine 72 can rotate the flyer in both directions.
  • the winding machine 72 can rotate the flyer in both the first winding direction FYR1 and the second winding direction FYR2.
  • the first winding direction FYR1 is counterclockwise (left-handed L)
  • the second winding direction FYR2 is clockwise (right-handed R).
  • the jumper wire holder 73 draws and holds the wire 33a away from the stator core 32 in the winding process in order to form a lead wire of the stator coil 33.
  • the jumper wire holder 73 can have a plurality of claws for holding the jumper wire JMP drawn out from the stator core 32 for a long time.
  • the nail can be provided by a hook on which the jumper wire JMP is hooked.
  • the jumper line holder 73 can hold a plurality of jumper lines JMP.
  • FIG. 3 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • 18 squares indicate magnetic poles 32a.
  • Symbols u, v, and w illustrated in the rectangle indicate phases provided by the magnetic pole 32a.
  • Symbols L and R shown in the quadrangle indicate the winding direction of the wire 33a around the magnetic pole 32a.
  • the solid line drawn around the rectangle indicates the strand 33a.
  • the winding direction of the wire 33a is shown by showing only one turn.
  • the strand 33a is wound a plurality of times around the magnetic pole 32a.
  • one concentrated winding coil wound around one magnetic pole 32a is called a single coil.
  • multiple single coils connected in series are called phase coils or phases.
  • the symbol START attached to one end of the strand 33a indicates the initial position of the winding process, that is, the start end.
  • a symbol END attached to the other end of the wire 33a indicates the final position of the winding process, that is, the end.
  • Symbols u1a, u1b, v1a, v1b, w1a, and w1b indicate leader lines of the three-phase winding group as the first group.
  • Symbols u2a, u2b, v2a, v2b, w2a, and w2b indicate leader lines of the three-phase winding group as the second group.
  • the symbol a indicates a leader line for providing three output ends in the star connection.
  • the symbol b indicates a leader line for providing a neutral point connection in the star connection.
  • symbols SJ1 and SJ2 indicate crossovers for connecting a plurality of single coils included in one phase in one group in series.
  • the connecting wires SJ ⁇ b> 1 and SJ ⁇ b> 2 are laid along the stator core 32 without being separated from the stator core 32.
  • the stator coil 33 has a plurality of crossover wires SJ1 and SJ2.
  • the plurality of crossover wires SJ1 and SJ2 have a plurality of crossover wires SJ1 for the three-phase winding group as the first group and a plurality of crossover wires SJ2 for the three-phase winding group as the second group. .
  • a broken line indicates a jumper line JMP.
  • the broken line indicates that two lead lines connected by the broken line are obtained by cutting one jumper line JMP.
  • the direction of the broken arrow indicates the feed direction of the index machine 71 when forming the jumper line JMP.
  • Symbols PJ1a, PJ1b, PJ2a, and PJ2b indicate interphase jumper wires positioned between different phase coils in one group.
  • the symbol GJ indicates a jumper line between groups located between different groups.
  • a sensor installation range in which the sensor unit 41 is provided is shown.
  • the sensor unit 41 is formed and provided at one end of the stator core 32 so as to extend over a sensor installation range corresponding to at least the plurality of magnetic poles 32 a in the circumferential direction of the stator core 32.
  • the six phase coils are arranged only at one end of the stator core 32 and have a plurality of lead wires arranged outside the sensor installation range.
  • the six phase coils have a plurality of connecting wires SJ1 and SJ2 that connect single coils arranged around the magnetic pole 32a in series.
  • the plurality of crossover lines include a plurality of crossover lines SJ1 arranged outside the sensor installation range at one end of the stator core 32.
  • the plurality of crossover wires have a plurality of crossover wires SJ2 arranged at the other end of the stator core 32 in the sensor installation range.
  • the stator coil 33 has three-phase winding groups u1, v1, and w1 that form a first group, and three-phase winding groups u2, v2, and w2 that form a second group.
  • Three phase winding groups u1, v1, and w1 forming the first group are arranged on nine magnetic poles 32a located in a half region in the circumferential direction of the stator core 32.
  • Three-phase winding groups u2, v2, and w2 forming the second group are arranged on the nine magnetic poles 32a located in the remaining half region of the stator core 32 in the circumferential direction.
  • phase coils u1, v1, and w1 forming the first group are also referred to as a first group, a first phase coil u1, a first group, a second phase coil w1, and a first group, a third phase coil v1, respectively.
  • the phase coils u2, v2, and w2 forming the second group are also referred to as a second group first phase coil u2, a second group second phase coil w2, and a second group third phase coil v2, respectively.
  • the first group of phase coils u1 are wound in the first winding direction (left-handed winding L) and the first feeding direction IDR1 (+) from the start end START, that is, the lead wire u1a to the lead wire u1b.
  • the winding direction and the feeding direction can be identified by the overlapping relationship of the windings.
  • the first group of phase coils w1 are wound from the lead wire w1a to the lead wire w1b in the second winding direction (right-handed R) and the second feed direction IDR2 ( ⁇ ).
  • the first group of phase coils v1 is wound from the lead wire v1a to the lead wire v1b in the first winding direction (left-handed L) and the first feed direction IDR1 (+).
  • the second group of phase coils u2 are wound from the lead wire u2a to the lead wire u2b in the first winding direction (left-handed L) and the second feed direction IDR2 ( ⁇ ).
  • the second group of phase coils w2 is wound from the lead wire w2a to the lead wire w2b in the second winding direction (right-handed R) and the first feed direction IDR1 (+).
  • the second group phase coil v2 is wound from the lead wire v2a to the lead wire v2b in the first winding direction (left-handed L) and the second feed direction IDR2 ( ⁇ ).
  • one three-phase winding group includes a first phase coil u1 concentratedly wound in a predetermined winding direction with respect to the magnetic pole 32a, and a winding direction opposite to the first phase coil u1 with respect to the other magnetic pole 32a.
  • the three-phase winding group further includes a third phase coil v1 that is concentratedly wound around the magnetic pole 32a in the same winding direction as the first phase coil u1.
  • the winding direction (R) of one phase coil is that of the other two phase coils (phase coil u1 and phase coil v1).
  • the direction is opposite to the winding direction (L).
  • the other three-phase winding groups are a first-phase coil u2 and a third-phase coil v2 concentratedly wound in the same direction with respect to the magnetic pole 32a, and a winding opposite to the first-phase coil u2 with respect to the other magnetic pole 32a.
  • a plurality of phase coils u2, v2, and w2 including a second phase coil w2 concentratedly wound in the direction are provided.
  • the lead wire u1b at the end of winding of the phase coil u1 and the lead wire w1a at the start of winding of the phase coil w1 are positioned apart by one magnetic pole 32a.
  • the lead wire w1b at the end of winding of the phase coil w1 and the lead wire v1a at the start of winding of the phase coil v1 are positioned apart by one magnetic pole 32a.
  • the lead line u1b and the lead line w1a are provided by the interphase jumper line PJ1a.
  • the lead line w1b and the lead line v1a are provided by an interphase jumper line PJ1b.
  • the lead wire that is separated in the circumferential direction by one magnetic pole 32a makes it possible to continuously wind two phase coils while suppressing the length of the wire 33a required for the interphase jumper wire.
  • a plurality of crossover wires SJ1 for one phase coil of the first group is disposed on one end face of the stator core 32 in the axial direction.
  • a plurality of crossover wires SJ2 for one phase coil of the second group is disposed on the other end face of the stator core 32 in the axial direction.
  • the connecting lines SJ1 and SJ2 of the two phase coils corresponding to the first group and the second group are arranged on the opposite surfaces of the stator core 32, respectively.
  • the connecting wire for any phase coil in one group is located on a different surface on the stator core 32 from the connecting wire for the corresponding phase coil in the other group.
  • all the crossover lines SJ1 in the first group and all the crossover lines SJ2 in the second group are arranged on the opposite surfaces of the stator core 32, respectively.
  • the crossover wires distributed on both sides of the stator core 32 can facilitate the use of the end face of the stator core 32.
  • the first group neutral point connection and the second group neutral point connection can be formed on the end face of the stator core 32. More specifically, it is easy to lay a leader line for connecting two neutral points. In addition, the degree of freedom in selecting the installation positions of the two neutral point connections is increased. Also, the joining work for forming two neutral point connections is facilitated.
  • FIG. 4 shows the operation of the winding device 70 in the winding process.
  • a winding process in a plurality of embodiments is shown.
  • a column EMB indicates numbers 1-10 of the embodiment.
  • column G1 indicates the winding order of the phase coils in the first group.
  • the description “uwv” indicates that the u-phase coil, the w-phase coil, and the v-phase coil are located within the half of the stator core 32.
  • the description of uw / v indicates that the u-phase coil and the w-phase coil are located within the half of the stator core 32, and the v-phase coil is located within the remaining half of the stator core 32.
  • Columns P11, P12, and P13 indicate the winding direction (R or L) and the feed direction (+ or ⁇ ) of the index machine 71 in the process for forming the first group of three phase coils.
  • the strand 33a is continuously wound around the stator core 32 from the start end START to the end end END. Therefore, a plurality of phase coils for a plurality of multi-phase winding groups are provided by a single wire 33 a continuously wound around the stator core 32.
  • the column GJ indicates the feed direction (+ or-) of the index machine 71 and the feed in the circumferential direction in the process for forming the inter-group jumper line GJ connecting the first group and the second group.
  • Amount (1 or 2) is indicated.
  • column G2 indicates the winding order of the phase coils in the second group.
  • Columns P21, P22, and P23 indicate the winding direction (R or L) and the feed direction (+ or ⁇ ) of the indexing machine 71 in the process for forming the second group of three-phase coils.
  • Columns J21 and J22 show the feed direction (+ or-) of the index machine 71 and the feed amount (1 or 2) in the circumferential direction in the process for forming the interphase jumper line JMP in the second group.
  • the strand 33a is continuously wound around the stator core 32 from the start end START to the end end END. Therefore, all of the plurality of phase coils for the plurality of multiphase winding groups (the first group and the second group) are provided by one strand 33 a wound continuously around the stator core 32.
  • the strands 33a are wound around the stator core 32 so as to first form a first group in the range of the half of the stator core 32 and then form a second group in the range of the remaining half of the stator core 32.
  • one three-phase winding group u1, v1, w1 is arranged in one half of the stator core 32 divided in the circumferential direction, and the other three-phase winding groups u2, v2, w2 remain in the other half. It is arranged in the part.
  • the first phase coil of the first group is wound in the first winding direction and the first feed direction.
  • the winding process of the second phase coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the first group of first phase coils.
  • This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in a second feeding direction opposite to that of the preceding first phase coil.
  • the winding process of the third group coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second phase coil of the first group.
  • the third phase coil is wound in the first winding direction opposite to the preceding second phase coil and in the first feeding direction opposite to that of the preceding second phase coil.
  • the first phase coil of the second group is wound in the same first winding direction as the last phase coil of the first group and the second feeding direction opposite to that.
  • the winding process of the second group of second phase coils is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second group of first phase coils.
  • This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in a first feeding direction opposite to that of the preceding first phase coil.
  • the winding process of the second group of third phase coils is started from the magnetic pole 32a immediately adjacent to the end of winding of the second group of second phase coils.
  • the third phase coil is wound in a first winding direction opposite to the preceding second phase coil and in a second feeding direction opposite to that of the preceding second phase coil.
  • One of all phase coils of the first group or all of the phase coils of the second group is wound so that the winding start and end of winding, i.e., the lead wire, are positioned at one end of the stator core 32 and the jumper is disposed at the same end. It is burned.
  • the other one of all the phase coils of the first group or all the phase coils of the second group is wound so that the lead wire is positioned at one end of the stator core 32 and the jumper wire is disposed at the other end.
  • first winding direction and the second winding direction can be interchanged.
  • first feed direction and the second feed direction can be interchanged.
  • the first group and the second group can be interchanged in the order of the winding process.
  • the winding process is executed by the winding device 70.
  • an operator or a supply machine attaches the stator core 32 to the index machine 71.
  • the index machine 71 positions the stator core 32 at the initial position. In the illustrated example, the index machine 71 positions one magnetic pole 32 a at a position facing the winding machine 72.
  • the winding machine 72 positions the wire 33a at the start end START.
  • the winding machine 72 positions the start end START at one end of the stator core 32.
  • (G1) In this step, three phase coils u1, v1, and w1 for one group, that is, the first group among the plurality of multiphase winding groups are formed.
  • This step includes the following steps P11 to P13.
  • This step is a step of forming the first one phase coil of one group. This process is indicated as L + in the P11 column of FIG. This process includes the following steps.
  • the winding machine 72 winds the wire 33a around one magnetic pole 32a located in the vicinity of the start end START.
  • the winding machine 72 starts winding from one end of the stator core 32.
  • the winding machine 72 winds the wire 33a around the magnetic pole 32a in the first winding direction.
  • the winding machine 72 finishes winding the magnetic pole 32 a at one end of the stator core 32.
  • one single coil is formed.
  • the wire 33a is wound around the first group of phase coils u1 with a left-hand turn L from one end of the stator core 32.
  • One single coil winding process ends at one end of the stator core 32.
  • the winding machine 72 winds the wire 33a around the new magnetic pole 32a. That is, the process (1) is repeated. Thereafter, the index machine 71 makes the next magnetic pole 32a for the phase coil u1 face the winding machine 72. That is, the process (2) is repeated. Eventually, when a single coil is formed on the last magnetic pole 32a for the phase coil u1, the winding process for the phase coil u1 is completed.
  • the winding machine 72 ends the winding process for the phase coil u ⁇ b> 1 by positioning the wire 33 a at one end of the stator core 32. In the illustrated example, the winding process for the phase coil u1 ends at the position of the lead line u1b. When the wire 33a is thus wound around the n (three) magnetic poles 32a, the phase coil u1 is completed.
  • the feeding direction of the magnetic pole in the step of forming the first phase coil u1 the feeding direction of the magnetic pole in the step of forming the second phase coil w1
  • One direction is different from the other two.
  • This step is a step of forming the first interphase jumper line in one group.
  • the winding device 70 forms an interphase jumper line PJ1a for shifting to the process of forming the next phase coil in the same group.
  • the strand 33a is held by the jumper wire holder 73 so as to form the interphase jumper wire PJ1a.
  • the index machine 71 rotates the stator core 32 so that the magnetic pole for one of the other two phase coils in the same group is opposed to the winding machine 72. Thereby, the magnetic pole 32a for the next phase coil is positioned at a position where it can be wound.
  • the index machine 71 rotates the stator core 32 in the second feed direction ( ⁇ ) opposite to the first feed direction IDR1 (+).
  • the index machine 71 rotates the stator core 32 by one or two magnetic poles 32a.
  • the index machine 71 rotates the stator core 32 by one magnetic pole 32a.
  • the amount of rotation of the stator core 32 by the index machine 71 for forming the interphase jumper wire PJ1a corresponds to one magnetic pole 32a.
  • the interphase jumper wire PJ1a is formed by hanging the wire 33a on the jumper wire retainer 73.
  • the strand 33a is hung on the jumper wire holder 73 by moving the jumper wire holder 73 or by operating the flyer of the winding machine 72. Therefore, the strand 33a is laid so as to extend from the position of the leader line u1b to the position of the leader line w1a via the jumper wire retainer 73. This step is indicated as -1 in the J11 column of FIG.
  • This step is a step of forming the next one phase coil of one group. This step is indicated as R- in the P12 column of FIG.
  • This process includes the steps (1), (2) and (3) described above.
  • the index machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the phase coil w1.
  • the winding machine 72 winds the wire 33a around the magnetic pole 32a in the second winding direction (right winding R).
  • the index machine 71 rotates the stator core 32 in the second feed direction IDR2 ( ⁇ ). Therefore, the phase coil w1 is wound in the winding direction opposite to the previously wound phase coil u1 and in the opposite feeding direction. Thereby, the phase coil w1 from the leader line w1a to the leader line w1b is completed.
  • This step is a step of forming the next interphase jumper line in one group.
  • the winding device 70 forms the inter-phase jumper line PJ1b for shifting to the step of forming the next phase coil in the same group.
  • This step is the same as the above step J12.
  • the index machine 71 rotates the stator core 32 in the second feed direction IDR2 ( ⁇ ).
  • the index machine 71 rotates the stator core 32 so that the magnetic pole for the last phase coil in the same group faces the winding machine 72.
  • the magnetic pole 32a for the last phase coil is positioned at a position where it can be wound.
  • the interphase jumper line PJ1b is formed by hooking the strand 33a on the jumper line holder 73. This step is indicated as -1 in the J12 column of FIG.
  • This step is a step of forming the last one phase coil of one group. This process is indicated as L + in the P13 column of FIG.
  • This process includes the steps (1), (2) and (3) described above.
  • the index machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the phase coil v1.
  • the winding machine 72 winds the wire 33a around the magnetic pole 32a in the first winding direction (left-handed L).
  • the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Therefore, the phase coil v1 is wound in the winding direction opposite to the phase coil w1 wound immediately before and in the opposite feeding direction.
  • the phase coil v1 is wound in the same winding direction as the phase coil u1 wound first and the same feeding direction. Thereby, the phase coil v1 from the leader line v1a to the leader line v1b is completed.
  • This step is a step of forming an inter-group jumper line between the two groups.
  • the winding apparatus 70 forms the inter-group jumper line GJ for shifting to the process of forming the next group.
  • This step is also a step of moving the winding step to the remaining half of the stator core 32.
  • one of the magnetic poles 32a for the other group is positioned as an object of the winding process.
  • the magnetic pole 32a for the second group of phase coils u2 corresponding to the first group of winding start phase coils u1 is positioned as a target of the winding process.
  • the index machine 71 rotates the stator core 32 in the second feed direction ( ⁇ ).
  • the index machine 71 rotates the stator core 32 so that the magnetic pole for any phase coil in the next group faces the winding machine 72.
  • the magnetic pole 32a for the next group is positioned at a position where it can be wound.
  • the index machine 71 rotates the stator core 32 by six magnetic poles 32a in the second feed direction IDR2 ( ⁇ ) opposite to the first feed direction IDR1 (+) for forming the phase coil v1. . Therefore, the strand 33a is laid so as to extend from the position of the lead line v1b to the position of the lead line u2a via the jumper line holder 73.
  • the inter-group jumper wire GJ is formed by hanging the strand 33a on the jumper wire holder 73.
  • the strand 33a is hung on the jumper wire holder 73 by moving the jumper wire holder 73 or by operating the flyer of the winding machine 72. This step is indicated as -6 in the GJ column of FIG.
  • this step is a first step G1 for forming one three-phase winding group u1, v1, and w1, and a second step G2 for forming another three-phase winding group u2, v2, and w2.
  • Each of the first step and the second step includes a step of forming a first phase coil, a step of forming a second phase coil, and a step of forming a third phase coil.
  • the second step G2 includes the following steps P21 to P23.
  • This step is a step of forming the first one phase coil of another group. This step is indicated as L- in the P21 column of FIG. This process includes the following steps.
  • the winding machine 72 winds a wire 33a around one magnetic pole 32a for the second group.
  • the winding machine 72 starts winding from one end of the stator core 32.
  • the winding machine 72 winds the wire 33a around the magnetic pole 32a in the second winding direction.
  • the winding machine 72 finishes winding the magnetic pole 32 a at the other end of the stator core 32.
  • the connecting wire SJ2 can be formed at the other end of the stator core 32.
  • the wire 33a is wound around the second group of phase coils u2 with a left-hand turn L from one end of the stator core 32.
  • At least one of the first phase coil, the second phase coil, and the third phase coil is disposed in one half of the stator core 32 that is divided in the circumferential direction.
  • the phase coil is formed so that a plurality of crossover wires SJ2 connecting in series a single coil arranged around the magnetic pole 32a is arranged at the other end of the stator core 32.
  • the winding machine 72 winds the wire 33a around the new magnetic pole 32a. That is, the process (1) is repeated. At this time, the winding machine 72 starts winding from one end of the stator core 32. The winding machine 72 finishes winding the magnetic pole 32 a at the other end of the stator core 32. Thereafter, the index machine 71 makes the next magnetic pole 32a for the phase coil u2 face the winding machine 72. That is, the process (2) is repeated. Eventually, when a single coil is formed on the last magnetic pole 32a for the phase coil u2, the winding process for the phase coil u2 is completed. At this time, the winding machine 72 finishes winding the last magnetic pole 32 a at one end of the stator core 32.
  • the winding machine 72 ends the winding process for the phase coil u2 by positioning the wire 33a at one end of the stator coil 33.
  • the winding process for the phase coil u2 ends at the position of the lead wire u2b.
  • the connecting wire SJ2 is disposed at the other end of the stator core 32 while the lead wires u2a and u2b are disposed at one end of the stator core 32.
  • This step is a step of forming the first interphase jumper line in the other group.
  • winding device 70 forms interphase jumper line PJ2a for shifting to the process of forming the next phase coil in the same group.
  • the strand 33a is held by the jumper wire holder 73 so as to form the interphase jumper wire PJ2a.
  • This step is the same as step J11 described above. This step is indicated as -1 in the J21 column of FIG.
  • This step is a step of forming the next one phase coil of another group. This step is indicated as R + in the P22 column of FIG.
  • This process includes stages corresponding to (1), (2) and (3) in the above-described process P11.
  • the index machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the w2-phase coil.
  • the winding machine 72 winds the wire 33a around the magnetic pole 32a in the second winding direction (right winding R).
  • the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Therefore, the w2-phase coil is wound in the opposite winding direction to the previously wound phase coil u2 and in the opposite feeding direction. Thereby, the w2 phase coil from leader line w2a to leader line w2b is completed.
  • This step is a step of forming the next interphase jumper line in one group.
  • the winding device 70 forms the inter-phase jumper line PJ2b for shifting to the step of forming the next phase coil in the same group.
  • This step is the same as the above step J21. This step is indicated as -1 in the J22 column of FIG.
  • step J11 and step J21 provide a step of forming a jumper wire by laying the strand 33a over the magnetic pole immediately adjacent to the end of winding of the first phase coils u1, u2.
  • Step J12 and Step J22 provide a step of forming a jumper wire by laying the strand 33a over the magnetic pole 32a immediately adjacent to the end of winding of the second phase coils w1 and w2.
  • This step is a step of forming the last one phase coil of one group. This step is indicated as L- in the P23 column of FIG.
  • This process includes stages corresponding to (1), (2) and (3) in the above-described process P11.
  • the indexing machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the phase coil v2.
  • the winding machine 72 forms the end end END by positioning the wire 33 a at one end of the stator core 32.
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • Steps P12 and P22 for forming the second phase coil are performed in the second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the plurality of magnetic poles for the second phase coil. Is a step of concentrated winding of the strands in the second winding direction with respect to the magnetic poles.
  • Steps P13 and P23 for forming the third phase coil are performed by sending a plurality of magnetic poles for the third phase coil in the first feed direction from the magnetic pole immediately adjacent to the end of winding of the second phase coil. This is a step of concentrating the wires in the first winding direction.
  • the leader lines u1b, v1b, w1b are connected, and the leader lines u2b, v2b, w2b are connected.
  • the stator 31 is completed through the above steps. This step provides a step of forming a leader line by cutting a jumper line.
  • the sensor unit 41 is assembled to the stator 31. Further, the stator 31 is attached to the body 13. Thereafter, the rotor 21 is mounted to complete the method for manufacturing the rotating electrical machine 10.
  • the stator coil 33 can be formed efficiently. Specifically, a plurality of multiphase winding groups can be wound continuously in a series of winding processes. In addition, it is possible to provide a rotating electrical machine for an internal combustion engine in which the length of a jumper wire between two phase coils in one multiphase winding group is short.
  • the interphase jumper wires PJ1a, PJ1b, PJ2a, PJ2b are laid in the circumferential direction by one magnetic pole 32a. For this reason, the interphase jumper lines PJ1a, PJ1b, PJ2a, and PJ2b can be formed by the short strands 33a. Further, it is possible to suppress the amount of the strands 33a that are cut and discarded to process the interphase jumper wires PJ1a, PJ1b, PJ2a, and PJ2b into lead wires.
  • all the leader lines are arranged at one end of the stator core 32.
  • the connection for the stator coil 33 becomes easy.
  • the connecting line SJ1 for the first group and the connecting line SJ2 for the second group are arranged on different end faces of the stator core 32. For this reason, the number of crossovers at one end of the stator core 32 can be suppressed.
  • a region where neither the leader line nor the jumper line is arranged is provided on the other end surface of the stator core 32.
  • Such a crossover arrangement facilitates the arrangement of the leader lines on one end of the stator core 32.
  • such a crossover arrangement facilitates connection work such as neutral point connection on one end of the stator core 32.
  • the crossovers SJ1 and SJ2 are intensively arranged in the circumferential half of the stator core 32. This configuration provides an area for arranging the sensor unit 41 on the end face of the stator core 32.
  • FIG. 5 is a winding diagram showing the arrangement of the stator coils 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil.
  • the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+).
  • the winding process for another phase coil of the same group is executed from the magnetic pole 32a adjacent to the magnetic pole 32a. Therefore, the circumferential length of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between these two phase coils can be set to one magnetic pole 32a.
  • FIG. 6 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil.
  • the index machine 71 rotates the stator core 32 by two magnetic poles 32a in the second feed direction IDR2 ( ⁇ ).
  • the winding for another phase coil of the same group is started from the magnetic pole 32a located at the other side. A line process is performed. Therefore, the circumferential lengths of the jumper wires PJ1a and PJ2a between these two phase coils can be made equal to the two magnetic poles 32a.
  • the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+) in the processes J12 and J22 for forming the interphase jumper wires PJ1b and PJ2b. Also in this manufacturing method, after winding one phase coil of one group, the winding process for another phase coil of the same group is executed from the magnetic pole 32a adjacent to the magnetic pole 32a.
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • a plurality of magnetic poles for the second phase coil are defined as the first feed direction from the second magnetic pole from which one magnetic pole at the end of the winding of the first phase coil is skipped.
  • the wires are concentratedly wound in the second winding direction with respect to the magnetic poles by feeding in the opposite second feeding direction.
  • steps P13 and P23 for forming the third phase coil a plurality of magnetic poles for the third phase coil are sent in the first feed direction from the second magnetic pole that has skipped one magnetic pole at the end of the winding of the second phase coil. This is a step of concentrated winding of the wires in the first winding direction with respect to the magnetic poles.
  • the steps J11 and J21 provide a step of forming a jumper wire by laying an element wire 33a over the second magnetic pole 32a from which one magnetic pole 32a at the end of winding of the first phase coil is skipped.
  • the steps J12 and J22 provide a step of forming a jumper wire by laying the strand 33a over the second magnetic pole 32a from which the one magnetic pole 32a at the end of winding of the second phase coil is skipped.
  • FIG. 7 is a winding diagram showing the arrangement of the stator coils 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the w-phase coil, and the v-phase coil.
  • the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Also in this manufacturing method, after winding of one phase coil of one group, after winding one magnetic pole 32a from the magnetic pole 32a, the winding for another phase coil of the same group is started from the magnetic pole 32a located at the other side. A line process is performed.
  • the index machine 71 rotates the stator core 32 in the second feed direction IDR2 ( ⁇ ) opposite to the preceding processes J11 and J21. Let Also in this manufacturing method, after winding one phase coil of one group, the winding process for another phase coil of the same group is executed from the magnetic pole 32a adjacent to the magnetic pole 32a.
  • FIG. 8 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the w-phase coil, and the v-phase coil.
  • the index machine 71 rotates the stator core 32 by one magnetic pole 32a in the second feed direction IDR2 ( ⁇ ).
  • the index machine 71 rotates the stator core 32 by the two magnetic poles 32a in the first feed direction IDR1 (+).
  • the circumferential lengths of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils of one group can be made equal to or less than the length corresponding to the two magnetic poles 32a.
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • Steps P12 and P22 for forming the second phase coil are performed in the second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the plurality of magnetic poles for the second phase coil. Is a step of concentrated winding of the strands in the second winding direction with respect to the magnetic poles.
  • steps P13 and P23 for forming the third phase coil a plurality of magnetic poles for the third phase coil are sent in the first feed direction from the second magnetic pole that has skipped one magnetic pole at the end of the winding of the second phase coil. This is a step of concentrated winding of the wires in the first winding direction with respect to the magnetic poles.
  • FIG. 9 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil.
  • the index machine 71 rotates the stator core 32 by one magnetic pole 32a in the first feed direction IDR1 (+).
  • the index machine 71 rotates the stator core 32 by two magnetic poles 32a in the second feed direction IDR2 ( ⁇ ).
  • the circumferential lengths of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils of one group can be made equal to or less than the length corresponding to the two magnetic poles 32a.
  • FIG. 10 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • the plurality of magnetic poles 32 a on the stator core 32 are divided into two along the circumferential direction, the first group is arranged on the nine magnetic poles 32 a located in the range of the half of the stator core 32, and the rest of the stator core 32 is The second group was arranged on nine magnetic poles 32a located in the range of the half.
  • two phase coils of the first group and one phase coil of the second group are arranged in the range of the half part of the stator core 32, and in the range of the remaining half part of the stator core 32.
  • One phase coil of the first group and two phase coils of the second group are arranged. Therefore, one phase coil belonging to one three-phase winding group u1, v1, w1 is arranged in one half of the stator core 32 divided in the circumferential direction, and the other one phase coil is in the remaining half. Be placed. Furthermore, one phase coil belonging to another three-phase winding group u2, v2, w2 is arranged in one half, and the other one phase coil is arranged in the other half.
  • the wire 33a is continuously wound around the stator core 32 from the start end START to the end end END.
  • the first group of first phase coils are wound in a first winding direction and a first feed direction.
  • the winding process of the second phase coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the first group of first phase coils.
  • This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in a second feeding direction opposite to that of the preceding first phase coil.
  • the winding process of the third group coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second phase coil of the first group.
  • the third phase coil is wound in the first winding direction opposite to the preceding second phase coil and in the same second feed direction.
  • the first phase coil and the second phase coil are arranged in a range overlapping in the circumferential direction on the stator core 32, but the third phase coil is the remaining that does not overlap with the first phase coil and the second phase coil. It is arranged in the range.
  • first phase coil of the second group is wound in the second winding direction opposite to the last phase coil of the first group and the first feeding direction opposite to the first winding.
  • the winding process of the second group of second phase coils is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second group of first phase coils.
  • the second phase coil is wound in a first winding direction opposite to the preceding first phase coil and in a second feeding direction opposite to that of the preceding first phase coil.
  • the winding process of the second group of third phase coils is started from the magnetic pole 32a immediately adjacent to the end of winding of the second group of second phase coils.
  • the third phase coil is wound in the second winding direction opposite to the preceding second phase coil and in the same second feed direction.
  • the first-phase coil and the second-phase coil of the second group are arranged overlapping with the third-phase coil of the first group in the circumferential direction on the stator core 32, and the third-phase coil of the second group is The first group of first phase coils and the second phase coils are overlapped with each other.
  • the first group of two phase coils (phase coil u1 and phase coil w1) and the second group of one phase coil (phase coil v2) have a lead wire positioned at one end of the stator core 32 and a jumper wire disposed at the same end. Wrapped to do.
  • one phase coil of the first group (phase coil v1) and two phase coils of the second group (phase coils u2 and w2 phase coils) have a lead wire positioned at one end of the stator core 32 and the other end opposite to the other end. It is wound so as to arrange a crossover.
  • the lead wire and the jumper wire are arranged at one end of the stator core 32. Further, in the range of the remaining half of the stator core 32 in the circumferential direction, a lead wire is disposed at one end of the stator core 32, and a jumper is disposed at the other end of the stator core 32. Thereby, in the other end surface of the stator core 32, the area
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • Steps P12 and P22 for forming the second phase coil are performed in the second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the plurality of magnetic poles for the second phase coil. Is a step of concentrated winding of the strands in the second winding direction with respect to the magnetic poles.
  • Steps P13 and P23 for forming the third phase coil are performed by sending a plurality of magnetic poles for the third phase coil in the second feed direction from the magnetic pole immediately adjacent to the end of winding of the second phase coil. This is a step of concentrating the wires in the first winding direction.
  • FIG. 11 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil.
  • the index machine 71 is divided into two magnetic poles 32a in the second feed direction IDR2 ( ⁇ ). Only the stator core 32 is rotated. Also in this manufacturing method, the circumferential lengths of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils can be set to two magnetic poles 32a.
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • a plurality of magnetic poles for the second phase coil are defined as the first feed direction from the second magnetic pole from which one magnetic pole at the end of the winding of the first phase coil is skipped.
  • the wires are concentratedly wound in the second winding direction with respect to the magnetic poles by feeding in the opposite second feeding direction.
  • Steps P13 and P21 for forming the third phase coil a plurality of magnetic poles for the third phase coil are sent in the second feed direction from the second magnetic pole that has skipped one magnetic pole at the end of the winding of the second phase coil. This is a step of concentrated winding of the wires in the first winding direction with respect to the magnetic poles.
  • FIG. 12 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • one phase coil of the first group which is the first phase coil from the beginning of winding, is arranged in the range of the half of the stator core 32, and the first group of two coils is arranged in the range of the remaining half of the stator core 32.
  • a phase coil is arranged.
  • the wire 33a is continuously wound around the stator core 32 from the start end START to the end end END.
  • the first group of first phase coils are wound in a first winding direction and a first feed direction.
  • the winding process of the second phase coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the first group of first phase coils.
  • This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in the same first feed direction.
  • the winding process of the third group coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second phase coil of the first group.
  • the third phase coil is wound in a first winding direction opposite to the preceding second phase coil and in a second feeding direction opposite to that of the preceding second phase coil.
  • the second phase coil and the third phase coil are arranged in a range overlapping in the circumferential direction on the stator core 32, but the first phase coil is a range not overlapping with the second phase coil and the third phase coil. Placed in.
  • first phase coil of the second group is wound in the second winding direction opposite to the last phase coil of the first group and the first feeding direction opposite to the first winding.
  • the winding process of the second group of second phase coils is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second group of first phase coils.
  • the second phase coil is wound in the first winding direction opposite to the preceding first phase coil and in the same first feed direction.
  • the winding process of the second group of third phase coils is started from the magnetic pole 32a immediately adjacent to the end of winding of the second group of second phase coils.
  • This third phase coil is wound in a second winding direction opposite to the preceding second phase coil and in a second feeding direction opposite to that of the preceding second phase coil.
  • the second group second phase coil and the third phase coil are arranged overlapping with the first group first phase coil in the circumferential direction on the stator core 32, and the second group first phase coil is The second group coil and the third phase coil of the first group are overlapped.
  • phase coil u1 and w2 phase coil have a lead wire positioned at one end of the stator core 32 and a crossover wire disposed at the same end. Wrapped to do.
  • two phase coils (phase coil v1 and phase coil w1) in the first group and one phase coil (phase coil u2) in the second group are positioned at one end of the stator core 32 and the other end opposite to the other end. It is wound so as to arrange a crossover.
  • positioned is provided.
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • Steps P12 and P22 of forming the second phase coil are performed on the magnetic poles by sending a plurality of magnetic poles for the second phase coil in the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil. In this step, the strands are concentratedly wound in the second winding direction.
  • Steps P13 and P23 for forming the third phase coil include a second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the second phase coil to the plurality of magnetic poles for the third phase coil. Is a step of concentrated winding of the strands in the first winding direction with respect to the magnetic poles.
  • FIG. 13 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
  • the stator coil 33 is formed in the order of the u-phase coil, the w-phase coil, and the v-phase coil.
  • the index machine 71 rotates the stator core 32 by the two magnetic poles 32a in the first feed direction IDR1 (+).
  • steps J12 and J22 for forming the interphase jumper lines PJ1b and PJ2b the index machine 71 rotates the stator core 32 by one magnetic pole 32a in the second feed direction IDR2 ( ⁇ ).
  • the circumferential length of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils can be made equal to or shorter than the length corresponding to the two magnetic poles 32a.
  • the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles.
  • This is a concentrated winding process.
  • Steps P12 and P22 of forming the second phase coil are performed on the magnetic poles by sending a plurality of magnetic poles for the second phase coil in the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil. In this step, the strands are concentratedly wound in the second winding direction.
  • steps P13 and P23 for forming the third phase coil a plurality of magnetic poles for the third phase coil are referred to as the first feed direction from the second magnetic pole from which one magnetic pole at the end of winding of the second phase coil is skipped.
  • the wires are concentratedly wound in the first winding direction with respect to the magnetic poles by feeding in the opposite second feeding direction.
  • the eleventh column shows a method of manufacturing the rotating electrical machine of this embodiment.
  • the eleventh column further includes a step OP of laying 12 lead wires toward the opposite side on the stator 31 after the step P23 of forming the third phase coil.
  • step OP the leader line is wound around the magnetic pole 32a so as to make a half turn around the corresponding magnetic pole 32a.
  • the lead wire is wound so as to be superimposed on the already wound wire 33a.
  • the leader line is wound in a direction opposite to the winding direction in the preceding process.
  • the process OP is also called an additional winding process for additionally winding, a scooping process for scooping a lead line, or an inversion process for reversing the lead-out direction of the lead line.
  • FIG. 14 is a winding diagram showing the arrangement of the stator coil 33 on the stator 31.
  • the lead line in the first embodiment is drawn to the opposite side of the stator 31. Additional portions added to the first embodiment are indicated by thick solid lines. All leader lines have an additional portion indicated by a thick solid line.
  • the leader lines u1a, v1a, w1b each have additional portions 35u, 35v, 35w. These additional portions 35u, 35v, and 35w make a half turn around the corresponding magnetic pole 32a.
  • the additional portions 35u, 35v, 35w are wound on the winding automatically wound by the winding device 70, either mechanically or manually.
  • FIG. 15 is a perspective view showing the appearance of the stator 31 in the vicinity of the start end START.
  • a plurality of magnetic poles 32a are shown on a straight line. All the lead wires are bent into a necessary shape on the stator 31 and are laid along the stator 31 for wiring as the rotary electric machine 10 for the internal combustion engine.
  • some or all of the leader lines are bent and arranged so as to extend in the circumferential direction on the end surface of the stator 31. Additionally or alternatively, some or all of the leader lines are again arranged between the two magnetic poles 32a and are arranged to extend from the opposite end face. The process of laying the leader line is performed after all the windings are wound. At least one of the plurality of lead lines is laid so as to cross the crossover line by being bent so as to pass over the crossover lines of different phases.
  • the shape of the laid state of the leader lines u1a, w1b, v1a on the stator 31 is shown by a slightly thick solid line. At least one of the lead lines u1a, w1b, v1a is drawn from one end face in the figure to the opposite end face for star connection. In the figure, the shape when all the leader lines u1a, w1b, v1a are drawn out from the upper end face in the figure to the lower end face is shown.
  • the arrangement of the plurality of lead lines is selected so as to meet various specifications such as a connection position for the neutral point NT on the stator 31 and a connection position with the wire harness HW on the stator 31.
  • Leaders u1a, w1b, v1a bent for laying are shown as additional portions 35u, 35w, 35v.
  • the phase coil u1, the phase coil v1, and the phase coil w1 are connected by a star connection that provides a neutral point NT and three output terminals PT.
  • the phase coil u2, the phase coil v2, and the phase coil w2 are also connected by a star connection that provides the neutral point NT and the three output terminals PT.
  • a plurality of phase coils of the same phase are connected in parallel.
  • the first group of lead lines v1a, w1a, u1a are used as the output terminal PT in the star connection.
  • the first group of leader lines v1b, w1b, u1b are used for connection of the neutral point NT in the star connection.
  • the second group is configured similarly to the first group. All the leader lines are bent and laid on the stator 31 for connection.
  • Three output ends PT provided by the star connection are connected to the wire harness HW and connected to the circuit.
  • the sensor unit 41 is disposed on the same end surface of the stator 31 as the plurality of lead lines.
  • the sensor unit 41 is disposed such that a part of the cover 53 is disposed between the same magnetic pole gaps as the lead lines v2a and u2b.
  • the cover 53 is positioned at a radially outer portion between the two magnetic poles 32a.
  • the leader lines v2a and u2b are positioned in the radially inner portion between the two magnetic poles 32a. Therefore, both do not interfere.
  • the sensor unit 41 is disposed on the end surface on the body 13 side on the stator 31. Therefore, in this embodiment, all the leader lines are extended to the body 13 side.
  • the winding process is started from the end surface on the rotor 21 side on the stator core 32. That is, the start end START and the end end END are positioned on the rotor 21 side. All the leader lines extend from the end surface opposite to the start end START and the end end END. It is desirable that at least lead lines u1a, v1a, w1a, u2a, v2a, w2a for providing the output end PT are arranged on the end face on the body 13 side and extend from this end face.
  • winding is started from a phase coil u ⁇ b> 1 wound around an inner magnetic pole that is not an end among a plurality of magnetic poles providing the first group.
  • the additional portion 35u is disposed so as to pass over the connecting wires SJ1w and SJ1v of the phase coils w1 and v1 wound late.
  • the lead wire u1a and the additional portion 35u that provide the output terminal PT pass over the connecting wires SJ1w and SJ1v of the plurality of other phase coils w1 and v1. Since the additional portion 35u provides the output terminal PT, a relatively large potential difference appears between the additional portion 35u and the crossover lines SJ1w and SJ1v.
  • the additional portion 35u is bent on the crossover wires SJ1w and SJ1v, there is a high possibility that an insulation failure will be further caused when the insulating film is damaged. Furthermore, the insulation failure in the lead line u1a which provides the output terminal PT and the additional portion 35u may cause a significant deterioration in the function of the rotating electrical machine.
  • the additional portion 35w is also arranged passing over the jumper SJ1v for the different phase coil v1.
  • the lead wire 35v is disposed so as to pass over the connecting wire SJ1v of the same phase coil v1.
  • the number of the lead lines u1a, v1a, w1a connected as the output terminals PT intersect with the crossover lines of different phases is two in the lead line u1a.
  • the number of the lead lines u1b, v1b, w1b connected as the neutral points NT intersects the crossover lines of different phases is one in the lead line w1b.
  • the former number is greater than the latter number. Therefore, in this embodiment, there is a high possibility of insulation failure, and when the insulation failure occurs, the function as a rotating electrical machine is greatly affected.
  • the order in which the plurality of phase coils u1, v1, and w1 of the first group are wound is different from that in the first embodiment.
  • the order in which the phase coils u1, v1, and w1 are wound is set so as to suppress the adjoining of the lead wire for providing the output terminal PT in the star connection and the connecting wire SJ1 of a different phase.
  • the start end START of the first embodiment and the eleventh embodiment is a leader line u1a, but the start end START of this embodiment is a leader line v1a.
  • the lead line v1a is located on the opposite side of the lead line u1a among the plurality of lead lines u1a, w1b, v1a for the plurality of phase coils belonging to the first group.
  • the start end START is located at the end of the plurality of lead lines for the plurality of phase coils belonging to the first group.
  • the start end START is a leader line located on the most upstream side in the majority feed direction in the first group among the plurality of leader lines for the plurality of phase coils belonging to the first group. In the illustrated example, the feeding direction of the majority is the first feeding direction IDR1 (+).
  • the wire 33a is continuously wound from the start end START to the end end END.
  • the first group of phase coils v1 is wound from the start end START, that is, from the lead wire v1a to the lead wire v1b, in the first winding direction (left-handed L) and the first feed direction IDR1 (+).
  • the first group of phase coils w1 are wound from the lead wire w1a to the lead wire w1b in the second winding direction (right-handed R) and the second feed direction IDR2 ( ⁇ ).
  • the first group of phase coils u1 are wound from the lead wire u1a to the lead wire u1b in the first winding direction (left-handed L) and the first feed direction IDR1 (+).
  • Each of the phase coil u1, the phase coil v1, and the phase coil w1 includes a plurality of crossover wires SJ1 that serially connect single coils arranged around the magnetic pole 32a, and two lead wires.
  • the feed direction in the step of forming the interphase jumper wire is the first feed direction IDR1 (+).
  • the feed direction in the process GJ for forming the inter-group jumper line GJ is the second feed direction IDR2 ( ⁇ ), and the feed amount is 8.
  • FIG. 18 is a perspective view showing the appearance of the stator 31 in the vicinity of the start end START.
  • the connecting wire SJ1v of the phase coil v1 is arranged so that the lead wire v1a is positioned at the back of the slot between the two magnetic poles 32a and pressed. Since the jumper wire SJ1v is positioned behind the lead wires w1b and u1a of the other phase coils w1 and u1, they are not held down. This is because the connecting wire SJ1v is disposed on the stator 31 before the other phase coils w1 and u1 are wound.
  • the additional portion 35v bent for laying is bent so as to pass over the connecting wire SJ1v of the same phase coil v1.
  • the additional portion 35v is not bent so as to pass over the connecting wires SJ1w and SJ1u of the other phase coils w1 and u1. This is because the lead line v1a is located at the end of the three phase coils u1, v1, and w1 of the first group.
  • the connecting wire SJ1w of the phase coil w1 positions the lead wire w1b at the innermost position of the slot and does not hold it down. This is because the leader line w1b is formed after the crossover line SJ1w is arranged along the second feed direction IDR2 ( ⁇ ).
  • the connecting wire SJ1w does not hold down the lead wire v1a of the other phase coil v1. This is because the crossover wire SJ1w does not reach the lead wire v1a positioned beyond the magnetic pole 32a around which the phase coil w1 is wound in the second feed direction IDR2 ( ⁇ ).
  • the connecting wire SJ1w does not hold down the lead wire u1a of the other phase coil u1.
  • connecting wire SJ1w is arranged on the stator 31 before the phase coil u1 is wound.
  • the additional portion 35w bent for laying can be bent so as to pass over the connecting wire SJ1w of the same phase coil w1 and the connecting wires SJ1w and SJ1u of the other phase coils w1 and u1. Absent.
  • the connecting wire SJ1u of the phase coil u1 is arranged so that the lead wire u1a is positioned in the back of the slot and pressed.
  • the connecting wire SJ1u does not hold down the lead wires w1b and v1a of the other phase coils v1 and w1. This is because the jumper wire SJ1u does not reach the lead wires w1b and v1a positioned beyond the magnetic pole 32a around which the phase coil u1 is wound in the second feed direction IDR2 ( ⁇ ).
  • the additional portion 35u bent for laying is bent so as to pass over the connecting wire SJ1u of the same phase coil u1.
  • the additional portion 35u is not bent so as to pass over the connecting wires SJ1v and SJ1w of the other phase coils v1 and w1.
  • the lead lines v1a, w1b, u1a are laid in the shape illustrated as the additional portions 35v, 35w, 35u, they do not pass over the crossover lines of different phases. For this reason, the potential difference between the additional portions 35v, 35w, and 35u and the connecting wire adjacent thereto is suppressed. For this reason, electrical insulation failure in the additional portions 35v, 35w, and 35u, for example, a short circuit is suppressed. Since the additional portions 35v, 35w, and 35u are bent, the film may be damaged due to the bending. Even if there is such damage to the film, insulation failure in the additional portions 35v, 35w, and 35u is suppressed.
  • the lead lines v1a and u1a provide the output terminal PT, the potential difference generated in relation to the lead lines v1a and u1a is large. According to this embodiment, a failure such as a short circuit in the lead lines v1a and u1a having a large potential difference is suppressed. Therefore, a serious insulation failure that causes a significant deterioration in function as a rotating electrical machine is suppressed.
  • Leader line v1b may pass over the connecting wire for phase coil w1.
  • the leader line v1b is a leader line for the neutral point NT.
  • the potential difference that appears between the lead wire v1b and the connecting wire of the phase coil w1 is small. Therefore, the possibility of insulation failure related to the lead line v1b is low.
  • the lead wire v1b may pass over the connecting wire for the phase coil u1.
  • the leader line v1b is a leader line for the neutral point NT.
  • the connecting wire for the phase coil u1 is close to the lead wire u1b close to the neutral point NT. Therefore, the potential difference appearing between the lead wire v1b and the connecting wire of the phase coil u1 is small. Therefore, the possibility of insulation failure related to the lead line v1b is low.
  • the lead wire w1a may pass over the connecting wire for the phase coil u1.
  • Leader line w1a provides output terminal PT.
  • the leader line w1a is the only leader line that may be disposed on a crossover line of a different phase among the three leader lines as the output terminal PT.
  • the number of the lead lines u1a, v1a, w1a connected as the output terminal PT intersects with the crossover lines of different phases is one in the lead line w1a.
  • the number of the lead lines u1b, v1b, w1b connected as the neutral point NT intersects with the crossover lines of different phases is two in the lead line v1b.
  • the former number is less than the latter number. Therefore, according to this embodiment, the occurrence of insulation failure in the first group of multiphase windings is suppressed.
  • winding is started from the phase coil v1 wound around the end magnetic pole among the plurality of magnetic poles 32a providing the first group.
  • the lead line v1a which is also the start end START in the manufacturing method, is used as the output end PT.
  • the leader line to be the output terminal PT is selected from a plurality of leader lines so as to minimize the number of intersections between the leader line to be the output terminal PT and the crossover lines of different phases. Is set.
  • a specific one of the two lead lines is selected as the output terminal PT and used as the output terminal PT so as to suppress the intersection between the lead line to be the output terminal PT and the crossover line of different phases. Yes.
  • the lead wire of the coil wound around the magnetic pole located at the end of the plurality of magnetic poles 32a providing the first group of multiphase windings is used as the output terminal PT.
  • the intersection of the leader line which should become output terminal PT, and the connecting wire of a different phase is suppressed.
  • the insulation defect relevant to a leader line is suppressed.
  • the u-phase, v-phase, and w-phase are associated with the first, second, and third phases related to the phase coil, respectively.
  • the correspondence of the names can be arbitrarily changed.
  • the first winding direction FYR1 is the left-handed winding L
  • the second winding direction FYR2 is the right-handed winding R
  • the first winding direction FYR1 may be a right-handed R
  • the second winding direction FYR2 may be a left-handed L
  • the feed direction of the stator core 32 by the index machine 71 may be such that the first feed direction IDR1 is a negative direction ( ⁇ ) and the second feed direction is a positive direction (+).
  • the index machine 71 is in the direction shown in FIG.
  • the stator core 32 may be rotated in the opposite direction.
  • the winding direction and the feeding direction in the step of forming the phase coil may be reversed.
  • the winding configurations described in the above-described embodiments are used in combination. can do.
  • the first group and the second group disclosed herein may be combined with each other and disposed on one stator core 32.
  • the first group of the first embodiment and the second group of the third embodiment may be arranged on one stator core 32.
  • the star connection is adopted as the three-phase connection.
  • a delta connection may be employed.
  • the several coil of the same phase is connected in parallel.
  • a plurality of phase coils of the same phase may be connected in series.
  • the two phase coils belong to the same phase.
  • the stator 31 may be formed such that a plurality of phase coils such as three, four, etc. belong to the same phase.
  • the process OP is adopted.
  • the process OP can additionally be applied to all preceding embodiments.
  • the process OP may be applied only to the leader line serving as the output end of the star connection.
  • a leader line for the neutral point NT is arranged at one end of the stator 31, and a leader line for the output end PT is arranged at the other end of the stator 31.
  • a leader line for the neutral point NT is disposed at an end where the start end START and the end end END are disposed.
  • the lead line providing the neutral point NT is electrically connected on the end face of the stator 31 where the start end START is disposed.
  • the process OP may be applied only to the leader line that provides the neutral point of the star connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

A stator coil (33) of a rotating electric machine for an internal combustion engine is equipped with a multi-phase winding group having phase coils (u1, v1, w1) and another multi-phase winding group having phase coils (u2, v2, w2). In a winding process, inter-phase jumper wires (PJ1a, PJ1b, PJ2a, PJ2b) and an inter-group jumper wire (GJ) are formed. In the winding process, all lead wires are disposed at one end of a stator core (32). In the winding process, a jumper wire (SJ1) is disposed on a half portion of the stator core (32), and another jumper wire (SJ2) is disposed on the remaining half portion of the opposite surface of the stator core (32). The winding direction of one phase coil of one multi-phase winding group is opposite to the winding direction of another two phase coils. This configuration provides lead wires separated by one or two magnetic poles (32a). It is possible to continuously wind a plurality of phase coils and form a lead wire from a short jumper wire between the phase coils.

Description

内燃機関用回転電機およびその製造方法Rotating electric machine for internal combustion engine and method for manufacturing the same 関連出願の相互参照Cross-reference of related applications
 この出願は、2014年5月16日に出願された日本特許出願2014-102657号、および2015年5月8日に出願された日本特許出願2015-95900号を基礎出願とするものであり、これら基礎出願の開示内容は参照によってこの出願に組み込まれている。 This application is based on Japanese Patent Application No. 2014-102657 filed on May 16, 2014 and Japanese Patent Application No. 2015-95900 filed on May 8, 2015. The disclosure of the basic application is incorporated into this application by reference.
 ここに開示される発明は、内燃機関に連結される内燃機関用回転電機およびその製造方法に関する。 The invention disclosed herein relates to a rotating electrical machine for an internal combustion engine connected to the internal combustion engine and a method for manufacturing the same.
 特許文献1-4は、内燃機関に連結される内燃機関用回転電機を開示する。この回転電機は、発電機、および/またはスタータとして機能することができる。加えて、この回転電機は、内燃機関の点火装置のための基準位置信号を出力する。この回転電機は、スタータとして機能するためにロータの回転位置を検出するための回転位置センサを備える。さらに、この回転電機は、点火装置のための基準位置信号を出力するための回転位置センサを備える。 Patent Documents 1-4 disclose a rotating electrical machine for an internal combustion engine connected to the internal combustion engine. This rotating electrical machine can function as a generator and / or a starter. In addition, the rotating electrical machine outputs a reference position signal for the ignition device of the internal combustion engine. This rotating electrical machine includes a rotational position sensor for detecting the rotational position of the rotor in order to function as a starter. Further, the rotating electrical machine includes a rotational position sensor for outputting a reference position signal for the ignition device.
 特許文献1は、上記回転電機に利用可能なステータコイルを開示する。ステータコイルは、複数の多相巻線群、例えば2つの三相巻線群を有する。ステータコイルは、突極型のステータコアに巻かれている。特許文献1は、ひとつの三相巻線群のひとつの相のコイルの巻線方法を詳細に開示している。しかし、特許文献1には、ステータコアに巻かれるステータコイルの全体としての効率的な配置を開示していない。 Patent Document 1 discloses a stator coil that can be used in the rotating electric machine. The stator coil has a plurality of multiphase winding groups, for example, two three-phase winding groups. The stator coil is wound around a salient pole type stator core. Patent Document 1 discloses in detail a winding method of one phase coil of one three-phase winding group. However, Patent Document 1 does not disclose an efficient arrangement as a whole of the stator coil wound around the stator core.
 従来技術として列挙された先行技術文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用される。 The description content of the prior art documents listed as the prior art is introduced or incorporated by reference as an explanation of the technical elements described in this specification.
特許第3735250号Patent No. 3735250 特開2013-233030号公報JP 2013-233030 A 特開2013-27252号公報JP 2013-27252 A 特許第5064279号Patent No. 5064279
 従来技術の構成では、ひとつの三相巻線群のひとつの相を提供する相コイル、例えばu相コイルの全体または一部が連続して巻かれる。しかし、ステータコア上には他の相コイル、および他の群のコイルが巻かれる。複数のコイルを一連の巻線行程の中で巻くことができれば、ステータコイル全体を製造するための効率を向上することができる。例えば、異なる相の間、異なる群の間を連続して巻くことが巻線工程の効率向上に貢献する。 In the configuration of the prior art, the whole or a part of a phase coil that provides one phase of one three-phase winding group, for example, a u-phase coil, is wound continuously. However, other phase coils and other groups of coils are wound on the stator core. If a plurality of coils can be wound in a series of winding strokes, the efficiency for manufacturing the entire stator coil can be improved. For example, continuously winding between different groups during different phases contributes to improving the efficiency of the winding process.
 別の観点において、複数のコイルが一連の巻線行程の中で巻かれる場合、コイルの両端の引出線が巻線工程の中で設けられる。引出線を設けるために、巻線工程の中でコイルの素線はステータコアから所定長さだけ引き出される。さらに、巻線作業を他のコイルへ移行するために、コイルの素線は、ステータコアの周方向に沿っても延びるようにジャンパ線として配置される。このとき、特許文献1の図2に図示される構成では、ひとつ群のu相の磁極から、他の群のu相の磁極まで素線を到達させるために、それらの間の3つの磁極に沿って素線が延在する。これでは、ジャンパ線を形成するために長い素線が必要となる。 In another aspect, when a plurality of coils are wound in a series of winding strokes, lead wires at both ends of the coil are provided in the winding process. In order to provide the lead wire, the wire of the coil is drawn out from the stator core by a predetermined length in the winding process. Furthermore, in order to transfer the winding work to another coil, the coil wire is arranged as a jumper wire so as to extend along the circumferential direction of the stator core. At this time, in the configuration illustrated in FIG. 2 of Patent Document 1, in order to allow the strands to reach from one group of u-phase magnetic poles to another group of u-phase magnetic poles, A strand extends along. This requires a long strand to form a jumper wire.
 さらに、巻線工程において設けられたジャンパ線は、製品の形状に適合するように短く切断される。このため、従来技術では、破棄される素線の長さが長い場合がある。 Furthermore, the jumper wire provided in the winding process is cut short to fit the shape of the product. For this reason, in the prior art, the length of the discarded wire may be long.
 上述の観点において、または言及されていない他の観点において、内燃機関用回転電機およびその製造方法にはさらなる改良が求められている。 In the above-mentioned viewpoints or other viewpoints not mentioned, further improvement is required for the rotating electrical machine for internal combustion engines and the manufacturing method thereof.
 発明の目的のひとつは、効率的に製造可能なステータコイルを有する内燃機関用回転電機およびその製造方法を提供することである。 One of the objects of the invention is to provide a rotating electrical machine for an internal combustion engine having a stator coil that can be efficiently manufactured and a method for manufacturing the same.
 発明の目的のひとつは、複数の相コイルを連続して巻くことができ、それらの間の短いジャンパ線から引出線を形成することができる内燃機関用回転電機およびその製造方法を提供することである。 One of the objects of the invention is to provide a rotating electrical machine for an internal combustion engine that can continuously wind a plurality of phase coils and form a lead wire from a short jumper wire between them, and a method for manufacturing the same. is there.
 発明の目的のひとつは、ステータコアの端面に引出線も渡り線もない範囲を有する内燃機関用回転電機およびその製造方法を提供することである。 One of the objects of the present invention is to provide a rotating electrical machine for an internal combustion engine having a range in which there is neither a leader line nor a jumper line on the end face of the stator core, and a method for manufacturing the same.
 ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。 The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate a corresponding relationship with specific means described in the embodiments described later as one aspect, and limit the technical scope of the invention. Not what you want.
 ここに開示される発明のひとつにより内燃機関用回転電機が提供される。内燃機関用回転電機は、内燃機関(12)の回転軸に連結されるロータヨーク(22)の内面に永久磁石(23)が配置されたロータ(21)と、内燃機関(12)のボディ(13)に固定されることによってロータの内側に配置され、永久磁石と対向する複数の磁極(32a)を径方向外側に形成するステータコア(32)、およびステータコアに設けられた複数の三相巻線群を含むステータコイル(33)を有するステータ(31)とを備える。この内燃機関用回転電機は、ひとつの三相巻線群は、磁極に対して所定の巻き方向に集中巻された第1相コイルと、磁極に対して第1相コイルとは反対の巻き方向に集中巻された第2相コイルとを含む複数の相コイル(u1、v1、w1)を備えることを特徴とする。 One of the inventions disclosed herein provides a rotating electrical machine for an internal combustion engine. The rotating electrical machine for an internal combustion engine includes a rotor (21) in which a permanent magnet (23) is disposed on an inner surface of a rotor yoke (22) connected to a rotation shaft of the internal combustion engine (12), and a body (13) of the internal combustion engine (12). ) And a stator core (32) which is arranged inside the rotor and forms a plurality of magnetic poles (32a) facing the permanent magnet on the radially outer side, and a plurality of three-phase winding groups provided on the stator core And a stator (31) having a stator coil (33). In this rotating electrical machine for an internal combustion engine, one three-phase winding group includes a first phase coil concentratedly wound in a predetermined winding direction with respect to the magnetic pole, and a winding direction opposite to the first phase coil with respect to the magnetic pole And a plurality of phase coils (u1, v1, w1) including a second phase coil concentratedly wound on.
 この発明によると、第1相コイルのための引出線と、第2相コイルのための引出線とをひとつまたはふたつの磁極だけ離れて配置することができる。この結果、ひとつの三相巻線群に属するふたつの相コイルを連続して巻くことができる。よって、効率的に製造可能なステータコイルを有する内燃機関用回転電機が提供される。 According to the present invention, the lead wire for the first phase coil and the lead wire for the second phase coil can be arranged apart by one or two magnetic poles. As a result, two phase coils belonging to one three-phase winding group can be wound continuously. Therefore, a rotating electrical machine for an internal combustion engine having a stator coil that can be efficiently manufactured is provided.
 ここに開示される発明のひとつにより内燃機関用回転電機のための製造方法が提供される。内燃機関用回転電機は、内燃機関(12)の回転軸に連結されるロータヨーク(22)の内面に永久磁石(23)が配置されたロータ(21)と、内燃機関(12)のボディ(13)に固定されることによってロータの内側に配置され、永久磁石と対向する複数の磁極(32a)を径方向外側に形成するステータコア(32)、およびステータコアに設けられた複数の三相巻線群を含むステータコイル(33)を有するステータ(31)とを備える。この内燃機関用回転電機のための製造方法は、ひとつの磁極に対して第1巻き方向に素線(33a)を集中巻することによってひとつの三相巻線群に含まれる第1相コイルを形成する工程(P11、P21)と、第1相コイルの巻き終わりの直ぐ隣の磁極、またはひとつの磁極を飛ばしたふたつ目の磁極から、第1巻き方向とは反対の第2巻き方向に素線を集中巻することによって第2相コイルを形成する工程(P12、P22)と、第2相コイルの巻き終わりの直ぐ隣の磁極、またはひとつの磁極を飛ばしたふたつ目の磁極に、第2巻き方向とは反対の第1巻き方向に素線を集中巻することによって第3相コイルを形成する工程(P13、P23)とを有することを特徴とする。 One of the inventions disclosed herein provides a manufacturing method for a rotating electrical machine for an internal combustion engine. The rotating electrical machine for an internal combustion engine includes a rotor (21) in which a permanent magnet (23) is disposed on an inner surface of a rotor yoke (22) connected to a rotation shaft of the internal combustion engine (12), and a body (13) of the internal combustion engine (12). ) And a stator core (32) which is arranged inside the rotor and forms a plurality of magnetic poles (32a) facing the permanent magnet on the radially outer side, and a plurality of three-phase winding groups provided on the stator core And a stator (31) having a stator coil (33). In this manufacturing method for a rotating electrical machine for an internal combustion engine, a first phase coil included in one three-phase winding group is obtained by concentrating winding wires (33a) in the first winding direction with respect to one magnetic pole. From the step (P11, P21) to be formed and the second magnetic pole immediately after the end of winding of the first phase coil, or the second magnetic pole from which one magnetic pole is skipped, in the second winding direction opposite to the first winding direction. Steps (P12, P22) of forming the second phase coil by concentrated winding of the wire, and the second magnetic pole immediately after the end of winding of the second phase coil, or the second magnetic pole from which one magnetic pole is skipped And a step (P13, P23) of forming a third phase coil by concentrating the wires in a first winding direction opposite to the winding direction.
 この発明によると、ひとつの相コイルの巻き終わりから、直ぐ隣の磁極、またはひとつの磁極を飛ばしたふたつ目の磁極に、後続の相コイルが巻かれる。この結果、ふたつの相コイルの間の周方向の距離を短くして、これら2つの相コイルを連続して巻くことができる。 According to the present invention, from the end of winding of one phase coil, the subsequent phase coil is wound on the adjacent magnetic pole or the second magnetic pole from which one magnetic pole is skipped. As a result, the distance in the circumferential direction between the two phase coils can be shortened, and these two phase coils can be wound continuously.
発明の第1実施形態に係る内燃機関用回転電機の断面図である。It is sectional drawing of the rotary electric machine for internal combustion engines which concerns on 1st Embodiment of invention. 巻線機を示す模式的な斜視図である。It is a typical perspective view which shows a winding machine. 第1実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 1st embodiment. 巻線工程を記号化して示す工程図である。It is process drawing which shows a winding process as a symbol. 第2実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 2nd embodiment. 第3実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 3rd embodiment. 第4実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 4th embodiment. 第5実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 5th embodiment. 第6実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 6th embodiment. 第7実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 7th embodiment. 第8実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of an 8th embodiment. 第9実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 9th embodiment. 第10実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 10th embodiment. 第11実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of an 11th embodiment. 第11実施形態のステータを示す斜視図である。It is a perspective view which shows the stator of 11th Embodiment. 第11実施形態のステータコイルを示す結線図である。It is a connection diagram which shows the stator coil of 11th Embodiment. 第12実施形態のステータコイルを示す巻線図である。It is a winding figure showing the stator coil of a 12th embodiment. 第12実施形態のステータを示す斜視図である。It is a perspective view which shows the stator of 12th Embodiment.
 図面を参照しながら、ここに開示される発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。また、後続の実施形態においては、先行する実施形態で説明した事項に対応する部分に百以上の位だけが異なる参照符号を付することにより対応関係を示し、重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については他の形態の説明を参照し適用することができる。 A plurality of modes for carrying out the invention disclosed herein will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. Further, in the following embodiments, the correspondence corresponding to the matters corresponding to the matters described in the preceding embodiments is indicated by adding reference numerals that differ only by one hundred or more, and redundant description may be omitted. . In each embodiment, when only a part of the structure is described, the other parts of the structure can be applied with reference to the description of the other forms.
 (第1実施形態)
 (回転電機)
 図1において、内燃機関用回転電機(以下、単に回転電機という)10は、発電電動機、または交流発電機スタータ(AC Generator Starter)とも呼ばれる。回転電機10は、インバータ回路(INV)と制御装置(ECU)とを含む電気回路11と電気的に接続されている。電気回路11は、三相の電力変換回路を提供する。
(First embodiment)
(Rotating electric machine)
In FIG. 1, a rotating electrical machine for an internal combustion engine (hereinafter simply referred to as a rotating electrical machine) 10 is also called a generator motor or an AC generator starter. The rotating electrical machine 10 is electrically connected to an electric circuit 11 including an inverter circuit (INV) and a control device (ECU). The electric circuit 11 provides a three-phase power conversion circuit.
 電気回路11は、回転電機10が発電機として機能するとき、出力される交流電力を整流し、バッテリを含む電気負荷に電力を供給する整流回路を提供する。電気回路11は、回転電機10から供給される点火制御用の基準位置信号を受信する信号処理回路を提供する。電気回路11は、点火制御を実行する点火制御器を提供してもよい。電気回路11は、回転電機10をスタータモータとして機能させる駆動回路を提供する。電気回路11は、回転電機10を電動機として機能させるための回転位置信号を回転電機10から受信し、検出された回転位置に応じて回転電機10への通電を制御することにより回転電機10をスタータモータとして機能させる。 The electrical circuit 11 provides a rectifier circuit that rectifies the AC power that is output when the rotating electrical machine 10 functions as a generator and supplies power to an electrical load including a battery. The electric circuit 11 provides a signal processing circuit that receives a reference position signal for ignition control supplied from the rotating electrical machine 10. The electric circuit 11 may provide an ignition controller that performs ignition control. The electric circuit 11 provides a drive circuit that causes the rotating electrical machine 10 to function as a starter motor. The electric circuit 11 receives from the rotating electrical machine 10 a rotational position signal for causing the rotating electrical machine 10 to function as an electric motor, and controls the energization of the rotating electrical machine 10 according to the detected rotational position to thereby start the rotating electrical machine 10. It functions as a motor.
 回転電機10は、内燃機関12に組み付けられている。内燃機関12は、ボディ13と、ボディ13に回転可能に支持され、内燃機関と連動して回転する回転軸14とを有する。回転電機10は、ボディ13と回転軸14とに組み付けられている。ボディ13は、内燃機関12のクランクケース、ミッションケースなどの構造体である。回転軸14は、内燃機関12のクランク軸、またはクランク軸と連動する回転軸である。回転軸14は、内燃機関12が運転されることによって回転し、回転電機10を発電機として機能させるように駆動する。回転軸14は、回転電機10が電動機として機能するとき、回転電機10の回転によって内燃機関12を始動可能な回転軸である。 The rotating electrical machine 10 is assembled to the internal combustion engine 12. The internal combustion engine 12 includes a body 13 and a rotary shaft 14 that is rotatably supported by the body 13 and rotates in conjunction with the internal combustion engine. The rotating electrical machine 10 is assembled to the body 13 and the rotating shaft 14. The body 13 is a structure such as a crankcase or a transmission case of the internal combustion engine 12. The rotating shaft 14 is a crankshaft of the internal combustion engine 12 or a rotating shaft interlocking with the crankshaft. The rotating shaft 14 rotates when the internal combustion engine 12 is operated, and drives the rotating electrical machine 10 to function as a generator. The rotating shaft 14 is a rotating shaft that can start the internal combustion engine 12 by the rotation of the rotating electrical machine 10 when the rotating electrical machine 10 functions as an electric motor.
 回転電機10は、ロータ21と、ステータ31と、センサユニット41とを有する。 The rotating electrical machine 10 includes a rotor 21, a stator 31, and a sensor unit 41.
 ロータ21は、全体がカップ状である。ロータ21は、その開口端をボディ13に向けて位置付けられる。ロータ21は、回転軸14の端部に固定される。ロータ21は、回転軸14とともに回転する。ロータ21は、永久磁石によって界磁を提供する。 The entire rotor 21 has a cup shape. The rotor 21 is positioned with its open end facing the body 13. The rotor 21 is fixed to the end of the rotating shaft 14. The rotor 21 rotates together with the rotating shaft 14. The rotor 21 provides a field by a permanent magnet.
 ロータ21は、カップ状のロータヨーク(ロータコア)22を有する。ロータヨーク22は、内燃機関12の回転軸14に連結される。ロータヨーク22は、回転軸14に固定される内筒と、内筒の径方向外側に位置する外筒と、内筒と外筒との間に拡がる環状の底板とを有する。ロータヨーク22は、後述する永久磁石のためのヨークを提供する。ロータヨーク22は、磁性金属製である。 The rotor 21 has a cup-shaped rotor yoke (rotor core) 22. The rotor yoke 22 is connected to the rotating shaft 14 of the internal combustion engine 12. The rotor yoke 22 has an inner cylinder fixed to the rotating shaft 14, an outer cylinder positioned on the radially outer side of the inner cylinder, and an annular bottom plate extending between the inner cylinder and the outer cylinder. The rotor yoke 22 provides a yoke for a permanent magnet described later. The rotor yoke 22 is made of magnetic metal.
 ロータ21は、ロータヨーク22の内面に配置された永久磁石23を有する。永久磁石23は、外筒の内側に固定されている。永久磁石23は、複数のセグメントを有する。それぞれのセグメントは、部分円筒状である。永久磁石23は、その内側に、複数のN極と複数のS極とを提供する。永久磁石23は、少なくとも界磁を提供する。また、永久磁石23は、点火制御のための基準位置信号を提供するための部分的な特殊磁極を提供する。特殊磁極は、界磁のための磁極配列とは異なる部分的な磁極によって提供される。永久磁石23は、径方向内側に配置された保持カップ24によって軸方向および径方向に関して固定されている。保持カップ24は、薄い非磁性金属製である。保持カップ24は、ロータヨーク22に固定されている。 The rotor 21 has a permanent magnet 23 disposed on the inner surface of the rotor yoke 22. The permanent magnet 23 is fixed inside the outer cylinder. The permanent magnet 23 has a plurality of segments. Each segment is partially cylindrical. The permanent magnet 23 provides a plurality of N poles and a plurality of S poles inside thereof. The permanent magnet 23 provides at least a field. The permanent magnet 23 also provides a partial special magnetic pole for providing a reference position signal for ignition control. The special magnetic pole is provided by a partial magnetic pole different from the magnetic pole arrangement for the field. The permanent magnet 23 is fixed with respect to the axial direction and the radial direction by a holding cup 24 arranged on the radially inner side. The holding cup 24 is made of a thin nonmagnetic metal. The holding cup 24 is fixed to the rotor yoke 22.
 ロータ21は、回転軸14に固定されている。ロータ21と回転軸14とは、キー嵌合などの回転方向の位置決め機構を介して連結されている。ロータ21は、固定ボルト25によって回転軸14に締め付けられることによって固定されている。 The rotor 21 is fixed to the rotating shaft 14. The rotor 21 and the rotating shaft 14 are connected via a positioning mechanism in the rotational direction such as key fitting. The rotor 21 is fixed by being fastened to the rotary shaft 14 by a fixing bolt 25.
 ステータ31は、環状の部材である。ステータ31は、ロータ21とボディ13との間に配置されている。ステータ31は、回転軸14とロータヨーク22の内筒とを受け入れることができる貫通孔を有する。ステータ31は、ロータ21の内面とギャップを介して対向する外周面を有する。外周面には、複数の磁極が配置されている。これら磁極は、ロータ21の界磁と対向して配置されている。ステータ31は、電機子巻線を有する。ステータ31は、多相の電機子巻線を有する。ステータ31は、ボディ13に固定される。ステータ31は、複数の磁極と、三相の巻線とを有する三相多極ステータである。 The stator 31 is an annular member. The stator 31 is disposed between the rotor 21 and the body 13. The stator 31 has a through hole that can receive the rotating shaft 14 and the inner cylinder of the rotor yoke 22. The stator 31 has an outer peripheral surface that faces the inner surface of the rotor 21 via a gap. A plurality of magnetic poles are arranged on the outer peripheral surface. These magnetic poles are arranged opposite to the field of the rotor 21. The stator 31 has an armature winding. The stator 31 has multiphase armature windings. The stator 31 is fixed to the body 13. The stator 31 is a three-phase multipolar stator having a plurality of magnetic poles and three-phase windings.
 ステータ31は、ステータコア32を有する。ステータコア32は、内燃機関12のボディ13に固定されることによってロータ21の内側に配置される。ステータコア32は、永久磁石23と対向する複数の磁極を径方向外側に形成する。ステータコア32は、複数の磁極を形成するように所定の形状に成形された電磁鋼板を積層することにより形成されている。ステータコア32は、永久磁石23の内面と対向する複数の磁極を提供する。ステータコア32の複数の磁極の間には、隙間が設けられている。 The stator 31 has a stator core 32. The stator core 32 is disposed inside the rotor 21 by being fixed to the body 13 of the internal combustion engine 12. The stator core 32 forms a plurality of magnetic poles facing the permanent magnet 23 on the radially outer side. The stator core 32 is formed by laminating electromagnetic steel sheets formed in a predetermined shape so as to form a plurality of magnetic poles. The stator core 32 provides a plurality of magnetic poles facing the inner surface of the permanent magnet 23. A gap is provided between the plurality of magnetic poles of the stator core 32.
 ステータ31は、ステータコア32に巻回されたステータコイル33を有する。ステータコイル33は、電機子巻線を提供する。ステータコア32とステータコイル33との間には絶縁材料製のインシュレータが配置されている。ステータコイル33は、三相巻線である。ステータコイル33は、ロータ21およびステータ31を発電機または電動機として選択的に機能させることができる。 The stator 31 has a stator coil 33 wound around a stator core 32. The stator coil 33 provides an armature winding. An insulator made of an insulating material is disposed between the stator core 32 and the stator coil 33. The stator coil 33 is a three-phase winding. The stator coil 33 can selectively function the rotor 21 and the stator 31 as a generator or an electric motor.
 ステータ31は、ボディ13に固定されている。ステータ31とボディ13とは、回転方向の位置決め機構、例えば固定ボルト34を介して連結されている。ステータ31は、複数の固定ボルト34によってボディ13に締め付けられることによって固定されている。 The stator 31 is fixed to the body 13. The stator 31 and the body 13 are connected via a rotational positioning mechanism, for example, a fixing bolt 34. The stator 31 is fixed by being fastened to the body 13 by a plurality of fixing bolts 34.
 センサユニット41は、ステータ31に固定される。センサユニット41は、ステータコア32とボディ13との間に配置されている。センサユニット41は、ステータコア32の一端面に固定されている。センサユニット41は、ロータ21に設けられた永久磁石23が供給する磁束を検出することにより、ロータ21の回転位置を検出する回転位置検出器である。センサユニット41は、複数の回転位置センサ43を有する。複数の回転位置センサ43は、磁極の間に配置され、永久磁石23の磁束を検出することによりロータ21の回転位置を検出する。複数の回転位置センサ43は、ロータ21の回転軸に関して周方向に互いに離れて配置されている。 The sensor unit 41 is fixed to the stator 31. The sensor unit 41 is disposed between the stator core 32 and the body 13. The sensor unit 41 is fixed to one end surface of the stator core 32. The sensor unit 41 is a rotational position detector that detects the rotational position of the rotor 21 by detecting the magnetic flux supplied by the permanent magnet 23 provided in the rotor 21. The sensor unit 41 has a plurality of rotational position sensors 43. The plurality of rotational position sensors 43 are disposed between the magnetic poles and detect the rotational position of the rotor 21 by detecting the magnetic flux of the permanent magnet 23. The plurality of rotational position sensors 43 are disposed away from each other in the circumferential direction with respect to the rotational axis of the rotor 21.
 永久磁石23が提供する特殊磁極の位置によって点火制御のための基準位置が示される。ロータ21の回転位置は、回転軸14の回転位置でもある。よって、ロータ21の回転位置を検出することにより、点火制御のための基準位置信号を得ることができる。 The reference position for ignition control is indicated by the position of the special magnetic pole provided by the permanent magnet 23. The rotational position of the rotor 21 is also the rotational position of the rotating shaft 14. Therefore, a reference position signal for ignition control can be obtained by detecting the rotational position of the rotor 21.
 永久磁石23が提供する界磁の回転方向の位置によってロータ21の回転位置が示される。よって、ロータ21の回転位置を検出し、検出された回転位置に応じて電機子巻線への通電を制御することにより、回転電機10を電動機として機能させることができる。回転位置センサ43は、回転電機10を少なくとも電動機として機能させるためのロータ21の回転位置を検出する。この回転電機10は、発電機および電動機として機能することができ、それらのいずれかとして選択的に機能させられる。 The rotational position of the rotor 21 is indicated by the position of the field provided by the permanent magnet 23 in the rotational direction. Therefore, the rotating electrical machine 10 can function as an electric motor by detecting the rotational position of the rotor 21 and controlling the energization to the armature winding according to the detected rotational position. The rotational position sensor 43 detects the rotational position of the rotor 21 for causing the rotating electrical machine 10 to function as at least an electric motor. The rotating electrical machine 10 can function as a generator and an electric motor, and can selectively function as either of them.
 センサユニット41は、回路部品42を収容する。回路部品42は、基板と、基板に実装された電気素子、および電線などを含む。センサユニット41は、回転位置センサ43を収容する。センサユニット41は、固定ボルト44によってステータ31に固定されている。センサユニット41は、その径方向内側の部位において、ステータ31に固定されている。さらに、センサユニット41は、その径方向外側の部位において、ステータ31とボディ13との間に位置付けられている。センサユニット41は、ステータ31とボディ13との間において、弾性的に加圧されて、それら両者の間に固定されている。 The sensor unit 41 accommodates the circuit component 42. The circuit component 42 includes a substrate, an electric element mounted on the substrate, and an electric wire. The sensor unit 41 accommodates the rotational position sensor 43. The sensor unit 41 is fixed to the stator 31 with fixing bolts 44. The sensor unit 41 is fixed to the stator 31 at the radially inner portion. Further, the sensor unit 41 is positioned between the stator 31 and the body 13 at a radially outer portion. The sensor unit 41 is elastically pressurized between the stator 31 and the body 13 and fixed between them.
 センサユニット41は、ケース51を有する。ケース51は、樹脂材料製である。ケース51は、部分的に金属部分をもつことができる。ケース51は、回路部品42と回転位置センサ43とを収容し、保持する。回転位置センサ43は、回路部品42と接続される。ケース51は、多角形筒、例えば台形筒の断面に相当する形状をもち、ステータ31の径方向外側縁におおよそ対応して延びる外縁をもつ。 The sensor unit 41 has a case 51. The case 51 is made of a resin material. The case 51 can partially have a metal part. The case 51 accommodates and holds the circuit component 42 and the rotational position sensor 43. The rotational position sensor 43 is connected to the circuit component 42. The case 51 has a shape corresponding to a cross section of a polygonal cylinder, for example, a trapezoidal cylinder, and has an outer edge extending approximately corresponding to the radially outer edge of the stator 31.
 ケース51は、回路部品42を収容するための容器52を有する。容器52は樹脂材料製である。容器52は、ボディ13に対向する面が開口した箱状である。回路部品42は、容器52内に収容され、固定されている。 The case 51 has a container 52 for accommodating the circuit component 42. The container 52 is made of a resin material. The container 52 has a box shape in which a surface facing the body 13 is opened. The circuit component 42 is accommodated in the container 52 and fixed.
 ケース51は、少なくともひとつの回転位置センサ43を収容し、支持するための少なくともひとつのカバー53を有する。回転位置センサ43は、カバー53内に固定されている。カバー53は、容器52の底面から延び出すように形成された有底筒状の部材である。カバー53は、径方向外側に設けられている。カバー53は、磁極の間の隙間に挿入される。カバー53は、容器52と同じ樹脂材料によって容器52から連続するように、一体成形されている。 The case 51 has at least one cover 53 for accommodating and supporting at least one rotational position sensor 43. The rotational position sensor 43 is fixed in the cover 53. The cover 53 is a bottomed cylindrical member formed so as to extend from the bottom surface of the container 52. The cover 53 is provided on the radially outer side. The cover 53 is inserted into the gap between the magnetic poles. The cover 53 is integrally formed to be continuous from the container 52 with the same resin material as the container 52.
 カバー53の内部は、容器52の内部に連通している。センサユニット41は、複数のカバー53を有する。カバー53は、容器52から延び出す指状、または舌状と呼びうる形状である。カバー53は、回転位置センサ43のための鞘とも呼ぶことができる。複数のカバー53は、点火制御のための基準位置検出用の回転位置センサのためのひとつのカバー53と、モータ制御のための回転位置センサのための3つのカバー53とを有する。 The inside of the cover 53 communicates with the inside of the container 52. The sensor unit 41 has a plurality of covers 53. The cover 53 has a shape that can be called a finger shape or a tongue shape extending from the container 52. The cover 53 can also be called a sheath for the rotational position sensor 43. The plurality of covers 53 include one cover 53 for a rotational position sensor for detecting a reference position for ignition control and three covers 53 for rotational position sensors for motor control.
 それぞれのカバー53内には、ひとつの回転位置センサ43が収容される。回転位置センサ43は、永久磁石23が供給する磁束を検出する。回転位置センサ43は、ホールセンサ、MREセンサなどによって提供される。この実施形態は、点火制御のためのひとつの回転位置センサと、モータ制御のための3つの回転位置センサとを有する。回転位置センサ43は、カバー53内の空洞に配置されたセンサターミナルによって回路部品42と電気的に接続される。 Each rotation position sensor 43 is accommodated in each cover 53. The rotational position sensor 43 detects the magnetic flux supplied from the permanent magnet 23. The rotational position sensor 43 is provided by a Hall sensor, an MRE sensor, or the like. This embodiment has one rotational position sensor for ignition control and three rotational position sensors for motor control. The rotational position sensor 43 is electrically connected to the circuit component 42 by a sensor terminal disposed in a cavity in the cover 53.
 カバー53は、ステータコア32の磁極の間の隙間に挿入されている。容器52から延び出すカバー53は、その内部に回転位置センサ43を収容している。回転位置センサ43の軸方向の位置は、検出対象となる磁束を検出できるように設定されている。カバー53、すなわちセンサユニット41は、軸方向に関してステータコア32に位置決めされる。この実施形態における点火制御およびモータ制御のための永久磁石23に関連する細部、および複数の回転位置センサ43に関連する細部については、特許第5064279号、特開2013-233030号公報、または特開2013-27252号公報に記載の内容を援用することができ、同記載を参照により引用することができる。 The cover 53 is inserted into the gap between the magnetic poles of the stator core 32. A cover 53 extending from the container 52 accommodates a rotational position sensor 43 therein. The position of the rotational position sensor 43 in the axial direction is set so that the magnetic flux to be detected can be detected. The cover 53, that is, the sensor unit 41 is positioned on the stator core 32 with respect to the axial direction. Details relating to the permanent magnet 23 for ignition control and motor control in this embodiment and details relating to the plurality of rotational position sensors 43 are disclosed in Japanese Patent No. 5064279, Japanese Patent Application Laid-Open No. 2013-233030, or Japanese Patent Application Laid-Open No. 2013-233030. The contents described in JP2013-27252A can be incorporated, and the description can be cited by reference.
 ケース51は、締付部54を有する。締付部54は、内燃機関用回転電機10の径方向に関して容器52より径方向内側に設けられている。締付部54は、固定ボルト44によってステータ31に締め付けられる。容器52と締付部54との間には、それらの間を連結するための連結部55が設けられている。締付部54および連結部55は、容器52から径方向内側に延び出し、ステータコア32の径方向内側に形成された環状部分に位置付けられている。締付部54と連結部55とは、容器52と同じ樹脂材料によって容器52から連続するように、一体成形されている。締付部54は、ステータコア32のボディ13に対向する面に位置付けられている。締付部54には、固定ボルト44を受け入れる雌ねじ部分が設けられている。雌ねじ部分は、樹脂材料に直接に雌ねじを形成することにより、または、樹脂材料にナット部材を埋設することにより提供することができる。固定ボルト44は、締付部54をステータコア32に締め付ける。固定ボルト44は、ステータコア32のボディ13と反対側の面からステータコア32を貫通して配置されている。固定ボルト44のステータコア32から突出する先端部は、締付部54の雌ねじ部分に螺合される。これにより、センサユニット41は、ステータコア32に固定される。 The case 51 has a tightening portion 54. The tightening portion 54 is provided radially inward of the container 52 with respect to the radial direction of the rotating electrical machine 10 for the internal combustion engine. The tightening portion 54 is fastened to the stator 31 by the fixing bolt 44. A connecting portion 55 is provided between the container 52 and the tightening portion 54 to connect them. The tightening portion 54 and the connecting portion 55 extend radially inward from the container 52 and are positioned in an annular portion formed on the radially inner side of the stator core 32. The fastening portion 54 and the connecting portion 55 are integrally formed so as to be continuous from the container 52 by the same resin material as that of the container 52. The tightening portion 54 is positioned on the surface of the stator core 32 that faces the body 13. The tightening portion 54 is provided with a female screw portion that receives the fixing bolt 44. The female thread portion can be provided by forming a female thread directly in the resin material or by embedding a nut member in the resin material. The fixing bolt 44 fastens the fastening portion 54 to the stator core 32. The fixing bolt 44 is disposed through the stator core 32 from the surface of the stator core 32 opposite to the body 13. The front end portion of the fixing bolt 44 protruding from the stator core 32 is screwed into the female thread portion of the tightening portion 54. Thereby, the sensor unit 41 is fixed to the stator core 32.
 センサユニット41は、ステータコア32の周方向の半部より小さい扇状の範囲を占める。センサユニット41がステータコア32の一端において占める周方向の範囲には、ステータコイル33の引出線および渡り線は配置されていない。言い換えると、センサユニット41は、ステータコア32の一端であって、ステータコイル33の引出線も渡り線も配置されていない範囲に位置付けられている。この配置は、ステータコア32とボディ13との間の狭い隙間にセンサユニット41を配置することを可能とする。 The sensor unit 41 occupies a fan-shaped range smaller than the circumferential half of the stator core 32. In the circumferential range that the sensor unit 41 occupies at one end of the stator core 32, the lead wire and the connecting wire of the stator coil 33 are not arranged. In other words, the sensor unit 41 is positioned at one end of the stator core 32 and in a range in which neither the lead-out wire nor the crossover wire of the stator coil 33 is arranged. This arrangement makes it possible to arrange the sensor unit 41 in a narrow gap between the stator core 32 and the body 13.
 ステータ31は、引出線u2bと引出線v2aとの間に、引出線も渡り線もない範囲を有する。この範囲は、センサユニット41を配置するためのセンサ設置範囲として提供される。このセンサ設置範囲は、ステータコア32の周方向に関して、少なくとも5つの磁極32aに相当する範囲にわたって広がっている。このセンサ範囲は、磁極32aと磁極32aとの間に区画形成される隙間に関して、少なくとも4つの隙間を含む。センサユニット41に設けられた複数の回転位置センサ43は、4つの隙間を要する場合がある。よって、ステータコア32の一端に設けられた引出線も渡り線もない範囲は、センサユニット41とステータコイル33との干渉を抑制する。 The stator 31 has a range in which neither a lead line nor a crossover line exists between the lead line u2b and the lead line v2a. This range is provided as a sensor installation range for arranging the sensor unit 41. This sensor installation range extends over a range corresponding to at least five magnetic poles 32 a in the circumferential direction of the stator core 32. This sensor range includes at least four gaps with respect to the gap formed between the magnetic pole 32a and the magnetic pole 32a. The plurality of rotational position sensors 43 provided in the sensor unit 41 may require four gaps. Therefore, the range where there is neither a lead wire nor a connecting wire provided at one end of the stator core 32 suppresses interference between the sensor unit 41 and the stator coil 33.
 容器52は、ステータコア32側に面する底面と、ボディ13に対向する開口部と、底面と開口部とを囲む側壁とを有する。複数のカバー53は底面からステータコア32の磁極間の隙間に向けて回転電機10の軸方向に沿って延び出している。容器52内には回路部品42が収容されている。容器52内は、保護用の封止樹脂56によって満たされている。封止樹脂56は電気回路を保護するためのポッティング樹脂である。封止樹脂56は、流動状態のときに容器52内に流し込まれ、硬化されている。容器52内は封止樹脂56によって完全に覆われている。封止樹脂56の液面は、容器52の開口端とほぼ等しいか、開口端より低い。 The container 52 has a bottom surface facing the stator core 32 side, an opening facing the body 13, and a side wall surrounding the bottom surface and the opening. The plurality of covers 53 extend from the bottom surface along the axial direction of the rotating electrical machine 10 toward the gap between the magnetic poles of the stator core 32. A circuit component 42 is accommodated in the container 52. The inside of the container 52 is filled with a protective sealing resin 56. The sealing resin 56 is a potting resin for protecting the electric circuit. The sealing resin 56 is poured into the container 52 in a fluid state and is cured. The inside of the container 52 is completely covered with a sealing resin 56. The liquid level of the sealing resin 56 is substantially equal to or lower than the opening end of the container 52.
 ケース51は、ステー57を有する。ステー57は、固定ボルト58によってボディ13に固定される。ステー57は、容器52と同じ樹脂材料によって容器52から連続するように、一体成形されている。 The case 51 has a stay 57. The stay 57 is fixed to the body 13 by a fixing bolt 58. The stay 57 is integrally formed so as to be continuous from the container 52 by the same resin material as the container 52.
 センサユニット41は、回転位置センサ43から出力される信号を外部に取り出すための外部接続用のリード線45を有する。センサユニット41は、複数の回転位置センサ43からの信号を取り出すために複数のリード線45を有する。複数のリード線45は、センサユニット41と電気回路11との間において束ねられ、電線束を提供している。 The sensor unit 41 has a lead wire 45 for external connection for taking out a signal output from the rotational position sensor 43 to the outside. The sensor unit 41 has a plurality of lead wires 45 for extracting signals from the plurality of rotational position sensors 43. The plurality of lead wires 45 are bundled between the sensor unit 41 and the electric circuit 11 to provide a wire bundle.
 回転電機10は、ステータコイル33と電気回路11とを接続する電力線46を有する。電力線46は、ステータコイル33の引出線と接続されている。電力線46は、回転電機10が発電機として機能するとき、ステータコイル33に誘導される電力を電気回路11に供給する。電力線46は、回転電機10が電動機として機能するとき、ステータコイル33を励磁するための電力を電気回路11からステータコイル33へ供給する。電力線46は、ステータコイル33の相数に対応する数の電線を含む。例えば、ステータコイル33が2つの三相巻線群をもつ場合、電力線46は6本の電線を含むことができる。これにより、6相分のコイルが、電動機として機能するとき、および発電機として機能するときに対応して最適に利用される。 The rotating electrical machine 10 has a power line 46 that connects the stator coil 33 and the electric circuit 11. The power line 46 is connected to the lead wire of the stator coil 33. The electric power line 46 supplies the electric circuit 11 with electric power induced in the stator coil 33 when the rotating electrical machine 10 functions as a generator. The electric power line 46 supplies electric power for exciting the stator coil 33 from the electric circuit 11 to the stator coil 33 when the rotating electrical machine 10 functions as an electric motor. The power line 46 includes a number of electric wires corresponding to the number of phases of the stator coil 33. For example, when the stator coil 33 has two three-phase winding groups, the power line 46 can include six electric wires. As a result, the six-phase coils are optimally used when functioning as an electric motor and when functioning as a generator.
 (巻線装置)
 図2は、回転電機10の製造方法において利用されるステータコイル33のための巻線装置70の一例が図示されている。巻線装置70は、インデックス機71と、フライヤ型の巻線機72と、ジャンパ線保持器73とを有する。巻線装置70は、ステータコア32に素線33aを巻き付けることによってステータコイル33を形成する。素線33aは、1本の銅線、または数本の束ねられた銅線である。ステータコア32は、径方向外側に向けて突出する複数の磁極32aをもつ突極型の鉄心である。この実施形態では、ステータコア32は、18個の磁極32aを備える。18個の磁極32aは、2つの三相巻線群を提供するために利用される。9個の磁極32aがひとつの三相巻線群を提供するために利用される。図中には、巻線工程の対象となるひとつの磁極32aと、その両側の2つの磁極32aとが図示されている。巻線装置70は、複数の磁極32aに対して、予め定められた順序と、巻き方向とに基いて素線33aを巻く。
(Winding device)
FIG. 2 shows an example of a winding device 70 for the stator coil 33 used in the method for manufacturing the rotating electrical machine 10. The winding device 70 includes an index machine 71, a flyer type winding machine 72, and a jumper wire holder 73. The winding device 70 forms the stator coil 33 by winding a wire 33 a around the stator core 32. The strand 33a is one copper wire or several bundled copper wires. The stator core 32 is a salient pole type iron core having a plurality of magnetic poles 32a protruding outward in the radial direction. In this embodiment, the stator core 32 includes 18 magnetic poles 32a. Eighteen magnetic poles 32a are used to provide two three-phase winding groups. Nine magnetic poles 32a are used to provide one three-phase winding group. In the drawing, one magnetic pole 32a to be subjected to a winding process and two magnetic poles 32a on both sides thereof are shown. The winding device 70 winds the wire 33a around the plurality of magnetic poles 32a based on a predetermined order and a winding direction.
 インデックス機71は、ステータコア32を保持する。インデックス機71は、ステータコア32のひとつの磁極32aを巻線機72と対向する作業位置に位置付けるようにステータコア32を位置決めする。インデックス機71によりステータコア32と巻線機72との相対的な位置が変更される。インデックス機71は、ステータコア32を回転させる回転型のインデックステーブルによって提供することができる。ステータコア32は、回転軸IDXのまわりにおいて回転させられる。図中には、インデックス機71によるステータコア32の回転方向は、インデックス方向、または送り方向とも呼ばれる。インデックス機71は、ステータコア32を第1送り方向IDR1と、第1送り方向IDR1とは反対の第2送り方向IDR2とに回転させることができる。図示の例では、第1送り方向IDR1が上から見て反時計回り(正方向+)とされ、第2送り方向IDR2が時計回り(逆方向-)とされている。 The index machine 71 holds the stator core 32. The index machine 71 positions the stator core 32 so that one magnetic pole 32 a of the stator core 32 is positioned at a work position facing the winding machine 72. The relative position between the stator core 32 and the winding machine 72 is changed by the index machine 71. The index machine 71 can be provided by a rotary index table that rotates the stator core 32. The stator core 32 is rotated around the rotation axis IDX. In the drawing, the rotation direction of the stator core 32 by the index machine 71 is also referred to as an index direction or a feed direction. The index machine 71 can rotate the stator core 32 in the first feed direction IDR1 and the second feed direction IDR2 opposite to the first feed direction IDR1. In the illustrated example, the first feed direction IDR1 is counterclockwise (forward direction +) when viewed from above, and the second feed direction IDR2 is clockwise (reverse direction-).
 巻線機72は、磁極32aの周りを回転移動可能なフライヤを有するフライヤ型の巻線機である。巻線機72は、素線33aを供給する供給機を含む。フライヤは、回転軸FYXの周りを回転することにより対象となっている磁極32aに素線33aを巻き付ける。巻線機72は、フライヤを両方向へ回転させることができる。巻線機72は、フライヤを第1巻き方向FYR1と、第2巻き方向FYR2との両方に回転させることができる。図示の例では、第1巻き方向FYR1は、反時計周り(左巻きL)であり、第2巻き方向FYR2は、時計周り(右巻きR)である。 The winding machine 72 is a flyer-type winding machine having a flyer capable of rotating around the magnetic pole 32a. The winding machine 72 includes a supply machine that supplies the wire 33a. The flyer winds the wire 33a around the magnetic pole 32a of interest by rotating around the rotation axis FYX. The winding machine 72 can rotate the flyer in both directions. The winding machine 72 can rotate the flyer in both the first winding direction FYR1 and the second winding direction FYR2. In the illustrated example, the first winding direction FYR1 is counterclockwise (left-handed L), and the second winding direction FYR2 is clockwise (right-handed R).
 ジャンパ線保持器73は、ステータコイル33の引出線を形成するために、巻線工程の中で素線33aをステータコア32から離れるように引き出し、保持する。ジャンパ線保持器73は、ステータコア32から長く引き出されたジャンパ線JMPを保持するための複数の爪をもつことができる。例えば、爪はジャンパ線JMPが引っ掛けられるフックによって提供することができる。ジャンパ線保持器73は、複数のジャンパ線JMPを保持することができる。 The jumper wire holder 73 draws and holds the wire 33a away from the stator core 32 in the winding process in order to form a lead wire of the stator coil 33. The jumper wire holder 73 can have a plurality of claws for holding the jumper wire JMP drawn out from the stator core 32 for a long time. For example, the nail can be provided by a hook on which the jumper wire JMP is hooked. The jumper line holder 73 can hold a plurality of jumper lines JMP.
 (ステータコイル33)
 図3は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。図中において、18個の四角形は磁極32aを示す。四角形の中に図示される記号u、v、wは、その磁極32aが提供する相を示す。四角形の中に図示される記号L、Rは、その磁極32aの回りにおける素線33aの巻き方向を示す。四角形の回りに描かれた実線は、素線33aを示す。図中には、1ターン分だけを図示することによって素線33aの巻き方向が図示されている。素線33aは、磁極32aの周りに複数回巻かれている。以下の説明において、ひとつの磁極32aの周りに巻かれたひとつの集中巻のコイルは、単コイルと呼ばれる。また、同じ相を提供するために、直列接続された複数の単コイルは、相コイルまたは相と呼ばれる。
(Stator coil 33)
FIG. 3 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32. In the figure, 18 squares indicate magnetic poles 32a. Symbols u, v, and w illustrated in the rectangle indicate phases provided by the magnetic pole 32a. Symbols L and R shown in the quadrangle indicate the winding direction of the wire 33a around the magnetic pole 32a. The solid line drawn around the rectangle indicates the strand 33a. In the drawing, the winding direction of the wire 33a is shown by showing only one turn. The strand 33a is wound a plurality of times around the magnetic pole 32a. In the following description, one concentrated winding coil wound around one magnetic pole 32a is called a single coil. Also, in order to provide the same phase, multiple single coils connected in series are called phase coils or phases.
 素線33aの一端に付された記号STARTは、巻線工程の最初の位置、すなわち開始端を示す。素線33aの他端に付された記号ENDは、巻線工程の最後の位置、すなわち終了端を示す。記号u1a、u1b、v1a、v1b、w1a、w1bは、第1群としての三相巻線群の引出線を示す。記号u2a、u2b、v2a、v2b、w2a、w2bは、第2群としての三相巻線群の引出線を示す。これらのうち、記号aは、スター結線における3つの出力端を提供するための引出線を示す。記号bは、スター結線における中性点接続を提供するための引出線を示す。 The symbol START attached to one end of the strand 33a indicates the initial position of the winding process, that is, the start end. A symbol END attached to the other end of the wire 33a indicates the final position of the winding process, that is, the end. Symbols u1a, u1b, v1a, v1b, w1a, and w1b indicate leader lines of the three-phase winding group as the first group. Symbols u2a, u2b, v2a, v2b, w2a, and w2b indicate leader lines of the three-phase winding group as the second group. Among these, the symbol a indicates a leader line for providing three output ends in the star connection. The symbol b indicates a leader line for providing a neutral point connection in the star connection.
 図中において、記号SJ1、SJ2は、ひとつの群の中におけるひとつの相に含まれる複数の単コイルを直列接続するための渡り線を示す。渡り線SJ1、SJ2は、ステータコア32から引き離されることなく、ステータコア32上に沿って敷設されている。図示されるように、ステータコイル33は、複数の渡り線SJ1、SJ2を有する。複数の渡り線SJ1、SJ2は、第1群としての三相巻線群のための複数の渡り線SJ1と、第2群としての三相巻線群のための複数の渡り線SJ2とを有する。 In the figure, symbols SJ1 and SJ2 indicate crossovers for connecting a plurality of single coils included in one phase in one group in series. The connecting wires SJ <b> 1 and SJ <b> 2 are laid along the stator core 32 without being separated from the stator core 32. As illustrated, the stator coil 33 has a plurality of crossover wires SJ1 and SJ2. The plurality of crossover wires SJ1 and SJ2 have a plurality of crossover wires SJ1 for the three-phase winding group as the first group and a plurality of crossover wires SJ2 for the three-phase winding group as the second group. .
 図中において、破線は、ジャンパ線JMPを示す。破線は、破線によって連結された2つの引出線がひとつのジャンパ線JMPを切断することによって得られたことを示している。また、破線の矢印の方向は、ジャンパ線JMPを形成するときのインデックス機71の送り方向を示している。記号PJ1a、PJ1b、PJ2a、PJ2bは、ひとつの群の中における異なる相コイルの間に位置する相間ジャンパ線を示す。記号GJは、異なる群の間に位置する群間ジャンパ線を示す。 In the figure, a broken line indicates a jumper line JMP. The broken line indicates that two lead lines connected by the broken line are obtained by cutting one jumper line JMP. The direction of the broken arrow indicates the feed direction of the index machine 71 when forming the jumper line JMP. Symbols PJ1a, PJ1b, PJ2a, and PJ2b indicate interphase jumper wires positioned between different phase coils in one group. The symbol GJ indicates a jumper line between groups located between different groups.
 図中には、センサユニット41が設けられるセンサ設置範囲が示されている。センサユニット41は、ステータコア32の一端においてステータコア32の周方向に関して少なくとも複数の磁極32aに対応するセンサ設置範囲にわたって広がるように形成され、設けられている。図示されるように、6つの相コイルは、ステータコア32の一端にだけ配置され、センサ設置範囲以外に配置された複数の引出線を有する。6つの相コイルは、磁極32aの周囲に配置された単コイルを直列接続する複数の渡り線SJ1、SJ2を有する。これら複数の渡り線は、ステータコア32の一端において、センサ設置範囲以外に配置された複数の渡り線SJ1を含む。さらに、これら複数の渡り線は、センサ設置範囲においてはステータコア32の他端に配置された複数の渡り線SJ2を有する。これにより、引出線および渡り線と、センサユニット41との干渉が抑制される。 In the figure, a sensor installation range in which the sensor unit 41 is provided is shown. The sensor unit 41 is formed and provided at one end of the stator core 32 so as to extend over a sensor installation range corresponding to at least the plurality of magnetic poles 32 a in the circumferential direction of the stator core 32. As shown in the drawing, the six phase coils are arranged only at one end of the stator core 32 and have a plurality of lead wires arranged outside the sensor installation range. The six phase coils have a plurality of connecting wires SJ1 and SJ2 that connect single coils arranged around the magnetic pole 32a in series. The plurality of crossover lines include a plurality of crossover lines SJ1 arranged outside the sensor installation range at one end of the stator core 32. Further, the plurality of crossover wires have a plurality of crossover wires SJ2 arranged at the other end of the stator core 32 in the sensor installation range. Thereby, interference with the lead wire and the connecting wire and the sensor unit 41 is suppressed.
 ステータコイル33は、第1群をなす三相巻線群u1、v1、w1と、第2群をなす三相巻線群u2、v2、w2とを有する。ステータコア32の周方向の半分領域に位置する9個の磁極32aに、第1群をなす三相巻線群u1、v1、w1が配置されている。ステータコア32の周方向の残り半分領域に位置する9個の磁極32aに、第2群をなす三相巻線群u2、v2、w2が配置されている。第1群を形成する相コイルu1、v1、w1は、それぞれ、第1群第1相コイルu1、第1群第2相コイルw1、第1群第3相コイルv1とも呼ばれる。同様に、第2群を形成する相コイルu2、v2、w2は、それぞれ、第2群第1相コイルu2、第2群第2相コイルw2、第2群第3相コイルv2とも呼ばれる。 The stator coil 33 has three-phase winding groups u1, v1, and w1 that form a first group, and three-phase winding groups u2, v2, and w2 that form a second group. Three phase winding groups u1, v1, and w1 forming the first group are arranged on nine magnetic poles 32a located in a half region in the circumferential direction of the stator core 32. Three-phase winding groups u2, v2, and w2 forming the second group are arranged on the nine magnetic poles 32a located in the remaining half region of the stator core 32 in the circumferential direction. The phase coils u1, v1, and w1 forming the first group are also referred to as a first group, a first phase coil u1, a first group, a second phase coil w1, and a first group, a third phase coil v1, respectively. Similarly, the phase coils u2, v2, and w2 forming the second group are also referred to as a second group first phase coil u2, a second group second phase coil w2, and a second group third phase coil v2, respectively.
 第1群の相コイルu1は、開始端START、すなわち引出線u1aから、引出線u1bまで第1巻き方向(左巻きL)と、第1送り方向IDR1(+)とで巻かれている。巻き方向と送り方向とは、巻線の重複関係によって識別可能である。第1群の相コイルw1は、引出線w1aから、引出線w1bまで第2巻き方向(右巻きR)と、第2送り方向IDR2(-)とで巻かれている。第1群の相コイルv1は、引出線v1aから、引出線v1bまで第1巻き方向(左巻きL)と、第1送り方向IDR1(+)とで巻かれている。 The first group of phase coils u1 are wound in the first winding direction (left-handed winding L) and the first feeding direction IDR1 (+) from the start end START, that is, the lead wire u1a to the lead wire u1b. The winding direction and the feeding direction can be identified by the overlapping relationship of the windings. The first group of phase coils w1 are wound from the lead wire w1a to the lead wire w1b in the second winding direction (right-handed R) and the second feed direction IDR2 (−). The first group of phase coils v1 is wound from the lead wire v1a to the lead wire v1b in the first winding direction (left-handed L) and the first feed direction IDR1 (+).
 第2群の相コイルu2は、引出線u2aから、引出線u2bまで第1巻き方向(左巻きL)と、第2送り方向IDR2(-)とで巻かれている。第2群の相コイルw2は、引出線w2aから、引出線w2bまで第2巻き方向(右巻きR)と、第1送り方向IDR1(+)とで巻かれている。第2群の相コイルv2は、引出線v2aから、引出線v2bまで第1巻き方向(左巻きL)と、第2送り方向IDR2(-)とで巻かれている。 The second group of phase coils u2 are wound from the lead wire u2a to the lead wire u2b in the first winding direction (left-handed L) and the second feed direction IDR2 (−). The second group of phase coils w2 is wound from the lead wire w2a to the lead wire w2b in the second winding direction (right-handed R) and the first feed direction IDR1 (+). The second group phase coil v2 is wound from the lead wire v2a to the lead wire v2b in the first winding direction (left-handed L) and the second feed direction IDR2 (−).
 よって、ひとつの三相巻線群は、磁極32aに対して所定の巻き方向に集中巻された第1相コイルu1と、他の磁極32aに対して第1相コイルu1とは反対の巻き方向に集中巻された第2相コイルw1とを含む複数の相コイルu1、v1、w1を備える。この三相巻線群は、さらに、磁極32aに対して第1相コイルu1と同じ巻き方向に集中巻された第3相コイルv1を含む。ひとつの三相巻線群のための3つの相コイルのうち、ひとつの相コイル(相コイルw1)の巻き方向(R)は、他のふたつの相コイル(相コイルu1および相コイルv1)の巻き方向(L)に対して反対方向である。他の三相巻線群は、磁極32aに対して同じ方向に集中巻された第1相コイルu2および第3相コイルv2と、他の磁極32aに対して第1相コイルu2と反対の巻き方向に集中巻された第2相コイルw2とを含む複数の相コイルu2、v2、w2を備える。 Therefore, one three-phase winding group includes a first phase coil u1 concentratedly wound in a predetermined winding direction with respect to the magnetic pole 32a, and a winding direction opposite to the first phase coil u1 with respect to the other magnetic pole 32a. Are provided with a plurality of phase coils u1, v1, w1 including a second phase coil w1 concentratedly wound on the coil. The three-phase winding group further includes a third phase coil v1 that is concentratedly wound around the magnetic pole 32a in the same winding direction as the first phase coil u1. Of the three phase coils for one three-phase winding group, the winding direction (R) of one phase coil (phase coil w1) is that of the other two phase coils (phase coil u1 and phase coil v1). The direction is opposite to the winding direction (L). The other three-phase winding groups are a first-phase coil u2 and a third-phase coil v2 concentratedly wound in the same direction with respect to the magnetic pole 32a, and a winding opposite to the first-phase coil u2 with respect to the other magnetic pole 32a. A plurality of phase coils u2, v2, and w2 including a second phase coil w2 concentratedly wound in the direction are provided.
 ステータコア32の一方の面の上に、相コイルu1の巻き終わりの引出線u1bと、相コイルw1の巻き始めの引出線w1aとがひとつの磁極32a分だけ離れて位置付けられている。ステータコア32の一方の面の上に、相コイルw1の巻き終わりの引出線w1bと、相コイルv1の巻き始めの引出線v1aとがひとつの磁極32a分だけ離れて位置付けられている。引出線u1bと引出線w1aとは、相間ジャンパ線PJ1aによって提供されている。引出線w1bと引出線v1aとは、相間ジャンパ線PJ1bによって提供されている。ひとつの磁極32aだけ周方向に離れた引出線は、相間ジャンパ線に要する素線33aの長さを抑制しながら2つの相コイルを連続的に巻くことを可能とする。 On the one surface of the stator core 32, the lead wire u1b at the end of winding of the phase coil u1 and the lead wire w1a at the start of winding of the phase coil w1 are positioned apart by one magnetic pole 32a. On one surface of the stator core 32, the lead wire w1b at the end of winding of the phase coil w1 and the lead wire v1a at the start of winding of the phase coil v1 are positioned apart by one magnetic pole 32a. The lead line u1b and the lead line w1a are provided by the interphase jumper line PJ1a. The lead line w1b and the lead line v1a are provided by an interphase jumper line PJ1b. The lead wire that is separated in the circumferential direction by one magnetic pole 32a makes it possible to continuously wind two phase coils while suppressing the length of the wire 33a required for the interphase jumper wire.
 第1群のひとつの相コイル、例えば相コイルu1、のための複数の渡り線SJ1は、ステータコア32の軸方向の一方端面に配置されている。第2群のひとつの相コイル、例えば相コイルu2、のための複数の渡り線SJ2は、ステータコア32の軸方向の他方端面に配置されている。第1群と第2群との対応する2つの相コイルの渡り線SJ1、SJ2は、ステータコア32の反対面にそれぞれ配置されている。言い換えると、一方の群の任意の相コイルのための渡り線は、他方の群の対応する相コイルのための渡り線とは、ステータコア32上の別の面に配置されている。図示の例では、第1群のすべての渡り線SJ1と、第2群のすべての渡り線SJ2とは、ステータコア32の反対面にそれぞれ配置されている。 A plurality of crossover wires SJ1 for one phase coil of the first group, for example, the phase coil u1, is disposed on one end face of the stator core 32 in the axial direction. A plurality of crossover wires SJ2 for one phase coil of the second group, for example, the phase coil u2, is disposed on the other end face of the stator core 32 in the axial direction. The connecting lines SJ1 and SJ2 of the two phase coils corresponding to the first group and the second group are arranged on the opposite surfaces of the stator core 32, respectively. In other words, the connecting wire for any phase coil in one group is located on a different surface on the stator core 32 from the connecting wire for the corresponding phase coil in the other group. In the illustrated example, all the crossover lines SJ1 in the first group and all the crossover lines SJ2 in the second group are arranged on the opposite surfaces of the stator core 32, respectively.
 ステータコア32の両面へ分散して配置された渡り線は、ステータコア32の端面の利用を促進することを可能とする。例えば、ステータコア32の端面上において、第1群の中性点接続と第2群の中性点接続とを形成することができる。より具体的には、2つの中性点接続のための引出線の敷設が容易になる。また、2つの中性点接続の設置位置の選択自由度が高まる。また、2つの中性点接続を形成するための接合作業が容易になる。 The crossover wires distributed on both sides of the stator core 32 can facilitate the use of the end face of the stator core 32. For example, the first group neutral point connection and the second group neutral point connection can be formed on the end face of the stator core 32. More specifically, it is easy to lay a leader line for connecting two neutral points. In addition, the degree of freedom in selecting the installation positions of the two neutral point connections is increased. Also, the joining work for forming two neutral point connections is facilitated.
 (製造方法)
 図4は、巻線工程における巻線装置70の作動を示す。図中には、複数の実施形態における巻線工程が図示されている。図中において、欄EMBは、実施形態の番号1-10を示す。
(Production method)
FIG. 4 shows the operation of the winding device 70 in the winding process. In the drawing, a winding process in a plurality of embodiments is shown. In the figure, a column EMB indicates numbers 1-10 of the embodiment.
 図中において、欄G1は、第1群における相コイルの巻線順を示す。例えば、uwvとの記述は、u相コイル、w相コイル、v相コイルが、ステータコア32の半部の範囲内に位置していることを示す。uw/vとの記述は、u相コイル、w相コイルがステータコア32の半部の範囲内に位置し、v相コイルがステータコア32の残る半部の範囲内に位置していることを示す。欄P11、P12、P13は、第1群の3つの相コイルを形成するための工程における巻線方向(RまたはL)と、インデックス機71の送り方向(+または-)とを示す。さらに、図中には、引出線と渡り線とがステータコア32の同じ端面に位置付けられる場合(S)と、反対の端面に位置付けられる場合(D)とを示している。欄J11、J12は、第1群の中における相間ジャンパ線JMPを形成するための工程におけるインデックス機71の送り方向(+または-)と、周方向の送り量(1または2)を示す。送り量は、磁極32aの数によって示されている。 In the figure, column G1 indicates the winding order of the phase coils in the first group. For example, the description “uwv” indicates that the u-phase coil, the w-phase coil, and the v-phase coil are located within the half of the stator core 32. The description of uw / v indicates that the u-phase coil and the w-phase coil are located within the half of the stator core 32, and the v-phase coil is located within the remaining half of the stator core 32. Columns P11, P12, and P13 indicate the winding direction (R or L) and the feed direction (+ or −) of the index machine 71 in the process for forming the first group of three phase coils. Furthermore, in the figure, the case where the leader line and the connecting line are positioned on the same end surface of the stator core 32 (S) and the case where it is positioned on the opposite end surface (D) are shown. Columns J11 and J12 show the feed direction (+ or −) of the index machine 71 and the feed amount in the circumferential direction (1 or 2) in the process for forming the interphase jumper line JMP in the first group. The feed amount is indicated by the number of magnetic poles 32a.
 素線33aは、開始端STARTから終了端ENDまで連続的にステータコア32に巻かれる。よって、複数の多相巻線群のための複数の相コイルが、ステータコア32に連続的に巻かれた1本の素線33aによって提供される。 The strand 33a is continuously wound around the stator core 32 from the start end START to the end end END. Therefore, a plurality of phase coils for a plurality of multi-phase winding groups are provided by a single wire 33 a continuously wound around the stator core 32.
 図中において、欄GJは、第1群と第2群との間を接続する群間ジャンパ線GJを形成するための工程におけるインデックス機71の送り方向(+または-)と、周方向の送り量(1または2)を示す。 In the figure, the column GJ indicates the feed direction (+ or-) of the index machine 71 and the feed in the circumferential direction in the process for forming the inter-group jumper line GJ connecting the first group and the second group. Amount (1 or 2) is indicated.
 図中において、欄G2は、第2群における相コイルの巻線順を示す。欄P21、P22、P23は、第2群の3つの相コイルを形成するための工程における巻線方向(RまたはL)と、インデックス機71の送り方向(+または-)を示す。欄J21、J22は、第2群の中における相間ジャンパ線JMPを形成するための工程におけるインデックス機71の送り方向(+または-)と、周方向の送り量(1または2)を示す。 In the figure, column G2 indicates the winding order of the phase coils in the second group. Columns P21, P22, and P23 indicate the winding direction (R or L) and the feed direction (+ or −) of the indexing machine 71 in the process for forming the second group of three-phase coils. Columns J21 and J22 show the feed direction (+ or-) of the index machine 71 and the feed amount (1 or 2) in the circumferential direction in the process for forming the interphase jumper line JMP in the second group.
 素線33aは、開始端STARTから終了端ENDまで連続的にステータコア32に巻かれる。よって、複数の多相巻線群(第1群および第2群)のための複数の相コイルのすべてが、ステータコア32に連続的に巻かれた1本の素線33aによって提供される。素線33aは、まずステータコア32の半部の範囲に第1群を形成し、その後にステータコア32の残る半部の範囲に第2群を形成するようにステータコア32に巻かれる。この結果、ひとつの三相巻線群u1、v1、w1は、ステータコア32を周方向に二分した一方の半部に配置され、他の三相巻線群u2、v2、w2は残る他の半部に配置されている。 The strand 33a is continuously wound around the stator core 32 from the start end START to the end end END. Therefore, all of the plurality of phase coils for the plurality of multiphase winding groups (the first group and the second group) are provided by one strand 33 a wound continuously around the stator core 32. The strands 33a are wound around the stator core 32 so as to first form a first group in the range of the half of the stator core 32 and then form a second group in the range of the remaining half of the stator core 32. As a result, one three-phase winding group u1, v1, w1 is arranged in one half of the stator core 32 divided in the circumferential direction, and the other three-phase winding groups u2, v2, w2 remain in the other half. It is arranged in the part.
 ここでは、第1群の第1相コイルは、第1巻き方向および第1送り方向で巻かれる。第1群の第1相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第1群の第2相コイルの巻線工程が開始される。この第2相コイルは、先行する第1相コイルとは逆の第2巻き方向および逆の第2送り方向で巻かれる。さらに、第1群の第2相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第1群の第3相コイルの巻線工程が開始される。この第3相コイルは、先行する第2相コイルとは逆の第1巻き方向および逆の第1送り方向で巻かれる。 Here, the first phase coil of the first group is wound in the first winding direction and the first feed direction. The winding process of the second phase coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the first group of first phase coils. This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in a second feeding direction opposite to that of the preceding first phase coil. Further, the winding process of the third group coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second phase coil of the first group. The third phase coil is wound in the first winding direction opposite to the preceding second phase coil and in the first feeding direction opposite to that of the preceding second phase coil.
 さらに、第2群の第1相コイルは、第1群の最後の相コイルと同じ第1巻き方向および逆の第2送り方向で巻かれる。第2群の第1相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第2群の第2相コイルの巻線工程が開始される。この第2相コイルは、先行する第1相コイルとは逆の第2巻き方向および逆の第1送り方向で巻かれる。さらに、第2群の第2相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第2群の第3相コイルの巻線工程が開始される。この第3相コイルは、先行する第2相コイルとは逆の第1巻き方向および逆の第2送り方向で巻かれる。 Furthermore, the first phase coil of the second group is wound in the same first winding direction as the last phase coil of the first group and the second feeding direction opposite to that. The winding process of the second group of second phase coils is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second group of first phase coils. This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in a first feeding direction opposite to that of the preceding first phase coil. Further, the winding process of the second group of third phase coils is started from the magnetic pole 32a immediately adjacent to the end of winding of the second group of second phase coils. The third phase coil is wound in a first winding direction opposite to the preceding second phase coil and in a second feeding direction opposite to that of the preceding second phase coil.
 第1群のすべての相コイルまたは第2群のすべての相コイルの一方は、ステータコア32の一端に巻き始めおよび巻き終わり、すなわち引出線、を位置付け、同じ一端に渡り線を配置するように巻かれる。一方で、第1群のすべての相コイルまたは第2群のすべての相コイルの他方は、ステータコア32の一端に引出線を位置付け、反対の他端に渡り線を配置するように巻かれる。 One of all phase coils of the first group or all of the phase coils of the second group is wound so that the winding start and end of winding, i.e., the lead wire, are positioned at one end of the stator core 32 and the jumper is disposed at the same end. It is burned. On the other hand, the other one of all the phase coils of the first group or all the phase coils of the second group is wound so that the lead wire is positioned at one end of the stator core 32 and the jumper wire is disposed at the other end.
 なお、第1巻き方向と第2巻き方向とは入れ替え可能である。また、第1送り方向と第2送り方向とは入れ替え可能である。また、第1群と第2群とは巻線工程の順序において入れ替え可能である。 Note that the first winding direction and the second winding direction can be interchanged. Further, the first feed direction and the second feed direction can be interchanged. The first group and the second group can be interchanged in the order of the winding process.
 (準備工程)
 巻線工程は、巻線装置70によって実行される。まず、作業者または供給機がステータコア32をインデックス機71に装着する。インデックス機71は、ステータコア32を初期位置に位置付ける。図示の例では、インデックス機71は、ひとつの磁極32aを巻線機72に対向する位置に位置付ける。巻線機72は、素線33aを、開始端STARTに位置付ける。巻線機72は、開始端STARTをステータコア32の一端に位置付ける。
(Preparation process)
The winding process is executed by the winding device 70. First, an operator or a supply machine attaches the stator core 32 to the index machine 71. The index machine 71 positions the stator core 32 at the initial position. In the illustrated example, the index machine 71 positions one magnetic pole 32 a at a position facing the winding machine 72. The winding machine 72 positions the wire 33a at the start end START. The winding machine 72 positions the start end START at one end of the stator core 32.
 (G1)
 この工程では、複数の多相巻線群のうち、ひとつの群、すなわち第1群、のための3つの相コイルu1、v1、w1が形成される。この工程は、以下の工程P11-P13を含む。
(G1)
In this step, three phase coils u1, v1, and w1 for one group, that is, the first group among the plurality of multiphase winding groups are formed. This step includes the following steps P11 to P13.
 (P11:u1)
 この工程は、ひとつの群の最初のひとつの相コイルを形成する工程である。この工程は、図4のP11欄にL+として示されている。この工程は、以下の段階を含む。
(P11: u1)
This step is a step of forming the first one phase coil of one group. This process is indicated as L + in the P11 column of FIG. This process includes the following steps.
 (1)単コイルを形成する段階
 巻線機72は、開始端STARTの近傍に位置するひとつの磁極32aの周りに素線33aを巻く。巻線機72は、ステータコア32の一端から巻き付けを開始する。巻線機72は、磁極32aの周りに、第1巻き方向で素線33aを巻き付ける。巻線機72は、ステータコア32の一端において磁極32aへの巻き付けを終える。これによりひとつの単コイルが形成される。図示の例では、素線33aは、第1群の相コイルu1に、ステータコア32の一端から左巻きLで巻かれる。ひとつの単コイルの巻工程は、ステータコア32の一端において終了する。
(1) Stage of forming a single coil The winding machine 72 winds the wire 33a around one magnetic pole 32a located in the vicinity of the start end START. The winding machine 72 starts winding from one end of the stator core 32. The winding machine 72 winds the wire 33a around the magnetic pole 32a in the first winding direction. The winding machine 72 finishes winding the magnetic pole 32 a at one end of the stator core 32. Thereby, one single coil is formed. In the example shown in the drawing, the wire 33a is wound around the first group of phase coils u1 with a left-hand turn L from one end of the stator core 32. One single coil winding process ends at one end of the stator core 32.
 (2)相内の渡り線を形成する段階
 巻線機72がひとつの単コイルを巻き終わると、インデックス機71は、第1送り方向IDR1(+)にステータコア32を回転させ、相コイルu1のための次の磁極32aを巻線機72に対向させる。このときの送り量(インデックス量とも呼ばれる)は、3つの磁極32aに相当する。この結果、素線33aはステータコア32の一端面の上に沿って敷設される。よって、渡り線SJ1が形成される。
(2) Step of forming the connecting wire in the phase When the winding machine 72 finishes winding one single coil, the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+), and the phase coil u1 Therefore, the next magnetic pole 32 a is made to face the winding machine 72. The feed amount (also referred to as index amount) at this time corresponds to the three magnetic poles 32a. As a result, the strand 33a is laid along the one end surface of the stator core 32. Therefore, the crossover line SJ1 is formed.
 (3)繰り返し段階
 巻線機72は、新たな磁極32aに素線33aを巻き付ける。すなわち、上記(1)の工程が繰り返される。この後、インデックス機71は、相コイルu1のための次の磁極32aを巻線機72に対向させる。すなわち、上記(2)の工程が繰り返される。やがて、相コイルu1のための最後の磁極32aに単コイルが形成されると、相コイルu1のための巻線工程が終了する。巻線機72は、ステータコア32の一端に素線33aを位置付けることによって相コイルu1のための巻線工程を終了する。図示の例では、引出線u1bの位置において相コイルu1のための巻線工程が終了する。このようにしてn個(3つ)の磁極32aに素線33aを巻き終えると、相コイルu1が完成する。
(3) Repeating step The winding machine 72 winds the wire 33a around the new magnetic pole 32a. That is, the process (1) is repeated. Thereafter, the index machine 71 makes the next magnetic pole 32a for the phase coil u1 face the winding machine 72. That is, the process (2) is repeated. Eventually, when a single coil is formed on the last magnetic pole 32a for the phase coil u1, the winding process for the phase coil u1 is completed. The winding machine 72 ends the winding process for the phase coil u <b> 1 by positioning the wire 33 a at one end of the stator core 32. In the illustrated example, the winding process for the phase coil u1 ends at the position of the lead line u1b. When the wire 33a is thus wound around the n (three) magnetic poles 32a, the phase coil u1 is completed.
 この製造方法では、第1相コイルu1を形成する工程における磁極の送り方向と、第2相コイルw1を形成する工程における磁極の送り方向と、第3相コイルv1を形成する工程における磁極の送り方向とは、ひとつが他のふたつと異なる。 In this manufacturing method, the feeding direction of the magnetic pole in the step of forming the first phase coil u1, the feeding direction of the magnetic pole in the step of forming the second phase coil w1, and the feeding of the magnetic pole in the step of forming the third phase coil v1. One direction is different from the other two.
 (J11:PJ1a)
 この工程は、ひとつの群の中の最初の相間ジャンパ線を形成する工程である。前の工程によってひとつの相コイルが完成すると、巻線装置70は、同じ群の中の次の相コイルを形成する工程へ移行するための相間ジャンパ線PJ1aを形成する。この工程では、相間ジャンパ線PJ1aを形成するように、素線33aがジャンパ線保持器73によって保持される。
(J11: PJ1a)
This step is a step of forming the first interphase jumper line in one group. When one phase coil is completed by the previous process, the winding device 70 forms an interphase jumper line PJ1a for shifting to the process of forming the next phase coil in the same group. In this step, the strand 33a is held by the jumper wire holder 73 so as to form the interphase jumper wire PJ1a.
 このとき、インデックス機71は、同じ群の中の他の2つの相コイルのいずれかのための磁極を巻線機72に対向させるようにステータコア32を回転させる。これにより、次の相コイルのための磁極32aが巻線可能な位置に位置付けられる。インデックス機71は、第1送り方向IDR1(+)とは反対の第2送り方向(-)にステータコア32を回転させる。 At this time, the index machine 71 rotates the stator core 32 so that the magnetic pole for one of the other two phase coils in the same group is opposed to the winding machine 72. Thereby, the magnetic pole 32a for the next phase coil is positioned at a position where it can be wound. The index machine 71 rotates the stator core 32 in the second feed direction (−) opposite to the first feed direction IDR1 (+).
 インデックス機71は、ひとつまたはふたつの磁極32aだけステータコア32を回転させる。インデックス機71は、ひとつの磁極32a分だけステータコア32を回転させる。図示の例では、相間ジャンパ線PJ1aを形成するためのインデックス機71によるステータコア32の回転量は、ひとつの磁極32aに相当する。 The index machine 71 rotates the stator core 32 by one or two magnetic poles 32a. The index machine 71 rotates the stator core 32 by one magnetic pole 32a. In the illustrated example, the amount of rotation of the stator core 32 by the index machine 71 for forming the interphase jumper wire PJ1a corresponds to one magnetic pole 32a.
 相間ジャンパ線PJ1aは、素線33aをジャンパ線保持器73に掛けることによって形成される。素線33aは、ジャンパ線保持器73を移動させることにより、または、巻線機72のフライヤを操作することによって、ジャンパ線保持器73に掛けられる。よって、素線33aは、引出線u1bの位置からジャンパ線保持器73を経由して、引出線w1aの位置にまで延びるように敷設される。この工程は、図4のJ11欄に-1として示されている。 The interphase jumper wire PJ1a is formed by hanging the wire 33a on the jumper wire retainer 73. The strand 33a is hung on the jumper wire holder 73 by moving the jumper wire holder 73 or by operating the flyer of the winding machine 72. Therefore, the strand 33a is laid so as to extend from the position of the leader line u1b to the position of the leader line w1a via the jumper wire retainer 73. This step is indicated as -1 in the J11 column of FIG.
 (P12:w1)
 この工程は、ひとつの群の次のひとつの相コイルを形成する工程である。この工程は、図4のP12欄にR-として示されている。この工程は、上述の(1)、(2)および(3)の段階を含む。この工程により、インデックス機71と巻線機72とは、相コイルw1のための3つの磁極32aに素線33aを集中巻する。ここでは、巻線機72は、磁極32aの周りに、第2巻き方向(右巻きR)で素線33aを巻き付ける。インデックス機71は、第2送り方向IDR2(-)にステータコア32を回転させる。よって、相コイルw1は、先に巻かれた相コイルu1とは反対の巻き方向と、反対の送り方向とによって巻かれる。これにより、引出線w1aから引出線w1bまでの相コイルw1が完成する。
(P12: w1)
This step is a step of forming the next one phase coil of one group. This step is indicated as R- in the P12 column of FIG. This process includes the steps (1), (2) and (3) described above. By this process, the index machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the phase coil w1. Here, the winding machine 72 winds the wire 33a around the magnetic pole 32a in the second winding direction (right winding R). The index machine 71 rotates the stator core 32 in the second feed direction IDR2 (−). Therefore, the phase coil w1 is wound in the winding direction opposite to the previously wound phase coil u1 and in the opposite feeding direction. Thereby, the phase coil w1 from the leader line w1a to the leader line w1b is completed.
 (J12:PJ1b)
 この工程は、ひとつの群の中の次の相間ジャンパ線を形成する工程である。ふたつの相コイルが完成すると、巻線装置70は、同じ群の中の次の相コイルを形成する工程へ移行するための相間ジャンパ線PJ1bを形成する。この工程は、上記工程J12と同じである。インデックス機71は、第2送り方向IDR2(-)にステータコア32を回転させる。インデックス機71は、同じ群の中の最後の相コイルのための磁極を巻線機72に対向させるようにステータコア32を回転させる。これにより、最後の相コイルのための磁極32aが巻線可能な位置に位置付けられる。ここでも、相間ジャンパ線PJ1bは、素線33aをジャンパ線保持器73に掛けることによって形成される。この工程は、図4のJ12欄に-1として示されている。
(J12: PJ1b)
This step is a step of forming the next interphase jumper line in one group. When the two phase coils are completed, the winding device 70 forms the inter-phase jumper line PJ1b for shifting to the step of forming the next phase coil in the same group. This step is the same as the above step J12. The index machine 71 rotates the stator core 32 in the second feed direction IDR2 (−). The index machine 71 rotates the stator core 32 so that the magnetic pole for the last phase coil in the same group faces the winding machine 72. Thereby, the magnetic pole 32a for the last phase coil is positioned at a position where it can be wound. Here again, the interphase jumper line PJ1b is formed by hooking the strand 33a on the jumper line holder 73. This step is indicated as -1 in the J12 column of FIG.
 (P13:v1)
 この工程は、ひとつの群の最後のひとつの相コイルを形成する工程である。この工程は、図4のP13欄にL+として示されている。この工程は、上述の(1)、(2)および(3)の段階を含む。この工程により、インデックス機71と巻線機72とは、相コイルv1のための3つの磁極32aに素線33aを集中巻する。ここでは、巻線機72は、磁極32aの周りに、第1巻き方向(左巻きL)で素線33aを巻き付ける。インデックス機71は、第1送り方向IDR1(+)にステータコア32を回転させる。よって、相コイルv1は、直前に巻かれた相コイルw1とは反対の巻き方向と、反対の送り方向とによって巻かれる。相コイルv1は、最初に巻かれた相コイルu1と同じ巻き方向と、同じ送り方向とによって巻かれる。これにより、引出線v1aから引出線v1bまでの相コイルv1が完成する。
(P13: v1)
This step is a step of forming the last one phase coil of one group. This process is indicated as L + in the P13 column of FIG. This process includes the steps (1), (2) and (3) described above. By this process, the index machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the phase coil v1. Here, the winding machine 72 winds the wire 33a around the magnetic pole 32a in the first winding direction (left-handed L). The index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Therefore, the phase coil v1 is wound in the winding direction opposite to the phase coil w1 wound immediately before and in the opposite feeding direction. The phase coil v1 is wound in the same winding direction as the phase coil u1 wound first and the same feeding direction. Thereby, the phase coil v1 from the leader line v1a to the leader line v1b is completed.
 (GJ)
 この工程は、ふたつの群の間の群間ジャンパ線を形成する工程である。上述の工程P11-P13によってひとつの群が完成すると、巻線装置70は、次の群を形成する工程へ移行するための群間ジャンパ線GJを形成する。この工程は、巻線工程を、ステータコア32上の残る半部へ移動させる工程でもある。この工程により、他の群のための磁極32aのひとつが巻線工程の対象として位置付けられる。図示の例では、第1群の巻き始めの相コイルu1に対応する第2群の相コイルu2のための磁極32aが巻線工程の対象として位置付けられる。
(GJ)
This step is a step of forming an inter-group jumper line between the two groups. When one group is completed by the above-described processes P11 to P13, the winding apparatus 70 forms the inter-group jumper line GJ for shifting to the process of forming the next group. This step is also a step of moving the winding step to the remaining half of the stator core 32. By this process, one of the magnetic poles 32a for the other group is positioned as an object of the winding process. In the illustrated example, the magnetic pole 32a for the second group of phase coils u2 corresponding to the first group of winding start phase coils u1 is positioned as a target of the winding process.
 インデックス機71は、第2送り方向(-)にステータコア32を回転させる。インデックス機71は、次の群の中のいずれかの相コイルのための磁極を巻線機72に対向させるようにステータコア32を回転させる。これにより、次の群のための磁極32aが巻線可能な位置に位置付けられる。図示の例では、インデックス機71は、相コイルv1を形成するための第1送り方向IDR1(+)と反対の第2送り方向IDR2(-)へ、6つの磁極32a分だけステータコア32を回転させる。よって、素線33aは、引出線v1bの位置からジャンパ線保持器73を経由して、引出線u2aの位置にまで延びるように敷設される。 The index machine 71 rotates the stator core 32 in the second feed direction (−). The index machine 71 rotates the stator core 32 so that the magnetic pole for any phase coil in the next group faces the winding machine 72. Thereby, the magnetic pole 32a for the next group is positioned at a position where it can be wound. In the illustrated example, the index machine 71 rotates the stator core 32 by six magnetic poles 32a in the second feed direction IDR2 (−) opposite to the first feed direction IDR1 (+) for forming the phase coil v1. . Therefore, the strand 33a is laid so as to extend from the position of the lead line v1b to the position of the lead line u2a via the jumper line holder 73.
 群間ジャンパ線GJは、素線33aをジャンパ線保持器73に掛けることによって形成される。素線33aは、ジャンパ線保持器73を移動させることにより、または、巻線機72のフライヤを操作することによって、ジャンパ線保持器73に掛けられる。この工程は、図4のGJ欄に-6として示されている。 The inter-group jumper wire GJ is formed by hanging the strand 33a on the jumper wire holder 73. The strand 33a is hung on the jumper wire holder 73 by moving the jumper wire holder 73 or by operating the flyer of the winding machine 72. This step is indicated as -6 in the GJ column of FIG.
 (G2)
 この工程では、複数の多相巻線群のうち、他のひとつの群、すなわち第2群、のための3つの相コイルu2、v2、w2が形成される。別の観点では、この実施形態は、ひとつの三相巻線群u1、v1、w1を形成する第1工程G1と、他の三相巻線群u2、v2、w2を形成する第2工程G2とを備える。第1工程と第2工程とのそれぞれが、第1相コイルを形成する工程、第2相コイルを形成する工程、および第3相コイルを形成する工程を含む。第2工程G2は、以下の工程P21-P23を含む。
(G2)
In this step, three phase coils u2, v2, and w2 for the other group, that is, the second group among the plurality of multiphase winding groups are formed. In another aspect, this embodiment is a first step G1 for forming one three-phase winding group u1, v1, and w1, and a second step G2 for forming another three-phase winding group u2, v2, and w2. With. Each of the first step and the second step includes a step of forming a first phase coil, a step of forming a second phase coil, and a step of forming a third phase coil. The second step G2 includes the following steps P21 to P23.
 (P21:u2)
 この工程は、他の群の最初のひとつの相コイルを形成する工程である。この工程は、図4のP21欄にL-として示されている。この工程は、以下の段階を含む。
(P21: u2)
This step is a step of forming the first one phase coil of another group. This step is indicated as L- in the P21 column of FIG. This process includes the following steps.
 (1)単コイルを形成する段階
 巻線機72は、第2群のためのひとつの磁極32aの周りに素線33aを巻く。巻線機72は、ステータコア32の一端から巻き付けを開始する。巻線機72は、磁極32aの周りに、第2巻き方向で素線33aを巻き付ける。巻線機72は、ステータコア32の他端において磁極32aへの巻き付けを終える。これによりひとつの単コイルが形成される。しかも、ステータコア32の他端において渡り線SJ2を形成することが可能となる。
(1) Stage of forming a single coil The winding machine 72 winds a wire 33a around one magnetic pole 32a for the second group. The winding machine 72 starts winding from one end of the stator core 32. The winding machine 72 winds the wire 33a around the magnetic pole 32a in the second winding direction. The winding machine 72 finishes winding the magnetic pole 32 a at the other end of the stator core 32. Thereby, one single coil is formed. In addition, the connecting wire SJ2 can be formed at the other end of the stator core 32.
 図示の例では、素線33aは、第2群の相コイルu2に、ステータコア32の一端から左巻きLで巻かれる。 In the illustrated example, the wire 33a is wound around the second group of phase coils u2 with a left-hand turn L from one end of the stator core 32.
 (2)相内の渡り線を形成する段階
 巻線機72がひとつの単コイルを巻き終わると、インデックス機71は、第2送り方向IDR2(-)にステータコア32を回転させ、相コイルu2のための次の磁極32aを巻線機72に対向させる。このときの送り量(インデックス量とも呼ばれる)は、3つの磁極32aに相当する。この結果、素線33aはステータコア32の他端面の上に沿って敷設される。よって、渡り線SJ2が形成される。
(2) Step of forming the connecting wire in the phase When the winding machine 72 finishes winding one single coil, the index machine 71 rotates the stator core 32 in the second feed direction IDR2 (−), and the phase coil u2 Therefore, the next magnetic pole 32 a is made to face the winding machine 72. The feed amount (also referred to as index amount) at this time corresponds to the three magnetic poles 32a. As a result, the strand 33a is laid along the other end surface of the stator core 32. Therefore, the crossover line SJ2 is formed.
 言い換えると、第1相コイル、第2相コイル、および第3相コイルの少なくともひとつは、ステータコア32を周方向に二分した一方の半部に配置されている。その相コイルは、磁極32aの周囲に配置された単コイルを直列接続する複数の渡り線SJ2をステータコア32の他端に配置するように形成される。 In other words, at least one of the first phase coil, the second phase coil, and the third phase coil is disposed in one half of the stator core 32 that is divided in the circumferential direction. The phase coil is formed so that a plurality of crossover wires SJ2 connecting in series a single coil arranged around the magnetic pole 32a is arranged at the other end of the stator core 32.
 (3)繰り返し段階
 巻線機72は、新たな磁極32aに素線33aを巻き付ける。すなわち、上記(1)の工程が繰り返される。このとき、巻線機72は、ステータコア32の一端から巻き付けを開始する。巻線機72は、ステータコア32の他端において磁極32aへの巻き付けを終える。この後、インデックス機71は、相コイルu2のための次の磁極32aを巻線機72に対向させる。すなわち、上記(2)の工程が繰り返される。やがて、相コイルu2のための最後の磁極32aに単コイルが形成されると、相コイルu2のための巻線工程が終了する。このとき、巻線機72は、ステータコア32の一端において最後の磁極32aへの巻き付けを終える。巻線機72は、ステータコイル33の一端に素線33aを位置付けることによって相コイルu2のための巻線工程を終了する。図示の例では、引出線u2bの位置において相コイルu2のための巻線工程が終了する。このようにしてn個(3つ)の磁極32aに素線33aを巻き終えると、相コイルu2が完成する。しかも、引出線u2a、u2bをステータコア32の一端に配置しながら、渡り線SJ2がステータコア32の他端に配置される。
(3) Repeating step The winding machine 72 winds the wire 33a around the new magnetic pole 32a. That is, the process (1) is repeated. At this time, the winding machine 72 starts winding from one end of the stator core 32. The winding machine 72 finishes winding the magnetic pole 32 a at the other end of the stator core 32. Thereafter, the index machine 71 makes the next magnetic pole 32a for the phase coil u2 face the winding machine 72. That is, the process (2) is repeated. Eventually, when a single coil is formed on the last magnetic pole 32a for the phase coil u2, the winding process for the phase coil u2 is completed. At this time, the winding machine 72 finishes winding the last magnetic pole 32 a at one end of the stator core 32. The winding machine 72 ends the winding process for the phase coil u2 by positioning the wire 33a at one end of the stator coil 33. In the illustrated example, the winding process for the phase coil u2 ends at the position of the lead wire u2b. In this way, when the wire 33a is wound around the n (three) magnetic poles 32a, the phase coil u2 is completed. Moreover, the connecting wire SJ2 is disposed at the other end of the stator core 32 while the lead wires u2a and u2b are disposed at one end of the stator core 32.
 (J21:PJ2a)
 この工程は、他の群の中の最初の相間ジャンパ線を形成する工程である。前の工程によってひとつの相コイルが完成すると、巻線装置70は、同じ群の中の次の相コイルを形成する工程へ移行するための相間ジャンパ線PJ2aを形成する。この工程では、相間ジャンパ線PJ2aを形成するように、素線33aがジャンパ線保持器73によって保持される。この工程は、上述の工程J11と同じである。この工程は、図4のJ21欄に-1として示されている。
(J21: PJ2a)
This step is a step of forming the first interphase jumper line in the other group. When one phase coil is completed by the previous process, winding device 70 forms interphase jumper line PJ2a for shifting to the process of forming the next phase coil in the same group. In this step, the strand 33a is held by the jumper wire holder 73 so as to form the interphase jumper wire PJ2a. This step is the same as step J11 described above. This step is indicated as -1 in the J21 column of FIG.
 (P22:w2)
 この工程は、他の群の次のひとつの相コイルを形成する工程である。この工程は、図4のP22欄にR+として示されている。この工程は、上述の工程P11における(1)、(2)および(3)に相当する段階を含む。この工程により、インデックス機71と巻線機72とは、w2相コイルのための3つの磁極32aに素線33aを集中巻する。ここでは、巻線機72は、磁極32aの周りに、第2巻き方向(右巻きR)で素線33aを巻き付ける。インデックス機71は、第1送り方向IDR1(+)にステータコア32を回転させる。よって、w2相コイルは、先に巻かれた相コイルu2とは反対の巻き方向と、反対の送り方向とによって巻かれる。これにより、引出線w2aから引出線w2bまでのw2相コイルが完成する。
(P22: w2)
This step is a step of forming the next one phase coil of another group. This step is indicated as R + in the P22 column of FIG. This process includes stages corresponding to (1), (2) and (3) in the above-described process P11. By this process, the index machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the w2-phase coil. Here, the winding machine 72 winds the wire 33a around the magnetic pole 32a in the second winding direction (right winding R). The index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Therefore, the w2-phase coil is wound in the opposite winding direction to the previously wound phase coil u2 and in the opposite feeding direction. Thereby, the w2 phase coil from leader line w2a to leader line w2b is completed.
 (J22:PJ2b)
 この工程は、ひとつの群の中の次の相間ジャンパ線を形成する工程である。ふたつの相コイルが完成すると、巻線装置70は、同じ群の中の次の相コイルを形成する工程へ移行するための相間ジャンパ線PJ2bを形成する。この工程は、上記工程J21と同じである。この工程は、図4のJ22欄に-1として示されている。
(J22: PJ2b)
This step is a step of forming the next interphase jumper line in one group. When the two phase coils are completed, the winding device 70 forms the inter-phase jumper line PJ2b for shifting to the step of forming the next phase coil in the same group. This step is the same as the above step J21. This step is indicated as -1 in the J22 column of FIG.
 この実施形態では、工程J11と、工程J21とが、第1相コイルu1、u2の巻き終わりの直ぐ隣の磁極にわたって素線33aを敷設することによってジャンパ線を形成する工程を提供する。また、工程J12と工程J22とが、第2相コイルw1、w2の巻き終わりの直ぐ隣の磁極32aにわたって素線33aを敷設することによってジャンパ線を形成する工程を提供する。 In this embodiment, step J11 and step J21 provide a step of forming a jumper wire by laying the strand 33a over the magnetic pole immediately adjacent to the end of winding of the first phase coils u1, u2. In addition, Step J12 and Step J22 provide a step of forming a jumper wire by laying the strand 33a over the magnetic pole 32a immediately adjacent to the end of winding of the second phase coils w1 and w2.
 (P23:v2)
 この工程は、ひとつの群の最後のひとつの相コイルを形成する工程である。この工程は、図4のP23欄にL-として示されている。この工程は、上述の工程P11における(1)、(2)および(3)に相当する段階を含む。この工程により、インデックス機71と巻線機72とは、相コイルv2のための3つの磁極32aに素線33aを集中巻する。巻線機72は、素線33aをステータコア32の一端に位置付けることにより終了端ENDを形成する。
(P23: v2)
This step is a step of forming the last one phase coil of one group. This step is indicated as L- in the P23 column of FIG. This process includes stages corresponding to (1), (2) and (3) in the above-described process P11. By this process, the indexing machine 71 and the winding machine 72 concentrate the wire 33a around the three magnetic poles 32a for the phase coil v2. The winding machine 72 forms the end end END by positioning the wire 33 a at one end of the stator core 32.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりの直ぐ隣の磁極から、第2相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P23は、第2相コイルの巻き終わりの直ぐ隣の磁極から、第3相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. Steps P12 and P22 for forming the second phase coil are performed in the second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the plurality of magnetic poles for the second phase coil. Is a step of concentrated winding of the strands in the second winding direction with respect to the magnetic poles. Steps P13 and P23 for forming the third phase coil are performed by sending a plurality of magnetic poles for the third phase coil in the first feed direction from the magnetic pole immediately adjacent to the end of winding of the second phase coil. This is a step of concentrating the wires in the first winding direction.
 (仕上げ工程)
 上述したように、ステータコア32に連続した素線33aを巻くことによって、複数の多相巻線群を形成するための、複数の単コイルと、複数の渡り線と、複数の引出線のためのジャンパ線とが形成される。この後、ステータコア32は、インデックス機71から取り外され、後続の工程に供給される。後続の工程では、相間ジャンパ線PJ1a。PJ1b、PJ2a、PJ2bおよび群間ジャンパ線GJが切断され、所定の形状に成形される。さらに、中性点接続のために、引出線u1b、v1b、w1bが接続され、引出線u2b、v2b、w2bが接続される。以上の工程によってステータ31が完成する。この工程は、ジャンパ線を切断することにより引出線を形成する工程を提供する。
(Finishing process)
As described above, by winding a continuous wire 33a around the stator core 32, a plurality of single coils, a plurality of connecting wires, and a plurality of lead wires are formed to form a plurality of multiphase winding groups. Jumper wires are formed. Thereafter, the stator core 32 is removed from the index machine 71 and supplied to subsequent processes. In a subsequent process, an interphase jumper line PJ1a. PJ1b, PJ2a, PJ2b and inter-group jumper line GJ are cut and formed into a predetermined shape. Furthermore, for the neutral point connection, the leader lines u1b, v1b, w1b are connected, and the leader lines u2b, v2b, w2b are connected. The stator 31 is completed through the above steps. This step provides a step of forming a leader line by cutting a jumper line.
 ステータ31が製造された後、ステータ31にはセンサユニット41が組付けられる。さらにステータ31はボディ13に装着される。この後に、ロータ21が装着されることによって回転電機10の製造方法が完了する。 After the stator 31 is manufactured, the sensor unit 41 is assembled to the stator 31. Further, the stator 31 is attached to the body 13. Thereafter, the rotor 21 is mounted to complete the method for manufacturing the rotating electrical machine 10.
 (作用効果)
 この実施形態によると、効率的にステータコイル33を形成することができる。具体的には、複数の多相巻線群を一連の巻線工程において連続して巻くことができる。また、ひとつの多相巻線群の中における2つの相コイルの間におけるジャンパ線の長さが短い内燃機関用回転電機を提供することができる。
(Function and effect)
According to this embodiment, the stator coil 33 can be formed efficiently. Specifically, a plurality of multiphase winding groups can be wound continuously in a series of winding processes. In addition, it is possible to provide a rotating electrical machine for an internal combustion engine in which the length of a jumper wire between two phase coils in one multiphase winding group is short.
 この実施形態によると、相間ジャンパ線PJ1a、PJ1b、PJ2a、PJ2bは、ひとつの磁極32a分だけ周方向に敷設される。このため、短い素線33aによって相間ジャンパ線PJ1a、PJ1b、PJ2a、PJ2bを形成することができる。また、相間ジャンパ線PJ1a、PJ1b、PJ2a、PJ2bを引出線に加工するために切除され破棄される素線33aの量を抑制することができる。 According to this embodiment, the interphase jumper wires PJ1a, PJ1b, PJ2a, PJ2b are laid in the circumferential direction by one magnetic pole 32a. For this reason, the interphase jumper lines PJ1a, PJ1b, PJ2a, and PJ2b can be formed by the short strands 33a. Further, it is possible to suppress the amount of the strands 33a that are cut and discarded to process the interphase jumper wires PJ1a, PJ1b, PJ2a, and PJ2b into lead wires.
 また、この実施形態によると、すべての引出線がステータコア32の一端に配置される。これにより、ステータコイル33のための接続が容易になる。また、第1群のための渡り線SJ1と第2群のための渡り線SJ2とがステータコア32の異なる端面の上に配置される。このため、ステータコア32の一端における渡り線の数を抑制することができる。また、ステータコア32の他端面においては、引出線も渡り線も配置されない領域が設けられる。このような渡り線の配置は、ステータコア32の一端の上における引出線の配置作業を容易にする。また、このような渡り線の配置は、ステータコア32の一端の上における中性点接続などの接続作業を容易にする。また、ステータコア32の周方向の半部に渡り線SJ1、SJ2が集中的に配置される。この構成は、センサユニット41を配置するための領域をステータコア32の端面の上に提供する。 Further, according to this embodiment, all the leader lines are arranged at one end of the stator core 32. Thereby, the connection for the stator coil 33 becomes easy. Further, the connecting line SJ1 for the first group and the connecting line SJ2 for the second group are arranged on different end faces of the stator core 32. For this reason, the number of crossovers at one end of the stator core 32 can be suppressed. In addition, a region where neither the leader line nor the jumper line is arranged is provided on the other end surface of the stator core 32. Such a crossover arrangement facilitates the arrangement of the leader lines on one end of the stator core 32. Further, such a crossover arrangement facilitates connection work such as neutral point connection on one end of the stator core 32. Further, the crossovers SJ1 and SJ2 are intensively arranged in the circumferential half of the stator core 32. This configuration provides an area for arranging the sensor unit 41 on the end face of the stator core 32.
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図5は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。以下の複数の実施形態の説明では、先行する実施形態との相違点を説明する。同じまたは類似の構成および方法については、先行する実施形態の説明を参照することができる。
(Second Embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 5 is a winding diagram showing the arrangement of the stator coils 33 on the stator core 32. In the following description of the plurality of embodiments, differences from the preceding embodiments will be described. For the same or similar configurations and methods, reference may be made to the description of the preceding embodiment.
 この実施形態では、u相コイル、v相コイル、w相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ1b、PJ2a、PJ2bを形成するための工程J11、J12、J21、J22において、インデックス機71は、第1送り方向IDR1(+)にステータコア32を回転させる。この製造方法においても、ひとつの群のひとつの相コイルを巻き終えた後に、その磁極32aに隣接する磁極32aから、同じ群の他の相コイルのための巻線工程が実行される。よって、それら2つの相コイルの間におけるジャンパ線PJ1a、PJ1b、PJ2a、PJ2bの周方向の長さをひとつの磁極32a分とすることができる。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil. In this embodiment, in the processes J11, J12, J21, and J22 for forming the interphase jumper lines PJ1a, PJ1b, PJ2a, and PJ2b, the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Also in this manufacturing method, after winding one phase coil of one group, the winding process for another phase coil of the same group is executed from the magnetic pole 32a adjacent to the magnetic pole 32a. Therefore, the circumferential length of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between these two phase coils can be set to one magnetic pole 32a.
 (第3実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図6は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。
(Third embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 6 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
 この実施形態では、u相コイル、v相コイル、w相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ2aを形成するための工程J11、J21において、インデックス機71は、第2送り方向IDR2(-)に、ふたつの磁極32a分だけ、ステータコア32を回転させる。この製造方法においても、ひとつの群のひとつの相コイルを巻き終えた後に、その磁極32aからひとつの磁極32aを飛ばして向こうに位置する磁極32aから、同じ群の他の相コイルのための巻線工程が実行される。よって、それら2つの相コイルの間におけるジャンパ線PJ1a、PJ2aの周方向の長さをふたつの磁極32a分とすることができる。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil. In this embodiment, in the processes J11 and J21 for forming the interphase jumper wires PJ1a and PJ2a, the index machine 71 rotates the stator core 32 by two magnetic poles 32a in the second feed direction IDR2 (−). Also in this manufacturing method, after winding of one phase coil of one group, after winding one magnetic pole 32a from the magnetic pole 32a, the winding for another phase coil of the same group is started from the magnetic pole 32a located at the other side. A line process is performed. Therefore, the circumferential lengths of the jumper wires PJ1a and PJ2a between these two phase coils can be made equal to the two magnetic poles 32a.
 この実施形態では、相間ジャンパ線PJ1b、PJ2bを形成するための工程J12、J22において、インデックス機71は、第1送り方向IDR1(+)にステータコア32を回転させる。この製造方法においても、ひとつの群のひとつの相コイルを巻き終えた後に、その磁極32aに隣接する磁極32aから、同じ群の他の相コイルのための巻線工程が実行される。 In this embodiment, the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+) in the processes J12 and J22 for forming the interphase jumper wires PJ1b and PJ2b. Also in this manufacturing method, after winding one phase coil of one group, the winding process for another phase coil of the same group is executed from the magnetic pole 32a adjacent to the magnetic pole 32a.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりのひとつの磁極を飛ばしたふたつ目の磁極から、第2相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P23は、第2相コイルの巻き終わりのひとつの磁極を飛ばしたふたつ目の磁極から、第3相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. In the steps P12 and P22 of forming the second phase coil, a plurality of magnetic poles for the second phase coil are defined as the first feed direction from the second magnetic pole from which one magnetic pole at the end of the winding of the first phase coil is skipped. In this step, the wires are concentratedly wound in the second winding direction with respect to the magnetic poles by feeding in the opposite second feeding direction. In steps P13 and P23 for forming the third phase coil, a plurality of magnetic poles for the third phase coil are sent in the first feed direction from the second magnetic pole that has skipped one magnetic pole at the end of the winding of the second phase coil. This is a step of concentrated winding of the wires in the first winding direction with respect to the magnetic poles.
 この実施形態では、工程J11、J21によって、第1相コイルの巻き終わりのひとつの磁極32aを飛ばしたふたつ目の磁極32aにわたって素線33aを敷設することによってジャンパ線を形成する工程が提供される。また、工程J12、J22によって、第2相コイルの巻き終わりのひとつの磁極32aを飛ばしたふたつ目の磁極32aにわたって素線33aを敷設することによってジャンパ線を形成する工程が提供される。 In this embodiment, the steps J11 and J21 provide a step of forming a jumper wire by laying an element wire 33a over the second magnetic pole 32a from which one magnetic pole 32a at the end of winding of the first phase coil is skipped. . Further, the steps J12 and J22 provide a step of forming a jumper wire by laying the strand 33a over the second magnetic pole 32a from which the one magnetic pole 32a at the end of winding of the second phase coil is skipped.
 (第4実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図7は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。
(Fourth embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 7 is a winding diagram showing the arrangement of the stator coils 33 on the stator core 32.
 この実施形態では、u相コイル、w相コイル、v相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ2aを形成するための工程J11、J21において、インデックス機71は、第1送り方向IDR1(+)にステータコア32を回転させる。この製造方法においても、ひとつの群のひとつの相コイルを巻き終えた後に、その磁極32aからひとつの磁極32aを飛ばして向こうに位置する磁極32aから、同じ群の他の相コイルのための巻線工程が実行される。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the w-phase coil, and the v-phase coil. In this embodiment, in the processes J11 and J21 for forming the interphase jumper wires PJ1a and PJ2a, the index machine 71 rotates the stator core 32 in the first feed direction IDR1 (+). Also in this manufacturing method, after winding of one phase coil of one group, after winding one magnetic pole 32a from the magnetic pole 32a, the winding for another phase coil of the same group is started from the magnetic pole 32a located at the other side. A line process is performed.
 この実施形態では、相間ジャンパ線PJ1b、PJ2bを形成するための工程J12、J22において、インデックス機71は、先行する工程J11、J21とは反対の第2送り方向IDR2(-)にステータコア32を回転させる。この製造方法においても、ひとつの群のひとつの相コイルを巻き終えた後に、その磁極32aに隣接する磁極32aから、同じ群の他の相コイルのための巻線工程が実行される。 In this embodiment, in the processes J12 and J22 for forming the interphase jumper lines PJ1b and PJ2b, the index machine 71 rotates the stator core 32 in the second feed direction IDR2 (−) opposite to the preceding processes J11 and J21. Let Also in this manufacturing method, after winding one phase coil of one group, the winding process for another phase coil of the same group is executed from the magnetic pole 32a adjacent to the magnetic pole 32a.
 (第5実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図8は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。
(Fifth embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 8 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
 この実施形態では、u相コイル、w相コイル、v相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ2aを形成するための工程J11、J21において、インデックス機71は、第2送り方向IDR2(-)に、ひとつの磁極32a分だけ、ステータコア32を回転させる。この実施形態では、相間ジャンパ線PJ1b、PJ2bを形成するための工程J12、J22において、インデックス機71は、第1送り方向IDR1(+)に、ふたつの磁極32a分だけ、ステータコア32を回転させる。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the w-phase coil, and the v-phase coil. In this embodiment, in the processes J11 and J21 for forming the interphase jumper lines PJ1a and PJ2a, the index machine 71 rotates the stator core 32 by one magnetic pole 32a in the second feed direction IDR2 (−). In this embodiment, in the processes J12 and J22 for forming the interphase jumper lines PJ1b and PJ2b, the index machine 71 rotates the stator core 32 by the two magnetic poles 32a in the first feed direction IDR1 (+).
 この製造方法においても、ひとつの群の2つの相コイルの間におけるジャンパ線PJ1a、PJ1b、PJ2a、PJ2bの周方向の長さをふたつの磁極32aに相当する長さ以下とすることができる。 Also in this manufacturing method, the circumferential lengths of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils of one group can be made equal to or less than the length corresponding to the two magnetic poles 32a.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりの直ぐ隣の磁極から、第2相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P23は、第2相コイルの巻き終わりのひとつの磁極を飛ばしたふたつ目の磁極から、第3相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. Steps P12 and P22 for forming the second phase coil are performed in the second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the plurality of magnetic poles for the second phase coil. Is a step of concentrated winding of the strands in the second winding direction with respect to the magnetic poles. In steps P13 and P23 for forming the third phase coil, a plurality of magnetic poles for the third phase coil are sent in the first feed direction from the second magnetic pole that has skipped one magnetic pole at the end of the winding of the second phase coil. This is a step of concentrated winding of the wires in the first winding direction with respect to the magnetic poles.
 (第6実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図9は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。
(Sixth embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 9 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
 この実施形態では、u相コイル、v相コイル、w相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ2aを形成するための工程J11、J21において、インデックス機71は、第1送り方向IDR1(+)に、ひとつの磁極32a分だけ、ステータコア32を回転させる。この実施形態では、相間ジャンパ線PJ1b、PJ2bを形成するための工程J12、J22において、インデックス機71は、第2送り方向IDR2(-)に、ふたつの磁極32a分だけ、ステータコア32を回転させる。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil. In this embodiment, in the processes J11 and J21 for forming the interphase jumper wires PJ1a and PJ2a, the index machine 71 rotates the stator core 32 by one magnetic pole 32a in the first feed direction IDR1 (+). In this embodiment, in the processes J12 and J22 for forming the interphase jumper lines PJ1b and PJ2b, the index machine 71 rotates the stator core 32 by two magnetic poles 32a in the second feed direction IDR2 (−).
 この製造方法においても、ひとつの群の2つの相コイルの間におけるジャンパ線PJ1a、PJ1b、PJ2a、PJ2bの周方向の長さをふたつの磁極32aに相当する長さ以下とすることができる。 Also in this manufacturing method, the circumferential lengths of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils of one group can be made equal to or less than the length corresponding to the two magnetic poles 32a.
 (第7実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図10は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。上記実施形態では、ステータコア32上の複数の磁極32aを周方向に沿って2分し、ステータコア32の半部の範囲に位置する9本の磁極32aに第1群を配置し、ステータコア32の残り半部の範囲に位置する9本の磁極32aに第2群を配置した。これに代えて、この実施形態では、ステータコア32の半部の範囲に第1群の2つの相コイルと、第2群のひとつの相コイルとが配置され、ステータコア32の残り半部の範囲に第1群のひとつの相コイルと、第2群のふたつの相コイルとが配置される。よって、ひとつの三相巻線群u1、v1、w1に属するひとつの相コイルはステータコア32を周方向に二分した一方の半部に配置され、他のひとつの相コイルは残る他の半部に配置される。さらに、他の三相巻線群u2、v2、w2に属するひとつの相コイルは一方の半部に配置され、他のひとつの相コイルは他の半部に配置されている。
(Seventh embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 10 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32. In the above embodiment, the plurality of magnetic poles 32 a on the stator core 32 are divided into two along the circumferential direction, the first group is arranged on the nine magnetic poles 32 a located in the range of the half of the stator core 32, and the rest of the stator core 32 is The second group was arranged on nine magnetic poles 32a located in the range of the half. Instead, in this embodiment, two phase coils of the first group and one phase coil of the second group are arranged in the range of the half part of the stator core 32, and in the range of the remaining half part of the stator core 32. One phase coil of the first group and two phase coils of the second group are arranged. Therefore, one phase coil belonging to one three-phase winding group u1, v1, w1 is arranged in one half of the stator core 32 divided in the circumferential direction, and the other one phase coil is in the remaining half. Be placed. Furthermore, one phase coil belonging to another three-phase winding group u2, v2, w2 is arranged in one half, and the other one phase coil is arranged in the other half.
 この実施形態でも、素線33aは、開始端STARTから終了端ENDまで連続的にステータコア32に巻かれる。第1群の第1相コイルは、第1巻き方向および第1送り方向で巻かれる。第1群の第1相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第1群の第2相コイルの巻線工程が開始される。この第2相コイルは、先行する第1相コイルとは逆の第2巻き方向および逆の第2送り方向で巻かれる。さらに、第1群の第2相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第1群の第3相コイルの巻線工程が開始される。この第3相コイルは、先行する第2相コイルとは逆の第1巻き方向および同じ第2送り方向で巻かれる。この結果、第1相コイルと第2相コイルとは、ステータコア32上の周方向において重複する範囲に配置されるが、第3相コイルは、第1相コイルおよび第2相コイルと重複しない残りの範囲に配置される。 Also in this embodiment, the wire 33a is continuously wound around the stator core 32 from the start end START to the end end END. The first group of first phase coils are wound in a first winding direction and a first feed direction. The winding process of the second phase coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the first group of first phase coils. This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in a second feeding direction opposite to that of the preceding first phase coil. Further, the winding process of the third group coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second phase coil of the first group. The third phase coil is wound in the first winding direction opposite to the preceding second phase coil and in the same second feed direction. As a result, the first phase coil and the second phase coil are arranged in a range overlapping in the circumferential direction on the stator core 32, but the third phase coil is the remaining that does not overlap with the first phase coil and the second phase coil. It is arranged in the range.
 さらに、第2群の第1相コイルは、第1群の最後の相コイルとは逆の第2巻き方向および逆の第1送り方向で巻かれる。第2群の第1相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第2群の第2相コイルの巻線工程が開始される。この第2相コイルは、先行する第1相コイルとは逆の第1巻き方向および逆の第2送り方向で巻かれる。さらに、第2群の第2相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第2群の第3相コイルの巻線工程が開始される。この第3相コイルは、先行する第2相コイルとは逆の第2巻き方向および同じ第2送り方向で巻かれる。この結果、第2群の第1相コイルと第2相コイルとは、ステータコア32上の周方向において第1群の第3相コイルと重複して配置され、第2群の第3相コイルは、第1群の第1相コイルおよび第2相コイルと重複して配置される。 Furthermore, the first phase coil of the second group is wound in the second winding direction opposite to the last phase coil of the first group and the first feeding direction opposite to the first winding. The winding process of the second group of second phase coils is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second group of first phase coils. The second phase coil is wound in a first winding direction opposite to the preceding first phase coil and in a second feeding direction opposite to that of the preceding first phase coil. Further, the winding process of the second group of third phase coils is started from the magnetic pole 32a immediately adjacent to the end of winding of the second group of second phase coils. The third phase coil is wound in the second winding direction opposite to the preceding second phase coil and in the same second feed direction. As a result, the first-phase coil and the second-phase coil of the second group are arranged overlapping with the third-phase coil of the first group in the circumferential direction on the stator core 32, and the third-phase coil of the second group is The first group of first phase coils and the second phase coils are overlapped with each other.
 第1群の2つの相コイル(相コイルu1および相コイルw1)および第2群のひとつの相コイル(相コイルv2)は、ステータコア32の一端に引出線を位置付け、同じ一端に渡り線を配置するように巻かれる。一方で、第1群のひとつの相コイル(相コイルv1)および第2群の2つの相コイル(相コイルu2およびw2相コイル)は、ステータコア32の一端に引出線を位置付け、反対の他端に渡り線を配置するように巻かれる。 The first group of two phase coils (phase coil u1 and phase coil w1) and the second group of one phase coil (phase coil v2) have a lead wire positioned at one end of the stator core 32 and a jumper wire disposed at the same end. Wrapped to do. On the other hand, one phase coil of the first group (phase coil v1) and two phase coils of the second group (phase coils u2 and w2 phase coils) have a lead wire positioned at one end of the stator core 32 and the other end opposite to the other end. It is wound so as to arrange a crossover.
 これにより、ステータコア32の周方向の半部の範囲においては、ステータコア32の一端に引出線と渡り線とが配置される。また、ステータコア32の周方向の残り半部の範囲においては、ステータコア32の一端に引出線が配置され、ステータコア32の他端に渡り線が配置される。これにより、ステータコア32の他端面においては、引出線も渡り線も配置されない領域が設けられる。 Thereby, in the range of the half of the stator core 32 in the circumferential direction, the lead wire and the jumper wire are arranged at one end of the stator core 32. Further, in the range of the remaining half of the stator core 32 in the circumferential direction, a lead wire is disposed at one end of the stator core 32, and a jumper is disposed at the other end of the stator core 32. Thereby, in the other end surface of the stator core 32, the area | region where neither a leader line nor a connecting line is arrange | positioned is provided.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりの直ぐ隣の磁極から、第2相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P23は、第2相コイルの巻き終わりの直ぐ隣の磁極から、第3相コイルのための複数の磁極を第2送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. Steps P12 and P22 for forming the second phase coil are performed in the second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the plurality of magnetic poles for the second phase coil. Is a step of concentrated winding of the strands in the second winding direction with respect to the magnetic poles. Steps P13 and P23 for forming the third phase coil are performed by sending a plurality of magnetic poles for the third phase coil in the second feed direction from the magnetic pole immediately adjacent to the end of winding of the second phase coil. This is a step of concentrating the wires in the first winding direction.
 (第8実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図11は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。
(Eighth embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 11 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
 この実施形態では、u相コイル、v相コイル、w相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ1b、PJ2a、PJ2bを形成するための工程J11、J12、J21、J22において、インデックス機71は、第2送り方向IDR2(-)に、ふたつの磁極32a分だけ、ステータコア32を回転させる。この製造方法においても、2つの相コイルの間におけるジャンパ線PJ1a、PJ1b、PJ2a、PJ2bの周方向の長さをふたつの磁極32a分とすることができる。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the v-phase coil, and the w-phase coil. In this embodiment, in the processes J11, J12, J21, and J22 for forming the interphase jumper lines PJ1a, PJ1b, PJ2a, and PJ2b, the index machine 71 is divided into two magnetic poles 32a in the second feed direction IDR2 (−). Only the stator core 32 is rotated. Also in this manufacturing method, the circumferential lengths of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils can be set to two magnetic poles 32a.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりのひとつの磁極を飛ばしたふたつ目の磁極から、第2相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P21は、第2相コイルの巻き終わりのひとつの磁極を飛ばしたふたつ目の磁極から、第3相コイルのための複数の磁極を第2送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. In the steps P12 and P22 of forming the second phase coil, a plurality of magnetic poles for the second phase coil are defined as the first feed direction from the second magnetic pole from which one magnetic pole at the end of the winding of the first phase coil is skipped. In this step, the wires are concentratedly wound in the second winding direction with respect to the magnetic poles by feeding in the opposite second feeding direction. In Steps P13 and P21 for forming the third phase coil, a plurality of magnetic poles for the third phase coil are sent in the second feed direction from the second magnetic pole that has skipped one magnetic pole at the end of the winding of the second phase coil. This is a step of concentrated winding of the wires in the first winding direction with respect to the magnetic poles.
 (第9実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図12は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。この実施形態では、ステータコア32の半部の範囲に、巻き始めから最初の相コイルである第1群のひとつの相コイルが配置され、ステータコア32の残り半部の範囲に第1群のふたつの相コイルが配置される。
(Ninth embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 12 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32. In this embodiment, one phase coil of the first group, which is the first phase coil from the beginning of winding, is arranged in the range of the half of the stator core 32, and the first group of two coils is arranged in the range of the remaining half of the stator core 32. A phase coil is arranged.
 この実施形態でも、素線33aは、開始端STARTから終了端ENDまで連続的にステータコア32に巻かれる。第1群の第1相コイルは、第1巻き方向および第1送り方向で巻かれる。第1群の第1相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第1群の第2相コイルの巻線工程が開始される。この第2相コイルは、先行する第1相コイルとは逆の第2巻き方向および同じ第1送り方向で巻かれる。さらに、第1群の第2相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第1群の第3相コイルの巻線工程が開始される。この第3相コイルは、先行する第2相コイルとは逆の第1巻き方向および逆の第2送り方向で巻かれる。この結果、第2相コイルと第3相コイルとは、ステータコア32上の周方向において重複する範囲に配置されるが、第1相コイルは、第2相コイルおよび第3相コイルと重複しない範囲に配置される。 Also in this embodiment, the wire 33a is continuously wound around the stator core 32 from the start end START to the end end END. The first group of first phase coils are wound in a first winding direction and a first feed direction. The winding process of the second phase coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the first group of first phase coils. This second phase coil is wound in a second winding direction opposite to the preceding first phase coil and in the same first feed direction. Further, the winding process of the third group coil of the first group is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second phase coil of the first group. The third phase coil is wound in a first winding direction opposite to the preceding second phase coil and in a second feeding direction opposite to that of the preceding second phase coil. As a result, the second phase coil and the third phase coil are arranged in a range overlapping in the circumferential direction on the stator core 32, but the first phase coil is a range not overlapping with the second phase coil and the third phase coil. Placed in.
 さらに、第2群の第1相コイルは、第1群の最後の相コイルとは逆の第2巻き方向および逆の第1送り方向で巻かれる。第2群の第1相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第2群の第2相コイルの巻線工程が開始される。この第2相コイルは、先行する第1相コイルとは逆の第1巻き方向および同じ第1送り方向で巻かれる。さらに、第2群の第2相コイルの巻き終わりの磁極32aの直ぐ隣の磁極32aから、第2群の第3相コイルの巻線工程が開始される。この第3相コイルは、先行する第2相コイルとは逆の第2巻き方向および逆の第2送り方向で巻かれる。この結果、第2群の第2相コイルと第3相コイルとは、ステータコア32上の周方向において第1群の第1相コイルと重複して配置され、第2群の第1相コイルは、第1群の第2相コイルおよび第3相コイルと重複して配置される。 Furthermore, the first phase coil of the second group is wound in the second winding direction opposite to the last phase coil of the first group and the first feeding direction opposite to the first winding. The winding process of the second group of second phase coils is started from the magnetic pole 32a immediately adjacent to the magnetic pole 32a at the end of winding of the second group of first phase coils. The second phase coil is wound in the first winding direction opposite to the preceding first phase coil and in the same first feed direction. Further, the winding process of the second group of third phase coils is started from the magnetic pole 32a immediately adjacent to the end of winding of the second group of second phase coils. This third phase coil is wound in a second winding direction opposite to the preceding second phase coil and in a second feeding direction opposite to that of the preceding second phase coil. As a result, the second group second phase coil and the third phase coil are arranged overlapping with the first group first phase coil in the circumferential direction on the stator core 32, and the second group first phase coil is The second group coil and the third phase coil of the first group are overlapped.
 第1群のひとつの相コイル(相コイルu1)および第2群のふたつの相コイル(相コイルv2およびw2相コイル)は、ステータコア32の一端に引出線を位置付け、同じ一端に渡り線を配置するように巻かれる。一方で、第1群のふたつの相コイル(相コイルv1および相コイルw1)および第2群のひとつの相コイル(相コイルu2)は、ステータコア32の一端に引出線を位置付け、反対の他端に渡り線を配置するように巻かれる。これにより、ステータコア32の他端面においては、引出線も渡り線も配置されない領域が設けられる。 One phase coil of the first group (phase coil u1) and two phase coils of the second group (phase coil v2 and w2 phase coil) have a lead wire positioned at one end of the stator core 32 and a crossover wire disposed at the same end. Wrapped to do. On the other hand, two phase coils (phase coil v1 and phase coil w1) in the first group and one phase coil (phase coil u2) in the second group are positioned at one end of the stator core 32 and the other end opposite to the other end. It is wound so as to arrange a crossover. Thereby, in the other end surface of the stator core 32, the area | region where neither a leader line nor a connecting line is arrange | positioned is provided.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりの直ぐ隣の磁極から、第2相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P23は、第2相コイルの巻き終わりの直ぐ隣の磁極から、第3相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. Steps P12 and P22 of forming the second phase coil are performed on the magnetic poles by sending a plurality of magnetic poles for the second phase coil in the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil. In this step, the strands are concentratedly wound in the second winding direction. Steps P13 and P23 for forming the third phase coil include a second feed direction opposite to the first feed direction from the magnetic pole immediately adjacent to the end of winding of the second phase coil to the plurality of magnetic poles for the third phase coil. Is a step of concentrated winding of the strands in the first winding direction with respect to the magnetic poles.
 (第10実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。図13は、ステータコア32上におけるステータコイル33の配置を示す巻線図である。
(10th Embodiment)
This embodiment is a modification based on the preceding embodiment. FIG. 13 is a winding diagram showing the arrangement of the stator coil 33 on the stator core 32.
 この実施形態では、u相コイル、w相コイル、v相コイルの順でステータコイル33が形成される。この実施形態では、相間ジャンパ線PJ1a、PJ2aを形成するための工程J11、J21において、インデックス機71は、第1送り方向IDR1(+)に、ふたつの磁極32a分だけ、ステータコア32を回転させる。相間ジャンパ線PJ1b、PJ2bを形成するための工程J12、J22において、インデックス機71は、第2送り方向IDR2(-)に、ひとつの磁極32a分だけ、ステータコア32を回転させる。この製造方法においても、2つの相コイルの間におけるジャンパ線PJ1a、PJ1b、PJ2a、PJ2bの周方向の長さをふたつの磁極32aに相当する長さ以下とすることができる。 In this embodiment, the stator coil 33 is formed in the order of the u-phase coil, the w-phase coil, and the v-phase coil. In this embodiment, in the processes J11 and J21 for forming the interphase jumper wires PJ1a and PJ2a, the index machine 71 rotates the stator core 32 by the two magnetic poles 32a in the first feed direction IDR1 (+). In steps J12 and J22 for forming the interphase jumper lines PJ1b and PJ2b, the index machine 71 rotates the stator core 32 by one magnetic pole 32a in the second feed direction IDR2 (−). Also in this manufacturing method, the circumferential length of the jumper wires PJ1a, PJ1b, PJ2a, and PJ2b between the two phase coils can be made equal to or shorter than the length corresponding to the two magnetic poles 32a.
 この実施形態において、第1相コイルを形成する工程P11、P21は、第1相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。第2相コイルを形成する工程P12、P22は、第1相コイルの巻き終わりの直ぐ隣の磁極から、第2相コイルのための複数の磁極を第1送り方向へ送ることによりそれら磁極に対して第2巻き方向に素線を集中巻する工程である。第3相コイルを形成する工程P13、P23は、第2相コイルの巻き終わりのひとつの磁極を飛ばしたふたつ目の磁極から、第3相コイルのための複数の磁極を第1送り方向とは反対の第2送り方向へ送ることによりそれら磁極に対して第1巻き方向に素線を集中巻する工程である。 In this embodiment, the steps P11 and P21 for forming the first phase coil are performed by sending a plurality of magnetic poles for the first phase coil in the first feed direction, thereby forming the strands in the first winding direction with respect to the magnetic poles. This is a concentrated winding process. Steps P12 and P22 of forming the second phase coil are performed on the magnetic poles by sending a plurality of magnetic poles for the second phase coil in the first feed direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil. In this step, the strands are concentratedly wound in the second winding direction. In steps P13 and P23 for forming the third phase coil, a plurality of magnetic poles for the third phase coil are referred to as the first feed direction from the second magnetic pole from which one magnetic pole at the end of winding of the second phase coil is skipped. In this step, the wires are concentratedly wound in the first winding direction with respect to the magnetic poles by feeding in the opposite second feeding direction.
 (第11実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、先行するすべての実施形態に対して追加的に適用可能な追加的な改良が開示される。この実施形態では、ステータ31の上における引出線の引き出し方向が、上述の第1実施形態に対して逆に設定されている。この実施形態では、センサユニット41の配置位置も、第1実施形態に対して反対側である。この実施形態では、巻線工程の最後に、引出線を反対側に配置する追加的な工程が実施される。
(Eleventh embodiment)
This embodiment is a modification based on the preceding embodiment. In this embodiment, additional improvements that are additionally applicable to all previous embodiments are disclosed. In this embodiment, the lead-out direction of the leader line on the stator 31 is set opposite to that in the first embodiment. In this embodiment, the arrangement position of the sensor unit 41 is also on the opposite side to the first embodiment. In this embodiment, at the end of the winding process, an additional step of placing the leader on the opposite side is performed.
 図4において、第11欄は、この実施形態の回転電機を製造する方法を示す。第11欄は、第3相コイルを形成する工程P23の後に、さらに、12本の引出線をステータ31上の反対側に向けて敷設する工程OPを有する。工程OPでは、引出線は、対応する磁極32aを半周するように磁極32aに巻き付けられる。このとき、引出線は、すでに巻かれている素線33aの上に、重ねられるように巻き付けられる。引出線は、先行する工程における巻線方向とは逆の方向に巻き付けられる。工程OPは、付加的に巻線するための付加巻線工程、引出線としての線を這い回すための這い回し工程、または引出線の引き出し方向を反転する反転工程とも呼ばれる。 In FIG. 4, the eleventh column shows a method of manufacturing the rotating electrical machine of this embodiment. The eleventh column further includes a step OP of laying 12 lead wires toward the opposite side on the stator 31 after the step P23 of forming the third phase coil. In step OP, the leader line is wound around the magnetic pole 32a so as to make a half turn around the corresponding magnetic pole 32a. At this time, the lead wire is wound so as to be superimposed on the already wound wire 33a. The leader line is wound in a direction opposite to the winding direction in the preceding process. The process OP is also called an additional winding process for additionally winding, a scooping process for scooping a lead line, or an inversion process for reversing the lead-out direction of the lead line.
 図14は、ステータ31の上におけるステータコイル33の配置を示す巻線図である。この実施形態では、第1実施形態における引出線が、ステータ31の反対側に引き出されている。第1実施形態に追加される付加的部分が太い実線で示されている。すべての引出線は、太い実線で示された付加的部分を有する。例えば、引出線u1a、v1a、w1bは、それぞれが付加的部分35u、35v、35wを有する。これら付加的部分35u、35v、35wは、対応する磁極32aを半周している。付加的部分35u、35v、35wは、巻線装置70によって自動的に巻かれた巻線の上に、機械によって、または手作業によって、巻き付けられる。 FIG. 14 is a winding diagram showing the arrangement of the stator coil 33 on the stator 31. In this embodiment, the lead line in the first embodiment is drawn to the opposite side of the stator 31. Additional portions added to the first embodiment are indicated by thick solid lines. All leader lines have an additional portion indicated by a thick solid line. For example, the leader lines u1a, v1a, w1b each have additional portions 35u, 35v, 35w. These additional portions 35u, 35v, and 35w make a half turn around the corresponding magnetic pole 32a. The additional portions 35u, 35v, 35w are wound on the winding automatically wound by the winding device 70, either mechanically or manually.
 図15は、開始端STARTの近傍におけるステータ31の外観を示す斜視図である。図中には、複数の磁極32aが直線上に展開して図示されている。すべての引出線は、内燃機関用回転電機10としての配線のために、ステータ31の上において必要な形状に曲げられ、ステータ31の上に沿って敷設される。例えば、一部またはすべての引出線は、ステータ31の端面の上を周方向に延びるように曲げられ、配置される。追加的に、または代替的に、一部またはすべての引出線は、2つの磁極32aの間に再び配置され、反対側の端面から延び出すように配置される。引出線を敷設する工程は、すべての巻線を巻いた後に行われる。複数の引出線の少なくともひとつは、異なる相の渡り線の上を通過するように曲げられることによって、渡り線と交差するように敷設されている。 FIG. 15 is a perspective view showing the appearance of the stator 31 in the vicinity of the start end START. In the drawing, a plurality of magnetic poles 32a are shown on a straight line. All the lead wires are bent into a necessary shape on the stator 31 and are laid along the stator 31 for wiring as the rotary electric machine 10 for the internal combustion engine. For example, some or all of the leader lines are bent and arranged so as to extend in the circumferential direction on the end surface of the stator 31. Additionally or alternatively, some or all of the leader lines are again arranged between the two magnetic poles 32a and are arranged to extend from the opposite end face. The process of laying the leader line is performed after all the windings are wound. At least one of the plurality of lead lines is laid so as to cross the crossover line by being bent so as to pass over the crossover lines of different phases.
 図中には、ステータ31の上における引出線u1a、w1b、v1aの敷設状態の形状がやや太い実線によって図示されている。引出線u1a、w1b、v1aのうちの少なくとも1本は、スター結線のために、図中の一方の端面から、反対側の端面に引き出される。図中には、すべての引出線u1a、w1b、v1aが、図中の上側の端面から、下側の端面に引き出された場合の形状が図示されている。複数の引出線の配置は、ステータ31上における中性点NTのための接続位置、ステータ31上におけるワイヤハーネスHWとの接続位置など、多様な仕様に適合するように選択される。敷設のために曲げられた引出線u1a、w1b、v1aは、付加的部分35u、35w、35vとして図示されている。 In the figure, the shape of the laid state of the leader lines u1a, w1b, v1a on the stator 31 is shown by a slightly thick solid line. At least one of the lead lines u1a, w1b, v1a is drawn from one end face in the figure to the opposite end face for star connection. In the figure, the shape when all the leader lines u1a, w1b, v1a are drawn out from the upper end face in the figure to the lower end face is shown. The arrangement of the plurality of lead lines is selected so as to meet various specifications such as a connection position for the neutral point NT on the stator 31 and a connection position with the wire harness HW on the stator 31. Leaders u1a, w1b, v1a bent for laying are shown as additional portions 35u, 35w, 35v.
 図16に図示されるように、相コイルu1、相コイルv1、および相コイルw1は、中性点NTと3つの出力端PTとを提供するスター結線によって結線されている。相コイルu2、相コイルv2、および相コイルw2も、中性点NTと3つの出力端PTとを提供するスター結線によって結線されている。同じ相の複数の相コイルは並列接続されている。第1群の引出線v1a、w1a、u1aは、スター結線における出力端PTとして利用される。第1群の引出線v1b、w1b、u1bは、スター結線における中性点NTの接続のために利用される。第2群は、第1群と同様に構成されている。すべての引出線は、結線のために、ステータ31の上において曲げられ、敷設される。スター結線によって提供される3つの出力端PTは、ワイヤハーネスHWに接続され、回路に接続されている。 As shown in FIG. 16, the phase coil u1, the phase coil v1, and the phase coil w1 are connected by a star connection that provides a neutral point NT and three output terminals PT. The phase coil u2, the phase coil v2, and the phase coil w2 are also connected by a star connection that provides the neutral point NT and the three output terminals PT. A plurality of phase coils of the same phase are connected in parallel. The first group of lead lines v1a, w1a, u1a are used as the output terminal PT in the star connection. The first group of leader lines v1b, w1b, u1b are used for connection of the neutral point NT in the star connection. The second group is configured similarly to the first group. All the leader lines are bent and laid on the stator 31 for connection. Three output ends PT provided by the star connection are connected to the wire harness HW and connected to the circuit.
 図14に戻り、センサユニット41は、複数の引出線と同じステータ31の端面に配置される。センサユニット41は、一部のカバー53が、引出線v2a、u2bと同じ磁極間隙間に配置されるように、配置される。カバー53は2つの磁極32aの間の径方向外側部位に位置づけられる。引出線v2a、u2bは、2つの磁極32aの間の径方向内側部位に位置づけられる。よって、両者が干渉することはない。 14, the sensor unit 41 is disposed on the same end surface of the stator 31 as the plurality of lead lines. The sensor unit 41 is disposed such that a part of the cover 53 is disposed between the same magnetic pole gaps as the lead lines v2a and u2b. The cover 53 is positioned at a radially outer portion between the two magnetic poles 32a. The leader lines v2a and u2b are positioned in the radially inner portion between the two magnetic poles 32a. Therefore, both do not interfere.
 センサユニット41は、ステータ31の上の、ボディ13側の端面上に配置される。よって、この実施形態では、すべての引出線が、ボディ13側に延び出している。回転電機の製造方法においては、ステータコア32の上におけるロータ21側の端面から巻線工程が開始される。すなわち、開始端STARTおよび終了端ENDは、ロータ21側に位置づけられている。すべての引出線は、開始端STARTおよび終了端ENDとは反対側の端面から延び出している。少なくとも、出力端PTを提供するための引出線u1a、v1a、w1a、u2a、v2a、w2aが、ボディ13側の端面に配置され、この端面から延び出すことが望ましい。 The sensor unit 41 is disposed on the end surface on the body 13 side on the stator 31. Therefore, in this embodiment, all the leader lines are extended to the body 13 side. In the method of manufacturing the rotating electrical machine, the winding process is started from the end surface on the rotor 21 side on the stator core 32. That is, the start end START and the end end END are positioned on the rotor 21 side. All the leader lines extend from the end surface opposite to the start end START and the end end END. It is desirable that at least lead lines u1a, v1a, w1a, u2a, v2a, w2a for providing the output end PT are arranged on the end face on the body 13 side and extend from this end face.
 (第12実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、先行するすべての実施形態に対して追加的に適用可能な追加的な改良が開示される。
(Twelfth embodiment)
This embodiment is a modification based on the preceding embodiment. In this embodiment, additional improvements that are additionally applicable to all previous embodiments are disclosed.
 図15に図示されるように、先行する実施形態では、第1群を提供する複数の磁極のうち、端ではない内側の磁極に巻かれる相コイルu1から、巻線が開始される。この結果、付加的部分35uは、遅れて巻かれる相コイルw1、v1の渡り線SJ1w、SJ1vの上を通過して配置される。出力端PTを提供する引出線u1aおよび付加的部分35uは、複数の他の相コイルw1、v1の渡り線SJ1w、SJ1vの上を通過する。付加的部分35uは、出力端PTを提供するから、付加的部分35uと、渡り線SJ1w、SJ1vとの間には比較的大きい電位差があらわれる。よって、絶縁不良を生じるおそれがある。加えて、付加的部分35uは、渡り線SJ1w、SJ1vの上で曲げられるから、絶縁皮膜に損傷が生じると、なおさら絶縁不良を生じるおそれが高くなる。さらに、出力端PTを提供する引出線u1aおよび付加的部分35uにおける絶縁不良は、回転電機に著しい機能低下を生じさせるおそれがある。付加的部分35wも、異なる相コイルv1のための渡り線SJ1vの上を通過して配置される。引出線35vは、同じ相コイルv1の渡り線SJ1vの上を通過して配置される。 As illustrated in FIG. 15, in the preceding embodiment, winding is started from a phase coil u <b> 1 wound around an inner magnetic pole that is not an end among a plurality of magnetic poles providing the first group. As a result, the additional portion 35u is disposed so as to pass over the connecting wires SJ1w and SJ1v of the phase coils w1 and v1 wound late. The lead wire u1a and the additional portion 35u that provide the output terminal PT pass over the connecting wires SJ1w and SJ1v of the plurality of other phase coils w1 and v1. Since the additional portion 35u provides the output terminal PT, a relatively large potential difference appears between the additional portion 35u and the crossover lines SJ1w and SJ1v. Therefore, there is a risk of causing an insulation failure. In addition, since the additional portion 35u is bent on the crossover wires SJ1w and SJ1v, there is a high possibility that an insulation failure will be further caused when the insulating film is damaged. Furthermore, the insulation failure in the lead line u1a which provides the output terminal PT and the additional portion 35u may cause a significant deterioration in the function of the rotating electrical machine. The additional portion 35w is also arranged passing over the jumper SJ1v for the different phase coil v1. The lead wire 35v is disposed so as to pass over the connecting wire SJ1v of the same phase coil v1.
 出力端PTとして接続される引出線u1a、v1a、w1aが、異なる相の渡り線と交差する数は、引出線u1aにおけるふたつである。中性点NTとして接続される引出線u1b、v1b、w1bが、異なる相の渡り線と交差する数は、引出線w1bにおけるひとつである。前者の数は、後者の数より多い。よって、この実施形態は絶縁不良の可能性が高く、絶縁不良を生じた場合に回転電機としての機能に大きい影響があらわれる。 The number of the lead lines u1a, v1a, w1a connected as the output terminals PT intersect with the crossover lines of different phases is two in the lead line u1a. The number of the lead lines u1b, v1b, w1b connected as the neutral points NT intersects the crossover lines of different phases is one in the lead line w1b. The former number is greater than the latter number. Therefore, in this embodiment, there is a high possibility of insulation failure, and when the insulation failure occurs, the function as a rotating electrical machine is greatly affected.
 この実施形態では、第1群の複数の相コイルu1、v1、w1を巻く順序が、第1実施形態のそれとは異なる。相コイルu1、v1、w1を巻く順序は、スター結線における出力端PTを提供するための引出線と、異なる相の渡り線SJ1との隣接を抑制するように設定されている。 In this embodiment, the order in which the plurality of phase coils u1, v1, and w1 of the first group are wound is different from that in the first embodiment. The order in which the phase coils u1, v1, and w1 are wound is set so as to suppress the adjoining of the lead wire for providing the output terminal PT in the star connection and the connecting wire SJ1 of a different phase.
 図17において、第1実施形態および第11実施形態の開始端STARTは引出線u1aであるが、この実施形態の開始端STARTは、引出線v1aである。引出線v1aは、第1群に属する複数の相コイルのための複数の引出線u1a、w1b、v1aのうち、引出線u1aとは反対側に位置している。開始端STARTは、第1群に属する複数の相コイルのための複数の引出線のうち、最も端に位置している。開始端STARTは、第1群に属する複数の相コイルのための複数の引出線のうち、第1群における多数派の送り方向における最も上流側に位置する引出線である。図示の例では、多数派の送り方向は、第1送り方向IDR1(+)である。 In FIG. 17, the start end START of the first embodiment and the eleventh embodiment is a leader line u1a, but the start end START of this embodiment is a leader line v1a. The lead line v1a is located on the opposite side of the lead line u1a among the plurality of lead lines u1a, w1b, v1a for the plurality of phase coils belonging to the first group. The start end START is located at the end of the plurality of lead lines for the plurality of phase coils belonging to the first group. The start end START is a leader line located on the most upstream side in the majority feed direction in the first group among the plurality of leader lines for the plurality of phase coils belonging to the first group. In the illustrated example, the feeding direction of the majority is the first feeding direction IDR1 (+).
 この実施形態でも、素線33aは、開始端STARTから終了端ENDまで連続的に巻かれる。第1群の相コイルv1は、開始端START、すなわち引出線v1aから、引出線v1bまで第1巻き方向(左巻きL)と、第1送り方向IDR1(+)とで巻かれている。第1群の相コイルw1は、引出線w1aから、引出線w1bまで第2巻き方向(右巻きR)と、第2送り方向IDR2(-)とで巻かれている。第1群の相コイルu1は、引出線u1aから、引出線u1bまで第1巻き方向(左巻きL)と、第1送り方向IDR1(+)とで巻かれている。相コイルu1、相コイルv1、および相コイルw1のそれぞれは、磁極32aの周囲に配置された単コイルを直列接続する複数の渡り線SJ1と、2本の引出線とを備える。 Also in this embodiment, the wire 33a is continuously wound from the start end START to the end end END. The first group of phase coils v1 is wound from the start end START, that is, from the lead wire v1a to the lead wire v1b, in the first winding direction (left-handed L) and the first feed direction IDR1 (+). The first group of phase coils w1 are wound from the lead wire w1a to the lead wire w1b in the second winding direction (right-handed R) and the second feed direction IDR2 (−). The first group of phase coils u1 are wound from the lead wire u1a to the lead wire u1b in the first winding direction (left-handed L) and the first feed direction IDR1 (+). Each of the phase coil u1, the phase coil v1, and the phase coil w1 includes a plurality of crossover wires SJ1 that serially connect single coils arranged around the magnetic pole 32a, and two lead wires.
 図4の第12欄に図示されるように、相間ジャンパ線を形成する工程における送り方向は、第1送り方向IDR1(+)である。群間ジャンパ線GJを形成するための工程GJにおける送り方向は、第2送り方向IDR2(-)であり、送り量は8である。 As shown in the twelfth column of FIG. 4, the feed direction in the step of forming the interphase jumper wire is the first feed direction IDR1 (+). The feed direction in the process GJ for forming the inter-group jumper line GJ is the second feed direction IDR2 (−), and the feed amount is 8.
 図18は、開始端STARTの近傍におけるステータ31の外観を示す斜視図である。相コイルv1の渡り線SJ1vは、引出線v1aを、2つの磁極32aの間のスロットの最も奥に位置づけ、押さえるように配置される。渡り線SJ1vは、他の相コイルw1、u1の引出線w1b、u1aの背後に位置づけられるから、それらを押さえることはない。他の相コイルw1、u1が巻かれる前に、渡り線SJ1vがステータ31の上に配置されるからである。敷設のために曲げられた付加的部分35vは、同じ相コイルv1の渡り線SJ1vの上を通過するように曲げられている。付加的部分35vは、他の相コイルw1、u1の渡り線SJ1w、SJ1uの上を通過するように曲げられることはない。引出線v1aは、第1群の3つの相コイルu1、v1、w1の最も端に位置しているからである。 FIG. 18 is a perspective view showing the appearance of the stator 31 in the vicinity of the start end START. The connecting wire SJ1v of the phase coil v1 is arranged so that the lead wire v1a is positioned at the back of the slot between the two magnetic poles 32a and pressed. Since the jumper wire SJ1v is positioned behind the lead wires w1b and u1a of the other phase coils w1 and u1, they are not held down. This is because the connecting wire SJ1v is disposed on the stator 31 before the other phase coils w1 and u1 are wound. The additional portion 35v bent for laying is bent so as to pass over the connecting wire SJ1v of the same phase coil v1. The additional portion 35v is not bent so as to pass over the connecting wires SJ1w and SJ1u of the other phase coils w1 and u1. This is because the lead line v1a is located at the end of the three phase coils u1, v1, and w1 of the first group.
 相コイルw1の渡り線SJ1wは、引出線w1bを、スロットの最も奥に位置づけ、押さえることはない。渡り線SJ1wが第2送り方向IDR2(-)に沿って配置された後に、引出線w1bが形成されるからである。渡り線SJ1wは、他の相コイルv1の引出線v1aを押さえることはない。渡り線SJ1wは、相コイルw1が巻かれる磁極32aより第2送り方向IDR2(-)の先に位置する引出線v1aに到達しないからである。渡り線SJ1wは、他の相コイルu1の引出線u1aを押さえることはない。相コイルu1が巻かれる前に、渡り線SJ1wがステータ31の上に配置されるからである。敷設のために曲げられた付加的部分35wは、同じ相コイルw1の渡り線SJ1wの上も、他の相コイルw1、u1の渡り線SJ1w、SJ1uの上も、通過するように曲げられることはない。 The connecting wire SJ1w of the phase coil w1 positions the lead wire w1b at the innermost position of the slot and does not hold it down. This is because the leader line w1b is formed after the crossover line SJ1w is arranged along the second feed direction IDR2 (−). The connecting wire SJ1w does not hold down the lead wire v1a of the other phase coil v1. This is because the crossover wire SJ1w does not reach the lead wire v1a positioned beyond the magnetic pole 32a around which the phase coil w1 is wound in the second feed direction IDR2 (−). The connecting wire SJ1w does not hold down the lead wire u1a of the other phase coil u1. This is because the connecting wire SJ1w is arranged on the stator 31 before the phase coil u1 is wound. The additional portion 35w bent for laying can be bent so as to pass over the connecting wire SJ1w of the same phase coil w1 and the connecting wires SJ1w and SJ1u of the other phase coils w1 and u1. Absent.
 相コイルu1の渡り線SJ1uは、引出線u1aを、スロットの奥に位置づけ、押さえるように配置される。渡り線SJ1uは、他の相コイルv1、w1の引出線w1b、v1aを押さえることはない。渡り線SJ1uは、相コイルu1が巻かれる磁極32aより第2送り方向IDR2(-)の先に位置する引出線w1b、v1aに到達しないからである。敷設のために曲げられた付加的部分35uは、同じ相コイルu1の渡り線SJ1uの上を通過するように曲げられている。付加的部分35uは、他の相コイルv1、w1の渡り線SJ1v、SJ1wの上を通過するように曲げられることはない。 The connecting wire SJ1u of the phase coil u1 is arranged so that the lead wire u1a is positioned in the back of the slot and pressed. The connecting wire SJ1u does not hold down the lead wires w1b and v1a of the other phase coils v1 and w1. This is because the jumper wire SJ1u does not reach the lead wires w1b and v1a positioned beyond the magnetic pole 32a around which the phase coil u1 is wound in the second feed direction IDR2 (−). The additional portion 35u bent for laying is bent so as to pass over the connecting wire SJ1u of the same phase coil u1. The additional portion 35u is not bent so as to pass over the connecting wires SJ1v and SJ1w of the other phase coils v1 and w1.
 この実施形態によると、引出線v1a、w1b、u1aが、付加的部分35v、35w、35uとして図示される形状に敷設されても、それらは異なる相の渡り線の上を通過しない。このため、付加的部分35v、35w、35uと、それに隣接する渡り線との間の電位差が抑制される。このため、付加的部分35v、35w、35uにおける電気的な絶縁不良、例えば短絡が抑制される。付加的部分35v、35w、35uは曲げられるから、曲げに起因する皮膜の損傷が生じる場合がある。このような皮膜の損傷があっても、付加的部分35v、35w、35uにおける絶縁不良が抑制される。さらに、引出線v1a、u1aは、出力端PTを提供するから、引出線v1a、u1aに関連して生じる電位差は大きい。この実施形態によると、電位差が大きい引出線v1a、u1aにおける短絡などの故障が抑制される。したがって、回転電機としての大幅な機能低下を生じるほどの重大な絶縁不良が抑制される。 According to this embodiment, even if the lead lines v1a, w1b, u1a are laid in the shape illustrated as the additional portions 35v, 35w, 35u, they do not pass over the crossover lines of different phases. For this reason, the potential difference between the additional portions 35v, 35w, and 35u and the connecting wire adjacent thereto is suppressed. For this reason, electrical insulation failure in the additional portions 35v, 35w, and 35u, for example, a short circuit is suppressed. Since the additional portions 35v, 35w, and 35u are bent, the film may be damaged due to the bending. Even if there is such damage to the film, insulation failure in the additional portions 35v, 35w, and 35u is suppressed. Furthermore, since the lead lines v1a and u1a provide the output terminal PT, the potential difference generated in relation to the lead lines v1a and u1a is large. According to this embodiment, a failure such as a short circuit in the lead lines v1a and u1a having a large potential difference is suppressed. Therefore, a serious insulation failure that causes a significant deterioration in function as a rotating electrical machine is suppressed.
 図17に戻り、引出線u1bは、敷設のために曲げられても、他の相の渡り線の上を通過することはない。引出線v1bは、相コイルw1のための渡り線の上を通過する場合がある。しかし、引出線v1bは、中性点NTのための引出線である。引出線v1bと相コイルw1の渡り線との間にあらわれる電位差は小さい。よって、引出線v1bに関連する絶縁不良の可能性は低い。引出線v1bは、相コイルu1のための渡り線の上を通過する場合がある。しかし、引出線v1bは、中性点NTのための引出線である。相コイルu1のための渡り線は、中性点NTに近い引出線u1bに近い。よって、引出線v1bと相コイルu1の渡り線との間にあらわれる電位差は小さい。よって、引出線v1bに関連する絶縁不良の可能性は低い。 Returning to FIG. 17, even if the lead line u1b is bent for laying, it does not pass over the crossover line of another phase. Leader line v1b may pass over the connecting wire for phase coil w1. However, the leader line v1b is a leader line for the neutral point NT. The potential difference that appears between the lead wire v1b and the connecting wire of the phase coil w1 is small. Therefore, the possibility of insulation failure related to the lead line v1b is low. The lead wire v1b may pass over the connecting wire for the phase coil u1. However, the leader line v1b is a leader line for the neutral point NT. The connecting wire for the phase coil u1 is close to the lead wire u1b close to the neutral point NT. Therefore, the potential difference appearing between the lead wire v1b and the connecting wire of the phase coil u1 is small. Therefore, the possibility of insulation failure related to the lead line v1b is low.
 引出線w1aは、相コイルu1のための渡り線の上を通過する場合がある。引出線w1aは出力端PTを提供する。引出線w1aは、出力端PTとしての3つの引出線のうち、異なる相の渡り線の上に配置される可能性がある唯一の引出線である。出力端PTとして接続される引出線u1a、v1a、w1aが、異なる相の渡り線と交差する数は、引出線w1aにおけるひとつである。中性点NTとして接続される引出線u1b、v1b、w1bが、異なる相の渡り線と交差する数は、引出線v1bにおけるふたつである。前者の数は、後者の数より少ない。よって、この実施形態によると、第1群の多相巻線における絶縁不良の発生が抑制される。 The lead wire w1a may pass over the connecting wire for the phase coil u1. Leader line w1a provides output terminal PT. The leader line w1a is the only leader line that may be disposed on a crossover line of a different phase among the three leader lines as the output terminal PT. The number of the lead lines u1a, v1a, w1a connected as the output terminal PT intersects with the crossover lines of different phases is one in the lead line w1a. The number of the lead lines u1b, v1b, w1b connected as the neutral point NT intersects with the crossover lines of different phases is two in the lead line v1b. The former number is less than the latter number. Therefore, according to this embodiment, the occurrence of insulation failure in the first group of multiphase windings is suppressed.
 第12実施形態によると、第1群を提供する複数の磁極32aのうち、端の磁極に巻かれる相コイルv1から巻線が開始される。しかも、製造方法における開始端STARTでもある引出線v1aは出力端PTとして利用される。言い換えると、出力端PTとなるべき引出線と、異なる相の渡り線との交差が少なくなるように、望ましくは最小となるように、出力端PTとなるべき引出線が複数の引出線から選択され、設定されている。出力端PTとなるべき引出線と、異なる相の渡り線との交差を抑制するように、2本の引出線のうちの特定の一方が出力端PTとして選択され、出力端PTとして利用されている。図示の例では、第1群の多相巻線を提供する複数の磁極32aのうち、最も端に位置する磁極に巻かれたコイルの引出線が、出力端PTとして利用されている。これにより、出力端PTとなるべき引出線と、異なる相の渡り線との交差が抑制される。この構成によると、引出線に関連する絶縁不良が抑制される。 According to the twelfth embodiment, winding is started from the phase coil v1 wound around the end magnetic pole among the plurality of magnetic poles 32a providing the first group. Moreover, the lead line v1a, which is also the start end START in the manufacturing method, is used as the output end PT. In other words, the leader line to be the output terminal PT is selected from a plurality of leader lines so as to minimize the number of intersections between the leader line to be the output terminal PT and the crossover lines of different phases. Is set. A specific one of the two lead lines is selected as the output terminal PT and used as the output terminal PT so as to suppress the intersection between the lead line to be the output terminal PT and the crossover line of different phases. Yes. In the illustrated example, the lead wire of the coil wound around the magnetic pole located at the end of the plurality of magnetic poles 32a providing the first group of multiphase windings is used as the output terminal PT. Thereby, the intersection of the leader line which should become output terminal PT, and the connecting wire of a different phase is suppressed. According to this structure, the insulation defect relevant to a leader line is suppressed.
 (他の実施形態)
 ここに開示される発明は、その発明を実施するための実施形態に何ら制限されることなく、種々変形して実施することが可能である。開示される発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。実施形態は追加的な部分をもつことができる。実施形態の部分は、省略される場合がある。実施形態の部分は、他の実施形態の部分と置き換え、または組み合わせることも可能である。実施形態の構造、作用、効果は、あくまで例示である。開示される発明の技術的範囲は、実施形態の記載に限定されない。開示される発明のいくつかの技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
(Other embodiments)
The invention disclosed herein is not limited to the embodiments for carrying out the invention, and can be implemented with various modifications. The disclosed invention is not limited to the combinations shown in the embodiments, and can be implemented in various combinations. Embodiments can have additional parts. The portion of the embodiment may be omitted. The parts of the embodiments can be replaced or combined with the parts of the other embodiments. The structure, operation, and effect of the embodiment are merely examples. The technical scope of the disclosed invention is not limited to the description of the embodiments. Some technical scope of the disclosed invention is indicated by the description of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the claims. It is.
 上記実施形態では、相コイルに関する第1、第2、第3に、u相、v相、w相をそれぞれ対応させている。この呼称の対応関係は任意に入れ替え可能である。 In the above embodiment, the u-phase, v-phase, and w-phase are associated with the first, second, and third phases related to the phase coil, respectively. The correspondence of the names can be arbitrarily changed.
 例えば、複数の上記実施形態では、第1巻き方向FYR1を左巻きLとし、第2巻き方向FYR2を右巻きRとした。これに代えて、第1巻き方向FYR1を右巻きRとし、第2巻き方向FYR2を左巻きLとしてもよい。巻き方向と関連付けて、または独立して、インデックス機71によるステータコア32の送り方向も、第1送り方向IDR1を負方向(-)とし、第2送り方向を正方向(+)としてもよい。 For example, in the plurality of embodiments described above, the first winding direction FYR1 is the left-handed winding L, and the second winding direction FYR2 is the right-handed winding R. Instead, the first winding direction FYR1 may be a right-handed R, and the second winding direction FYR2 may be a left-handed L. In association with or independently of the winding direction, the feed direction of the stator core 32 by the index machine 71 may be such that the first feed direction IDR1 is a negative direction (−) and the second feed direction is a positive direction (+).
 上記複数の実施形態では、巻き方向および送り方向の組合せの一部を例示した。これに代えて、種々の組合せを採用してもよい。例えば、第5実施形態から第10実施形態において、相間ジャンパ線PJ1a、PJ1b、PJ2a、PJ2bを形成するための工程J11、J12、J21、J22において、インデックス機71は、図4に図示される方向とは反対の方向へステータコア32を回転させてもよい。また、相コイルを形成する工程における巻き方向および送り方向を反転してもよい場合がある。 In the above embodiments, a part of the combination of the winding direction and the feeding direction is illustrated. Instead of this, various combinations may be adopted. For example, in the fifth to tenth embodiments, the index machine 71 is in the direction shown in FIG. The stator core 32 may be rotated in the opposite direction. In some cases, the winding direction and the feeding direction in the step of forming the phase coil may be reversed.
 また、ステータコア32の半部に第1群を配置し、ステータコア32の残り半部に第2群を配置する実施形態においては、上述の複数の実施形態に説明した巻線の構成を組合せて利用することができる。ここに開示された第1群と第2群とを相互に組合せてひとつのステータコア32の上に配置してもよい。例えば、第1実施形態の第1群と、第3実施形態の第2群とをひとつのステータコア32の上に配置してもよい。 In the embodiment in which the first group is disposed in the half of the stator core 32 and the second group is disposed in the remaining half of the stator core 32, the winding configurations described in the above-described embodiments are used in combination. can do. The first group and the second group disclosed herein may be combined with each other and disposed on one stator core 32. For example, the first group of the first embodiment and the second group of the third embodiment may be arranged on one stator core 32.
 上記実施形態では、三相結線としてスター結線を採用する。これに代えて、デルタ結線が採用されてもよい。デルタ結線においても、ここに開示される実施形態がもつ複数の利点のうちのいくつかを利用できる。上記実施形態では、同じ相の複数のコイルを並列接続する。これに代えて、同じ相の複数の相コイルは直列接続されてもよい。上述の実施形態では、2つの相コイルが同じ相に属する。これに代えて、3つ、4つなど複数の相コイルが同じ相に属するようにステータ31が形成されてもよい。 In the above embodiment, the star connection is adopted as the three-phase connection. Instead of this, a delta connection may be employed. Some of the advantages of the embodiments disclosed herein are also available for delta connections. In the said embodiment, the several coil of the same phase is connected in parallel. Instead, a plurality of phase coils of the same phase may be connected in series. In the embodiment described above, the two phase coils belong to the same phase. Instead, the stator 31 may be formed such that a plurality of phase coils such as three, four, etc. belong to the same phase.
 第11実施形態および第12実施形態では、工程OPを採用する。工程OPは、先行するすべての実施形態に対して追加的に適用することができる。また、工程OPは、スター結線の出力端となる引出線だけに適用されてもよい。この場合、ステータ31の一端に中性点NTのための引出線が配置され、ステータ31の他端に出力端PTのための引出線が配置される。例えば、開始端STARTおよび終了端ENDが配置される端部に、中性点NTのための引出線が配置される。中性点NTを提供する引出線は、開始端STARTが配置されるステータ31の端面の上において電気的に接続される。また、工程OPは、スター結線の中性点を提供する引出線だけに適用されてもよい。これらの変形例は、回転電機に求められる性能、回転電機の設置環境などの要求に応じて選択可能である。 In the eleventh embodiment and the twelfth embodiment, the process OP is adopted. The process OP can additionally be applied to all preceding embodiments. Further, the process OP may be applied only to the leader line serving as the output end of the star connection. In this case, a leader line for the neutral point NT is arranged at one end of the stator 31, and a leader line for the output end PT is arranged at the other end of the stator 31. For example, a leader line for the neutral point NT is disposed at an end where the start end START and the end end END are disposed. The lead line providing the neutral point NT is electrically connected on the end face of the stator 31 where the start end START is disposed. Further, the process OP may be applied only to the leader line that provides the neutral point of the star connection. These modifications can be selected according to requirements such as the performance required for the rotating electrical machine and the installation environment of the rotating electrical machine.

Claims (20)

  1.  内燃機関(12)の回転軸に連結されるロータヨーク(22)の内面に永久磁石(23)が配置されたロータ(21)と、
     前記内燃機関(12)のボディ(13)に固定されることによって前記ロータの内側に配置され、前記永久磁石と対向する複数の磁極(32a)を径方向外側に形成するステータコア(32)、およびステータコアに設けられた複数の三相巻線群を含むステータコイル(33)を有するステータ(31)とを備え、
     ひとつの前記三相巻線群は、前記磁極に対して所定の巻き方向に集中巻された第1相コイルと、前記磁極に対して前記第1相コイルとは反対の巻き方向に集中巻された第2相コイルとを含む複数の相コイル(u1、v1、w1)を備えることを特徴とする内燃機関用回転電機。
    A rotor (21) in which a permanent magnet (23) is arranged on the inner surface of a rotor yoke (22) connected to the rotating shaft of the internal combustion engine (12);
    A stator core (32) which is arranged on the inner side of the rotor by being fixed to the body (13) of the internal combustion engine (12), and which forms a plurality of magnetic poles (32a) facing the permanent magnet on the radially outer side; and A stator (31) having a stator coil (33) including a plurality of three-phase winding groups provided on the stator core;
    One three-phase winding group is concentratedly wound in a winding direction opposite to the first phase coil with respect to the magnetic pole, and a first phase coil concentratedly wound in a predetermined winding direction with respect to the magnetic pole. A rotating electrical machine for an internal combustion engine comprising a plurality of phase coils (u1, v1, w1) including a second phase coil.
  2.  前記ひとつの三相巻線群は、さらに、前記磁極に対して前記第1相コイルと同じ巻き方向に集中巻された第3相コイルを含むことを特徴とする請求項1に記載の内燃機関用回転電機。 2. The internal combustion engine according to claim 1, wherein the one three-phase winding group further includes a third phase coil that is concentratedly wound around the magnetic pole in the same winding direction as the first phase coil. Rotating electric machine.
  3.  前記第1相コイル、前記第2相コイル、および前記第3相コイルは、中性点(NT)と3つの出力端(PT)とを提供するスター結線によって結線されており、
     前記第1相コイル、前記第2相コイル、および前記第3相コイルのそれぞれは、
     前記磁極の周囲に配置された単コイルを直列接続する複数の渡り線(SJ1)と、
     2本の引出線(u1a、u1b、v1a、v1b,w1a、w1b)とを備えており、
     前記出力端となるべき前記引出線と、異なる相の前記渡り線との交差を抑制するように、2本の前記引出線のうちの一方が前記出力端として利用されていることを特徴とする請求項2に記載の内燃機関用回転電機。
    The first phase coil, the second phase coil, and the third phase coil are connected by a star connection that provides a neutral point (NT) and three output ends (PT),
    Each of the first phase coil, the second phase coil, and the third phase coil is:
    A plurality of crossover wires (SJ1) that serially connect single coils arranged around the magnetic pole;
    Two leader lines (u1a, u1b, v1a, v1b, w1a, w1b),
    One of the two lead lines is used as the output end so as to suppress the intersection between the lead line to be the output end and the crossover line in a different phase. The rotating electrical machine for an internal combustion engine according to claim 2.
  4.  複数の前記引出線の少なくともひとつは、異なる相の前記渡り線の上を通過するように曲げられることによって、前記渡り線と交差するように敷設されており、
     前記出力端として接続される前記引出線が、異なる相の前記渡り線と交差する数は、前記中性点として接続される前記引出線が、異なる相の前記渡り線と交差する数より少ないことを特徴とする請求項3に記載の内燃機関用回転電機。
    At least one of the plurality of lead lines is laid so as to intersect the crossover line by being bent so as to pass over the crossover line of different phases,
    The number of the lead wires connected as the output ends intersects with the crossover wires of different phases is smaller than the number of the lead wires connected as the neutral points crosses the crossover wires of different phases. The rotating electrical machine for an internal combustion engine according to claim 3.
  5.  ひとつの前記三相巻線群を第1群とし、他の前記三相巻線群を第2群として、
     前記第2群は、前記磁極に対して同じ方向に集中巻された第2群第1相コイルおよび第2群第3相コイルと、前記磁極に対して前記第2群第1相コイルと反対の巻き方向に集中巻された第2群第2相コイルとを含む複数の相コイル(u2、v2、w2)を備えることを特徴とする請求項1から請求項4のいずれかに記載の内燃機関用回転電機。
    One of the three-phase winding groups is a first group, and the other three-phase winding group is a second group,
    The second group includes a second group first phase coil and a second group third phase coil concentratedly wound in the same direction with respect to the magnetic pole, and the second group first phase coil with respect to the magnetic pole. 5. The internal combustion engine according to claim 1, further comprising a plurality of phase coils (u 2, v 2, w 2) including a second group second phase coil concentratedly wound in the winding direction. Rotary electrical machinery for engines.
  6.  さらに、前記ロータの回転位置を検出する複数の回転位置センサ(43)を有し、前記ステータコアの一端において前記ステータコアの周方向に関して少なくとも複数の前記磁極に対応するセンサ設置範囲にわたって広がるように設けられたセンサユニット(41)を備え、
     複数の前記相コイルのそれぞれは、
     前記ステータコアの一端にだけ配置され、前記センサ設置範囲以外に配置された複数の引出線と、
     前記磁極の周囲に配置された単コイルを直列接続する複数の渡り線(SJ1、SJ2)であって、前記センサ設置範囲においては前記ステータコアの他端に配置された複数の渡り線とを有することを特徴とする請求項1から請求項5のいずれかに記載の内燃機関用回転電機。
    Furthermore, it has a some rotational position sensor (43) which detects the rotational position of the said rotor, and it is provided so that it may spread over the sensor installation range corresponding to the said several magnetic pole at least with respect to the circumferential direction of the said stator core in the end of the said stator core. A sensor unit (41),
    Each of the plurality of phase coils is
    A plurality of leader lines arranged only at one end of the stator core and arranged outside the sensor installation range,
    A plurality of connecting wires (SJ1, SJ2) for connecting in series the single coils arranged around the magnetic pole, and having a plurality of connecting wires arranged at the other end of the stator core in the sensor installation range. The rotating electrical machine for an internal combustion engine according to any one of claims 1 to 5, wherein:
  7.  ひとつの前記三相巻線群(u1、v1、w1)は、前記ステータコアを周方向に二分した一方の半部に配置され、他の前記三相巻線群(u2、v2、w2)は残る他の半部に配置されていることを特徴とする請求項1から請求項6のいずれかに記載の内燃機関用回転電機。 One of the three-phase winding groups (u1, v1, w1) is arranged in one half of the stator core divided in the circumferential direction, and the other three-phase winding groups (u2, v2, w2) remain. The rotating electrical machine for an internal combustion engine according to any one of claims 1 to 6, wherein the rotating electrical machine is disposed in the other half portion.
  8.  ひとつの前記三相巻線群(u1、v1、w1)に属するひとつの前記相コイルは前記ステータコアを周方向に二分した一方の半部に配置され、他のひとつの前記相コイルは残る他の半部に配置され、
     他の前記三相巻線群(u2、v2、w2)に属するひとつの前記相コイルは前記一方の半部に配置され、他のひとつの前記相コイルは前記他の半部に配置されていることを特徴とする請求項1から請求項6のいずれかに記載の内燃機関用回転電機。
    One phase coil belonging to one three-phase winding group (u1, v1, w1) is arranged in one half of the stator core divided in the circumferential direction, and the other one phase coil remains. Placed in the half,
    One of the phase coils belonging to the other three-phase winding group (u2, v2, w2) is arranged in the one half, and the other one of the phase coils is arranged in the other half. The rotating electrical machine for an internal combustion engine according to any one of claims 1 to 6, wherein
  9.  内燃機関(12)の回転軸に連結されるロータヨーク(22)の内面に永久磁石(23)が配置されたロータ(21)と、
     前記内燃機関(12)のボディ(13)に固定されることによって前記ロータの内側に配置され、前記永久磁石と対向する複数の磁極(32a)を径方向外側に形成するステータコア(32)、および前記ステータコアに設けられた複数の三相巻線群を含むステータコイル(33)を有するステータ(31)とを備える内燃機関用回転電機の製造方法において、
     ひとつの前記磁極に対して第1巻き方向に素線(33a)を集中巻することによってひとつの前記三相巻線群に含まれる第1相コイルを形成する工程(P11、P21)と、
     前記第1相コイルの巻き終わりの直ぐ隣の前記磁極、またはひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第1巻き方向とは反対の第2巻き方向に前記素線を集中巻することによって第2相コイルを形成する工程(P12、P22)と、
     前記第2相コイルの巻き終わりの直ぐ隣の前記磁極、またはひとつの前記磁極を飛ばしたふたつ目の前記磁極に、前記第2巻き方向とは反対の前記第1巻き方向に前記素線を集中巻することによって第3相コイルを形成する工程(P13、P23)とを有することを特徴とする内燃機関用回転電機の製造方法。
    A rotor (21) in which a permanent magnet (23) is arranged on the inner surface of a rotor yoke (22) connected to the rotating shaft of the internal combustion engine (12);
    A stator core (32) which is arranged on the inner side of the rotor by being fixed to the body (13) of the internal combustion engine (12), and which forms a plurality of magnetic poles (32a) facing the permanent magnet on the radially outer side; and In a method for manufacturing a rotating electrical machine for an internal combustion engine comprising a stator (31) having a stator coil (33) including a plurality of three-phase winding groups provided on the stator core,
    Forming a first phase coil included in one of the three-phase winding groups by concentrated winding of the wire (33a) in the first winding direction with respect to one of the magnetic poles (P11, P21);
    The wire is concentratedly wound in the second winding direction opposite to the first winding direction from the magnetic pole immediately adjacent to the end of winding of the first phase coil or the second magnetic pole from which one magnetic pole is skipped. Forming the second phase coil by doing (P12, P22),
    Concentrate the strands in the first winding direction opposite to the second winding direction on the magnetic pole immediately adjacent to the end of winding of the second phase coil, or on the second magnetic pole from which one of the magnetic poles is skipped. And (3) forming a third phase coil by winding (P13, P23).
  10.  前記第1相コイルの巻き終わりの直ぐ隣の前記磁極、またはひとつの前記磁極を飛ばしたふたつ目の前記磁極にわたって前記素線を敷設することによってジャンパ線を形成する工程(J11、J21)と、
     前記第2相コイルの巻き終わりの直ぐ隣の前記磁極、またはひとつの前記磁極を飛ばしたふたつ目の前記磁極にわたって前記素線を敷設することによってジャンパ線を形成する工程(J12、J22)と、
     前記ジャンパ線を切断することにより引出線を形成する工程とをさらに備えることを特徴とする請求項9に記載の内燃機関用回転電機の製造方法。
    Forming a jumper wire by laying the wire over the magnetic pole immediately adjacent to the end of winding of the first phase coil, or the second magnetic pole from which one magnetic pole is skipped (J11, J21);
    Forming a jumper wire by laying the strand over the magnetic pole immediately adjacent to the end of winding of the second phase coil or the second magnetic pole from which one of the magnetic poles is skipped (J12, J22);
    The method for manufacturing a rotating electrical machine for an internal combustion engine according to claim 9, further comprising a step of forming a leader line by cutting the jumper line.
  11.  前記第1相コイルを形成する工程における前記磁極の送り方向と、前記第2相コイルを形成する工程における前記磁極の送り方向と、前記第3相コイルを形成する工程における前記磁極の送り方向とは、ひとつが他のふたつと異なることを特徴とする請求項9または請求項10に記載の内燃機関用回転電機の製造方法。 A feeding direction of the magnetic pole in the step of forming the first phase coil, a feeding direction of the magnetic pole in the step of forming the second phase coil, and a feeding direction of the magnetic pole in the step of forming the third phase coil. The method of manufacturing a rotating electrical machine for an internal combustion engine according to claim 9, wherein one is different from the other two.
  12.  前記第1相コイル、前記第2相コイル、および前記第3相コイルは、前記ステータコイルの一端に引出線を配置するように形成され、
     前記第1相コイル、前記第2相コイル、および前記第3相コイルの少なくともひとつは、前記ステータコアを周方向に二分した一方の半部に配置されており、前記磁極の周囲に配置された単コイルを直列接続する複数の渡り線(SJ2)を前記ステータコアの他端に配置するように形成されることを特徴とする請求項9から請求項11のいずれかに記載の内燃機関用回転電機の製造方法。
    The first phase coil, the second phase coil, and the third phase coil are formed so as to arrange a lead wire at one end of the stator coil,
    At least one of the first-phase coil, the second-phase coil, and the third-phase coil is disposed in one half of the stator core that is divided in the circumferential direction, and the single-phase coil disposed around the magnetic pole. The rotating electric machine for an internal combustion engine according to any one of claims 9 to 11, wherein a plurality of connecting wires (SJ2) for connecting coils in series are arranged at the other end of the stator core. Production method.
  13.  ひとつの前記三相巻線群を形成する第1工程(G1)と、
     他の前記三相巻線群を形成する第2工程(G2)とを備え、
     前記第1工程と前記第2工程とのそれぞれが、前記第1相コイルを形成する工程、前記第2相コイルを形成する工程、および前記第3相コイルを形成する工程を含むことを特徴とする請求項9から請求項12のいずれかに記載の内燃機関用回転電機の製造方法。
    A first step (G1) for forming one three-phase winding group;
    A second step (G2) for forming the other three-phase winding group,
    Each of the first step and the second step includes a step of forming the first phase coil, a step of forming the second phase coil, and a step of forming the third phase coil. A method for manufacturing a rotating electrical machine for an internal combustion engine according to any one of claims 9 to 12.
  14.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step (P12, P22) of forming the second phase coil, a plurality of the magnetic poles for the second phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the first feed direction. And concentrated winding of the strands in the second winding direction with respect to the magnetic poles by feeding in a second feeding direction opposite to
    In the step (P13, P23) of forming the third phase coil, the plurality of magnetic poles for the third phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the second phase coil to the first feed direction. 14. The rotating electrical machine for an internal combustion engine according to claim 9, wherein the wire is concentratedly wound in the first winding direction with respect to the magnetic poles. Production method.
  15.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりのひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりのひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step of forming the second phase coil (P12, P22), a plurality of the second phase coils for the second phase coil are formed from the second magnetic pole that has skipped one of the magnetic poles at the end of the winding of the first phase coil. A step of concentrating the wires in the second winding direction with respect to the magnetic poles by sending the magnetic poles in a second feeding direction opposite to the first feeding direction;
    The step (P13, P23) of forming the third phase coil includes a plurality of the third phase coils for the third phase coil from the second magnetic pole that has skipped one of the magnetic poles at the end of winding of the second phase coil. 14. The method according to claim 9, further comprising a step of concentratedly winding the strands in the first winding direction with respect to the magnetic poles by feeding the magnetic poles in the first feeding direction. Of manufacturing a rotating electrical machine for an internal combustion engine.
  16.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりのひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step (P12, P22) of forming the second phase coil, a plurality of the magnetic poles for the second phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the first feed direction. And concentrated winding of the strands in the second winding direction with respect to the magnetic poles by feeding in a second feeding direction opposite to
    The step (P13, P23) of forming the third phase coil includes a plurality of the third phase coils for the third phase coil from the second magnetic pole that has skipped one of the magnetic poles at the end of winding of the second phase coil. 14. The method according to claim 9, further comprising a step of concentratedly winding the strands in the first winding direction with respect to the magnetic poles by feeding the magnetic poles in the first feeding direction. Of manufacturing a rotating electrical machine for an internal combustion engine.
  17.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第2送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step (P12, P22) of forming the second phase coil, a plurality of the magnetic poles for the second phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the first feed direction. And concentrated winding of the strands in the second winding direction with respect to the magnetic poles by feeding in a second feeding direction opposite to
    In the step (P13, P23) of forming the third phase coil, the plurality of magnetic poles for the third phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the second phase coil to the second feed direction. 14. The rotating electrical machine for an internal combustion engine according to claim 9, wherein the wire is concentratedly wound in the first winding direction with respect to the magnetic poles. Production method.
  18.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりのひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりのひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第2送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step of forming the second phase coil (P12, P22), a plurality of the second phase coils for the second phase coil are formed from the second magnetic pole that has skipped one of the magnetic poles at the end of the winding of the first phase coil. A step of concentrating the wires in the second winding direction with respect to the magnetic poles by sending the magnetic poles in a second feeding direction opposite to the first feeding direction;
    The step (P13, P23) of forming the third phase coil includes a plurality of the third phase coils for the third phase coil from the second magnetic pole that has skipped one of the magnetic poles at the end of winding of the second phase coil. 14. The method according to claim 9, wherein the step of concentrating the strands in the first winding direction with respect to the magnetic poles by feeding the magnetic poles in the second feeding direction. 15. Of manufacturing a rotating electrical machine for an internal combustion engine.
  19.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step (P12, P22) of forming the second phase coil, a plurality of the magnetic poles for the second phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the first feed direction. The wire is concentratedly wound in the second winding direction with respect to the magnetic poles,
    In the step (P13, P23) of forming the third phase coil, the plurality of magnetic poles for the third phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the second phase coil to the first feed direction. 14. The method according to claim 9, wherein the wire is concentratedly wound in the first winding direction with respect to the magnetic poles by feeding in a second feeding direction opposite to the magnetic poles. The manufacturing method of the rotary electric machine for internal combustion engines of description.
  20.  前記第1相コイルを形成する工程(P11、P21)は、前記第1相コイルのための複数の前記磁極を第1送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であり、
     前記第2相コイルを形成する工程(P12、P22)は、前記第1相コイルの巻き終わりの直ぐ隣の前記磁極から、前記第2相コイルのための複数の前記磁極を前記第1送り方向へ送ることによりそれら前記磁極に対して前記第2巻き方向に前記素線を集中巻する工程であり、
     前記第3相コイルを形成する工程(P13、P23)は、前記第2相コイルの巻き終わりのひとつの前記磁極を飛ばしたふたつ目の前記磁極から、前記第3相コイルのための複数の前記磁極を前記第1送り方向とは反対の第2送り方向へ送ることによりそれら前記磁極に対して前記第1巻き方向に前記素線を集中巻する工程であることを特徴とする請求項9から請求項13のいずれかに記載の内燃機関用回転電機の製造方法。
    In the step of forming the first phase coil (P11, P21), the plurality of magnetic poles for the first phase coil are sent in a first feed direction, whereby the magnetic poles are moved in the first winding direction with respect to the magnetic poles. It is a process of concentrated winding of wire,
    In the step (P12, P22) of forming the second phase coil, a plurality of the magnetic poles for the second phase coil are transferred from the magnetic pole immediately adjacent to the end of winding of the first phase coil to the first feed direction. The wire is concentratedly wound in the second winding direction with respect to the magnetic poles,
    The step (P13, P23) of forming the third phase coil includes a plurality of the third phase coils for the third phase coil from the second magnetic pole that has skipped one of the magnetic poles at the end of winding of the second phase coil. 10. The step of concentrated winding of the strands in the first winding direction with respect to the magnetic poles by feeding the magnetic poles in a second feeding direction opposite to the first feeding direction. The manufacturing method of the rotary electric machine for internal combustion engines in any one of Claim 13.
PCT/JP2015/002437 2014-05-16 2015-05-13 Rotating electric machine for internal combustion engine and method for manufacturing same WO2015174091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580025471.0A CN106464109B (en) 2014-05-16 2015-05-13 Internal combustion engine rotating electric machine and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014102657 2014-05-16
JP2014-102657 2014-05-16
JP2015-095900 2015-05-08
JP2015095900A JP6004038B2 (en) 2014-05-16 2015-05-08 Rotating electric machine for internal combustion engine and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2015174091A1 true WO2015174091A1 (en) 2015-11-19

Family

ID=54479639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002437 WO2015174091A1 (en) 2014-05-16 2015-05-13 Rotating electric machine for internal combustion engine and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6004038B2 (en)
CN (1) CN106464109B (en)
WO (1) WO2015174091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221565A1 (en) * 2017-06-02 2018-12-06 デンソートリム株式会社 Rotary electric machine and method for manufacturing rotary electric machine
CN113595347A (en) * 2021-08-02 2021-11-02 江苏聚磁电驱动科技有限公司 Single-wire three-phase-free splicing and splicing winding process for motor and motor applied by same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912508B2 (en) * 2019-03-19 2021-08-04 ファナック株式会社 Stator and motor
WO2020195580A1 (en) * 2019-03-25 2020-10-01 デンソートリム株式会社 Rotating electric machine and stator thereof
JP7449671B2 (en) 2019-10-29 2024-03-14 東洋電装株式会社 Winding method and winding machine
CN111682664B (en) * 2020-05-26 2022-08-19 揭阳市弘嘉友实业有限公司 Micromotor rotor structure and winding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971977A (en) * 1974-02-27 1976-07-27 Robert Bosch G.M.B.H. Magneto generator supplied battery-less electric power supply system particularly for motor vehicles
JP2007215305A (en) * 2006-02-08 2007-08-23 Denso Corp Motor and its control device
JP2008005603A (en) * 2006-06-21 2008-01-10 Mitsubishi Electric Corp Synchronous machine and power generating system using it as generator
US20090174271A1 (en) * 2008-01-08 2009-07-09 Lily Lin Combined generator with built-in eddy-current magnetic resistance
JP2011120429A (en) * 2009-12-07 2011-06-16 Mitsuba Corp Magnet-type generator
JP2012029368A (en) * 2010-07-20 2012-02-09 Hitachi Ltd Rotary electric machine and manufacturing method of the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364562B2 (en) * 1995-12-01 2003-01-08 ミネベア株式会社 Motor structure
JP3562616B2 (en) * 1998-01-14 2004-09-08 株式会社安川電機 Electromagnetic rotation detector
JP5469873B2 (en) * 2008-03-11 2014-04-16 株式会社日立製作所 Rotating electric machine
CN101795026B (en) * 2009-02-02 2012-11-14 株式会社日立制作所 Rotating electrical machine
JP2010200421A (en) * 2009-02-23 2010-09-09 Mitsuba Corp Outer rotor type rotating electric machine
US9539909B2 (en) * 2010-01-29 2017-01-10 Mitsubishi Electric Corporation Inverter-integrated driving module and manufacturing method therefor
JP2012170295A (en) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp Stator of rotary electric machine and method of manufacturing the same
JP5619046B2 (en) * 2012-02-10 2014-11-05 三菱電機株式会社 Rotating electric machine and method of manufacturing stator used therefor
HUE039320T2 (en) * 2012-08-30 2018-12-28 Mitsuba Corp Electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971977A (en) * 1974-02-27 1976-07-27 Robert Bosch G.M.B.H. Magneto generator supplied battery-less electric power supply system particularly for motor vehicles
JP2007215305A (en) * 2006-02-08 2007-08-23 Denso Corp Motor and its control device
JP2008005603A (en) * 2006-06-21 2008-01-10 Mitsubishi Electric Corp Synchronous machine and power generating system using it as generator
US20090174271A1 (en) * 2008-01-08 2009-07-09 Lily Lin Combined generator with built-in eddy-current magnetic resistance
JP2011120429A (en) * 2009-12-07 2011-06-16 Mitsuba Corp Magnet-type generator
JP2012029368A (en) * 2010-07-20 2012-02-09 Hitachi Ltd Rotary electric machine and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221565A1 (en) * 2017-06-02 2018-12-06 デンソートリム株式会社 Rotary electric machine and method for manufacturing rotary electric machine
JPWO2018221565A1 (en) * 2017-06-02 2019-06-27 デンソートリム株式会社 Electric rotating machine and method of manufacturing electric rotating machine
CN113595347A (en) * 2021-08-02 2021-11-02 江苏聚磁电驱动科技有限公司 Single-wire three-phase-free splicing and splicing winding process for motor and motor applied by same
CN113595347B (en) * 2021-08-02 2023-01-17 江苏聚磁电驱动科技有限公司 Single-wire three-phase-free splicing and splicing winding process for motor and motor applied by same

Also Published As

Publication number Publication date
JP6004038B2 (en) 2016-10-05
CN106464109A (en) 2017-02-22
JP2015233401A (en) 2015-12-24
CN106464109B (en) 2018-12-07

Similar Documents

Publication Publication Date Title
JP6004038B2 (en) Rotating electric machine for internal combustion engine and method for manufacturing the same
JP4440275B2 (en) Three-phase rotating electric machine
JP6225975B2 (en) Rotating electric machine for internal combustion engine
US20110025162A1 (en) Rotating Electrical Machine
US20080157622A1 (en) Fault-tolerant permanent magnet machine
CN108141087A (en) Electric rotating machine
AU2015235741A1 (en) Insulator and brushless DC motor including the same
US11114912B2 (en) Rotating electric machine
US10916986B2 (en) Stator and rotating electric machine equipped with same
JP2002315250A (en) Stator of rotating electric apparatus
JP5055937B2 (en) Winding insulation structure of rotating electrical machine
WO2018030153A1 (en) Three-phase rotary electric machine for starter generator
EP3046231A1 (en) Stator pole insulator
US10637335B2 (en) Method for producing wound stator of rotary electrical machine
JP6009519B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
JP2013223295A (en) Rotary electric machine
WO2023140071A1 (en) Motor stator and motor provided with same
JP5602889B2 (en) Winding structure and rotating electric machine
JP5183933B2 (en) Electric motor with power generation function
US20220209605A1 (en) Stator design for electrical machine
US20230060549A1 (en) Tapped winding method for extended constant horsepower speed range
WO2019064373A1 (en) Electric motor and method for manufacturing electric motor
JP2023000667A (en) motor
WO2021024606A1 (en) Stator and motor
EP2528200A2 (en) Interspersed multi-layer concentric wound stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201607758

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792022

Country of ref document: EP

Kind code of ref document: A1