WO2018221565A1 - Rotary electric machine and method for manufacturing rotary electric machine - Google Patents

Rotary electric machine and method for manufacturing rotary electric machine Download PDF

Info

Publication number
WO2018221565A1
WO2018221565A1 PCT/JP2018/020707 JP2018020707W WO2018221565A1 WO 2018221565 A1 WO2018221565 A1 WO 2018221565A1 JP 2018020707 W JP2018020707 W JP 2018020707W WO 2018221565 A1 WO2018221565 A1 WO 2018221565A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
sensor
coil wire
magnetic pole
Prior art date
Application number
PCT/JP2018/020707
Other languages
French (fr)
Japanese (ja)
Inventor
優太 小寺
正尚 道明
Original Assignee
デンソートリム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンソートリム株式会社 filed Critical デンソートリム株式会社
Priority to JP2019516714A priority Critical patent/JP6656474B2/en
Publication of WO2018221565A1 publication Critical patent/WO2018221565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the disclosure in this specification relates to a rotating electrical machine and a method for manufacturing the rotating electrical machine.
  • Patent Documents 1-4 disclose a rotating electrical machine and a method for manufacturing the rotating electrical machine.
  • a cover containing a sensor element for detecting a rotational position is inserted between a plurality of magnetic poles.
  • the position of the sensor element may deviate from a desired position.
  • the outer shape of the coil mounted on the tooth portion is a specified shape.
  • the coil and the cover may interfere with each other. In this case, the position of the cover may be shifted, and the position of the sensor element in the cover may be shifted. The displacement of the sensor element may reduce the rotational position detection accuracy.
  • One object disclosed is to provide a rotating electrical machine with high rotational position detection accuracy and a method of manufacturing the rotating electrical machine.
  • Another object of the present disclosure is to provide a rotating electrical machine and a method of manufacturing the rotating electrical machine in which a shift of a sensor element that detects a rotational position is suppressed.
  • Yet another object of the present invention is to provide a rotating electrical machine and a rotating electrical machine in which a coil element wire can be accurately arranged on a bobbin and displacement of a sensor element due to interference between the coil element wire and a sensor unit is suppressed. It is to provide a manufacturing method.
  • the coil strands can be placed on the bobbin accurately and at high speed, making it suitable for mass production and suppressing displacement of the sensor elements due to interference between the coil strands and the sensor unit. And providing a method of manufacturing the rotating electric machine.
  • a rotating electrical machine is provided.
  • the rotating electrical machine is provided with a rotor (21) that provides a magnetic field, and a plurality of magnetic poles that are provided at the ends of a plurality of teeth portions extending in the radial direction so as to be separated from each other along the circumferential direction.
  • the stator core (32) having (32a) and the stator (31) having the stator coil (33) attached to the tooth portion, and the sensor magnetic flux (38b) between two adjacent magnetic poles, the magnetic flux of the rotor
  • a sensor unit (41) that accommodates a sensor (43) for detecting the sensor, and the sensor unit extends into the sensor gap along the axial direction from one end surface (SD1) side in the axial direction of the stator,
  • the coil wire (33d) of the stator coil facing the sensor unit is arranged on the one end face side away from the magnetic pole in the radial direction.
  • the coil wire of the stator coil facing the sensor unit is arranged radially away from the magnetic pole on one end face side. For this reason, interference with a sensor unit and a coil strand is suppressed. As a result, a decrease in detection accuracy of the rotational position due to interference between the sensor unit and the coil wire is suppressed.
  • a method of manufacturing a rotating electrical machine is provided.
  • the rotating electrical machine manufacturing method is adjacent to a winding step in which a stator coil (33) is wound around the outer periphery of a plurality of bobbin portions (36) attached to a plurality of tooth portions (32c) having magnetic poles (32a) at the tips.
  • An insertion step of inserting the sensor (43) from one end face (SD1) of the stator (31) in the gap between the two magnetic poles, and the winding step includes the coil wire (33d) of the stator coil, On one end face side, the coil wire is wound so as to be arranged radially away from the magnetic pole.
  • a coil shape that does not easily interfere with the sensor is provided when the sensor is inserted. As a result, a decrease in detection accuracy of the rotational position due to interference between the sensor and the coil wire is suppressed.
  • FIG. 7 is a cross-sectional view taken along the line VIII-VIII in FIG. 6. It is a partial perspective view of an insulator. It is a partial perspective view of an insulator. It is a top view of a sensor unit. It is a perspective view of a sensor unit.
  • a rotating electrical machine for an internal combustion engine (hereinafter simply referred to as a rotating electrical machine) 10 is also called a generator motor or an AC generator starter.
  • the rotating electrical machine 10 is electrically connected to an electric circuit 11 including an inverter circuit (INV) and a control device (ECU).
  • the electric circuit 11 provides a three-phase power conversion circuit.
  • An example of the use of the rotating electrical machine 10 is a generator motor of an internal combustion engine 12 for a vehicle.
  • the vehicle is a vehicle, a ship, or an aircraft, and a typical example is a saddle type vehicle.
  • the electrical circuit 11 provides a rectifier circuit that rectifies the AC power that is output when the rotating electrical machine 10 functions as a generator and supplies power to an electrical load including a battery.
  • the electric circuit 11 provides a signal processing circuit that receives a reference position signal for ignition control supplied from the rotating electrical machine 10.
  • the electric circuit 11 may provide an ignition controller that performs ignition control.
  • the electric circuit 11 provides a drive circuit that causes the rotating electrical machine 10 to function as an electric motor.
  • the electrical circuit 11 receives from the rotating electrical machine 10 a rotational position signal for causing the rotating electrical machine 10 to function as an electric motor.
  • the electrical circuit 11 causes the rotating electrical machine 10 to function as an electric motor by controlling energization to the rotating electrical machine 10 according to the detected rotational position.
  • the rotating electrical machine 10 is assembled to the internal combustion engine 12.
  • the internal combustion engine 12 includes a body 13 and a rotary shaft 14 that is rotatably supported by the body 13 and rotates in conjunction with the internal combustion engine 12.
  • the rotating electrical machine 10 is assembled to the body 13 and the rotating shaft 14.
  • the body 13 is a structure such as a crankcase or a transmission case of the internal combustion engine 12.
  • the rotating shaft 14 is a crankshaft of the internal combustion engine 12 or a rotating shaft interlocking with the crankshaft. The rotating shaft 14 rotates when the internal combustion engine 12 is operated.
  • the rotating shaft 14 rotates the rotating electrical machine 10 so that the rotating electrical machine 10 functions as a generator.
  • the rotating shaft 14 is a rotating shaft that can start the internal combustion engine 12 by the rotation of the rotating electrical machine 10 when the rotating electrical machine 10 functions as an electric motor.
  • the rotating shaft 14 is a rotating shaft that can assist (assist) the rotation of the internal combustion engine 12 by the rotation of the rotating electrical machine 10 when the rotating electrical machine 10 functions as an electric motor.
  • the rotating electrical machine 10 includes a rotor 21, a stator 31, and a sensor unit 41.
  • axial direction AD means the direction of the central axis when the stator 31 is regarded as a cylindrical body.
  • radial direction RD means a radial direction when the stator 31 is regarded as a cylindrical body.
  • the rotor 21 is a field element.
  • the stator 31 is an armature.
  • the entire rotor 21 is cup-shaped.
  • the rotor 21 is positioned with its open end facing the body 13.
  • the rotor 21 is fixed to the end of the rotating shaft 14.
  • the rotor 21 and the rotating shaft 14 are connected via a positioning mechanism in the rotational direction such as key fitting.
  • the rotor 21 is fixed by being fastened to the rotary shaft 14 by a fixing bolt 25.
  • the rotor 21 rotates together with the rotating shaft 14.
  • the rotor 21 provides a field, that is, a rotating field by a permanent magnet.
  • the rotor 21 has a cup-shaped rotor core 22.
  • the rotor core 22 is connected to the rotating shaft 14 of the internal combustion engine 12.
  • the rotor core 22 has an inner cylinder fixed to the rotating shaft 14, an outer cylinder positioned on the radially outer side of the inner cylinder, and an annular bottom plate extending between the inner cylinder and the outer cylinder.
  • the rotor core 22 provides a yoke for a permanent magnet described later.
  • the rotor core 22 is made of a magnetic metal.
  • the rotor 21 has a permanent magnet 23 disposed on the inner surface of the rotor core 22.
  • the permanent magnet 23 is fixed inside the outer cylinder.
  • the permanent magnet 23 is fixed with respect to the axial direction AD and the radial direction RD by a holding cup 24 arranged on the radially inner side.
  • the holding cup 24 is made of a thin nonmagnetic metal.
  • the holding cup 24 is fixed to the rotor core 22.
  • the permanent magnet 23 has a plurality of segments. Each segment is partially cylindrical.
  • the permanent magnet 23 provides a plurality of N poles and a plurality of S poles inside thereof.
  • the permanent magnet 23 provides at least a field.
  • the permanent magnet 23 provides six pairs of N poles and S poles, that is, a 12 pole field by 12 segments. The number of magnetic poles may be other numbers.
  • the permanent magnet 23 provides a partial special magnetic pole for providing a reference position signal for ignition control.
  • the special magnetic pole is provided by a partial magnetic pole different from the magnetic pole arrangement for the field.
  • the stator 31 and the body 13 are connected via a fixing bolt 34.
  • the stator 31 is fixed by being fastened to the body 13 by a plurality of fixing bolts 34.
  • the stator 31 is disposed between the rotor 21 and the body 13.
  • the stator 31 has an outer peripheral surface that faces the inner surface of the rotor 21 via a gap.
  • the stator 31 is fixed to the body 13.
  • the stator 31 has a stator core 32.
  • the stator core 32 is disposed inside the rotor 21 by being fixed to the body 13 of the internal combustion engine 12.
  • Stator core 32 has a plurality of tooth portions. One tooth portion provides one magnetic pole.
  • the stator core 32 provides an outer salient pole type iron core.
  • the stator 31 has a stator coil 33 wound around a stator core 32.
  • the stator coil 33 provides an armature winding.
  • An electrically insulating resin insulator 35 is disposed between the stator core 32 and the stator coil 33.
  • the stator coil 33 is a three-phase winding.
  • the stator coil 33 can selectively function the rotor 21 and the stator 31 as a generator or an electric motor.
  • Sensor unit 41 provides a rotational position detection device for an internal combustion engine.
  • the sensor unit 41 is provided in the rotating electrical machine 10 that is linked to the internal combustion engine 12.
  • the sensor unit 41 is provided on the stator core 32 of the rotating electrical machine 10.
  • the sensor unit 41 outputs an electrical signal indicating the rotational position of the rotor 21 by detecting the magnetic flux of the permanent magnet 23 provided on the rotor 21.
  • the sensor unit 41 is fixed to the stator 31.
  • the sensor unit 41 is disposed between the stator core 32 and the body 13.
  • the sensor unit 41 is fixed to the end surface SD1 of the stator core 32.
  • the sensor unit 41 is also fixed to the body 13, but may be fixed only to the stator core 32.
  • the sensor unit 41 detects the rotational position of the rotor 21 by detecting the magnetic flux supplied by the permanent magnet 23 provided on the rotor 21.
  • the sensor unit 41 has a plurality of sensors 43.
  • the plurality of sensors 43 are disposed between two adjacent magnetic poles 32a. It can be said that the plurality of sensors 43 are arranged between two adjacent coils.
  • the plurality of sensors 43 detect the rotational position of the rotor 21 by detecting a change in magnetic flux of the permanent magnet 23.
  • the plurality of sensors 43 are arranged away from each other in the circumferential direction with respect to the rotation axis of the rotor 21.
  • the reference position for ignition control is indicated by the position of the special magnetic pole provided by the permanent magnet 23.
  • the rotational position of the rotor 21 is also the rotational position of the rotating shaft 14. Therefore, a reference position signal for ignition control can be obtained by detecting the rotational position of the rotor 21.
  • At least one of the plurality of sensors 43 outputs a signal for ignition control by reacting to the special magnetic pole.
  • one sensor 43 provides a sensor for ignition control.
  • the stator 31 includes a sensor for outputting a signal for ignition control when the rotor 21 is at a predetermined rotational position.
  • the rotational position of the rotor 21 is indicated by the position of the field provided by the permanent magnet 23 in the rotational direction. Therefore, the rotating electrical machine 10 can function as an electric motor by detecting the rotational position of the rotor 21 and controlling the energization to the armature winding according to the detected rotational position. At least one of the plurality of sensors 43 detects the rotational position of the rotor 21 for causing the rotating electrical machine 10 to function as at least an electric motor.
  • the rotating electrical machine 10 can function as a generator and an electric motor, and can selectively function as either of them.
  • the sensor unit 41 accommodates the electric circuit component 42.
  • the electric circuit component 42 includes a substrate, an electric element mounted on the substrate, and an electric wire.
  • the sensor unit 41 accommodates the sensor 43.
  • the sensor unit 41 has a case 51.
  • the case 51 is made of a resin material.
  • the case 51 can partially have a metal part.
  • the case 51 accommodates and holds the electric circuit component 42 and the sensor 43.
  • the sensor 43 is connected to the electric circuit component 42.
  • the case 51 has a shape corresponding to a cross section of a polygonal cylinder, for example, a trapezoidal cylinder, and has an outer edge extending approximately corresponding to the radially outer edge of the stator 31.
  • the case 51 has a container 52 for housing the electric circuit component 42.
  • the container 52 is made of a resin material.
  • the container 52 has a box shape in which a surface facing the body 13 is opened.
  • the container 52 has a bottom surface facing the stator core 32 side, an opening facing the body 13, and a side wall surrounding the bottom surface and the opening.
  • the electric circuit component 42 is accommodated in the container 52 and fixed.
  • the case 51 has at least one cover 53 for accommodating and supporting at least one sensor 43.
  • the sensor 43 is fixed in the cover 53.
  • the cover 53 is a bottomed cylindrical member formed so as to extend from the bottom surface of the container 52.
  • the cover 53 is provided on the radially outer side. The cover 53 is inserted into the gap between the two magnetic poles 32a.
  • the cover 53 has a base portion provided on the bottom surface of the case 51 and a main body portion extending from the base portion.
  • the main body is thinner than the base.
  • the base has a width wider than the gap.
  • a step portion is formed between the base portion and the main body portion. The stepped portion contacts one end surface SD1 of the stator core 32. Thereby, the amount of insertion of the main body into the gap is defined.
  • the inside of the cover 53 communicates with the inside of the container 52.
  • the sensor unit 41 has a plurality of covers 53.
  • the cover 53 has a shape that can be called a finger shape or a tongue shape extending from the container 52. Cover 53 can also be referred to as a sheath for sensor 43.
  • the plurality of covers 53 include one cover 53 for a sensor for detecting a reference position for ignition control and three covers 53 for sensors for motor control.
  • Each sensor 53 accommodates one sensor 43.
  • the sensor 43 detects the magnetic flux supplied from the permanent magnet 23.
  • the sensor 43 is provided by a hall sensor, an MRE sensor, or the like. This embodiment has one sensor for ignition control and three sensors for motor control.
  • the sensor 43 is electrically connected to the electric circuit component 42 by a sensor terminal disposed in a cavity in the cover 53.
  • the case 51 has a tightening portion 54.
  • the tightening portion 54 is provided radially inward of the container 52 with respect to the radial direction RD of the rotating electrical machine 10.
  • a connecting portion 55 is provided between the container 52 and the tightening portion 54 to connect them.
  • the fixing bolt 44 is disposed through the stator core 32 from the surface of the stator core 32 opposite to the body 13.
  • the front end portion of the fixing bolt 44 protruding from the stator core 32 is screwed into the female thread portion of the tightening portion 54.
  • the sensor unit 41 is fixed to the stator core 32.
  • the inside of the container 52 is filled with a protective sealing resin 56.
  • the sealing resin 56 is a potting resin for protecting the electric circuit component 42.
  • the sensor unit 41 has a wiring 11a for external connection for taking out signals output from one or a plurality of sensors 43 to the outside.
  • the wiring 11a can transmit an ignition signal indicating a reference position and / or a rotation position signal indicating a rotation angle.
  • the rotating electrical machine 10 includes a plurality of power lines 11 b that connect the stator coil 33 and the electric circuit 11.
  • the electric power line 11b supplies the electric circuit 11 with electric power induced in the stator coil 33 when the rotating electrical machine 10 functions as a generator.
  • the electric power line 11 b supplies electric power for exciting the stator coil 33 from the electric circuit 11 to the stator coil 33 when the rotating electrical machine 10 functions as an electric motor.
  • the stator 31 is an annular member.
  • the stator 31 has a through hole that can receive the rotating shaft 14 and the inner cylinder of the rotor core 22.
  • the stator core 32 defines a through hole for receiving the inner shaft of the rotary shaft 14 and the rotor core 22. Further, the stator core 32 has a plurality of through holes for receiving a plurality of fixing bolts 34. These through holes contribute to defining the position of the stator core 32 in the circumferential direction.
  • the stator core 32 has a through hole for receiving a fixing bolt 44 for fixing the sensor unit 41.
  • a plurality of magnetic poles 32 a are arranged on the outer peripheral surface of the stator 31.
  • the plurality of magnetic poles 32a are arranged away from each other along the circumferential direction.
  • the plurality of magnetic poles 32 a are provided so as to receive the field of the rotor 21 at the ends of the plurality of tooth portions 32 c extending in the radial direction.
  • the stator 31 has, for example, 18 magnetic poles 32a. Other numbers may be sufficient as the number of the magnetic poles 32a.
  • These magnetic poles 32 a are arranged to face the field of the rotor 21.
  • the stator core 32 forms a plurality of magnetic poles 32a facing the permanent magnet 23 on the radially outer side.
  • the stator core 32 is formed by laminating magnetic plates (electromagnetic steel plates) formed in a predetermined shape so as to form a plurality of magnetic poles 32a.
  • the stator core 32 has an annular portion 32b positioned radially inward.
  • the annular portion 32 b has the above-described through hole and is a fixing portion for fixing the stator core 32.
  • the stator core 32 has a plurality of tooth portions 32c extending in the radial direction. One tooth portion 32c connects the annular portion 32b and one magnetic pole 32a.
  • the stator coil 33 provides a multi-phase armature winding.
  • the stator coil 33 is attached to the plurality of tooth portions 32c.
  • the stator 31 is a three-phase multipolar stator having a plurality of magnetic poles 32a and a plurality of three-phase windings.
  • the stator coil 33 has a plurality of single coils 33s.
  • the single coil 33s is a coil attached to one magnetic pole 32a and one tooth portion 32c.
  • the single coil 33s is concentratedly wound around one tooth portion 32c.
  • the plurality of single coils 33s provide one phase coil.
  • a multi-phase armature winding is provided by a plurality of phase coils.
  • the insulator 35 has two halves 35a and 35b that sandwich the stator core 32 in the axial direction.
  • the half body 35a is located on one end surface SD1 side of the stator 31 in the axial direction.
  • the sensor unit 41 is disposed on the one end surface SD1.
  • the half body 35 a is located on the other end face SD ⁇ b> 2 side in the axial direction of the stator 31.
  • the other end surface SD2 is an end surface opposite to the end surface on which the sensor unit 41 is disposed.
  • a coil wire 33d which will be described later, is disposed on the halved body 35a so as to be separated from the magnetic pole 32a in the radial direction.
  • the half body 35a includes a protruding portion 37e described later.
  • the half body 35b does not include the protruding portion 37e.
  • the insulator 35 has a central portion 35c disposed so as to cover the radially outer portion of the annular portion 32b.
  • the stator coil 33 has a plurality of jumper wires 33j disposed on the stator 31 so as to extend along the circumferential direction in order to connect the plurality of single coils 33s.
  • the jumper wire 33j is a coil wire for forming the stator coil 33. In FIG. 2 and FIG. 3, some jumper lines 33j are indicated by broken lines.
  • the insulator 35 has guide fins 35d for guiding the jumper wire 33j on the central portion 35c.
  • the guide fins 35d are positioned on the fixed portion.
  • the guide fin 35d is a plate-like member.
  • the guide fins 35d extend in the radial direction.
  • the guide fins 35d extend in the axial direction.
  • the guide fins 35d are integrally formed of a material continuous with the insulator 35.
  • the guide fin 35d has an edge extending in the axial direction on the radially outer side.
  • the guide fin 35d has an edge on the radially inner side that is inclined so as to be separated from the stator core 32 toward the radially outer side.
  • the guide fins 35 d are part of the end surface of the stator 31 and protrude from the end surface of the stator core 32 in the axial direction.
  • the insulator 35 includes a plurality of guide fins 35d.
  • the plurality of guide fins 35d are separated from each other along the circumferential direction.
  • the plurality of guide fins 35d are arranged radially.
  • the manufacturing method of the rotating electrical machine 10 includes a wiring step of arranging the jumper wire 33j in the annular range where the stator coil 33 is installed.
  • the at least one guide fin 35d suppresses the jumper wire 33j from entering inward in the radial direction in the manufacturing process of the rotating electrical machine 10. Further, at least one guide fin 35d suppresses the intrusion of the jumper wire 33j in the radial direction in the finished product. In other words, the guide fin 35d guides the coil element wire so as to suppress the penetration of the coil element wire into the fixed portion. By preventing the jumper wire 33j from entering inward in the radial direction, damage to the jumper wire 33j is suppressed.
  • the guide fin 35d guides the jumper wire 33j without occupying a wide range above the fixed portion. The guide fin 35d does not hinder the arrangement of the tightening portion 54 and the arrangement of the fixing bolt 34 in the annular portion 32b.
  • the insulator 35 has a bobbin portion 36 that covers the tooth portion 32c.
  • the bobbin portion 36 is disposed between the tooth portion 32 c and the stator coil 33.
  • the insulator 35 has a flange portion 37 that is located at the radially outer end and extends along the edge of the magnetic pole 32a.
  • the flange portion 37 is disposed between the magnetic pole 32 a and the stator coil 33.
  • the stator 31 has a plurality of gaps 38.
  • the gap 38 is formed between two adjacent magnetic poles 32a.
  • the plurality of gaps 38 include a normal gap 38a and a sensor gap 38b.
  • the sensor gap 38 b is used for arranging the cover 53.
  • the stator core 32 has 18 gaps 38.
  • the sensor unit 41 has four covers 53. Therefore, the stator 31 has four sensor gaps 38b. Therefore, it has 14 normal gaps 38a and four sensor gaps 38b. Instead, when the sensor unit 41 has one sensor 43, one sensor gap 38b is provided. When the sensor unit 41 has three sensors 43, three sensor gaps 38b are provided.
  • the normal gap 38a has a predetermined circumferential width.
  • the sensor gap 38b has a wider circumferential width than the normal gap 38a.
  • the plurality of magnetic poles 32a include a first magnetic pole 32aw, a second magnetic pole 32am, and a third magnetic pole 32as.
  • the plurality of magnetic poles 32a have different circumferential widths so as to provide the normal gap 38a and the sensor gap 38b.
  • the plurality of magnetic poles 32a extend to both sides in the circumferential direction.
  • the first magnetic pole 32aw, the second magnetic pole 32am, and the third magnetic pole 32as have different amounts of protrusion in the circumferential direction.
  • the first magnetic pole 32aw has a predetermined circumferential width.
  • the first magnetic pole 32aw extends equally on both sides in the circumferential direction from the tip of the tooth portion 32c.
  • the stator core 32 has a plurality of first magnetic poles 32aw. Two adjacent first magnetic poles 32aw define a normal gap 38a therebetween.
  • the first magnetic pole 32aw extends greatly so as to define a normal gap 38a therebetween.
  • the second magnetic pole 32am and the third magnetic pole 32as have a circumferential width smaller than the first magnetic pole aw.
  • the third magnetic pole 32as has a circumferential width smaller than that of the second magnetic pole 32am.
  • the stator core 32 has three third magnetic poles 32as.
  • the third magnetic pole 32as extends from the tip of the tooth portion 32c to both sides in the circumferential direction.
  • the third magnetic pole 32as is located between the sensor gap 38b and the sensor gap 38b.
  • the third magnetic pole 32as extends smaller than the first magnetic pole 32aw so as to define a sensor gap 38b therebetween.
  • the spread of the third magnetic pole 32as to both sides in the circumferential direction is smaller than that of the first magnetic pole 32aw.
  • the stator core 32 has at least two second magnetic poles 32am.
  • the second magnetic pole 32am is located at both ends of the group of the plurality of sensor gaps 38b.
  • the second magnetic pole 32am is located between the normal gap 38a and the sensor gap 38b.
  • the second magnetic pole 32am extends to the normal gap 38a side as much as the first magnetic pole 32aw.
  • the second magnetic pole 32am extends to the sensor gap 38b side by the same amount as the third magnetic pole 32as.
  • the insulator 35 has a shape covering the surface excluding the magnetic pole 32a and the annular portion 32b.
  • FIGS. 4 and 5 show a half body 35 a disposed between the stator core 32 and the sensor unit 41.
  • the half-split body 35a has a protruding portion described later, but the half-split body 35b does not have a protruding portion.
  • the guide fin 35d protrudes radially inward from the central portion 35c as shown in the drawing. As a result, the guide fin 35d guides the jumper line 33j.
  • the insulator 35 has a plurality of bobbin portions 36.
  • the plurality of bobbin portions 36 includes a plurality of normal bobbin portions 36a located on both sides of the normal gap 38a and a plurality of sensor bobbin portions 36b located on both sides of the sensor gap 38b where the cover 53 is disposed.
  • a normal bobbin portion 36a and a sensor bobbin portion 36b are positioned on both sides of the two normal gaps 38a located on both sides of the four sensor gaps 38b.
  • sensor bobbin portions 36b are positioned on both sides of the endmost sensor gap 38b.
  • the sensor bobbin portion 36b has an uneven portion corresponding to a coil guide portion described later.
  • the insulator 35 has a plurality of flange portions 37.
  • the flange portion 37 is provided at the distal end of the bobbin portion 36 in the radial direction.
  • the plurality of flange portions 37 include a first flange portion 37a, a second flange portion 37b, and a third flange portion 37c.
  • the first flange portion 37a, the second flange portion 37b, and the third flange portion 37c correspond to the first magnetic pole 32aw, the second magnetic pole 32am, and the third magnetic pole 32as, respectively.
  • the second flange portion 37b and the third flange portion 37c are disposed on the second magnetic pole 32am and the third magnetic pole 32as that form the sensor gap 38b. Since the second flange portion 37b and the third flange portion 37c are related to the cover 53, they can also be called sensor flange portions.
  • the sensor flange portion has a guide portion corresponding to a coil guide portion described later.
  • the normal bobbin portion 36a and the first flange portion 37a provide a normal insulator portion corresponding to the magnetic pole 32a that forms the normal gap 38a.
  • the sensor bobbin portion 36b and the second flange portion 37b provide a sensor insulator portion corresponding to the magnetic pole 32a that forms the sensor gap 38b.
  • the sensor bobbin portion 36b and the third flange portion 37c provide a sensor insulator portion corresponding to the magnetic pole 32a that forms the sensor gap 38b.
  • a coil guide described later is provided only in the sensor insulator portion. Thereby, the coil wire 33d of the stator coil 33 facing the sensor unit 41 is disposed away from the magnetic pole 32a in the radial direction on the one end face SD1 side.
  • FIG. 6 and 7 show a state in which the halves 35a and 35b are attached to the stator core 32.
  • FIG. FIG. 6 shows the side as seen from the direction of the arrow VI in FIG.
  • the sensor insulator portion for the third magnetic pole 32as has a sensor bobbin portion 36b and a third flange portion 37c.
  • the sensor bobbin portion 36b has a rectangular surface 36e with rounded corners and a plurality of fins 36f.
  • FIG. 8 shows a cross section of the tooth portion 32 c and the insulator 35.
  • the stator core 32 including the teeth portion 32c is a laminated body in which a plurality of magnetic plates are laminated.
  • the plurality of fins 36f extend outward in the radial direction of the tooth portion 32c only at the corners of the surface 36e, which can be called a quadrilateral.
  • the surface 36e and the plurality of fins 36f provide an uneven portion on the surface of the sensor bobbin portion 36b.
  • the uneven portion holds the coil wire of the stator coil 33 at a predetermined position.
  • the uneven part restricts the movement of the coil wire in the sensor bobbin portion 36b.
  • the uneven portion is one of coil guide portions that radially separate the stator coil 33 from the third magnetic pole 32as on the one end face SD1 side.
  • the sensor insulator part for the second magnetic pole 32am has a sensor bobbin part 36b and a second flange part 37b.
  • the sensor insulator portion for the second magnetic pole 32am also has an uneven portion on the sensor bobbin portion 36b, as in FIGS.
  • the halved body 35a has a third flange portion 37c.
  • the third flange portion 37c has a protruding portion 37e.
  • the protruding portion 37e protrudes on one end surface SD1 side.
  • the protruding portion 37e protrudes from the flange portion toward the inner stator coil 33 in the radial direction along the tooth portion 32c.
  • the radially inner surface of the projecting portion 37e is away from the field of the rotor 21.
  • the surface of the protruding portion 37e protrudes toward the inside in the radial direction.
  • the surface of the protruding portion 37e protrudes toward the root of the tooth portion 32c.
  • the base flange surface 37d is a surface facing the stator coil 33 of the flange portion 37 on the other end surface SD2 side of the stator 31.
  • the foundation flange surface 37d is an inner surface of the flange portion 37 provided in the half body 35b.
  • the protruding portion 37e separates the stator coil 33 from the third magnetic pole 32as in the radial direction.
  • the projecting portion 37e is one of coil guide portions that radially separate the stator coil 33 from the third magnetic pole 32as on one end face side.
  • the sensor insulator part for the second magnetic pole 32am has a sensor bobbin part 36b and a second flange part 37b.
  • the sensor insulator portion for the second magnetic pole 32am also has a protruding portion 37e on the second flange portion 37b, as in FIGS.
  • FIG. 9 is a perspective view showing a sensor insulator portion for the third magnetic pole 32as.
  • the sensor insulator portion has a surface 36e and a plurality of fins 36f for providing a concavo-convex portion on the sensor bobbin portion 36b.
  • the sensor insulator portion has a protruding portion 37e on the third flange portion 37c.
  • the concavo-convex portion and the protruding portion 37e provide a coil guide portion that causes the stator coil 33 to be separated from the third magnetic pole 32as in the radial direction.
  • the protruding portion 37e protrudes from the other end surface side of the stator 31 so as to gradually increase toward the one end surface side.
  • the protruding portion 37e has a slope portion at a position overlapping the sensor bobbin portion 36b with respect to the axial direction AD.
  • the protruding portion 37e protrudes at a position away from the end surface in the axial direction AD of the sensor bobbin portion 36b in the axial direction.
  • the protruding portion 37e separates the stator coil 33 from the third magnetic pole 32as toward the inner side in the radial direction RD.
  • the protruding portion 37e protrudes in the range on both sides in the circumferential direction CD at the end in the axial direction AD of the sensor bobbin portion 36b.
  • the protruding portion 37e separates the stator coil 33 from the third magnetic pole 32as toward the inner side in the radial direction RD on both sides of the third magnetic pole 32as where the cover 53 is disposed.
  • the sensor insulator portion for the second magnetic pole 32am also has a surface 36e and a plurality of fins 36f for providing the uneven portion on the sensor bobbin portion 36b.
  • the sensor insulator portion for the second magnetic pole 32am also has a protruding portion 37e on the third flange portion 37c. The uneven portion and the protruding portion 37e provide a coil guide portion that causes the stator coil 33 to be separated from the second magnetic pole 32am in the radial direction.
  • FIG. 10 is a perspective view showing a normal insulator portion for the first magnetic pole 32aw.
  • the normal insulator portion does not include an uneven portion on the normal bobbin portion 36a.
  • the insulator portion does not include a protruding portion on the first flange portion 37a.
  • the coil guide is not usually provided in the insulator portion.
  • the coil guide is provided only in the sensor insulator portion.
  • the projecting portion 37e separates the stator coil 33 radially inward and defines its position.
  • the stator coil 33 is separated in the radial direction so as to avoid the cover 53 only at a position where the cover 53 enters. It is desirable that the distance that the stator coil 33 is separated in the radial direction is kept to the minimum necessary for stably arranging the cover 53.
  • the winding process that proceeds from the inner layer to the outer layer contributes to reducing the distance. Further, the uneven portion in the sensor bobbin portion 36b also contributes to accurately control the distance.
  • the sensor unit 41 has a case 51.
  • the case 51 is disposed on one end surface of the stator 31 in the axial direction.
  • the sensor unit 41 has a plurality of covers 53 extending from the case 51 into the sensor gap 38b.
  • the plurality of covers 53 are disposed away from each other along the plurality of magnetic poles 32a.
  • the case 51 has a protruding portion 57 at the end in the circumferential direction CD.
  • the protruding portions 57 are provided on both sides of the case 51 in the circumferential direction.
  • the protruding portion 57 protrudes from the container 52.
  • the protruding portion 57 provides an operation portion for operating the sensor unit 41 in the method of manufacturing the rotating electrical machine.
  • the two protruding portions 57 allow the sensor unit 41 to be stably operated. For example, in the process of assembling the sensor unit 41 to the stator 31, the operator or work machine can insert the plurality of covers 53 straight into the plurality of sensor gaps 38 b by pressing the two protruding portions 57.
  • the case 51 has a container 52 and a cavity 58.
  • the container 52 accommodates the electric circuit component 42 and is sealed with an electrically insulating sealing resin 56.
  • the cavity 58 is not sealed with a sealing resin.
  • the cavity 58 provides a cavity.
  • the cavity 58 is divided into a plurality of partitions.
  • the cavity 58 has three cavities 58a, 58b, and 58c.
  • the cavity 58 is provided at the radially inner edge of the container 52.
  • the hollow portion 58 provides high rigidity against the warp deformation of the case 51 by the partition wall.
  • the cavity 58 reduces the weight of the case 51.
  • the cavity 58 suppresses the usage amount of the sealing resin 56.
  • the cavity 58 contributes to suppress warping deformation of the case 51.
  • the plurality of covers 53 have a tapered shape that is thick at the base portion connected to the container 52 and thinner at the tip portion than the base portion.
  • the cover 53 maintains the width in the circumferential direction with respect to the length direction.
  • the cover 53 has a cross-sectional area perpendicular to the axial direction that gradually decreases from the container 52 toward the tip of the cover 53.
  • the plurality of covers 53 are four.
  • One cover 53a is longer than the other covers 53b, 53c, 53d in order to accommodate the sensor 43 for indicating the reference position.
  • the plurality of covers 53b, 53c, 53d accommodates a sensor 43 for detecting a rotation angle.
  • the plurality of covers 53 have a polygonal column shape that is flat in the circumferential direction.
  • the plurality of covers 53 have different shapes but have similar shapes.
  • the cover 53d will be described in detail as a representative example.
  • the direction label indicates the circumferential direction CD and the radial direction RD in the cover 53d.
  • the cover 53d has a width WT along the circumferential direction CD, a length LG along the axial direction AD, and a thickness TH along the radial direction RD.
  • the cover 53 d extends from the bottom plate of the container 52 toward the outside of the container 52.
  • the cover 53d has a proximal end portion on the container 52 side and a distal end portion on the opposite side.
  • FIG. 15 shows the shape of the cover 53d as a model.
  • the cover 53d has a tip 53e.
  • the distal end portion 53e is also a receiving portion of the cover 53d.
  • the cover 53d has side portions 53f on both sides in the circumferential direction CD.
  • the side portion 53f extends longer in the axial direction AD than in the radial direction RD.
  • the side portion 53f provides a flat or curved side surface.
  • the cover 53d has axial grooves 53g and 53h for fitting with the adjacent magnetic pole 32a.
  • the axial grooves 53g and 53h are provided on both sides of the cover 53d.
  • the axial grooves 53g and 53h are provided in the side portion 53f.
  • the axial grooves 53g and 53h extend along the axial direction AD.
  • the axial grooves 53g and 53h guide the cover 53d.
  • the axial grooves 53g and 53h fix the cover 53d to the magnetic poles 32a on both sides.
  • the cover 53d has an inner portion 53i.
  • the inner portion 53i provides a flat or curved inner surface.
  • the inner portion 53i is connected to the reinforcing rib 53j.
  • the reinforcing rib 53j extends between the inner portion 53i and the bottom plate of the container 52.
  • the reinforcing rib 53j reinforces the cover 53d in the radial direction by bridging between the inner portion 53i and the bottom plate of the container 52. All of the plurality of covers 53 have reinforcing ribs. Thereby, even if one of the covers 53 interferes with the coil, the cover 53 is given a strength that allows the coil to be pushed and deformed. Even if the cover 53 interferes with the coil, the cover 53 is disposed at a predetermined position between the two magnetic poles 32a by deforming the coil.
  • the cover 53d has an outer portion 53k.
  • the outer portion 53k extends so as to bridge between two adjacent magnetic poles 32a.
  • the outer portion 53k provides a flat or curved outer surface.
  • the cover 53d is radially inward and has relief portions 53m and 53n on both sides of the circumferential direction CD.
  • the escape portions 53m and 53n face the coil.
  • the escape portions 53m and 53n extend between the tip portion 53e, the side portion 53f, and the inner portion 53i.
  • the escape portions 53m and 53n are flat surfaces or curved surfaces.
  • the escape portions 53m and 53n are wide at the distal end portion 53e and narrow at the proximal end portion. In other words, the clearances 53m and 53n are wide at the distal end of the cover 53d and narrow at the proximal end of the cover 53d.
  • the escape portions 53m and 53n suppress contact between the coil and the cover 53d. In the distal end portion 53e, a predetermined distance 53p remains between the escape portion 53m and the escape portion 53n.
  • FIG. 16 shows a cross section of the cover 53d perpendicular to the axial direction AD.
  • the cover 53d has an inner surface 53r to form a cavity for accommodating the sensor 43.
  • the escape portions 53m and 53n gradually expand toward the tip portion 53e.
  • the cavity defined by the inner surface 53r toward the tip end portion 53e becomes gradually smaller, the escape portions 53m and 53n contribute to maintaining the thickness of the material forming the cover 53d.
  • the cover 53d having a uniform or uniform thickness is provided.
  • the cross-sectional area perpendicular to the axial direction of the cover 53d includes a cavity.
  • the cross-sectional area perpendicular to the axial direction of the cover 53d gradually decreases from the container 52 toward the distal end portion 53e. Such a gradually changing cross-sectional area is provided solely by changes in the relief portions 53m and 53n.
  • the plurality of covers 53 have a shape similar to the cover 53d.
  • the cover 53a is longer than the other covers 53b, 53c, 53d.
  • the cover 53a has escape portions 53m and 53n wider than the other covers 53b, 53c and 53d.
  • the distance 53p in the cover 53d is larger than the distance 53p in the cover 53a.
  • the distance 53p in the cover 53a may be 0 (zero) mm.
  • the shapes of the escape portions 53m and 53n depend on the length of the cover 53.
  • the longest cover 53a is longer than the other short covers and has wide relief portions 53m and 53n.
  • the shortest cover 53a is shorter than other long covers and has narrow relief portions 53m and 53n.
  • the relationship shows a positive correlation.
  • the plurality of covers 53 have escape portions 53m and 53n having a width corresponding to the length.
  • the manufacturing method of the rotating electrical machine 10 includes a step of forming a plurality of sensor gaps 38 b between the plurality of magnetic poles 32 a of the stator core 32. This step is a step of forming the stator core 32.
  • the manufacturing method of the rotating electrical machine 10 includes a step of inserting the plurality of covers 53 into the plurality of sensor gaps 38b from the one end surface SD1 side.
  • the cover 53 of the sensor unit 41 extends from the one end surface SD1 side in the axial direction of the stator 31 into the sensor gap 38b along the axial direction AD.
  • the sensor 43 that detects the magnetic flux of the rotor 21 is disposed in the sensor gap 38b between the two adjacent magnetic poles 32a.
  • the sensor unit 41 houses a sensor 43.
  • the stator coil 33 has a multi-layered single coil 33 s disposed outside the tooth portion 32 c.
  • the single coil 33s has an inner layer 33a and an outermost layer 33b.
  • the inner layer 33a is one layer inside the outermost layer 33b.
  • the inner layer 33a is also the innermost layer.
  • the inner layer 33 a is formed by winding a coil wire around the bobbin portion 36.
  • the inner layer 33 a is formed by winding a coil wire in the radial direction along the bobbin portion 36. Therefore, the coil wire moves from the inner layer 33 a to the outermost layer 33 b at a position adjacent to the flange portion 37.
  • the coil wire has shifted from the inner layer 33a to the outermost layer 33b on the surface opposite to the illustrated single coil 33s.
  • the coil wire 33c forming the final turn of the inner layer 33a circulates around the bobbin portion 36.
  • the coil wire 33d forming the first turn of the outermost layer 33b rides on the inner layer 33a at a portion adjacent to the magnetic pole 32a, and moves to the outermost layer 33b.
  • the coil wire 33d of the outermost layer 33b facing the sensor unit 41 is radially inward from the magnetic pole 32a toward the one end surface SD1 side from the other end surface SD2 side in the axial direction of the stator 31 at the back of the page. Inclined to leave. Furthermore, the coil wire 33d is inclined so as to approach the magnetic pole 32a in the radial direction from one end surface SD1 side in the axial direction of the stator 31 toward the other end surface SD2 side before the paper surface.
  • the coil wire 33d of the outermost layer 33b is positioned farther from the magnetic pole 32a than the other part only on the one end face SD1 side.
  • the coil wire 33d of the outermost layer 33b is positioned near the magnetic pole 32a on the other end face SD2 side.
  • the coil wire 33d of the outermost layer 33b is positioned so as to be farther from the magnetic pole 32a on the one end face SD1 side than the central portion in the axial direction.
  • the coil wire 33d of the outermost layer 33b facing the sensor unit 41 is positioned on a recess formed between the plurality of coil wires 33c of the inner layer 33a.
  • the coil wire 33d is disposed away from the magnetic pole 32a radially inward on the one end face SD1 side.
  • Such an aligned arrangement of the coil wires enables the coil wire 33d of the outermost layer 33b to be arranged at a target position.
  • the single coil 33s has a circumferential width smaller than the axial length. For this reason, the coil strand 33d is wound so as to bend the coil strand 33d on the one end face SD1 side in the winding step. For this reason, the coil wire 33d is easily disposed on the concave portion on the one end face SD1 side.
  • the insulator 35 has a bobbin portion 36 disposed between the tooth portion 32 c and the stator coil 33.
  • the bobbin portion 36 has an uneven portion that defines the position of the coil wire on the bobbin portion 36.
  • the uneven portion is provided by the surface 36e and the plurality of fins 36f.
  • the concavo-convex portion allows the inner layer 33a and the outermost layer 33b to be wound in an aligned state.
  • This uneven portion is also referred to as a coil guide portion that radially separates the stator coil 33 from the magnetic pole 32a on one end surface SD1 side.
  • the insulator 35 has a flange portion 37 disposed between the magnetic pole 32 a and the stator coil 33.
  • the flange portion 37 has a protruding portion 37e that protrudes from the flange portion 37 along the tooth portion 32c toward the stator coil 33.
  • the protruding portion 37e protrudes from the foundation flange surface 37d.
  • the protruding portion 37e separates the stator coil 33 from the magnetic pole 32a in the radial direction on the one end surface SD1 side. Therefore, the protrusion part 37e is also a coil guide part.
  • the coil wire 33d is arranged away from the magnetic pole 32a in the radial direction only on the one end face SD1 side.
  • the plurality of magnetic poles 32a define a normal gap 38a where the sensor unit 41 is not arranged and a sensor gap 38b where the sensor unit 41 is arranged.
  • the coil element wire 33d is arranged on the one end face SD1 side so as to be separated in the radial direction from only the magnetic pole 32a forming the sensor gap 38b.
  • the protruding portion 37e is provided only on the flange portion 37 provided on the magnetic pole 32a that defines the sensor gap 38b.
  • the amount by which the coil wire 33d of the outermost layer 33b moves radially inward on the one end face SD1 side depends on the protruding amount of the protruding portion 37e from the basic flange surface 37d.
  • the protruding amount can be about 1 ⁇ 2 of the diameter of the coil wire 33c.
  • the protruding amount is set in consideration of the accuracy of the winding machine so that the coil wire 33d is positioned on the recess formed by the coil wire 33c. As a result, the coil wire 33d is positioned radially inward from the basic flange surface 37d by the diameter of the coil wire 33d.
  • the manufacturing method of the rotating electrical machine 10 includes a winding step of attaching a coil wire to the plurality of tooth portions 32c. In this winding process, if the coil wires are aligned using the concavo-convex portion, the winding process may be extended in time. However, in this embodiment, unevenness is provided only on the sensor bobbin portion 36b. For this reason, a high-speed winding can be realized in the normal bobbin portion 36a.
  • the protruding portion 37e bends the coil wire, the winding process may be extended in time.
  • the protruding portion 37e is provided only on the second flange portion 37b and the third flange portion 37c. For this reason, high-speed winding can be realized in the first flange portion 37a.
  • FIG. 19 shows two magnetic poles 32a and one cover 53 viewed from one end face SD1 side.
  • the cover 53 is shown as a cross section.
  • the coil wire 33d is separated from the magnetic pole 32a radially inward on the one end face SD1 side. Thereby, interference with the cover 53 and the coil strand 33d is suppressed.
  • the manufacturing method of the rotating electrical machine 10 includes a winding process and an insertion process after the winding process.
  • the stator coil 33 is wound around the outer periphery of the plurality of bobbin portions 36 attached to the plurality of tooth portions 32c having the magnetic poles 32a at the tips.
  • the winding process is performed by a winding machine.
  • the winding process includes a high-speed process that is normally performed on the bobbin part 36a and a low-speed part that is executed on the sensor bobbin part 36b.
  • the low-speed part is also called a high-accuracy process in which the coil wire is arranged at a predetermined position with higher accuracy than the high-speed process.
  • the insertion step the sensor 43 is inserted from one end face SD1 of the stator 31 into the gap 38 between the two adjacent magnetic poles 32a.
  • the insertion step is executed by arranging the sensor 43 in the sensor unit 41.
  • the coil wire is wound so that the coil wire 33d of the stator coil 33 is disposed radially away from the magnetic pole 32a on the one end face SD1 side.
  • the coil wire 33d is wound so as to be separated from the magnetic pole 32a in the radial direction on the one end surface SD1 side rather than the other end surface SD1 side.
  • the insertion step is a step of inserting the sensor 43 only into the sensor gap 38b among the plurality of normal gaps 38a and sensor gaps 38b formed by the plurality of magnetic poles 32a. In other words, the insertion step is executed for a part of the circumferential range of the stator 31.
  • the coil wire 33d of the stator coil 33 is arranged radially away from the magnetic pole 32a on the one end face SD1 side.
  • This is a step of winding a coil wire. That is, in the winding process, the coil having the above shape is formed only in the sensor bobbin portion 36b among the plurality of bobbin portions 36.
  • the position of the coil wire is controlled with low accuracy. For this reason, high-speed winding is possible in the plurality of normal bobbin portions 36a.
  • the winding step is a step of winding the coil wire such that the coil wire 33d of the stator coil 33 is disposed radially away from the magnetic pole 32a on the one end surface SD1 side of the other end surface SD2 of the stator 31. It is.
  • the winding process provides a coil shape suitable for insertion of the sensor 43 on one end surface SD1 side while obtaining a cross-sectional area available for the coil on the other end surface SD2 side.
  • the coil wire 33 d is arranged so as to be away from the cover 53. Thereby, insertion of the cover 53 becomes easy. Further, since a gap is formed between the cover 53 and the coil element wire 33d, the coil can be easily cooled. Further, the gap between the cover 53 and the coil wire 33d facilitates the change of the stator coil 33. For example, the length, diameter, number of turns, material, thickness of the insulating layer, etc. of the coil wire can be changed. For example, two sensor units 41 having the same shape can be used with a coil metal wire made of copper metal and a coil wire made of aluminum metal.
  • This embodiment is a modified example based on the preceding embodiment.
  • the protruding portion 37e is employed.
  • a protruding portion 237e that is longer in the axial direction than the protruding portion 37e is employed.
  • the flange portion 37 has a protruding portion 237e that protrudes from the base flange surface 37d.
  • the length of the protruding portion 237e in the axial direction AD is longer than the length of the protruding portion 37e in the axial direction AD.
  • the protruding portion 237e is formed over the entire flange portion 37 provided by the half body 35a.
  • Such a long protruding portion 237e can be used for the flange portion 37 adjacent to the sensor gap 38b into which the cover 53a is inserted. Further, all the protruding portions 37e may be replaced with the protruding portions 237e.
  • This embodiment is a modification in which the preceding embodiment is a basic form.
  • a protruding portion 337e is employed.
  • the protruding portion 337e is disposed along the outer edge of the third flange portion 37c provided in the half body 35a.
  • the protruding portion 337e protrudes radially inward so as to be farther from the magnetic pole 32a than the base flange surface 37d. Even in this shape, the outermost coil wire is separated from the magnetic pole inward in the radial direction.
  • the inner layer coil wire is accommodated inside the protruding portion 337e.
  • Such a configuration is effective for separating the outermost layer radially inward without depending on the inner layer. Further, since the inner coil element wire is wound up to the base flange surface 37d, a decrease in the amount of coil winding (number of turns) is suppressed.
  • the sensor bobbin portion 36b may have the unevenness of the preceding embodiment, or may not have as shown in the figure.
  • This embodiment is a modified example based on the preceding embodiment.
  • the protruding portion 437e is employed.
  • the protruding portion 437e is provided only on one end surface SD1 side of the third flange portion 37c.
  • the protruding portion 437e has the same circumferential width as that of the sensor bobbin portion 36d. Even in the protruding portion 437e, the outermost coil wire is arranged away from the base flange surface 37d inward in the radial direction. Since the coil wire is gradually inclined from the position, interference between the cover 53 and the coil on the one end face SD1 side is suppressed.
  • This embodiment is a modified example based on the preceding embodiment.
  • a protruding portion 537e is employed.
  • the third flange portion 37c has two protruding portions 537e.
  • the protruding portions 537e are disposed on both sides in the circumferential direction of the third flange portion 37c.
  • the protruding portion 537e has a cylindrical shape.
  • the protruding portion 537e protrudes radially inward from the radially inner surface of the third flange portion 37c.
  • the protruding portion 537e is provided only in part with respect to the axial direction.
  • the protruding portion 537e is provided in the second flange portion 37b, it may be provided only in a portion adjacent to the sensor gap 38b. In the vicinity of the cover 53, the protruding portion 537e arranges the coil wire away from the basic flange surface 37d inward in the axial direction.
  • This embodiment is a modification in which the preceding embodiment is a basic form.
  • the protruding portion 637e is employed.
  • the third flange portion 37c has two protruding portions 637e.
  • the protruding portions 637e are disposed on both sides of the third flange portion 37c in the circumferential direction.
  • the protruding portion 637e has a prismatic shape.
  • the protruding portion 637e protrudes radially inward from the radially inner surface of the third flange portion 37c.
  • the protruding portion 637e is provided only in a range corresponding to the magnetic pole 32a in the axial direction.
  • the protruding portion 637e is provided in the second flange portion 37b, it may be provided only in a portion adjacent to the sensor gap 38b.
  • the projecting portion 637e is arranged near the cover 53 so that the coil wire is separated from the basic flange surface 37d inward in the axial direction.
  • This embodiment is a modified example based on the preceding embodiment.
  • a protruding portion 737e is employed.
  • the third flange portion 37c has a plurality of protruding portions 737e.
  • the plurality of protruding portions 737e are arranged away from each other in the circumferential direction. Between the plurality of protruding portions 737e, the base flange surface 37d is exposed in a groove shape.
  • the groove forms a gap between the third flange portion 37c and the coil wire. The gap may contribute to improve the heat dissipation of the coil wire through air as a cooling medium. In this embodiment, the same operation and effect as the preceding embodiment can be obtained.
  • This embodiment is a modification example based on the preceding embodiment.
  • a protruding portion 837e is employed.
  • both the half body 35a and the half body 35b have a protruding portion 837e.
  • the protruding portion 837e protrudes in the radial direction from the base flange surface 37d as it goes from the other end surface SD2 to the one end surface SD1.
  • the coil wires 33c and 33d are inclined over a wider range. In this embodiment, the same operation and effect as the preceding embodiment can be obtained.
  • the flange portion 937c has a flat plate shape.
  • the plurality of flange portions 937c are all flat.
  • the manufacturing method of the rotating electrical machine 10 includes a winding process.
  • the coil wire is advanced from the innermost layer to the outermost layer.
  • the coil wire 33c is wound from the radially inner side to the radially outer side of the tooth portion 32c.
  • the coil wire 33c moves to the outer layer.
  • the traveling direction of the coil is reversed.
  • the coil wire 33d is wound forward from the radially outer side of the tooth portion 32c toward the radially inner side.
  • the coil wire 33c rides on the inner coil wire 33c and becomes the outermost layer 33b. In the outermost layer 33b, the coil wire 33d is positioned on a recess formed between the inner coil members 33c.
  • the coil wire 33d of the outermost layer 33b rides on the inner layer 33a at a portion adjacent to the magnetic pole 32a and moves to the outermost layer 33b.
  • the coil wire 33d of the outermost layer 33b facing the sensor unit 41 is inclined so as to be separated from the magnetic pole 32a in the radial direction from the other end surface SD2 side in the axial direction of the stator 31 toward the one end surface SD1 side. Yes.
  • the coil strands 33d of the outermost layer 33b facing the sensor unit 41 are positioned on the recesses formed between the plurality of coil strands 33c of the inner layer 33a, so that the one end face SD1 side is separated from the magnetic pole 32a. They are spaced apart in the radial direction.
  • the coil wire 33d rides on the inner layer 33a at a portion adjacent to the magnetic pole 32a and moves to the outermost layer 33b.
  • the coil wire 33c and the coil wire 33d pass through the riding position 33r.
  • the coil wire 33c and the coil wire 33d overlap in the circumferential direction.
  • the riding position 33r is located on the side surface of the tooth portion 32c facing in the circumferential direction.
  • the coil wire 33d bulges outside the tooth portion 32c.
  • the sensor unit 41 and the cover 53 are indicated by broken lines.
  • the riding position 33r is located on the other end surface CD2 side than the tip of the cover 53. For this reason, interference with the coil strand 33d and the cover 53 is suppressed.
  • Such a shape of the coil wire is realized on at least the plurality of sensor bobbin portions 36b.
  • Such a shape of the coil wire is not usually realized on the bobbin portion 36a.
  • the winding process can be carried out for other purposes on the normal bobbin portion 36a.
  • the speed of the winding process can be more important than the arrangement of the coil wires.
  • such a shape of the coil wire may be realized on all the bobbin portions 36.
  • the coil element wire 33d of the stator coil 33 facing the sensor unit 41 can be arranged away from the magnetic pole 32a in the radial direction on the one end face SD1 side without the coil guide portion. For this reason, interference with a coil strand and the cover 53 can be suppressed.
  • Tenth Embodiment This embodiment is a modified example based on the preceding embodiment.
  • a coil guide is employed.
  • the coil wire 33d of the outermost layer 33b is arranged so as to be separated from the magnetic pole 32a without the coil guide portion.
  • a portion including the tooth portion 32c and the bobbin 36 is referred to as a core.
  • the coil wire is made of an aluminum-based metal.
  • the coil wire may be made of a copper-based metal.
  • FIG. 28 is an external view showing a bare core before the stator coil 33 is mounted.
  • FIG. 28 shows the four sides of the bare core.
  • the four side surfaces are referred to as a front side surface S1, a left side surface S2, a back side surface S3, and a right side surface S4.
  • the left side surface S2 and the right side surface S4 are wider than the front side surface S1 and the back side surface S3. Therefore, the left side surface S2 and the right side surface S4 provide a wide side surface.
  • Each of the four side surfaces is given the vertical relationship shown in the left column in order to help understand the alignment state of a plurality of fins A36f described later. For this reason, the right side surface S4 is shown in an upside down state.
  • the horizontal direction in the figure that is, the radial direction of the stator 31 is referred to as the length direction of one pole.
  • the direction of circling the outer periphery of one core is called the circumferential direction.
  • a magnetic pole 32a is exposed at the tip of the tooth portion 32c.
  • the insulator 35 provides a bobbin portion 36 and a flange portion A37c.
  • the bobbin portion 36 has a plurality of fins A36f.
  • the plurality of fins A36f are arranged at the corners of the core.
  • the plurality of fins A36f are provided intermittently in the left-right direction in the drawing, that is, in the length direction. Further, the plurality of fins A36f are provided intermittently in the vertical direction of the drawing, that is, in the circumferential direction. In other words, the plurality of fins A36f are provided only at the four corners.
  • the two fins A36f that are separated in the vertical direction in the drawing are positioned at the same position in the length direction.
  • the plurality of fins A36f arranged intermittently in the circumferential direction enables a skew portion of the coil wire in the length direction. The skew portion enables the coil wire to be wound forward and backward.
  • the plurality of fins A36f are arranged at equal intervals along the length direction.
  • the plurality of intervals Pt between the plurality of fins A36f correspond to the diameter of the coil wire.
  • the interval Pt may be smaller than the diameter of the coil wire.
  • the interval Pt can be made larger than the diameter of the coil wire, but it is not preferable in order to accurately position the coil wire. Therefore, the interval Pt can be adjusted so that the coil wire can be positioned, and the word “equivalent” indicates a range in which this object can be achieved.
  • the interval Pt is also called a pitch.
  • the initial distance between the base flange surface 37d and the first fin A 36f corresponds to the diameter of the coil wire.
  • the initial spacing allows the coil wire 33c to be positioned adjacent to the base flange surface 37d. In the preferred form, the initial spacing allows contact between the coil strand 33c and the foundation flange surface 37d.
  • the plurality of fins A36f are arranged in a row along the length direction at the four corners of the core. As a result, the plurality of fins A36f are arranged to form four rows at the four corners of the core.
  • the plurality of fins A36f are positioned in alignment with each other in the circumferential direction on the outer periphery of the core.
  • a plurality of virtual circumferential trajectories can be assumed on the outer periphery of the core.
  • two typical virtual circumferential trajectories RI and RO are shown.
  • the plurality of virtual circumferential trajectories are perpendicular to the central axis of the tooth portion 32c.
  • One virtual circumferential trajectory goes around the core.
  • the plurality of virtual orbits are parallel to each other.
  • Four fins A36f are positioned on one virtual circumferential track. In other words, the four fins A36f arranged in the circumferential direction of the core define one virtual circumferential trajectory.
  • the outer peripheral shape of the bobbin portion 36 includes irregularities with a predetermined pitch. Moreover, the bobbin portion 36 is characterized by irregularities that are equally spaced in the length direction.
  • the inner surface of the flange portion A37c is planar.
  • the inner surface of the flange portion A37c is defined by a base flange surface 37d.
  • the distance between the outermost virtual circumferential track RO in the radial direction and the base flange surface 37d corresponds to the diameter of one coil wire 33c.
  • the distance between the innermost virtual circumferential trajectory RI in the radial direction and the central portion 35c is not constant in order to position the coil wire 33c at the beginning of winding.
  • the central portion 35c can include a positioning portion 36s for positioning the coil wire 33c at the beginning of winding.
  • FIG. 29 shows the pole after the inner layer 33a is mounted.
  • the inner layer 33a is also called a first layer.
  • the inner layer 33a has a coil wire 33c.
  • the inner layer 33 a is wound around the outer periphery of the bobbin portion 36.
  • the inner layer 33 a is wound over the entire length of the bobbin portion 36.
  • the coil wire 33c has a start end ST at the start of winding.
  • the start end ST is provided at the base of the teeth.
  • the start end ST is provided at the opposite end in the protruding direction (length direction) of the magnetic pole.
  • the coil wire 33c is not disconnected at the start end ST.
  • the coil wire 33c is drawn on the bobbin portion 36 from the outside of the bobbin portion 36 as indicated by a broken line.
  • the coil strand 33c has a return end RN for changing the winding direction.
  • the coil wire 33c is not disconnected at the return end RN.
  • the coil wire 33c is continuous as indicated by a broken line.
  • the return end RN is disposed so as to contact the base flange surface 37d.
  • the coil wire 33c is wound so as to return to the front side S1 again from the front side S1 through the left side S2, the back side S3, and the right side S4 in order.
  • the coil wire 33c wound in a coil shape has a plurality of skew portions 33ff.
  • the coil wire 33c is straight in the circumferential direction at a portion other than the skewed portion 33ff.
  • the plurality of skew feeding portions 33ff are positioned on only one of the four side surfaces. In the one side surface, only a part of the coil wire 33c provides the skewed portion 33ff. In the said one side surface, the remainder of the coil strand 33c provides the straight part along the circumferential direction. In other words, in the one side surface, the coil wire 33c provides the skewed portion 33ff and the circumferentially straight portions located on both sides thereof. In the remaining three side surfaces, the coil wire 33c is straight along the circumferential direction.
  • the skew portion 33ff extends over a length ADf in the circumferential direction.
  • the length ADf is shorter than the circumferential gap between the fins A36f on the right side surface S4.
  • the skewed portion 33ff causes the winding advance of the pitch Pt in the length direction.
  • the skew portion 33ff is defined by the circumferential length ADf and the pitch Pt.
  • the inner layer 33a terminates at a return end RN located on the back side S3.
  • the coil wire 33c is arranged so as to be in contact with the foundation flange surface 37d from the right side surface S4. Note that the return end RN is an end set for explanation, and the coil wire is continuous at the return end RN.
  • the inner layer 33a including a plurality of turns can be wound with the start end ST positioned on one of the four side surfaces.
  • the front side surface S1 where the start end ST is positioned can be referred to as a first side surface.
  • Side surfaces following the first side surface can be referred to as a second side surface, a third side surface, and a fourth side surface in this order.
  • the skew portion 33ff is positioned on one of the remaining three side surfaces.
  • the skew portion 33ff can be positioned on the second side surface, the third side surface, or the fourth side surface.
  • the skew portion 33ff is preferably positioned on a wide side surface among the four side surfaces.
  • FIG. 30 shows the pole after the outermost layer 33b is mounted.
  • the inner layer 33a is a first layer.
  • the outermost layer 33b is the second layer.
  • the outermost layer 33b extends to the end end ED.
  • the coil wire 33d is not disconnected at the end end ED.
  • the coil element wire 33d continuously extends from the end end ED.
  • the outermost layer 33b is wound over only a part of the bobbin portion 36 in the length direction.
  • the inner layer 33a and the outermost layer 33b have the same winding direction.
  • the inner layer 33a and the outermost layer 33b are reverse in the direction of winding.
  • the traveling direction of the inner layer 33a is a direction from the central portion 35c toward the flange portion A37c.
  • the traveling direction of the outermost layer 33b is a direction from the flange portion A37c toward the central portion 35c.
  • the traveling direction of the outermost layer 33b is also called a return direction.
  • Cross section C4 shows a cross section taken along line C4-C4.
  • the starting end ST is shown as a surface for the sake of illustration.
  • the coil wire 33c positioned on the left side surface S2 extends straight along the circumferential direction as indicated by a broken line.
  • the coil wire 33e extending from the return end RN gradually runs on the inner layer 33a.
  • the coil wire 33e is also a transition range from the inner layer 33a to the outermost layer 33b. In this description, the coil wire 33e is described as a part of the outermost layer 33b.
  • the outermost layer 33b has a skew portion 33fs.
  • the skew portion 33fs may be a transition portion from the inner layer 33a to the outermost layer 33b.
  • the skew portion 33fs is the first skew portion in the outermost layer 33b.
  • the oblique portion 33fs has a circumferential length ADfs.
  • the skew portion 33fs provides rewinding with a pitch of 1/2 Pt with respect to the length direction.
  • the pitch of the skew portion 33fs is 1 ⁇ 2 of the pitch of the skew portion 33ss.
  • the oblique portion 33fs shifts to a recess between two adjacent coil wires 33c after riding on the inner layer 33a.
  • the coil wire 33d gets over the coil wire 33c of the inner layer 33a in the skewed portion 33fs. After the coil strand 33d rides on the coil strand 33c, the coil strand 33d moves along a recess between two adjacent coil strands 33c.
  • the outermost layer 33b has a skewed portion 33ss.
  • the skewed portion 33 ss has a circumferential length ADs.
  • the skew portion 33ss provides rewinding of the pitch Pt with respect to the length direction.
  • the length ADs is longer than the length ADfs (ADfs ⁇ ADs).
  • the skew portion 33fs and the skew portion 33ss are shifted with respect to the circumferential direction.
  • the skew portion 33fs is positioned at a position preceding the skew portion 33ss in the winding direction.
  • the internal angle formed by the skewed portion 33fs and the virtual circumferential track is larger than the internal angle formed by the skewed portion 33ss and the virtual circumferential track.
  • the skew portion 33fs provides the first winding advance in the outermost layer 33b.
  • the skew portion 33ss provides a plurality of remaining winding advances in the outermost layer 33b.
  • the arrangement of the skew portion 33fs and the skew portion 33ss causes the outermost layer 33b to move away from the flange portion A37c while suppressing mutual interference.
  • the outermost layer 33b transitions away from the flange portion A37c. Therefore, the cover portion 53 of the sensor unit 41 is installed avoiding strong interference with the coil wire 33d.
  • the skew portion 33ff is also referred to as an inner layer skew portion in the inner layer 33a.
  • the skew portion 33fs is also called an intermediate skew portion because it is the first skew portion after the transition from the inner layer 33a to the outer layer 33b.
  • the skewed portion 33ss is also called an outer layer skewed portion in the outer layer 33b.
  • the plurality of skew portions 33ff, 33fs, and 33ss are provided on the right side surface S4 that is one side surface of the plurality of side surfaces.
  • the plurality of oblique portions 33ff, 33fs, and 33ss are arranged so as to cross each other on the same side surface.
  • the winding advance direction of the skew feeding portion 33ff and the rewinding direction of the skew feeding portions 33fs and 33ss are opposite to each other. Therefore, the skew portion 33ff and the skew portion 33fs intersect each other. At the same time, the skew portion 33ff and the skew portion 33ss cross each other. As a result, a large intersection angle is formed between the skew portion 33ff and the skew portions 33fs, 33ss. Specifically, the crossing angle when the oblique portions 33fs and 33ss pass over the oblique portion 33ff is the case where the oblique portions 33fs and 33ss pass over the coil wire 33c straight in the circumferential direction. Greater than intersection angle.
  • Cross section C1 shows a cross section taken along line C1-C1. Since the insulator 35 provides a thin cross section, the cross section is not hatched.
  • the illustrated coil wire 33e is in the process of moving from the inner layer 33a to the outermost layer 33b while interfering with the skewed portion 33ff of the inner layer 33a.
  • the coil element wire 33d facing the sensor unit 41 is arranged on the one end face SD1 side, away from the magnetic pole 32a radially inward.
  • the coil element wire 33d of the outermost layer 33b facing the sensor unit 41 is skewed from the other end surface SD2 in the axial direction of the stator 31 toward the one end surface SD1 so as to be radially inward from the magnetic pole 32a. It is inclined by the parts 33fs and 33ss.
  • the riding position 33r where the coil wire 33d of the outermost layer 33b and the coil wire 33c of the inner layer 33a are stacked in the circumferential direction is located on the other end surface SD2 side of the stator 31 with respect to the sensor unit 41.
  • the coil wire 33d of the outermost layer 33b facing the sensor unit 41 is located on a recess formed between the plurality of coil wires 33c of the inner layer 33a.
  • the coil element 33d is arranged on the one end face SD1 side away from the magnetic pole 32a radially inward. Only in one end surface SD1 side, the coil wire 33d is disposed farther inward in the radial direction from the magnetic pole 32a than in the other end surface SD2 side of the stator 31.
  • the slip of the coil strand 33d with respect to the coil strand 33c is suppressed.
  • the coil strands 33c and 33d can be accurately and quickly arranged on the bobbin 36, which is suitable for mass production.
  • the stator coil 32 of this embodiment includes a coil wire 33c of the inner layer 33a and a coil wire 33d of the outermost layer 33b disposed outside the inner layer 33a.
  • the coil element wire 33d of the outermost layer 33b includes outermost layer oblique portions 33fs and 33ss arranged only on one specific side surface S4 other than the one side surface S1 which is one end surface SD1.
  • the coil wire 33d of the outermost layer 33b is disposed on the remaining side surface other than the specific side surface S1, and includes a portion extending straight along the circumferential direction.
  • the outermost layer skewed portions 33fs and 33ss are inclined so as to be separated from the magnetic poles.
  • the specific side surface is any one of the side surfaces S2, S3, and S4.
  • the oblique portions 33fs and 33ss of the coil wire 33d of the outermost layer 33b are concentrated on the specific side surface S4. For this reason, the intersection angle of the coil strand 33c of the inner layer 33a and the coil strand 33d of the outermost layer 33b is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is suppressed.
  • the coil wire 33c of the inner layer 33a is disposed only on the specific side surface S4 and includes an inner layer skew portion 33ff that is inclined so as to approach the magnetic pole.
  • the coil wire 33c is disposed on the remaining side surface other than the specific side surface S4 and includes a portion extending straight along the circumferential direction. Furthermore, outermost layer oblique portions 33fs and 33ss are arranged so as to intersect with the inner layer oblique portion 33ff.
  • the inclination direction of the inner layer oblique portion 33ff is opposite to the inclination direction of the outermost layer oblique portions 33fs, 33ss. For this reason, the crossing angle between the coil wire 33c and the coil wire 33d is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is further suppressed.
  • FIG. 31 is a cross-sectional view showing the winding device 61.
  • the winding device 61 is used in a method for manufacturing a stator in a rotating electrical machine.
  • the winding device 61 executes a winding process for the stator 31.
  • the winding device 61 includes a flyer 62 for winding a coil, and a feeder 63 that supplies a coil wire 63a.
  • the winding device 61 has a forming device 64 for adjusting the position of the coil wire 63 a on the bobbin portion 36.
  • the shaper 64 can move along the bobbin portion 36.
  • the molding device 64 guides the coil wire 63a.
  • the molding device 64 is a member that molds the coil wire 63a.
  • the winding device 1 may include an auxiliary molding device 65 that faces the molding device 64.
  • the flyer 62 winds the coil wire 63 a around the outer periphery of the bobbin portion 36.
  • the coil wire 63 a is arranged at a predetermined position on the bobbin portion 36 by the molding device 64. At this time, the plurality of fins A36f stabilize the position of the coil wire 63a.
  • the winding device 61 includes a control device 66 (CNT) that controls the movement position of the molding device 64.
  • FIG. 32 shows the progress process of the position control of the molding machine 64.
  • the horizontal axis SN indicates the length (mm) in the circumferential direction.
  • the horizontal axis SN corresponds to a plurality of side surfaces S1, S2, S3, and S4.
  • the vertical axis LG indicates the length (mm) in the length direction.
  • the pitch Pt corresponds to the diameter of the coil wire 63a.
  • the pitch Pt corresponds to an interval between two adjacent fins A36f.
  • the behavior of the illustrated molding machine 64 is a behavior for forming the inner layer 33a.
  • the thin solid line CMP indicates the movement of the molding machine of the comparative form.
  • the molding machine of the comparative form moves at a constant speed. Therefore, the coil wire is disposed obliquely on all side surfaces.
  • the crossing angle between the inner coil element wire and the outermost coil element wire is small. For this reason, the position of the outermost coil wire is not stable. As a result, the outermost coil may collapse.
  • the thick solid line EMB indicates the movement of the molding device 64 of this embodiment.
  • the flyer 62 rotates.
  • the flyer 62 winds the coil wire 63 around the core.
  • the former 64 moves as the winding process proceeds.
  • the molding machine 64 is controlled to advance intermittently.
  • the movement amount of the molding device 64 on the front side surface S1, the left side surface S2, and the back side surface S3 is smaller than the movement amount of the molding device 64 on the right side surface S4.
  • the molding device 64 advances more than the remaining side surface only on one of the side surfaces.
  • the one side surface on which the molding machine 64 moves greatly is the same in the inner layer 33a and the outer layer 33b.
  • the skewed portion 33ff of the inner layer 33a and the skewed portions 33fs, 33ss of the outer layer 33b intersect each other. Moreover, a relatively large crossing angle can be obtained. As a result, the collapse of the outermost layer 33b is suppressed.
  • the amount of movement of the molding device 64 on the front side S1, the left side S2, and the back side S3 is zero (0).
  • the amount of movement of the molding device 64 on the right side surface S4 is the pitch Pt.
  • the molding device 64 is fixed on 3/4 of the four side surfaces.
  • the molder 64 advances only on 1/4 side.
  • the coil wire 63a is arranged straight on 3/4 side surfaces.
  • the coil wire 63a is arranged so as to form the skewed portion 33ff only on the 1 ⁇ 4 side surface.
  • the coil wire 63a is wound from the start end ST.
  • the molding machine 64 is driven intermittently from the position for the start end ST.
  • the molding machine 54 is repeatedly driven so as to form a plurality of turns.
  • the coil wire 63a is wound up to the return end RN.
  • the molding machine 64 ends the process for the inner layer 33a at the return end RN.
  • FIG. 33 shows the return process of the position control of the molding device 64.
  • the behavior of the illustrated molding machine 64 is a behavior for forming the outermost layer 33b.
  • the broken line indicates the inner layer 33a.
  • the solid line indicates the outermost layer 33b.
  • the flyer 62 rotates even during the return process.
  • the flyer 62 continuously winds the coil wire 63a from the return end RN.
  • the coil wire 63a gradually runs on the inner layer 33a from the return end RN. Soon, on the right side S4, the coil wire 63a reaches the inner layer 33a.
  • the molding machine 64 moves as the winding process proceeds.
  • the molding machine 64 is controlled so as to retract intermittently even in the returning process.
  • the movement amount of the molding device 64 on the front side surface S1, the left side surface S2, and the back side surface S3 is smaller than the movement amount of the molding device 64 on the right side surface S4.
  • the molding device 64 advances more than the remaining side surface only on one of the side surfaces.
  • the amount of movement of the molding device 64 on the front side S1, the left side S2, and the back side S3 is zero (0).
  • the movement amount of the molding device 64 on the right side surface S4 is 1/2 Pt or Pt.
  • the molding machine 64 is fixed in the circumferential direction on 3/4 of the four side surfaces.
  • the former 64 returns only on the 1/4 side.
  • the coil wire 63a is arranged straight on 3/4 side surfaces.
  • the coil wire 63a is arranged so as to form the skewed portion 33fs on only 1 ⁇ 4 side surfaces.
  • the molding machine 64 moves backward by 1/2 Pt on the first right side S4. Thereby, the skew portion 33fs is formed.
  • the coil wire 63a is arranged so as to get over the coil wire 33c of the inner layer 33a. Thereby, one intersection is formed.
  • the intersection between the skew portion 33ff and the skew portion 33fs provides a relatively large intersection angle. Therefore, the positional deviation of the coil wire 63a is suppressed.
  • the molding machine 64 moves backward by Pt on the next right side surface S4. Thereby, the skew portion 33ss is formed.
  • the coil wire 63a is arranged so as to get over the coil wire 33c of the inner layer 33a. Thereby, one intersection is formed.
  • the intersection of the skew portion 33ff and the skew portion 33ss provides a relatively large intersection angle. Therefore, the positional deviation of the coil wire 63a is suppressed.
  • the molding machine 64 repeats the above behavior. Eventually, when the coil wire 63a reaches the end ED, the driving of the molding device 64 is also completed. The coil shown in FIG. 30 is formed through these steps.
  • the winding process of this embodiment includes a step of arranging the coil wire 33c of the inner layer 33a and a step of arranging the coil wire 33d of the outermost layer 33b outside the inner layer 33a.
  • the outermost layer oblique portions 33fs and 33ss that are inclined away from the magnetic poles are formed only on one specific side surface S4 other than the one side surface S1 that is one end surface SD1.
  • the step includes arranging the coil wire 33d.
  • the step of disposing the outermost layer 33b includes a step of straightly arranging the coil wire 33d along the circumferential direction on the remaining side surface other than the specific side surface S4.
  • the oblique portions 33fs and 33ss of the coil wire 33d of the outermost layer 33b are concentrated on the specific side surface S4. For this reason, the intersection angle of the coil strand 33c of the inner layer 33a and the coil strand 33d of the outermost layer 33b is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is suppressed.
  • the step of arranging the inner layer 33a includes the step of arranging the coil wire 33c so as to form the inner layer skew portion 33ff that is inclined toward the magnetic pole only on the specific side surface S4.
  • the step of arranging the inner layer 33a includes the step of arranging the coil wire 33c straight along the circumferential direction on the remaining side surface other than the specific side surface S4. Further, in the step of disposing the outermost layer 33b, the outermost layer oblique portions 33fs and 33ss are disposed so as to intersect with the inner layer oblique portion 33ff.
  • the inclination direction of the inner layer oblique portion 33ff is opposite to the inclination direction of the outermost layer oblique portions 33fs, 33ss. For this reason, the crossing angle between the coil wire 33c and the coil wire 33d is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is further suppressed.
  • the coil wire 63a can be positioned at a predetermined position by the molding device 64. For this reason, a well-shaped coil is obtained. Further, the coil wire can be arranged so as to avoid strong interference with the cover portion 53 of the sensor unit 41. In addition, since the skew portions 33fs and 33ss of the outermost layer 33b intersect with the skew portion 33ff of the inner layer 33a, a large intersection angle is provided. Thereby, the position shift of a coil strand can be suppressed. Further, the stator manufacturing method is suitable for mass production because the coil strands 33c and 33d can be accurately and rapidly arranged on the bobbin portion 36.
  • the disclosure herein is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon.
  • the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments are omitted.
  • the disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scope disclosed is shown by the description of the scope of claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the scope of claims.
  • the protruding portion 37e is provided only on one end surface SD1 side and next to the sensor gap. Instead of this, the protruding portion 37e may be provided at any other position. In the said embodiment, both the uneven
  • the uneven portion in the bobbin portion 36 is provided by the surface 36e and the fins 36f.
  • the uneven portion can be provided in various shapes.
  • the uneven portion may be provided by the surface 36e and a groove.
  • the single coil 33ss has a series of coil wires. It may replace with this and may arrange a plurality of coil strands on one teeth part 32c. In this case, the plurality of coil wires provide the single coil 33ss. For example, two groups of coil wires for providing two coils having different numbers of turns may be arranged on one tooth portion.
  • the stator coil 33 is concentrated winding, you may be formed by distributed winding, for example, wave winding, or distributed winding.
  • the container 52 and the cover 53 are integrally formed of a continuous resin material.
  • the case 51 may be provided by a plurality of parts.
  • the container 52 and the plurality of covers 53 may be separate parts.
  • the electric circuit component 42 including the substrate is accommodated in the container 52.
  • the cover 53 may have a substrate for electrical wiring.
  • the substrate may be a lead frame.
  • one sensor 43 is arranged in one cover 53.
  • a plurality of sensors may be arranged. Some sensors may be disposed in the container 52. Thereby, the bad influence by interference with a coil and the cover 53, for example, damage, is suppressed.
  • the sensor unit 41 including one cover 53 may be employed.
  • a rotating electrical machine as a generator including only the ignition control sensor 43 may be provided.
  • the inner layer 33a and the outermost layer 33b are provided by two single coils 33ss. Instead of this, a single coil 33ss having three or more layers may be used. Even in those cases, the inner layer 33a and the outermost layer 33b are provided.
  • the plurality of fins 36f and A36f are provided at equal intervals.
  • the plurality of fins 36f and A36f may be provided only in both end ranges in the length direction.
  • the central range of the bobbin portion 36 provides a flat cylindrical portion having no fins 36f and A36f.
  • the fins 36f and A36f in the both end ranges suppress the positional deviation of the coil wire 33c at the start of winding.
  • the fins 36f and A36f in the both end ranges suppress the displacement of the coil wire 33c in the winding direction change portion after contacting the base flange surfaces 36f and 37d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

According to the present invention, a sensor unit (41) accommodates a sensor (43) which detects a rotation position by detecting the magnetic flux of a rotor. The sensor is disposed in a sensor gap between two neighboring magnetic poles (32a). The sensor unit, by means of a cover (53), extends in the axial direction from an end surface (SD1) side on one side of a stator into the sensor gap. A coil wire (33d) facing the sensor unit is disposed on the end surface side while being spaced apart from the magnetic poles in the radial direction. Accordingly, interference between the sensor unit and the coil wire is suppressed. Consequently, a reduction in the accuracy of detecting the rotation position caused by interference between the sensor unit and the coil wire is suppressed.

Description

回転電機および回転電機の製造方法Rotating electric machine and method of manufacturing rotating electric machine 関連出願の相互参照Cross-reference of related applications
 この出願は、2017年6月2日に日本に出願された特許出願第2017-110301号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Japanese Patent Application No. 2017-110301 filed in Japan on June 2, 2017, and the content of the basic application is incorporated by reference in its entirety.
 この明細書における開示は、回転電機および回転電機の製造方法に関する。 The disclosure in this specification relates to a rotating electrical machine and a method for manufacturing the rotating electrical machine.
 特許文献1-4は、回転電機および回転電機の製造方法を開示する。この技術では、回転位置を検出するためのセンサ素子を収容したカバーを、複数の磁極の間に挿入している。従来技術として列挙された先行技術文献の記載内容は、この明細書における技術的要素の説明として、参照により援用される。 Patent Documents 1-4 disclose a rotating electrical machine and a method for manufacturing the rotating electrical machine. In this technique, a cover containing a sensor element for detecting a rotational position is inserted between a plurality of magnetic poles. The contents of the prior art documents listed as the prior art are incorporated by reference as an explanation of the technical elements in this specification.
特開2017-34732号公報JP 2017-34732 A 特開2013-233030号公報JP 2013-233030 A 特開2013-27252号公報JP 2013-27252 A 特許第5064279号Patent No. 5064279
 従来技術の構成では、コイルとカバーとが干渉すると、センサ素子の位置が望ましい位置からずれる場合がある。例えば、ティース部分に装着されているコイルの外形は、規定の形状であることが望ましい。しかし、コイルの形状が規定の形状からずれると、コイルとカバーとが干渉する場合がある。この場合、カバーの位置がずれ、カバー内のセンサ素子の位置がずれる場合がある。センサ素子のずれは、回転位置の検出精度を低下させる場合がある。 In the conventional configuration, when the coil and the cover interfere with each other, the position of the sensor element may deviate from a desired position. For example, it is desirable that the outer shape of the coil mounted on the tooth portion is a specified shape. However, if the shape of the coil deviates from the prescribed shape, the coil and the cover may interfere with each other. In this case, the position of the cover may be shifted, and the position of the sensor element in the cover may be shifted. The displacement of the sensor element may reduce the rotational position detection accuracy.
 上述の観点において、または言及されていない他の観点において、回転電機および回転電機の製造方法にはさらなる改良が求められている。 In the above-mentioned viewpoints or other viewpoints not mentioned, further improvements are required for the rotating electrical machine and the manufacturing method of the rotating electrical machine.
 開示されるひとつの目的は、回転位置の検出精度が高い回転電機および回転電機の製造方法を提供することである。 One object disclosed is to provide a rotating electrical machine with high rotational position detection accuracy and a method of manufacturing the rotating electrical machine.
 開示される他のひとつの目的は、回転位置を検出するセンサ素子のずれが抑制された回転電機および回転電機の製造方法を提供することである。 Another object of the present disclosure is to provide a rotating electrical machine and a method of manufacturing the rotating electrical machine in which a shift of a sensor element that detects a rotational position is suppressed.
 開示されるさらに他のひとつの目的は、ボビン上にコイル素線を正確に配置でき、かつ、コイル素線とセンサユニットとの干渉に起因するセンサ素子のずれが抑制された回転電機および回転電機の製造方法を提供することである。 Yet another object of the present invention is to provide a rotating electrical machine and a rotating electrical machine in which a coil element wire can be accurately arranged on a bobbin and displacement of a sensor element due to interference between the coil element wire and a sensor unit is suppressed. It is to provide a manufacturing method.
 開示されるさらに他のひとつの目的は、ボビン上にコイル素線を正確かつ高速に配置できることにより大量生産に適し、かつ、コイル素線とセンサユニットとの干渉に起因するセンサ素子のずれが抑制された回転電機および回転電機の製造方法を提供することである。 Yet another object disclosed is that the coil strands can be placed on the bobbin accurately and at high speed, making it suitable for mass production and suppressing displacement of the sensor elements due to interference between the coil strands and the sensor unit. And providing a method of manufacturing the rotating electric machine.
 この開示によると、回転電機が提供される。回転電機は、界磁を提供するロータ(21)と、径方向に延びる複数のティース部分の端部に界磁を受けるように設けられ、周方向に沿って互いに離れて配置された複数の磁極(32a)を有するステータコア(32)、およびティース部分に装着されたステータコイル(33)を有するステータ(31)と、隣り合う2つの磁極の間のセンサ隙間(38b)に配置され、ロータの磁束を検出するセンサ(43)を収容するセンサユニット(41)とを備え、センサユニットは、ステータの軸方向の一方の端面(SD1)側から軸方向に沿ってセンサ隙間の中に延びており、センサユニットに面するステータコイルのコイル素線(33d)は、一方の端面側において、磁極から径方向に離れて配置されている。 According to this disclosure, a rotating electrical machine is provided. The rotating electrical machine is provided with a rotor (21) that provides a magnetic field, and a plurality of magnetic poles that are provided at the ends of a plurality of teeth portions extending in the radial direction so as to be separated from each other along the circumferential direction. The stator core (32) having (32a) and the stator (31) having the stator coil (33) attached to the tooth portion, and the sensor magnetic flux (38b) between two adjacent magnetic poles, the magnetic flux of the rotor A sensor unit (41) that accommodates a sensor (43) for detecting the sensor, and the sensor unit extends into the sensor gap along the axial direction from one end surface (SD1) side in the axial direction of the stator, The coil wire (33d) of the stator coil facing the sensor unit is arranged on the one end face side away from the magnetic pole in the radial direction.
 開示される回転電機によると、センサユニットに面するステータコイルのコイル素線は、一方の端面側において、磁極から径方向に離れて配置されている。このため、センサユニットとコイル素線との干渉が抑制される。この結果、センサユニットとコイル素線との干渉に起因する回転位置の検出精度の低下が抑制される。 According to the disclosed rotating electrical machine, the coil wire of the stator coil facing the sensor unit is arranged radially away from the magnetic pole on one end face side. For this reason, interference with a sensor unit and a coil strand is suppressed. As a result, a decrease in detection accuracy of the rotational position due to interference between the sensor unit and the coil wire is suppressed.
 この開示によると、回転電機の製造方法が提供される。回転電機の製造方法は、先端に磁極(32a)を有する複数のティース部分(32c)に装着された複数のボビン部分(36)の外周にステータコイル(33)を巻く巻線工程と、隣り合う2つの磁極の間の隙間に、ステータ(31)の一方の端面(SD1)からセンサ(43)を挿入する挿入工程とを備え、巻線工程は、ステータコイルのコイル素線(33d)が、一方の端面側において、磁極から径方向に離れて配置されるように、コイル素線を巻く。 According to this disclosure, a method of manufacturing a rotating electrical machine is provided. The rotating electrical machine manufacturing method is adjacent to a winding step in which a stator coil (33) is wound around the outer periphery of a plurality of bobbin portions (36) attached to a plurality of tooth portions (32c) having magnetic poles (32a) at the tips. An insertion step of inserting the sensor (43) from one end face (SD1) of the stator (31) in the gap between the two magnetic poles, and the winding step includes the coil wire (33d) of the stator coil, On one end face side, the coil wire is wound so as to be arranged radially away from the magnetic pole.
 開示される回転電機によると、センサの挿入において、センサと干渉しにくいコイル形状が提供される。この結果、センサとコイル素線との干渉に起因する回転位置の検出精度の低下が抑制される。 According to the disclosed rotating electrical machine, a coil shape that does not easily interfere with the sensor is provided when the sensor is inserted. As a result, a decrease in detection accuracy of the rotational position due to interference between the sensor and the coil wire is suppressed.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The plurality of modes disclosed in this specification adopt different technical means to achieve each purpose. The reference numerals in parentheses described in the claims and this section exemplify the correspondence with the embodiments described later, and are not intended to limit the technical scope. The objects, features, and advantages disclosed in this specification will become more apparent with reference to the following detailed description and accompanying drawings.
第1実施形態に係る回転電機のモデル化された断面図である。It is sectional drawing modeled of the rotary electric machine which concerns on 1st Embodiment. ステータの平面図である。It is a top view of a stator. ステータの斜視図である。It is a perspective view of a stator. インシュレータの平面図である。It is a top view of an insulator. インシュレータの斜視図である。It is a perspective view of an insulator. 図4のVI矢印の方向における磁極とインシュレータとを示す側面図である。It is a side view which shows the magnetic pole and insulator in the direction of the VI arrow of FIG. 図6のVII矢印における平面図である。It is a top view in the VII arrow of FIG. 図6のVIII-VIII断面における断面図である。FIG. 7 is a cross-sectional view taken along the line VIII-VIII in FIG. 6. インシュレータの部分的な斜視図である。It is a partial perspective view of an insulator. インシュレータの部分的な斜視図である。It is a partial perspective view of an insulator. センサユニットの平面図である。It is a top view of a sensor unit. センサユニットの斜視図である。It is a perspective view of a sensor unit. センサユニットの径方向内側の側面図である。It is a side view of the radial inside of a sensor unit. センサユニットの斜視図である。It is a perspective view of a sensor unit. カバーのモデル化された斜視図である。It is the modeled perspective view of a cover. カバーの断面図である。It is sectional drawing of a cover. ステータコアとセンサユニットとを示す側面図である。It is a side view which shows a stator core and a sensor unit. ひとつの極の一部を断面で示す側面図である。It is a side view which shows a part of one pole in a cross section. カバーとコイルとの関係を示す断面図である。It is sectional drawing which shows the relationship between a cover and a coil. 第2実施形態のひとつの極の一部を断面で示す側面図である。It is a side view which shows a part of one pole of 2nd Embodiment in a cross section. 第3実施形態のインシュレータの部分的な斜視図である。It is a partial perspective view of the insulator of 3rd Embodiment. 第4実施形態のインシュレータの部分的な斜視図である。It is a partial perspective view of the insulator of a 4th embodiment. 第5実施形態のインシュレータの部分的な斜視図である。It is a partial perspective view of the insulator of a 5th embodiment. 第6実施形態のインシュレータの部分的な斜視図である。It is a partial perspective view of the insulator of 6th Embodiment. 第7実施形態のインシュレータの部分的な斜視図である。It is a partial perspective view of the insulator of a 7th embodiment. 第8実施形態のインシュレータの部分的な斜視図である。It is a partial perspective view of the insulator of 8th Embodiment. 第9実施形態のひとつの極の一部を断面で示す側面図である。It is a side view which shows a part of one pole of 9th Embodiment in a cross section. 第10実施形態のひとつの極における裸のコアの外観図である。It is an external view of the bare core in one pole of a 10th embodiment. 内層が装着された後のひとつの極を示す外観図である。It is an external view which shows one pole after an inner layer was mounted | worn. 最外層が装着された後のひとつの極を示す外観図である。It is an external view which shows one pole after the outermost layer was mounted | worn. 巻線装置を示す断面図である。It is sectional drawing which shows a winding apparatus. 成形器の移動過程を示すダイヤグラムである。It is a diagram which shows the movement process of a shaping | molding machine. 成形器の移動過程を示すダイヤグラムである。It is a diagram which shows the movement process of a shaping | molding machine.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。 A plurality of embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding parts and / or associated parts may be assigned the same reference signs or reference signs that differ by more than a hundred. For the corresponding parts and / or associated parts, the description of other embodiments can be referred to.
 第1実施形態
 図1において、内燃機関用回転電機(以下、単に回転電機という)10は、発電電動機、または交流発電機スタータ(AC Generator Starter)とも呼ばれる。回転電機10は、インバータ回路(INV)と制御装置(ECU)とを含む電気回路11と電気的に接続されている。電気回路11は、三相の電力変換回路を提供する。回転電機10の用途の一例は、乗り物用の内燃機関12の発電電動機である。乗り物は、車両、船舶、または航空機であり、典型的な一例は、鞍乗り型車両である。
First Embodiment In FIG. 1, a rotating electrical machine for an internal combustion engine (hereinafter simply referred to as a rotating electrical machine) 10 is also called a generator motor or an AC generator starter. The rotating electrical machine 10 is electrically connected to an electric circuit 11 including an inverter circuit (INV) and a control device (ECU). The electric circuit 11 provides a three-phase power conversion circuit. An example of the use of the rotating electrical machine 10 is a generator motor of an internal combustion engine 12 for a vehicle. The vehicle is a vehicle, a ship, or an aircraft, and a typical example is a saddle type vehicle.
 電気回路11は、回転電機10が発電機として機能するとき、出力される交流電力を整流し、バッテリを含む電気負荷に電力を供給する整流回路を提供する。電気回路11は、回転電機10から供給される点火制御用の基準位置信号を受信する信号処理回路を提供する。電気回路11は、点火制御を実行する点火制御器を提供してもよい。 The electrical circuit 11 provides a rectifier circuit that rectifies the AC power that is output when the rotating electrical machine 10 functions as a generator and supplies power to an electrical load including a battery. The electric circuit 11 provides a signal processing circuit that receives a reference position signal for ignition control supplied from the rotating electrical machine 10. The electric circuit 11 may provide an ignition controller that performs ignition control.
 電気回路11は、回転電機10を電動機として機能させる駆動回路を提供する。電気回路11は、回転電機10を電動機として機能させるための回転位置信号を回転電機10から受信する。電気回路11は、検出された回転位置に応じて回転電機10への通電を制御することにより回転電機10を電動機として機能させる。 The electric circuit 11 provides a drive circuit that causes the rotating electrical machine 10 to function as an electric motor. The electrical circuit 11 receives from the rotating electrical machine 10 a rotational position signal for causing the rotating electrical machine 10 to function as an electric motor. The electrical circuit 11 causes the rotating electrical machine 10 to function as an electric motor by controlling energization to the rotating electrical machine 10 according to the detected rotational position.
 回転電機10は、内燃機関12に組み付けられている。内燃機関12は、ボディ13と、ボディ13に回転可能に支持され、内燃機関12と連動して回転する回転軸14とを有する。回転電機10は、ボディ13と回転軸14とに組み付けられている。ボディ13は、内燃機関12のクランクケース、ミッションケースなどの構造体である。回転軸14は、内燃機関12のクランク軸、またはクランク軸と連動する回転軸である。回転軸14は、内燃機関12が運転されることによって回転する。 The rotating electrical machine 10 is assembled to the internal combustion engine 12. The internal combustion engine 12 includes a body 13 and a rotary shaft 14 that is rotatably supported by the body 13 and rotates in conjunction with the internal combustion engine 12. The rotating electrical machine 10 is assembled to the body 13 and the rotating shaft 14. The body 13 is a structure such as a crankcase or a transmission case of the internal combustion engine 12. The rotating shaft 14 is a crankshaft of the internal combustion engine 12 or a rotating shaft interlocking with the crankshaft. The rotating shaft 14 rotates when the internal combustion engine 12 is operated.
 回転軸14は、回転電機10を発電機として機能させるように回転電機10を回転させる。回転軸14は、回転電機10が電動機として機能するとき、回転電機10の回転によって内燃機関12を始動可能な回転軸である。また、回転軸14は、回転電機10が電動機として機能するとき、回転電機10の回転によって内燃機関12の回転を支援(アシスト)することができる回転軸である。 The rotating shaft 14 rotates the rotating electrical machine 10 so that the rotating electrical machine 10 functions as a generator. The rotating shaft 14 is a rotating shaft that can start the internal combustion engine 12 by the rotation of the rotating electrical machine 10 when the rotating electrical machine 10 functions as an electric motor. The rotating shaft 14 is a rotating shaft that can assist (assist) the rotation of the internal combustion engine 12 by the rotation of the rotating electrical machine 10 when the rotating electrical machine 10 functions as an electric motor.
 回転電機10は、ロータ21と、ステータ31と、センサユニット41とを有する。以下の説明において、軸方向ADの語は、ステータ31を円筒体とみなした場合の中心軸の方向を意味する。径方向RDの語は、ステータ31を円筒体とみなした場合の直径方向を意味する。 The rotating electrical machine 10 includes a rotor 21, a stator 31, and a sensor unit 41. In the following description, the term axial direction AD means the direction of the central axis when the stator 31 is regarded as a cylindrical body. The term “radial direction RD” means a radial direction when the stator 31 is regarded as a cylindrical body.
 ロータ21は、界磁子である。ステータ31は、電機子である。ロータ21は、全体がカップ状である。ロータ21は、その開口端をボディ13に向けて位置付けられる。ロータ21は、回転軸14の端部に固定される。ロータ21と回転軸14とは、キー嵌合などの回転方向の位置決め機構を介して連結されている。ロータ21は、固定ボルト25によって回転軸14に締め付けられることによって固定されている。ロータ21は、回転軸14とともに回転する。ロータ21は、永久磁石によって界磁、すなわち回転界磁を提供する。 The rotor 21 is a field element. The stator 31 is an armature. The entire rotor 21 is cup-shaped. The rotor 21 is positioned with its open end facing the body 13. The rotor 21 is fixed to the end of the rotating shaft 14. The rotor 21 and the rotating shaft 14 are connected via a positioning mechanism in the rotational direction such as key fitting. The rotor 21 is fixed by being fastened to the rotary shaft 14 by a fixing bolt 25. The rotor 21 rotates together with the rotating shaft 14. The rotor 21 provides a field, that is, a rotating field by a permanent magnet.
 ロータ21は、カップ状のロータコア22を有する。ロータコア22は、内燃機関12の回転軸14に連結される。ロータコア22は、回転軸14に固定される内筒と、内筒の径方向外側に位置する外筒と、内筒と外筒との間に拡がる環状の底板とを有する。ロータコア22は、後述する永久磁石のためのヨークを提供する。ロータコア22は、磁性金属製である。 The rotor 21 has a cup-shaped rotor core 22. The rotor core 22 is connected to the rotating shaft 14 of the internal combustion engine 12. The rotor core 22 has an inner cylinder fixed to the rotating shaft 14, an outer cylinder positioned on the radially outer side of the inner cylinder, and an annular bottom plate extending between the inner cylinder and the outer cylinder. The rotor core 22 provides a yoke for a permanent magnet described later. The rotor core 22 is made of a magnetic metal.
 ロータ21は、ロータコア22の内面に配置された永久磁石23を有する。永久磁石23は、外筒の内側に固定されている。永久磁石23は、径方向内側に配置された保持カップ24によって軸方向ADおよび径方向RDに関して固定されている。保持カップ24は、薄い非磁性金属製である。保持カップ24は、ロータコア22に固定されている。 The rotor 21 has a permanent magnet 23 disposed on the inner surface of the rotor core 22. The permanent magnet 23 is fixed inside the outer cylinder. The permanent magnet 23 is fixed with respect to the axial direction AD and the radial direction RD by a holding cup 24 arranged on the radially inner side. The holding cup 24 is made of a thin nonmagnetic metal. The holding cup 24 is fixed to the rotor core 22.
 永久磁石23は、複数のセグメントを有する。それぞれのセグメントは、部分円筒状である。永久磁石23は、その内側に、複数のN極と複数のS極とを提供する。永久磁石23は、少なくとも界磁を提供する。永久磁石23は、12個のセグメントによって、6対のN極とS極、すなわち12極の界磁を提供する。磁極の数は、他の数でもよい。永久磁石23は、点火制御のための基準位置信号を提供するための部分的な特殊磁極を提供する。特殊磁極は、界磁のための磁極配列とは異なる部分的な磁極によって提供される。 The permanent magnet 23 has a plurality of segments. Each segment is partially cylindrical. The permanent magnet 23 provides a plurality of N poles and a plurality of S poles inside thereof. The permanent magnet 23 provides at least a field. The permanent magnet 23 provides six pairs of N poles and S poles, that is, a 12 pole field by 12 segments. The number of magnetic poles may be other numbers. The permanent magnet 23 provides a partial special magnetic pole for providing a reference position signal for ignition control. The special magnetic pole is provided by a partial magnetic pole different from the magnetic pole arrangement for the field.
 ステータ31とボディ13とは、固定ボルト34を介して連結されている。ステータ31は、複数の固定ボルト34によってボディ13に締め付けられることによって固定されている。ステータ31は、ロータ21とボディ13との間に配置されている。ステータ31は、ロータ21の内面とギャップを介して対向する外周面を有する。ステータ31は、ボディ13に固定される。 The stator 31 and the body 13 are connected via a fixing bolt 34. The stator 31 is fixed by being fastened to the body 13 by a plurality of fixing bolts 34. The stator 31 is disposed between the rotor 21 and the body 13. The stator 31 has an outer peripheral surface that faces the inner surface of the rotor 21 via a gap. The stator 31 is fixed to the body 13.
 ステータ31は、ステータコア32を有する。ステータコア32は、内燃機関12のボディ13に固定されることによってロータ21の内側に配置される。ステータコア32は、複数のティース部分を有する。ひとつのティース部分は、ひとつの磁極を提供する。ステータコア32は、外突極型の鉄心を提供する。 The stator 31 has a stator core 32. The stator core 32 is disposed inside the rotor 21 by being fixed to the body 13 of the internal combustion engine 12. Stator core 32 has a plurality of tooth portions. One tooth portion provides one magnetic pole. The stator core 32 provides an outer salient pole type iron core.
 ステータ31は、ステータコア32に巻回されたステータコイル33を有する。ステータコイル33は、電機子巻線を提供する。ステータコア32とステータコイル33との間には電気絶縁性の樹脂製のインシュレータ35が配置されている。ステータコイル33は、三相巻線である。ステータコイル33は、ロータ21およびステータ31を発電機または電動機として選択的に機能させることができる。 The stator 31 has a stator coil 33 wound around a stator core 32. The stator coil 33 provides an armature winding. An electrically insulating resin insulator 35 is disposed between the stator core 32 and the stator coil 33. The stator coil 33 is a three-phase winding. The stator coil 33 can selectively function the rotor 21 and the stator 31 as a generator or an electric motor.
 センサユニット41は、内燃機関用回転位置検出装置を提供する。センサユニット41は、内燃機関12に連動する回転電機10に設けられている。センサユニット41は、回転電機10のステータコア32に設けられている。センサユニット41は、ロータ21に設けられた永久磁石23の磁束を検出することによりロータ21の回転位置を示す電気信号を出力する。 Sensor unit 41 provides a rotational position detection device for an internal combustion engine. The sensor unit 41 is provided in the rotating electrical machine 10 that is linked to the internal combustion engine 12. The sensor unit 41 is provided on the stator core 32 of the rotating electrical machine 10. The sensor unit 41 outputs an electrical signal indicating the rotational position of the rotor 21 by detecting the magnetic flux of the permanent magnet 23 provided on the rotor 21.
 センサユニット41は、ステータ31に固定される。センサユニット41は、ステータコア32とボディ13との間に配置されている。センサユニット41は、ステータコア32の端面SD1に固定されている。センサユニット41は、ボディ13にも固定されているが、ステータコア32だけに固定されていてもよい。センサユニット41は、ロータ21に設けられた永久磁石23が供給する磁束を検出することにより、ロータ21の回転位置を検出する。センサユニット41は、複数のセンサ43を有する。複数のセンサ43は、隣接する2つの磁極32aの間に配置されている。複数のセンサ43は、隣接する2つのコイルの間に配置されているともいえる。複数のセンサ43は、永久磁石23の磁束変化を検出することによりロータ21の回転位置を検出する。複数のセンサ43は、ロータ21の回転軸に関して周方向に互いに離れて配置されている。 The sensor unit 41 is fixed to the stator 31. The sensor unit 41 is disposed between the stator core 32 and the body 13. The sensor unit 41 is fixed to the end surface SD1 of the stator core 32. The sensor unit 41 is also fixed to the body 13, but may be fixed only to the stator core 32. The sensor unit 41 detects the rotational position of the rotor 21 by detecting the magnetic flux supplied by the permanent magnet 23 provided on the rotor 21. The sensor unit 41 has a plurality of sensors 43. The plurality of sensors 43 are disposed between two adjacent magnetic poles 32a. It can be said that the plurality of sensors 43 are arranged between two adjacent coils. The plurality of sensors 43 detect the rotational position of the rotor 21 by detecting a change in magnetic flux of the permanent magnet 23. The plurality of sensors 43 are arranged away from each other in the circumferential direction with respect to the rotation axis of the rotor 21.
 永久磁石23が提供する特殊磁極の位置によって点火制御のための基準位置が示される。ロータ21の回転位置は、回転軸14の回転位置でもある。よって、ロータ21の回転位置を検出することにより、点火制御のための基準位置信号を得ることができる。複数のセンサ43の少なくともひとつは、特殊磁極に反応することにより、点火制御のための信号を出力する。この実施形態では、ひとつのセンサ43が点火制御用のセンサを提供する。この結果、ステータ31は、ロータ21が所定の回転位置にあるときに点火制御用の信号を出力するためのセンサを備える。 The reference position for ignition control is indicated by the position of the special magnetic pole provided by the permanent magnet 23. The rotational position of the rotor 21 is also the rotational position of the rotating shaft 14. Therefore, a reference position signal for ignition control can be obtained by detecting the rotational position of the rotor 21. At least one of the plurality of sensors 43 outputs a signal for ignition control by reacting to the special magnetic pole. In this embodiment, one sensor 43 provides a sensor for ignition control. As a result, the stator 31 includes a sensor for outputting a signal for ignition control when the rotor 21 is at a predetermined rotational position.
 永久磁石23が提供する界磁の回転方向の位置によってロータ21の回転位置が示される。よって、ロータ21の回転位置を検出し、検出された回転位置に応じて電機子巻線への通電を制御することにより、回転電機10を電動機として機能させることができる。複数のセンサ43の少なくともひとつは、回転電機10を少なくとも電動機として機能させるためのロータ21の回転位置を検出する。この回転電機10は、発電機および電動機として機能することができ、それらのいずれかとして選択的に機能させられる。 The rotational position of the rotor 21 is indicated by the position of the field provided by the permanent magnet 23 in the rotational direction. Therefore, the rotating electrical machine 10 can function as an electric motor by detecting the rotational position of the rotor 21 and controlling the energization to the armature winding according to the detected rotational position. At least one of the plurality of sensors 43 detects the rotational position of the rotor 21 for causing the rotating electrical machine 10 to function as at least an electric motor. The rotating electrical machine 10 can function as a generator and an electric motor, and can selectively function as either of them.
 センサユニット41は、電気回路部品42を収容する。電気回路部品42は、基板と、基板に実装された電気素子、および電線などを含む。センサユニット41は、センサ43を収容する。センサユニット41は、ケース51を有する。 The sensor unit 41 accommodates the electric circuit component 42. The electric circuit component 42 includes a substrate, an electric element mounted on the substrate, and an electric wire. The sensor unit 41 accommodates the sensor 43. The sensor unit 41 has a case 51.
 ケース51は、樹脂材料製である。ケース51は、部分的に金属部分をもつことができる。ケース51は、電気回路部品42とセンサ43とを収容し、保持する。センサ43は、電気回路部品42と接続される。ケース51は、多角形筒、例えば台形筒の断面に相当する形状をもち、ステータ31の径方向外側縁におおよそ対応して延びる外縁をもつ。ケース51は、電気回路部品42を収容するための容器52を有する。容器52は樹脂材料製である。容器52は、ボディ13に対向する面が開口した箱状である。容器52は、ステータコア32側に面する底面と、ボディ13に対向する開口部と、底面と開口部とを囲む側壁とを有する。電気回路部品42は、容器52内に収容され、固定されている。 The case 51 is made of a resin material. The case 51 can partially have a metal part. The case 51 accommodates and holds the electric circuit component 42 and the sensor 43. The sensor 43 is connected to the electric circuit component 42. The case 51 has a shape corresponding to a cross section of a polygonal cylinder, for example, a trapezoidal cylinder, and has an outer edge extending approximately corresponding to the radially outer edge of the stator 31. The case 51 has a container 52 for housing the electric circuit component 42. The container 52 is made of a resin material. The container 52 has a box shape in which a surface facing the body 13 is opened. The container 52 has a bottom surface facing the stator core 32 side, an opening facing the body 13, and a side wall surrounding the bottom surface and the opening. The electric circuit component 42 is accommodated in the container 52 and fixed.
 ケース51は、少なくともひとつのセンサ43を収容し、支持するための少なくともひとつのカバー53を有する。センサ43は、カバー53内に固定されている。カバー53は、容器52の底面から延び出すように形成された有底筒状の部材である。カバー53は、径方向外側に設けられている。カバー53は、2つの磁極32aの間の隙間に挿入される。 The case 51 has at least one cover 53 for accommodating and supporting at least one sensor 43. The sensor 43 is fixed in the cover 53. The cover 53 is a bottomed cylindrical member formed so as to extend from the bottom surface of the container 52. The cover 53 is provided on the radially outer side. The cover 53 is inserted into the gap between the two magnetic poles 32a.
 カバー53は、ケース51の底面に設けられた基部と、基部から延び出す本体部とを有する。本体部は、基部より細い。基部は隙間より広い幅を有する。基部と本体部との間には、段部が形成されている。段部は、ステータコア32の一方の端面SD1に接触する。これにより、隙間内への本体部の挿入量が規定される。 The cover 53 has a base portion provided on the bottom surface of the case 51 and a main body portion extending from the base portion. The main body is thinner than the base. The base has a width wider than the gap. A step portion is formed between the base portion and the main body portion. The stepped portion contacts one end surface SD1 of the stator core 32. Thereby, the amount of insertion of the main body into the gap is defined.
 カバー53の内部は、容器52の内部に連通している。センサユニット41は、複数のカバー53を有する。カバー53は、容器52から延び出す指状、または舌状と呼びうる形状である。カバー53は、センサ43のための鞘とも呼ぶことができる。複数のカバー53は、点火制御のための基準位置検出用のセンサのためのひとつのカバー53と、モータ制御のためのセンサのための3つのカバー53とを有する。 The inside of the cover 53 communicates with the inside of the container 52. The sensor unit 41 has a plurality of covers 53. The cover 53 has a shape that can be called a finger shape or a tongue shape extending from the container 52. Cover 53 can also be referred to as a sheath for sensor 43. The plurality of covers 53 include one cover 53 for a sensor for detecting a reference position for ignition control and three covers 53 for sensors for motor control.
 それぞれのカバー53内には、ひとつのセンサ43が収容される。センサ43は、永久磁石23が供給する磁束を検出する。センサ43は、ホールセンサ、MREセンサなどによって提供される。この実施形態は、点火制御のためのひとつのセンサと、モータ制御のための3つのセンサとを有する。センサ43は、カバー53内の空洞に配置されたセンサターミナルによって電気回路部品42と電気的に接続される。 Each sensor 53 accommodates one sensor 43. The sensor 43 detects the magnetic flux supplied from the permanent magnet 23. The sensor 43 is provided by a hall sensor, an MRE sensor, or the like. This embodiment has one sensor for ignition control and three sensors for motor control. The sensor 43 is electrically connected to the electric circuit component 42 by a sensor terminal disposed in a cavity in the cover 53.
 この実施形態における点火制御およびモータ制御のための永久磁石23に関連する細部、および複数のセンサ43に関連する細部については、特許文献として列挙した文献に記載の内容を援用することができ、同記載の内容は参照により引用されている。 Regarding the details related to the permanent magnet 23 for ignition control and motor control in this embodiment and the details related to the plurality of sensors 43, the contents described in the documents listed as patent documents can be used. The content of the description is cited by reference.
 ケース51は、締付部54を有する。締付部54は、回転電機10の径方向RDに関して容器52より径方向内側に設けられている。容器52と締付部54との間には、それらの間を連結するための連結部55が設けられている。固定ボルト44は、ステータコア32のボディ13と反対側の面からステータコア32を貫通して配置されている。固定ボルト44のステータコア32から突出する先端部は、締付部54の雌ねじ部分に螺合される。これにより、センサユニット41は、ステータコア32に固定される。容器52内は、保護用の封止樹脂56によって満たされている。封止樹脂56は電気回路部品42を保護するためのポッティング樹脂である。 The case 51 has a tightening portion 54. The tightening portion 54 is provided radially inward of the container 52 with respect to the radial direction RD of the rotating electrical machine 10. A connecting portion 55 is provided between the container 52 and the tightening portion 54 to connect them. The fixing bolt 44 is disposed through the stator core 32 from the surface of the stator core 32 opposite to the body 13. The front end portion of the fixing bolt 44 protruding from the stator core 32 is screwed into the female thread portion of the tightening portion 54. Thereby, the sensor unit 41 is fixed to the stator core 32. The inside of the container 52 is filled with a protective sealing resin 56. The sealing resin 56 is a potting resin for protecting the electric circuit component 42.
 センサユニット41は、ひとつまたは複数のセンサ43から出力される信号を外部に取り出すための外部接続用の配線11aを有する。配線11aは、基準位置を示す点火信号および/または回転角度を示す回転位置信号を伝達することができる。回転電機10は、ステータコイル33と電気回路11とを接続する複数の電力線11bを有する。電力線11bは、回転電機10が発電機として機能するとき、ステータコイル33に誘導される電力を電気回路11に供給する。電力線11bは、回転電機10が電動機として機能するとき、ステータコイル33を励磁するための電力を電気回路11からステータコイル33へ供給する。 The sensor unit 41 has a wiring 11a for external connection for taking out signals output from one or a plurality of sensors 43 to the outside. The wiring 11a can transmit an ignition signal indicating a reference position and / or a rotation position signal indicating a rotation angle. The rotating electrical machine 10 includes a plurality of power lines 11 b that connect the stator coil 33 and the electric circuit 11. The electric power line 11b supplies the electric circuit 11 with electric power induced in the stator coil 33 when the rotating electrical machine 10 functions as a generator. The electric power line 11 b supplies electric power for exciting the stator coil 33 from the electric circuit 11 to the stator coil 33 when the rotating electrical machine 10 functions as an electric motor.
 図2および図3において、ステータ31は、環状の部材である。ステータ31は、回転軸14とロータコア22の内筒とを受け入れることができる貫通穴を有する。ステータコア32は、回転軸14およびロータコア22の内筒を受け入れるための貫通穴を区画形成している。さらに、ステータコア32は、複数の固定ボルト34を受け入れるための複数の貫通穴を有する。これら貫通穴は、ステータコア32の周方向に関する位置を規定するために貢献する。ステータコア32は、センサユニット41を固定するための固定ボルト44を受け入れるための貫通穴を有する。 2 and 3, the stator 31 is an annular member. The stator 31 has a through hole that can receive the rotating shaft 14 and the inner cylinder of the rotor core 22. The stator core 32 defines a through hole for receiving the inner shaft of the rotary shaft 14 and the rotor core 22. Further, the stator core 32 has a plurality of through holes for receiving a plurality of fixing bolts 34. These through holes contribute to defining the position of the stator core 32 in the circumferential direction. The stator core 32 has a through hole for receiving a fixing bolt 44 for fixing the sensor unit 41.
 ステータ31の外周面には、複数の磁極32aが配置されている。複数の磁極32aは、周方向に沿って互いに離れて配置されている。複数の磁極32aは、径方向に延びる複数のティース部分32cの端部にロータ21の界磁を受けるように設けられている。ステータ31は、例えば、18個の磁極32aを有する。磁極32aの数は、他の数でもよい。これら磁極32aは、ロータ21の界磁と対向して配置されている。ステータコア32は、永久磁石23と対向する複数の磁極32aを径方向外側に形成する。ステータコア32は、複数の磁極32aを形成するように所定の形状に成形された磁性体板(電磁鋼板)を積層することにより形成されている。 A plurality of magnetic poles 32 a are arranged on the outer peripheral surface of the stator 31. The plurality of magnetic poles 32a are arranged away from each other along the circumferential direction. The plurality of magnetic poles 32 a are provided so as to receive the field of the rotor 21 at the ends of the plurality of tooth portions 32 c extending in the radial direction. The stator 31 has, for example, 18 magnetic poles 32a. Other numbers may be sufficient as the number of the magnetic poles 32a. These magnetic poles 32 a are arranged to face the field of the rotor 21. The stator core 32 forms a plurality of magnetic poles 32a facing the permanent magnet 23 on the radially outer side. The stator core 32 is formed by laminating magnetic plates (electromagnetic steel plates) formed in a predetermined shape so as to form a plurality of magnetic poles 32a.
 図2および図3において、左下部分には、破線によってステータコイル33で隠されたインシュレータ35とステータコア32とが描かれている。ステータコア32は、径方向内側に位置付けられた環状部分32bを有する。環状部分32bは、上述の貫通穴を有しており、ステータコア32を固定するための固定部である。ステータコア32は、径方向に延びる複数のティース部分32cを有する。ひとつのティース部分32cは、環状部分32bとひとつの磁極32aとを連結する。 2 and 3, the insulator 35 and the stator core 32 hidden by the stator coil 33 are drawn in the lower left part by a broken line. The stator core 32 has an annular portion 32b positioned radially inward. The annular portion 32 b has the above-described through hole and is a fixing portion for fixing the stator core 32. The stator core 32 has a plurality of tooth portions 32c extending in the radial direction. One tooth portion 32c connects the annular portion 32b and one magnetic pole 32a.
 ステータコイル33は、多相の電機子巻線を提供する。ステータコイル33は、複数のティース部分32cに装着されている。ステータ31は、複数の磁極32aと、複数の三相巻線とを有する三相多極ステータである。ステータコイル33は、複数の単コイル33sを有する。単コイル33sは、ひとつの磁極32aと、ひとつのティース部分32cとに装着されたコイルである。単コイル33sは、ひとつのティース部分32cの周りに集中巻きされている。複数の単コイル33sは、ひとつの相コイルを提供する。複数の相コイルによって多相の電機子巻線が提供されている。 The stator coil 33 provides a multi-phase armature winding. The stator coil 33 is attached to the plurality of tooth portions 32c. The stator 31 is a three-phase multipolar stator having a plurality of magnetic poles 32a and a plurality of three-phase windings. The stator coil 33 has a plurality of single coils 33s. The single coil 33s is a coil attached to one magnetic pole 32a and one tooth portion 32c. The single coil 33s is concentratedly wound around one tooth portion 32c. The plurality of single coils 33s provide one phase coil. A multi-phase armature winding is provided by a plurality of phase coils.
 インシュレータ35は、ステータコア32を軸方向に関して挟む2つの半割体35a、35bを有する。半割体35aは、ステータ31の軸方向の一方の端面SD1側に位置している。この一方の端面SD1上には、センサユニット41が配置される。半割体35aは、ステータ31の軸方向の他方の端面SD2側に位置している。この他方の端面SD2は、センサユニット41が配置される端面とは反対の端面である。後述のコイル素線33dは、半割体35aの上において、磁極32aから径方向に離れて配置されている。半割体35aは、後述の突出部分37eを備える。半割体35bは、突出部分37eを備えない。 The insulator 35 has two halves 35a and 35b that sandwich the stator core 32 in the axial direction. The half body 35a is located on one end surface SD1 side of the stator 31 in the axial direction. The sensor unit 41 is disposed on the one end surface SD1. The half body 35 a is located on the other end face SD <b> 2 side in the axial direction of the stator 31. The other end surface SD2 is an end surface opposite to the end surface on which the sensor unit 41 is disposed. A coil wire 33d, which will be described later, is disposed on the halved body 35a so as to be separated from the magnetic pole 32a in the radial direction. The half body 35a includes a protruding portion 37e described later. The half body 35b does not include the protruding portion 37e.
 インシュレータ35は、環状部分32bの径方向外側部分を覆うように配置された中央部分35cを有する。ステータコイル33は、複数の単コイル33sを接続するために、ステータ31の上に周方向に沿って延びるように配置された複数のジャンパ線33jを有する。ジャンパ線33jは、ステータコイル33を形成するためのコイル素線である。図2および図3には、一部のジャンパ線33jが破線で示されている。 The insulator 35 has a central portion 35c disposed so as to cover the radially outer portion of the annular portion 32b. The stator coil 33 has a plurality of jumper wires 33j disposed on the stator 31 so as to extend along the circumferential direction in order to connect the plurality of single coils 33s. The jumper wire 33j is a coil wire for forming the stator coil 33. In FIG. 2 and FIG. 3, some jumper lines 33j are indicated by broken lines.
 インシュレータ35は、中央部分35cの上に、ジャンパ線33jを案内するためのガイドフィン35dを有する。ガイドフィン35dは、固定部に位置付けられている。ガイドフィン35dは、板状の部材である。ガイドフィン35dは、径方向に延びている。ガイドフィン35dは、軸方向に延び出している。ガイドフィン35dは、インシュレータ35と連続する材料によって一体的に成形されている。ガイドフィン35dは、軸方向に延びる縁を径方向外側に有する。ガイドフィン35dは、径方向外側に向けてステータコア32から離れるように傾斜している縁を径方向内側に有する。ガイドフィン35dは、ステータ31の端面の一部であって、ステータコア32の端面から軸方向に突出している。インシュレータ35は、複数のガイドフィン35dを備える。複数のガイドフィン35dは、周方向に沿って互いに離れている。複数のガイドフィン35dは、放射状に配置されている。 The insulator 35 has guide fins 35d for guiding the jumper wire 33j on the central portion 35c. The guide fins 35d are positioned on the fixed portion. The guide fin 35d is a plate-like member. The guide fins 35d extend in the radial direction. The guide fins 35d extend in the axial direction. The guide fins 35d are integrally formed of a material continuous with the insulator 35. The guide fin 35d has an edge extending in the axial direction on the radially outer side. The guide fin 35d has an edge on the radially inner side that is inclined so as to be separated from the stator core 32 toward the radially outer side. The guide fins 35 d are part of the end surface of the stator 31 and protrude from the end surface of the stator core 32 in the axial direction. The insulator 35 includes a plurality of guide fins 35d. The plurality of guide fins 35d are separated from each other along the circumferential direction. The plurality of guide fins 35d are arranged radially.
 回転電機10の製造方法は、ステータコイル33が設置された環状範囲にジャンパ線33jを配置する配線工程を有する。少なくともひとつのガイドフィン35dは、回転電機10の製造工程において、ジャンパ線33jの径方向内側への侵入を抑制する。また、少なくともひとつのガイドフィン35dは、完成品において、ジャンパ線33jの径方向内側への侵入を抑制する。言い換えると、ガイドフィン35dは、コイル素線の固定部への侵入を抑制するようにコイル素線を案内する。ジャンパ線33jの径方向内側への侵入が抑制されることで、ジャンパ線33jの損傷が抑制される。ガイドフィン35dは、固定部の上の広い範囲を占めることなく、ジャンパ線33jを案内する。ガイドフィン35dは、環状部分32bにおける締付部54の配置、および固定ボルト34の配置を阻害しない。 The manufacturing method of the rotating electrical machine 10 includes a wiring step of arranging the jumper wire 33j in the annular range where the stator coil 33 is installed. The at least one guide fin 35d suppresses the jumper wire 33j from entering inward in the radial direction in the manufacturing process of the rotating electrical machine 10. Further, at least one guide fin 35d suppresses the intrusion of the jumper wire 33j in the radial direction in the finished product. In other words, the guide fin 35d guides the coil element wire so as to suppress the penetration of the coil element wire into the fixed portion. By preventing the jumper wire 33j from entering inward in the radial direction, damage to the jumper wire 33j is suppressed. The guide fin 35d guides the jumper wire 33j without occupying a wide range above the fixed portion. The guide fin 35d does not hinder the arrangement of the tightening portion 54 and the arrangement of the fixing bolt 34 in the annular portion 32b.
 インシュレータ35は、ティース部分32cを覆うボビン部分36を有する。ボビン部分36は、ティース部分32cとステータコイル33との間に配置されている。インシュレータ35は、径方向外側端に位置して、磁極32aの縁に沿って広がるフランジ部分37を有する。フランジ部分37は、磁極32aとステータコイル33との間に配置されている。 The insulator 35 has a bobbin portion 36 that covers the tooth portion 32c. The bobbin portion 36 is disposed between the tooth portion 32 c and the stator coil 33. The insulator 35 has a flange portion 37 that is located at the radially outer end and extends along the edge of the magnetic pole 32a. The flange portion 37 is disposed between the magnetic pole 32 a and the stator coil 33.
 ステータ31は、複数の隙間38を有する。隙間38は、隣接する2つの磁極32aの間に形成されている。複数の隙間38は、通常隙間38aと、センサ隙間38bとを有する。センサ隙間38bは、カバー53を配置するために利用される。ステータコア32は、18個の隙間38を有する。この実施形態では、センサユニット41は、4つのカバー53を有する。したがって、ステータ31は、4つのセンサ隙間38bを有する。したがって、14個の通常隙間38aと、4個のセンサ隙間38bとを有する。これに代えて、センサユニット41がひとつのセンサ43を有する場合、ひとつのセンサ隙間38bが設けられる。センサユニット41が3つのセンサ43を有する場合、3つのセンサ隙間38bが設けられる。 The stator 31 has a plurality of gaps 38. The gap 38 is formed between two adjacent magnetic poles 32a. The plurality of gaps 38 include a normal gap 38a and a sensor gap 38b. The sensor gap 38 b is used for arranging the cover 53. The stator core 32 has 18 gaps 38. In this embodiment, the sensor unit 41 has four covers 53. Therefore, the stator 31 has four sensor gaps 38b. Therefore, it has 14 normal gaps 38a and four sensor gaps 38b. Instead, when the sensor unit 41 has one sensor 43, one sensor gap 38b is provided. When the sensor unit 41 has three sensors 43, three sensor gaps 38b are provided.
 通常隙間38aは、所定の周方向の幅を有する。センサ隙間38bは、通常隙間38aより広い周方向の幅を有する。複数の磁極32aは、第1磁極32aw、第2磁極32am、および第3磁極32asを有する。複数の磁極32aは、通常隙間38aと、センサ隙間38bとを提供するように、互いに異なる周方向の幅を有する。複数の磁極32aは、周方向の両側へ延び出している。第1磁極32aw、第2磁極32am、および第3磁極32asは、互いに、周方向への突出量が異なる。 The normal gap 38a has a predetermined circumferential width. The sensor gap 38b has a wider circumferential width than the normal gap 38a. The plurality of magnetic poles 32a include a first magnetic pole 32aw, a second magnetic pole 32am, and a third magnetic pole 32as. The plurality of magnetic poles 32a have different circumferential widths so as to provide the normal gap 38a and the sensor gap 38b. The plurality of magnetic poles 32a extend to both sides in the circumferential direction. The first magnetic pole 32aw, the second magnetic pole 32am, and the third magnetic pole 32as have different amounts of protrusion in the circumferential direction.
 第1磁極32awは、所定の周方向の幅を有する。第1磁極32awは、ティース部分32cの先端から、周方向の両側に等しく広がっている。ステータコア32は、複数の第1磁極32awを有する。隣接する2つの第1磁極32awは、それらの間に通常隙間38aを区画形成している。第1磁極32awは、それらの間に通常隙間38aを区画形成するように、大きく延び出している。 The first magnetic pole 32aw has a predetermined circumferential width. The first magnetic pole 32aw extends equally on both sides in the circumferential direction from the tip of the tooth portion 32c. The stator core 32 has a plurality of first magnetic poles 32aw. Two adjacent first magnetic poles 32aw define a normal gap 38a therebetween. The first magnetic pole 32aw extends greatly so as to define a normal gap 38a therebetween.
 第2磁極32am、および第3磁極32asは、第1磁極awより小さい周方向の幅を有する。第3磁極32asは、第2磁極32amより小さい周方向の幅を有する。ステータコア32は、3つの第3磁極32asを有する。第3磁極32asは、ティース部分32cの先端から、周方向の両側に広がっている。第3磁極32asは、センサ隙間38bとセンサ隙間38bとの間に位置している。第3磁極32asは、それらの間にセンサ隙間38bを区画形成するように、第1磁極32awより小さく延び出している。第3磁極32asの周方向両側への広がりは、第1磁極32awのそれより小さい。第3磁極32asの周方向両側への広がりは等しい。ステータコア32は、少なくとも2つの第2磁極32amを有する。第2磁極32amは、複数のセンサ隙間38bの群の両端に位置している。第2磁極32amは、通常隙間38aとセンサ隙間38bとの間に位置している。第2磁極32amは、通常隙間38aの側へ第1磁極32awと同じだけ広がっている。第2磁極32amは、センサ隙間38bの側へ第3磁極32asと同じだけ広がっている。 The second magnetic pole 32am and the third magnetic pole 32as have a circumferential width smaller than the first magnetic pole aw. The third magnetic pole 32as has a circumferential width smaller than that of the second magnetic pole 32am. The stator core 32 has three third magnetic poles 32as. The third magnetic pole 32as extends from the tip of the tooth portion 32c to both sides in the circumferential direction. The third magnetic pole 32as is located between the sensor gap 38b and the sensor gap 38b. The third magnetic pole 32as extends smaller than the first magnetic pole 32aw so as to define a sensor gap 38b therebetween. The spread of the third magnetic pole 32as to both sides in the circumferential direction is smaller than that of the first magnetic pole 32aw. The spread of the third magnetic pole 32as to both sides in the circumferential direction is equal. The stator core 32 has at least two second magnetic poles 32am. The second magnetic pole 32am is located at both ends of the group of the plurality of sensor gaps 38b. The second magnetic pole 32am is located between the normal gap 38a and the sensor gap 38b. The second magnetic pole 32am extends to the normal gap 38a side as much as the first magnetic pole 32aw. The second magnetic pole 32am extends to the sensor gap 38b side by the same amount as the third magnetic pole 32as.
 図4および図5において、インシュレータ35は、磁極32aおよび環状部分32bを除く表面を覆う形状を有する。図4および図5は、ステータコア32とセンサユニット41との間に配置される半割体35aを示す。半割体35aは後述の突出部分を有するが、半割体35bは、突出部分を有しない。ガイドフィン35dは、図示されるように中央部分35cから径方向内側に向けて突出している。この結果、ガイドフィン35dは、ジャンパ線33jを案内する。 4 and 5, the insulator 35 has a shape covering the surface excluding the magnetic pole 32a and the annular portion 32b. FIGS. 4 and 5 show a half body 35 a disposed between the stator core 32 and the sensor unit 41. The half-split body 35a has a protruding portion described later, but the half-split body 35b does not have a protruding portion. The guide fin 35d protrudes radially inward from the central portion 35c as shown in the drawing. As a result, the guide fin 35d guides the jumper line 33j.
 インシュレータ35は、複数のボビン部分36を有する。複数のボビン部分36は、通常隙間38aの両側に位置する複数の通常ボビン部分36aと、カバー53が配置されるセンサ隙間38bの両側に位置する複数のセンサボビン部分36bとを有する。4つのセンサ隙間38bの両側に位置する2つの通常隙間38aの両側には、通常ボビン部分36aとセンサボビン部分36bとが位置付けられている。4つのセンサ隙間38bのうち、最も端のセンサ隙間38bの両側には、センサボビン部分36bが位置付けられている。センサボビン部分36bは、後述のコイル案内部に相当する凹凸部を有する。 The insulator 35 has a plurality of bobbin portions 36. The plurality of bobbin portions 36 includes a plurality of normal bobbin portions 36a located on both sides of the normal gap 38a and a plurality of sensor bobbin portions 36b located on both sides of the sensor gap 38b where the cover 53 is disposed. A normal bobbin portion 36a and a sensor bobbin portion 36b are positioned on both sides of the two normal gaps 38a located on both sides of the four sensor gaps 38b. Among the four sensor gaps 38b, sensor bobbin portions 36b are positioned on both sides of the endmost sensor gap 38b. The sensor bobbin portion 36b has an uneven portion corresponding to a coil guide portion described later.
 インシュレータ35は、複数のフランジ部分37を有する。フランジ部分37は、ボビン部分36の径方向先端に設けられている。複数のフランジ部分37は、第1フランジ部分37a、第2フランジ部分37b、および第3フランジ部分37cを有する。第1フランジ部分37a、第2フランジ部分37b、および第3フランジ部分37cは、それぞれ、第1磁極32aw、第2磁極32am、および第3磁極32asに対応する。第2フランジ部分37b、および第3フランジ部分37cは、センサ隙間38bを形成する第2磁極32am、および第3磁極32asに配置される。第2フランジ部分37b、および第3フランジ部分37cは、カバー53と関連性をもつから、センサフランジ部分とも呼ぶことができる。センサフランジ部分は、後述のコイル案内部に相当する案内部を有する。 The insulator 35 has a plurality of flange portions 37. The flange portion 37 is provided at the distal end of the bobbin portion 36 in the radial direction. The plurality of flange portions 37 include a first flange portion 37a, a second flange portion 37b, and a third flange portion 37c. The first flange portion 37a, the second flange portion 37b, and the third flange portion 37c correspond to the first magnetic pole 32aw, the second magnetic pole 32am, and the third magnetic pole 32as, respectively. The second flange portion 37b and the third flange portion 37c are disposed on the second magnetic pole 32am and the third magnetic pole 32as that form the sensor gap 38b. Since the second flange portion 37b and the third flange portion 37c are related to the cover 53, they can also be called sensor flange portions. The sensor flange portion has a guide portion corresponding to a coil guide portion described later.
 通常ボビン部分36aと第1フランジ部分37aとは、通常隙間38aを形成する磁極32aに対応する通常インシュレータ部分を提供する。センサボビン部分36bと第2フランジ部分37bとは、センサ隙間38bを形成する磁極32aに対応するセンサインシュレータ部分を提供する。センサボビン部分36bと第3フランジ部分37cとは、センサ隙間38bを形成する磁極32aに対応するセンサインシュレータ部分を提供する。後述のコイル案内部は、センサインシュレータ部分にのみ設けられている。これにより、センサユニット41に面するステータコイル33のコイル素線33dは、一方の端面SD1側において、磁極32aから径方向に離れて配置される。 The normal bobbin portion 36a and the first flange portion 37a provide a normal insulator portion corresponding to the magnetic pole 32a that forms the normal gap 38a. The sensor bobbin portion 36b and the second flange portion 37b provide a sensor insulator portion corresponding to the magnetic pole 32a that forms the sensor gap 38b. The sensor bobbin portion 36b and the third flange portion 37c provide a sensor insulator portion corresponding to the magnetic pole 32a that forms the sensor gap 38b. A coil guide described later is provided only in the sensor insulator portion. Thereby, the coil wire 33d of the stator coil 33 facing the sensor unit 41 is disposed away from the magnetic pole 32a in the radial direction on the one end face SD1 side.
 図6および図7は、ステータコア32に半割体35a、35bが装着された状態を示す。図6は、図4のVI矢印の方向から見た側面を示している。第3磁極32asのためのセンサインシュレータ部分は、センサボビン部分36bと第3フランジ部分37cとを有する。センサボビン部分36bは、角が丸い四角形の表面36eと、複数のフィン36fとを有する。図8は、ティース部分32cとインシュレータ35との断面を示す。ティース部分32cを含むステータコア32は、複数の磁性体板を積層した積層体である。複数のフィン36fは、四辺形とも呼べる表面36eの角部においてのみ、ティース部分32cの径方向外側へ延び出している。 6 and 7 show a state in which the halves 35a and 35b are attached to the stator core 32. FIG. FIG. 6 shows the side as seen from the direction of the arrow VI in FIG. The sensor insulator portion for the third magnetic pole 32as has a sensor bobbin portion 36b and a third flange portion 37c. The sensor bobbin portion 36b has a rectangular surface 36e with rounded corners and a plurality of fins 36f. FIG. 8 shows a cross section of the tooth portion 32 c and the insulator 35. The stator core 32 including the teeth portion 32c is a laminated body in which a plurality of magnetic plates are laminated. The plurality of fins 36f extend outward in the radial direction of the tooth portion 32c only at the corners of the surface 36e, which can be called a quadrilateral.
 表面36eと複数のフィン36fとは、センサボビン部分36bの表面に凹凸部を提供する。この凹凸部は、ステータコイル33のコイル素線を規定の位置に保持する。凹凸部は、センサボビン部分36bにおけるコイル素線の移動を規制する。凹凸部は、一方の端面SD1側において、ステータコイル33を第3磁極32asから径方向に離れさせるコイル案内部のひとつである。 The surface 36e and the plurality of fins 36f provide an uneven portion on the surface of the sensor bobbin portion 36b. The uneven portion holds the coil wire of the stator coil 33 at a predetermined position. The uneven part restricts the movement of the coil wire in the sensor bobbin portion 36b. The uneven portion is one of coil guide portions that radially separate the stator coil 33 from the third magnetic pole 32as on the one end face SD1 side.
 第2磁極32amのためのセンサインシュレータ部分は、センサボビン部分36bと第2フランジ部分37bとを有する。第2磁極32amのためのセンサインシュレータ部分も、図6および図7と同様に、センサボビン部分36bに凹凸部を有する。 The sensor insulator part for the second magnetic pole 32am has a sensor bobbin part 36b and a second flange part 37b. The sensor insulator portion for the second magnetic pole 32am also has an uneven portion on the sensor bobbin portion 36b, as in FIGS.
 図6および図7に戻り、半割体35aは、第3フランジ部分37cを有する。第3フランジ部分37cは、突出部分37eを有する。突出部分37eは、一方の端面SD1側において、突出している。突出部分37eは、フランジ部分からティース部分32cに沿って径方向へ内側のステータコイル33に向けて突出している。突出部分37eの径方向内側の表面は、ロータ21の界磁から遠ざかるように離れている。突出部分37eの表面は、径方向内側に向けて隆起している。突出部分37eの表面は、ティース部分32cの根元に向けて突出している。ティース部分32cの全周に広がるフランジ部分37のうち、一方の端面SD1に近い部分のみが、突出部分37eとして突出している。突出部分37eは、基礎フランジ面37dよりも突出している。基礎フランジ面37dは、ステータ31の他方の端面SD2側におけるフランジ部分37のステータコイル33に面する面である。言い換えると、基礎フランジ面37dは、半割体35bに設けられたフランジ部分37の内側面である。 Returning to FIG. 6 and FIG. 7, the halved body 35a has a third flange portion 37c. The third flange portion 37c has a protruding portion 37e. The protruding portion 37e protrudes on one end surface SD1 side. The protruding portion 37e protrudes from the flange portion toward the inner stator coil 33 in the radial direction along the tooth portion 32c. The radially inner surface of the projecting portion 37e is away from the field of the rotor 21. The surface of the protruding portion 37e protrudes toward the inside in the radial direction. The surface of the protruding portion 37e protrudes toward the root of the tooth portion 32c. Of the flange portion 37 extending around the entire circumference of the tooth portion 32c, only a portion close to one end surface SD1 protrudes as a protruding portion 37e. The protruding portion 37e protrudes more than the base flange surface 37d. The base flange surface 37d is a surface facing the stator coil 33 of the flange portion 37 on the other end surface SD2 side of the stator 31. In other words, the foundation flange surface 37d is an inner surface of the flange portion 37 provided in the half body 35b.
 突出部分37eは、ステータコイル33を第3磁極32asから径方向に離れさせる。突出部分37eは、一方の端面側において、ステータコイル33を第3磁極32asから径方向に離れさせるコイル案内部のひとつである。 The protruding portion 37e separates the stator coil 33 from the third magnetic pole 32as in the radial direction. The projecting portion 37e is one of coil guide portions that radially separate the stator coil 33 from the third magnetic pole 32as on one end face side.
 第2磁極32amのためのセンサインシュレータ部分は、センサボビン部分36bと第2フランジ部分37bとを有する。第2磁極32amのためのセンサインシュレータ部分も、図6および図7と同様に、第2フランジ部分37bに突出部分37eを有する。 The sensor insulator part for the second magnetic pole 32am has a sensor bobbin part 36b and a second flange part 37b. The sensor insulator portion for the second magnetic pole 32am also has a protruding portion 37e on the second flange portion 37b, as in FIGS.
 図9は、第3磁極32asのためのセンサインシュレータ部分を示す斜視図である。センサインシュレータ部分は、センサボビン部分36bに、凹凸部を提供する表面36eおよび複数のフィン36fを有する。センサインシュレータ部分は、第3フランジ部分37cに、突出部分37eを有する。凹凸部と突出部分37eとは、ステータコイル33を第3磁極32asから径方向に離れさせるコイル案内部を提供している。 FIG. 9 is a perspective view showing a sensor insulator portion for the third magnetic pole 32as. The sensor insulator portion has a surface 36e and a plurality of fins 36f for providing a concavo-convex portion on the sensor bobbin portion 36b. The sensor insulator portion has a protruding portion 37e on the third flange portion 37c. The concavo-convex portion and the protruding portion 37e provide a coil guide portion that causes the stator coil 33 to be separated from the third magnetic pole 32as in the radial direction.
 突出部分37eは、ステータ31の他方の端面側から、一方の端面側に向けて徐々に高くなるように突出している。突出部分37eは、軸方向ADに関して、センサボビン部分36bと重複する位置に斜面部分を有する。突出部分37eは、センサボビン部分36bの軸方向ADの端面より軸方向に離れた位置において突出している。この突出部分37eは、ステータコイル33を第3磁極32asから径方向RDの内側に向けて離れさせる。突出部分37eは、センサボビン部分36bの軸方向ADの端部の周方向CDの両側の範囲において突出している。この突出部分37eは、カバー53が配置される第3磁極32asの両側において、ステータコイル33を第3磁極32asから径方向RDの内側に向けて離れさせる。 The protruding portion 37e protrudes from the other end surface side of the stator 31 so as to gradually increase toward the one end surface side. The protruding portion 37e has a slope portion at a position overlapping the sensor bobbin portion 36b with respect to the axial direction AD. The protruding portion 37e protrudes at a position away from the end surface in the axial direction AD of the sensor bobbin portion 36b in the axial direction. The protruding portion 37e separates the stator coil 33 from the third magnetic pole 32as toward the inner side in the radial direction RD. The protruding portion 37e protrudes in the range on both sides in the circumferential direction CD at the end in the axial direction AD of the sensor bobbin portion 36b. The protruding portion 37e separates the stator coil 33 from the third magnetic pole 32as toward the inner side in the radial direction RD on both sides of the third magnetic pole 32as where the cover 53 is disposed.
 第2磁極32amのためのセンサインシュレータ部分も、図9と同様に、センサボビン部分36bに、凹凸部を提供する表面36eおよび複数のフィン36fを有する。第2磁極32amのためのセンサインシュレータ部分も、図9と同様に、第3フランジ部分37cに、突出部分37eを有する。凹凸部と突出部分37eとは、ステータコイル33を第2磁極32amから径方向に離れさせるコイル案内部を提供する。 Similarly to FIG. 9, the sensor insulator portion for the second magnetic pole 32am also has a surface 36e and a plurality of fins 36f for providing the uneven portion on the sensor bobbin portion 36b. Similarly to FIG. 9, the sensor insulator portion for the second magnetic pole 32am also has a protruding portion 37e on the third flange portion 37c. The uneven portion and the protruding portion 37e provide a coil guide portion that causes the stator coil 33 to be separated from the second magnetic pole 32am in the radial direction.
 図10は、第1磁極32awのための通常インシュレータ部分を示す斜視図である。通常インシュレータ部分は、通常ボビン部分36aに、凹凸部を備えない。通常インシュレータ部分は、第1フランジ部分37aに、突出部分を備えない。言い換えると、コイル案内部は、通常インシュレータ部分には設けられていない。コイル案内部は、センサインシュレータ部分にのみ、設けられている。 FIG. 10 is a perspective view showing a normal insulator portion for the first magnetic pole 32aw. The normal insulator portion does not include an uneven portion on the normal bobbin portion 36a. Usually, the insulator portion does not include a protruding portion on the first flange portion 37a. In other words, the coil guide is not usually provided in the insulator portion. The coil guide is provided only in the sensor insulator portion.
 図9に戻り、突出部分37eは、ステータコイル33を径方向内側に離れさせ、しかも、その位置を規定する。ステータコイル33は、カバー53が入る位置でのみ、そのカバー53を避けるように、径方向に離れている。ステータコイル33が径方向に離れる距離は、カバー53を安定的に配置するための必要最小限に留めることが望ましい。後述のように、内層から外層へと進む巻線工程は、上記距離を小さくするために貢献する。また、センサボビン部分36bにおける凹凸部も、上記距離を正確に制御するために貢献する。 Referring back to FIG. 9, the projecting portion 37e separates the stator coil 33 radially inward and defines its position. The stator coil 33 is separated in the radial direction so as to avoid the cover 53 only at a position where the cover 53 enters. It is desirable that the distance that the stator coil 33 is separated in the radial direction is kept to the minimum necessary for stably arranging the cover 53. As will be described later, the winding process that proceeds from the inner layer to the outer layer contributes to reducing the distance. Further, the uneven portion in the sensor bobbin portion 36b also contributes to accurately control the distance.
 図11、図12、図13、および図14は、センサユニット41を示す。センサユニット41は、ケース51を有する。ケース51は、ステータ31の軸方向の一方の端面に配置されている。センサユニット41は、ケース51からセンサ隙間38bの中に延びる複数のカバー53を有する。複数のカバー53は、複数の磁極32aに沿って互いに離れて配置されている。 11, 12, 13, and 14 show the sensor unit 41. FIG. The sensor unit 41 has a case 51. The case 51 is disposed on one end surface of the stator 31 in the axial direction. The sensor unit 41 has a plurality of covers 53 extending from the case 51 into the sensor gap 38b. The plurality of covers 53 are disposed away from each other along the plurality of magnetic poles 32a.
 ケース51は、周方向CDの端部に突出部分57を有する。突出部分57は、ケース51の周方向の両側に設けられている。突出部分57は、容器52から突出している。突出部分57は、回転電機の製造方法において、センサユニット41を操作するための操作部分を提供する。2つの突出部分57は、センサユニット41を安定的に操作することを可能とする。例えば、ステータ31にセンサユニット41を組み付ける工程において、作業者または作業機械は、2つの突出部分57を押すことにより、複数のカバー53を複数のセンサ隙間38bの中に真っ直ぐに差し込むことができる。 The case 51 has a protruding portion 57 at the end in the circumferential direction CD. The protruding portions 57 are provided on both sides of the case 51 in the circumferential direction. The protruding portion 57 protrudes from the container 52. The protruding portion 57 provides an operation portion for operating the sensor unit 41 in the method of manufacturing the rotating electrical machine. The two protruding portions 57 allow the sensor unit 41 to be stably operated. For example, in the process of assembling the sensor unit 41 to the stator 31, the operator or work machine can insert the plurality of covers 53 straight into the plurality of sensor gaps 38 b by pressing the two protruding portions 57.
 図11、および図12において、ケース51は、容器52と空洞部58とを有する。容器52は、電気回路部品42を収容し、電気絶縁性の封止樹脂56により封止されている。一方で、空洞部58は、封止樹脂により封止されていない。空洞部58は、空洞を提供する。空洞部58は、隔壁によって複数に仕切られている。空洞部58は、3つの空洞部58a、58b、58cを有する。空洞部58は、容器52の径方向内側の縁に設けられている。空洞部58は、その隔壁によって、ケース51の反り変形に抗する高い剛性を提供する。空洞部58は、ケース51を軽量化する。空洞部58は、封止樹脂56の使用量を抑制する。空洞部58は、ケース51の反り変形を抑制するために貢献する。 11 and 12, the case 51 has a container 52 and a cavity 58. The container 52 accommodates the electric circuit component 42 and is sealed with an electrically insulating sealing resin 56. On the other hand, the cavity 58 is not sealed with a sealing resin. The cavity 58 provides a cavity. The cavity 58 is divided into a plurality of partitions. The cavity 58 has three cavities 58a, 58b, and 58c. The cavity 58 is provided at the radially inner edge of the container 52. The hollow portion 58 provides high rigidity against the warp deformation of the case 51 by the partition wall. The cavity 58 reduces the weight of the case 51. The cavity 58 suppresses the usage amount of the sealing resin 56. The cavity 58 contributes to suppress warping deformation of the case 51.
 図12、図13、および図14において、複数のカバー53は、容器52と接続されている基礎部分において太く、先端部分において基礎部分より細い先細形状を有している。カバー53は、周方向における幅を長さ方向に関して維持している。カバー53は、軸方向に垂直な断面積が、容器52からカバー53の先端に向けて徐々に小さくなっている。複数のカバー53は、4本である。ひとつのカバー53aは、基準位置を示すためのセンサ43を収容するために、他のカバー53b、53c、53dより長い。複数のカバー53b、53c、53dは、回転角度を検出するためのセンサ43を収容している。複数のカバー53は、周方向に扁平な多角柱状である。複数のカバー53は、長さが異なるが、類似の形状を有している。代表例として、カバー53dを詳細に説明する。 12, 13, and 14, the plurality of covers 53 have a tapered shape that is thick at the base portion connected to the container 52 and thinner at the tip portion than the base portion. The cover 53 maintains the width in the circumferential direction with respect to the length direction. The cover 53 has a cross-sectional area perpendicular to the axial direction that gradually decreases from the container 52 toward the tip of the cover 53. The plurality of covers 53 are four. One cover 53a is longer than the other covers 53b, 53c, 53d in order to accommodate the sensor 43 for indicating the reference position. The plurality of covers 53b, 53c, 53d accommodates a sensor 43 for detecting a rotation angle. The plurality of covers 53 have a polygonal column shape that is flat in the circumferential direction. The plurality of covers 53 have different shapes but have similar shapes. The cover 53d will be described in detail as a representative example.
 図14において、方向ラベルは、カバー53dにおける周方向CDと径方向RDとを示している。カバー53dは、周方向CDに沿って幅WTを有し、軸方向ADに沿って長さLGを有し、径方向RDに沿って厚さTHを有する。カバー53dは、容器52の底板から、容器52の外に向けて延びだしている。カバー53dは、容器52側に基端部を有し、反対側に先端部を有する。 14, the direction label indicates the circumferential direction CD and the radial direction RD in the cover 53d. The cover 53d has a width WT along the circumferential direction CD, a length LG along the axial direction AD, and a thickness TH along the radial direction RD. The cover 53 d extends from the bottom plate of the container 52 toward the outside of the container 52. The cover 53d has a proximal end portion on the container 52 side and a distal end portion on the opposite side.
 図15は、カバー53dの形状をモデル化して示している。カバー53dは、先端部53eを有する。先端部53eは、カバー53dの頂き部でもある。カバー53dは、周方向CDの両側にサイド部分53fを有する。サイド部分53fは、径方向RDよりも軸方向ADへ長く延びている。サイド部分53fは、平面または曲面の側面を提供する。カバー53dは、隣接する磁極32aと嵌合するための軸方向溝53g、53hを有する。軸方向溝53g、53hは、カバー53dの両側に設けられている。軸方向溝53g、53hは、サイド部分53fに設けられている。軸方向溝53g、53hは、軸方向ADに沿って延びている。軸方向溝53g、53hは、カバー53dを案内する。軸方向溝53g、53hは、カバー53dを、両側の磁極32aに対して固定する。 FIG. 15 shows the shape of the cover 53d as a model. The cover 53d has a tip 53e. The distal end portion 53e is also a receiving portion of the cover 53d. The cover 53d has side portions 53f on both sides in the circumferential direction CD. The side portion 53f extends longer in the axial direction AD than in the radial direction RD. The side portion 53f provides a flat or curved side surface. The cover 53d has axial grooves 53g and 53h for fitting with the adjacent magnetic pole 32a. The axial grooves 53g and 53h are provided on both sides of the cover 53d. The axial grooves 53g and 53h are provided in the side portion 53f. The axial grooves 53g and 53h extend along the axial direction AD. The axial grooves 53g and 53h guide the cover 53d. The axial grooves 53g and 53h fix the cover 53d to the magnetic poles 32a on both sides.
 カバー53dは、内側部分53iを有する。内側部分53iは、平面または曲面の内面を提供する。内側部分53iは、補強リブ53jに接続されている。補強リブ53jは、内側部分53iと容器52の底板との間に広がっている。補強リブ53jは、内側部分53iと容器52の底板との間を橋渡しすることにより、カバー53dを径方向に関して補強している。複数のカバー53のすべては、補強リブを有する。これにより、仮にカバー53のひとつがコイルに干渉しても、コイルを押して変形させることができる強度がカバー53に与えられる。カバー53は、コイルと干渉しても、コイルを変形させることで、2つの磁極32aの間の規定の位置に配置される。 The cover 53d has an inner portion 53i. The inner portion 53i provides a flat or curved inner surface. The inner portion 53i is connected to the reinforcing rib 53j. The reinforcing rib 53j extends between the inner portion 53i and the bottom plate of the container 52. The reinforcing rib 53j reinforces the cover 53d in the radial direction by bridging between the inner portion 53i and the bottom plate of the container 52. All of the plurality of covers 53 have reinforcing ribs. Thereby, even if one of the covers 53 interferes with the coil, the cover 53 is given a strength that allows the coil to be pushed and deformed. Even if the cover 53 interferes with the coil, the cover 53 is disposed at a predetermined position between the two magnetic poles 32a by deforming the coil.
 カバー53dは、外側部分53kを有する。外側部分53kは、隣接する2つの磁極32aの間を橋渡しするように延びている。外側部分53kは、平面または曲面の外面を提供する。 The cover 53d has an outer portion 53k. The outer portion 53k extends so as to bridge between two adjacent magnetic poles 32a. The outer portion 53k provides a flat or curved outer surface.
 カバー53dは、径方向内側であって、周方向CDの両側に逃げ部53m、53nを有する。逃げ部53m、53nは、コイルに面している。逃げ部53m、53nは、先端部53eとサイド部分53fと内側部分53iとの間にわたって広がっている。逃げ部53m、53nは、平面または曲面である。逃げ部53m、53nは、先端部53eにおいて広く、基端部において狭い幅を有する。言い換えると、逃げ部53m、53nの幅は、カバー53dの先端において広く、カバー53dの基端において狭い。逃げ部53m、53nは、コイルとカバー53dとの接触を抑制する。先端部53eにおいて、逃げ部53mと逃げ部53nとの間には所定の距離53pが残されている。 The cover 53d is radially inward and has relief portions 53m and 53n on both sides of the circumferential direction CD. The escape portions 53m and 53n face the coil. The escape portions 53m and 53n extend between the tip portion 53e, the side portion 53f, and the inner portion 53i. The escape portions 53m and 53n are flat surfaces or curved surfaces. The escape portions 53m and 53n are wide at the distal end portion 53e and narrow at the proximal end portion. In other words, the clearances 53m and 53n are wide at the distal end of the cover 53d and narrow at the proximal end of the cover 53d. The escape portions 53m and 53n suppress contact between the coil and the cover 53d. In the distal end portion 53e, a predetermined distance 53p remains between the escape portion 53m and the escape portion 53n.
 図16は、軸方向ADに垂直なカバー53dの断面を示す。カバー53dは、センサ43を収容するための空洞を形成するために内面53rを有する。逃げ部53m、53nは、先端部53eに向けて徐々に拡大する。先端部53eに向けて内面53rが区画する空洞が除々に小さくなる場合、逃げ部53m、53nはカバー53dを形成する材料の厚さを維持するために貢献する。この結果、均一、または一様な厚さのカバー53dが提供される。カバー53dの軸方向に垂直な断面積は、空洞を含んでいる。カバー53dの軸方向に垂直な断面積は、容器52から先端部53eに向けて徐々に小さくなる。このような徐々に変化する断面積は、専ら逃げ部53m、53nの変化によって提供される。 FIG. 16 shows a cross section of the cover 53d perpendicular to the axial direction AD. The cover 53d has an inner surface 53r to form a cavity for accommodating the sensor 43. The escape portions 53m and 53n gradually expand toward the tip portion 53e. When the cavity defined by the inner surface 53r toward the tip end portion 53e becomes gradually smaller, the escape portions 53m and 53n contribute to maintaining the thickness of the material forming the cover 53d. As a result, the cover 53d having a uniform or uniform thickness is provided. The cross-sectional area perpendicular to the axial direction of the cover 53d includes a cavity. The cross-sectional area perpendicular to the axial direction of the cover 53d gradually decreases from the container 52 toward the distal end portion 53e. Such a gradually changing cross-sectional area is provided solely by changes in the relief portions 53m and 53n.
 図14に戻り、複数のカバー53は、カバー53dと相似の形状を有している。ただし、カバー53aは、他のカバー53b、53c、53dより長い。カバー53aは、他のカバー53b、53c、53dより広い逃げ部53m、53nを有する。カバー53dにおける距離53pは、カバー53aにおける距離53pより大きい。カバー53aにおける距離53pは、0(ゼロ)mmの場合がある。 Referring back to FIG. 14, the plurality of covers 53 have a shape similar to the cover 53d. However, the cover 53a is longer than the other covers 53b, 53c, 53d. The cover 53a has escape portions 53m and 53n wider than the other covers 53b, 53c and 53d. The distance 53p in the cover 53d is larger than the distance 53p in the cover 53a. The distance 53p in the cover 53a may be 0 (zero) mm.
 このように、逃げ部53m、53nの形状は、カバー53の長さに依存している。最も長いカバー53aは、他の短いカバーより長く、広い逃げ部53m、53nを有する。最も短いカバー53aは、他の長いカバーより短く、狭い逃げ部53m、53nを有する。その関係は、正の相関を示す。複数のカバー53は、長さに応じた広さをもつ逃げ部53m、53nを有している。 Thus, the shapes of the escape portions 53m and 53n depend on the length of the cover 53. The longest cover 53a is longer than the other short covers and has wide relief portions 53m and 53n. The shortest cover 53a is shorter than other long covers and has narrow relief portions 53m and 53n. The relationship shows a positive correlation. The plurality of covers 53 have escape portions 53m and 53n having a width corresponding to the length.
 図17において、ステータコア32とセンサユニット41との位置関係がモデル化して図示されている。センサユニット41は、ステータ31またはステータコア32の一方の端面SD1の上に装着され、固定されている。回転電機10の製造方法は、ステータコア32の複数の磁極32aの間に、複数のセンサ隙間38bを形成する工程を有する。この工程は、ステータコア32を形成する工程である。回転電機10の製造方法は、複数のカバー53を、一方の端面SD1側から複数のセンサ隙間38bの中に挿入する工程を有する。この結果、センサユニット41のカバー53は、ステータ31の軸方向の一方の端面SD1側から軸方向ADに沿ってセンサ隙間38bの中に延びている。ロータ21の磁束を検出するセンサ43は、隣り合う2つの磁極32aの間のセンサ隙間38bに配置されている。センサユニット41は、センサ43を収容している。 17, the positional relationship between the stator core 32 and the sensor unit 41 is modeled and illustrated. The sensor unit 41 is mounted and fixed on one end surface SD1 of the stator 31 or the stator core 32. The manufacturing method of the rotating electrical machine 10 includes a step of forming a plurality of sensor gaps 38 b between the plurality of magnetic poles 32 a of the stator core 32. This step is a step of forming the stator core 32. The manufacturing method of the rotating electrical machine 10 includes a step of inserting the plurality of covers 53 into the plurality of sensor gaps 38b from the one end surface SD1 side. As a result, the cover 53 of the sensor unit 41 extends from the one end surface SD1 side in the axial direction of the stator 31 into the sensor gap 38b along the axial direction AD. The sensor 43 that detects the magnetic flux of the rotor 21 is disposed in the sensor gap 38b between the two adjacent magnetic poles 32a. The sensor unit 41 houses a sensor 43.
 図18において、ステータコイル33は、ティース部分32cの外側に配置された多層の単コイル33sを有する。単コイル33sは、内層33aと、最外層33bとを有する。内層33aは、最外層33bよりひとつ内側の層である。内層33aは、最内層でもある。内層33aは、コイル素線をボビン部分36の上に巻き付けて形成されている。内層33aは、コイル素線をボビン部分36に沿って径方向へ巻き進めて形成されている。よって、コイル素線は、フランジ部分37に隣接する位置で、内層33aから、最外層33bへ移行する。 18, the stator coil 33 has a multi-layered single coil 33 s disposed outside the tooth portion 32 c. The single coil 33s has an inner layer 33a and an outermost layer 33b. The inner layer 33a is one layer inside the outermost layer 33b. The inner layer 33a is also the innermost layer. The inner layer 33 a is formed by winding a coil wire around the bobbin portion 36. The inner layer 33 a is formed by winding a coil wire in the radial direction along the bobbin portion 36. Therefore, the coil wire moves from the inner layer 33 a to the outermost layer 33 b at a position adjacent to the flange portion 37.
 コイル素線は、図示される単コイル33sの反対側の面で、内層33aから、最外層33bへ移行している。内層33aの最終ターンを形成するコイル素線33cは、ボビン部分36を周回している。最外層33bの最初のターンを形成するコイル素線33dは、磁極32aに隣接する部位において内層33aの上に乗り上げて、最外層33bへと移行している。 The coil wire has shifted from the inner layer 33a to the outermost layer 33b on the surface opposite to the illustrated single coil 33s. The coil wire 33c forming the final turn of the inner layer 33a circulates around the bobbin portion 36. The coil wire 33d forming the first turn of the outermost layer 33b rides on the inner layer 33a at a portion adjacent to the magnetic pole 32a, and moves to the outermost layer 33b.
 センサユニット41に面する最外層33bのコイル素線33dは、紙面の奥において、ステータ31の軸方向の他方の端面SD2側から、一方の端面SD1側に向けて、磁極32aから径方向内側に離れるように傾斜している。さらに、コイル素線33dは、紙面の手前において、ステータ31の軸方向の一方の端面SD1側から、他方の端面SD2側に向けて、磁極32aへ径方向に近づくように傾斜している。最外層33bのコイル素線33dは、一方の端面SD1側においてだけ、他の部分よりも、磁極32aから離れて位置付けられる。最外層33bのコイル素線33dは、他方の端面SD2側においては、磁極32aの近くに位置付けられる。最外層33bのコイル素線33dは、軸方向の中央部よりも、一方の端面SD1側において磁極32aから離れるように位置付けられている。この結果、破線で示されるように一方の端面SD1からカバー53が延びるようにセンサユニット41が配置されると、コイル素線33dは、カバー53から離れるように位置付けられているから、コイル素線33dとカバー53との干渉が抑制される。 The coil wire 33d of the outermost layer 33b facing the sensor unit 41 is radially inward from the magnetic pole 32a toward the one end surface SD1 side from the other end surface SD2 side in the axial direction of the stator 31 at the back of the page. Inclined to leave. Furthermore, the coil wire 33d is inclined so as to approach the magnetic pole 32a in the radial direction from one end surface SD1 side in the axial direction of the stator 31 toward the other end surface SD2 side before the paper surface. The coil wire 33d of the outermost layer 33b is positioned farther from the magnetic pole 32a than the other part only on the one end face SD1 side. The coil wire 33d of the outermost layer 33b is positioned near the magnetic pole 32a on the other end face SD2 side. The coil wire 33d of the outermost layer 33b is positioned so as to be farther from the magnetic pole 32a on the one end face SD1 side than the central portion in the axial direction. As a result, when the sensor unit 41 is arranged so that the cover 53 extends from one end surface SD1 as indicated by a broken line, the coil strand 33d is positioned away from the cover 53. Interference between 33d and the cover 53 is suppressed.
 センサユニット41に面する最外層33bのコイル素線33dは、内層33aの複数のコイル素線33cの間に形成される凹部の上に位置する。これにより、コイル素線33dは、一方の端面SD1側において、磁極32aから径方向の内側に離れて配置されている。このようなコイル素線の整列配置は、最外層33bのコイル素線33dを目的の位置に配置することを可能とする。特に、単コイル33sは、周方向の幅が軸方向の長さより小さい。このため、コイル素線33dは、巻き工程において、一方の端面SD1側においてコイル素線33dを曲げるように巻き付けられる。このため、コイル素線33dは、一方の端面SD1側において凹部の上に配置されやすい。 The coil wire 33d of the outermost layer 33b facing the sensor unit 41 is positioned on a recess formed between the plurality of coil wires 33c of the inner layer 33a. Thus, the coil wire 33d is disposed away from the magnetic pole 32a radially inward on the one end face SD1 side. Such an aligned arrangement of the coil wires enables the coil wire 33d of the outermost layer 33b to be arranged at a target position. In particular, the single coil 33s has a circumferential width smaller than the axial length. For this reason, the coil strand 33d is wound so as to bend the coil strand 33d on the one end face SD1 side in the winding step. For this reason, the coil wire 33d is easily disposed on the concave portion on the one end face SD1 side.
 インシュレータ35は、ティース部分32cとステータコイル33との間に配置されたボビン部分36を有している。上述のように、ボビン部分36の上には、ボビン部分36の上におけるコイル素線の位置を規定する凹凸部がある。凹凸部は、表面36eと複数のフィン36fとで提供されている。凹凸部は、内層33aおよび最外層33bを整列した状態で巻くことを可能とする。この凹凸部は、一方の端面SD1側において、ステータコイル33を磁極32aから径方向に離れさせるコイル案内部とも呼ばれる。 The insulator 35 has a bobbin portion 36 disposed between the tooth portion 32 c and the stator coil 33. As described above, the bobbin portion 36 has an uneven portion that defines the position of the coil wire on the bobbin portion 36. The uneven portion is provided by the surface 36e and the plurality of fins 36f. The concavo-convex portion allows the inner layer 33a and the outermost layer 33b to be wound in an aligned state. This uneven portion is also referred to as a coil guide portion that radially separates the stator coil 33 from the magnetic pole 32a on one end surface SD1 side.
 インシュレータ35は、磁極32aとステータコイル33との間に配置されたフランジ部分37を有する。フランジ部分37は、フランジ部分37からティース部分32cに沿ってステータコイル33に向けて突出する突出部分37eを有する。突出部分37eは、基礎フランジ面37dより突出している。突出部分37eは、一方の端面SD1側において、ステータコイル33を磁極32aから径方向に離れさせる。よって、突出部分37eは、コイル案内部でもある。コイル素線33dは、一方の端面SD1側においてのみ、磁極32aから径方向に離れて配置されている。 The insulator 35 has a flange portion 37 disposed between the magnetic pole 32 a and the stator coil 33. The flange portion 37 has a protruding portion 37e that protrudes from the flange portion 37 along the tooth portion 32c toward the stator coil 33. The protruding portion 37e protrudes from the foundation flange surface 37d. The protruding portion 37e separates the stator coil 33 from the magnetic pole 32a in the radial direction on the one end surface SD1 side. Therefore, the protrusion part 37e is also a coil guide part. The coil wire 33d is arranged away from the magnetic pole 32a in the radial direction only on the one end face SD1 side.
 複数の磁極32aは、センサユニット41が配置されない通常隙間38aと、センサユニット41が配置されるセンサ隙間38bとを区画形成している。コイル素線33dは、一方の端面SD1側において、センサ隙間38bを形成する磁極32aのみから径方向に離れて配置されている。言い換えると、突出部分37eは、センサ隙間38bを区画する磁極32aに設けられたフランジ部分37にのみ設けられている。 The plurality of magnetic poles 32a define a normal gap 38a where the sensor unit 41 is not arranged and a sensor gap 38b where the sensor unit 41 is arranged. The coil element wire 33d is arranged on the one end face SD1 side so as to be separated in the radial direction from only the magnetic pole 32a forming the sensor gap 38b. In other words, the protruding portion 37e is provided only on the flange portion 37 provided on the magnetic pole 32a that defines the sensor gap 38b.
 最外層33bのコイル素線33dが、一方の端面SD1側において径方向内側へ移動する量は、突出部分37eの基礎フランジ面37dからの突出量に依存する。突出量は、コイル素線33cの直径の1/2前後とすることができる。突出量は、コイル素線33dが、コイル素線33cが形成する凹部の上に位置するように、巻線機の精度などを考慮して設定される。この結果、コイル素線33dは、基礎フランジ面37dよりも、コイル素線33dの直径分だけ径方向内側に位置付けられる。 The amount by which the coil wire 33d of the outermost layer 33b moves radially inward on the one end face SD1 side depends on the protruding amount of the protruding portion 37e from the basic flange surface 37d. The protruding amount can be about ½ of the diameter of the coil wire 33c. The protruding amount is set in consideration of the accuracy of the winding machine so that the coil wire 33d is positioned on the recess formed by the coil wire 33c. As a result, the coil wire 33d is positioned radially inward from the basic flange surface 37d by the diameter of the coil wire 33d.
 ステータコア32の一部においてのみステータコイル33を磁極32aから離す構成は、巻線工程を簡単にする。回転電機10の製造方法は、複数のティース部分32cにコイル素線を装着する巻線工程を有する。この巻線工程において、凹凸部を利用してコイル素線を整列させると、巻線工程が時間的に延びる場合がある。しかし、この実施形態では、センサボビン部分36bにのみ凹凸が設けられる。このため、通常ボビン部分36aでは、高速な巻線を実現できる。 The configuration in which the stator coil 33 is separated from the magnetic pole 32a only in a part of the stator core 32 simplifies the winding process. The manufacturing method of the rotating electrical machine 10 includes a winding step of attaching a coil wire to the plurality of tooth portions 32c. In this winding process, if the coil wires are aligned using the concavo-convex portion, the winding process may be extended in time. However, in this embodiment, unevenness is provided only on the sensor bobbin portion 36b. For this reason, a high-speed winding can be realized in the normal bobbin portion 36a.
 さらに、突出部分37eは、コイル素線を曲げるから、巻線工程が時間的に延びる場合がある。しかし、この実施形態では、第2フランジ部分37b、および第3フランジ部分37cにのみ突出部分37eが設けられる。このため、第1フランジ部分37aでは、高速な巻線を実現できる。 Furthermore, since the protruding portion 37e bends the coil wire, the winding process may be extended in time. However, in this embodiment, the protruding portion 37e is provided only on the second flange portion 37b and the third flange portion 37c. For this reason, high-speed winding can be realized in the first flange portion 37a.
 図19は、一方の端面SD1側から見た2つの磁極32aと、ひとつのカバー53とを示している。カバー53は断面として図示されている。コイル素線33dが、一方の端面SD1側において、磁極32aから径方向内側に向けて離れている。これにより、カバー53とコイル素線33dとの干渉が抑制されている。 FIG. 19 shows two magnetic poles 32a and one cover 53 viewed from one end face SD1 side. The cover 53 is shown as a cross section. The coil wire 33d is separated from the magnetic pole 32a radially inward on the one end face SD1 side. Thereby, interference with the cover 53 and the coil strand 33d is suppressed.
 回転電機10の製造方法は、巻線工程と、巻線工程のあとの挿入工程とを備える。巻線工程は、先端に磁極32aを有する複数のティース部分32cに装着された複数のボビン部分36の外周にステータコイル33を巻く。巻線工程は、巻線機によって遂行される。巻線工程は、通常ボビン部分36aを対象に実行される高速工程と、センサボビン部分36bを対象に実行される低速部分とを有する。低速部分は、高速工程よりもコイル素線を規定の位置に高い精度で配置する高精度工程とも呼ばれる。 The manufacturing method of the rotating electrical machine 10 includes a winding process and an insertion process after the winding process. In the winding process, the stator coil 33 is wound around the outer periphery of the plurality of bobbin portions 36 attached to the plurality of tooth portions 32c having the magnetic poles 32a at the tips. The winding process is performed by a winding machine. The winding process includes a high-speed process that is normally performed on the bobbin part 36a and a low-speed part that is executed on the sensor bobbin part 36b. The low-speed part is also called a high-accuracy process in which the coil wire is arranged at a predetermined position with higher accuracy than the high-speed process.
 挿入工程は、隣り合う2つの磁極32aの間の隙間38に、ステータ31の一方の端面SD1からセンサ43を挿入する。挿入工程は、センサ43をセンサユニット41の中に配置して実行される。 In the insertion step, the sensor 43 is inserted from one end face SD1 of the stator 31 into the gap 38 between the two adjacent magnetic poles 32a. The insertion step is executed by arranging the sensor 43 in the sensor unit 41.
 巻線工程は、ステータコイル33のコイル素線33dが、一方の端面SD1側において、磁極32aから径方向に離れて配置されるように、コイル素線を巻く。コイル素線33dは、他方の端面SD1側よりも一方の端面SD1側において磁極32aから径方向に離れるように巻かれる。これにより、センサ43を挿入しやすいコイル形状が得られる。挿入工程は、複数の磁極32aが形成する複数の通常隙間38aとセンサ隙間38bとのうち、センサ隙間38bのみにセンサ43を挿入する工程である。すなわち、挿入工程は、ステータ31の一部の周方向範囲を対象に実行される。 In the winding process, the coil wire is wound so that the coil wire 33d of the stator coil 33 is disposed radially away from the magnetic pole 32a on the one end face SD1 side. The coil wire 33d is wound so as to be separated from the magnetic pole 32a in the radial direction on the one end surface SD1 side rather than the other end surface SD1 side. Thereby, the coil shape which is easy to insert the sensor 43 is obtained. The insertion step is a step of inserting the sensor 43 only into the sensor gap 38b among the plurality of normal gaps 38a and sensor gaps 38b formed by the plurality of magnetic poles 32a. In other words, the insertion step is executed for a part of the circumferential range of the stator 31.
 巻線工程は、センサ隙間38bの隣に位置するセンサボビン部分36bのみにおいて、ステータコイル33のコイル素線33dが、一方の端面SD1側において、磁極32aから径方向に離れて配置されるように、コイル素線を巻く工程である。すなわち、巻線工程は、複数のボビン部分36のうち、センサボビン部分36bにおいてのみ、上記形状のコイルを形成する。複数のボビン部分36のうち、センサ隙間38bと隣接しない通常ボビン部分36aでは、コイル素線の位置は低い精度で制御される。このため、複数の通常ボビン部分36aにおいては、高速な巻線が可能となる。 In the winding process, only in the sensor bobbin portion 36b located next to the sensor gap 38b, the coil wire 33d of the stator coil 33 is arranged radially away from the magnetic pole 32a on the one end face SD1 side. This is a step of winding a coil wire. That is, in the winding process, the coil having the above shape is formed only in the sensor bobbin portion 36b among the plurality of bobbin portions 36. In the normal bobbin portion 36a that is not adjacent to the sensor gap 38b among the plurality of bobbin portions 36, the position of the coil wire is controlled with low accuracy. For this reason, high-speed winding is possible in the plurality of normal bobbin portions 36a.
 巻線工程は、ステータコイル33のコイル素線33dが、ステータ31の他方の端面SD2より一方の端面SD1側において、磁極32aから径方向に離れて配置されるように、コイル素線を巻く工程である。巻線工程は、他方の端面SD2側では、コイルに利用可能な断面積を獲得しながら、一方の端面SD1側ではセンサ43の挿入に適したコイル形状を提供する。 The winding step is a step of winding the coil wire such that the coil wire 33d of the stator coil 33 is disposed radially away from the magnetic pole 32a on the one end surface SD1 side of the other end surface SD2 of the stator 31. It is. The winding process provides a coil shape suitable for insertion of the sensor 43 on one end surface SD1 side while obtaining a cross-sectional area available for the coil on the other end surface SD2 side.
 このように、この実施形態では、カバー53から離れるようにコイル素線33dが配置される。これにより、カバー53の挿入が容易となる。また、カバー53とコイル素線33dとの間に隙間が形成されるから、コイルの冷却が容易となる。また、カバー53とコイル素線33dとの間に隙間は、ステータコイル33の変更を容易とする。例えば、コイル素線の長さ、直径、巻数、材質、絶縁層の厚さなどを変更することができる。例えば、銅系金属製のコイル素線と、アルミニウム系金属製のコイル素線とで、同じ形状の2つのセンサユニット41を利用することができる。 Thus, in this embodiment, the coil wire 33 d is arranged so as to be away from the cover 53. Thereby, insertion of the cover 53 becomes easy. Further, since a gap is formed between the cover 53 and the coil element wire 33d, the coil can be easily cooled. Further, the gap between the cover 53 and the coil wire 33d facilitates the change of the stator coil 33. For example, the length, diameter, number of turns, material, thickness of the insulating layer, etc. of the coil wire can be changed. For example, two sensor units 41 having the same shape can be used with a coil metal wire made of copper metal and a coil wire made of aluminum metal.
 第2実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、突出部分37eが採用されている。これに代えて、この実施形態では、突出部分37eより軸方向に長い突出部分237eが採用される。
Second Embodiment This embodiment is a modified example based on the preceding embodiment. In the above embodiment, the protruding portion 37e is employed. Instead, in this embodiment, a protruding portion 237e that is longer in the axial direction than the protruding portion 37e is employed.
 図20に図示されるように、フランジ部分37は、基礎フランジ面37dより突出する突出部分237eを有している。突出部分237eの軸方向ADの長さは、突出部分37eの軸方向ADの長さより長い。突出部分237eは、半割体35aが提供するフランジ部分37の全体にわたって形成されている。 As shown in FIG. 20, the flange portion 37 has a protruding portion 237e that protrudes from the base flange surface 37d. The length of the protruding portion 237e in the axial direction AD is longer than the length of the protruding portion 37e in the axial direction AD. The protruding portion 237e is formed over the entire flange portion 37 provided by the half body 35a.
 このような長い突出部分237eは、カバー53aが挿入されるセンサ隙間38bに隣接するフランジ部分37に利用することができる。また、すべての突出部分37eを、突出部分237eに置き換えてもよい。 Such a long protruding portion 237e can be used for the flange portion 37 adjacent to the sensor gap 38b into which the cover 53a is inserted. Further, all the protruding portions 37e may be replaced with the protruding portions 237e.
 第3実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、突出部分337eが採用されている。
Third Embodiment This embodiment is a modification in which the preceding embodiment is a basic form. In this embodiment, a protruding portion 337e is employed.
 図21に図示されるように、突出部分337eは、半割体35aに設けられた第3フランジ部分37cの外縁に沿って配置されている。突出部分337eは、基礎フランジ面37dよりも磁極32aから離れるように径方向内側に向けて突出している。この形状でも最外層のコイル素線は、磁極から径方向の内側へ離される。内層のコイル素線は、突出部分337eの内側に収容される。このような構成は、内層に依存することなく、最外層を径方向内側へ離すために有効である。また、内層のコイル素線は、基礎フランジ面37dまで巻かれるから、コイルの巻き量(ターン数)の減少が抑制される。なお、センサボビン部分36bは、先行する実施形態の凹凸を有していてもよく、図示されるように有していなくてもよい。 As shown in FIG. 21, the protruding portion 337e is disposed along the outer edge of the third flange portion 37c provided in the half body 35a. The protruding portion 337e protrudes radially inward so as to be farther from the magnetic pole 32a than the base flange surface 37d. Even in this shape, the outermost coil wire is separated from the magnetic pole inward in the radial direction. The inner layer coil wire is accommodated inside the protruding portion 337e. Such a configuration is effective for separating the outermost layer radially inward without depending on the inner layer. Further, since the inner coil element wire is wound up to the base flange surface 37d, a decrease in the amount of coil winding (number of turns) is suppressed. The sensor bobbin portion 36b may have the unevenness of the preceding embodiment, or may not have as shown in the figure.
 第4実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、突出部分437eが採用されている。
Fourth Embodiment This embodiment is a modified example based on the preceding embodiment. In this embodiment, the protruding portion 437e is employed.
 図22に図示されるように、突出部分437eは、第3フランジ部分37cのうち、一方の端面SD1側にのみ設けられている。突出部分437eは、センサボビン部分36dと同じ周方向幅を有している。この突出部分437eでも、最外層のコイル素線は、基礎フランジ面37dより径方向内側へ離れて配置される。コイル素線は、その位置から徐々に傾斜するから、一方の端面SD1側におけるカバー53とコイルとの干渉が抑制される。 As shown in FIG. 22, the protruding portion 437e is provided only on one end surface SD1 side of the third flange portion 37c. The protruding portion 437e has the same circumferential width as that of the sensor bobbin portion 36d. Even in the protruding portion 437e, the outermost coil wire is arranged away from the base flange surface 37d inward in the radial direction. Since the coil wire is gradually inclined from the position, interference between the cover 53 and the coil on the one end face SD1 side is suppressed.
 第5実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、突出部分537eが採用されている。
Fifth Embodiment This embodiment is a modified example based on the preceding embodiment. In this embodiment, a protruding portion 537e is employed.
 図23に図示されるように、第3フランジ部分37cは、2つの突出部分537eを有する。突出部分537eは、第3フランジ部分37cの周方向の両側に配置されている。突出部分537eは、円柱状である。突出部分537eは、第3フランジ部分37cの径方向内側の面から、径方向内側に向けて突出している。突出部分537eは、軸方向に関して一部にだけ設けられている。突出部分537eは、第2フランジ部分37bに設けられる場合、センサ隙間38bに隣接する部分にだけ設けても良い。突出部分537eは、カバー53の近くにおいて、コイル素線を基礎フランジ面37dから軸方向内側に離して配置する。 23, the third flange portion 37c has two protruding portions 537e. The protruding portions 537e are disposed on both sides in the circumferential direction of the third flange portion 37c. The protruding portion 537e has a cylindrical shape. The protruding portion 537e protrudes radially inward from the radially inner surface of the third flange portion 37c. The protruding portion 537e is provided only in part with respect to the axial direction. When the protruding portion 537e is provided in the second flange portion 37b, it may be provided only in a portion adjacent to the sensor gap 38b. In the vicinity of the cover 53, the protruding portion 537e arranges the coil wire away from the basic flange surface 37d inward in the axial direction.
 第6実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、突出部分637eが採用されている。
Sixth Embodiment This embodiment is a modification in which the preceding embodiment is a basic form. In this embodiment, the protruding portion 637e is employed.
 図24に図示されるように、第3フランジ部分37cは、2つの突出部分637eを有する。突出部分637eは、第3フランジ部分37cの周方向の両側に配置されている。突出部分637eは、角柱状である。突出部分637eは、第3フランジ部分37cの径方向内側の面から、径方向内側に向けて突出している。突出部分637eは、軸方向に関して磁極32aに相当する範囲にだけ設けられている。突出部分637eは、第2フランジ部分37bに設けられる場合、センサ隙間38bに隣接する部分にだけ設けても良い。突出部分637eは、カバー53の近くにおいて、コイル素線を基礎フランジ面37dから軸方向内側に離して配置する。 As shown in FIG. 24, the third flange portion 37c has two protruding portions 637e. The protruding portions 637e are disposed on both sides of the third flange portion 37c in the circumferential direction. The protruding portion 637e has a prismatic shape. The protruding portion 637e protrudes radially inward from the radially inner surface of the third flange portion 37c. The protruding portion 637e is provided only in a range corresponding to the magnetic pole 32a in the axial direction. When the protruding portion 637e is provided in the second flange portion 37b, it may be provided only in a portion adjacent to the sensor gap 38b. The projecting portion 637e is arranged near the cover 53 so that the coil wire is separated from the basic flange surface 37d inward in the axial direction.
 第7実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、突出部分737eが採用されている。
Seventh Embodiment This embodiment is a modified example based on the preceding embodiment. In this embodiment, a protruding portion 737e is employed.
 図25に図示されるように、第3フランジ部分37cは、複数の突出部分737eを有する。複数の突出部分737eは、互いに周方向に離れて配置されている。複数の突出部分737eの間には、溝状に基礎フランジ面37dが露出している。溝は、第3フランジ部分37cとコイル素線との間に隙間を形成する。隙間は、冷却媒体としての空気を通し、コイル素線の放熱を改善するために貢献する場合がある。この実施形態でも、先行する実施形態と同様の作用、効果が得られる。 25, the third flange portion 37c has a plurality of protruding portions 737e. The plurality of protruding portions 737e are arranged away from each other in the circumferential direction. Between the plurality of protruding portions 737e, the base flange surface 37d is exposed in a groove shape. The groove forms a gap between the third flange portion 37c and the coil wire. The gap may contribute to improve the heat dissipation of the coil wire through air as a cooling medium. In this embodiment, the same operation and effect as the preceding embodiment can be obtained.
 第8実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、突出部分837eが採用されている。
Eighth Embodiment This embodiment is a modification example based on the preceding embodiment. In this embodiment, a protruding portion 837e is employed.
 図26に図示されるように、半割体35aと半割体35bとの両方が突出部分837eを有する。突出部分837eは、他方の端面SD2から一方の端面SD1に向かうにつれて、基礎フランジ面37dから径方向に突出する。この結果、コイル素線33c、33dは、より広い範囲にわたって傾斜している。この実施形態でも、先行する実施形態と同様の作用、効果が得られる。 26, both the half body 35a and the half body 35b have a protruding portion 837e. The protruding portion 837e protrudes in the radial direction from the base flange surface 37d as it goes from the other end surface SD2 to the one end surface SD1. As a result, the coil wires 33c and 33d are inclined over a wider range. In this embodiment, the same operation and effect as the preceding embodiment can be obtained.
 第9実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、コイル案内部が採用されている。これに代えて、この実施形態では、最外層33bのコイル素線33dは、コイル案内部なしで磁極32aから離れるように配置される。
Ninth Embodiment This embodiment is a modification example based on the preceding embodiment. In the above embodiment, a coil guide is employed. Instead, in this embodiment, the coil wire 33d of the outermost layer 33b is arranged so as to be separated from the magnetic pole 32a without the coil guide portion.
 図27に図示されるように、フランジ部分937cは平板状である。複数のフランジ部分937cは、すべてが、平板状である。回転電機10の製造方法は、巻線工程を有する。巻線工程において、コイル素線は、最内層から最外層へ巻き進められる。最内層33aでは、コイル素線33cは、ティース部分32cの径方向内側から径方向外側に向かって巻き進められる。コイル素線33cは、フランジ部分937cに到達すると、外層へ移行する。このとき、コイルの進行方向が反転される。最外層33bでは、コイル素線33dは、ティース部分32cの径方向外側から径方向内側に向かって巻き進められる。コイル素線33cは、フランジ部分937cに到達した後に、内層のコイル素線33cの上に乗り上げ、最外層33bになる。最外層33bでは、コイル素線33dは、内層のコイル素線33cの間に形成される凹部の上に位置付けられる。 As shown in FIG. 27, the flange portion 937c has a flat plate shape. The plurality of flange portions 937c are all flat. The manufacturing method of the rotating electrical machine 10 includes a winding process. In the winding step, the coil wire is advanced from the innermost layer to the outermost layer. In the innermost layer 33a, the coil wire 33c is wound from the radially inner side to the radially outer side of the tooth portion 32c. When the coil wire 33c reaches the flange portion 937c, the coil wire 33c moves to the outer layer. At this time, the traveling direction of the coil is reversed. In the outermost layer 33b, the coil wire 33d is wound forward from the radially outer side of the tooth portion 32c toward the radially inner side. After reaching the flange portion 937c, the coil wire 33c rides on the inner coil wire 33c and becomes the outermost layer 33b. In the outermost layer 33b, the coil wire 33d is positioned on a recess formed between the inner coil members 33c.
 最外層33bのコイル素線33dは、磁極32aに隣接する部位において内層33aの上に乗り上げて、最外層33bへと移行している。センサユニット41に面する最外層33bのコイル素線33dは、ステータ31の軸方向の他方の端面SD2側から、一方の端面SD1側に向けて、磁極32aから径方向に離れるように傾斜している。センサユニット41に面する最外層33bのコイル素線33dは、内層33aの複数のコイル素線33cの間に形成される凹部の上に位置することにより、一方の端面SD1側において、磁極32aから径方向に離れて配置されている。コイル素線33dは、磁極32aに隣接する部位において内層33aの上に乗り上げて、最外層33bへと移行してゆく。コイル素線33cとコイル素線33dとは、乗り上げ位置33rを経由する。乗り上げ位置33rでは、コイル素線33cとコイル素線33dとが周方向に重なっている。乗り上げ位置33rは、ティース部分32cの周方向に面する側面に位置している。この乗り上げ位置33rでは、コイル素線33dは、ティース部分32cの外側へ膨らむ。 The coil wire 33d of the outermost layer 33b rides on the inner layer 33a at a portion adjacent to the magnetic pole 32a and moves to the outermost layer 33b. The coil wire 33d of the outermost layer 33b facing the sensor unit 41 is inclined so as to be separated from the magnetic pole 32a in the radial direction from the other end surface SD2 side in the axial direction of the stator 31 toward the one end surface SD1 side. Yes. The coil strands 33d of the outermost layer 33b facing the sensor unit 41 are positioned on the recesses formed between the plurality of coil strands 33c of the inner layer 33a, so that the one end face SD1 side is separated from the magnetic pole 32a. They are spaced apart in the radial direction. The coil wire 33d rides on the inner layer 33a at a portion adjacent to the magnetic pole 32a and moves to the outermost layer 33b. The coil wire 33c and the coil wire 33d pass through the riding position 33r. At the riding position 33r, the coil wire 33c and the coil wire 33d overlap in the circumferential direction. The riding position 33r is located on the side surface of the tooth portion 32c facing in the circumferential direction. At the riding position 33r, the coil wire 33d bulges outside the tooth portion 32c.
 図27には、センサユニット41およびカバー53が破線で示されている。乗り上げ位置33rは、カバー53の先端よりも他方の端面CD2側に位置している。このため、コイル素線33dとカバー53との干渉が抑制される。このようなコイル素線の形状は、少なくとも複数のセンサボビン部分36bの上で実現されている。このようなコイル素線の形状は、通常ボビン部分36aの上では実現されていない。このため、通常ボビン部分36aの上では、他の目的をもって巻線工程を実施することができる。例えば、コイル素線の配置よりも、巻線工程の速さを重視することができる。ただし、このようなコイル素線の形状は、すべてのボビン部分36の上で実現されていてもよい。 27, the sensor unit 41 and the cover 53 are indicated by broken lines. The riding position 33r is located on the other end surface CD2 side than the tip of the cover 53. For this reason, interference with the coil strand 33d and the cover 53 is suppressed. Such a shape of the coil wire is realized on at least the plurality of sensor bobbin portions 36b. Such a shape of the coil wire is not usually realized on the bobbin portion 36a. For this reason, the winding process can be carried out for other purposes on the normal bobbin portion 36a. For example, the speed of the winding process can be more important than the arrangement of the coil wires. However, such a shape of the coil wire may be realized on all the bobbin portions 36.
 この実施形態によると、コイル案内部なしで、センサユニット41に面するステータコイル33のコイル素線33dを、一方の端面SD1側において、磁極32aから径方向に離れて配置することができる。このため、コイル素線とカバー53との干渉を抑制することができる。 According to this embodiment, the coil element wire 33d of the stator coil 33 facing the sensor unit 41 can be arranged away from the magnetic pole 32a in the radial direction on the one end face SD1 side without the coil guide portion. For this reason, interference with a coil strand and the cover 53 can be suppressed.
 第10実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。上記実施形態では、コイル案内部が採用されている。これに代えて、この実施形態では、最外層33bのコイル素線33dは、コイル案内部なしで磁極32aから離れるように配置される。以下の説明では、ティース部分32cおよびボビン36を含む部位をコアと呼ぶ。この実施形態でも、コイル素線はアルミニウム系の金属製である。コイル素線は、銅系の金属製でもよい。
Tenth Embodiment This embodiment is a modified example based on the preceding embodiment. In the above embodiment, a coil guide is employed. Instead, in this embodiment, the coil wire 33d of the outermost layer 33b is arranged so as to be separated from the magnetic pole 32a without the coil guide portion. In the following description, a portion including the tooth portion 32c and the bobbin 36 is referred to as a core. Also in this embodiment, the coil wire is made of an aluminum-based metal. The coil wire may be made of a copper-based metal.
 図28は、ステータコイル33が装着される前の裸のコアを示す外観である。図28は、裸のコアの4つの側面を示す。4つの側面は、前側面S1、左側面S2、背側面S3、右側面S4と呼ばれる。左側面S2および右側面S4は、前側面S1および背側面S3より広い。よって、左側面S2および右側面S4は、広い側面を提供する。4つの側面のそれぞれは、後述の複数のフィンA36fの整合状態の理解を助けるために、左欄に示される上下関係を与えられている。このため、右側面S4は上下が反転した状態で図示されている。この説明において、図の左右方向、すなわちステータ31の径方向は、ひとつの極の長さ方向と呼ばれる。ひとつのコアの外周を周回する方向は、周方向と呼ばれる。ティース部分32cの先端には磁極32aが露出している。インシュレータ35は、ボビン部分36と、フランジ部分A37cとを提供する。 FIG. 28 is an external view showing a bare core before the stator coil 33 is mounted. FIG. 28 shows the four sides of the bare core. The four side surfaces are referred to as a front side surface S1, a left side surface S2, a back side surface S3, and a right side surface S4. The left side surface S2 and the right side surface S4 are wider than the front side surface S1 and the back side surface S3. Therefore, the left side surface S2 and the right side surface S4 provide a wide side surface. Each of the four side surfaces is given the vertical relationship shown in the left column in order to help understand the alignment state of a plurality of fins A36f described later. For this reason, the right side surface S4 is shown in an upside down state. In this description, the horizontal direction in the figure, that is, the radial direction of the stator 31 is referred to as the length direction of one pole. The direction of circling the outer periphery of one core is called the circumferential direction. A magnetic pole 32a is exposed at the tip of the tooth portion 32c. The insulator 35 provides a bobbin portion 36 and a flange portion A37c.
 ボビン部分36は、複数のフィンA36fを有する。複数のフィンA36fは、コアの角部に配置されている。複数のフィンA36fは、図の左右方向、すなわち長さ方向に関して間欠的に設けられている。さらに、複数のフィンA36fは、図の上下方向、すなわち周方向に関して間欠的に設けられている。言い換えると、複数のフィンA36fは、4つの角部にだけ設けられている。例えば、前側面S1において、図中の上下において離れている2つのフィンA36fは、長さ方向における同じ位置に位置づけられている。周方向において間欠的に配置された複数のフィンA36fは、長さ方向におけるコイル素線の斜行部を可能とする。斜行部は、コイル素線の巻き進み、および巻き戻りを可能とする。 The bobbin portion 36 has a plurality of fins A36f. The plurality of fins A36f are arranged at the corners of the core. The plurality of fins A36f are provided intermittently in the left-right direction in the drawing, that is, in the length direction. Further, the plurality of fins A36f are provided intermittently in the vertical direction of the drawing, that is, in the circumferential direction. In other words, the plurality of fins A36f are provided only at the four corners. For example, on the front side surface S1, the two fins A36f that are separated in the vertical direction in the drawing are positioned at the same position in the length direction. The plurality of fins A36f arranged intermittently in the circumferential direction enables a skew portion of the coil wire in the length direction. The skew portion enables the coil wire to be wound forward and backward.
 複数のフィンA36fは、長さ方向に沿って等間隔に配置されている。複数のフィンA36fの間の複数の間隔Ptは、コイル素線の直径に相当する。間隔Ptは、コイル素線の直径より小さい場合がある。間隔Ptは、コイル素線の直径より大きくすることができるが、コイル素線の位置決めを正確に実現するためには、好ましくない。よって、間隔Ptは、コイル素線を位置決めできるように調節可能であり、上記「相当」の語は、この目的を達成できる範囲を示している。間隔Ptは、ピッチとも呼ばれる。基礎フランジ面37dと最初のフィンA36fとの間の最初の間隔は、コイル素線の直径に相当する。最初の間隔は、コイル素線33cを基礎フランジ面37dに隣接して配置することを可能とする。望ましい形態では、最初の間隔は、コイル素線33cと基礎フランジ面37dとの接触を可能とする。 The plurality of fins A36f are arranged at equal intervals along the length direction. The plurality of intervals Pt between the plurality of fins A36f correspond to the diameter of the coil wire. The interval Pt may be smaller than the diameter of the coil wire. The interval Pt can be made larger than the diameter of the coil wire, but it is not preferable in order to accurately position the coil wire. Therefore, the interval Pt can be adjusted so that the coil wire can be positioned, and the word “equivalent” indicates a range in which this object can be achieved. The interval Pt is also called a pitch. The initial distance between the base flange surface 37d and the first fin A 36f corresponds to the diameter of the coil wire. The initial spacing allows the coil wire 33c to be positioned adjacent to the base flange surface 37d. In the preferred form, the initial spacing allows contact between the coil strand 33c and the foundation flange surface 37d.
 複数のフィンA36fは、コアの4つの角部において、長さ方向に沿って列状に配置されている。この結果、複数のフィンA36fは、コアの4つの角部において、4列を形成するように配置されている。 The plurality of fins A36f are arranged in a row along the length direction at the four corners of the core. As a result, the plurality of fins A36f are arranged to form four rows at the four corners of the core.
 複数のフィンA36fは、コアの外周において、周方向に関して互いに整合して位置付けられている。コアの外周には、複数の仮想周方向軌道を想定することができる。図中には、代表的な2つの仮想周方向軌道RI、ROが図示されている。複数の仮想周方向軌道は、ティース部分32cの中心軸に対して垂直である。ひとつの仮想周方向軌道は、コアをぐるりと周回している。複数の仮想周回軌道は、互いに平行である。ひとつの仮想周方向軌道の上に、4つのフィンA36fが位置付けられている。言い換えると、コアの周方向に配置された4つのフィンA36fは、ひとつの仮想周方向軌道を規定している。ボビン部分36が複数のフィンA36fを備えることによって、ボビン部分36の外周形状は、所定ピッチの凹凸を備える。しかも、ボビン部分36は、長さ方向に関して等間隔の凹凸によって特徴づけられる。 The plurality of fins A36f are positioned in alignment with each other in the circumferential direction on the outer periphery of the core. A plurality of virtual circumferential trajectories can be assumed on the outer periphery of the core. In the figure, two typical virtual circumferential trajectories RI and RO are shown. The plurality of virtual circumferential trajectories are perpendicular to the central axis of the tooth portion 32c. One virtual circumferential trajectory goes around the core. The plurality of virtual orbits are parallel to each other. Four fins A36f are positioned on one virtual circumferential track. In other words, the four fins A36f arranged in the circumferential direction of the core define one virtual circumferential trajectory. When the bobbin portion 36 includes the plurality of fins A36f, the outer peripheral shape of the bobbin portion 36 includes irregularities with a predetermined pitch. Moreover, the bobbin portion 36 is characterized by irregularities that are equally spaced in the length direction.
 フランジ部分A37cの内面は、平面状である。フランジ部分A37cの内面は、基礎フランジ面37dによって規定されている。径方向に関して最も外側の仮想周方向軌道ROと、基礎フランジ面37dとの間の間隔は、ひとつのコイル素線33cの直径に相当する。径方向に関して最も内側の仮想周方向軌道RIと、中央部分35cとの間の間隔は、巻始めのコイル素線33cを位置付けるために一定ではない。中央部分35cは、巻始めのコイル素線33cを位置付けるために、位置決め部36sを備えることができる。 The inner surface of the flange portion A37c is planar. The inner surface of the flange portion A37c is defined by a base flange surface 37d. The distance between the outermost virtual circumferential track RO in the radial direction and the base flange surface 37d corresponds to the diameter of one coil wire 33c. The distance between the innermost virtual circumferential trajectory RI in the radial direction and the central portion 35c is not constant in order to position the coil wire 33c at the beginning of winding. The central portion 35c can include a positioning portion 36s for positioning the coil wire 33c at the beginning of winding.
 図29は、内層33aが装着された後の極を示している。内層33aは、第1層とも呼ばれる。内層33aは、コイル素線33cを有する。内層33aは、ボビン部分36の外周上に巻きつけられている。内層33aは、ボビン部分36の長さ方向の全体にわたって巻かれている。 FIG. 29 shows the pole after the inner layer 33a is mounted. The inner layer 33a is also called a first layer. The inner layer 33a has a coil wire 33c. The inner layer 33 a is wound around the outer periphery of the bobbin portion 36. The inner layer 33 a is wound over the entire length of the bobbin portion 36.
 前側面S1に図示されるように、コイル素線33cは、巻き始めの開始端STを有する。開始端STは、ティースの根元に設けられている。開始端ST、磁極の突出方向(長さ方向)における反対側端に設けられている。コイル素線33cは、開始端STにおいて断絶していない。コイル素線33cは、破線で示されるようにボビン部分36の外から、ボビン部分36の上に引き込まれている。コイル素線33cは、巻き方向を転換するためのリターン端RNを有する。コイル素線33cは、リターン端RNにおいて断絶していない。コイル素線33cは、破線で示されるように連続している。リターン端RNは、基礎フランジ面37dに接触するように配置されている。 As shown in the front side surface S1, the coil wire 33c has a start end ST at the start of winding. The start end ST is provided at the base of the teeth. The start end ST is provided at the opposite end in the protruding direction (length direction) of the magnetic pole. The coil wire 33c is not disconnected at the start end ST. The coil wire 33c is drawn on the bobbin portion 36 from the outside of the bobbin portion 36 as indicated by a broken line. The coil strand 33c has a return end RN for changing the winding direction. The coil wire 33c is not disconnected at the return end RN. The coil wire 33c is continuous as indicated by a broken line. The return end RN is disposed so as to contact the base flange surface 37d.
 コイル素線33cは、前側面S1から、左側面S2、背側面S3、および右側面S4を順に経由して、再び前側面S1に戻るように巻かれている。コイル状に巻かれたコイル素線33cは、複数の斜行部33ffを有する。コイル素線33cは、斜行部33ff以外の部分において周方向に真っ直ぐである。複数の斜行部33ffは、4つの側面のうち、ひとつの側面のみに位置付けられている。当該ひとつの側面において、コイル素線33cの一部だけが斜行部33ffを提供している。当該ひとつの側面において、コイル素線33cの残部が周方向に沿って真っ直ぐな部分を提供している。言い換えると、当該ひとつの側面において、コイル素線33cは、斜行部33ffと、その両側に位置する周方向に真っ直ぐな部分とを提供している。残る3つの側面において、コイル素線33cは、周方向に沿って真っ直ぐである。 The coil wire 33c is wound so as to return to the front side S1 again from the front side S1 through the left side S2, the back side S3, and the right side S4 in order. The coil wire 33c wound in a coil shape has a plurality of skew portions 33ff. The coil wire 33c is straight in the circumferential direction at a portion other than the skewed portion 33ff. The plurality of skew feeding portions 33ff are positioned on only one of the four side surfaces. In the one side surface, only a part of the coil wire 33c provides the skewed portion 33ff. In the said one side surface, the remainder of the coil strand 33c provides the straight part along the circumferential direction. In other words, in the one side surface, the coil wire 33c provides the skewed portion 33ff and the circumferentially straight portions located on both sides thereof. In the remaining three side surfaces, the coil wire 33c is straight along the circumferential direction.
 右側面S4に図示されるように、斜行部33ffは、周方向に関して長さADfにわたって延びている。長さADfは、右側面S4におけるフィンA36f間の周方向隙間より短い。斜行部33ffは、長さ方向に関してピッチPtの巻き進みを生じる。言い換えると、斜行部33ffは、周方向長さADfと、ピッチPtとで規定される。 As shown in the right side surface S4, the skew portion 33ff extends over a length ADf in the circumferential direction. The length ADf is shorter than the circumferential gap between the fins A36f on the right side surface S4. The skewed portion 33ff causes the winding advance of the pitch Pt in the length direction. In other words, the skew portion 33ff is defined by the circumferential length ADf and the pitch Pt.
 内層33aは、背側面S3に位置付けられたリターン端RNにおいて終端している。リターン端RNの前において、コイル素線33cは、右側面S4から基礎フランジ面37dに接することができるように配置されている。なお、リターン端RNは、説明のために設定された端部であって、コイル素線はリターン端RNにおいても連続している。 The inner layer 33a terminates at a return end RN located on the back side S3. In front of the return end RN, the coil wire 33c is arranged so as to be in contact with the foundation flange surface 37d from the right side surface S4. Note that the return end RN is an end set for explanation, and the coil wire is continuous at the return end RN.
 複数のターンを含む内層33aは、4つの側面のひとつに開始端STを位置づけて巻くことができる。開始端STが位置付けられた前側面S1は、第1側面と呼ぶことができる。第1側面に続く側面は、順に、第2側面、第3側面、第4側面と呼ぶことができる。斜行部33ffは、残る3つの側面のひとつに位置付けられている。斜行部33ffは、第2側面、第3側面、または第4側面に位置付けることができる。斜行部33ffは、4つの側面のうち、広い側面に位置付けられることが望ましい。 The inner layer 33a including a plurality of turns can be wound with the start end ST positioned on one of the four side surfaces. The front side surface S1 where the start end ST is positioned can be referred to as a first side surface. Side surfaces following the first side surface can be referred to as a second side surface, a third side surface, and a fourth side surface in this order. The skew portion 33ff is positioned on one of the remaining three side surfaces. The skew portion 33ff can be positioned on the second side surface, the third side surface, or the fourth side surface. The skew portion 33ff is preferably positioned on a wide side surface among the four side surfaces.
 図30は、最外層33bが装着された後の極を示す。内層33aは、第1層である。最外層33bは、第2層である。最外層33bは、終了端EDまで延びている。コイル素線33dは、終了端EDにおいて断絶していない。コイル素線33dは、終了端EDからも連続して延びだしている。 FIG. 30 shows the pole after the outermost layer 33b is mounted. The inner layer 33a is a first layer. The outermost layer 33b is the second layer. The outermost layer 33b extends to the end end ED. The coil wire 33d is not disconnected at the end end ED. The coil element wire 33d continuously extends from the end end ED.
 前側面S1に図示されるように、最外層33bは、ボビン部分36の長さ方向の一部だけにわたって巻かれている。内層33aと最外層33bとは、巻方向が同じである。内層33aと最外層33bとは、巻きの進行方向が逆である。内層33aの進行方向は、中央部分35cからフランジ部分A37cに向かう方向である。最外層33bの進行方向は、フランジ部分A37cから中央部分35cに向かう方向である。最外層33bの進行方向は、戻り方向とも呼ばれる。 As illustrated in the front side surface S1, the outermost layer 33b is wound over only a part of the bobbin portion 36 in the length direction. The inner layer 33a and the outermost layer 33b have the same winding direction. The inner layer 33a and the outermost layer 33b are reverse in the direction of winding. The traveling direction of the inner layer 33a is a direction from the central portion 35c toward the flange portion A37c. The traveling direction of the outermost layer 33b is a direction from the flange portion A37c toward the central portion 35c. The traveling direction of the outermost layer 33b is also called a return direction.
 断面C4は、C4-C4線における断面を示す。開始端STは、説明のために、表面として図示されている。左側面S2に位置付けられたコイル素線33cは、破線によって示されるように周方向に沿って真っ直ぐに延びている。 Cross section C4 shows a cross section taken along line C4-C4. The starting end ST is shown as a surface for the sake of illustration. The coil wire 33c positioned on the left side surface S2 extends straight along the circumferential direction as indicated by a broken line.
 右側面S4に図示されるように、リターン端RNから延びるコイル素線33eは、内層33aの上に徐々に乗り上げてゆく。コイル素線33eは、内層33aから最外層33bへの遷移範囲でもある。この説明では、コイル素線33eは、最外層33bの一部として説明されている。 As shown in the right side surface S4, the coil wire 33e extending from the return end RN gradually runs on the inner layer 33a. The coil wire 33e is also a transition range from the inner layer 33a to the outermost layer 33b. In this description, the coil wire 33e is described as a part of the outermost layer 33b.
 最外層33bは、斜行部33fsを有する。斜行部33fsは、内層33aから最外層33bへの遷移部分でもよい。斜行部33fsは、最外層33bにおける最初の斜行部である。斜行部33fsは、周方向の長さADfsを有する。斜行部33fsは、長さ方向に関してピッチ1/2Ptの巻き戻りを提供する。斜行部33fsのピッチは、斜行部33ssのピッチの1/2である。斜行部33fsは、内層33aの上に乗り上げた後に、2つの隣接するコイル素線33cの間の凹部に移行する。コイル素線33dは、斜行部33fsにおいて内層33aのコイル素線33cを乗り越える。コイル素線33dは、コイル素線33cに乗り上げた後は、2つの隣接するコイル素線33cの間の凹部に沿って推移する。 The outermost layer 33b has a skew portion 33fs. The skew portion 33fs may be a transition portion from the inner layer 33a to the outermost layer 33b. The skew portion 33fs is the first skew portion in the outermost layer 33b. The oblique portion 33fs has a circumferential length ADfs. The skew portion 33fs provides rewinding with a pitch of 1/2 Pt with respect to the length direction. The pitch of the skew portion 33fs is ½ of the pitch of the skew portion 33ss. The oblique portion 33fs shifts to a recess between two adjacent coil wires 33c after riding on the inner layer 33a. The coil wire 33d gets over the coil wire 33c of the inner layer 33a in the skewed portion 33fs. After the coil strand 33d rides on the coil strand 33c, the coil strand 33d moves along a recess between two adjacent coil strands 33c.
 さらに、最外層33bは、斜行部33ssを有する。斜行部33ssは、周方向の長さADsを有する。斜行部33ssは、長さ方向に関してピッチPtの巻き戻りを提供する。長さADsは、長さADfsより長い(ADfs<ADs)。 Furthermore, the outermost layer 33b has a skewed portion 33ss. The skewed portion 33 ss has a circumferential length ADs. The skew portion 33ss provides rewinding of the pitch Pt with respect to the length direction. The length ADs is longer than the length ADfs (ADfs <ADs).
 斜行部33fsと斜行部33ssとは、周方向に関してずれている。斜行部33fsは、巻き方向に関して、斜行部33ssよりも先行した位置に位置付けられている。斜行部33fsと仮想周方向軌道とが形成する内角は、斜行部33ssと仮想周方向軌道とが形成する内角より大きい。斜行部33fsは、最外層33bにおける最初の巻き進みを提供する。斜行部33ssは、最外層33bにおける残る複数の巻き進みを提供する。斜行部33fsおよび斜行部33ssの配置は、互いの干渉を抑制しながら、最外層33bをフランジ部分A37cから離れるように推移させる。最外層33bは、フランジ部分A37cから離れるように推移している。よって、センサユニット41のカバー部分53は、コイル素線33dとの強い干渉を回避して設置される。 The skew portion 33fs and the skew portion 33ss are shifted with respect to the circumferential direction. The skew portion 33fs is positioned at a position preceding the skew portion 33ss in the winding direction. The internal angle formed by the skewed portion 33fs and the virtual circumferential track is larger than the internal angle formed by the skewed portion 33ss and the virtual circumferential track. The skew portion 33fs provides the first winding advance in the outermost layer 33b. The skew portion 33ss provides a plurality of remaining winding advances in the outermost layer 33b. The arrangement of the skew portion 33fs and the skew portion 33ss causes the outermost layer 33b to move away from the flange portion A37c while suppressing mutual interference. The outermost layer 33b transitions away from the flange portion A37c. Therefore, the cover portion 53 of the sensor unit 41 is installed avoiding strong interference with the coil wire 33d.
 斜行部33ffは、内層33aにおける内層斜行部とも呼ばれる。斜行部33fsは、内層33aから外層33bへの遷移後の最初の斜行部であるから、中間斜行部とも呼ばれる。斜行部33ssは、外層33bにおける外層斜行部とも呼ばれる。これら複数の斜行部33ff、33fs、33ssは、複数の側面のうちのひとつの側面である右側面S4に設けられている。複数の斜行部33ff、33fs、33ssは、ひとつの同じ側面の上において互いに交差するように配置されている。斜行部33ffの巻き進み方向と、斜行部33fs、33ssの巻き戻し方向とは、互いに逆である。よって、斜行部33ffと斜行部33fsとが互いに交差する。同時に、斜行部33ffと斜行部33ssとが互いに交差する。この結果、斜行部33ffと斜行部33fs、33ssとの間には、大きい交差角度が形成される。具体的には、斜行部33ffの上を斜行部33fs、33ssが通過する場合の交差角度は、周方向に真っ直ぐのコイル素線33cの上を斜行部33fs、33ssが通過する場合の交差角度より大きい。 The skew portion 33ff is also referred to as an inner layer skew portion in the inner layer 33a. The skew portion 33fs is also called an intermediate skew portion because it is the first skew portion after the transition from the inner layer 33a to the outer layer 33b. The skewed portion 33ss is also called an outer layer skewed portion in the outer layer 33b. The plurality of skew portions 33ff, 33fs, and 33ss are provided on the right side surface S4 that is one side surface of the plurality of side surfaces. The plurality of oblique portions 33ff, 33fs, and 33ss are arranged so as to cross each other on the same side surface. The winding advance direction of the skew feeding portion 33ff and the rewinding direction of the skew feeding portions 33fs and 33ss are opposite to each other. Therefore, the skew portion 33ff and the skew portion 33fs intersect each other. At the same time, the skew portion 33ff and the skew portion 33ss cross each other. As a result, a large intersection angle is formed between the skew portion 33ff and the skew portions 33fs, 33ss. Specifically, the crossing angle when the oblique portions 33fs and 33ss pass over the oblique portion 33ff is the case where the oblique portions 33fs and 33ss pass over the coil wire 33c straight in the circumferential direction. Greater than intersection angle.
 断面C1は、C1-C1線における断面を示す。インシュレータ35は薄い断面を提供しているから、断面にハッチングは付されていない。図示されるコイル素線33eは、内層33aの斜行部33ffと干渉しながら、内層33aから最外層33bへ移行する過程にある。 Cross section C1 shows a cross section taken along line C1-C1. Since the insulator 35 provides a thin cross section, the cross section is not hatched. The illustrated coil wire 33e is in the process of moving from the inner layer 33a to the outermost layer 33b while interfering with the skewed portion 33ff of the inner layer 33a.
 この実施形態によると、センサユニット41に面するコイル素線33dは、一方の端面SD1の側において、磁極32aから径方向内側に離れて配置されている。センサユニット41に面する最外層33bのコイル素線33dは、ステータ31の軸方向の他方の端面SD2側から、一方の端面SD1側に向けて、磁極32aから径方向内側に離れるように斜行部33fs、33ssによって傾斜している。最外層33bのコイル素線33dと、内層33aのコイル素線33cとが周方向に積み重ねられる乗り上げ位置33rは、センサユニット41よりもステータ31の他方の端面SD2側に位置している。センサユニット41に面する最外層33bのコイル素線33dは、内層33aの複数のコイル素線33cの間に形成される凹部の上に位置する。これにより、コイル素子33dは、一方の端面SD1側において、磁極32aから径方向内側に離れて配置されている。コイル素線33dは、一方の端面SD1側においてのみ、ステータ31の他方の端面SD2側よりも磁極32aから径方向内側に離れて配置されている。この実施形態では、コイル素線33cに対するコイル素線33dのすべりが抑制される。この結果、ボビン36上にコイル素線33c、33dを正確かつ高速に配置できることにより大量生産に適する。 According to this embodiment, the coil element wire 33d facing the sensor unit 41 is arranged on the one end face SD1 side, away from the magnetic pole 32a radially inward. The coil element wire 33d of the outermost layer 33b facing the sensor unit 41 is skewed from the other end surface SD2 in the axial direction of the stator 31 toward the one end surface SD1 so as to be radially inward from the magnetic pole 32a. It is inclined by the parts 33fs and 33ss. The riding position 33r where the coil wire 33d of the outermost layer 33b and the coil wire 33c of the inner layer 33a are stacked in the circumferential direction is located on the other end surface SD2 side of the stator 31 with respect to the sensor unit 41. The coil wire 33d of the outermost layer 33b facing the sensor unit 41 is located on a recess formed between the plurality of coil wires 33c of the inner layer 33a. As a result, the coil element 33d is arranged on the one end face SD1 side away from the magnetic pole 32a radially inward. Only in one end surface SD1 side, the coil wire 33d is disposed farther inward in the radial direction from the magnetic pole 32a than in the other end surface SD2 side of the stator 31. In this embodiment, the slip of the coil strand 33d with respect to the coil strand 33c is suppressed. As a result, the coil strands 33c and 33d can be accurately and quickly arranged on the bobbin 36, which is suitable for mass production.
 この実施形態のステータコイル32は、内層33aのコイル素線33cと、内層33aの外側に配置された最外層33bのコイル素線33dとを備える。最外層33bのコイル素線33dは、一方の端面SD1であるひとつの側面S1以外のひとつの特定側面S4のみに配置された最外層斜行部33fs、33ssを含む。最外層33bのコイル素線33dは、特定側面S1以外の残る側面に配置され、周方向に沿って真っ直ぐに延びる部分を含む。最外層斜行部33fs、33ssは、磁極から離れるように傾斜している。特定側面は、側面S2、S3、S4のいずれかひとつである。 The stator coil 32 of this embodiment includes a coil wire 33c of the inner layer 33a and a coil wire 33d of the outermost layer 33b disposed outside the inner layer 33a. The coil element wire 33d of the outermost layer 33b includes outermost layer oblique portions 33fs and 33ss arranged only on one specific side surface S4 other than the one side surface S1 which is one end surface SD1. The coil wire 33d of the outermost layer 33b is disposed on the remaining side surface other than the specific side surface S1, and includes a portion extending straight along the circumferential direction. The outermost layer skewed portions 33fs and 33ss are inclined so as to be separated from the magnetic poles. The specific side surface is any one of the side surfaces S2, S3, and S4.
 この実施形態は、最外層33bのコイル素線33dの斜行部33fs、33ssが、特定側面S4に集中する。このため、内層33aのコイル素線33cと、最外層33bのコイル素線33dとの交差角度が大きい。この結果、コイル素線33cに対するコイル素線33dのすべりが抑制される。 In this embodiment, the oblique portions 33fs and 33ss of the coil wire 33d of the outermost layer 33b are concentrated on the specific side surface S4. For this reason, the intersection angle of the coil strand 33c of the inner layer 33a and the coil strand 33d of the outermost layer 33b is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is suppressed.
 内層33aのコイル素線33cは、特定側面S4のみに配置され、磁極へ近づくように傾斜する内層斜行部33ffを含む。コイル素線33cは、特定側面S4以外の残る側面に配置され、周方向に沿って真っ直ぐに延びる部分を含む。さらに、内層斜行部33ffの上に交差するように最外層斜行部33fs、33ssが配置されている。 The coil wire 33c of the inner layer 33a is disposed only on the specific side surface S4 and includes an inner layer skew portion 33ff that is inclined so as to approach the magnetic pole. The coil wire 33c is disposed on the remaining side surface other than the specific side surface S4 and includes a portion extending straight along the circumferential direction. Furthermore, outermost layer oblique portions 33fs and 33ss are arranged so as to intersect with the inner layer oblique portion 33ff.
 この実施形態は、内層斜行部33ffの傾斜方向と、最外層斜行部33fs、33ssの傾斜方向とは逆である。このため、コイル素線33cとコイル素線33dとの交差角度が大きい。この結果、コイル素線33cに対するコイル素線33dのすべりが、よりいっそうに抑制される。 In this embodiment, the inclination direction of the inner layer oblique portion 33ff is opposite to the inclination direction of the outermost layer oblique portions 33fs, 33ss. For this reason, the crossing angle between the coil wire 33c and the coil wire 33d is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is further suppressed.
 図31は、巻線装置61を示す断面図である。巻線装置61は、回転電機におけるステータの製造方法において利用される。巻線装置61は、ステータ31に対する巻線工程を実行する。巻線装置61は、コイルを巻くためのフライヤ62と、コイル素線63aを供給するフィーダ63とを備える。巻線装置61は、ボビン部分36の上におけるコイル素線63aの位置を調節するための成形器64を有する。成形器64は、ボビン部分36に沿って移動することができる。成形器64は、コイル素線63aを案内する。成形器64は、コイル素線63aを成形する部材である。巻線装置1は、成形器64に対向する補助成形器65を備えていてもよい。フライヤ62は、ボビン部分36の外周にコイル素線63aを巻く。コイル素線63aは、成形器64によってボビン部分36の上の規定位置に配置される。このとき、複数のフィンA36fは、コイル素線63aの位置を安定化する。巻線装置61は、成形器64の移動位置を制御する制御装置66(CNT)を備える。 FIG. 31 is a cross-sectional view showing the winding device 61. The winding device 61 is used in a method for manufacturing a stator in a rotating electrical machine. The winding device 61 executes a winding process for the stator 31. The winding device 61 includes a flyer 62 for winding a coil, and a feeder 63 that supplies a coil wire 63a. The winding device 61 has a forming device 64 for adjusting the position of the coil wire 63 a on the bobbin portion 36. The shaper 64 can move along the bobbin portion 36. The molding device 64 guides the coil wire 63a. The molding device 64 is a member that molds the coil wire 63a. The winding device 1 may include an auxiliary molding device 65 that faces the molding device 64. The flyer 62 winds the coil wire 63 a around the outer periphery of the bobbin portion 36. The coil wire 63 a is arranged at a predetermined position on the bobbin portion 36 by the molding device 64. At this time, the plurality of fins A36f stabilize the position of the coil wire 63a. The winding device 61 includes a control device 66 (CNT) that controls the movement position of the molding device 64.
 図32は、成形器64の位置制御の進み過程を示す。横軸SNは、周方向の長さ(mm)を示す。横軸SNは、複数の側面S1、S2、S3、S4に対応している。縦軸LGは、長さ方向の長さ(mm)を示す。ピッチPtは、コイル素線63aの直径に相当する。ピッチPtは、隣り合う2つのフィンA36fの間の間隔に相当する。図示される成形器64の挙動は、内層33aを形成するための挙動である。 FIG. 32 shows the progress process of the position control of the molding machine 64. The horizontal axis SN indicates the length (mm) in the circumferential direction. The horizontal axis SN corresponds to a plurality of side surfaces S1, S2, S3, and S4. The vertical axis LG indicates the length (mm) in the length direction. The pitch Pt corresponds to the diameter of the coil wire 63a. The pitch Pt corresponds to an interval between two adjacent fins A36f. The behavior of the illustrated molding machine 64 is a behavior for forming the inner layer 33a.
 細い実線CMPは、比較形態の成形器の移動を示している。比較形態の成形器は、一定速度で移動する。よって、コイル素線は、すべての側面において斜めに配置される。この比較形態では、内層のコイル素線と、最外層のコイル素線との交差角度が小さい。このため、最外層のコイル素線の位置が安定しない。この結果、最外層のコイルが崩れることがある。 The thin solid line CMP indicates the movement of the molding machine of the comparative form. The molding machine of the comparative form moves at a constant speed. Therefore, the coil wire is disposed obliquely on all side surfaces. In this comparative embodiment, the crossing angle between the inner coil element wire and the outermost coil element wire is small. For this reason, the position of the outermost coil wire is not stable. As a result, the outermost coil may collapse.
 太い実線EMBは、この実施形態の成形器64の移動を示している。コイル素線63aが開始端STに位置付けられると、フライヤ62が回転する。フライヤ62は、コイル素線63をコアに巻きつける。同時に、成形器64が巻線工程の進行につれて移動する。成形器64は、間欠的に前進するように制御される。前側面S1、左側面S2、および背側面S3における成形器64の移動量は、右側面S4における成形器64の移動量より小さい。成形器64は、複数の側面のうちのひとつの側面においてだけ、残る側面よりも大きく前進する。しかも、成形器64が大きく移動するひとつの側面は、内層33aと、外層33bとにおいて同じである。このため、内層33aの斜行部33ffと、外層33bの斜行部33fs、33ssとが交差する。しかも、比較的大きい交差角度が得られる。この結果、最外層33bの崩れが抑制される。 The thick solid line EMB indicates the movement of the molding device 64 of this embodiment. When the coil wire 63a is positioned at the start end ST, the flyer 62 rotates. The flyer 62 winds the coil wire 63 around the core. At the same time, the former 64 moves as the winding process proceeds. The molding machine 64 is controlled to advance intermittently. The movement amount of the molding device 64 on the front side surface S1, the left side surface S2, and the back side surface S3 is smaller than the movement amount of the molding device 64 on the right side surface S4. The molding device 64 advances more than the remaining side surface only on one of the side surfaces. Moreover, the one side surface on which the molding machine 64 moves greatly is the same in the inner layer 33a and the outer layer 33b. For this reason, the skewed portion 33ff of the inner layer 33a and the skewed portions 33fs, 33ss of the outer layer 33b intersect each other. Moreover, a relatively large crossing angle can be obtained. As a result, the collapse of the outermost layer 33b is suppressed.
 この実施形態では、前側面S1、左側面S2、および背側面S3における成形器64の移動量は、ゼロ(0)である。右側面S4における成形器64の移動量は、ピッチPtである。成形器64は、4つの側面のうち、3/4個の側面において固定されている。成形器64は、1/4個の側面のみにおいて前進する。この結果、コイル素線63aは、3/4個の側面において真っ直ぐに配置される。コイル素線63aは、1/4個の側面のみにおいて斜行部33ffを形成するように配置される。 In this embodiment, the amount of movement of the molding device 64 on the front side S1, the left side S2, and the back side S3 is zero (0). The amount of movement of the molding device 64 on the right side surface S4 is the pitch Pt. The molding device 64 is fixed on 3/4 of the four side surfaces. The molder 64 advances only on 1/4 side. As a result, the coil wire 63a is arranged straight on 3/4 side surfaces. The coil wire 63a is arranged so as to form the skewed portion 33ff only on the ¼ side surface.
 コイル素線63aは、開始端STから巻かれる。成形器64は、開始端STのための位置から、間欠的に駆動される。成形器54は、複数のターンを形成するように繰り返して駆動される。コイル素線63aは、リターン端RNまで巻かれる。成形器64は、リターン端RNにおいて内層33aのための工程を終了する。 The coil wire 63a is wound from the start end ST. The molding machine 64 is driven intermittently from the position for the start end ST. The molding machine 54 is repeatedly driven so as to form a plurality of turns. The coil wire 63a is wound up to the return end RN. The molding machine 64 ends the process for the inner layer 33a at the return end RN.
 図33は、成形器64の位置制御の戻り過程を示す。図示される成形器64の挙動は、最外層33bを形成するための挙動である。破線は内層33aを示している。実線は、最外層33bを示している。 FIG. 33 shows the return process of the position control of the molding device 64. The behavior of the illustrated molding machine 64 is a behavior for forming the outermost layer 33b. The broken line indicates the inner layer 33a. The solid line indicates the outermost layer 33b.
 戻り過程でも、フライヤ62が回転する。フライヤ62は、コイル素線63aをリターン端RNから引き続いて巻きつける。コイル素線63aは、リターン端RNから徐々に内層33aの上に乗り上げる。やがて、右側面S4において、コイル素線63aは内層33aの上に到達する。 The flyer 62 rotates even during the return process. The flyer 62 continuously winds the coil wire 63a from the return end RN. The coil wire 63a gradually runs on the inner layer 33a from the return end RN. Soon, on the right side S4, the coil wire 63a reaches the inner layer 33a.
 同時に、成形器64が巻線工程の進行につれて移動する。成形器64は、戻り過程においても、間欠的に後退するように制御される。前側面S1、左側面S2、および背側面S3における成形器64の移動量は、右側面S4における成形器64の移動量より小さい。成形器64は、複数の側面のうちのひとつの側面においてだけ、残る側面よりも大きく前進する。 At the same time, the molding machine 64 moves as the winding process proceeds. The molding machine 64 is controlled so as to retract intermittently even in the returning process. The movement amount of the molding device 64 on the front side surface S1, the left side surface S2, and the back side surface S3 is smaller than the movement amount of the molding device 64 on the right side surface S4. The molding device 64 advances more than the remaining side surface only on one of the side surfaces.
 この実施形態では、前側面S1、左側面S2、および背側面S3における成形器64の移動量は、ゼロ(0)である。右側面S4における成形器64の移動量は、1/2Pt、またはPtである。成形器64は、4個の側面のうち、3/4個の側面において周方向に固定されている。成形器64は、1/4個の側面のみにおいて戻る。この結果、コイル素線63aは、3/4個の側面において真っ直ぐに配置される。コイル素線63aは、1/4個の側面のみにおいて斜行部33fsを形成するように配置される。 In this embodiment, the amount of movement of the molding device 64 on the front side S1, the left side S2, and the back side S3 is zero (0). The movement amount of the molding device 64 on the right side surface S4 is 1/2 Pt or Pt. The molding machine 64 is fixed in the circumferential direction on 3/4 of the four side surfaces. The former 64 returns only on the 1/4 side. As a result, the coil wire 63a is arranged straight on 3/4 side surfaces. The coil wire 63a is arranged so as to form the skewed portion 33fs on only ¼ side surfaces.
 成形器64は、最初の右側面S4の上において1/2Ptだけ後退する。これにより、斜行部33fsが形成される。成形器64の挙動は、内層33aのコイル素線33cの上を乗り越えるように、コイル素線63aを配置する。これにより、ひとつの交差部分が形成される。斜行部33ffと斜行部33fsとの交差は、比較的大きい交差角度を提供する。よって、コイル素線63aの位置ずれが抑制される。 The molding machine 64 moves backward by 1/2 Pt on the first right side S4. Thereby, the skew portion 33fs is formed. In the behavior of the molding device 64, the coil wire 63a is arranged so as to get over the coil wire 33c of the inner layer 33a. Thereby, one intersection is formed. The intersection between the skew portion 33ff and the skew portion 33fs provides a relatively large intersection angle. Therefore, the positional deviation of the coil wire 63a is suppressed.
 成形器64は、次の右側面S4の上においてPtだけ後退する。これにより、斜行部33ssが形成される。成形器64の挙動は、内層33aのコイル素線33cの上を乗り越えるように、コイル素線63aを配置する。これにより、ひとつの交差部分が形成される。斜行部33ffと斜行部33ssとの交差は、比較的大きい交差角度を提供する。よって、コイル素線63aの位置ずれが抑制される。 The molding machine 64 moves backward by Pt on the next right side surface S4. Thereby, the skew portion 33ss is formed. In the behavior of the molding device 64, the coil wire 63a is arranged so as to get over the coil wire 33c of the inner layer 33a. Thereby, one intersection is formed. The intersection of the skew portion 33ff and the skew portion 33ss provides a relatively large intersection angle. Therefore, the positional deviation of the coil wire 63a is suppressed.
 成形器64は、上記挙動を繰り返す。やがて、コイル素線63aが終了端EDに到達すると、成形器64の駆動も完了する。これらの工程を経由することにより、図30に図示されるコイルが形成される。 The molding machine 64 repeats the above behavior. Eventually, when the coil wire 63a reaches the end ED, the driving of the molding device 64 is also completed. The coil shown in FIG. 30 is formed through these steps.
 この実施形態の巻線工程は、内層33aのコイル素線33cを配置する段階と、内層33aの外側に最外層33bのコイル素線33dを配置する段階とを備える。最外層33bを配置する段階は、一方の端面SD1であるひとつの側面S1以外のひとつの特定側面S4のみにおいて、磁極から離れるように傾斜する最外層斜行部33fs、33ssを形成するように、コイル素線33dを配置する段階を含む。最外層33bを配置する段階は、特定側面S4以外の残る側面において、周方向に沿ってコイル素線33dを真っ直ぐに配置する段階を含む。 The winding process of this embodiment includes a step of arranging the coil wire 33c of the inner layer 33a and a step of arranging the coil wire 33d of the outermost layer 33b outside the inner layer 33a. In the step of disposing the outermost layer 33b, the outermost layer oblique portions 33fs and 33ss that are inclined away from the magnetic poles are formed only on one specific side surface S4 other than the one side surface S1 that is one end surface SD1. The step includes arranging the coil wire 33d. The step of disposing the outermost layer 33b includes a step of straightly arranging the coil wire 33d along the circumferential direction on the remaining side surface other than the specific side surface S4.
 この実施形態は、最外層33bのコイル素線33dの斜行部33fs、33ssが、特定側面S4に集中する。このため、内層33aのコイル素線33cと、最外層33bのコイル素線33dとの交差角度が大きい。この結果、コイル素線33cに対するコイル素線33dのすべりが抑制される。 In this embodiment, the oblique portions 33fs and 33ss of the coil wire 33d of the outermost layer 33b are concentrated on the specific side surface S4. For this reason, the intersection angle of the coil strand 33c of the inner layer 33a and the coil strand 33d of the outermost layer 33b is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is suppressed.
 内層33aを配置する段階は、特定側面S4のみにおいて、磁極へ向けて近づくように傾斜する内層斜行部33ffを形成するように、コイル素線33cを配置する段階を含む。内層33aを配置する段階は、特定側面S4以外の残る側面において、周方向に沿ってコイル素線33cを真っ直ぐに配置する段階を含む。さらに、最外層33bを配置する段階は、内層斜行部33ffの上に交差するように最外層斜行部33fs、33ssを配置する。 The step of arranging the inner layer 33a includes the step of arranging the coil wire 33c so as to form the inner layer skew portion 33ff that is inclined toward the magnetic pole only on the specific side surface S4. The step of arranging the inner layer 33a includes the step of arranging the coil wire 33c straight along the circumferential direction on the remaining side surface other than the specific side surface S4. Further, in the step of disposing the outermost layer 33b, the outermost layer oblique portions 33fs and 33ss are disposed so as to intersect with the inner layer oblique portion 33ff.
 この実施形態では、内層斜行部33ffの傾斜方向と、最外層斜行部33fs、33ssの傾斜方向とは逆である。このため、コイル素線33cとコイル素線33dとの交差角度が大きい。この結果、コイル素線33cに対するコイル素線33dのすべりが、よりいっそうに抑制される。 In this embodiment, the inclination direction of the inner layer oblique portion 33ff is opposite to the inclination direction of the outermost layer oblique portions 33fs, 33ss. For this reason, the crossing angle between the coil wire 33c and the coil wire 33d is large. As a result, the slip of the coil wire 33d with respect to the coil wire 33c is further suppressed.
 この実施形態では、成形器64によってコイル素線63aを規定の位置に位置付けることができる。このため、整った形状のコイルが得られる。さらに、センサユニット41のカバー部分53との強い干渉を回避するように、コイル素線を配置することができる。加えて、内層33aの斜行部33ffに対して、最外層33bの斜行部33fs、33ssを交差させるため、大きい交差角度が提供される。これにより、コイル素線の位置ずれを抑制することができる。また、ステータの製造方法は、ボビン部分36の上にコイル素線33c、33dを正確かつ高速に配置できるから、大量生産に適する。 In this embodiment, the coil wire 63a can be positioned at a predetermined position by the molding device 64. For this reason, a well-shaped coil is obtained. Further, the coil wire can be arranged so as to avoid strong interference with the cover portion 53 of the sensor unit 41. In addition, since the skew portions 33fs and 33ss of the outermost layer 33b intersect with the skew portion 33ff of the inner layer 33a, a large intersection angle is provided. Thereby, the position shift of a coil strand can be suppressed. Further, the stator manufacturing method is suitable for mass production because the coil strands 33c and 33d can be accurately and rapidly arranged on the bobbin portion 36.
 他の実施形態
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
Other Embodiments The disclosure herein is not limited to the illustrated embodiments. The disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon. For example, the disclosure is not limited to the combinations of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure may have additional parts that can be added to the embodiments. The disclosure includes those in which parts and / or elements of the embodiments are omitted. The disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. Some technical scope disclosed is shown by the description of the scope of claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the scope of claims.
 上記実施形態では、突出部分37eは、一方の端面SD1側にのみ、しかもセンサ隙間の隣にのみ設けられている。これに代えて、突出部分37eは、他の任意の位置にも設けられてもよい。上記実施形態では、凹凸部と、突出部分37eとの両方をセンサインシュレータ部分にのみ設けた。これに代えて、突出部分37eだけをセンサインシュレータ部分にのみ設けてもよい。例えば、凹凸部は、すべてのボビン部分36に設けてもよい。 In the above-described embodiment, the protruding portion 37e is provided only on one end surface SD1 side and next to the sensor gap. Instead of this, the protruding portion 37e may be provided at any other position. In the said embodiment, both the uneven | corrugated | grooved part and the protrusion part 37e were provided only in the sensor insulator part. Instead of this, only the protruding portion 37e may be provided only in the sensor insulator portion. For example, the uneven portions may be provided on all bobbin portions 36.
 上記実施形態では、ボビン部分36における凹凸部は、表面36eとフィン36fとで提供される。これに代えて、凹凸部は、多様な形状によって提供できる。例えば、凹凸部は、表面36eと、溝とによって提供されてもよい。 In the above embodiment, the uneven portion in the bobbin portion 36 is provided by the surface 36e and the fins 36f. Instead, the uneven portion can be provided in various shapes. For example, the uneven portion may be provided by the surface 36e and a groove.
 上記実施形態では、単コイル33ssは一連のコイル素線を有する。これに代えて、ひとつのティース部分32cの上に、複数のコイル素線を配置してもよい。この場合、複数のコイル素線が、単コイル33ssを提供する。例えば、ターン数の異なる2つのコイルを提供するための2群のコイル素線をひとつのティース部分の上に配置してもよい。また、上記実施形態では、ステータコイル33は、集中巻きであるが、分布巻き、例えば波巻き、または分散巻きにより形成されていてもよい。 In the above embodiment, the single coil 33ss has a series of coil wires. It may replace with this and may arrange a plurality of coil strands on one teeth part 32c. In this case, the plurality of coil wires provide the single coil 33ss. For example, two groups of coil wires for providing two coils having different numbers of turns may be arranged on one tooth portion. Moreover, in the said embodiment, although the stator coil 33 is concentrated winding, you may be formed by distributed winding, for example, wave winding, or distributed winding.
 上記実施形態では、容器52とカバー53とは、連続した樹脂材料によって一体的に形成されている。これに代えて、ケース51は、複数の部品によって提供されてもよい。例えば、容器52と複数のカバー53とは、別の部品であってもよい。 In the above embodiment, the container 52 and the cover 53 are integrally formed of a continuous resin material. Instead, the case 51 may be provided by a plurality of parts. For example, the container 52 and the plurality of covers 53 may be separate parts.
 上記実施形態では、基板を含む電気回路部品42が容器52に収容されている。これに代えて、カバー53内に電気配線のための基板を有してもよい。また、基板は、リードフレームでもよい。 In the above embodiment, the electric circuit component 42 including the substrate is accommodated in the container 52. Alternatively, the cover 53 may have a substrate for electrical wiring. The substrate may be a lead frame.
 上記実施形態では、ひとつのカバー53の中にひとつのセンサ43が配置されている。これに代えて、複数のセンサが配置されていてもよい。また、一部のセンサは、容器52の中に配置されてもよい。これにより、コイルとカバー53との干渉による悪影響、例えば損傷が抑制される。また、ひとつのカバー53を備えるセンサユニット41を採用してもよい。例えば、点火制御用のセンサ43のみを備える発電機としての回転電機が提供されてもよい。 In the above embodiment, one sensor 43 is arranged in one cover 53. Instead of this, a plurality of sensors may be arranged. Some sensors may be disposed in the container 52. Thereby, the bad influence by interference with a coil and the cover 53, for example, damage, is suppressed. Further, the sensor unit 41 including one cover 53 may be employed. For example, a rotating electrical machine as a generator including only the ignition control sensor 43 may be provided.
 上記実施形態では、2層の単コイル33ssによって内層33aと最外層33bとが提供されている。これに代えて、3層またはそれ以上の層を有する単コイル33ssが利用されてもよい。それらの場合でも、内層33aと最外層33bとが提供される。 In the above embodiment, the inner layer 33a and the outermost layer 33b are provided by two single coils 33ss. Instead of this, a single coil 33ss having three or more layers may be used. Even in those cases, the inner layer 33a and the outermost layer 33b are provided.
 上記実施形態では、複数のフィン36f、A36fは等間隔に設けられている。代替的に、複数のフィン36f、A36fは、長さ方向における両端範囲にのみ設けられていてもよい。この場合、ボビン部分36の中央範囲は、フィン36f、A36fを持たないフラットな筒状部分を提供する。両端範囲のフィン36f、A36fは、巻き始めにおけるコイル素線33cの位置ずれを抑制する。両端範囲のフィン36f、A36fは、基礎フランジ面36f、37dに接触した後における、巻き方向の転換部分におけるコイル素線33cの位置ずれを抑制する。 In the above embodiment, the plurality of fins 36f and A36f are provided at equal intervals. Alternatively, the plurality of fins 36f and A36f may be provided only in both end ranges in the length direction. In this case, the central range of the bobbin portion 36 provides a flat cylindrical portion having no fins 36f and A36f. The fins 36f and A36f in the both end ranges suppress the positional deviation of the coil wire 33c at the start of winding. The fins 36f and A36f in the both end ranges suppress the displacement of the coil wire 33c in the winding direction change portion after contacting the base flange surfaces 36f and 37d.
 10 回転電機、12 内燃機関、13 ボディ、21 ロータ、
 22 ロータコア、 23 永久磁石、 31 ステータ、
 32 ステータコア、 32a 磁極、 32c ティース部分、
 33 ステータコイル、 33a 内層、 33b 最外層、
 33c コイル素線、33d コイル素線、 33j ジャンパ線、
 33s 単コイル、 33r 乗り上げ位置、
 33ff 内層斜行部、 33fs、33ss 最外層斜行部、
 35 インシュレータ、 35d ガイドフィン、
 36 ボビン部分、 36a 通常ボビン部分、
 36b センサボビン部分、 36e 表面(凹凸部、コイル案内部)、
 36f、A36f フィン(凹凸部、コイル案内部)、
 37 フランジ部分、
 37e、237e、337e、437e 突出部分(コイル案内部)、
 537e、637e、737e、837e 突出部分(コイル案内部)、
 38a 通常隙間、 38b センサ隙間、 41 センサユニット、
 43 センサ、 51 ケース、 52 容器、
 53 カバー、 57 突出部分、 58 空洞部、
 SD1 一方の端面、 SD2 他方の端面。

 
10 rotating electrical machines, 12 internal combustion engines, 13 bodies, 21 rotors,
22 rotor core, 23 permanent magnet, 31 stator,
32 stator core, 32a magnetic pole, 32c teeth portion,
33 Stator coil, 33a inner layer, 33b outermost layer,
33c coil wire, 33d coil wire, 33j jumper wire,
33s single coil, 33r riding position,
33ff inner layer skewed portion, 33fs, 33ss outermost layer skewed portion,
35 insulator, 35d guide fin,
36 bobbin part, 36a normal bobbin part,
36b sensor bobbin portion, 36e surface (uneven portion, coil guide portion),
36f, A36f fins (concavo-convex part, coil guide part),
37 flange part,
37e, 237e, 337e, 437e protruding portion (coil guide portion),
537e, 637e, 737e, 837e projecting part (coil guide part),
38a normal gap, 38b sensor gap, 41 sensor unit,
43 sensors, 51 cases, 52 containers,
53 cover, 57 projecting part, 58 cavity,
SD1 One end face, SD2 The other end face.

Claims (20)

  1.  界磁を提供するロータ(21)と、
     径方向に延びる複数のティース部分の端部に前記界磁を受けるように設けられ、周方向に沿って互いに離れて配置された複数の磁極(32a)を有するステータコア(32)、および前記ティース部分に装着されたステータコイル(33)を有するステータ(31)と、
     隣り合う2つの前記磁極の間のセンサ隙間(38b)に配置され、前記ロータの磁束を検出するセンサ(43)を収容するセンサユニット(41)とを備え、
     前記センサユニットは、前記ステータの軸方向の一方の端面(SD1)側から軸方向に沿って前記センサ隙間の中に延びており、
     前記センサユニットに面する前記ステータコイルのコイル素線(33d)は、前記一方の端面側において、前記磁極から径方向に離れて配置されている回転電機。
    A rotor (21) providing a field;
    A stator core (32) having a plurality of magnetic poles (32a) arranged to receive the field at end portions of a plurality of teeth portions extending in the radial direction and spaced apart from each other along the circumferential direction, and the teeth portions A stator (31) having a stator coil (33) mounted on;
    A sensor unit (41) disposed in a sensor gap (38b) between two adjacent magnetic poles and containing a sensor (43) for detecting the magnetic flux of the rotor;
    The sensor unit extends into the sensor gap along the axial direction from one axial end surface (SD1) side of the stator,
    A rotating electrical machine in which the coil wire (33d) of the stator coil facing the sensor unit is arranged radially away from the magnetic pole on the one end face side.
  2.  前記ステータコイルは、前記ティース部分の外側に配置された多層のコイルを有し、
     前記コイル素線(33d)は、前記磁極に隣接する部位において内層の上に乗り上げて、最外層へと移行しており、
     前記センサユニットに面する最外層のコイル素線(33d)は、前記ステータの軸方向の他方の端面側から、前記一方の端面側に向けて、前記磁極から径方向に離れるように傾斜している請求項1に記載の回転電機。
    The stator coil has a multilayer coil disposed outside the teeth portion,
    The coil wire (33d) runs on the inner layer at a portion adjacent to the magnetic pole and moves to the outermost layer,
    The outermost coil wire (33d) facing the sensor unit is inclined from the other end surface side in the axial direction of the stator toward the one end surface so as to be separated from the magnetic pole in the radial direction. The rotating electrical machine according to claim 1.
  3.  前記最外層の前記コイル素線と、前記内層のコイル素線とが周方向に積み重ねられる乗り上げ位置(33r)は、前記センサユニットよりも前記ステータの他方の端面(SD2)側に位置している請求項2に記載の回転電機。 The riding position (33r) where the coil wires of the outermost layer and the coil wires of the inner layer are stacked in the circumferential direction is located closer to the other end surface (SD2) of the stator than the sensor unit. The rotating electrical machine according to claim 2.
  4.  前記センサユニットに面する最外層のコイル素線(33d)は、内層の複数のコイル素線の間に形成される凹部の上に位置することにより、前記一方の端面側において、前記磁極から径方向に離れて配置されている請求項1から請求項3のいずれかに記載の回転電機。 The outermost coil wire (33d) facing the sensor unit is positioned on a recess formed between a plurality of coil wires in the inner layer, so that the diameter from the magnetic pole on the one end surface side is increased. The rotating electrical machine according to any one of claims 1 to 3, wherein the rotating electrical machine is disposed apart in a direction.
  5.  前記コイル素線は、前記一方の端面側においてのみ、前記ステータの他方の端面(SD2)側よりも前記磁極から径方向に離れて配置されている請求項1から請求項4のいずれかに記載の回転電機。 5. The coil element wire according to claim 1, wherein the coil wire is disposed on the one end surface side in a radial direction away from the magnetic pole than the other end surface (SD2) side of the stator. Rotating electric machine.
  6.  前記ステータコアと前記ステータコイルとの間には、樹脂製のインシュレータ(35)が配置されており、
     前記インシュレータは、前記一方の端面側において、前記ステータコイルを前記磁極から径方向に離れさせるコイル案内部(36e、36f、37e、237e、337e、437e、537e、637e、737e、837e、A36f)を有する請求項1から請求項5のいずれかに記載の回転電機。
    Between the stator core and the stator coil, a resin insulator (35) is disposed,
    The insulator has coil guide portions (36e, 36f, 37e, 237e, 337e, 437e, 537e, 637e, 737e, 837e, A36f) for radially separating the stator coil from the magnetic poles on the one end face side. The rotating electrical machine according to any one of claims 1 to 5.
  7.  前記インシュレータは、前記ティース部分と前記ステータコイルとの間に配置されたボビン部分(36)を有し、
     前記コイル案内部は、前記ボビン部分の上における前記コイル素線の位置を規定する凹凸部(36e、36f、A36f)である請求項6に記載の回転電機。
    The insulator has a bobbin portion (36) disposed between the teeth portion and the stator coil;
    The rotating electrical machine according to claim 6, wherein the coil guide portion is an uneven portion (36e, 36f, A36f) that defines a position of the coil wire on the bobbin portion.
  8.  前記インシュレータは、前記磁極と前記ステータコイルとの間に配置されたフランジ部分(37)を有し、
     前記コイル案内部は、前記フランジ部分から前記ティース部分に沿って前記ステータコイルに向けて突出する突出部分(37e、237e、337e、437e、537e、637e、737e、837e)である請求項6または請求項7に記載の回転電機。
    The insulator has a flange portion (37) disposed between the magnetic pole and the stator coil,
    The said coil guide part is a protrusion part (37e, 237e, 337e, 437e, 537e, 637e, 737e, 837e) which protrudes toward the said stator coil along the said teeth part from the said flange part. Item 8. The rotating electrical machine according to Item 7.
  9.  複数の前記磁極は、
     前記センサユニットが配置されない通常隙間(38a)と、
     前記センサユニットが配置される前記センサ隙間(38b)とを区画形成しており、
     前記インシュレータは、
     前記通常隙間を形成する前記磁極に対応する通常インシュレータ部分と、
     前記センサ隙間を形成する前記磁極に対応するセンサインシュレータ部分とを有し、
     前記コイル案内部は、前記センサインシュレータ部分にのみ設けられている請求項6から請求項8のいずれかに記載の回転電機。
    The plurality of magnetic poles are
    A normal gap (38a) in which the sensor unit is not disposed;
    The sensor gap (38b) in which the sensor unit is disposed is partitioned and formed,
    The insulator is
    A normal insulator portion corresponding to the magnetic pole forming the normal gap;
    A sensor insulator portion corresponding to the magnetic pole forming the sensor gap,
    The rotating electrical machine according to any one of claims 6 to 8, wherein the coil guide portion is provided only in the sensor insulator portion.
  10.  前記ステータコアは、前記ステータコアを固定するための固定部を有し、
     前記インシュレータは、前記固定部に位置付けられ、径方向に延びる板状であって、軸方向に延び出し、前記ステータコイルに含まれる複数のコイルを接続するためのジャンパ線(33j)の前記固定部への侵入を抑制するように前記ジャンパ線を案内するガイドフィン(35d)を有する請求項6から請求項9のいずれかに記載の回転電機。
    The stator core has a fixing portion for fixing the stator core,
    The insulator is positioned on the fixing portion and has a plate shape extending in the radial direction, extending in the axial direction, and the fixing portion of a jumper wire (33j) for connecting a plurality of coils included in the stator coil The rotating electrical machine according to any one of claims 6 to 9, further comprising guide fins (35d) for guiding the jumper wire so as to suppress intrusion into the wire.
  11.  前記センサユニットは、
     前記ステータの軸方向の一方の端面に配置されたケース(51)と、
     前記ケースから前記センサ隙間の中に延びるカバー(53)とを有し、
     前記ケースの周方向の両側に設けられ、前記ケースから突出する突出部分(57)を有する請求項1から請求項10のいずれかに記載の回転電機。
    The sensor unit is
    A case (51) disposed on one end surface of the stator in the axial direction;
    A cover (53) extending from the case into the sensor gap,
    The rotating electrical machine according to any one of claims 1 to 10, further comprising projecting portions (57) provided on both sides in a circumferential direction of the case and projecting from the case.
  12.  前記センサユニットは、
     前記ステータの軸方向の一方の端面に配置されたケース(51)と、
     前記ケースから前記センサ隙間の中に延びるカバー(53)とを有し、
     前記ケースは、電気部品を収容し、樹脂材料により封止されている容器(52)と、
     前記樹脂材料により封止されていない空洞部(58)とを有する請求項1から請求項11のいずれかに記載の回転電機。
    The sensor unit is
    A case (51) disposed on one end surface of the stator in the axial direction;
    A cover (53) extending from the case into the sensor gap,
    The case contains an electrical component and is sealed with a resin material (52);
    The rotating electrical machine according to any one of claims 1 to 11, further comprising a hollow portion (58) not sealed with the resin material.
  13.  前記センサユニットは、
     前記ステータの軸方向の一方の端面に配置されたケース(51)と、
     前記ケースから前記センサ隙間の中に延びるカバー(53)とを有し、
     前記カバーの軸方向に垂直な断面積は、前記ケースから先端部に向けて徐々に小さくなる請求項1から請求項12のいずれかに記載の回転電機。
    The sensor unit is
    A case (51) disposed on one end surface of the stator in the axial direction;
    A cover (53) extending from the case into the sensor gap,
    The rotary electric machine according to any one of claims 1 to 12, wherein a cross-sectional area perpendicular to the axial direction of the cover gradually decreases from the case toward a tip portion.
  14.  前記ステータコイルは、内層(33a)のコイル素線(33c)と、前記内層の外側に配置された最外層(33b)のコイル素線(33d)とを備え、
     前記最外層のコイル素線(33d)は、
     前記一方の端面(SD1)であるひとつの側面(S1)以外のひとつの特定側面(S2、S3、S4)のみに配置され、前記磁極から離れるように傾斜する最外層斜行部(33fs、33ss)と、
     前記特定側面以外の残る側面に配置され、周方向に沿って真っ直ぐに延びる部分とを含む請求項1から請求項13のいずれかに記載の回転電機。
    The stator coil includes a coil wire (33c) of an inner layer (33a) and a coil wire (33d) of an outermost layer (33b) disposed outside the inner layer,
    The outermost coil wire (33d) is:
    The outermost layer oblique portion (33fs, 33ss) is disposed only on one specific side surface (S2, S3, S4) other than the one side surface (S1) which is the one end surface (SD1), and is inclined so as to be away from the magnetic pole. )When,
    The rotating electrical machine according to any one of claims 1 to 13, further comprising: a portion disposed on a remaining side surface other than the specific side surface and extending straight along a circumferential direction.
  15.  前記内層のコイル素線(33c)は、
     前記特定側面(S2、S3、S4)のみに配置され、前記磁極へ近づくように傾斜する内層斜行部(33ff)と、
     前記特定側面以外の残る側面に配置され、周方向に沿って真っ直ぐに延びる部分とを含み、
     前記内層斜行部の上に交差するように前記最外層斜行部が配置されている請求項14に記載の回転電機。
    The coil wire (33c) of the inner layer is
    An inner layer skew portion (33ff) that is disposed only on the specific side surface (S2, S3, S4) and is inclined so as to approach the magnetic pole;
    Including a portion that is disposed on a remaining side surface other than the specific side surface and extends straight along a circumferential direction,
    The rotating electrical machine according to claim 14, wherein the outermost layer skew portion is disposed so as to intersect with the inner layer skew portion.
  16.  先端に磁極(32a)を有する複数のティース部分(32c)に装着された複数のボビン部分(36)の外周にステータコイル(33)を巻く巻線工程と、
     隣り合う2つの前記磁極の間の隙間に、ステータ(31)の一方の端面(SD1)からセンサ(43)を挿入する挿入工程とを備え、
     前記巻線工程は、前記ステータコイルのコイル素線(33d)が、前記一方の端面側において、前記磁極から径方向に離れて配置されるように、前記コイル素線を巻く回転電機の製造方法。
    A winding step in which a stator coil (33) is wound around the outer periphery of a plurality of bobbin portions (36) attached to a plurality of teeth portions (32c) having magnetic poles (32a) at their tips;
    An insertion step of inserting a sensor (43) from one end face (SD1) of the stator (31) into a gap between two adjacent magnetic poles,
    In the winding step, a method of manufacturing a rotating electrical machine in which the coil wire is wound so that the coil wire (33d) of the stator coil is disposed radially away from the magnetic pole on the one end face side. .
  17.  前記挿入工程は、複数の前記磁極が形成する複数の通常隙間(38a)とセンサ隙間(38b)とのうち、前記センサ隙間(38b)のみに前記センサを挿入する工程であり、
     前記巻線工程は、前記センサ隙間(38b)の隣に位置するセンサボビン部分(36b)のみにおいて、前記ステータコイルのコイル素線(33d)が、前記一方の端面側において、前記磁極から径方向に離れて配置されるように、前記コイル素線を巻く工程である請求項16に記載の回転電機の製造方法。
    The insertion step is a step of inserting the sensor only into the sensor gap (38b) among the plurality of normal gaps (38a) and sensor gaps (38b) formed by the plurality of magnetic poles,
    In the winding step, only in the sensor bobbin portion (36b) located next to the sensor gap (38b), the coil wire (33d) of the stator coil is radially formed from the magnetic pole on the one end face side. The method of manufacturing a rotating electrical machine according to claim 16, which is a step of winding the coil wire so as to be spaced apart.
  18.  前記巻線工程は、前記ステータコイルのコイル素線(33d)が、前記ステータの他方の端面(SD2)より前記一方の端面側において、前記磁極から径方向に離れて配置されるように、前記コイル素線を巻く工程である請求項16または請求項17に記載の回転電機の製造方法。 The winding step is performed such that the coil wire (33d) of the stator coil is arranged radially away from the magnetic pole on the one end face side from the other end face (SD2) of the stator. The method for manufacturing a rotating electrical machine according to claim 16 or 17, which is a step of winding a coil wire.
  19.  前記巻線工程は、
     内層(33a)のコイル素線(33c)を配置する段階と、
     前記内層の外側に最外層(33b)のコイル素線(33d)を配置する段階とを備え、
     前記最外層を配置する段階は、
     前記一方の端面(SD1)であるひとつの側面(S1)以外のひとつの特定側面(S2、S3、S4)のみにおいて、前記磁極から離れるように傾斜する最外層斜行部(33fs、33ss)を形成するように、前記コイル素線を配置する段階と、
     前記特定側面以外の残る側面において、周方向に沿って前記コイル素線(33d)を真っ直ぐに配置する段階とを含む請求項16から請求項18のいずれかに記載の回転電機の製造方法。
    The winding process includes
    Arranging the coil wire (33c) of the inner layer (33a);
    Arranging the coil wire (33d) of the outermost layer (33b) outside the inner layer,
    Arranging the outermost layer comprises:
    Only on one specific side surface (S2, S3, S4) other than one side surface (S1) which is the one end surface (SD1), outermost layer oblique portions (33fs, 33ss) which incline away from the magnetic poles. Arranging the coil strands to form,
    The method for manufacturing a rotating electrical machine according to any one of claims 16 to 18, further comprising a step of arranging the coil wire (33d) straight along a circumferential direction on a remaining side surface other than the specific side surface.
  20.  前記内層を配置する段階は、
     前記特定側面(S2、S3、S4)のみにおいて、前記磁極へ向けて近づくように傾斜する内層斜行部(33ff)を形成するように、前記コイル素線を配置する段階と、
     前記特定側面以外の残る側面において、周方向に沿って前記コイル素線(33c)を真っ直ぐに配置する段階とを含み、
     前記最外層を配置する段階は、前記内層斜行部の上に交差するように前記最外層斜行部を配置する請求項19に記載の回転電機の製造方法。

     
    Arranging the inner layer comprises:
    Arranging the coil wires so as to form an inner layer oblique portion (33ff) that is inclined so as to approach the magnetic pole only on the specific side surfaces (S2, S3, S4);
    Placing the coil wire (33c) straight along the circumferential direction on the remaining side surface other than the specific side surface,
    The method for manufacturing a rotating electrical machine according to claim 19, wherein in the step of disposing the outermost layer, the outermost layer oblique portion is disposed so as to intersect with the inner layer oblique portion.

PCT/JP2018/020707 2017-06-02 2018-05-30 Rotary electric machine and method for manufacturing rotary electric machine WO2018221565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019516714A JP6656474B2 (en) 2017-06-02 2018-05-30 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110301 2017-06-02
JP2017110301 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221565A1 true WO2018221565A1 (en) 2018-12-06

Family

ID=64455881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020707 WO2018221565A1 (en) 2017-06-02 2018-05-30 Rotary electric machine and method for manufacturing rotary electric machine

Country Status (2)

Country Link
JP (2) JP6656474B2 (en)
WO (1) WO2018221565A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195580A1 (en) * 2019-03-25 2020-10-01 デンソートリム株式会社 Rotating electric machine and stator thereof
WO2023162740A1 (en) * 2022-02-23 2023-08-31 株式会社デンソートリム Rotary electric machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354738A (en) * 2001-05-24 2002-12-06 Mitsubishi Electric Corp Electric rotating machine
JP2005229703A (en) * 2004-02-12 2005-08-25 Sanko Kiki Co Ltd Insulator for stator core, and winding method for stator core
JP2007330059A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Corp Rotating electric machine
WO2011118357A1 (en) * 2010-03-23 2011-09-29 日産自動車株式会社 Electromagnet for stator and method of manufacturing electromagnet for stator
JP2013021880A (en) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp Stator of rotary electric machine
JP2013058658A (en) * 2011-09-09 2013-03-28 Seiko Epson Corp Electromagnetic coil, coreless electric machine device, moving body, robot, and manufacturing method of electromagnetic coil
JP2014103712A (en) * 2012-11-16 2014-06-05 Samsung R&D Institute Japan Co Ltd Motor
WO2015174091A1 (en) * 2014-05-16 2015-11-19 デンソートリム株式会社 Rotating electric machine for internal combustion engine and method for manufacturing same
JP2016167963A (en) * 2014-11-10 2016-09-15 デンソートリム株式会社 Dynamo-electric machine for internal combustion engine
WO2016181659A1 (en) * 2015-05-14 2016-11-17 デンソートリム株式会社 Rotational position detection device for internal combustion engine and rotary electric machine for internal combustion engine
WO2017026411A1 (en) * 2015-08-10 2017-02-16 日本電産株式会社 Stator and motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396629B2 (en) * 2005-12-26 2010-01-13 トヨタ自動車株式会社 Winding method and coil
JP2010200421A (en) * 2009-02-23 2010-09-09 Mitsuba Corp Outer rotor type rotating electric machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354738A (en) * 2001-05-24 2002-12-06 Mitsubishi Electric Corp Electric rotating machine
JP2005229703A (en) * 2004-02-12 2005-08-25 Sanko Kiki Co Ltd Insulator for stator core, and winding method for stator core
JP2007330059A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Corp Rotating electric machine
WO2011118357A1 (en) * 2010-03-23 2011-09-29 日産自動車株式会社 Electromagnet for stator and method of manufacturing electromagnet for stator
JP2013021880A (en) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp Stator of rotary electric machine
JP2013058658A (en) * 2011-09-09 2013-03-28 Seiko Epson Corp Electromagnetic coil, coreless electric machine device, moving body, robot, and manufacturing method of electromagnetic coil
JP2014103712A (en) * 2012-11-16 2014-06-05 Samsung R&D Institute Japan Co Ltd Motor
WO2015174091A1 (en) * 2014-05-16 2015-11-19 デンソートリム株式会社 Rotating electric machine for internal combustion engine and method for manufacturing same
JP2016167963A (en) * 2014-11-10 2016-09-15 デンソートリム株式会社 Dynamo-electric machine for internal combustion engine
WO2016181659A1 (en) * 2015-05-14 2016-11-17 デンソートリム株式会社 Rotational position detection device for internal combustion engine and rotary electric machine for internal combustion engine
WO2017026411A1 (en) * 2015-08-10 2017-02-16 日本電産株式会社 Stator and motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195580A1 (en) * 2019-03-25 2020-10-01 デンソートリム株式会社 Rotating electric machine and stator thereof
JPWO2020195580A1 (en) * 2019-03-25 2021-10-21 株式会社デンソートリム Rotating electric machine and its stator
CN113615048A (en) * 2019-03-25 2021-11-05 株式会社电装多利牡 Rotating electric machine and stator thereof
JP7112589B2 (en) 2019-03-25 2022-08-03 株式会社デンソートリム Rotating electric machine and its stator
CN113615048B (en) * 2019-03-25 2024-01-02 株式会社电装多利牡 Rotary electric machine and stator thereof
WO2023162740A1 (en) * 2022-02-23 2023-08-31 株式会社デンソートリム Rotary electric machine

Also Published As

Publication number Publication date
JP6656474B2 (en) 2020-03-04
JPWO2018221565A1 (en) 2019-06-27
JP6816811B2 (en) 2021-01-20
JP2020099177A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US8013490B2 (en) Armature
KR100385680B1 (en) Automotive alternator
JP5554383B2 (en) Stator for rotating electric machine and method for manufacturing the stator
US9438090B2 (en) Method of assembling a rotary electric machine
US9559556B2 (en) Stator of rotating electric machine
TWI393327B (en) A stator for a dynamoelectric machine
JP6576549B2 (en) Armature manufacturing method, rotating electrical machine manufacturing method, and armature manufacturing apparatus
EP2913907B1 (en) Stator for rotating electric machine
US9583987B2 (en) Stator for electric rotating machine and method of manufacturing the same
JP2019527016A (en) Stator and motor including the stator
US20130169102A1 (en) Winding structure, rotating electric machine, and rotating electric machine manufacturing method
JP6502881B2 (en) Stator core
JP6816811B2 (en) Manufacturing method of rotary electric machine
WO2016181659A1 (en) Rotational position detection device for internal combustion engine and rotary electric machine for internal combustion engine
WO2021039682A1 (en) Coil, stator, and motor
EP3297134B1 (en) Rotary electrical machine stator
JP2013215023A (en) Armature, and motor
JP6913420B1 (en) Coil segment twist method, twist jig and twist device
JP5386265B2 (en) Rotating electric machine and vehicle
US20110210638A1 (en) Stator for electric rotating machine
JP5359463B2 (en) Stator and rotating electric machine
JP7361106B2 (en) rotating electric machine
JP6789062B2 (en) Manufacturing method of stator and stator winding of rotary electric machine
CN106505757A (en) The stator of electric rotating machine
JP6065436B2 (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809022

Country of ref document: EP

Kind code of ref document: A1