WO2015173981A1 - Direct reverse osmosis membrane water purification apparatus with regenerable reverse osmosis membrane - Google Patents
Direct reverse osmosis membrane water purification apparatus with regenerable reverse osmosis membrane Download PDFInfo
- Publication number
- WO2015173981A1 WO2015173981A1 PCT/JP2014/078537 JP2014078537W WO2015173981A1 WO 2015173981 A1 WO2015173981 A1 WO 2015173981A1 JP 2014078537 W JP2014078537 W JP 2014078537W WO 2015173981 A1 WO2015173981 A1 WO 2015173981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- reverse osmosis
- osmosis membrane
- membrane module
- cleaning
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 1029
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 766
- 239000012528 membrane Substances 0.000 title claims abstract description 651
- 238000000746 purification Methods 0.000 title claims abstract description 234
- 239000012466 permeate Substances 0.000 claims abstract description 64
- 239000008213 purified water Substances 0.000 claims abstract description 32
- 238000004140 cleaning Methods 0.000 claims description 249
- 239000007788 liquid Substances 0.000 claims description 142
- 238000000034 method Methods 0.000 claims description 105
- 238000005406 washing Methods 0.000 claims description 96
- 238000011001 backwashing Methods 0.000 claims description 51
- 238000003860 storage Methods 0.000 claims description 50
- 239000002738 chelating agent Substances 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 29
- 238000011010 flushing procedure Methods 0.000 claims description 23
- 238000000926 separation method Methods 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000008399 tap water Substances 0.000 claims description 12
- 235000020679 tap water Nutrition 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000002441 reversible effect Effects 0.000 claims description 9
- 239000000428 dust Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000460 chlorine Substances 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000008237 rinsing water Substances 0.000 abstract 2
- 239000000243 solution Substances 0.000 description 26
- 239000013522 chelant Substances 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 238000005374 membrane filtration Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000011423 initialization method Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 235000019645 odor Nutrition 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000011403 purification operation Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 5
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 5
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000008233 hard water Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 4
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000011151 fibre-reinforced plastic Substances 0.000 description 4
- 239000003673 groundwater Substances 0.000 description 4
- -1 iron ions Chemical class 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 230000003204 osmotic effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000006193 liquid solution Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 244000269722 Thea sinensis Species 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000003903 river water pollution Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 241001657377 Cryptobacterium Species 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/08—Apparatus therefor
- B01D61/081—Apparatus therefor used at home, e.g. kitchen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
- B01D65/06—Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present invention relates to a direct type reverse osmosis membrane water purifier capable of initializing a reverse osmosis membrane.
- the present invention relates to a direct reverse osmosis membrane water purification apparatus that can be connected directly to a tap water tap without providing a water storage tank and can provide purified water, and an operation method thereof.
- this invention relates to the method (especially initialization method of a reverse osmosis membrane) which wash
- a water purifier equipped with a reverse osmosis membrane having a higher purification capability is beginning to spread instead of the conventionally used activated carbon filter (Patent Document 1).
- Patent Document 1 In Japan, river water pollution is limited to a certain level, but in developing countries or emerging countries (eg, China, Vietnam, etc.), river water pollution levels are worse than in Japan. Therefore, being able to cope with water purification using water at that level will contribute to solving water shortages in the world (particularly developing or emerging countries).
- the reverse osmosis membrane type water purifier has a system in which the amount of permeated water of the reverse osmosis membrane is small, so purified tap water is temporarily stored in a water storage tank, and when used, the stored water is taken from a faucet via an activated carbon filter. It has been adopted. In the case of this method, back-contamination may occur due to bacteria or the like that have entered from the faucet breeding in the activated carbon. In that case, problems such as deterioration of water quality and generation of unpleasant odors occur. Therefore, in order to prevent the occurrence of such a problem, an ultraviolet sterilizer is provided between the faucet and the water storage tank, and the ultraviolet rays are constantly irradiated to prevent back contamination by bacteria.
- the inventor of the present application in a household reverse osmosis membrane water purification device, first, by combining the original reverse osmosis membrane filtration device in two stages or multiple stages and increasing the amount of purified water obtained, directly to the faucet without the need for a water storage tank A device (direct reverse osmosis membrane water purification device) that can be connected to obtain purified water was developed (see Patent Document 2). Moreover, when this water purifier is used, water can be purified by a pressure pump that enables suction and pumping by obtaining raw water from pools, ponds, and other rivers in the event of a disaster.
- the reverse osmosis membrane water purification device includes a reverse osmosis membrane filtration device (reverse osmosis membrane unit).
- the capacity of this reverse osmosis membrane filtration device decreases with the passage of time of use, and eventually it is necessary to replace it with a new one.
- the time to replace the reverse osmosis membrane filtration device varies depending on the specifications of the reverse osmosis membrane filtration device, usage conditions, the amount of treated water, etc., so it is not possible to show a clear time, but it is about 3 to 5 years .
- the inventor of the present application tried to wash the reverse osmosis membrane filtration device with reduced capacity before replacing it with a new reverse osmosis membrane filtration device (reverse osmosis membrane unit). The recovery of the ability to replace the reverse osmosis membrane filtration apparatus was not observed. If it is possible to find a cleaning method (reverse osmosis membrane initialization method) that can restore performance similar to that obtained by replacing a new reverse osmosis membrane filtration device, this is an epoch-making technology.
- a direct type reverse osmosis membrane water purification apparatus is a direct type reverse osmosis membrane water purification apparatus that generates purified water from raw water, and a reverse osmosis membrane module that generates raw water and permeated water by subjecting the raw water to membrane separation treatment and
- the raw water supply line connected to the raw water supply port of the reverse osmosis membrane module, the permeate water line connected to the permeate water port of the reverse osmosis membrane module, and the concentrated water connected to the concentrate water port of the reverse osmosis membrane module Line.
- the concentrated water line is provided with a flow rate adjusting valve that adjusts the flow rate of the liquid passing through the concentrated water line.
- a washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
- a pressure pump for introducing the raw water into the reverse osmosis membrane module is provided, and the flow rate adjusting valve has a resistance for quantifying the flow of liquid passing through the concentrated water line.
- the resistance valve includes a constant flow valve serving as the resistance and a bypass path of the constant flow valve, and the bypass path is switched on / off by the bypass path.
- a cock is provided.
- the washing water line is connected to the permeate opening in a form branched from the permeate line, and the direct reverse osmosis membrane water purifier is fed from the permeate line of the reverse osmosis membrane module. There is no storage tank for storing permeate.
- the direct reverse osmosis membrane water purification apparatus is provided with a plurality of liquid lines in addition to the raw water supply line, the permeate water line, the concentrated water line, and the washing liquid line.
- the direct reverse osmosis membrane water purifier further includes a plurality of valves for turning on / off the raw water supply line, the permeate water line, the concentrated water line, the washing liquid line, and the flow of the plurality of liquid lines. Is provided.
- the direct-type reverse osmosis membrane water purification device sets on / off of each of the plurality of valves, and also forms a purified water mode piping configuration that generates the permeated water and the concentrated water by setting the flow rate adjustment valve.
- each of the plurality of valves is a solenoid valve
- the solenoid valve is controlled by a control circuit that switches between the water purification mode piping configuration, the cleaning mode piping configuration, and the backwash mode piping configuration. It is controlled.
- a cleaning solution line for conducting a cleaning solution is further provided, and one end of the cleaning solution line is disposed in a cleaning solution container in which the cleaning solution is held, and the cleaning solution line is provided.
- the other end of is connected to the raw water supply port and the permeate water port of the reverse osmosis membrane module via the raw water supply line and the washing water line.
- the apparatus further comprises a housing that accommodates the direct reverse osmosis membrane water purification device, and the housing has dimensions of 50 cm or less, 50 cm or less, and a thickness of 30 cm or less.
- capacitance of the said direct type reverse osmosis membrane water purification apparatus is 2.5 liters / 1 minute or less (water temperature 25 degreeC reference
- only one reverse osmosis membrane module is disposed in the housing.
- a reverse osmosis membrane water purification apparatus is a reverse osmosis membrane water purification apparatus that generates purified water from raw water, and a reverse osmosis membrane module that generates a permeated water and a concentrated water by subjecting the raw water to membrane separation, and the reverse osmosis membrane
- a raw water supply line connected to the raw water supply port of the membrane module; a permeated water line connected to the permeated water port of the reverse osmosis membrane module; and a concentrated water line connected to the concentrated water port of the reverse osmosis membrane module.
- a pressure pump for introducing the raw water into the reverse osmosis membrane module is provided, and the concentrated water line is provided with a flow rate adjusting valve for adjusting a flow rate of the liquid passing through the concentrated water line, A washing water line through which the washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
- the flow rate adjusting valve is a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line, and the resistance valve is a constant flow rate that becomes the resistance.
- a bypass path for the constant flow valve is provided with a cock for switching on / off the bypass path.
- the raw water is water selected from the group consisting of tap water, pool water, pond water, river water, and water that can be used in a disaster
- the reverse osmosis membrane water purification device further comprises: A first filter that removes iron rust, dust, and sand contained in raw water, a second filter that is disposed downstream of the first filter, and that is disposed downstream of the second filter to remove chlorine and odor. And a third filter to be removed.
- the reverse osmosis membrane module is located downstream of the third filter.
- the operation method according to the present invention is an operation method of a reverse osmosis membrane water purification device that generates purified water from raw water, and the reverse osmosis membrane water purification device performs reverse membrane separation treatment to generate permeated water and concentrated water.
- An osmotic membrane module is provided.
- the reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port from which concentrated water is discharged, and the concentrated water port of the reverse osmosis membrane module Is connected to the concentrated water line through which the concentrated water passes.
- the concentrated water line is provided with a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line.
- the method for producing purified water according to the present invention is a method for producing purified water from a raw water using a reverse osmosis membrane module, the reverse osmosis membrane module comprising a raw water supply port through which raw water is introduced, A water purification step comprising a permeated water port from which permeated water is derived and a concentrated water port from which the concentrated water is discharged, wherein the reverse osmosis membrane module is pressurized to perform a membrane separation process of the raw water.
- the generation method includes, in addition to the water purification step, a washing step of the reverse osmosis module, and the washing step causes the liquid to flow in the reverse osmosis membrane module in the same direction as the water purification step, thereby the reverse osmosis module.
- the cleaning method according to the present invention is a cleaning method for cleaning a reverse osmosis membrane module.
- the reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeate water port from which permeated water is derived, and concentrated water.
- a step (b) of discharging from the permeated water port and the concentrated water port is a cleaning method for cleaning a reverse osmosis membrane module.
- step (b) is performed after the step (a) is performed.
- the combination of the step (a) and the step (b) is repeatedly executed.
- the first cleaning liquid is reverse osmosis water.
- the second cleaning liquid is a solution containing a chelating agent.
- the second cleaning liquid contains an alkali component in addition to the chelating agent.
- the second cleaning liquid is generated by diluting a concentrated cleaning liquid containing the concentrated chelating agent, and the concentrated cleaning liquid is stored in a liquid container.
- the initialization method according to the present invention is a method of initializing a reverse osmosis membrane module in a reverse osmosis membrane water purification device, and the reverse osmosis membrane module is a raw water supply port through which raw water is introduced and permeated water is derived.
- An initialization apparatus is an apparatus that initializes a reverse osmosis membrane module in a reverse osmosis membrane water purification device, and a raw water supply line connected to a raw water supply port of a used reverse osmosis membrane module, and the reverse osmosis
- the reverse osmosis membrane module has a permeate opening connected to a backwash water line through which the wash water passes, and the raw water supply line also serves as a flushing line through which the cleaning liquid containing the chelating agent passes. ing.
- a reverse osmosis membrane water purification apparatus is a reverse osmosis membrane water purification apparatus that generates purified water from raw water, and a reverse osmosis membrane module that generates raw water and concentrated water by subjecting raw water to membrane separation,
- the raw water supply line connected to the raw water supply port of the reverse osmosis membrane module, the permeate water line connected to the permeate water port of the reverse osmosis membrane module, and the concentrated water line connected to the concentrate water port of the reverse osmosis membrane module And.
- the concentrated water line is provided with a resistance valve (or a flow rate adjusting valve) having a resistance for quantifying the flow of liquid passing through the concentrated water line.
- a washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
- An operation method is an operation method of a reverse osmosis membrane water purification device that generates purified water from raw water, and the reverse osmosis membrane water purification device performs membrane separation treatment on raw water to obtain permeated water and concentrated water.
- a reverse osmosis membrane module is provided.
- the reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port from which concentrated water is discharged, and the concentrated water port of the reverse osmosis membrane module Is connected to the concentrated water line through which the concentrated water passes.
- the concentrated water line is provided with a resistance valve (or a flow rate adjusting valve) having a resistance for quantifying the flow of liquid passing through the concentrated water line.
- a resistance valve or a flow rate adjusting valve
- the reverse osmosis membrane module is pressurized and the membrane separation process of the raw water is performed Washing that performs washing of the reverse osmosis membrane module by increasing the amount of liquid flowing in the reverse osmosis membrane module more than the water purification step with the resistance of the valve with resistance turned off in the water purification step And a backwashing step of washing the reverse osmosis membrane module by introducing a washing liquid from the permeate opening with the resistance of the valve with resistance turned off.
- a method for producing purified water according to an embodiment of the present invention is a method for producing purified water from raw water using a reverse osmosis membrane module, and the reverse osmosis membrane module supplies raw water into which raw water is introduced.
- a water purification step comprising a mouth, a permeate port from which permeate is led out, and a concentrate water port from which concentrated water is discharged, pressurizing the reverse osmosis membrane module, and performing membrane separation treatment of the raw water including.
- the generation method includes, in addition to the water purification step, a washing step of the reverse osmosis module, and the washing step causes the liquid to flow in the reverse osmosis membrane module in the same direction as the water purification step, thereby the reverse osmosis module.
- a cleaning method is a cleaning method for cleaning a reverse osmosis membrane module
- the reverse osmosis membrane module includes a raw water supply port into which raw water is introduced, a permeated water port from which permeated water is derived, A concentrated water outlet from which the concentrated water is discharged, a step (a) of introducing the first cleaning liquid from the permeated water outlet and discharging the raw water from the raw water supply port and the concentrated water outlet, and supplying the second cleaning liquid to the raw water supply.
- a cleaning device is a device for cleaning a reverse osmosis membrane module that generates purified water from raw water
- the reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, and permeated water is derived. And a concentrated water port through which concentrated water is discharged.
- the purification device includes a raw water supply line to be connected to the raw water supply port of the reverse osmosis membrane module, a permeated water line to be connected to a permeate water port of the reverse osmosis membrane module, and the reverse osmosis membrane module And a concentrated water line to be connected to the concentrated water outlet.
- the concentrated water line is provided with a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line.
- a washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
- An initialization apparatus is an apparatus that restores a reverse osmosis membrane module that generates purified water from raw water to an initial state, the reverse osmosis membrane module including a raw water supply port into which raw water is introduced, and a permeation A permeated water port from which water is led out and a concentrated water port from which concentrated water is discharged are provided.
- the initialization device includes a raw water supply line to be connected to a raw water supply port of the reverse osmosis membrane module, a permeate line to be connected to a permeate water port of the reverse osmosis membrane module, and the reverse osmosis membrane. And a concentrated water line to be connected to the concentrated water port of the module.
- the concentrated water line is provided with a resistance valve (or a flow rate adjusting valve) having a resistance for quantifying the flow of liquid passing through the concentrated water line.
- a washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
- the cleaning method according to the embodiment of the present invention includes a step of introducing the cleaning liquid from the raw water supply port and discharging it from the permeated water port and the concentrated water port (back washing step).
- the washing liquid may be reverse osmosis membrane water (RO water), pure water, distilled water, ion exchange water, or tap water.
- a flow rate adjusting valve for example, a valve with a resistor
- the washing water line is provided in the permeated water port of the reverse osmosis membrane module. Since it is connected, the cleaning liquid (for example, RO water) from the cleaning water line is introduced into the permeate port of the reverse osmosis membrane module (that is, the liquid is introduced in the opposite direction to the purification), and the flow control valve is adjusted.
- the reverse osmosis membrane module can be backwashed by opening the concentrated water line (or switching the resistance valve on / off to lower the resistance).
- a cleaning liquid for example, a chelating agent solution
- the flow control valve is adjusted (for example, the resistance valve is turned on).
- the reverse osmosis membrane module can be cleaned (for example, flushing cleaning).
- FIG. 1 It is a front view of the reverse osmosis membrane water purification apparatus (household direct type reverse osmosis membrane water purification apparatus) 100 which concerns on embodiment of this invention. It is a front perspective view of the reverse osmosis membrane water purification apparatus 100 which concerns on embodiment of this invention. It is a back perspective view of reverse osmosis membrane water purification apparatus 100 concerning an embodiment of the present invention. It is a perspective view which shows the internal structure of the reverse osmosis membrane water purifier 100 which concerns on embodiment of this invention. It is a perspective view which shows the back surface 10b of the housing
- FIG. 2 is an exploded perspective view showing a container 21 of a reverse osmosis membrane module 20.
- FIG. 4 is a front view of a reverse osmosis membrane unit 40 that is put in a container 21 of the reverse osmosis membrane module 20.
- FIG. It is a flowchart for demonstrating the washing
- FIG. 1 It is a figure which shows the piping structure for performing the backwashing process in the reverse osmosis membrane water purification apparatus 100 which concerns on embodiment of this invention. It is a figure for demonstrating the piping structure of the reverse osmosis membrane water purification apparatus 100 which concerns on embodiment of this invention. It is a figure for demonstrating the structure of the electromagnetic valve 60 (60A) in the reverse osmosis membrane water purification apparatus 100. FIG. It is a circuit diagram for demonstrating the control circuit in the reverse osmosis membrane water purification apparatus.
- FIG. 6 is a table showing control items such as solenoid valves (60A to 60K) controlled by the arithmetic unit 90; It is a figure for demonstrating the structure of the reverse osmosis membrane water purification apparatus 130 provided with the water storage tank 110.
- FIG. It is a figure for demonstrating the structure of the reverse osmosis membrane system (100) containing the reverse osmosis membrane module 20.
- FIG. It is a table
- FIG. It is a figure which shows the structure of 110 A of water storage tanks. It is a figure which shows the structure of the water storage tank 110B. It is a figure which shows the PET container type liquid container 68A. It is a figure which shows the preform type liquid container 68B.
- (A) And (b) is a figure for demonstrating an osmotic pressure phenomenon and a reverse osmosis phenomenon.
- FIG. (A)-(c) is a figure for demonstrating the particle size of the bacteria 202a, the particle size of the virus 202b, and the hole diameter of the hole 105a of a reverse osmosis membrane.
- 4 is a partially exploded perspective view for explaining a reverse osmosis membrane unit 40.
- FIG. 4 is a partially enlarged sectional view of a reverse osmosis membrane unit 40.
- FIG. 1 is a conceptual diagram showing a water purification system 1000 including a reverse osmosis membrane system 200.
- FIG. 6 is a schematic diagram for explaining a reverse pressure cleaning method for the reverse osmosis membrane 105.
- (A) And (b) is a schematic diagram for demonstrating the scribing (air washing
- FIG. It is a schematic diagram for demonstrating the compressed air washing
- FIG. It is a schematic diagram for demonstrating the flushing washing
- FIG. 25 (a) is a diagram showing a penetration phenomenon.
- FIG. 25A shows a structure in which the fresh water 101 in the container 111 and the salt-containing liquid (salt water) 102 in the container 112 are brought into contact with each other through the semipermeable membrane 105.
- the semipermeable membrane 105 is a membrane that allows water molecules to pass but does not allow impurities to pass.
- water flows out from the low concentration side to the high side alone. This is the penetration phenomenon.
- FIG. 25 (b) is a diagram showing the phenomenon of reverse osmosis (RO).
- RO reverse osmosis
- FIG. 25 (b) when pressure 120 is applied to the salt water 102 in the container 112, only water molecules escape from the high concentration side to the low side through the semipermeable membrane 105 (arrows 121 and 122). . That is, reverse osmosis can be caused by reversing the osmosis phenomenon of FIG. 25A, and drinking water (reverse osmosis water, RO water) can be generated from the salt water 102 (arrow 123).
- FIG. 26 is a conceptual diagram showing the reverse osmosis membrane system 200.
- a pressure higher than the osmotic pressure is applied to the reverse osmosis membrane 105 in order to separate the water 201 and the impurities (202 to 204).
- the pressurized raw water 102 is put into the raw water supply port 210 of the reverse osmosis membrane system 200 (arrow 210a).
- the pressurized raw water 102 is mixed with impurities (202 to 204) together with water molecules 201.
- Impurities include viruses 202, environmental hormones 203, heavy metals (metal ions such as iron ions and manganese ions) 204, etc., in addition to those such as cations (for example, Ca 2+ and Mg 2+).
- the pressurized raw water 102 is filtered by passing through the reverse osmosis membrane 105 (reverse osmosis phenomenon) and becomes purified water (RO water).
- the purified water (RO water) is derived from the permeate port 220 (arrow 220a).
- the pressurized raw water 102 that has not passed through the reverse osmosis membrane 105 is concentrated.
- the concentrated water (water in which salts and impurities are concentrated, or brine) is continuously discharged from the concentrated water port 230 (arrow 230a).
- the pore diameter of the reverse osmosis membrane 105 is generally 2 nanometers or less, which is smaller than the pore diameter of the ultrafiltration membrane.
- the reverse osmosis membrane 105 in this embodiment has a pore diameter of 0.2 nanometers, for example.
- the particle size of the bacteria 202a is about 0.2 to 1 micron, and the particle size of the virus 202b is 0.02 to 0.4 microns.
- the hole diameter of the hole 105a of the reverse osmosis membrane 105 is about 0.0001 microns. Therefore, as long as the reverse osmosis membrane 105 is not broken, the bacteria 202a and the virus 202b do not pass through the reverse osmosis membrane 105 and can be filtered.
- sodium ions (one of which is 0.12 to 0.14 nanometers) having a size similar to that of oxygen atoms are difficult to pass through the reverse osmosis membrane 105 because water molecules are present around the ions due to hydration. This is because it behaves as if the apparent size has increased from several to a dozen times by coordinating. The presence of water molecules adhering to the membrane surface also acts to make the pores apparently small. Thereby, the production
- FIG. 28 shows an example of the reverse osmosis membrane unit 40.
- FIG. 29 is a schematic cross-sectional view showing the periphery of the reverse osmosis membrane 105 of the reverse osmosis membrane unit 40 in an enlarged manner.
- the reverse osmosis membrane unit 40 has a cylindrical shape (or a columnar shape).
- the reverse osmosis membrane unit 40 has a structure in which reverse osmosis membranes 105 are stacked.
- the gap between the reverse osmosis membranes 105 is secured by the spacer 109, and the pressurized raw water (for example, unpurified water or tap water) passes through one region (layer) of the reverse osmosis membrane 105.
- Channel 102 to be used.
- a region (layer) on the other side of the reverse osmosis membrane 105 becomes a pure water permeation channel (RO water permeation channel) 101.
- RO water permeation channel RO water permeation channel
- a surface cover layer 40 a is provided on the surface of the reverse osmosis membrane unit 40. Further, the RO water that has flowed through the pure water permeation channel 101 in the reverse osmosis membrane unit 40 is collected at the permeate port 220 and led out from the permeate port 220 (arrow 220a). On the other hand, the water flowing through the channel 102 through which the pressurized raw water passes becomes concentrated water and is discharged as indicated by an arrow 230a.
- the cylindrical reverse osmosis membrane unit 40 is shown, but the basic principle is the same for other shapes (for example, a rectangular laminated structure).
- a water purification system 1000 as shown in FIG.
- groundwater (which may be seawater) / river water 300 is stored in a filtration tank 320 via a filter (for example, anthracite filter) 310.
- RO water permeated water
- the reverse osmosis membrane system 200 including the reverse osmosis membrane unit 40 is stored in the treated water tank 330. And after that, it can be used as the utilization water 340 as needed.
- groundwater seawater
- River water, lakes, pool water, etc. can be used instead of groundwater.
- RO water water generated by a reverse osmosis membrane
- household water purifiers include alkaline ion water devices, magnetic activators, activated carbon, hollow fibers, distilled water devices, and reverse osmosis membrane water purifiers.
- Hazardous substances include arsenic, lead, cadmium, bacteria, viruses, total trihalomethanes, dioxins, environmental hormones, Cryptobacterium, and radioactive substances, but only a reverse osmosis membrane water purifier can remove all of these.
- the distilled water device can remove many harmful substances after the reverse osmosis membrane water purification device, it cannot remove the environmental hormones, and the total trihalomethane, dioxin, and crypt bacteria can only be removed under certain conditions.
- the inventor of the present application has been conducting research and development and improvement every day in order to make the best use of the advantages of the reverse osmosis membrane water purification device, but has noticed the following problems.
- FIG. 31 is a schematic diagram for explaining the back pressure cleaning method.
- a substance 204 adhering to the RO membrane 105 is removed by applying pressure to the RO water permeation channel 101 with water or air.
- FIGS. 32A and 32B are schematic views for explaining scribing (air cleaning method).
- the method shown in FIGS. 32A and 32B is a method in which the RO membrane 105 is vibrated by a water flow containing rising bubbles 270 to remove the adhered substance 204 on the membrane surface.
- FIG. 33 is a schematic diagram for explaining the compressed air cleaning method.
- compressed air is introduced into the RO water permeation channel 101, and the substance 204 attached to the RO membrane 105 is removed by the air pressure of the compressed air.
- FIG. 34 is a schematic diagram for explaining the flushing cleaning method. The method shown in FIG. 34 removes the substance 204 adhering to the RO membrane 105 by flowing raw water over the surface of the RO membrane 105 at a high flow rate.
- the inventor of the present application has used a flushing cleaning method to clean the RO membrane of a household water purifier, and recovered the performance of the used RO membrane.
- the RO membrane capacity has declined remarkably and has not recovered well. Specifically, if you continue to use the RO membrane for a certain period of time, only a small amount of permeated water will be produced, and many current situations where the product specification capability cannot be demonstrated are observed. Since it does not recover, there is only a solution that requires a running cost, that is, only replacement with a new RO membrane (RO membrane unit 40).
- the present inventor performed chemical cleaning, excluding the loss of RO membrane quality. From the viewpoint of removing clogging of the RO membrane, washing with a complex was performed in order to remove cations adhering to the RO membrane.
- a method of melting metal ions with a chemical called a chelating agent for example, EDTA, DTPA, DHEG, etc.
- a chelating agent for example, EDTA, DTPA, DHEG, etc.
- an aqueous solution cleaning liquid
- a chelating agent for example, EDTA
- an alkali component for example, caustic soda
- the inventor of the present application experimented with a back-washing method for cleaning the reverse osmosis membrane unit 40 from the reverse direction by remodeling the device configuration of the household RO membrane water purifier.
- a liquid here, RO water
- RO water was introduced from the permeate port 220 of the reverse osmosis membrane unit 40 to challenge the clogging of the RO membrane 105.
- the reverse osmosis membrane unit 40 in which only a small amount of permeated water had come out before the backwashing was washed out to the normal level.
- TDS salt solute
- an RO membrane unit 40 in which the amount of permeated water is significantly reduced is prepared.
- the RO membrane unit 40 is cleaned by backwashing.
- the pump pressure was adjusted so as not to damage the RO membrane 105 (for example, 0.3 MPa).
- chemical cleaning with a chelating agent solution was performed after the back cleaning method.
- the RO membrane 105 of the reverse osmosis membrane unit 40 was cleaned with a chelating agent solution in the forward direction. Specifically, flushing washing was performed with an increased flow rate compared to the time of water purification.
- the RO membrane 105 of the reverse osmosis membrane unit 40 could be initialized by the cleaning technique found by the present inventors. Thereby, it is possible to recover the same performance as a new product by the new cleaning method without replacing with a new RO membrane (RO membrane unit 40). As a result, the home RO membrane water purifier (small RO membrane) It was realized that the running cost of the water purifier) could be greatly reduced.
- the reverse osmosis membrane water purification apparatus 100 of this embodiment is a household reverse osmosis membrane water purification apparatus 100.
- the household reverse osmosis membrane water purification device 100 is a small reverse osmosis membrane water purification device having a capacity of RO water production of about 2.5 liters per minute (water temperature 25 ° C. standard) or less.
- the RO water production amount decreases by about 3%.
- the reverse osmosis membrane water purification apparatus 100 of this embodiment is a direct type reverse osmosis membrane water purification apparatus.
- This direct type reverse osmosis membrane water purification apparatus 100 does not have a storage tank for storing the generated permeated water, and the permeated water (RO water) from the direct type reverse osmosis membrane water purification apparatus 100 passes through the storage tank. Instead, the permeated water (RO water) can be used directly connected to a faucet (eg, kitchen faucet).
- a typical reverse osmosis membrane water purifier 100 for home use is equipped with a water storage tank, and the amount of RO water produced is about 0.1 to 0.3 liter per minute.
- An example of the RO water generation amount (purified water generation capacity) of the direct reverse osmosis membrane water purification apparatus 100 of this embodiment is 1.0 to 1.5 liters per minute.
- FIG. 1 to 4 are drawings showing a configuration of a reverse osmosis membrane water purification apparatus 100 (direct type reverse osmosis membrane water purification apparatus) according to the present embodiment.
- FIG.1 and FIG.2 is the front view and front perspective view of the reverse osmosis membrane water purification apparatus 100 of this embodiment.
- FIG. 3 is a rear perspective view of the reverse osmosis membrane water purification device 100.
- FIG. 4 is a diagram showing the internal structure of the reverse osmosis membrane water purification device 100.
- FIG. 5 is a view showing the back surface of the housing 10 of the reverse osmosis membrane water purification apparatus 100.
- FIG. 6 is a figure which shows the container 21 of the reverse osmosis membrane module 20 arrange
- FIG. 7 is a view showing the reverse osmosis membrane unit 40 put in the container 21 of the reverse osmosis membrane module 20.
- FIG. 8 is a flowchart for explaining a cleaning method in the reverse osmosis membrane water purification apparatus 100 of the present embodiment.
- FIG. 9A to FIG. 9C are diagrams showing a pipe configuration (line configuration and valve opening / closing configuration) for executing the water purification process, the flushing washing process, and the back washing process in the reverse osmosis membrane water purification device 100 of the present embodiment, respectively. It is.
- the reverse osmosis membrane water purification apparatus (direct type reverse osmosis membrane water purification apparatus) 100 of this embodiment is a household reverse osmosis membrane water purification apparatus (RO membrane water purification apparatus) that generates purified water 63 from raw water 61.
- the reverse osmosis membrane water purification apparatus 100 includes a reverse osmosis membrane module 20 as particularly shown in FIGS. 4, 6 and 9A.
- the reverse osmosis membrane module 20 can generate a permeated water 63 and a concentrated water 62 by subjecting the raw water 61 to a membrane separation treatment.
- the reverse osmosis membrane module 20 has a raw water supply port 25, a permeate water port 24, and a concentrated water port 23.
- a raw water supply line 25 a is connected to the raw water supply port 25 of the reverse osmosis membrane module 20, a permeated water line 24 a is connected to the permeated water port 24, and a concentrated water line 23 a is connected to the concentrated water port 23.
- Each line (pipe) is a tubular member through which liquid can pass, and is made of, for example, resin or rubber.
- the reverse osmosis membrane module 20 of the present embodiment includes a container 21 that configures the appearance of the reverse osmosis membrane module 20, as shown in FIG.
- the container (RO membrane vessel) 21 shown in FIG. 6 includes a raw water supply port 25 through which raw water is introduced, a permeated water port 24 through which permeated water (RO water) is derived, and a concentrated water port 23 through which concentrated water is discharged. Is provided.
- the container (RO membrane vessel) 21 is hollow so that the reverse osmosis membrane unit 40 can be introduced therein. Moreover, the part in which the raw
- the container 21 of the present embodiment is made of plastic and is made of, for example, ABS (acrylonitrile-butadiene-styrene copolymer synthetic resin), FRP (fiber reinforced plastic), or PP (polypropylene).
- the container 21 in this example is made of ABS, but may be constructed from metal (such as stainless steel).
- FIG. 7 shows the reverse osmosis membrane unit 40 of the present embodiment.
- the reverse osmosis membrane unit 40 has been described with reference to FIG.
- the dimensions of the reverse osmosis membrane unit 40 of the present embodiment are, for example, a length of 20 cm to 60 cm (30 cm in one example) and a diameter of 3 cm to 10 cm (5 cm in one example), but are not limited thereto.
- reverse osmosis membrane unit 40 Commercially available products can be used for the reverse osmosis membrane unit 40, and examples thereof include reverse osmosis membrane units such as those manufactured by Dow Chemical Company, GE Company, Unjin Chemical Company, SAEHAN (Sehan) Company, etc.
- reverse osmosis membrane unit 40 is a pair with the container 21, there is no particular limitation as long as they can be combined even if the manufacturers are different.
- the concentrated water line 23a extending from the reverse osmosis membrane module 20 has a resistance for quantifying the flow of liquid passing through the concentrated water line 23a.
- a resistance valve 64 having 64a is provided.
- the valve 64 with resistance includes a constant flow valve 64a serving as a resistance 64a and a bypass path 64b of the constant flow valve 64a.
- the bypass path 64b is provided with a cock for switching on / off of the bypass path 64b.
- the liquid selectively passes through the resistor 64a (constant flow valve 64a) in normal water purification operation. Then, compared with the case where the bypass path 64b is open (ON), the inside of the reverse osmosis membrane unit 40 is in a pressurized state. That is, since the concentrated water port 23 and the concentrated water line 23a serving as the outlet of the concentrated water (230a) of the reverse osmosis membrane unit 40 have resistance and a load is generated at the outlet, the raw water 102 of the reverse osmosis membrane unit 40 is The amount of RO membrane water 101 generated through the RO membrane 105 increases. Therefore, at the time of purification, the resistor 64a is turned on (bypass path 64b is closed). Details of this operation are shown in FIG. 9A.
- the raw water 102 is easily removed toward the concentrated water inlet 23 as it is during the water purification operation. That is, since there is no resistance in the concentrated water port 23 and the concentrated water line 23a serving as the outlet of the concentrated water (230a) of the reverse osmosis membrane unit 40, the raw water 102 of the reverse osmosis membrane unit 40 is more than passing through the RO membrane 105. The tendency to go out from the concentrated water outlet 23 becomes stronger.
- a washing water line 54 through which washing water passes is connected to the permeate opening 24 of the reverse osmosis membrane module 20.
- the washing water line 54 is connected to the permeated water port 24 in a form branched from the permeated water line 24a.
- backwashing can be performed by introducing cleaning water (for example, RO membrane water) from the cleaning water line 54 into the permeated water port 24.
- the cock of the valve 64 with resistance is opened and the bypass path 64b is opened (ON). That is, the resistor 64a of the resistor-equipped valve 64 is prevented from working. Then, in the backwashing operation, the wash water (for example, RO membrane water) that has entered from the permeate port 24 of the reverse osmosis membrane module 20 is likely to escape toward the concentrated water port 23.
- the wash water for example, RO membrane water
- the wash water entered from the permeated water port 24 of the reverse osmosis membrane unit 40 is Compared with the case where resistance is in 23, the tendency to pass through the RO membrane 105 and exit from the concentrated water port 23 becomes stronger.
- valve 65e in FIG. 9C may be opened so that the wash water that has entered from the permeate port 24 of the reverse osmosis membrane module 20 exits from both the raw water supply port 25 and the concentrated water port 23.
- the valve 65e in FIG. 9C is closed so that the washing water that has entered from the permeated water port 24 of the reverse osmosis membrane module 20 does not escape from the raw water supply port 25, passes through the RO membrane 105, and the concentrated water port 23. You may make it appear positively.
- the valve 65e is opened so that the cleaning liquid can be circulated.
- the reverse osmosis membrane water purification apparatus 100 of this embodiment is provided with a pressure pump 30 that introduces raw water 61 into the reverse osmosis membrane module 20.
- the pressure pump 30 is housed in the housing 10 (or the back housing 12).
- the pressure pump 30 of this embodiment is a diaphragm pump, the type of pump is not particularly limited as long as the raw water 61 can be pressurized.
- the pressure pump 30 is a pump having a capacity of 1000 cc / min or more, for example.
- the pressure pump 30 When the pressure pump 30 is 2000 cc / min or more, the pressure pump capacity is large, so it is suitable for the direct reverse osmosis membrane water purification apparatus 100 that can directly use RO water from a faucet without a water storage tank. In the case of the reverse osmosis membrane water purification apparatus 100 with a water storage tank, a pressure pump 30 of about 1000 to 1200 cc / min can be used. In the present embodiment, when the reverse osmosis membrane unit 40 is 500 GPS, it is preferable to use a pump of 3700 cc / min. In addition, since it is the household reverse osmosis membrane water purification apparatus 100, the pump of noise 50db or less is preferable.
- the pressure pump 30 of the present embodiment only needs to be able to apply a pressure capable of reverse osmosis to the raw water 61. Therefore, the position where the pressure pump 30 is disposed may be anywhere. In the example shown in FIG. 9A, the pressure pump 30 is disposed upstream of the raw water supply port 25 of the reverse osmosis membrane module 20. Moreover, in the structure of this embodiment, since it is a household reverse osmosis membrane water purification apparatus 100, the pressure pump 30 is arrange
- the casing 10 (12) of the present embodiment has a substantially rectangular shape as shown in FIGS.
- the front-side casing 10 is made of a resin (particularly a cured resin).
- a resin particularly a cured resin.
- ABS acrylonitrile-butadiene-styrene copolymer synthetic resin
- FRP fiber reinforced plastic
- PP Polypropylene
- the housing 10 may be another resin material, a metal, a wooden material, or a composite material of different materials.
- the back housing 12 of the present embodiment is made of metal (for example, iron, stainless steel, aluminum, etc.). As shown in FIG. 4, the back housing 12 can accommodate the reverse osmosis membrane module 20 and the pressurizing pump 30, a valve 64 with resistance, various lines (piping) and a valve 60 (including a bifurcated valve and a three-way cock). A space (concave portion). Further, as shown in FIG. 5, a recess 11 that can accommodate the reverse osmosis membrane module 20, the pressure pump 30, and the like is formed on the back surface 10 b of the front surface housing 10. Specifically, the wall portion 11b is located at the peripheral edge portion of the back surface 10b of the front surface case 10. Note that a cutout portion 11a for combining (fixing) with the rear housing 12 is formed in a part of the wall portion 11b.
- the front case 10 and the back case 12 can be combined and integrated, and both are fixed by inserting fastening members (screws) 13 into the notch portions 11a. Can do.
- an external piping socket 14 is provided on the side surface of the rear housing 12, and in the example shown in FIG. 3, piping (raw water tube) 61a, piping (drainage tube) 62a, piping (RO membrane water tube). 63 a is inserted into the external piping socket 14. Note that the power cord 17 and the power switch 18 of the pump 30 extend from the housing 10.
- the combined dimensions of the front casing 10 and the rear casing 12 are, for example, 50 cm or less in length, 50 cm or less in width, and 30 cm or less in thickness. As the size is smaller and thinner, the convenience of the household reverse osmosis membrane water purifier 100 increases, but the size is not limited to this.
- the dimensions of the housings (10, 12) shown in FIG. 1 and the like are, for example, 40 cm long, 30 cm wide, and 10 cm thick.
- the reverse osmosis membrane water purification apparatus 100 for home use is more space-constrained than a plant reverse osmosis membrane water purification apparatus installed in a factory, and an arrangement of a mechanism for performing a cleaning process can also be used.
- the members are also severely limited in terms of technology and cost. Therefore, even if the dimensions of the reverse osmosis membrane water purification device 100 of the present embodiment are 100 cm long, 100 cm wide and 50 cm thick, space restrictions are severe compared to the reverse osmosis membrane water purification device for plants. Therefore, the level of restriction is high both in terms of technology and cost.
- the permeated water (RO water) can be used directly without providing a permeated water (RO water) water storage tank.
- RO water permeated water
- the amount of RO water produced by a typical reverse osmosis membrane water purification device 100 for home use is about 0.1 to 0.3 liters per minute, and a water storage tank is required.
- an example of the RO water generation amount (purified water generation capacity) of the direct reverse osmosis membrane water purification apparatus 100 is 1.0 liter / minute or more.
- the reverse osmosis membrane water purification apparatus 100 of the present embodiment a water storage tank is not required, so a sterilization apparatus such as an ultraviolet sterilization apparatus is unnecessary, and further, a space for installing the water storage tank in the kitchen is also unnecessary. Therefore, the advantage is great.
- the reverse osmosis membrane water purification of this embodiment is used when it is desired to use more permeated water (RO water) exceeding the amount of water of 1.0 liter / minute. It is not prohibited to attach a water storage tank to the device (direct reverse osmosis membrane water purification device) 100.
- the reverse osmosis membrane water purification apparatus 100 of the present embodiment only one reverse osmosis membrane module 20 is provided, but a plurality of reverse osmosis membrane modules 20 (two or three or more) are provided in the housing 10. You may build what you have placed. If the reverse osmosis membrane module 20 is made into plural, the production
- FIG. 8 shows a flowchart of the cleaning method of this embodiment.
- the reverse osmosis membrane water purification device continues to use the permeated water (RO water) generation capability of the reverse osmosis membrane module 20
- the permeated water of the reverse osmosis membrane module 20 RO water generation capability can be initialized as if it were new.
- the purification capability (permeated water quality) of the reverse osmosis membrane module 20 can be initialized like a new product.
- step S10 backwashing (backwashing) is performed (step S10).
- a cleaning liquid for example, RO water
- RO water permeated water
- this backwash cleaning (S10) was performed for about 1 minute with the drain side valve (64) fully opened, and RO water was used as the cleaning liquid.
- the time for backwashing (S10) can be appropriately determined according to the type of reverse osmosis membrane module 20 and the usage environment (use period, level of hard water, amount of raw water impurities, etc.).
- RO water is used as the cleaning liquid for backwashing (S10).
- a suitable cleaning solution for example, an aqueous solution of sodium hydroxide and / or an aqueous solution containing a chelating agent
- the cleaning liquid may not be RO water but may be pure water, distilled water, ion exchange water, or tap water.
- the pressure of the pressure pump 30 is set to, for example, 1.0 MPa or less (absolute pressure) so as not to damage the RO membrane 105 (in one example, 0.7 MPa to 0. 0). 2 MPa (absolute pressure)). In an example of this embodiment, the pressure was 0.2 to 0.3 MPa (absolute pressure).
- the pressure pump 30 is controlled by an inverter circuit.
- the operation time of the backwashing (S10) can be within, for example, 5 minutes, preferably within 2 minutes (for example, 1 minute), as long as the RO membrane 105 may be damaged. Time constraints are relaxed.
- step S20 chelate cleaning is executed (step S20).
- step S ⁇ b> 20 the cleaning liquid is introduced from the raw water supply port 25 and discharged from the permeated water port 24 and the concentrated water port 23.
- TDS salt solute
- the cleaning solution in chelate cleaning is an aqueous solution of a chelating agent (for example, EDTA, DTPA, DHEG).
- a chelating agent for example, EDTA, DTPA, DHEG.
- EDTA is an abbreviation for ethylenediaminetetraacetic acid
- DTPA is an abbreviation for diethylenetriaminepentaacetic acid
- DHEG is an abbreviation for dihydroxyethylglycine.
- a suitable thing can be selected and used suitably.
- an alkaline component for example, sodium hydroxide, potassium hydroxide, etc.
- concentration of the chelating agent is not particularly limited and greatly depends on the conditions of raw water, washing conditions, etc., but can be, for example, 100 to 500 ppm (conductivity standard), and in one example, 320 to 350 ppm. it can.
- a solution (cleaning solution) in which 2 grams of chelating agent (EDTA) and 1 g of NaOH are mixed in 10 liters of water can be used, but is not limited thereto, and is suitably suitable according to the raw water used and the cleaning conditions. It is preferable to adjust the concentration.
- step S20 An example of the execution procedure of the chelate cleaning (step S20) of the present embodiment and the cleaning time are as follows. First, the cleaning liquid is poured into the cleaning tank (see “69” in FIG. 9B), and when the RO water is accumulated to the middle of the tank, the circulation cleaning is started. Thereafter, surface cleaning (flushing cleaning) is performed for 3 minutes to 60 minutes (in this example, 5 minutes), and then pressure cleaning is performed for 3 minutes to 60 minutes (in the example, 5 minutes). Thereafter, the cleaning liquid is retained in the reverse osmosis membrane module 20 for 2 to 24 hours (for example, 8 hours or left overnight). In order to perform surface cleaning (flushing cleaning), cleaning may be performed with the resistor 64a of the valve 64 having resistance turned off.
- the cleaning may be performed by turning on the resistor 64a of the valve 64 with resistance.
- the treatment by staying of the cleaning liquid (chelate solution) does not require the pressure pump 30 to operate, and is left for a predetermined time (for example, overnight or 2 hours or more), so that energy costs such as electricity costs are generated. Very convenient.
- This chelate washing can reduce the TDS value from 30 to 50 (mg / liter) to 5 to 8 (mg / liter).
- a trial operation period of 20 seconds to 120 seconds (in one example, 30 seconds), purified water that generates RO water. What is necessary is just to perform a process (normal operation
- the reverse osmosis membrane water purification apparatus 100 is constructed so that it can be controlled automatically, it can be constructed so that this trial operation period is also processed automatically.
- TDS total dissolved dissolved or evaporated residue
- the main components of TDS are salts such as calcium, magnesium, silica, sodium, potassium, and organic substances, and the TDS is defined as 500 mg / liter or less according to tap water quality standards.
- FIGS. 9A to 9C the piping configuration of the reverse osmosis membrane water purification device 100 of the present embodiment will be described with reference to FIGS. 9A to 9C.
- the structure shown in FIGS. 9A to 9C can be understood relatively easily, so that the description will be briefly described in order not to make the description complicated.
- the piping structures shown in FIGS. 9A to 9C are examples, and other piping structures can be constructed. Even in the same piping structure, the open / close state of the valve is changed, and the water purification mode piping configuration and the forward direction are changed. It is also possible to construct a cleaning mode piping configuration and a back cleaning mode piping configuration, and modifications thereof are also within the scope of the present invention.
- FIG. 9A shows a water purification mode piping configuration for generating RO water.
- the valve 65 (65a to 65i) and the valve 64 in the configuration of the present embodiment are manual valves, but may be motorized valves. “X” in the figure means that the solution does not flow because the valve 65 is closed. Further, as shown in the figure, a plurality of liquid lines (56a to 56c, 52) extend.
- the raw water 61 proceeds as indicated by an arrow 301, passes through the pump 30, and proceeds as indicated by arrows 302 and 303.
- the raw water supply port 25 of the reverse osmosis membrane water purification apparatus 100 is entered.
- membrane separation processing reverse osmosis
- RO water permeated water
- the RO water proceeds as indicated by arrows 305 to 308 to become RO water 63 that can be used outside the reverse osmosis membrane water purification apparatus 100.
- FIG. 9B shows a forward cleaning mode piping configuration.
- a cleaning liquid (for example, chelating agent solution) 55 is filled in the cleaning tank 69.
- the cleaning tank 69 is a resin container and is disposed outside the casing 10 shown in FIG.
- the cleaning liquid 55 proceeds as indicated by arrows 401 to 406 and enters the raw water supply port 25 of the reverse osmosis membrane water purification apparatus 100.
- the resistance 64a of the valve 64 with resistance is turned off, surface cleaning (flushing cleaning) can be performed.
- the cleaning liquid led out from the permeate opening 24 proceeds as indicated by arrows 407 to 410.
- the cleaning liquid derived from the concentrated water port 23 proceeds as indicated by arrows 411 to 415. All of the cleaning liquid flows through the pipe 56a, proceeds as indicated by arrows 416 to 418, and returns to the cleaning tank 69. Thereafter, the cleaning liquid 55 repeats this circulation.
- FIG. 9C shows the piping configuration in the reverse cleaning mode (back cleaning mode).
- a cleaning liquid (for example, RO water) 55 is filled in the cleaning tank 69, and the cleaning liquid 55 proceeds as indicated by arrows 501 to 507 and enters the permeate outlet 24 of the reverse osmosis membrane water purification apparatus 100. enter.
- the resistance 64a of the valve 64 with resistance is off, and the cleaning liquid 55 is discharged from the concentrated water port 23 of the reverse osmosis membrane water purifier 100 and proceeds as indicated by arrows 508 to 511.
- the cleaning liquid 55 is also discharged from the raw water supply port 25 of the reverse osmosis membrane water purification apparatus 100 and proceeds as indicated by arrows 512 to 514.
- any cleaning liquid flows through the pipe 56a, proceeds as indicated by arrows 515 to 518, and returns to the cleaning tank 69. Thereafter, the cleaning liquid 55 repeats this circulation.
- the water purification capacity of the reverse osmosis membrane module 20 can be increased (initialized).
- a valve 64 with resistance is provided in the concentrated water line 23a connected to the concentrated water port 23 of the reverse osmosis membrane module 20.
- a wash water line 54 is connected to the permeate port 24 of the reverse osmosis membrane module 20.
- the cleaning liquid 55 for example, RO water
- the resistance valve 64 is turned on / off.
- a cleaning liquid 55 for example, a chelating agent solution
- the reverse osmosis membrane module 20 can be cleaned (for example, pressure cleaning / flushing cleaning).
- the reverse osmosis membrane water purification apparatus 100 that can recover (initialize) the capability of the used reverse osmosis membrane 105 can be realized.
- valve 60 60A to 60G
- valve 64 60K
- the valve 60 and the valve 64 are electromagnetic valves, and these electromagnetic valves are controlled by a control circuit. Since the configuration shown in FIG. 10 can be understood from the description of the configuration shown in FIGS. 9A to 9C, detailed description of overlapping portions will not be given.
- a liquid container 68 containing a chelating agent is provided, and the chelating agent is charged into the cleaning liquid 55 of the cleaning tank 69 via the electromagnetic valve 60g and the pipe 68a.
- the cleaning liquid 55 in the cleaning tank 69 can be discharged (66) through the electromagnetic valve 60H and the pipe 66a.
- FIG. 11 is a diagram schematically showing the configuration of the solenoid valve (60A).
- the electromagnetic valve 60A is electrically controlled, and it is possible to determine which pipe 51 or 52 is connected to the connection destination pipe 53 by the operation of the electromagnetic valve 60A by the control.
- the left side is turned on, and the end 51a of the pipe 51 and the end 53L of the pipe 53 are connected.
- the right side is turned on, and the end 52a of the pipe 52 and the end 53R of the pipe 53 are connected.
- FIG. 12 schematically shows the configuration of a control circuit that controls the electromagnetic valve 60 (60A to 60K).
- the control circuit shown in FIG. 12 includes an arithmetic unit (CPU) 90 made of a semiconductor integrated circuit.
- the arithmetic unit (CPU) 90 can output a command of an electromagnetic valve 60 (60A or the like) that controls operations such as water purification, washing, and backwashing.
- the arithmetic unit 90 is electrically connected to a pressure switch 94a, a washing switch 94b, a switch 94c based on the numerical value of TDS (salt solute), a water storage switch 94d, and a float switch 94e.
- the switches 94a to 94e are controlled based on data from various sensors (for example, a pressure sensor and a TDS sensor).
- the arithmetic unit (CPU) 90 can execute control to turn on / off the purified water lamp 93A (green LED) and the cleaning lamp 93B (red LED).
- the arithmetic device 90 is connected to the outlet 92 via the AC / DC converter 91.
- the arithmetic unit (CPU) 90 is connected to the electromagnetic valve 60 (60A to 60K) via a buffer (B / F) 96. By providing the buffer 96, the driving of the electromagnetic valve 60 by the arithmetic unit (CPU) 90 can be executed more smoothly.
- FIG. 13 is a table showing control items such as solenoid valves (60A to 60K) controlled by the arithmetic unit (CPU) 90.
- “X” in the table indicates that the solenoid valve is closed, and “ ⁇ ” indicates that the solenoid valve is open.
- the electromagnetic valves 60A and 60B are three-way valves, and water is set to flow on the left side when not energized.
- Other solenoid valves are two-way valves for entering and exiting. Depending on the piping configuration, a four-way valve or a five-way valve may be used.
- the reverse osmosis membrane water purification device (direct type reverse osmosis membrane water purification device) 100 of the present embodiment can be automatically (particularly fully automatic) controlled. Very convenient.
- the RO water generation amount and / or TDS value of the reverse osmosis membrane module 20 is measured with various sensors, and when a predetermined reference value is reached, for example, It is also possible to execute the washing process in the night of the day and to perform the operation that the initialization of the reverse osmosis membrane module 20 is completed the next morning.
- test operation for discharging the cleaning water is performed after the cleaning is completed (initialization is completed) and before the water purification operation (RO water generation), the test operation is performed (operation start and operation time).
- Program can be executed by a control circuit including the arithmetic unit 90.
- the reverse osmosis membrane water purification apparatus 100 of this embodiment when using the RO water by the reverse osmosis membrane water purification apparatus 100 directly from a faucet, when bottling the purified water (RO water) produced
- the initialization of the reverse osmosis membrane module 20 is completed during the night, the working efficiency is greatly improved as compared with the case where the clean water is interrupted and washed during the day.
- the reverse osmosis membrane water purification apparatus 100 of this embodiment is not used as a household reverse osmosis membrane water purification apparatus but as a factory reverse osmosis membrane water purification apparatus 100. It doesn't matter.
- the RO water can also be used as treated water (pure water) for plants. In that case, you may enlarge the dimension of the reverse osmosis membrane water purifier 100, increase the number of the reverse osmosis membrane modules 20, or use the large-sized reverse osmosis membrane module 20.
- the cleaning method (initialization method) of this embodiment can be used.
- the RO water generated by the reverse osmosis membrane water purification apparatus 100 of the present embodiment is not only sold as pure water as it is, but also is sold with the addition of minerals, or is added with a fragrance and / or sweetness. Or it can be sold in the form of coffee, tea, or green tea.
- the reverse osmosis membrane water purification device 100 of the present embodiment can be used as a device for cleaning the reverse osmosis membrane module 20 (cleaning device) or a device for initializing the reverse osmosis membrane module 20 (initialization device). Is possible. In the case of a company or an individual who has already introduced a large number of reverse osmosis membrane water purification devices equipped with a reverse osmosis membrane module, there are cases where a large number of reverse osmosis membrane water purification devices 100 of this embodiment cannot be introduced. This is because there is a case where only the reverse osmosis membrane module 20 needs to be initialized.
- the reverse osmosis membrane module 20 or the reverse osmosis membrane water purification device 100 is leased, and the reverse osmosis membrane water purification device 100 according to the present embodiment initializes the reverse osmosis membrane module 20 to perform the initialization.
- the reverse osmosis membrane is obtained by switching on / off the resistance valve 64 (specifically, by turning off the resistance 64a of the resistance valve 64).
- the module 20 is backwashed.
- other means can be used instead of using the valve 64 with resistance.
- a similar function can be realized by providing a flow rate adjusting valve (64) for adjusting the flow rate of the liquid passing through the concentrated water line 23a at the position of the valve 64 with resistance.
- a control valve (flow rate adjusting valve) that can be continuously varied from fully open to fully closed with respect to the flow rate of the liquid passing through the concentrated water line 23a is provided, and the inside of the reverse osmosis membrane module 20 depending on the opening of the valve.
- the reverse osmosis membrane module 20 can be backwashed by controlling the pressure.
- the same resistance (fluid resistance) when the resistor 64a of the valve 64 with resistance is turned off may be realized by the control valve (flow rate adjusting valve) 64, and it is in the same state as fully opened.
- the reverse osmosis membrane module 20 may be backwashed with the control valve (flow rate adjusting valve) 64 fully opened.
- the reverse osmosis membrane module 20 is washed (for example, pressure washing / flushing washing) by switching on / off of the valve 64 with resistance.
- a control valve flow rate adjusting valve
- the control valve can be manually operated to perform backwashing, pressure washing, and flushing washing, but the control valve is electronically (automatically) controlled as a solenoid valve. It is more convenient to do.
- the valve 64 with resistance is also included in the flow rate adjusting valve that adjusts the flow rate of the liquid passing through the concentrated water line 23a in a broad sense.
- valve 64 with resistance two types of flow rate (fluid resistance) are controlled on / off.
- control valve flow rate adjusting valve
- control using intermediate values may be performed.
- the non-direct type reverse osmosis membrane water purification device 130 has a smaller power of the pressure pump 30 than the direct type reverse osmosis membrane water purification device, and the capability of the reverse osmosis membrane module 20 (or the reverse osmosis membrane unit 40) accordingly. Although it is small and the RO water generation capacity is small, the mechanism of the device is almost the same.
- the RO water (permeated water) generated by the reverse osmosis membrane water purification device 130 shown in FIG. 14 is when the faucet 120 is open (that is, when the outlet 122 is open by the lever 120). RO water is led out to the faucet 120 preferentially (arrow 155), and RO water comes out from the outlet 122 of the faucet 120 (arrow 159).
- the faucet 120 is closed, the RO water generated by the reverse osmosis membrane water purification device 130 is sent to the water storage tank 110 as indicated by an arrow 151.
- the reverse osmosis membrane water purifier 130 basically operates for 24 hours and continues to send RO water to the water storage tank 110. Accordingly, pressure is always applied to the water storage tank 110 and water leakage is likely to occur.
- the reverse osmosis membrane water purification device 130 of the reverse osmosis membrane water purification device 130 is based on the value of the pressure sensor disposed in the water storage tank 110 or its surroundings. Stop operation (especially pump operation).
- the RO water 159 is discharged from the outlet 122 of the faucet 120 as shown by arrows 152 and 153 so that the pressure in the water storage tank 110 is increased. It is preferable to control in the direction of decreasing.
- the faucet 120 is opened, if only the RO water (arrow 155) delivered from the reverse osmosis membrane water purifier 130 is insufficient, the RO water (arrows 152 and 153) in the water storage tank 110 is added. Thus, the desired amount of water can be obtained.
- the initialization of the reverse osmosis membrane module 20 can be performed as follows. First, when the reverse osmosis membrane module 20 of the reverse osmosis membrane water purification device 130 is provided with the flow rate adjustment valve 64 (or the valve 64 with resistance) and the washing water line 54 as shown in FIG.
- the form cleaning method can be carried out according to the procedure described above.
- a valve 150 is provided in a pipe connecting the reverse osmosis membrane water purifier 130 and the water storage tank 110.
- the cleaning liquid containing the chelating agent can be prevented from going to the water storage tank 110 when performing chelate cleaning (S20).
- the valve 150 is opened, and the RO water is discarded for a predetermined time (for example, 30 seconds) in the test operation, and then the normal operation may be executed.
- the reverse osmosis membrane water purification apparatus 130 when the reverse osmosis membrane water purification apparatus 130 is not provided with mechanisms such as the flow rate adjustment valve 64 and the washing water line 54 of the present embodiment, the following may be performed.
- the reverse osmosis membrane module 20 is removed from the reverse osmosis membrane water purification device 130, and the reverse osmosis membrane module 20 to be initialized is attached to the direct reverse osmosis membrane water purification device 100 of this embodiment shown in FIG. 9A and the like.
- a cleaning process initialization process
- the reverse osmosis membrane module 20 that has been initialized may be attached to the reverse osmosis membrane water purification device 130 again.
- a pipe for backwashing washing is attached using a pipe and a pump in the reverse osmosis membrane water purification device 130, and a backwashing process ( S10) is performed.
- chelate cleaning S20 is performed using the piping and pump in the reverse osmosis membrane water purifier 130.
- the reverse osmosis membrane module 20 initialized in this way can be used again with the reverse osmosis membrane water purification apparatus 130 having the water storage tank 110.
- the reverse osmosis membrane water purification device 100 of the present embodiment When using the reverse osmosis membrane water purification device 100 of the present embodiment, if the quality of the raw water 61 is too bad, it is preferable to perform the pretreatment.
- the raw water 61 may contain hard water in places other than Japan, or may contain harmful substances (arsenic, lead, cadmium, chlorinated molecules, etc.), suspended matter, dust, and dust. In that case, it is preferable to use the reverse osmosis membrane water purification apparatus 100 of this embodiment after performing a pretreatment compared with the case of generating RO water from tap water.
- FIG. 15 shows a configuration (reverse osmosis membrane system) in which several filters are arranged upstream of the reverse osmosis membrane module 20 in the reverse osmosis membrane water purification apparatus 100 of the present embodiment.
- the raw water 80 in FIG. 15 includes tap water, pool water, pond water, river water, and water that can be used in a disaster (for example, rainwater, seawater).
- the raw water 80 is introduced into the first filter 82 through the valve 85 a and then pressurized by the pressure pump 30.
- the first filter 82 of the present embodiment is a DM filter (trade name), and is a mesh filter that can remove iron rust, dust, and sand contained in the raw water 80.
- the pressure pump 30 of this example is AC24V drive, and has the capability of 3 liters / min.
- a second filter 82 is provided downstream of the first filter (mesh filter) 81 and the pump 30.
- the second filter 82 of the present embodiment is a sediment filter, and can remove iron rust and dust.
- the sediment filter 82 is a pretreatment precipitation filter, and is composed of a polyethylene fiber filter, and can remove fine impurities such as rust, sand and dust.
- a third filter 83 is disposed downstream of the second filter (sediment filter) 82.
- the third filter 83 of the present embodiment is a carbon filter that removes chlorine and odor.
- the carbon filter 83 is made of, for example, 10 micron fibrous activated carbon.
- the carbon filter 83 can remove chlorine and some heavy metals.
- the reverse osmosis membrane module 20 is located downstream of the third filter 83.
- the reverse osmosis membrane module 20 of this embodiment can remove heavy metals, viruses, and organic compounds, and the structure thereof is as described above. And according to the structure of this embodiment, purification
- a pipe extends from the reverse osmosis membrane module 20, and valves (86a, 86b, 87a, 87b) are arranged in a part of the pipe.
- a cleaning container 69 is disposed in the middle of the pipe through which the reverse osmosis membrane module 20 and the pump 30 circulate.
- the cleaning container 69 is a 2-liter cleaning tank.
- a desired configuration of the valves (86a, 86b, 87a, 87b) is opened / closed so that the cleaning liquid circulates, and a configuration for executing the initialization operation (S10, S20) with the configuration is constructed.
- a fourth filter (not shown) can be provided downstream of the reverse osmosis membrane module 20.
- the fourth filter is, for example, a post carbon filter, and has a function of removing the gas and odor from the water to make use of the natural flavor of water.
- cleaning process of the reverse osmosis membrane module 20 of this embodiment is fundamentally initializing the reverse osmosis membrane module 20 using a combination of backwashing washing
- backwashing (S10) can be used alone, or chelate cleaning (S20) can be used alone.
- chelate cleaning (S20) can be used alone.
- the reverse osmosis membrane module 20 In areas at the time of disaster or in certain areas of developing countries (emerging countries), the reverse osmosis membrane module 20 is prone to clogging, where there are multiple initialization processes, not once, The combined cleaning of backwashing (S10) and chelate cleaning (S20) may be performed.
- the method of circulating the cleaning liquid in the cleaning step has been described.
- the cleaning liquid may be discarded at once without circulating the cleaning liquid.
- a large amount of cleaning liquid may be prepared, or a mechanism capable of continuously supplying the cleaning liquid may be used.
- 16 and 17 are tables showing test results of the cleaning method (initialization method) of the reverse osmosis membrane module 20 performed by the inventor of the present application.
- the inventor of the present application experimentally verified the cleaning method (initialization method) of the reverse osmosis membrane module 20, and the description of this example restricts or limits the content of the present invention. Is not to be interpreted as such.
- the conditions used in this example are not necessarily optimal for executing the method of the embodiment of the present invention, and include conditions experimentally used.
- FIG. 16 shows the result of the initialization experiment of the reverse osmosis membrane module 20 (or reverse osmosis membrane unit 40).
- Ex. 1A is the reverse osmosis membrane module 20 (used and deteriorated reverse osmosis membrane module) for Sample 1
- Ex. 1B is sample 1 that has been initialized.
- Ex. 2A is the used reverse osmosis membrane module 20 for sample 2
- Ex. 2B is the initialized sample 2.
- Both sample 1 and sample 2 are reverse osmosis membrane units 40 made by a Chinese manufacturer.
- the reverse osmosis membrane unit 40 having the capacity of GDP 50 was able to generate RO water only at a flow rate of 80 cc / min before initialization. Moreover, even if the raw water with a TDS of 64 ppm was purified, the TDS of the RO water was 77 ppm, and the water was not purified.
- the capacity of the reverse osmosis membrane unit 40 has been greatly improved to be substantially the same as that of a new article.
- the quality of the RO water produced was also reduced from 77 ppm before initialization to 8 ppm after initialization. In other words, impurities were reduced to about 1/10 and the water quality was dramatically improved.
- the washing time is 1 minute for the backwashing step (S10) and 10 minutes for the chelate washing (S20), for a total of 11 minutes.
- the flushing cleaning is 5 minutes and the pressure cleaning is 5 minutes.
- the pressure pump 30 was stopped and left for a predetermined time (2 hours or more).
- FIG. 17 shows the result of the initialization experiment of the reverse osmosis membrane module 20 (or the reverse osmosis membrane unit 40) and the result of the operation check after the initialization. Since the raw water is from Japan, the quality of the raw water is not bad (for example, the raw water TDS is 82 ppm).
- Ex. Twelve samples were prepared.
- the RO flow rate of 12 was 136 cc / min, and the TDS of RO water was 39 ppm (86 ppm of raw water).
- This Ex. 12 is initialized, Ex. As shown in FIG. 13, the RO flow rate showed almost the same value as 125 cc / min), but the TDS of RO water decreased to 18 ppm (105 ppm of raw water).
- Ex. 13 is further initialized, Ex. As shown in FIG. 14, the TDS of RO water could be lowered to 8 ppm (97 ppm of raw water).
- FIG. 18 shows the result of the initialization experiment of the reverse osmosis membrane module 20 (or the reverse osmosis membrane unit 40) and the result of the operation check after the initialization. Since raw water is Japanese, the quality of raw water is not bad (for example, raw water TDS is 77.6 ppm).
- a reverse osmosis membrane unit 40 (manufactured by Dow Chemical Company) having the capacity of GDP 100 was used.
- a reverse osmosis membrane unit 40 (2012LP membrane; CSM product of Unjin Chemical Co., Ltd. (Korea) having the capacity of GDP 150 was used.
- cleaning liquid containing the chelating agent here performed normal operation for 10 minutes, after performing back washing for 1 minute with the washing
- the TDS of RO water during this normal operation for 10 minutes is 34.6 ppm.
- the TDS of the Ex32 sample that was subjected to normal operation for 10 minutes was 34.9 ppm with respect to the Ex31 sample on the next day after the backwashing step with the chelating agent was performed. . That is, the TDS value still remained high, and the reverse cleaning membrane unit could not be initialized even when the progress was observed.
- Ex. 32 samples were subjected to circulating cleaning for 1 minute in a pressurized state with a cleaning solution having a chelating agent concentration of 305 ppm, and then left for 6 hours (sample of Ex.33).
- Example of Ex.33 When 33 samples were subjected to normal operation for 10 minutes, their TDS was 34.6 ppm. That is, the TDS value remained high.
- Ex. 30 other than Ex. A comparative experiment was performed with 40 samples.
- the 40 samples are the reverse osmosis membrane unit 40 before the initialization, and the RO flow rate is 326 cc / min and the TDS of the RO water is 18.7 ppm (raw water 77.6 ppm) in the measurement performed for 10 minutes in the normal operation. Met.
- the ExDS sample on the next day after the backwashing step with the chelating agent was performed for 10 minutes on the Ex41 sample, and the TDS was 20 ppm. That is, the TDS value still remained high, and the reverse cleaning membrane unit could not be initialized even when the progress was observed.
- FIG. 19 shows a reverse osmosis membrane water purification apparatus (direct reverse osmosis membrane water purification apparatus, household reverse osmosis membrane water purification apparatus) 100 according to the present embodiment, on which a plurality of reverse osmosis membrane modules 20 (20A, 20B) are mounted.
- a configuration example is shown. In the configuration shown in FIG. 19, the housing 10 is lifted up so that the inside can be seen.
- an initialization mechanism (a process mechanism for executing S10 and S20) may be mounted on all the reverse osmosis membrane modules 20, or at one reverse osmosis membrane module 20 location. All the reverse osmosis membrane modules 20 may be initialized by mounting an initialization mechanism and replacing the reverse osmosis membrane modules 20. Even if the above comparative example is used for the purpose of explaining the non-infringing implementation of the present invention, the initialization process of the present invention is executed for the reverse osmosis membrane module that could not be initialized by the implementation of the comparative example. Needless to say, the present invention is implemented.
- FIG. 20 is a drawing showing an example of a reverse osmosis membrane water purifier 140 provided with a water storage tank (110), not a direct type.
- FIG. 21 shows an example of the water storage tank 110A.
- FIG. 22 shows an example of another water storage tank 110B.
- the basic configuration is the same as that of the (tank type) reverse osmosis membrane water purifier 130 shown in FIG.
- the reverse osmosis membrane water purifier 140 shown in FIG. 20 includes a filter (20, 29) housed in a housing (rear housing) 12a and a pump 30 housed in the housing (rear housing) 12b.
- the housing 12a stores one reverse osmosis membrane module 20 and a plurality (three in this case) of pre-carbon filters.
- the filters (20, 29) are connected to the motor 30 via pipes (tubes).
- the housing 20b that houses the motor 30 is separate from the housing 20a that houses the filter (20, 29). However, the motor 30 and the filter (20, 29) in the same housing. You may use the housing
- the separate body can make it easier to reduce the cost, the entire storage place becomes larger.
- the water passes through the filters (20, 29) by the force of the motor 30, and permeated water (RO water) is generated by membrane separation in the reverse osmosis membrane module 20.
- the generated permeated water (RO water) is stored in the water storage tank 110A shown in FIG.
- a pipe tube, particularly a branch tube
- the RO water is stored in the water storage tank 110A.
- a balloon is installed inside the water storage tank 110A to apply pressure to the stored water.
- the RO water is stored in the water storage tank 110A by the balloon pressure (balloon pressure). It is configured to be able to be discharged from the connection port 110e to the outside.
- the generated RO water can be stored in a water storage tank 110B as shown in FIG.
- the water storage tank 110B can store RO water in a tank portion 110c made of a transparent material. Further, the RO water stored in the tank part 110c can be taken out from the take-out port 110d.
- the reverse osmosis membrane module 20 is taken out from the housing 12a.
- the used reverse osmosis membrane module 20 is set at the location of the reverse osmosis membrane module 20 in the reverse osmosis membrane water purification device (initialization device) 100 shown in FIG. 4 or FIG. 9C (FIG. 10).
- the process is performed (steps S10 and S20 in FIG. 8). Thereby, initialization of the reverse osmosis membrane module 20 is completed.
- initialization is completed when the flow rate / TDS is recovered to 90% or more of a new spec (flow rate, TDS), but the reference may be 95% or more. It may be 80% or more.
- the initialization apparatus (reverse osmosis membrane water purification apparatus) which performs an initialization process is a thing of the structure which can perform both an initialization process and RO water production
- the initialization apparatus according to the present embodiment is not limited to the configuration.
- An initialization device that can perform two steps of backwashing (step S10) and chelate cleaning (step S20) and cannot perform the RO water generation process may be constructed.
- a first initialization device that can perform backwashing (step S10) and a second initialization device that can perform chelate cleaning (step S20) are prepared, and backwashing is performed using the first initialization device. After executing the cleaning (step S10), the apparatus may be moved, and chelate cleaning (step S20) may be executed by the second initialization apparatus to complete the initialization.
- step S10 instead of setting the used reverse osmosis membrane module 20 in a dedicated initialization device and initializing the used reverse osmosis membrane module 20, in the configuration shown in FIG. Also, it is possible to initialize the reverse osmosis membrane module 20 by executing the backwashing (step S10) and the chelate washing (step S20) by making the flow direction of the washing water appropriate.
- the chelating agent in the liquid container 68 becomes empty.
- a device that detects the sky liquid level detector, mass measuring device, etc.
- displays the exchange of the chelating agent based on the detection signal for example, an LED lamp, a display for replacement indication, etc.
- the PET bottle type liquid container 68A as shown in FIG.
- the chelating agent 55A can be supplied by setting (for example, with one touch).
- the liquid solution 68A of the present embodiment is made of a resin (for example, PET), but may be made of glass or metal as long as the liquid surface or weight of the chelating solution 55A can be detected and the replacement time can be specified. However, it may be made of ceramic.
- FIG. 24 shows a preform type liquid container 68B.
- the preform is a frame-shaped (or test tube-shaped) container before being formed into a PET bottle shape.
- the liquid container 68B shown in FIG. 24 covers the opening of the bottle portion 67c with a cap 67d. What is necessary is just to make it the structure which can take out the chelating agent 55B in the bottle part 67c by open
- the liquid solution 68B of the present embodiment is made of a resin (for example, PET).
- the liquid solution 68B can be made of glass or metal as long as the liquid surface or weight of the chelating solution 55B can be detected and the replacement time can be specified. However, it may be made of ceramic.
- the household reverse osmosis membrane water purification device means a smaller reverse osmosis membrane water purification device compared to the plant reverse osmosis membrane water purification device used in the factory, so the household reverse osmosis membrane water purification device
- restaurants for example, Chinese restaurants
- hotels for example, movie theaters, malls, gymnasiums and gyms.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
[Problem] To provide a reverse osmosis membrane water purification apparatus in which the capacity of a used reverse osmosis membrane can be regenerated. [Solution] A direct reverse osmosis membrane water purification apparatus (100) for forming purified water (63) from raw water (61) is provided with: a reverse osmosis membrane module (20); a raw water supply line (25a) connected to a raw water supply port (25) of the reverse osmosis membrane module (20); a permeate line (24a) connected to a permeate port (24); and a concentrated water line (23a) connected to a concentrated water port (23). The concentrated water line (23a) is provided with a flow adjustment valve (64) (valve (64) with a resistance (64a)) and a rinsing water line (54) through which rinsing water (55) passes is connected to the permeate port (24) of the reverse osmosis membrane module (20).
Description
本発明は、逆浸透膜を初期化可能なダイレクト式逆浸透膜浄水装置に関する。特に、貯水タンクを必要とせず直接に水道水の蛇口に接続して浄水を提供することのできるダイレクト式逆浸透膜浄水装置およびその動作方法に関する。また、本発明は、逆浸透膜浄水装置の逆浸透膜を洗浄する方法(特に、逆浸透膜の初期化方法)に関する。
The present invention relates to a direct type reverse osmosis membrane water purifier capable of initializing a reverse osmosis membrane. In particular, the present invention relates to a direct reverse osmosis membrane water purification apparatus that can be connected directly to a tap water tap without providing a water storage tank and can provide purified water, and an operation method thereof. Moreover, this invention relates to the method (especially initialization method of a reverse osmosis membrane) which wash | cleans the reverse osmosis membrane of a reverse osmosis membrane water purifier.
水源の水質の悪化や滅菌のために投入される塩素系殺菌剤等の影響により、水道水に不快臭が付いたり、味が悪くなる等の問題が生じている。さらに最近では、塩素系殺菌剤に起因して生成するトリハロメタン等による水道水の汚染のほか、塩素系殺菌剤では死滅させることができないクリプトスポリジウム等の寄生性原虫により、健康が害されるという新たな問題も生じている。
水道 Due to the deterioration of the water quality of the water source and the influence of chlorine-based disinfectants and the like used for sterilization, problems such as unpleasant odors and poor taste occur in tap water. More recently, in addition to the contamination of tap water caused by chlorinated fungicides, such as trihalomethane, new protozoa such as Cryptosporidium, which cannot be killed by chlorinated fungicides, are harmful to health. There are also problems.
したがって、このような問題を解決するものとして、従来汎用されていた活性炭濾過器に代わって、より高い精製能力を有する逆浸透膜を備えた浄水装置が普及し始めている(特許文献1)。また、日本国内であれば河川の水質汚染はあるレベルに抑えられているが、発展途上国または新興国(例えば、中国、ベトナムなど)においては、河川の水質汚染レベルは日本よりも悪い。それゆえに、そのレベルでの水質の水を用いての浄水に対応できることは、世界(特に、発展途上国または新興国)の水不足の解決に貢献することになる。
Therefore, in order to solve such a problem, a water purifier equipped with a reverse osmosis membrane having a higher purification capability is beginning to spread instead of the conventionally used activated carbon filter (Patent Document 1). In Japan, river water pollution is limited to a certain level, but in developing countries or emerging countries (eg, China, Vietnam, etc.), river water pollution levels are worse than in Japan. Therefore, being able to cope with water purification using water at that level will contribute to solving water shortages in the world (particularly developing or emerging countries).
逆浸透膜型の浄水装置は、逆浸透膜の透過水量が少ないため、精製した水道水を一旦貯水タンクに貯水し、使用時にはその貯水を、活性炭フィルタを経由して蛇口から取水するという方式が採用されている。この方式の場合、蛇口から侵入した細菌等が活性炭内において繁殖することによる逆汚染が生じることがある。その場合には、水質の悪化や不快臭の発生等の問題が生じてしまう。よって、このような問題の発生を防止するため、蛇口と貯水タンクとの間に紫外線殺菌装置を設け、常時紫外線を照射することにより、細菌による逆汚染を防止している。
The reverse osmosis membrane type water purifier has a system in which the amount of permeated water of the reverse osmosis membrane is small, so purified tap water is temporarily stored in a water storage tank, and when used, the stored water is taken from a faucet via an activated carbon filter. It has been adopted. In the case of this method, back-contamination may occur due to bacteria or the like that have entered from the faucet breeding in the activated carbon. In that case, problems such as deterioration of water quality and generation of unpleasant odors occur. Therefore, in order to prevent the occurrence of such a problem, an ultraviolet sterilizer is provided between the faucet and the water storage tank, and the ultraviolet rays are constantly irradiated to prevent back contamination by bacteria.
しかしながら、このような紫外線照射による逆汚染防止方法の場合、細菌等による逆汚染は防止できるものの、精製水に僅かな不快臭が付くという問題がある。また、常時紫外線を照射しているため、無駄も多く、維持費が高くなるという問題もある。さらには、貯水タンクを台所へ設置するためのスペースが必要となり、水道管への接続工事に多大の労力と費用がかさむという難点があった。
However, in the case of such a method for preventing back-pollution due to ultraviolet irradiation, there is a problem that a slight unpleasant odor is attached to purified water, although back-contamination by bacteria or the like can be prevented. Further, since the ultraviolet rays are constantly irradiated, there is a problem that there is a lot of waste and the maintenance cost becomes high. Furthermore, a space for installing the water storage tank in the kitchen is required, and there is a problem that a great amount of labor and cost are involved in the construction work for connecting to the water pipe.
本願発明者は、家庭用逆浸透膜浄水装置において、まず、独自の逆浸透膜濾過装置を2段又は多段に組み合わせ、得られる浄水量を多くすることにより、貯水タンクを必要とせず直接蛇口に接続して浄水を得られる装置(ダイレクト式逆浸透膜浄水装置)を開発した(特許文献2参照)。また、この浄水装置を用いると、災害時にはプールや池、その他河川などから原水を得ることで、吸引、圧送を可能とした圧力ポンプによって浄水を行うことができる。
The inventor of the present application, in a household reverse osmosis membrane water purification device, first, by combining the original reverse osmosis membrane filtration device in two stages or multiple stages and increasing the amount of purified water obtained, directly to the faucet without the need for a water storage tank A device (direct reverse osmosis membrane water purification device) that can be connected to obtain purified water was developed (see Patent Document 2). Moreover, when this water purifier is used, water can be purified by a pressure pump that enables suction and pumping by obtaining raw water from pools, ponds, and other rivers in the event of a disaster.
上記の逆浸透膜浄水装置によれば、貯水タンクを必要としないので、紫外線殺菌装置も不要であり、さらには貯水タンクを台所へ設置するためのスペースも不要であるので、極めて利点が大きく、技術的価値ならびに経済的価値の両面でメリットがある。しかしながら、本願発明者は、当該逆浸透膜浄水装置をさらにより良くしていく研究開発を行っている際に、次のことに気付いた。
According to the above reverse osmosis membrane water purification device, since no water storage tank is required, an ultraviolet sterilization device is unnecessary, and further, a space for installing the water storage tank in the kitchen is also unnecessary. There are merit in both technical value and economic value. However, the inventor of the present application has noticed the following during research and development for further improving the reverse osmosis membrane water purification device.
貯水タンクが存在していても存在していなくても、逆浸透膜浄水装置は、逆浸透膜濾過装置(逆浸透膜ユニット)を備えている。この逆浸透膜濾過装置(逆浸透膜ユニット)は、使用時間の経過とともに能力が低下していき、最終的には、新品のものに交換する必要がある。逆浸透膜濾過装置の交換時期は、逆浸透膜濾過装置のスペック、使用条件、処理した水の量などに依存して変化するので明確な時間は示せないが、おおよそ3年~5年である。
Whether the water storage tank is present or not, the reverse osmosis membrane water purification device includes a reverse osmosis membrane filtration device (reverse osmosis membrane unit). The capacity of this reverse osmosis membrane filtration device (reverse osmosis membrane unit) decreases with the passage of time of use, and eventually it is necessary to replace it with a new one. The time to replace the reverse osmosis membrane filtration device varies depending on the specifications of the reverse osmosis membrane filtration device, usage conditions, the amount of treated water, etc., so it is not possible to show a clear time, but it is about 3 to 5 years .
しかしながら、例えば中国または東南アジアの水質が悪いところで浄水を行うと、この逆浸透膜濾過装置(逆浸透膜ユニット)がすぐ劣化してしまい、所望の能力を発揮できなくなる。仮に2~3年での交換を想定していたものが、2週間~3ヶ月で交換しなければならないとすれば、逆浸透膜濾過装置のコストが膨大となってしまう。本願発明者の聞いたところによると、ベトナムでは、2~3日で逆浸透膜ユニットの劣化又は目詰まりを起こしたという事例もあった。
However, for example, if water purification is performed in China or Southeast Asia where the water quality is poor, this reverse osmosis membrane filtration device (reverse osmosis membrane unit) will deteriorate immediately, making it impossible to exhibit the desired capacity. If the replacement is supposed to be performed in 2 to 3 years but must be replaced in 2 weeks to 3 months, the cost of the reverse osmosis membrane filtration device becomes enormous. According to the inventor's interview, there were cases in Vietnam where the reverse osmosis membrane unit deteriorated or clogged in 2 to 3 days.
本願発明者は、新品の逆浸透膜濾過装置(逆浸透膜ユニット)に交換する前に、能力が低下した逆浸透膜濾過装置を洗浄することを行ってみたが、少しは回復するものの、新品の逆浸透膜濾過装置に交換するような能力の回復は見られなかった。もし、新品の逆浸透膜濾過装置に交換したと同様の性能回復が得られるような洗浄方法(逆浸透膜の初期化方法)を見付けることができたら、画期的な技術となる。
The inventor of the present application tried to wash the reverse osmosis membrane filtration device with reduced capacity before replacing it with a new reverse osmosis membrane filtration device (reverse osmosis membrane unit). The recovery of the ability to replace the reverse osmosis membrane filtration apparatus was not observed. If it is possible to find a cleaning method (reverse osmosis membrane initialization method) that can restore performance similar to that obtained by replacing a new reverse osmosis membrane filtration device, this is an epoch-making technology.
本願発明者は、このような状況の中で、家庭用逆浸透膜浄水装置が備えている逆浸透膜の能力を初期化できる方法(特殊な洗浄方法)を鋭意検討し、本発明を完成するに至った。本発明はかかる点に鑑みてなされたものであり、その主な目的は、使用済みの逆浸透膜の能力を回復できる逆浸透膜浄水装置(例えば、ダイレクト式逆浸透膜浄水装置)を提供することにある。
In this situation, the inventor of the present application diligently studied a method (special cleaning method) capable of initializing the ability of the reverse osmosis membrane provided in the household reverse osmosis membrane water purification device, and completed the present invention. It came to. This invention is made | formed in view of this point, The main objective provides the reverse osmosis membrane water purification apparatus (for example, direct type reverse osmosis membrane water purification apparatus) which can recover | restore the capability of a used reverse osmosis membrane. There is.
本発明に係るダイレクト式逆浸透膜浄水装置は、原水から浄水を生成するダイレクト式逆浸透膜浄水装置であり、原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールと、前記逆浸透膜モジュールの原水供給口に接続された原水供給ラインと、前記逆浸透膜モジュールの透過水口に接続された透過水ラインと、前記逆浸透膜モジュールの濃縮水口に接続された濃縮水ラインとを備えている。前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流量を調整する流量調整弁が設けられている。前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている。
A direct type reverse osmosis membrane water purification apparatus according to the present invention is a direct type reverse osmosis membrane water purification apparatus that generates purified water from raw water, and a reverse osmosis membrane module that generates raw water and permeated water by subjecting the raw water to membrane separation treatment and The raw water supply line connected to the raw water supply port of the reverse osmosis membrane module, the permeate water line connected to the permeate water port of the reverse osmosis membrane module, and the concentrated water connected to the concentrate water port of the reverse osmosis membrane module Line. The concentrated water line is provided with a flow rate adjusting valve that adjusts the flow rate of the liquid passing through the concentrated water line. A washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
ある好適な実施形態では、前記原水を前記逆浸透膜モジュールに導入する圧力ポンプが設けられており、前記流量調整弁は、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁であり、前記抵抗付き弁は、前記抵抗となる定流量弁と、前記定流量弁のバイパス経路とを備えており、前記バイパス経路には、前記バイパス経路のオン/オフを切り替えるコックが設けられている。前記洗浄水ラインは、前記透過水ラインから分岐した形態で、前記透過水口に接続されており、前記ダイレクト式逆浸透膜浄水装置には、前記逆浸透膜モジュールの前記透過水ラインから送り出される前記透過水を貯蔵する貯蔵タンクが設けられていない。
In a preferred embodiment, a pressure pump for introducing the raw water into the reverse osmosis membrane module is provided, and the flow rate adjusting valve has a resistance for quantifying the flow of liquid passing through the concentrated water line. The resistance valve includes a constant flow valve serving as the resistance and a bypass path of the constant flow valve, and the bypass path is switched on / off by the bypass path. A cock is provided. The washing water line is connected to the permeate opening in a form branched from the permeate line, and the direct reverse osmosis membrane water purifier is fed from the permeate line of the reverse osmosis membrane module. There is no storage tank for storing permeate.
ある好適な実施形態において、前記ダイレクト式逆浸透膜浄水装置には、前記原水供給ラインと前記透過水ラインと前記濃縮水ラインと前記洗浄液体ライン以外に、複数の液体ラインが設けられている。前記ダイレクト式逆浸透膜浄水装置には、さらに、前記原水供給ライン、前記透過水ライン、前記濃縮水ライン、前記洗浄液体ライン、および、前記複数の液体ラインの流れをオン/オフする複数の弁が設けられている。前記ダイレクト式逆浸透膜浄水装置は、前記複数の弁のそれぞれの弁のオン/オフを設定するとともに、前記流量調整弁の設定により、前記透過水および前記濃縮水を生成する浄水モード配管構成と;前記逆浸透膜モジュールを順方向の流れで洗浄する洗浄モード配管構成と;前記逆浸透膜モジュールを逆方向の流れで洗浄する逆洗モード配管構成と;を切り替え可能な構成を有している。
In a preferred embodiment, the direct reverse osmosis membrane water purification apparatus is provided with a plurality of liquid lines in addition to the raw water supply line, the permeate water line, the concentrated water line, and the washing liquid line. The direct reverse osmosis membrane water purifier further includes a plurality of valves for turning on / off the raw water supply line, the permeate water line, the concentrated water line, the washing liquid line, and the flow of the plurality of liquid lines. Is provided. The direct-type reverse osmosis membrane water purification device sets on / off of each of the plurality of valves, and also forms a purified water mode piping configuration that generates the permeated water and the concentrated water by setting the flow rate adjustment valve. A configuration in which the reverse osmosis membrane module can be switched between a cleaning mode piping configuration for cleaning the reverse osmosis membrane module in a forward flow; and a backwash mode piping configuration for cleaning the reverse osmosis membrane module in a reverse flow. .
ある好適な実施形態において、前記複数の弁は、それぞれ、電磁弁であり、前記電磁弁は、前記浄水モード配管構成、前記洗浄モード配管構成、および、前記逆洗モード配管構成を切り替える制御回路によって制御されている。
In a preferred embodiment, each of the plurality of valves is a solenoid valve, and the solenoid valve is controlled by a control circuit that switches between the water purification mode piping configuration, the cleaning mode piping configuration, and the backwash mode piping configuration. It is controlled.
ある好適な実施形態では、さらに、洗浄溶液を導通させる洗浄溶液ラインが設けられており、前記洗浄溶液ラインの一端は、前記洗浄溶液が保持されている洗浄溶液容器に配置され、前記洗浄溶液ラインの他端は、前記原水供給ラインおよび前記洗浄水ラインを介して、前記逆浸透膜モジュールの前記原水供給口および前記透過水口に接続されている。
In a preferred embodiment, a cleaning solution line for conducting a cleaning solution is further provided, and one end of the cleaning solution line is disposed in a cleaning solution container in which the cleaning solution is held, and the cleaning solution line is provided. The other end of is connected to the raw water supply port and the permeate water port of the reverse osmosis membrane module via the raw water supply line and the washing water line.
ある好適な実施形態では、さらに、前記ダイレクト式逆浸透膜浄水装置を収容する筐体を備えており、前記筐体は、縦50cm以下、横50cm以下および厚さ30cm以下の寸法を有している。また、ある実施形態において、前記ダイレクト式逆浸透膜浄水装置の浄水生成能力は、2.5リットル/1分間以下(水温25℃基準)である。
In a preferred embodiment, the apparatus further comprises a housing that accommodates the direct reverse osmosis membrane water purification device, and the housing has dimensions of 50 cm or less, 50 cm or less, and a thickness of 30 cm or less. Yes. Moreover, in one embodiment, the water purification capacity | capacitance of the said direct type reverse osmosis membrane water purification apparatus is 2.5 liters / 1 minute or less (water temperature 25 degreeC reference | standard).
ある好適な実施形態において、前記筐体内には、前記逆浸透膜モジュールは1つだけ配置されている。
In a preferred embodiment, only one reverse osmosis membrane module is disposed in the housing.
本発明に係る逆浸透膜浄水装置は、原水から浄水を生成する逆浸透膜浄水装置であり、原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールと、前記逆浸透膜モジュールの原水供給口に接続された原水供給ラインと、前記逆浸透膜モジュールの透過水口に接続された透過水ラインと、前記逆浸透膜モジュールの濃縮水口に接続された濃縮水ラインとを備えている。前記原水を前記逆浸透膜モジュールに導入する圧力ポンプが設けられており、前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流量を調整する流量調整弁が設けられており、前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている。
A reverse osmosis membrane water purification apparatus according to the present invention is a reverse osmosis membrane water purification apparatus that generates purified water from raw water, and a reverse osmosis membrane module that generates a permeated water and a concentrated water by subjecting the raw water to membrane separation, and the reverse osmosis membrane A raw water supply line connected to the raw water supply port of the membrane module; a permeated water line connected to the permeated water port of the reverse osmosis membrane module; and a concentrated water line connected to the concentrated water port of the reverse osmosis membrane module. ing. A pressure pump for introducing the raw water into the reverse osmosis membrane module is provided, and the concentrated water line is provided with a flow rate adjusting valve for adjusting a flow rate of the liquid passing through the concentrated water line, A washing water line through which the washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
ある好適な実施形態において、前記流量調整弁は、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁であり、前記抵抗付き弁は、前記抵抗となる定流量弁と、前記定流量弁のバイパス経路とを備えている。前記バイパス経路には、前記バイパス経路のオン/オフを切り替えるコックが設けられている。
In a preferred embodiment, the flow rate adjusting valve is a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line, and the resistance valve is a constant flow rate that becomes the resistance. And a bypass path for the constant flow valve. The bypass path is provided with a cock for switching on / off the bypass path.
ある好適な実施形態において、原水は、水道水、プール水、池水、河川水、および、災害時に使用可能な水からなる群から選択される水であり、前記逆浸透膜浄水装置は、さらに、原水に含まれる鉄さび・ゴミ・砂を除去する第1フィルタと、第1フィルタの下流に配置され、鉄さび・チリを除去する第2フィルタと、第2フィルタの下流に配置され、塩素・臭気を除去する第3フィルタとを備えている。前記第3フィルタの下流に、前記逆浸透膜モジュールが位置している。
In a preferred embodiment, the raw water is water selected from the group consisting of tap water, pool water, pond water, river water, and water that can be used in a disaster, and the reverse osmosis membrane water purification device further comprises: A first filter that removes iron rust, dust, and sand contained in raw water, a second filter that is disposed downstream of the first filter, and that is disposed downstream of the second filter to remove chlorine and odor. And a third filter to be removed. The reverse osmosis membrane module is located downstream of the third filter.
本発明に係る動作方法は、原水から浄水を生成する逆浸透膜浄水装置の動作方法であり、前記逆浸透膜浄水装置は、原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールを備えている。前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、前記逆浸透膜モジュールの前記濃縮水口には、前記濃縮水が通過する前記濃縮水ラインが接続されている。前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁が設けられている。前記抵抗付き弁の前記抵抗をオンにした状態で、前記逆浸透膜モジュール内を加圧状態にし、前記原水の膜分離処理を実行する浄水工程と、前記抵抗付き弁の前記抵抗をオフにした状態で、前記浄水工程よりも前記逆浸透膜モジュール内を流れる液量を増加させることによって、前記逆浸透膜モジュールの洗浄を実行するフラッシング洗浄工程と、前記抵抗付き弁の前記抵抗をオフにした状態で、前記透過水口から洗浄液を導入することによって、前記逆浸透膜モジュールの洗浄を実行する逆洗工程とを実行する。
The operation method according to the present invention is an operation method of a reverse osmosis membrane water purification device that generates purified water from raw water, and the reverse osmosis membrane water purification device performs reverse membrane separation treatment to generate permeated water and concentrated water. An osmotic membrane module is provided. The reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port from which concentrated water is discharged, and the concentrated water port of the reverse osmosis membrane module Is connected to the concentrated water line through which the concentrated water passes. The concentrated water line is provided with a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line. With the resistance of the valve with resistance turned on, the inside of the reverse osmosis membrane module was put into a pressurized state, and a water purification process for performing membrane separation treatment of the raw water, and the resistance of the valve with resistance turned off In the state, by increasing the amount of liquid flowing in the reverse osmosis membrane module rather than the water purification step, the flushing washing step for washing the reverse osmosis membrane module and the resistance of the valve with resistance turned off. In this state, a backwashing step of cleaning the reverse osmosis membrane module is performed by introducing a cleaning liquid from the permeated water port.
本発明に係る精製水の生成方法は、逆浸透膜モジュールを用いて、原水から浄水を生成する精製水の生成方法であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、前記逆浸透膜モジュール内を加圧状態にし、前記原水の膜分離処理を実行する浄水工程を含み。前記生成方法は、前記浄水工程の他に、前記逆浸透モジュールの洗浄工程を含み、前記洗浄工程は、前記浄水工程と同じ向きに前記逆浸透膜モジュール内に液体を流すことによって、前記逆浸透膜モジュールの洗浄を実行するフラッシング洗浄工程と、前記浄水工程と逆向きに前記逆浸透膜モジュール内に液体を流すことによって、前記逆浸透膜モジュールの洗浄を実行する逆洗工程とを含んでいる。
The method for producing purified water according to the present invention is a method for producing purified water from a raw water using a reverse osmosis membrane module, the reverse osmosis membrane module comprising a raw water supply port through which raw water is introduced, A water purification step comprising a permeated water port from which permeated water is derived and a concentrated water port from which the concentrated water is discharged, wherein the reverse osmosis membrane module is pressurized to perform a membrane separation process of the raw water. The generation method includes, in addition to the water purification step, a washing step of the reverse osmosis module, and the washing step causes the liquid to flow in the reverse osmosis membrane module in the same direction as the water purification step, thereby the reverse osmosis module. A flushing cleaning step for cleaning the membrane module, and a backwashing step for cleaning the reverse osmosis membrane module by flowing a liquid in the reverse osmosis membrane module in a direction opposite to the water purification step. .
本発明に係る洗浄方法は、逆浸透膜モジュールを洗浄する洗浄方法であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、第1洗浄液を前記透過水口から導入して、前記原水供給口および前記濃縮水口から排出する工程(a)と、第2洗浄液を前記原水供給口から導入して、前記透過水口および前記濃縮水口から排出する工程(b)とを含む。
The cleaning method according to the present invention is a cleaning method for cleaning a reverse osmosis membrane module. The reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeate water port from which permeated water is derived, and concentrated water. A step (a) of introducing a first cleaning liquid from the permeated water port and discharging from the raw water supply port and the concentrated water port; and introducing a second cleaning liquid from the raw water supply port. And a step (b) of discharging from the permeated water port and the concentrated water port.
ある好適な実施形態では、前記工程(a)を実行した後に、前記工程(b)を実行する。
In a preferred embodiment, the step (b) is performed after the step (a) is performed.
ある好適な実施形態では、前記工程(a)と前記工程(b)との組み合わせを繰り返し実行する。
In a preferred embodiment, the combination of the step (a) and the step (b) is repeatedly executed.
ある好適な実施形態において、前記第1洗浄液は、逆浸透水である。
In a preferred embodiment, the first cleaning liquid is reverse osmosis water.
ある好適な実施形態において、前記第2洗浄液は、キレート剤を含有する溶液である。
In a preferred embodiment, the second cleaning liquid is a solution containing a chelating agent.
ある好適な実施形態において、前記第2洗浄液には、前記キレート剤に加えて、アルカリ成分が含有されている。
In a preferred embodiment, the second cleaning liquid contains an alkali component in addition to the chelating agent.
ある好適な実施形態において、前記第2洗浄液は、濃縮された前記キレート剤を含む濃縮洗浄液を希釈して生成され、前記濃縮洗浄液は、液体容器に収納されている。
In a preferred embodiment, the second cleaning liquid is generated by diluting a concentrated cleaning liquid containing the concentrated chelating agent, and the concentrated cleaning liquid is stored in a liquid container.
ある好適な実施形態では、前記液体容器に収納された前記濃縮洗浄液が空になったことを検知する工程と、前記濃縮洗浄液が収納された前記液体容器を、前記空になった前記液体容器と交換する工程とを含む。
In a preferred embodiment, the step of detecting that the concentrated cleaning liquid stored in the liquid container is emptied; the liquid container storing the concentrated cleaning liquid; and the liquid container that has been emptied And exchanging.
本発明に係る初期化方法は、逆浸透膜浄水装置における逆浸透膜モジュールを初期化する方法であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備え、逆浸透水を前記透過水口から導入して、前記原水供給口および前記濃縮水口から排出する工程(a)と、前記工程(a)の後、キレート剤を含有する洗浄液を前記原水供給口から導入して、前記透過水口および前記濃縮水口から排出する工程(b)とを含む。
The initialization method according to the present invention is a method of initializing a reverse osmosis membrane module in a reverse osmosis membrane water purification device, and the reverse osmosis membrane module is a raw water supply port through which raw water is introduced and permeated water is derived. A step (a) including a permeated water port and a concentrated water port from which concentrated water is discharged, and introducing reverse osmosis water from the permeated water port and discharging the raw water supply port and the concentrated water port; and the step (a) Thereafter, a cleaning liquid containing a chelating agent is introduced from the raw water supply port and discharged from the permeate water port and the concentrated water port.
本発明に係る初期化装置は、逆浸透膜浄水装置における逆浸透膜モジュールを初期化する装置であり、使用済みの逆浸透膜モジュールの原水供給口に接続される原水供給ラインと、前記逆浸透膜モジュールの透過水口に接続される透過水ラインと、前記逆浸透膜モジュールの濃縮水口に接続される濃縮水ラインとを備え、前記逆浸透膜モジュールに液体を導入する圧力ポンプが設けられており、前記逆浸透膜モジュールの透過水口には、洗浄水が通過する逆洗用の洗浄水ラインが接続され、そして、前記原水供給ラインは、キレート剤を含有する洗浄液が通過するフラッシング用ラインを兼ねている。
An initialization apparatus according to the present invention is an apparatus that initializes a reverse osmosis membrane module in a reverse osmosis membrane water purification device, and a raw water supply line connected to a raw water supply port of a used reverse osmosis membrane module, and the reverse osmosis A pressure pump for introducing a liquid into the reverse osmosis membrane module, comprising a permeate line connected to the permeate port of the membrane module and a concentrate water line connected to the concentrate port of the reverse osmosis membrane module; The reverse osmosis membrane module has a permeate opening connected to a backwash water line through which the wash water passes, and the raw water supply line also serves as a flushing line through which the cleaning liquid containing the chelating agent passes. ing.
本発明の実施形態に係る逆浸透膜浄水装置は、原水から浄水を生成する逆浸透膜浄水装置であり、原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールと、前記逆浸透膜モジュールの原水供給口に接続された原水供給ラインと、前記逆浸透膜モジュールの透過水口に接続された透過水ラインと、前記逆浸透膜モジュールの濃縮水口に接続された濃縮水ラインとを備えている。前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁(または、流量調整弁)が設けられている。前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている。
A reverse osmosis membrane water purification apparatus according to an embodiment of the present invention is a reverse osmosis membrane water purification apparatus that generates purified water from raw water, and a reverse osmosis membrane module that generates raw water and concentrated water by subjecting raw water to membrane separation, The raw water supply line connected to the raw water supply port of the reverse osmosis membrane module, the permeate water line connected to the permeate water port of the reverse osmosis membrane module, and the concentrated water line connected to the concentrate water port of the reverse osmosis membrane module And. The concentrated water line is provided with a resistance valve (or a flow rate adjusting valve) having a resistance for quantifying the flow of liquid passing through the concentrated water line. A washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
本発明の実施形態に係る動作方法は、原水から浄水を生成する逆浸透膜浄水装置の動作方法であり、前記逆浸透膜浄水装置は、原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールを備えている。前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、前記逆浸透膜モジュールの前記濃縮水口には、前記濃縮水が通過する前記濃縮水ラインが接続されている。前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁(または、流量調整弁)が設けられている。前記抵抗付き弁の前記抵抗をオンにした状態で(または、前記流量調整弁によって流量を絞った状態で)、前記逆浸透膜モジュール内を加圧状態にし、前記原水の膜分離処理を実行する浄水工程と、前記抵抗付き弁の前記抵抗をオフにした状態で、前記浄水工程よりも前記逆浸透膜モジュール内を流れる液量を増加させることによって、前記逆浸透膜モジュールの洗浄を実行する洗浄工程と、前記抵抗付き弁の前記抵抗をオフにした状態で、前記透過水口から洗浄液を導入することによって、前記逆浸透膜モジュールの洗浄を実行する逆洗工程とを実行する。
An operation method according to an embodiment of the present invention is an operation method of a reverse osmosis membrane water purification device that generates purified water from raw water, and the reverse osmosis membrane water purification device performs membrane separation treatment on raw water to obtain permeated water and concentrated water. A reverse osmosis membrane module is provided. The reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port from which concentrated water is discharged, and the concentrated water port of the reverse osmosis membrane module Is connected to the concentrated water line through which the concentrated water passes. The concentrated water line is provided with a resistance valve (or a flow rate adjusting valve) having a resistance for quantifying the flow of liquid passing through the concentrated water line. With the resistance of the valve with resistance turned on (or with the flow rate reduced by the flow regulating valve), the reverse osmosis membrane module is pressurized and the membrane separation process of the raw water is performed Washing that performs washing of the reverse osmosis membrane module by increasing the amount of liquid flowing in the reverse osmosis membrane module more than the water purification step with the resistance of the valve with resistance turned off in the water purification step And a backwashing step of washing the reverse osmosis membrane module by introducing a washing liquid from the permeate opening with the resistance of the valve with resistance turned off.
本発明の実施形態に係る精製水の生成方法は、逆浸透膜モジュールを用いて、原水から浄水を生成する精製水の生成方法であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、前記逆浸透膜モジュール内を加圧状態にし、前記原水の膜分離処理を実行する浄水工程を含む。前記生成方法は、前記浄水工程の他に、前記逆浸透モジュールの洗浄工程を含み、前記洗浄工程は、前記浄水工程と同じ向きに前記逆浸透膜モジュール内に液体を流すことによって、前記逆浸透膜モジュールの洗浄を実行する第1洗浄工程と、前記浄水工程と逆向きに前記逆浸透膜モジュール内に液体を流すことによって、前記逆浸透膜モジュールの洗浄を実行する第2洗浄工程とを含んでいる。
A method for producing purified water according to an embodiment of the present invention is a method for producing purified water from raw water using a reverse osmosis membrane module, and the reverse osmosis membrane module supplies raw water into which raw water is introduced. A water purification step comprising a mouth, a permeate port from which permeate is led out, and a concentrate water port from which concentrated water is discharged, pressurizing the reverse osmosis membrane module, and performing membrane separation treatment of the raw water including. The generation method includes, in addition to the water purification step, a washing step of the reverse osmosis module, and the washing step causes the liquid to flow in the reverse osmosis membrane module in the same direction as the water purification step, thereby the reverse osmosis module. A first cleaning step for cleaning the membrane module; and a second cleaning step for cleaning the reverse osmosis membrane module by flowing a liquid in the reverse osmosis membrane module in a direction opposite to the water purification step. It is out.
本発明の実施形態に係る洗浄方法は、逆浸透膜モジュールを洗浄する洗浄方法であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、第1洗浄液を前記透過水口から導入して、前記原水供給口および前記濃縮水口から排出する工程(a)と、第2洗浄液を前記原水供給口から導入して、前記透過水口および前記濃縮水口から排出する工程(b)とを含む。
A cleaning method according to an embodiment of the present invention is a cleaning method for cleaning a reverse osmosis membrane module, and the reverse osmosis membrane module includes a raw water supply port into which raw water is introduced, a permeated water port from which permeated water is derived, A concentrated water outlet from which the concentrated water is discharged, a step (a) of introducing the first cleaning liquid from the permeated water outlet and discharging the raw water from the raw water supply port and the concentrated water outlet, and supplying the second cleaning liquid to the raw water supply. A step (b) of introducing from the mouth and discharging from the permeate water mouth and the concentrated water mouth.
本発明の実施形態に係る洗浄装置は、原水から浄水を生成する逆浸透膜モジュールを洗浄する装置であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えている。前記浄化装置は、前記逆浸透膜モジュールの原水供給口に接続されることなる原水供給ラインと、前記逆浸透膜モジュールの透過水口に接続されることになる透過水ラインと、前記逆浸透膜モジュールの濃縮水口に接続されることになる濃縮水ラインとを備えている。前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁が設けられている。前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている。
A cleaning device according to an embodiment of the present invention is a device for cleaning a reverse osmosis membrane module that generates purified water from raw water, and the reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, and permeated water is derived. And a concentrated water port through which concentrated water is discharged. The purification device includes a raw water supply line to be connected to the raw water supply port of the reverse osmosis membrane module, a permeated water line to be connected to a permeate water port of the reverse osmosis membrane module, and the reverse osmosis membrane module And a concentrated water line to be connected to the concentrated water outlet. The concentrated water line is provided with a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line. A washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
本発明の実施形態に係る初期化装置は、原水から浄水を生成する逆浸透膜モジュールを初期状態に回復させる装置であり、前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えている。前記初期化装置は、前記逆浸透膜モジュールの原水供給口に接続されることなる原水供給ラインと、前記逆浸透膜モジュールの透過水口に接続されることになる透過水ラインと、前記逆浸透膜モジュールの濃縮水口に接続されることになる濃縮水ラインとを備えている。前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁(または、流量調整弁)が設けられている。前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている。
An initialization apparatus according to an embodiment of the present invention is an apparatus that restores a reverse osmosis membrane module that generates purified water from raw water to an initial state, the reverse osmosis membrane module including a raw water supply port into which raw water is introduced, and a permeation A permeated water port from which water is led out and a concentrated water port from which concentrated water is discharged are provided. The initialization device includes a raw water supply line to be connected to a raw water supply port of the reverse osmosis membrane module, a permeate line to be connected to a permeate water port of the reverse osmosis membrane module, and the reverse osmosis membrane. And a concentrated water line to be connected to the concentrated water port of the module. The concentrated water line is provided with a resistance valve (or a flow rate adjusting valve) having a resistance for quantifying the flow of liquid passing through the concentrated water line. A washing water line through which washing water passes is connected to the permeate opening of the reverse osmosis membrane module.
本発明の実施形態に係る洗浄方法は、洗浄液を原水供給口から導入して、透過水口および濃縮水口から排出する工程(逆洗工程)を含む。前記洗浄液は、逆浸透膜水(RO水)、純水、蒸留水、イオン交換水、水道水であってもよい。
The cleaning method according to the embodiment of the present invention includes a step of introducing the cleaning liquid from the raw water supply port and discharging it from the permeated water port and the concentrated water port (back washing step). The washing liquid may be reverse osmosis membrane water (RO water), pure water, distilled water, ion exchange water, or tap water.
本発明によれば、逆浸透膜モジュールの濃縮水口に接続された濃縮水ラインに流量調整弁(例えば、抵抗付き弁)が設けられており、逆浸透膜モジュールの透過水口には洗浄水ラインが接続されているので、逆浸透膜モジュールの透過水口に洗浄水ラインからの洗浄液(例えば、RO水)を導入し(すなわち、浄化と逆方向に液体を導入し)、流量調整弁の調整にて濃縮水ラインをオープンにして(あるいは、抵抗付き弁のオン/オフを切り替えて抵抗を下げることで)、逆浸透膜モジュールの逆洗を実行することができる。そして、逆浸透膜モジュールの原水供給口に洗浄液(例えば、キレート剤溶液)を導入し(すなわち、浄化と順方向に液体を導入し)、流量調整弁の調整によって(例えば、抵抗付き弁のオン/オフを切り替えることで)、逆浸透膜モジュールの洗浄(例えば、フラッシング洗浄)を実行することができる。これにより、使用済みの逆浸透膜の能力を回復できる逆浸透膜浄水装置を実現することができる。
According to the present invention, a flow rate adjusting valve (for example, a valve with a resistor) is provided in the concentrated water line connected to the concentrated water port of the reverse osmosis membrane module, and the washing water line is provided in the permeated water port of the reverse osmosis membrane module. Since it is connected, the cleaning liquid (for example, RO water) from the cleaning water line is introduced into the permeate port of the reverse osmosis membrane module (that is, the liquid is introduced in the opposite direction to the purification), and the flow control valve is adjusted. The reverse osmosis membrane module can be backwashed by opening the concentrated water line (or switching the resistance valve on / off to lower the resistance). Then, a cleaning liquid (for example, a chelating agent solution) is introduced into the raw water supply port of the reverse osmosis membrane module (that is, liquid is introduced in the purification and forward direction), and the flow control valve is adjusted (for example, the resistance valve is turned on). By switching on / off), the reverse osmosis membrane module can be cleaned (for example, flushing cleaning). Thereby, the reverse osmosis membrane water purification apparatus which can recover | restore the capability of a used reverse osmosis membrane is realizable.
以下、図面を参照しながら、本発明の好適な実施形態を説明する。以下の図面においては、説明の簡潔化のために、実質的に同一の機能を有する構成要素を同一の参照符号で示す。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書及び図面によって開示されている内容と当該分野における技術常識とに基づいて実施することができる。加えて、本発明は、以下の実施形態に限定されるものではない。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of brevity. Further, matters necessary for the implementation of the present invention other than matters specifically mentioned in the present specification can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in the present specification and drawings and the common general technical knowledge in the field. In addition, the present invention is not limited to the following embodiments.
まず、本発明の理解をより容易にするために、本実施形態のダイレクト式逆浸透膜浄水装置の説明をする前に、逆浸透(RO)および逆浸透膜(RO膜)の説明を行う。
First, in order to make the understanding of the present invention easier, the reverse osmosis (RO) and the reverse osmosis membrane (RO membrane) will be described before describing the direct type reverse osmosis membrane water purification device of the present embodiment.
図25(a)は、浸透現象を示す図である。図25(a)では、容器111中の真水101と、容器112中の塩類含有の液体(塩水)102とを、半透膜105を介して接触させている構造を示している。半透膜105は、水分子を通し、不純物は通さない膜である。図25(a)に示した構造では、真水101と塩水102との間の浸透圧の差によって、矢印110に示すように、濃度の低い側から高い側へ水がひとりでに抜けてゆく。これが浸透現象である。
FIG. 25 (a) is a diagram showing a penetration phenomenon. FIG. 25A shows a structure in which the fresh water 101 in the container 111 and the salt-containing liquid (salt water) 102 in the container 112 are brought into contact with each other through the semipermeable membrane 105. The semipermeable membrane 105 is a membrane that allows water molecules to pass but does not allow impurities to pass. In the structure shown in FIG. 25 (a), due to the difference in osmotic pressure between the fresh water 101 and the salt water 102, as shown by the arrow 110, water flows out from the low concentration side to the high side alone. This is the penetration phenomenon.
図25(b)は、逆浸透(RO:Reverse Osmosis)の現象を示す図である。図25(b)に示すように、容器112中の塩水102に圧力120を加えると、半透膜105を通って、水分子だけが濃度の高い側から低い側に抜ける(矢印121、122)。すなわち、図25(a)の浸透現象の逆を行うことで、逆浸透を起こすことができ、塩水102から飲み水(逆浸透水、RO水)を生成することができる(矢印123)。
FIG. 25 (b) is a diagram showing the phenomenon of reverse osmosis (RO). As shown in FIG. 25 (b), when pressure 120 is applied to the salt water 102 in the container 112, only water molecules escape from the high concentration side to the low side through the semipermeable membrane 105 (arrows 121 and 122). . That is, reverse osmosis can be caused by reversing the osmosis phenomenon of FIG. 25A, and drinking water (reverse osmosis water, RO water) can be generated from the salt water 102 (arrow 123).
図26は、逆浸透膜システム200を示す概念図である。逆浸透膜システム200では、水201と不純物(202~204)とを分離するために浸透圧以上の圧力を逆浸透膜105に加えている。
FIG. 26 is a conceptual diagram showing the reverse osmosis membrane system 200. In the reverse osmosis membrane system 200, a pressure higher than the osmotic pressure is applied to the reverse osmosis membrane 105 in order to separate the water 201 and the impurities (202 to 204).
図26に示した構造では、逆浸透膜システム200の原水供給口210に、加圧原水102を入れる(矢印210a)。加圧原水102は、水分子201とともに、不純物(202~204)が混入している。不純物は、陽イオン(例えば、Ca2+、Mg2+)のようなものの他に、ウイルス202、環境ホルモン203、重金属(鉄イオン、マンガンイオンなどの金属イオン)204などである。加圧原水102は、逆浸透膜105を通過することで濾過されて(逆浸透現象)、浄水(RO水)となる。浄水(RO水)は、透過水口220から導出される(矢印220a)。一方、逆浸透膜105を透過しなかった加圧原水102は濃縮される。その濃縮水(塩類や不純物が濃縮された水、または、ブライン)は、濃縮水口230から連続的に排出される(矢印230a)。
In the structure shown in FIG. 26, the pressurized raw water 102 is put into the raw water supply port 210 of the reverse osmosis membrane system 200 (arrow 210a). The pressurized raw water 102 is mixed with impurities (202 to 204) together with water molecules 201. Impurities include viruses 202, environmental hormones 203, heavy metals (metal ions such as iron ions and manganese ions) 204, etc., in addition to those such as cations (for example, Ca 2+ and Mg 2+). The pressurized raw water 102 is filtered by passing through the reverse osmosis membrane 105 (reverse osmosis phenomenon) and becomes purified water (RO water). The purified water (RO water) is derived from the permeate port 220 (arrow 220a). On the other hand, the pressurized raw water 102 that has not passed through the reverse osmosis membrane 105 is concentrated. The concentrated water (water in which salts and impurities are concentrated, or brine) is continuously discharged from the concentrated water port 230 (arrow 230a).
なお、家庭用浄水器の場合でも、水の回収率や水温、水質によって大きく異なるが、逆浸透をするには、最低でも5気圧程度の加圧は必要であり、水道の水圧だけでは不足であるため、ポンプでの加圧が必要となる。また、逆浸透膜105の孔径は、概ね、2ナノメートル以下であり、これは限外濾過膜の孔径よりも小さい。本実施形態における逆浸透膜105の孔径は、例えば0.2ナノメートルなどのものもある。
Even in the case of household water purifiers, although it varies greatly depending on the water recovery rate, water temperature, and water quality, at least 5 atmospheres of pressure is required for reverse osmosis, and water pressure alone is insufficient. For this reason, pressurization with a pump is required. Moreover, the pore diameter of the reverse osmosis membrane 105 is generally 2 nanometers or less, which is smaller than the pore diameter of the ultrafiltration membrane. The reverse osmosis membrane 105 in this embodiment has a pore diameter of 0.2 nanometers, for example.
図27(a)及び(b)に示すように、バクテリア202aの粒径は約0.2~1ミクロンであり、ウイルス202bの粒径は0.02~0.4ミクロンである。一方で、図27(c)に示すように、逆浸透膜105の孔105aの孔径は、約0.0001ミクロンである。したがって、逆浸透膜105が破れない限り、バクテリア202aやウイルス202bが逆浸透膜105を通過することはなく、濾過が実行できる。
As shown in FIGS. 27A and 27B, the particle size of the bacteria 202a is about 0.2 to 1 micron, and the particle size of the virus 202b is 0.02 to 0.4 microns. On the other hand, as shown in FIG. 27 (c), the hole diameter of the hole 105a of the reverse osmosis membrane 105 is about 0.0001 microns. Therefore, as long as the reverse osmosis membrane 105 is not broken, the bacteria 202a and the virus 202b do not pass through the reverse osmosis membrane 105 and can be filtered.
また、酸素原子と同程度の大きさのナトリウムイオン(1個が0.12~0.14ナノメートル)などが逆浸透膜105を通過しにくいのは、水和によりイオンの周囲に水分子が配位することで見かけの大きさが数倍から十数倍になったようにふるまうためである。なお、膜表面に付着する水分子の存在も孔を見かけ上小さくするように作用する。これにより、RO水の生成が実行できる。
In addition, sodium ions (one of which is 0.12 to 0.14 nanometers) having a size similar to that of oxygen atoms are difficult to pass through the reverse osmosis membrane 105 because water molecules are present around the ions due to hydration. This is because it behaves as if the apparent size has increased from several to a dozen times by coordinating. The presence of water molecules adhering to the membrane surface also acts to make the pores apparently small. Thereby, the production | generation of RO water can be performed.
図28は、逆浸透膜ユニット40の一例を示している。そして、図29は、逆浸透膜ユニット40の逆浸透膜105の周辺を拡大して示す断面模式図である。逆浸透膜ユニット40は、円筒形状(又は円柱形状)を有している。逆浸透膜ユニット40は、逆浸透膜105が積層された構造を有している。逆浸透膜105の間の隙間は、スペーサ109によって確保されており、逆浸透膜105の一方側の領域(層)が、加圧原水(例えば、未浄水の水、または、水道水)が通過するチャネル102となる。逆浸透膜105のもう一方側の領域(層)が、純水透過チャネル(RO水透過チャネル)101となる。
FIG. 28 shows an example of the reverse osmosis membrane unit 40. FIG. 29 is a schematic cross-sectional view showing the periphery of the reverse osmosis membrane 105 of the reverse osmosis membrane unit 40 in an enlarged manner. The reverse osmosis membrane unit 40 has a cylindrical shape (or a columnar shape). The reverse osmosis membrane unit 40 has a structure in which reverse osmosis membranes 105 are stacked. The gap between the reverse osmosis membranes 105 is secured by the spacer 109, and the pressurized raw water (for example, unpurified water or tap water) passes through one region (layer) of the reverse osmosis membrane 105. Channel 102 to be used. A region (layer) on the other side of the reverse osmosis membrane 105 becomes a pure water permeation channel (RO water permeation channel) 101.
逆浸透膜ユニット40の表面には、表面カバー層40aが設けられている。また、逆浸透膜ユニット40における純水透過チャネル101を流れたRO水は、透過水口220に集められて、透過水口220から外に導出される(矢印220a)。一方、加圧原水が通過するチャネル102を流れる水は濃縮水となって、矢印230aに示すように排出される。なお、図28に示した例では、円筒形の逆浸透膜ユニット40を示したが、他の形状のもの(例えば、矩形の積層構造のもの等)でも、基本原理は同じである。
A surface cover layer 40 a is provided on the surface of the reverse osmosis membrane unit 40. Further, the RO water that has flowed through the pure water permeation channel 101 in the reverse osmosis membrane unit 40 is collected at the permeate port 220 and led out from the permeate port 220 (arrow 220a). On the other hand, the water flowing through the channel 102 through which the pressurized raw water passes becomes concentrated water and is discharged as indicated by an arrow 230a. In the example shown in FIG. 28, the cylindrical reverse osmosis membrane unit 40 is shown, but the basic principle is the same for other shapes (for example, a rectangular laminated structure).
また、逆浸透膜ユニット40を含む逆浸透膜システム200を用いて、河川水・地下水などの原水から利用水にするには、図30に示すような浄水システム1000によって行うことができる。図30の浄水システム1000では、地下水(海水の場合もあり)・河川水300を、濾過器(例えば、アンスラサイト濾過器)310を介して、濾過タンク320に貯蔵する。次に、逆浸透膜ユニット40を含む逆浸透膜システム200によってRO水(透過水)を生成し、それを処理水タンク330に貯蔵しておく。そして、その後は、必要に応じて、利用水340として使用することができる。
In addition, using the reverse osmosis membrane system 200 including the reverse osmosis membrane unit 40 to convert the raw water such as river water or groundwater into use water can be performed by a water purification system 1000 as shown in FIG. In the water purification system 1000 of FIG. 30, groundwater (which may be seawater) / river water 300 is stored in a filtration tank 320 via a filter (for example, anthracite filter) 310. Next, RO water (permeated water) is generated by the reverse osmosis membrane system 200 including the reverse osmosis membrane unit 40 and stored in the treated water tank 330. And after that, it can be used as the utilization water 340 as needed.
この場合、上下水道を大量に使用する大型工場、施設などで地下水(海水)を利用することで、水道料金の節減をすることができる。地下水でなく河川水・湖・プールの水などを利用することもできる。
In this case, water charges can be reduced by using groundwater (seawater) in large factories and facilities that use large amounts of water and sewage. River water, lakes, pool water, etc. can be used instead of groundwater.
家庭用浄水器(家庭用の逆浸透膜浄水装置)として使用する場合も、次のようなメリットがある。まず、RO水(逆浸透膜で生成した水)は、問題となる有害物質を確実に除去することができるという利点がある。家庭用の浄水器の種類として、アルカリイオン水装置、磁気活性器、活性炭、中空糸、蒸留水装置、そして、逆浸透膜浄水装置を挙げることができる。有害物質としては、ヒ素、鉛、カドミニウム、バクテリア、ウイルス、総トリハロメタン、ダイオキシン、環境ホルモン、クリプト菌、放射性物質があるが、これらのすべてを除去できるのは、逆浸透膜浄水装置だけである。逆浸透膜浄水装置に次いで蒸留水装置が、多くの有害物質を除去できるものの、環境ホルモンを除去することができないとともに、総トリハロメタン・ダイオキシン・クリプト菌は条件付きでしか除去できない。
There are the following merits when used as a home water purifier (reverse osmosis membrane water purifier for home use). First, RO water (water generated by a reverse osmosis membrane) has an advantage that harmful substances that cause problems can be reliably removed. Examples of household water purifiers include alkaline ion water devices, magnetic activators, activated carbon, hollow fibers, distilled water devices, and reverse osmosis membrane water purifiers. Hazardous substances include arsenic, lead, cadmium, bacteria, viruses, total trihalomethanes, dioxins, environmental hormones, Cryptobacterium, and radioactive substances, but only a reverse osmosis membrane water purifier can remove all of these. Although the distilled water device can remove many harmful substances after the reverse osmosis membrane water purification device, it cannot remove the environmental hormones, and the total trihalomethane, dioxin, and crypt bacteria can only be removed under certain conditions.
本願発明者は、逆浸透膜浄水装置の利点を最大限に活かすべく、日々、研究開発および改良を行っているが、次のような問題があることに気付いた。
The inventor of the present application has been conducting research and development and improvement every day in order to make the best use of the advantages of the reverse osmosis membrane water purification device, but has noticed the following problems.
まず、RO膜は、金属イオンなど(特に、陽イオン=Ca、Mg、Mn、Feイオンなど)の微細な分子でも、RO透過水と濃縮水とに分離して、硬水を軟水に変えることができる。そして、海水淡水化膜としての需要も近年増加傾向にある。しかしながら、RO膜は、微細孔を持つが故に、RO膜の内部において金属イオン(特に、Caイオン、Mgイオン)による目詰まりが起こる。そのため、水の硬度分が高い国・地域では、その目詰まりが特に問題となり、RO膜の早期交換が一般化しており、ランニングコスト負担を招いている。
First, RO membranes can convert hard water into soft water by separating even fine molecules such as metal ions (especially cations = Ca, Mg, Mn, Fe ions, etc.) into RO permeate and concentrated water. it can. And the demand as a seawater desalination membrane is also increasing in recent years. However, since the RO membrane has micropores, clogging due to metal ions (particularly, Ca ions and Mg ions) occurs inside the RO membrane. For this reason, clogging is particularly a problem in countries and regions where the water hardness is high, and the early replacement of the RO membrane has become common, causing a running cost burden.
RO膜の浄化方法としては、以下のようなものを挙げることができる。図31は、逆圧洗浄方法を説明するための模式図である。図31に示した方法では、RO水の透過チャネル101に、水または空気にて圧力を加えて、RO膜105に付着した物質204を除去するものである。図32(a)及び(b)は、スクライビング(空気洗浄方法)を説明するための模式図である。図32(a)及び(b)に示した方法では、上昇する気泡270を含んだ水流によってRO膜105を振動させて膜表面の付着物質204を除去する方法である。
The following can be mentioned as a method for purifying the RO membrane. FIG. 31 is a schematic diagram for explaining the back pressure cleaning method. In the method shown in FIG. 31, a substance 204 adhering to the RO membrane 105 is removed by applying pressure to the RO water permeation channel 101 with water or air. FIGS. 32A and 32B are schematic views for explaining scribing (air cleaning method). The method shown in FIGS. 32A and 32B is a method in which the RO membrane 105 is vibrated by a water flow containing rising bubbles 270 to remove the adhered substance 204 on the membrane surface.
図33は、圧縮空気洗浄方法を説明するための模式図である。図33に示した方法は、RO水の透過チャネル101に圧縮空気を導入して、圧縮空気の空気圧によってRO膜105に付着した物質204を除去するものである。また、図34は、フラッシング洗浄方法を説明するための模式図である。図34に示した方法は、原水をRO膜105の表面に高流速で流すことにより、RO膜105に付着した物質204を除去するものである。
FIG. 33 is a schematic diagram for explaining the compressed air cleaning method. In the method shown in FIG. 33, compressed air is introduced into the RO water permeation channel 101, and the substance 204 attached to the RO membrane 105 is removed by the air pressure of the compressed air. FIG. 34 is a schematic diagram for explaining the flushing cleaning method. The method shown in FIG. 34 removes the substance 204 adhering to the RO membrane 105 by flowing raw water over the surface of the RO membrane 105 at a high flow rate.
この他には、RO膜105が存在する内部構造部分に、スポンジボールを水とともに押し込み、スポンジボールで擦ることで、RO膜105に付着した物質204を除去するものがある。また、薬品洗浄として、薬剤を使用して、RO膜105に付着した物質204を除去する方法がある。
Other than this, there is a type in which a sponge ball is pushed into the internal structure portion where the RO membrane 105 exists together with water and rubbed with the sponge ball to remove the substance 204 attached to the RO membrane 105. Further, as chemical cleaning, there is a method of removing the substance 204 attached to the RO membrane 105 using a chemical.
まず、家庭用浄水器(家庭用の逆浸透膜浄水装置)の場合、工場内に設置されるプラント用浄水装置と異なり、洗浄方法に制約が多い。まず、家庭用浄水器のRO膜構造の内部にスポンジボールを入れることはできない。また、圧縮空気を用いた手法も、圧縮空気装置を設置しなければならないので、家庭用浄水器では現実ではない。逆圧洗浄方法も、家庭用浄水器の装置構造を改変しなければならないので困難である。加えて、上昇する気泡を含んだ水流で洗浄を行うスクライビング(空気洗浄方法)もそれ専用の装置を搭載しなければならないので現実的でない。さらに説明すると、技術的な制約・困難性も大きな問題であるが、新品のRO膜105の交換よりもコスト的なメリットがなければ実用的とは到底いえない。したがって、家庭用浄水器では、フラッシング洗浄方法が用いられているのが現状である。また、薬品洗浄も実行できるが、その場合は、RO膜のダメージの影響を考える必要がある。
First, in the case of a home water purifier (a household reverse osmosis membrane water purifier), there are many restrictions on the cleaning method, unlike a plant water purifier installed in a factory. First, a sponge ball cannot be placed inside the RO membrane structure of a domestic water purifier. In addition, a method using compressed air is not realistic in a domestic water purifier because a compressed air device must be installed. The reverse pressure washing method is also difficult because the device structure of the domestic water purifier has to be modified. In addition, scribing (air cleaning method) for cleaning with a stream of water containing rising bubbles is not practical because a dedicated device must be installed. To explain further, technical limitations and difficulties are also a major problem, but it cannot be practical unless there is a cost advantage over replacement of a new RO membrane 105. Therefore, the current situation is that the flushing cleaning method is used in household water purifiers. Although chemical cleaning can also be performed, in that case, it is necessary to consider the influence of damage to the RO membrane.
以上のことにより、本願発明者は、家庭用浄水器のRO膜の洗浄としてフラッシング洗浄方法を用いて、使用済みのRO膜の性能回復を行い、その効果について検討していたが、硬度の高い水を使う地域(例えば、中国の所定地域)では、RO膜の能力の低下が著しく、なかなかうまく回復しなかった。具体的には、所定期間、RO膜を使い続けると、透過水が少量しか出なくなり、製品スペックの能力を発揮できない現状が数多く観察され、そこで洗浄(フラッシング洗浄)をしても思うほどには回復しないので、新品のRO膜(RO膜ユニット40)に交換するしかないという、ランニングコストがかかる手法しか解決策がなかった。
As described above, the inventor of the present application has used a flushing cleaning method to clean the RO membrane of a household water purifier, and recovered the performance of the used RO membrane. In areas where water is used (for example, certain areas in China), the RO membrane capacity has declined remarkably and has not recovered well. Specifically, if you continue to use the RO membrane for a certain period of time, only a small amount of permeated water will be produced, and many current situations where the product specification capability cannot be demonstrated are observed. Since it does not recover, there is only a solution that requires a running cost, that is, only replacement with a new RO membrane (RO membrane unit 40).
それでも、本願発明者は、RO膜浄水器の使用者のことを考え、特に経済的に余裕がない新興国の人々のことを考え、なんとか、RO膜の性能を洗浄によって回復できる手法を鋭意検討し続けた。
Nevertheless, the present inventor considers the users of RO membrane water purifiers, especially people in emerging countries who can not afford economically, and somehow studies to recover the RO membrane performance by cleaning somehow I kept doing it.
まず、本願発明者は、RO膜の膜質損失のことを除外して、薬品洗浄を行った。RO膜の目詰まりを除去するという観点から、RO膜に付着している陽イオンなどを除去すべく、錯体による洗浄を行った。ここでは、キレート剤といわれる薬品(例えば、EDTA、DTPA、DHEGなど)によって金属イオンを挟んで溶かすという手法を用いた。具体的には、キレート剤(例えば、EDTA)とアルカリ成分(例えば、苛性ソーダなど)とを混入した水溶液(洗浄液)を用いて、逆浸透膜ユニット40に順方向に当該洗浄液を流して、RO膜の洗浄を行った。
First, the present inventor performed chemical cleaning, excluding the loss of RO membrane quality. From the viewpoint of removing clogging of the RO membrane, washing with a complex was performed in order to remove cations adhering to the RO membrane. Here, a method of melting metal ions with a chemical called a chelating agent (for example, EDTA, DTPA, DHEG, etc.) was used. Specifically, using an aqueous solution (cleaning liquid) in which a chelating agent (for example, EDTA) and an alkali component (for example, caustic soda) are mixed, the cleaning liquid is allowed to flow in the forward direction through the reverse osmosis membrane unit 40 to obtain an RO membrane. Was washed.
その洗浄の結果は、RO膜の性能は、洗浄前よりも、少しは改善したものの、RO膜の初期化(新品の初期状態の性能までほぼ回復した状態)には至らなかった。若干、RO膜の寿命をのばせた程度であった。おそらく、キレート剤溶液の洗浄は、当業者も過去トライした手法だと推測される。
As a result of the cleaning, the RO membrane performance was slightly improved from that before the cleaning, but the RO membrane was not initialized (the state was almost recovered to the performance of the new initial state). The life of the RO membrane was slightly extended. Presumably, the cleaning of the chelating agent solution is presumed by those skilled in the art to have tried in the past.
そこで、本願発明者は、家庭用RO膜浄水器の装置構成を改造して、逆浸透膜ユニット40を逆方向から洗浄する逆洗手法を実験してみた。すなわち、逆浸透膜ユニット40の透過水口220から液体(ここではRO水)を導入して、RO膜105の目詰まり解消に挑んだ。結果は、逆洗の洗浄前においては、透過水がぽとりぽとりと少量しか出なくなっていた逆浸透膜ユニット40が、通常レベルまで透過水を出すようになった。
Therefore, the inventor of the present application experimented with a back-washing method for cleaning the reverse osmosis membrane unit 40 from the reverse direction by remodeling the device configuration of the household RO membrane water purifier. In other words, a liquid (here, RO water) was introduced from the permeate port 220 of the reverse osmosis membrane unit 40 to challenge the clogging of the RO membrane 105. As a result, the reverse osmosis membrane unit 40 in which only a small amount of permeated water had come out before the backwashing was washed out to the normal level.
しかしながら、透過水の水質を調べてみると、塩類溶解質(TDS)の値が悪いという事実が判明した。つまりは、逆洗洗浄によって、透過水の水量の回復は達成できたが、RO膜による良質な透過水の生成はできないことがわかった。
However, when the quality of the permeated water was examined, it was found that the salt solute (TDS) value was poor. In other words, it was found that the amount of permeated water could be recovered by backwashing, but good quality permeated water could not be generated by the RO membrane.
本願発明者は、キレート剤洗浄でも、逆洗の洗浄でも失敗したにもかかわらず、さらに洗浄方法を検討していくと、次の手法でやると上手くいくことを偶然発見した。次に、それを説明する。
The present inventor accidentally discovered that even if the chelating agent washing or back washing was unsuccessful, further investigation of the washing method would work well with the following method. Next, it will be described.
まず、所定期間のあいだ浄水器を使用して、透過水の水量が大幅に低下したRO膜ユニット40を用意する。次に、そのRO膜ユニット40に対して逆洗方式の洗浄を行う。なお、ここでは、RO膜105に損傷を与えないようにポンプ圧を調整した(例えば、0.3MPa)。次に、逆洗方式の洗浄の後、キレート剤溶液による薬剤洗浄を行った。ここでの薬剤洗浄は、逆浸透膜ユニット40のRO膜105を順方向でキレート剤溶液にて洗浄した。具体的には、浄水時よりも流量を増やしたフラッシング洗浄を行った。
First, using a water purifier for a predetermined period, an RO membrane unit 40 in which the amount of permeated water is significantly reduced is prepared. Next, the RO membrane unit 40 is cleaned by backwashing. Here, the pump pressure was adjusted so as not to damage the RO membrane 105 (for example, 0.3 MPa). Next, chemical cleaning with a chelating agent solution was performed after the back cleaning method. In this chemical cleaning, the RO membrane 105 of the reverse osmosis membrane unit 40 was cleaned with a chelating agent solution in the forward direction. Specifically, flushing washing was performed with an increased flow rate compared to the time of water purification.
この2つの洗浄方法を組みあわせると、詳しい技術的な理論まではわからないが、透過水の水量が初期状態まで回復し、かつ、塩類溶解質(TDS)の値も初期状態まで回復させることができた。つまりは、本願発明者が見いだした洗浄手法により、逆浸透膜ユニット40のRO膜105の初期化を行うことができた。これにより、新品のRO膜(RO膜ユニット40)に交換せずとも、当該新規の洗浄方法より、新品同様の性能に回復させることができ、その結果、家庭用RO膜浄水器(小型RO膜浄水器)のランニングコストを大幅に削減できることが実現できた。
By combining these two cleaning methods, we do not know the detailed technical theory, but the amount of permeated water can be restored to the initial state, and the value of salt solute (TDS) can be restored to the initial state. It was. In other words, the RO membrane 105 of the reverse osmosis membrane unit 40 could be initialized by the cleaning technique found by the present inventors. Thereby, it is possible to recover the same performance as a new product by the new cleaning method without replacing with a new RO membrane (RO membrane unit 40). As a result, the home RO membrane water purifier (small RO membrane) It was realized that the running cost of the water purifier) could be greatly reduced.
次に、図1から図9Cを参照しながら、本発明の実施形態に係る逆浸透膜浄水装置100について説明する。本実施形態の逆浸透膜浄水装置100は、家庭用の逆浸透膜浄水装置100である。家庭用の逆浸透膜浄水装置100は、RO水生成量2.5リットル/1分間程度(水温25℃基準)またはそれ以下の能力を有する小型の逆浸透膜浄水装置である。逆浸透膜浄水装置100では、水温が1℃下がると、RO水生成量が約3%低下する。
Next, the reverse osmosis membrane water purification apparatus 100 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 9C. The reverse osmosis membrane water purification apparatus 100 of this embodiment is a household reverse osmosis membrane water purification apparatus 100. The household reverse osmosis membrane water purification device 100 is a small reverse osmosis membrane water purification device having a capacity of RO water production of about 2.5 liters per minute (water temperature 25 ° C. standard) or less. In the reverse osmosis membrane water purification apparatus 100, when the water temperature drops by 1 ° C., the RO water production amount decreases by about 3%.
また、本実施形態の逆浸透膜浄水装置100は、ダイレクト式逆浸透膜浄水装置である。このダイレクト式逆浸透膜浄水装置100は、生成した透過水を貯蔵する貯蔵タンクを有さないものであり、ダイレクト式逆浸透膜浄水装置100からの透過水(RO水)は、貯蔵タンクを介さずに、直接、蛇口(例えば、台所の蛇口)に接続されて、透過水(RO水)を使用することができる。なお、典型的な家庭用の逆浸透膜浄水装置100は、貯水タンク付きで、RO水の生成量0.1~0.3リットル/1分間程度である。本実施形態のダイレクト式逆浸透膜浄水装置100のRO水の生成量(浄水生成能力)の一例は、1.0~1.5リットル/1分間である。
Moreover, the reverse osmosis membrane water purification apparatus 100 of this embodiment is a direct type reverse osmosis membrane water purification apparatus. This direct type reverse osmosis membrane water purification apparatus 100 does not have a storage tank for storing the generated permeated water, and the permeated water (RO water) from the direct type reverse osmosis membrane water purification apparatus 100 passes through the storage tank. Instead, the permeated water (RO water) can be used directly connected to a faucet (eg, kitchen faucet). A typical reverse osmosis membrane water purifier 100 for home use is equipped with a water storage tank, and the amount of RO water produced is about 0.1 to 0.3 liter per minute. An example of the RO water generation amount (purified water generation capacity) of the direct reverse osmosis membrane water purification apparatus 100 of this embodiment is 1.0 to 1.5 liters per minute.
図1から図4は、本実施形態の逆浸透膜浄水装置100(ダイレクト式逆浸透膜浄水装置)の構成を示す図面である。図1及び図2は、本実施形態の逆浸透膜浄水装置100の正面図および正面斜視図である。図3は、逆浸透膜浄水装置100の背面斜視図である。図4は、逆浸透膜浄水装置100の内部構造を示す図である。
1 to 4 are drawings showing a configuration of a reverse osmosis membrane water purification apparatus 100 (direct type reverse osmosis membrane water purification apparatus) according to the present embodiment. FIG.1 and FIG.2 is the front view and front perspective view of the reverse osmosis membrane water purification apparatus 100 of this embodiment. FIG. 3 is a rear perspective view of the reverse osmosis membrane water purification device 100. FIG. 4 is a diagram showing the internal structure of the reverse osmosis membrane water purification device 100.
加えて、図5は、逆浸透膜浄水装置100の筐体10の裏面を示した図である。また、図6は、逆浸透膜浄水装置100に配置される逆浸透膜モジュール20の容器21を示す図である。図7は、逆浸透膜モジュール20の容器21に入れられる逆浸透膜ユニット40を示す図である。
In addition, FIG. 5 is a view showing the back surface of the housing 10 of the reverse osmosis membrane water purification apparatus 100. Moreover, FIG. 6 is a figure which shows the container 21 of the reverse osmosis membrane module 20 arrange | positioned at the reverse osmosis membrane water purification apparatus 100. FIG. FIG. 7 is a view showing the reverse osmosis membrane unit 40 put in the container 21 of the reverse osmosis membrane module 20.
また、図8は、本実施形態の逆浸透膜浄水装置100における洗浄方法を説明するためのフローチャートである。図9Aから図9Cは、それぞれ、本実施形態の逆浸透膜浄水装置100における浄水工程、フラッシング洗浄工程、および、逆洗工程を実行するための配管構成(ライン構成および弁開閉構成)を示す図である。
FIG. 8 is a flowchart for explaining a cleaning method in the reverse osmosis membrane water purification apparatus 100 of the present embodiment. FIG. 9A to FIG. 9C are diagrams showing a pipe configuration (line configuration and valve opening / closing configuration) for executing the water purification process, the flushing washing process, and the back washing process in the reverse osmosis membrane water purification device 100 of the present embodiment, respectively. It is.
本実施形態の逆浸透膜浄水装置(ダイレクト式逆浸透膜浄水装置)100は、原水61から浄水63を生成する家庭用の逆浸透膜浄水装置(RO膜浄水装置)である。逆浸透膜浄水装置100は、特に図4、図6および図9Aに示すように、逆浸透膜モジュール20を備えている。逆浸透膜モジュール20は、原水61を膜分離処理して、透過水63および濃縮水62を生成することができる。逆浸透膜モジュール20は、原水供給口25、透過水口24、および、濃縮水口23を有している。逆浸透膜モジュール20の原水供給口25には、原水供給ライン25aが接続され、透過水口24には、透過水ライン24aが接続され、そして、濃縮水口23には濃縮水ライン23aが接続されている。なお、各ライン(配管)は、内部に液体が通過できる管状部材であり、例えば樹脂またはゴムから構成されている。
The reverse osmosis membrane water purification apparatus (direct type reverse osmosis membrane water purification apparatus) 100 of this embodiment is a household reverse osmosis membrane water purification apparatus (RO membrane water purification apparatus) that generates purified water 63 from raw water 61. The reverse osmosis membrane water purification apparatus 100 includes a reverse osmosis membrane module 20 as particularly shown in FIGS. 4, 6 and 9A. The reverse osmosis membrane module 20 can generate a permeated water 63 and a concentrated water 62 by subjecting the raw water 61 to a membrane separation treatment. The reverse osmosis membrane module 20 has a raw water supply port 25, a permeate water port 24, and a concentrated water port 23. A raw water supply line 25 a is connected to the raw water supply port 25 of the reverse osmosis membrane module 20, a permeated water line 24 a is connected to the permeated water port 24, and a concentrated water line 23 a is connected to the concentrated water port 23. Yes. Each line (pipe) is a tubular member through which liquid can pass, and is made of, for example, resin or rubber.
本実施形態の逆浸透膜モジュール20は、図6に示すように、逆浸透膜モジュール20の外観を構成する容器21を備えている。図6に示した容器(RO膜ベッセル)21には、原水が導入される原水供給口25と、透過水(RO水)が導出する透過水口24と、濃縮水が排出される濃縮水口23が設けられている。
The reverse osmosis membrane module 20 of the present embodiment includes a container 21 that configures the appearance of the reverse osmosis membrane module 20, as shown in FIG. The container (RO membrane vessel) 21 shown in FIG. 6 includes a raw water supply port 25 through which raw water is introduced, a permeated water port 24 through which permeated water (RO water) is derived, and a concentrated water port 23 through which concentrated water is discharged. Is provided.
容器(RO膜ベッセル)21は、内部に逆浸透膜ユニット40を導入できるように空洞となっている。また、原水供給口25が位置する部分は、蓋部22となって、容器(本体部)21から取り外すことができる。両者(21、22)は、ネジ部(21a、22a)によって互いに固定および離脱できるように構成されている。本実施形態の容器21は、プラスチック製であり、例えば、ABS(アクリロニトリル-ブタジエン-スチレン共重合合成樹脂)、FRP(繊維強化プラスチック)、PP(ポリプロピレン)から構成されている。この例の容器21は、ABS製であるが、金属(ステンレスなど)から構築しても構わない。
The container (RO membrane vessel) 21 is hollow so that the reverse osmosis membrane unit 40 can be introduced therein. Moreover, the part in which the raw | natural water supply port 25 is located becomes the cover part 22, and can be removed from the container (main-body part) 21. FIG. Both (21, 22) are configured such that they can be fixed and detached from each other by the screw portions (21a, 22a). The container 21 of the present embodiment is made of plastic and is made of, for example, ABS (acrylonitrile-butadiene-styrene copolymer synthetic resin), FRP (fiber reinforced plastic), or PP (polypropylene). The container 21 in this example is made of ABS, but may be constructed from metal (such as stainless steel).
図7は、本実施形態の逆浸透膜ユニット40を示している。逆浸透膜ユニット40の説明は、図28で行った通りである。本実施形態の逆浸透膜ユニット40は、例えば、30GPD(=ガロン/1日)~600GPDの能力を有するものである。図示した例の逆浸透膜ユニット40は、150~500GPD(=ガロン/1日)の能力を有するものである。本実施形態の逆浸透膜ユニット40の寸法は、例えば、長さ20cm~60cm(一例では30cm)、直径3cm~10cm(一例では5cm)であるが、その寸法に限定されるものではない。逆浸透膜ユニット40は、市販製品を用いることができ、例えば、ダウケミカル社製、GE社製、ウンジンケミカル社製、SAEHAN(セハン)社製などの逆浸透膜ユニットを挙げることができる。なお、逆浸透膜ユニット40は、容器21と一対のものであるが、製造メーカが異なるものであっても、両者を組み合わせることができるのであれば、特に制約はない。
FIG. 7 shows the reverse osmosis membrane unit 40 of the present embodiment. The reverse osmosis membrane unit 40 has been described with reference to FIG. The reverse osmosis membrane unit 40 of the present embodiment has, for example, a capacity of 30 GPD (= gallon / day) to 600 GPD. The reverse osmosis membrane unit 40 in the illustrated example has a capacity of 150 to 500 GPD (= gallon / day). The dimensions of the reverse osmosis membrane unit 40 of the present embodiment are, for example, a length of 20 cm to 60 cm (30 cm in one example) and a diameter of 3 cm to 10 cm (5 cm in one example), but are not limited thereto. Commercially available products can be used for the reverse osmosis membrane unit 40, and examples thereof include reverse osmosis membrane units such as those manufactured by Dow Chemical Company, GE Company, Unjin Chemical Company, SAEHAN (Sehan) Company, etc. In addition, although the reverse osmosis membrane unit 40 is a pair with the container 21, there is no particular limitation as long as they can be combined even if the manufacturers are different.
また、本実施形態の構成では、図4および図9Aに示すように、逆浸透膜モジュール20から延びた濃縮水ライン23aには、濃縮水ライン23a内を通過する液体の流れを定量にする抵抗64aを備えた抵抗付き弁64が設けられている。抵抗付き弁64は、抵抗64aとなる定流量弁64aと、定流量弁64aのバイパス経路64bとを備えている。バイパス経路64bには、バイパス経路64bのオン/オフを切り替えるコックが設けられている。
In the configuration of the present embodiment, as shown in FIGS. 4 and 9A, the concentrated water line 23a extending from the reverse osmosis membrane module 20 has a resistance for quantifying the flow of liquid passing through the concentrated water line 23a. A resistance valve 64 having 64a is provided. The valve 64 with resistance includes a constant flow valve 64a serving as a resistance 64a and a bypass path 64b of the constant flow valve 64a. The bypass path 64b is provided with a cock for switching on / off of the bypass path 64b.
ここで、当該コックを閉にしてバイパス経路64bをクローズ(オフ)にすると、通常の浄水時動作において、液体は、抵抗64a(定流量弁64a)を選択的に通過する。すると、バイパス経路64bがオープン(オン)の場合と比較して、逆浸透膜ユニット40の内部は加圧状態になる。つまり、逆浸透膜ユニット40の濃縮水(230a)の出口となる濃縮水口23及び濃縮水ライン23aに抵抗があり、当該出口に負荷が生じているので、逆浸透膜ユニット40の原水102は、RO膜105を通過して、RO膜水101の生成量が増える。したがって、浄化時においては、抵抗64aをオン(バイパス経路64bがクローズ)にしておく。この動作の詳細は図9Aに示している。
Here, when the cock is closed and the bypass path 64b is closed (off), the liquid selectively passes through the resistor 64a (constant flow valve 64a) in normal water purification operation. Then, compared with the case where the bypass path 64b is open (ON), the inside of the reverse osmosis membrane unit 40 is in a pressurized state. That is, since the concentrated water port 23 and the concentrated water line 23a serving as the outlet of the concentrated water (230a) of the reverse osmosis membrane unit 40 have resistance and a load is generated at the outlet, the raw water 102 of the reverse osmosis membrane unit 40 is The amount of RO membrane water 101 generated through the RO membrane 105 increases. Therefore, at the time of purification, the resistor 64a is turned on (bypass path 64b is closed). Details of this operation are shown in FIG. 9A.
逆に、ここで、当該コックを開にしてバイパス経路64bをオープン(オン)にすると、浄水時動作においては、原水102は、そのまま濃縮水口23の方に抜けやすくなる。すなわち、逆浸透膜ユニット40の濃縮水(230a)の出口となる濃縮水口23及び濃縮水ライン23aに抵抗がない状態なので、逆浸透膜ユニット40の原水102は、RO膜105を通過するよりも、濃縮水口23から出て行く傾向が強くなる。なお、この状態は、RO膜105の外側(すなわち、原水・濃縮液チャネル102の側)の表面において、浄水時よりも大量の水が流れるので、フラッシング洗浄のモードとして動作させることができる。この動作の詳細は図9Bに示している。
On the contrary, here, when the cock is opened and the bypass path 64b is opened (ON), the raw water 102 is easily removed toward the concentrated water inlet 23 as it is during the water purification operation. That is, since there is no resistance in the concentrated water port 23 and the concentrated water line 23a serving as the outlet of the concentrated water (230a) of the reverse osmosis membrane unit 40, the raw water 102 of the reverse osmosis membrane unit 40 is more than passing through the RO membrane 105. The tendency to go out from the concentrated water outlet 23 becomes stronger. In this state, a larger amount of water flows on the surface of the outer side of the RO membrane 105 (that is, the raw water / concentrate channel 102 side) than during the water purification, so that it can be operated as a flushing cleaning mode. Details of this operation are shown in FIG. 9B.
また、逆浸透膜モジュール20の透過水口24には、洗浄水が通過する洗浄水ライン54が接続されている。本実施形態の構成においては、洗浄水ライン54は、透過水ライン24aから分岐した形態で、透過水口24に接続されている。詳細は図9Cにも示しているが、洗浄水ライン54から洗浄水(例えば、RO膜水)を、透過水口24に導入することで、逆洗方式の洗浄を実行することができる。
Further, a washing water line 54 through which washing water passes is connected to the permeate opening 24 of the reverse osmosis membrane module 20. In the configuration of the present embodiment, the washing water line 54 is connected to the permeated water port 24 in a form branched from the permeated water line 24a. Although details are also shown in FIG. 9C, backwashing can be performed by introducing cleaning water (for example, RO membrane water) from the cleaning water line 54 into the permeated water port 24.
この逆洗方式の洗浄時においては、抵抗付き弁64のコックを開にしてバイパス経路64bをオープン(オン)にしておく。すなわち、抵抗付き弁64の抵抗64aが働かないようにしておく。すると、逆洗の動作においては、逆浸透膜モジュール20の透過水口24から入った洗浄水(例えば、RO膜水)は、濃縮水口23の方に抜けやすくなる。すなわち、逆浸透膜ユニット40の濃縮水(230a)の出口となる濃縮水口23及び濃縮水ライン23aに抵抗がない状態なので、逆浸透膜ユニット40の透過水口24から入った洗浄水は、濃縮水口23に抵抗がある場合と比較して、RO膜105を通過して濃縮水口23から出て行く傾向が強くなる。
At the time of cleaning by this backwashing method, the cock of the valve 64 with resistance is opened and the bypass path 64b is opened (ON). That is, the resistor 64a of the resistor-equipped valve 64 is prevented from working. Then, in the backwashing operation, the wash water (for example, RO membrane water) that has entered from the permeate port 24 of the reverse osmosis membrane module 20 is likely to escape toward the concentrated water port 23. That is, since there is no resistance in the concentrated water port 23 and the concentrated water line 23a serving as the outlet of the concentrated water (230a) of the reverse osmosis membrane unit 40, the wash water entered from the permeated water port 24 of the reverse osmosis membrane unit 40 is Compared with the case where resistance is in 23, the tendency to pass through the RO membrane 105 and exit from the concentrated water port 23 becomes stronger.
なお、図9Cにおける弁65eをオープンにして、逆浸透膜モジュール20の透過水口24から入った洗浄水を、原水供給口25および濃縮水口23の両方から出るようにしてもよい。あるいは、図9Cにおける弁65eをクローズにして、逆浸透膜モジュール20の透過水口24から入った洗浄水が、原水供給口25からは抜けないようにし、RO膜105を通過して、濃縮水口23に積極的に出るようにしてもよい。なお、図9Cの説明では、弁65eをオープンにして、洗浄液が循環できるような構成にしている。
Note that the valve 65e in FIG. 9C may be opened so that the wash water that has entered from the permeate port 24 of the reverse osmosis membrane module 20 exits from both the raw water supply port 25 and the concentrated water port 23. Alternatively, the valve 65e in FIG. 9C is closed so that the washing water that has entered from the permeated water port 24 of the reverse osmosis membrane module 20 does not escape from the raw water supply port 25, passes through the RO membrane 105, and the concentrated water port 23. You may make it appear positively. In the description of FIG. 9C, the valve 65e is opened so that the cleaning liquid can be circulated.
本実施形態の逆浸透膜浄水装置100には、原水61を逆浸透膜モジュール20に導入する圧力ポンプ30が設けられている。本実施形態の構成では、圧力ポンプ30は、筐体10(又は背面筐体12)の中に収納されている。本実施形態の圧力ポンプ30は、ダイヤフラムポンプであるが、原水61を加圧できるのであれば、特にポンプの種類は問わない。圧力ポンプ30は、例えば、1000cc/分以上の能力を有するポンプである。図示した例での圧力ポンプ30は、2800cc/分、又は、3700cc/分、120PSI(PSI=1インチあたりのポンド重量)で、AC100V駆動のポンプである。2000cc/分以上の圧力ポンプ30であると、圧力ポンプ能力が大きいので、貯水タンクなしで直接RO水を蛇口から利用できるダイレクト式逆浸透膜浄水装置100に向いている。貯水タンク付きの逆浸透膜浄水装置100の場合、1000~1200cc/分程度の圧力ポンプ30を使用できる。本実施形態においては、逆浸透膜ユニット40が500GPSの場合は、3700cc/分のポンプを用いることが好適である。なお、家庭用の逆浸透膜浄水装置100であるので、騒音50db以下のポンプが好ましい。
The reverse osmosis membrane water purification apparatus 100 of this embodiment is provided with a pressure pump 30 that introduces raw water 61 into the reverse osmosis membrane module 20. In the configuration of the present embodiment, the pressure pump 30 is housed in the housing 10 (or the back housing 12). Although the pressure pump 30 of this embodiment is a diaphragm pump, the type of pump is not particularly limited as long as the raw water 61 can be pressurized. The pressure pump 30 is a pump having a capacity of 1000 cc / min or more, for example. The pressure pump 30 in the illustrated example is a 2800 cc / min or 3700 cc / min, 120 PSI (PSI = pound weight per inch) AC 100 V driven pump. When the pressure pump 30 is 2000 cc / min or more, the pressure pump capacity is large, so it is suitable for the direct reverse osmosis membrane water purification apparatus 100 that can directly use RO water from a faucet without a water storage tank. In the case of the reverse osmosis membrane water purification apparatus 100 with a water storage tank, a pressure pump 30 of about 1000 to 1200 cc / min can be used. In the present embodiment, when the reverse osmosis membrane unit 40 is 500 GPS, it is preferable to use a pump of 3700 cc / min. In addition, since it is the household reverse osmosis membrane water purification apparatus 100, the pump of noise 50db or less is preferable.
本実施形態の圧力ポンプ30は、逆浸透できる圧力を原水61に加えることができればよい。したがって、圧力ポンプ30が配置される位置はどこであってもよい。図9Aに示した例では、逆浸透膜モジュール20の原水供給口25の上流に、圧力ポンプ30は配置されている。また、本実施形態の構成では、家庭用の逆浸透膜浄水装置100であるので、逆浸透膜浄水装置100の外枠となる筐体10(12)の中に、圧力ポンプ30は配置されているが、逆浸透膜浄水装置100が機能するという点では、逆浸透膜浄水装置100は、筐体10の外に配置して動作させても構わない。
The pressure pump 30 of the present embodiment only needs to be able to apply a pressure capable of reverse osmosis to the raw water 61. Therefore, the position where the pressure pump 30 is disposed may be anywhere. In the example shown in FIG. 9A, the pressure pump 30 is disposed upstream of the raw water supply port 25 of the reverse osmosis membrane module 20. Moreover, in the structure of this embodiment, since it is a household reverse osmosis membrane water purification apparatus 100, the pressure pump 30 is arrange | positioned in the housing | casing 10 (12) used as the outer frame of the reverse osmosis membrane water purification apparatus 100. However, the reverse osmosis membrane water purification device 100 may be disposed outside the housing 10 and operated in that the reverse osmosis membrane water purification device 100 functions.
本実施形態の筐体10(12)は、図1、図2及び図3に示すように、実質的に矩形形状を有している。本実施形態では、表面側の筐体10は、樹脂(特に、硬化した樹脂)から構成しており、例えば、ABS(アクリロニトリル-ブタジエン-スチレン共重合合成樹脂)、FRP(繊維強化プラスチック)、PP(ポリプロピレン)などである。筐体10は、他の樹脂材料であっても、金属製であっても、木製であっても構わないし、異種材料の複合材料であっても構わない。
The casing 10 (12) of the present embodiment has a substantially rectangular shape as shown in FIGS. In the present embodiment, the front-side casing 10 is made of a resin (particularly a cured resin). For example, ABS (acrylonitrile-butadiene-styrene copolymer synthetic resin), FRP (fiber reinforced plastic), PP (Polypropylene). The housing 10 may be another resin material, a metal, a wooden material, or a composite material of different materials.
本実施形態の背面筐体12は、金属製(例えば、鉄、ステンレス、アルミニウムなど)である。図4に示すように、背面筐体12は、逆浸透膜モジュール20および加圧ポンプ30、抵抗付き弁64、各種ライン(配管)および弁60(二股バルブ、三方コックなどを含む)を収納可能な空間(凹部)を有している。また、図5に示すように、表面筐体10の裏面10bには、逆浸透膜モジュール20および加圧ポンプ30などを収納できる凹部11が形成されている。具体的には、表面筐体10の裏面10bの周縁部には、壁部11bが位置している。なお、壁部11bの一部には、背面筐体12と組み合わせるための(固定するための)切欠き部11aが形成されている。
The back housing 12 of the present embodiment is made of metal (for example, iron, stainless steel, aluminum, etc.). As shown in FIG. 4, the back housing 12 can accommodate the reverse osmosis membrane module 20 and the pressurizing pump 30, a valve 64 with resistance, various lines (piping) and a valve 60 (including a bifurcated valve and a three-way cock). A space (concave portion). Further, as shown in FIG. 5, a recess 11 that can accommodate the reverse osmosis membrane module 20, the pressure pump 30, and the like is formed on the back surface 10 b of the front surface housing 10. Specifically, the wall portion 11b is located at the peripheral edge portion of the back surface 10b of the front surface case 10. Note that a cutout portion 11a for combining (fixing) with the rear housing 12 is formed in a part of the wall portion 11b.
図3に示すように、表面筐体10と背面筐体12とを組み合わせて一体にすることができ、切欠き部11aの箇所に締結部材(ビス)13を挿入することで両者を固定することができる。また、背面筐体12の側面には、外部配管ソケット14が設けられており、図3に示した例では、配管(原水チューブ)61a、配管(排水チューブ)62a、配管(RO膜水チューブ)63aが、外部配管ソケット14に挿入されている。なお、筐体10からは、ポンプ30の電源コード17および電源スイッチ18が延びている。
As shown in FIG. 3, the front case 10 and the back case 12 can be combined and integrated, and both are fixed by inserting fastening members (screws) 13 into the notch portions 11a. Can do. Further, an external piping socket 14 is provided on the side surface of the rear housing 12, and in the example shown in FIG. 3, piping (raw water tube) 61a, piping (drainage tube) 62a, piping (RO membrane water tube). 63 a is inserted into the external piping socket 14. Note that the power cord 17 and the power switch 18 of the pump 30 extend from the housing 10.
本実施形態の構成において、表面筐体10と背面筐体12とを組み合わせた寸法は、例えば、縦50cm以下、横50cm以下および厚さ30cm以下である。寸法が小さく薄いほど、家庭用の逆浸透膜浄水装置100としては、利便性が上がるが、この寸法に限定されるものではない。図1等に示した筐体(10、12)の寸法は、例えば、縦40cm、横30cmおよび厚さ10cmである。また、家庭用の逆浸透膜浄水装置100は、工場に設置されるプラント用逆浸透膜浄水装置と比較して、空間の制約が厳しく、また洗浄工程を実行する機構の配置も、使用可能な部材(部品、手段)も技術的にもコスト的にも制限が厳しい。したがって、本実施形態の逆浸透膜浄水装置100の寸法が、縦100cm、横100cmおよび厚さ50cmのものであったとしても、プラント用逆浸透膜浄水装置と比較して、空間の制約が厳しくて、技術的にもコスト的にも制約のレベルが高いことには変わりない。
In the configuration of the present embodiment, the combined dimensions of the front casing 10 and the rear casing 12 are, for example, 50 cm or less in length, 50 cm or less in width, and 30 cm or less in thickness. As the size is smaller and thinner, the convenience of the household reverse osmosis membrane water purifier 100 increases, but the size is not limited to this. The dimensions of the housings (10, 12) shown in FIG. 1 and the like are, for example, 40 cm long, 30 cm wide, and 10 cm thick. In addition, the reverse osmosis membrane water purification apparatus 100 for home use is more space-constrained than a plant reverse osmosis membrane water purification apparatus installed in a factory, and an arrangement of a mechanism for performing a cleaning process can also be used. The members (parts and means) are also severely limited in terms of technology and cost. Therefore, even if the dimensions of the reverse osmosis membrane water purification device 100 of the present embodiment are 100 cm long, 100 cm wide and 50 cm thick, space restrictions are severe compared to the reverse osmosis membrane water purification device for plants. Therefore, the level of restriction is high both in terms of technology and cost.
また、本実施形態のダイレクト式逆浸透膜浄水装置100では、透過水(RO水)の貯水タンクを設けることなく、直接、透過水(RO水)を利用することができる。これは、典型的な家庭用の逆浸透膜浄水装置100のRO水の生成量0.1~0.3リットル/1分間程度であり、貯水タンクが必要であるのに対して、本実施形態のダイレクト式逆浸透膜浄水装置100のRO水の生成量(浄水生成能力)の一例は、1.0リットル/1分間以上あるからである。したがって、本実施形態の逆浸透膜浄水装置100によれば、貯水タンクを必要としないので、紫外線殺菌装置などの殺菌装置が不要であり、さらには貯水タンクを台所へ設置するためのスペースも不要であるので、利点が大きい。なお、これらの利点を放棄することになるが、1.0リットル/1分間の水量を超えて、より多くの透過水(RO水)を使用したい場合には、本実施形態の逆浸透膜浄水装置(ダイレクト式逆浸透膜浄水装置)100に、貯水タンクを取り付けることを禁止するものではない。
Moreover, in the direct type reverse osmosis membrane water purification apparatus 100 of the present embodiment, the permeated water (RO water) can be used directly without providing a permeated water (RO water) water storage tank. This is because the amount of RO water produced by a typical reverse osmosis membrane water purification device 100 for home use is about 0.1 to 0.3 liters per minute, and a water storage tank is required. This is because an example of the RO water generation amount (purified water generation capacity) of the direct reverse osmosis membrane water purification apparatus 100 is 1.0 liter / minute or more. Therefore, according to the reverse osmosis membrane water purification apparatus 100 of the present embodiment, a water storage tank is not required, so a sterilization apparatus such as an ultraviolet sterilization apparatus is unnecessary, and further, a space for installing the water storage tank in the kitchen is also unnecessary. Therefore, the advantage is great. In addition, although these advantages will be abandoned, the reverse osmosis membrane water purification of this embodiment is used when it is desired to use more permeated water (RO water) exceeding the amount of water of 1.0 liter / minute. It is not prohibited to attach a water storage tank to the device (direct reverse osmosis membrane water purification device) 100.
また、本実施形態の逆浸透膜浄水装置100において、逆浸透膜モジュール20は1つだけ設けられているが、複数の逆浸透膜モジュール20(2個または3個以上)を筐体10内に配置したものを構築してもよい。逆浸透膜モジュール20を複数にすれば、RO水の生成能力を向上させることができる。また、それぞれの逆浸透膜モジュール20の濃縮水ライン23aに抵抗付き弁64をセットし、それぞれの逆浸透膜モジュール20の透過水口24には洗浄水ライン54を接続した構成にすれば、逆浸透膜モジュール20の初期化工程(洗浄工程)を実行することができる。
In the reverse osmosis membrane water purification apparatus 100 of the present embodiment, only one reverse osmosis membrane module 20 is provided, but a plurality of reverse osmosis membrane modules 20 (two or three or more) are provided in the housing 10. You may build what you have placed. If the reverse osmosis membrane module 20 is made into plural, the production | generation capability of RO water can be improved. Moreover, if the valve 64 with a resistance is set to the concentrated water line 23a of each reverse osmosis membrane module 20, and the washing water line 54 is connected to the permeated water port 24 of each reverse osmosis membrane module 20, reverse osmosis will occur. An initialization process (cleaning process) of the membrane module 20 can be performed.
次に、図8を参照しながら、本発明の実施形態に係る洗浄方法について説明する。図8は、本実施形態の洗浄方法のフローチャートを表している。
Next, a cleaning method according to an embodiment of the present invention will be described with reference to FIG. FIG. 8 shows a flowchart of the cleaning method of this embodiment.
本実施形態の洗浄方法では、逆浸透膜浄水装置を使用し続けて、逆浸透膜モジュール20による透過水(RO水)の生成能力が低下した場合に、その逆浸透膜モジュール20の透過水(RO水)の生成能力を、新品同様に初期化することができる。そして、逆浸透膜モジュール20の浄化能力(透過水の水質)を新品同様に初期化することができる。
In the cleaning method of the present embodiment, when the reverse osmosis membrane water purification device continues to use the permeated water (RO water) generation capability of the reverse osmosis membrane module 20, the permeated water of the reverse osmosis membrane module 20 ( RO water) generation capability can be initialized as if it were new. And the purification capability (permeated water quality) of the reverse osmosis membrane module 20 can be initialized like a new product.
本実施形態では、まず、逆洗方式の洗浄(逆洗洗浄)を実行する(ステップS10)。このステップS10では、洗浄液(例えば、RO水)を、逆浸透膜モジュール20の透過水口24から導入して、原水供給口25および濃縮水口23から排出させる。これにより、逆浸透膜モジュール20が備えているRO膜105の目詰まりがとれて、透過水(RO水)の生成能力が回復する。
In this embodiment, first, backwashing (backwashing) is performed (step S10). In this step S <b> 10, a cleaning liquid (for example, RO water) is introduced from the permeated water port 24 of the reverse osmosis membrane module 20 and discharged from the raw water supply port 25 and the concentrated water port 23. Thereby, the RO membrane 105 provided in the reverse osmosis membrane module 20 is clogged, and the generation capability of permeated water (RO water) is recovered.
本実施形態では、この逆洗洗浄(S10)は、排水側のバルブ(64)を全開にして約1分間実行し、洗浄液は、RO水を用いた。なお、逆洗洗浄(S10)の時間は、逆浸透膜モジュール20の種類、使用環境(使用期間、硬水のレベル、原水の不純物の量など)に応じて適宜好適なものを決定することができる。加えて、本実施形態では、逆洗洗浄(S10)の洗浄液にRO水を用いたが、逆浸透膜モジュール20の種類、使用環境(使用期間、硬水のレベル、原水の不純物の量など)にあわせて、適宜好適な洗浄液(例えば、水酸化ナトリウム水溶液、及び/又は、キレート剤入りの水溶液)を用いることも可能である。また、洗浄液は、RO水でなくても、純水、蒸留水、イオン交換水、水道水を用いても構わない。
In this embodiment, this backwash cleaning (S10) was performed for about 1 minute with the drain side valve (64) fully opened, and RO water was used as the cleaning liquid. The time for backwashing (S10) can be appropriately determined according to the type of reverse osmosis membrane module 20 and the usage environment (use period, level of hard water, amount of raw water impurities, etc.). . In addition, in this embodiment, RO water is used as the cleaning liquid for backwashing (S10). However, depending on the type of reverse osmosis membrane module 20 and the usage environment (use period, level of hard water, amount of impurities in raw water, etc.) In addition, a suitable cleaning solution (for example, an aqueous solution of sodium hydroxide and / or an aqueous solution containing a chelating agent) can be used as appropriate. The cleaning liquid may not be RO water but may be pure water, distilled water, ion exchange water, or tap water.
また、この逆洗洗浄(S10)では、RO膜105を痛めないように、圧力ポンプ30の圧力は、例えば、1.0MPa以下(絶対圧)にすること(一例では、0.7MPa~0.2MPa(絶対圧))にする。本実施形態の一例では、0.2~0.3MPa(絶対圧)で行った。また、逆洗洗浄(S10)における圧力ポンプ30の圧力を精密に制御する場合、圧力ポンプ30はインバーター回路によって制御されていることがより好適である。また、逆洗洗浄(S10)の動作時間は、例えば5分以内、好ましくは2分以内(例えば、1分間)にすることができるが、RO膜105を痛めても構わないということであれば、時間の制約は緩和される。
Further, in this backwash cleaning (S10), the pressure of the pressure pump 30 is set to, for example, 1.0 MPa or less (absolute pressure) so as not to damage the RO membrane 105 (in one example, 0.7 MPa to 0. 0). 2 MPa (absolute pressure)). In an example of this embodiment, the pressure was 0.2 to 0.3 MPa (absolute pressure). Moreover, when controlling the pressure of the pressure pump 30 in backwashing (S10) precisely, it is more preferable that the pressure pump 30 is controlled by an inverter circuit. In addition, the operation time of the backwashing (S10) can be within, for example, 5 minutes, preferably within 2 minutes (for example, 1 minute), as long as the RO membrane 105 may be damaged. Time constraints are relaxed.
次に、キレート洗浄を実行する(ステップS20)。このステップS20では、洗浄液を原水供給口25から導入して、透過水口24および濃縮水口23から排出する。このキレート洗浄(ステップS20)を行うことで、逆浸透膜モジュール20が示すTDS(塩類溶解質)の値が下がり、逆浸透膜モジュール20が生成するRO水の水質レベルを初期化することができる。
Next, chelate cleaning is executed (step S20). In step S <b> 20, the cleaning liquid is introduced from the raw water supply port 25 and discharged from the permeated water port 24 and the concentrated water port 23. By performing this chelate washing (step S20), the value of TDS (salt solute) indicated by the reverse osmosis membrane module 20 decreases, and the water quality level of the RO water generated by the reverse osmosis membrane module 20 can be initialized. .
キレート洗浄(ステップS20)における洗浄液は、キレート剤(例えば、EDTA、DTPA、DHEG)の水溶液である。なお、EDTAは、エチレンジアミン四酢酸の略語であり、DTPAは、ジエチレントリアミン五酢酸の略語である。DHEGは、ジヒドロキシエチルグリシンの略語である。なお、アルカリ状態でキレートするキレート剤であれば、適宜好適なものを選択して使用することができる。
The cleaning solution in chelate cleaning (step S20) is an aqueous solution of a chelating agent (for example, EDTA, DTPA, DHEG). EDTA is an abbreviation for ethylenediaminetetraacetic acid, and DTPA is an abbreviation for diethylenetriaminepentaacetic acid. DHEG is an abbreviation for dihydroxyethylglycine. In addition, if it is a chelating agent chelating in an alkali state, a suitable thing can be selected and used suitably.
また、キレート剤とともに、アルカリ成分(例えば、水酸化ナトリウム、水酸化カリウムなど)を洗浄液に混入させることも好ましい。キレート剤の濃度は、特に限定されないとともに、原水の条件、洗浄条件などに大きく依存するが、例えば、100~500ppm(伝導率基準)にすることができ、一例では、320~350ppmにすることができる。また、10リットルの水に2グラムのキレート剤(EDTA)と1gのNaOHを混入させた溶液(洗浄液)を用いることができるが、それに限定されず、使用する原水ならびに洗浄条件にあわせて適宜好適な濃度のものを調整することが好ましい。
It is also preferable to mix an alkaline component (for example, sodium hydroxide, potassium hydroxide, etc.) into the cleaning solution together with the chelating agent. The concentration of the chelating agent is not particularly limited and greatly depends on the conditions of raw water, washing conditions, etc., but can be, for example, 100 to 500 ppm (conductivity standard), and in one example, 320 to 350 ppm. it can. Further, a solution (cleaning solution) in which 2 grams of chelating agent (EDTA) and 1 g of NaOH are mixed in 10 liters of water can be used, but is not limited thereto, and is suitably suitable according to the raw water used and the cleaning conditions. It is preferable to adjust the concentration.
本実施形態のキレート洗浄(ステップS20)の実行手順の一例およびその洗浄時間は、次の通りである。まず、洗浄タンク(図9Bの「69」参照)に洗浄液を注入し、RO水がタンク中位くらいまで貯まったところで、循環洗浄を開始する。その後、表面洗浄(フラッシング洗浄)を3分~60分(一例では、5分)を行い、次いで、圧力洗浄を3分~60分(一例では、5分)を行う。その後、逆浸透膜モジュール20における洗浄液の滞留を、2時間~24時間(一例では、8時間、または、一晩放置)実行する。表面洗浄(フラッシング洗浄)を行うには、抵抗付き弁64の抵抗64aをオフにして洗浄を実行したらよい。また、圧力洗浄を行うには、抵抗付き弁64の抵抗64aをオンにして洗浄を実行したらよい。洗浄液(キレート溶液)の滞留による処理は、圧力ポンプ30を動作させる必要がなく、所定時間(例えば、一晩、または2時間以上)放置しておくだけなので、電気代などのエネルギーコストが発生せず便利がよい。
An example of the execution procedure of the chelate cleaning (step S20) of the present embodiment and the cleaning time are as follows. First, the cleaning liquid is poured into the cleaning tank (see “69” in FIG. 9B), and when the RO water is accumulated to the middle of the tank, the circulation cleaning is started. Thereafter, surface cleaning (flushing cleaning) is performed for 3 minutes to 60 minutes (in this example, 5 minutes), and then pressure cleaning is performed for 3 minutes to 60 minutes (in the example, 5 minutes). Thereafter, the cleaning liquid is retained in the reverse osmosis membrane module 20 for 2 to 24 hours (for example, 8 hours or left overnight). In order to perform surface cleaning (flushing cleaning), cleaning may be performed with the resistor 64a of the valve 64 having resistance turned off. Further, in order to perform pressure cleaning, the cleaning may be performed by turning on the resistor 64a of the valve 64 with resistance. The treatment by staying of the cleaning liquid (chelate solution) does not require the pressure pump 30 to operate, and is left for a predetermined time (for example, overnight or 2 hours or more), so that energy costs such as electricity costs are generated. Very convenient.
このキレート洗浄(ステップS20)によって、TDSの値が30~50(mg/リットル)だったものが、5~8(mg/リットル)まで低下させることができる。なお、滞留(例えば、8時間または一晩放置)の後に、浄水工程を実行するには、20秒~120秒(一例では、30秒)の試し動作期間を経た後に、RO水を生成する浄水工程(通常動作)を実行したらよい。逆浸透膜浄水装置100を自動運転制御できるように構築している場合には、この試し動作期間も自動で処理するように構築することができる。
This chelate washing (step S20) can reduce the TDS value from 30 to 50 (mg / liter) to 5 to 8 (mg / liter). In addition, in order to perform the water purification process after staying (for example, standing for 8 hours or overnight), after performing a trial operation period of 20 seconds to 120 seconds (in one example, 30 seconds), purified water that generates RO water. What is necessary is just to perform a process (normal operation | movement). When the reverse osmosis membrane water purification apparatus 100 is constructed so that it can be controlled automatically, it can be constructed so that this trial operation period is also processed automatically.
なお、TDS(total dissolved solid;塩類溶解質、又は、蒸発残留物)は、水中に浮遊したり溶解して含まれるものを蒸発乾固したときに残渣として得られた物をいい、総量をmg/リットルで表す。TDS(蒸発残留物)の主な成分は、カルシウム、マグネシウム、シリカ、ナトリウム、カリウムなどの塩類や有機物であり、水道水質基準ではTDSは500mg/リットル以下と定められている。
TDS (total dissolved dissolved or evaporated residue) refers to the product obtained as a residue when the substance contained by floating or dissolving in water is evaporated to dryness. Expressed in liters. The main components of TDS (evaporation residue) are salts such as calcium, magnesium, silica, sodium, potassium, and organic substances, and the TDS is defined as 500 mg / liter or less according to tap water quality standards.
次に、図9A~図9Cを参照しながら、本実施形態の逆浸透膜浄水装置100の配管構成について説明する。なお、上述した説明を踏まえると、図9A~図9Cに示した構造は比較的容易に理解できるため、説明を複雑化しないために簡潔に説明することにする。なお、図9A~図9Cに示した配管構造は例示であり、これ以外の配管構造も構築可能であるし、同じ配管構造でも、弁の開閉状態を変えて、浄水モード配管構成、順方向の洗浄モード配管構成、逆洗モード配管構成を構築することも可能であり、それらの改変例も本発明の範囲内である。
Next, the piping configuration of the reverse osmosis membrane water purification device 100 of the present embodiment will be described with reference to FIGS. 9A to 9C. Based on the above description, the structure shown in FIGS. 9A to 9C can be understood relatively easily, so that the description will be briefly described in order not to make the description complicated. Note that the piping structures shown in FIGS. 9A to 9C are examples, and other piping structures can be constructed. Even in the same piping structure, the open / close state of the valve is changed, and the water purification mode piping configuration and the forward direction are changed. It is also possible to construct a cleaning mode piping configuration and a back cleaning mode piping configuration, and modifications thereof are also within the scope of the present invention.
図9Aは、RO水を生成する浄水モード配管構成を示している。本実施形態の構成における弁65(65a~65i)および弁64は、手動の弁であるが、電動弁にすることも可能である。図中の「X」は、弁65が閉になっているために溶液が流れないことを意味している。また、同図に示すように複数の液体ライン(56a~56c、52)が延びている。
FIG. 9A shows a water purification mode piping configuration for generating RO water. The valve 65 (65a to 65i) and the valve 64 in the configuration of the present embodiment are manual valves, but may be motorized valves. “X” in the figure means that the solution does not flow because the valve 65 is closed. Further, as shown in the figure, a plurality of liquid lines (56a to 56c, 52) extend.
図9Aでは、原水61は、矢印301のように進み、ポンプ30を経て、矢印302及び303のように進む。次いで、矢印304のように、逆浸透膜浄水装置100の原水供給口25に入る。その後、逆浸透膜浄水装置100内で膜分離処理(逆浸透)が行われて、矢印305に示すように、透過水口24から透過水(RO水)が導出される。その後、RO水は、矢印305~矢印308のように進んで、逆浸透膜浄水装置100の外部で利用可能なRO水63となる。一方で、逆浸透膜浄水装置100内で膜分離処理(逆浸透)が行われると、矢印309に示すように、濃縮水口23から濃縮水が導出され、矢印310~311に示すようにして、逆浸透膜浄水装置100の外に濃縮水(ブレイン)62が排出される。このようにして、浄水モード配管構成における浄水動作(RO水生成動作)が実行される。
In FIG. 9A, the raw water 61 proceeds as indicated by an arrow 301, passes through the pump 30, and proceeds as indicated by arrows 302 and 303. Next, as shown by an arrow 304, the raw water supply port 25 of the reverse osmosis membrane water purification apparatus 100 is entered. Thereafter, membrane separation processing (reverse osmosis) is performed in the reverse osmosis membrane water purification apparatus 100, and permeated water (RO water) is derived from the permeated water port 24 as indicated by an arrow 305. Thereafter, the RO water proceeds as indicated by arrows 305 to 308 to become RO water 63 that can be used outside the reverse osmosis membrane water purification apparatus 100. On the other hand, when the membrane separation process (reverse osmosis) is performed in the reverse osmosis membrane water purification apparatus 100, the concentrated water is led out from the concentrated water port 23 as shown by the arrow 309, and as shown by the arrows 310 to 311. Concentrated water (brain) 62 is discharged out of the reverse osmosis membrane water purification apparatus 100. In this way, the water purification operation (RO water generation operation) in the water purification mode piping configuration is executed.
図9Bは、順方向の洗浄モード配管構成を示している。この構成例では、洗浄タンク69の中に洗浄液(例えば、キレート剤溶液)55が充填されている。なお、洗浄タンク69は、樹脂製の容器であり、図1等に示した筐体10の外に配置されることになる。洗浄液55は、矢印401~406のように進んで、逆浸透膜浄水装置100の原水供給口25に入る。ここで、抵抗付き弁64の抵抗64aをオフにすれば表面洗浄(フラッシング洗浄)を行うことができる。あるいは、抵抗付き弁64の抵抗64aをオンにすれば圧力洗浄(浄水工程と同じ流れの洗浄)を行うことができる。
FIG. 9B shows a forward cleaning mode piping configuration. In this configuration example, a cleaning liquid (for example, chelating agent solution) 55 is filled in the cleaning tank 69. The cleaning tank 69 is a resin container and is disposed outside the casing 10 shown in FIG. The cleaning liquid 55 proceeds as indicated by arrows 401 to 406 and enters the raw water supply port 25 of the reverse osmosis membrane water purification apparatus 100. Here, if the resistance 64a of the valve 64 with resistance is turned off, surface cleaning (flushing cleaning) can be performed. Or if the resistance 64a of the valve 64 with resistance is turned on, pressure washing | cleaning (washing | cleaning of the same flow as a water purification process) can be performed.
その後は、透過水口24から導出された洗浄液は、矢印407から410のように進む。一方で、濃縮水口23から導出された洗浄液は、矢印411から415のように進む。いずれの洗浄液も、配管56aを流れて、矢印416~418のように進んで、洗浄タンク69に戻る。以後、洗浄液55は、この循環を繰り返す。
Thereafter, the cleaning liquid led out from the permeate opening 24 proceeds as indicated by arrows 407 to 410. On the other hand, the cleaning liquid derived from the concentrated water port 23 proceeds as indicated by arrows 411 to 415. All of the cleaning liquid flows through the pipe 56a, proceeds as indicated by arrows 416 to 418, and returns to the cleaning tank 69. Thereafter, the cleaning liquid 55 repeats this circulation.
図9Cは、逆方向の洗浄モード(逆洗モード)の配管構成を示している。この構成例では、洗浄タンク69の中に洗浄液(例えば、RO水)55が充填されており、洗浄液55は、矢印501~507のように進んで、逆浸透膜浄水装置100の透過水口24に入る。ここで、抵抗付き弁64の抵抗64aはオフになっており、洗浄液55は、逆浸透膜浄水装置100の濃縮水口23から排出されて、矢印508~511のように進む。一方、洗浄液55は、逆浸透膜浄水装置100の原水供給口25からも排出され、矢印512~514のように進む。その後、いずれの洗浄液も、配管56aを流れて、矢印515~518のように進んで、洗浄タンク69に戻る。以後、洗浄液55は、この循環を繰り返す。この逆洗工程によって、逆浸透膜モジュール20の浄水能力アップ(初期化)を実行することができる。
FIG. 9C shows the piping configuration in the reverse cleaning mode (back cleaning mode). In this configuration example, a cleaning liquid (for example, RO water) 55 is filled in the cleaning tank 69, and the cleaning liquid 55 proceeds as indicated by arrows 501 to 507 and enters the permeate outlet 24 of the reverse osmosis membrane water purification apparatus 100. enter. Here, the resistance 64a of the valve 64 with resistance is off, and the cleaning liquid 55 is discharged from the concentrated water port 23 of the reverse osmosis membrane water purifier 100 and proceeds as indicated by arrows 508 to 511. On the other hand, the cleaning liquid 55 is also discharged from the raw water supply port 25 of the reverse osmosis membrane water purification apparatus 100 and proceeds as indicated by arrows 512 to 514. Thereafter, any cleaning liquid flows through the pipe 56a, proceeds as indicated by arrows 515 to 518, and returns to the cleaning tank 69. Thereafter, the cleaning liquid 55 repeats this circulation. Through this backwashing step, the water purification capacity of the reverse osmosis membrane module 20 can be increased (initialized).
本実施形態の逆浸透膜浄水装置100では、逆浸透膜モジュール20の濃縮水口23に接続された濃縮水ライン23aに抵抗付き弁64が設けられている。そして、逆浸透膜モジュール20の透過水口24には洗浄水ライン54が接続されている。したがって、逆浸透膜モジュール20の透過水口24に洗浄水ライン54から洗浄液55(例えば、RO水)を導入し(すなわち、浄化と逆方向で液体55を導入し)、抵抗付き弁64のオン/オフを切り替えることで(具体的には、抵抗付き弁64の抵抗64aをオフにすることで)、逆浸透膜モジュール20の逆洗を実行することができる。そして、逆浸透膜モジュール20の原水供給口25に洗浄液55(例えば、キレート剤溶液)を導入し(すなわち、浄化と順方向で液体55を導入し)、抵抗付き弁64のオン/オフを切り替えることで、逆浸透膜モジュール20の洗浄(例えば、圧力洗浄/フラッシング洗浄)を実行することができる。本実施形態の逆浸透膜浄水装置100によれば、使用済みの逆浸透膜105の能力を回復(初期化)できる逆浸透膜浄水装置100を実現することができる。
In the reverse osmosis membrane water purification apparatus 100 of this embodiment, a valve 64 with resistance is provided in the concentrated water line 23a connected to the concentrated water port 23 of the reverse osmosis membrane module 20. A wash water line 54 is connected to the permeate port 24 of the reverse osmosis membrane module 20. Accordingly, the cleaning liquid 55 (for example, RO water) is introduced from the cleaning water line 54 to the permeate opening 24 of the reverse osmosis membrane module 20 (that is, the liquid 55 is introduced in the direction opposite to the purification), and the resistance valve 64 is turned on / off. By switching off (specifically, by turning off the resistance 64a of the valve 64 with resistance), the reverse osmosis membrane module 20 can be backwashed. Then, a cleaning liquid 55 (for example, a chelating agent solution) is introduced into the raw water supply port 25 of the reverse osmosis membrane module 20 (that is, the liquid 55 is introduced in the forward direction with purification), and the resistance valve 64 is switched on / off. Thus, the reverse osmosis membrane module 20 can be cleaned (for example, pressure cleaning / flushing cleaning). According to the reverse osmosis membrane water purification apparatus 100 of this embodiment, the reverse osmosis membrane water purification apparatus 100 that can recover (initialize) the capability of the used reverse osmosis membrane 105 can be realized.
次に、本実施形態の逆浸透膜浄水装置100において、手動弁を電磁弁に代えて、浄化、通常洗浄、フラッシング洗浄、逆洗を自動制御させることも可能である。図10は、弁60(60A~60G)および弁64(60K)は電磁弁であり、これらの電磁弁は、制御回路によって制御されている。図10に示した構成は、図9A~図9Cに示した構成の説明から理解できるので、重複部分の詳細な説明はしない。
Next, in the reverse osmosis membrane water purification apparatus 100 of this embodiment, it is possible to automatically control purification, normal washing, flushing washing, and backwashing instead of the manual valve. In FIG. 10, the valve 60 (60A to 60G) and the valve 64 (60K) are electromagnetic valves, and these electromagnetic valves are controlled by a control circuit. Since the configuration shown in FIG. 10 can be understood from the description of the configuration shown in FIGS. 9A to 9C, detailed description of overlapping portions will not be given.
なお、図10に示した構成では、キレート剤を含む液体容器68が設けられており、電磁弁60gおよび配管68aを介して、キレート剤は、洗浄タンク69の洗浄液55に投入される。また、洗浄タンク69の洗浄液55は、電磁弁60Hおよび配管66aを介して排出(66)することができる。
In the configuration shown in FIG. 10, a liquid container 68 containing a chelating agent is provided, and the chelating agent is charged into the cleaning liquid 55 of the cleaning tank 69 via the electromagnetic valve 60g and the pipe 68a. The cleaning liquid 55 in the cleaning tank 69 can be discharged (66) through the electromagnetic valve 60H and the pipe 66a.
図11は、電磁弁(60A)の構成を模式的に示す図である。電磁弁60Aは電気的に制御されており、その制御による電磁弁60Aの動作によって、いずれの配管51または52を、接続先の配管53に接続するか決定することができる。この例では、浄化動作(RO水生成)においては左側がオンになるようにし、配管51の端部51aと配管53の端部53Lが接続する。一方で、洗浄動作のときは、右側がオンになるようにし、配管52の端部52aと配管53の端部53Rが接続する。
FIG. 11 is a diagram schematically showing the configuration of the solenoid valve (60A). The electromagnetic valve 60A is electrically controlled, and it is possible to determine which pipe 51 or 52 is connected to the connection destination pipe 53 by the operation of the electromagnetic valve 60A by the control. In this example, in the purification operation (RO water generation), the left side is turned on, and the end 51a of the pipe 51 and the end 53L of the pipe 53 are connected. On the other hand, during the cleaning operation, the right side is turned on, and the end 52a of the pipe 52 and the end 53R of the pipe 53 are connected.
図12は、電磁弁60(60A~60K)を制御する制御回路の構成を模式的に示している。図12に示した制御回路は、半導体集積回路からなる演算装置(CPU)90を備えている。演算装置(CPU)90は、浄水、洗浄、逆洗などの動作を制御する電磁弁60(60Aなど)の指令を出力することができる。演算装置90は、圧力スイッチ94a、洗浄スイッチ94b、TDS(塩類溶解質)の数値に基づくスイッチ94c、貯水スイッチ94d、フロートスイッチ94eに電気的に接続されている。なお、各スイッチ94a~94eは、各種センサ(例えば、圧力センサ、TDSセンサ)のデータに基づいて制御される。
FIG. 12 schematically shows the configuration of a control circuit that controls the electromagnetic valve 60 (60A to 60K). The control circuit shown in FIG. 12 includes an arithmetic unit (CPU) 90 made of a semiconductor integrated circuit. The arithmetic unit (CPU) 90 can output a command of an electromagnetic valve 60 (60A or the like) that controls operations such as water purification, washing, and backwashing. The arithmetic unit 90 is electrically connected to a pressure switch 94a, a washing switch 94b, a switch 94c based on the numerical value of TDS (salt solute), a water storage switch 94d, and a float switch 94e. The switches 94a to 94e are controlled based on data from various sensors (for example, a pressure sensor and a TDS sensor).
また、演算装置(CPU)90は、浄水中ランプ93A(緑LED)および洗浄中ランプ93B(赤LED)を点灯/消灯する制御を実行することができる。なお、演算装置90は、AC/DCコンバータ91を介してコンセント92に接続されている。また、演算装置(CPU)90は、バッファ(B/F)96を介して、電磁弁60(60A~60K)に接続されている。バッファ96を設けることにより、演算装置(CPU)90による電磁弁60のドライブをよりスムーズに実行することができる。
Also, the arithmetic unit (CPU) 90 can execute control to turn on / off the purified water lamp 93A (green LED) and the cleaning lamp 93B (red LED). The arithmetic device 90 is connected to the outlet 92 via the AC / DC converter 91. The arithmetic unit (CPU) 90 is connected to the electromagnetic valve 60 (60A to 60K) via a buffer (B / F) 96. By providing the buffer 96, the driving of the electromagnetic valve 60 by the arithmetic unit (CPU) 90 can be executed more smoothly.
図13は、演算装置(CPU)90が制御する電磁弁(60A~K)などの制御項目を示した表である。表中の「×」は電磁弁が閉で、「○」は電磁弁が開であることを表している。この例では、電磁弁60Aおよび60Bは三方弁であり、通電していない時は水は左側を流れるように設定してある。その他の電磁弁は、入と出の二方弁である。なお、配管構成によっては、四方弁、五方弁を使用する可能性もある。
FIG. 13 is a table showing control items such as solenoid valves (60A to 60K) controlled by the arithmetic unit (CPU) 90. “X” in the table indicates that the solenoid valve is closed, and “◯” indicates that the solenoid valve is open. In this example, the electromagnetic valves 60A and 60B are three-way valves, and water is set to flow on the left side when not energized. Other solenoid valves are two-way valves for entering and exiting. Depending on the piping configuration, a four-way valve or a five-way valve may be used.
図10から図13に示した構成によれば、本実施形態の逆浸透膜浄水装置(ダイレクト式逆浸透膜浄水装置)100を自動的に(特に、全自動で)制御することができるので、非常に利便性が高い。また、浄水工程および洗浄工程を自動で実行することができる場合、各種センサーで、逆浸透膜モジュール20のRO水生成量および/またはTDS数値を計測し、所定の基準値に達したら、例えば、その日の夜中に洗浄工程を実行し、翌朝には、逆浸透膜モジュール20の初期化が完了しているような動作を実行することも可能である。加えて、洗浄完了(初期化完了)の後において、浄水動作(RO水生成)の前に、洗浄水を排出するための試し動作を実行する場合、その試し動作の実行(動作開始および動作時間プログラム)を、演算装置90を含む制御回路にて実行させるようにすることができる。
According to the configuration shown in FIGS. 10 to 13, the reverse osmosis membrane water purification device (direct type reverse osmosis membrane water purification device) 100 of the present embodiment can be automatically (particularly fully automatic) controlled. Very convenient. In addition, when the water purification process and the washing process can be automatically performed, the RO water generation amount and / or TDS value of the reverse osmosis membrane module 20 is measured with various sensors, and when a predetermined reference value is reached, for example, It is also possible to execute the washing process in the night of the day and to perform the operation that the initialization of the reverse osmosis membrane module 20 is completed the next morning. In addition, when a test operation for discharging the cleaning water is performed after the cleaning is completed (initialization is completed) and before the water purification operation (RO water generation), the test operation is performed (operation start and operation time). Program) can be executed by a control circuit including the arithmetic unit 90.
また、本実施形態の逆浸透膜浄水装置100によるRO水を直接蛇口から使う場合でなく、逆浸透膜浄水装置100によって生成した精製水(RO水)をボトリングする場合(例えば、RO水をペットボトルとして販売する場合)、あるいは、タンクに詰める場合などは、手動で逆浸透膜浄水装置100を動作させることも可能であるが、自動で逆浸透膜浄水装置100を動作させる方がはるかに便利である。また、夜の間に逆浸透膜モジュール20の初期化が完了していれば、昼の間に浄水を中断して洗浄するよりも、作業効率が大幅に向上する。
Moreover, when using the RO water by the reverse osmosis membrane water purification apparatus 100 of this embodiment directly from a faucet, when bottling the purified water (RO water) produced | generated by the reverse osmosis membrane water purification apparatus 100 (for example, petting RO water It is possible to manually operate the reverse osmosis membrane water purification device 100 when selling as a bottle) or when filling the tank, but it is much more convenient to operate the reverse osmosis membrane water purification device 100 automatically. It is. In addition, if the initialization of the reverse osmosis membrane module 20 is completed during the night, the working efficiency is greatly improved as compared with the case where the clean water is interrupted and washed during the day.
また、RO水を販売するような場合には、本実施形態の逆浸透膜浄水装置100は、家庭用の逆浸透膜浄水装置としての使用ではなく、工場用の逆浸透膜浄水装置100として使用しても構わない。当該RO水をプラント用の処理水(純水)として使用することもできる。その場合には、逆浸透膜浄水装置100の寸法を大きくしたり、逆浸透膜モジュール20の数を増やしたり、大型の逆浸透膜モジュール20を使用しても構わない。大型の逆浸透膜モジュール20(例えば、GDP500以上、または、GDP750以上)でも、原水供給口25、透過水口24、および、濃縮水口23を有する構造は、小型の逆浸透膜モジュール20のもの(例えば、2.5リットル/1分間以下、又は、GDP200以下)と同じであるので、本実施形態の洗浄手法(初期化手法)を使用することができる。なお、本実施形態の逆浸透膜浄水装置100で生成したRO水は、そのまま純水として販売するだけでなく、ミネラル分を添加して販売したり、香料及び/又は甘味を添加して販売したり、あるいは、コーヒー・紅茶・緑茶の形態にして販売することも可能である。
Moreover, when selling RO water, the reverse osmosis membrane water purification apparatus 100 of this embodiment is not used as a household reverse osmosis membrane water purification apparatus but as a factory reverse osmosis membrane water purification apparatus 100. It doesn't matter. The RO water can also be used as treated water (pure water) for plants. In that case, you may enlarge the dimension of the reverse osmosis membrane water purifier 100, increase the number of the reverse osmosis membrane modules 20, or use the large-sized reverse osmosis membrane module 20. Even in a large reverse osmosis membrane module 20 (for example, GDP 500 or more or GDP 750 or more), the structure having the raw water supply port 25, the permeate water port 24, and the concentrated water port 23 is the same as that of the small reverse osmosis membrane module 20 (for example, , 2.5 liters per minute or less, or GDP 200 or less), the cleaning method (initialization method) of this embodiment can be used. Note that the RO water generated by the reverse osmosis membrane water purification apparatus 100 of the present embodiment is not only sold as pure water as it is, but also is sold with the addition of minerals, or is added with a fragrance and / or sweetness. Or it can be sold in the form of coffee, tea, or green tea.
さらには、本実施形態の逆浸透膜浄水装置100は、逆浸透膜モジュール20を洗浄する装置(洗浄装置)あるいは、逆浸透膜モジュール20を初期化する装置(初期化装置)として使用することも可能である。これは、すでに、逆浸透膜モジュールを備えた逆浸透膜浄水装置を多数導入している企業または個人の場合、本実施形態の逆浸透膜浄水装置100を多数導入できない場合があり、その場合には、逆浸透膜モジュール20の初期化だけを行いたいケースがあるからである。また、逆浸透膜モジュール20又は逆浸透膜浄水装置100をリース契約にして、本実施形態の逆浸透膜浄水装置100で逆浸透膜モジュール20の初期化を実行し、初期化した逆浸透膜モジュール20を戻すというサービス形態もあり得る。逆浸透膜モジュール20の初期化を多数行う場合は、本実施形態の逆浸透膜浄水装置100を手動で動作させることも可能であるが、自動で動作させることができる方が便利がよいし、効率的である。
Furthermore, the reverse osmosis membrane water purification device 100 of the present embodiment can be used as a device for cleaning the reverse osmosis membrane module 20 (cleaning device) or a device for initializing the reverse osmosis membrane module 20 (initialization device). Is possible. In the case of a company or an individual who has already introduced a large number of reverse osmosis membrane water purification devices equipped with a reverse osmosis membrane module, there are cases where a large number of reverse osmosis membrane water purification devices 100 of this embodiment cannot be introduced. This is because there is a case where only the reverse osmosis membrane module 20 needs to be initialized. Further, the reverse osmosis membrane module 20 or the reverse osmosis membrane water purification device 100 is leased, and the reverse osmosis membrane water purification device 100 according to the present embodiment initializes the reverse osmosis membrane module 20 to perform the initialization. There may be a service form in which 20 is returned. When performing many initializations of the reverse osmosis membrane module 20, it is possible to manually operate the reverse osmosis membrane water purification device 100 of the present embodiment, but it is more convenient to be able to operate automatically, Efficient.
上述の実施形態では、逆浸透膜浄水装置100において、抵抗付き弁64のオン/オフを切り替えることで(具体的には、抵抗付き弁64の抵抗64aをオフにすることで)、逆浸透膜モジュール20の逆洗を実行している。濃縮水口23に接続された濃縮水ライン23aの抵抗を変えるのには、抵抗付き弁64を用いるのではなく、他の手段を使用することも可能である。例えば、抵抗付き弁64の箇所に、濃縮水ライン23a内を通過する液体の流量を調整する流量調整弁(64)を設けることで、同様の機能を実現することができる。例えば、濃縮水ライン23a内を通過する液体の流量に対して全開から全閉まで連続的に可変できる制御弁(流量調整弁)を設けて、その弁の開度によって、逆浸透膜モジュール20内の圧力を制御して、逆浸透膜モジュール20の逆洗を実行することができる。具体的には、抵抗付き弁64の抵抗64aをオフにした場合の同じ抵抗(流体抵抗)を、制御弁(流量調整弁)64で実現するようにすればよく、それが全開と同じ状態なので、制御弁(流量調整弁)64を全開にして、逆浸透膜モジュール20の逆洗を実行したらよい。
In the above-described embodiment, in the reverse osmosis membrane water purifier 100, the reverse osmosis membrane is obtained by switching on / off the resistance valve 64 (specifically, by turning off the resistance 64a of the resistance valve 64). The module 20 is backwashed. In order to change the resistance of the concentrated water line 23a connected to the concentrated water port 23, other means can be used instead of using the valve 64 with resistance. For example, a similar function can be realized by providing a flow rate adjusting valve (64) for adjusting the flow rate of the liquid passing through the concentrated water line 23a at the position of the valve 64 with resistance. For example, a control valve (flow rate adjusting valve) that can be continuously varied from fully open to fully closed with respect to the flow rate of the liquid passing through the concentrated water line 23a is provided, and the inside of the reverse osmosis membrane module 20 depending on the opening of the valve. The reverse osmosis membrane module 20 can be backwashed by controlling the pressure. Specifically, the same resistance (fluid resistance) when the resistor 64a of the valve 64 with resistance is turned off may be realized by the control valve (flow rate adjusting valve) 64, and it is in the same state as fully opened. The reverse osmosis membrane module 20 may be backwashed with the control valve (flow rate adjusting valve) 64 fully opened.
また、同様に、上記実施形態では、抵抗付き弁64のオン/オフを切り替えることで、逆浸透膜モジュール20の洗浄(例えば、圧力洗浄/フラッシング洗浄)を実行していたが、これも、濃縮水ライン23a内を通過する液体の流量に対して全開から全閉まで連続的に可変できる制御弁(流量調整弁)によって実現可能である。ここで、制御弁(流量調整弁)を手動で操作して、逆洗洗浄、圧力洗浄、フラッシング洗浄を実施することも可能であるが、制御弁を電磁弁として電子的に(自動で)制御する方が便利である。なお、抵抗付き弁64も、広義の意味においては、濃縮水ライン23a内を通過する液体の流量を調整する流量調整弁に含まれる。また、抵抗付き弁64の場合は、オン/オフの2種類の流量(流体抵抗)の制御であるが、流量を可変する制御弁(流量調整弁)の場合は、連続に変化できるので、2種類の制御だけでなく、中間値の数値を使った制御を行っても構わない。
Similarly, in the above-described embodiment, the reverse osmosis membrane module 20 is washed (for example, pressure washing / flushing washing) by switching on / off of the valve 64 with resistance. This can be realized by a control valve (flow rate adjusting valve) that can be continuously varied from fully open to fully closed with respect to the flow rate of the liquid passing through the water line 23a. Here, the control valve (flow rate adjusting valve) can be manually operated to perform backwashing, pressure washing, and flushing washing, but the control valve is electronically (automatically) controlled as a solenoid valve. It is more convenient to do. The valve 64 with resistance is also included in the flow rate adjusting valve that adjusts the flow rate of the liquid passing through the concentrated water line 23a in a broad sense. In the case of the valve 64 with resistance, two types of flow rate (fluid resistance) are controlled on / off. However, in the case of a control valve (flow rate adjusting valve) that varies the flow rate, it can be changed continuously. In addition to the type of control, control using intermediate values may be performed.
次に、図14を参照しながら、貯水タンクが不要なダイレクト式ではなく、貯水タンク110を用いた逆浸透膜浄水装置130の説明をする。ダイレクト式でない逆浸透膜浄水装置130は、ダイレクト式逆浸透膜浄水装置と比較して、圧力ポンプ30のパワーが小さく、それに応じて逆浸透膜モジュール20(又は逆浸透膜ユニット40)の能力が小さく、RO水の生成能力は小さいが、装置の機構はほぼ同じである。
Next, the reverse osmosis membrane water purification apparatus 130 using the water storage tank 110 will be described with reference to FIG. 14 instead of the direct type that does not require a water storage tank. The non-direct type reverse osmosis membrane water purification device 130 has a smaller power of the pressure pump 30 than the direct type reverse osmosis membrane water purification device, and the capability of the reverse osmosis membrane module 20 (or the reverse osmosis membrane unit 40) accordingly. Although it is small and the RO water generation capacity is small, the mechanism of the device is almost the same.
図14に示した逆浸透膜浄水装置130で生成されたRO水(透過水)は、蛇口120が開いている時は(すなわち、レバー120にて出口122がオープンになっている時は)、優先的に蛇口120の方にRO水が導出され(矢印155)、蛇口120の出口122からRO水がでる(矢印159)。一方、蛇口120が閉じている場合は、逆浸透膜浄水装置130で生成されたRO水は、矢印151に示すように貯水タンク110に送出されていく。逆浸透膜浄水装置130は、基本的に24時間動作してRO水を貯水タンク110に送り続ける。したがって、貯水タンク110には常に圧力がかかり、水漏れが生じやすい状態になっている。貯水タンク110がRO水で一杯になり、逆浸透膜浄水装置130の動作を停止したい場合には、貯水タンク110またはその周囲に配置した圧力センサの値に基づいて、逆浸透膜浄水装置130の動作(特に、ポンプ動作)を停止させる。
The RO water (permeated water) generated by the reverse osmosis membrane water purification device 130 shown in FIG. 14 is when the faucet 120 is open (that is, when the outlet 122 is open by the lever 120). RO water is led out to the faucet 120 preferentially (arrow 155), and RO water comes out from the outlet 122 of the faucet 120 (arrow 159). On the other hand, when the faucet 120 is closed, the RO water generated by the reverse osmosis membrane water purification device 130 is sent to the water storage tank 110 as indicated by an arrow 151. The reverse osmosis membrane water purifier 130 basically operates for 24 hours and continues to send RO water to the water storage tank 110. Accordingly, pressure is always applied to the water storage tank 110 and water leakage is likely to occur. When the water storage tank 110 is filled with RO water and it is desired to stop the operation of the reverse osmosis membrane water purification device 130, the reverse osmosis membrane water purification device 130 of the reverse osmosis membrane water purification device 130 is based on the value of the pressure sensor disposed in the water storage tank 110 or its surroundings. Stop operation (especially pump operation).
貯水タンク110がRO水で満杯の時は、蛇口120を開けると、矢印152および153に示すようにして、蛇口120の出口122からRO水159を出すようにして、貯水タンク110内の圧力を低下させる方向にコントロールすることが好ましい。なお、蛇口120を開けた時に、逆浸透膜浄水装置130から送出されるRO水(矢印155)だけで水量が足りない場合には、貯水タンク110のRO水(矢印152及び153)が追加されて、所望の水量にすることができる。
When the water storage tank 110 is full of RO water, when the faucet 120 is opened, the RO water 159 is discharged from the outlet 122 of the faucet 120 as shown by arrows 152 and 153 so that the pressure in the water storage tank 110 is increased. It is preferable to control in the direction of decreasing. When the faucet 120 is opened, if only the RO water (arrow 155) delivered from the reverse osmosis membrane water purifier 130 is insufficient, the RO water (arrows 152 and 153) in the water storage tank 110 is added. Thus, the desired amount of water can be obtained.
ここで、図示した逆浸透膜浄水装置130において、逆浸透膜モジュール20の初期化を実行する場合は次のようにすることができる。まず、逆浸透膜浄水装置130の逆浸透膜モジュール20に、図9Aに示したような流量調整弁64(又は抵抗付き弁64)と洗浄水ライン54が設けられている場合には、本実施形態の洗浄方法を上述した手順により実行することができる。この場合には、図14に示すように、逆浸透膜浄水装置130と貯水タンク110との間をつなぐ配管に弁150を設けておく。この弁150で当該配管を全閉にすると、キレート洗浄(S20)を行う場合に、キレート剤を含む洗浄液が貯水タンク110に行くことを防止することができる。本実施形態の洗浄方法が終わった後は、弁150を開けて、試し動作で所定時間(例えば30秒)のあいだRO水を廃棄した後、通常の動作を実行すればよい。
Here, in the illustrated reverse osmosis membrane water purifier 130, the initialization of the reverse osmosis membrane module 20 can be performed as follows. First, when the reverse osmosis membrane module 20 of the reverse osmosis membrane water purification device 130 is provided with the flow rate adjustment valve 64 (or the valve 64 with resistance) and the washing water line 54 as shown in FIG. The form cleaning method can be carried out according to the procedure described above. In this case, as shown in FIG. 14, a valve 150 is provided in a pipe connecting the reverse osmosis membrane water purifier 130 and the water storage tank 110. When the pipe 150 is fully closed by the valve 150, the cleaning liquid containing the chelating agent can be prevented from going to the water storage tank 110 when performing chelate cleaning (S20). After the cleaning method of the present embodiment is finished, the valve 150 is opened, and the RO water is discarded for a predetermined time (for example, 30 seconds) in the test operation, and then the normal operation may be executed.
次に、本実施形態の流量調整弁64および洗浄水ライン54などの機構が逆浸透膜浄水装置130に設けられていない場合には、次のようにすればよい。逆浸透膜浄水装置130から逆浸透膜モジュール20を取り外して、図9A等に示した本実施形態のダイレクト式逆浸透膜浄水装置100の中に、初期化したい逆浸透膜モジュール20を取り付ける。次いで、そこで洗浄工程(初期化工程)を実行する。その後、初期化が完了した逆浸透膜モジュール20を再び逆浸透膜浄水装置130に取り付ければよい。あるいは、逆浸透膜浄水装置130における初期化したい逆浸透膜モジュール20に対して、逆浸透膜浄水装置130内の配管およびポンプを利用して逆洗洗浄用の配管を取り付けて、逆洗工程(S10)を行う。次いで、逆浸透膜浄水装置130内の配管およびポンプを利用して、キレート洗浄(S20)を実行する。そして、このようにして初期化した逆浸透膜モジュール20を、再び、貯水タンク110を有する逆浸透膜浄水装置130で使用することができる。
Next, when the reverse osmosis membrane water purification apparatus 130 is not provided with mechanisms such as the flow rate adjustment valve 64 and the washing water line 54 of the present embodiment, the following may be performed. The reverse osmosis membrane module 20 is removed from the reverse osmosis membrane water purification device 130, and the reverse osmosis membrane module 20 to be initialized is attached to the direct reverse osmosis membrane water purification device 100 of this embodiment shown in FIG. 9A and the like. Next, a cleaning process (initialization process) is performed there. Thereafter, the reverse osmosis membrane module 20 that has been initialized may be attached to the reverse osmosis membrane water purification device 130 again. Alternatively, for the reverse osmosis membrane module 20 to be initialized in the reverse osmosis membrane water purification device 130, a pipe for backwashing washing is attached using a pipe and a pump in the reverse osmosis membrane water purification device 130, and a backwashing process ( S10) is performed. Next, chelate cleaning (S20) is performed using the piping and pump in the reverse osmosis membrane water purifier 130. And the reverse osmosis membrane module 20 initialized in this way can be used again with the reverse osmosis membrane water purification apparatus 130 having the water storage tank 110.
本実施形態の逆浸透膜浄水装置100を用いる場合に、原水61の質が悪すぎれば、その前処理を行うことが好ましい。特に、原水61が、日本以外の場所の硬水の場合や、有害物質(ヒ素、鉛、カドミニウム、塩素系分子など)や浮遊物・ゴミ・塵を含んでいる場合がある。その場合、水道水からRO水を生成させるときと比較して、前処理を行ってから、本実施形態の逆浸透膜浄水装置100を用いることが好ましい。
When using the reverse osmosis membrane water purification device 100 of the present embodiment, if the quality of the raw water 61 is too bad, it is preferable to perform the pretreatment. In particular, the raw water 61 may contain hard water in places other than Japan, or may contain harmful substances (arsenic, lead, cadmium, chlorinated molecules, etc.), suspended matter, dust, and dust. In that case, it is preferable to use the reverse osmosis membrane water purification apparatus 100 of this embodiment after performing a pretreatment compared with the case of generating RO water from tap water.
図15は、本実施形態の逆浸透膜浄水装置100における逆浸透膜モジュール20の上流に、いくつかフィルタなどを配置した構成(逆浸透膜システム)を示している。
FIG. 15 shows a configuration (reverse osmosis membrane system) in which several filters are arranged upstream of the reverse osmosis membrane module 20 in the reverse osmosis membrane water purification apparatus 100 of the present embodiment.
図15中の原水80は、水道水の他、プール水、池水、河川水、および、災害時に使用可能な水(例えば、雨水、海水)である。原水80は、弁85aを通って、第1フィルタ82に導入された後、圧力ポンプ30で加圧される。本実施形態の第1フィルタ82は、DMフィルタ(商品名)であり、原水80に含まれる鉄さび・ゴミ・砂を除去することができるメッシュフィルタである。また、この例の圧力ポンプ30は、AC24V駆動で、3リットル/分の能力を有するものである。
The raw water 80 in FIG. 15 includes tap water, pool water, pond water, river water, and water that can be used in a disaster (for example, rainwater, seawater). The raw water 80 is introduced into the first filter 82 through the valve 85 a and then pressurized by the pressure pump 30. The first filter 82 of the present embodiment is a DM filter (trade name), and is a mesh filter that can remove iron rust, dust, and sand contained in the raw water 80. Moreover, the pressure pump 30 of this example is AC24V drive, and has the capability of 3 liters / min.
次に、第1フィルタ(メッシュフィルタ)81およびポンプ30の下流には、第2フィルタ82が設けられている。本実施形態の第2フィルタ82は、セディメントフィルタであり、鉄さび・チリを除去することができる。セディメントフィルタ82は、前処理沈殿フィルタであり、ポリエチレン素材の繊維フィルタから構成されており、サビや砂・チリなどをはじめ、微細な不純物を取り除くことができる。
Next, a second filter 82 is provided downstream of the first filter (mesh filter) 81 and the pump 30. The second filter 82 of the present embodiment is a sediment filter, and can remove iron rust and dust. The sediment filter 82 is a pretreatment precipitation filter, and is composed of a polyethylene fiber filter, and can remove fine impurities such as rust, sand and dust.
そして、第2フィルタ(セディメントフィルタ)82の下流には、第3フィルタ83が配置されている。本実施形態の第3フィルタ83は、塩素・臭気を除去するカーボンフィルタである。カーボンフィルタ83は、例えば、10ミクロンの繊維状活性炭から構成されている。カーボンフィルタ83は、塩素、一部の重金属を除去することができる。
Further, a third filter 83 is disposed downstream of the second filter (sediment filter) 82. The third filter 83 of the present embodiment is a carbon filter that removes chlorine and odor. The carbon filter 83 is made of, for example, 10 micron fibrous activated carbon. The carbon filter 83 can remove chlorine and some heavy metals.
第3フィルタ83の下流には、逆浸透膜モジュール20が位置している。本実施形態の逆浸透膜モジュール20は、重金属、ウイルス、有機化合物を除去することができ、その構造は上述した通りである。そして、本実施形態の構成によれば、逆浸透膜モジュール20の浄化および洗浄(初期化)を実行することができる。
The reverse osmosis membrane module 20 is located downstream of the third filter 83. The reverse osmosis membrane module 20 of this embodiment can remove heavy metals, viruses, and organic compounds, and the structure thereof is as described above. And according to the structure of this embodiment, purification | cleaning and washing | cleaning (initialization) of the reverse osmosis membrane module 20 can be performed.
逆浸透膜モジュール20からは配管が延びており、その配管の一部に弁(86a、86b、87a、87b)が配置されている。また、逆浸透膜モジュール20とポンプ30とが循環するような配管の途中に洗浄容器69が配置されている。洗浄容器69は、2リットルの洗浄タンクである。
A pipe extends from the reverse osmosis membrane module 20, and valves (86a, 86b, 87a, 87b) are arranged in a part of the pipe. In addition, a cleaning container 69 is disposed in the middle of the pipe through which the reverse osmosis membrane module 20 and the pump 30 circulate. The cleaning container 69 is a 2-liter cleaning tank.
図15に示した弁(86a、86b、87a、87b)の所望のものを開/閉して、本実施形態の逆浸透膜浄水装置100の浄水動作を実行する構成を実現できる。そして、弁(86a、86b、87a、87b)の所望のものを開/閉して、洗浄液が循環するような構成にし、その構成で初期化動作(S10、S20)を実行する構成を構築することができる。なお、図15に示した構成において、逆浸透膜モジュール20の下流に、第4フィルタ(不図示)を設けることも可能である。第4フィルタは、例えば、ポストカーボンフィルタであり、水からガスと臭いを取り除いて、水の自然な風味を生かすようにする機能を有している。
15 can be realized by opening / closing the desired valves (86a, 86b, 87a, 87b) shown in FIG. 15 and performing the water purification operation of the reverse osmosis membrane water purification apparatus 100 of the present embodiment. Then, a desired configuration of the valves (86a, 86b, 87a, 87b) is opened / closed so that the cleaning liquid circulates, and a configuration for executing the initialization operation (S10, S20) with the configuration is constructed. be able to. In the configuration shown in FIG. 15, a fourth filter (not shown) can be provided downstream of the reverse osmosis membrane module 20. The fourth filter is, for example, a post carbon filter, and has a function of removing the gas and odor from the water to make use of the natural flavor of water.
なお、本実施形態の逆浸透膜モジュール20の洗浄工程は、逆洗洗浄(S10)とキレート洗浄(S20)を組み合わせて用いて、逆浸透膜モジュール20を初期化させるのが基本であるが、予備的な洗浄(予防的な寿命延長の洗浄)として、逆洗洗浄(S10)を単独で使用することができるし、キレート洗浄(S20)を単独で使用することもできる。また、逆浸透膜モジュール20の目詰まりが酷い場合には、逆洗洗浄(S10)とキレート洗浄(S20)との組み合わせを繰り返し行うことも可能である。災害時の地域、または、発展途上国(新興国)の所定地域では、逆浸透膜モジュール20が目詰まりを起こしやすいところもあり、そこでは、1度でなく、複数回の初期化プロセス、すなわち、逆洗洗浄(S10)とキレート洗浄(S20)との組み合わせ洗浄を実行しても構わない。
In addition, although the washing | cleaning process of the reverse osmosis membrane module 20 of this embodiment is fundamentally initializing the reverse osmosis membrane module 20 using a combination of backwashing washing | cleaning (S10) and chelate washing | cleaning (S20), As preliminary cleaning (preventive life extension cleaning), backwashing (S10) can be used alone, or chelate cleaning (S20) can be used alone. Further, when the reverse osmosis membrane module 20 is severely clogged, it is possible to repeat the combination of the backwashing cleaning (S10) and the chelate cleaning (S20). In areas at the time of disaster or in certain areas of developing countries (emerging countries), the reverse osmosis membrane module 20 is prone to clogging, where there are multiple initialization processes, not once, The combined cleaning of backwashing (S10) and chelate cleaning (S20) may be performed.
なお、上述した実施形態では、洗浄工程(初期化)において、洗浄液を循環させて使用するような手法をもっぱら説明したが、洗浄液を循環させずに、一度で捨てるような手法にしてもよい。その場合には、洗浄液を大量に準備しておくか、洗浄液を連続供給できる仕組みにしておけばよい。
In the above-described embodiment, the method of circulating the cleaning liquid in the cleaning step (initialization) has been described. However, the cleaning liquid may be discarded at once without circulating the cleaning liquid. In that case, a large amount of cleaning liquid may be prepared, or a mechanism capable of continuously supplying the cleaning liquid may be used.
<実施例>
次に、本願発明者が実行した逆浸透膜モジュール20の洗浄方法(初期化方法)の実施例について説明する。図16および図17は、本願発明者が実行した逆浸透膜モジュール20の洗浄方法(初期化方法)の試験結果を示す表である。なお、この実施例は、本願発明者が逆浸透膜モジュール20の洗浄方法(初期化方法)を実験的に検証したものであり、この実施例の記載内容は、本発明の内容を制約ないし限定するように解釈されるものではない。また、この実施例で使用した条件は、本発明の実施形態の手法を実行する上で最適なものとは限らず、試験的に行ったものが含まれている点を付言しておく。 <Example>
Next, an example of the cleaning method (initialization method) of the reverseosmosis membrane module 20 performed by the present inventor will be described. 16 and 17 are tables showing test results of the cleaning method (initialization method) of the reverse osmosis membrane module 20 performed by the inventor of the present application. In this example, the inventor of the present application experimentally verified the cleaning method (initialization method) of the reverse osmosis membrane module 20, and the description of this example restricts or limits the content of the present invention. Is not to be interpreted as such. In addition, it should be noted that the conditions used in this example are not necessarily optimal for executing the method of the embodiment of the present invention, and include conditions experimentally used.
次に、本願発明者が実行した逆浸透膜モジュール20の洗浄方法(初期化方法)の実施例について説明する。図16および図17は、本願発明者が実行した逆浸透膜モジュール20の洗浄方法(初期化方法)の試験結果を示す表である。なお、この実施例は、本願発明者が逆浸透膜モジュール20の洗浄方法(初期化方法)を実験的に検証したものであり、この実施例の記載内容は、本発明の内容を制約ないし限定するように解釈されるものではない。また、この実施例で使用した条件は、本発明の実施形態の手法を実行する上で最適なものとは限らず、試験的に行ったものが含まれている点を付言しておく。 <Example>
Next, an example of the cleaning method (initialization method) of the reverse
図16では、逆浸透膜モジュール20(又は逆浸透膜ユニット40)の初期化実験の結果を表している。Ex.1Aは、サンプル1についての逆浸透膜モジュール20(使用済みの悪化した逆浸透膜モジュール)であり、Ex.1Bは、初期化したサンプル1である。同様に、Ex.2Aは、サンプル2についての使用済みの逆浸透膜モジュール20であり、Ex.2Bは初期化したサンプル2である。サンプル1およびサンプル2ともに、中国メーカ製の逆浸透膜ユニット40である。
FIG. 16 shows the result of the initialization experiment of the reverse osmosis membrane module 20 (or reverse osmosis membrane unit 40). Ex. 1A is the reverse osmosis membrane module 20 (used and deteriorated reverse osmosis membrane module) for Sample 1, Ex. 1B is sample 1 that has been initialized. Similarly, Ex. 2A is the used reverse osmosis membrane module 20 for sample 2, Ex. 2B is the initialized sample 2. Both sample 1 and sample 2 are reverse osmosis membrane units 40 made by a Chinese manufacturer.
Ex.1Aに示すように、GDP50の能力を有する逆浸透膜ユニット40は、初期化前は、流量80cc/分しかRO水を生成できなった。また、TDSが64ppmの原水を浄水しても、RO水のTDSは77ppmであり、浄水もできていなかった。
Ex. As shown in 1A, the reverse osmosis membrane unit 40 having the capacity of GDP 50 was able to generate RO water only at a flow rate of 80 cc / min before initialization. Moreover, even if the raw water with a TDS of 64 ppm was purified, the TDS of the RO water was 77 ppm, and the water was not purified.
これに初期化を行うと、Ex.1Bに示すように、逆浸透膜ユニット40の能力は大幅に改善し、実質的に新品と同様の能力になった。具体的には、RO水の流量は162cc/分となり、初期化工程によって、約1.84培(=162cc/80cc)にまで向上した。また、生成するRO水の水質も、初期化前の77ppmから、初期化後は8ppmにまで減少した。つまり、約10分の1にまで不純物が低下し劇的に水質が向上した。
If you initialize this, Ex. As shown in FIG. 1B, the capacity of the reverse osmosis membrane unit 40 has been greatly improved to be substantially the same as that of a new article. Specifically, the flow rate of the RO water was 162 cc / min, which was improved to about 1.84 (= 162 cc / 80 cc) by the initialization process. In addition, the quality of the RO water produced was also reduced from 77 ppm before initialization to 8 ppm after initialization. In other words, impurities were reduced to about 1/10 and the water quality was dramatically improved. *
また、Ex.2Aおよび2Bに示すように、GDP200の能力を有する逆浸透膜ユニット40(サンプル2)でも初期化は成功した。Ex.2Aに示すように、初期化前は、RO流量が272cc/分だったのが、Ex.2Bに示すように、初期化後はRO流量は333cc/分へと向上した。さらに、生成するRO水の水質も、初期化前の19ppmから、初期化後は4ppmにまで減少した。
Also, Ex. As shown in 2A and 2B, initialization was successful even with the reverse osmosis membrane unit 40 (sample 2) having the capacity of GDP200. Ex. As shown in FIG. 2A, the RO flow rate was 272 cc / min before initialization. As shown in 2B, the RO flow rate increased to 333 cc / min after initialization. Furthermore, the water quality of the generated RO water also decreased from 19 ppm before initialization to 4 ppm after initialization.
なお、Ex.2Aの逆浸透膜ユニット40(サンプル2)は、それほど、RO能力が低下したものではなかった。つまり、Ex.1Aに示した大幅に悪化したサンプル1のようなものでなくとも、少しRO能力が低下したサンプル2の逆浸透膜ユニット40に初期化工程(S10、S20)を行っても、RO能力を低下させることなく、RO能力を向上させることができることが確認された。
Ex. The 2A reverse osmosis membrane unit 40 (sample 2) did not have much reduced RO capacity. That is, Ex. Even if the reverse osmosis membrane unit 40 of the sample 2 whose RO capacity is slightly lowered is performed, the RO capacity is reduced even if it is not like the greatly deteriorated sample 1 shown in 1A. It was confirmed that the RO capability can be improved without causing the failure.
ここで、サンプル1及び2ともに、洗浄時間は、逆洗工程(S10)が1分間で、キレート洗浄(S20)が10分間で、合計11分間である。キレート洗浄(S20)は、フラッシング洗浄が5分間で、圧力洗浄が5分間である。なお、キレート洗浄(S20)の後は、圧力ポンプ30を停止して、所定時間(2時間以上)放置した。
Here, for both samples 1 and 2, the washing time is 1 minute for the backwashing step (S10) and 10 minutes for the chelate washing (S20), for a total of 11 minutes. In the chelate cleaning (S20), the flushing cleaning is 5 minutes and the pressure cleaning is 5 minutes. After chelate washing (S20), the pressure pump 30 was stopped and left for a predetermined time (2 hours or more).
図17では、逆浸透膜モジュール20(又は逆浸透膜ユニット40)の初期化実験の結果、および、初期化後の動作確認の結果を表している。なお、原水は日本のものであるので、原水の水質は悪くない(例えば、原水TDSは82ppm)。
FIG. 17 shows the result of the initialization experiment of the reverse osmosis membrane module 20 (or the reverse osmosis membrane unit 40) and the result of the operation check after the initialization. Since the raw water is from Japan, the quality of the raw water is not bad (for example, the raw water TDS is 82 ppm).
図17におけるEx.10~Ex.24のサンプルは、GDP100の能力を有する逆浸透膜ユニット40(ダウケミカル社製)を用いた。Ex.10のサンプルは、初期化前の逆浸透膜ユニット40であり、RO流量は100cc/分で、RO水のTDSは53ppm(原水82ppm)であった。このEx.10を初期化すると、Ex.11に示すように、RO流量は166cc/分に向上し、RO水のTDSは37ppm(原水64ppm)まで低下した。
Ex. 10 to Ex. For the 24 samples, a reverse osmosis membrane unit 40 (manufactured by Dow Chemical Co.) having the capacity of GDP100 was used. Ex. Sample 10 was the reverse osmosis membrane unit 40 before initialization, the RO flow rate was 100 cc / min, and the TDS of RO water was 53 ppm (raw water 82 ppm). This Ex. 10 is initialized, Ex. As shown in FIG. 11, the RO flow rate increased to 166 cc / min, and the TDS of RO water decreased to 37 ppm (64 ppm of raw water).
次に、初期化前のEx.12のサンプルを用意した。Ex.12のRO流量は136cc/分で、RO水のTDSは39ppm(原水86ppm)であった。このEx.12を初期化すると、Ex.13に示すように、RO流量は125cc/分とほぼ同じ数値を示したが)、RO水のTDSは18ppm(原水105ppm)まで低下した。Ex.13にさらに初期化を行うと、Ex.14に示すように、RO水のTDSは8ppm(原水97ppm)まで低下させることができた。
Next, Ex. Twelve samples were prepared. Ex. The RO flow rate of 12 was 136 cc / min, and the TDS of RO water was 39 ppm (86 ppm of raw water). This Ex. 12 is initialized, Ex. As shown in FIG. 13, the RO flow rate showed almost the same value as 125 cc / min), but the TDS of RO water decreased to 18 ppm (105 ppm of raw water). Ex. 13 is further initialized, Ex. As shown in FIG. 14, the TDS of RO water could be lowered to 8 ppm (97 ppm of raw water).
次に、日本の水質レベルでない硬質水で試験するために、初期化後のEx.14のサンプルに、原水TDSが800ppmを用意して、その浄水工程を行った。この結果がEx.20のサンプルである。
Next, in order to test with hard water that is not at a water quality level in Japan, the Ex. In 14 samples, 800 ppm of raw water TDS was prepared, and the water purification process was performed. The result is Ex. There are 20 samples.
Ex.20に示すように、このサンプルで浄水工程(逆浸透工程)を行うと、TDS800ppmの原水を用いて、80ppmのRO水を精製することができた。続けて、Ex.21に示すように、TDS770ppmの原水を用いて、81ppmのRO水を精製することができた。同様に続けて、Ex.22に示すように、TDS814ppmの原水を用いて、94ppmのRO水を精製することができた。次いで、Ex.23に示すように、TDS802ppmの原水を用いて、102ppmのRO水を精製することができた。その後、Ex.24に示すように、TDS783ppmの原水を用いて、108ppmのRO水を精製することができた。
Ex. As shown in FIG. 20, when the water purification step (reverse osmosis step) was performed on this sample, 80 ppm of RO water could be purified using TDS 800 ppm raw water. Subsequently, Ex. As shown in FIG. 21, 81 ppm of RO water could be purified using TDS of 770 ppm raw water. Similarly, Ex. As shown in FIG. 22, 94 ppm of RO water could be purified using TDS 814 ppm raw water. Then, Ex. As shown in FIG. 23, 102 ppm of RO water could be purified using TDS 802 ppm of raw water. Then, Ex. As shown in FIG. 24, 108 ppm of RO water could be purified using TDS783 ppm raw water.
Ex.20~Ex.24に示すように、初期化後のサンプル(逆浸透膜ユニット40)を用いても、良質な透過水(RO水)を生成できることが確認され、そして、その効果は持続することが確認された。特に、日本の10倍程度も不純物が多い原水(800ppm程度)を用いても、初期化後の逆浸透膜ユニット40でRO水生成を行うことができることが確認できた。なお、Ex.20~Ex.24では逆洗工程(S10)は行わず、キレート洗浄だけを行った。この結果によると、逆洗工程(S10)を一回行った後、キレート洗浄を複数回行って、逆浸透膜モジュール20(逆浸透膜ユニット40)の初期化の効果(RO水生成能力の回復効果)を持続・延命させることができることもわかった。
Ex. 20 to Ex. As shown in FIG. 24, it was confirmed that good quality permeated water (RO water) could be generated even when the sample after initialization (reverse osmosis membrane unit 40) was used, and the effect was confirmed to be sustained. . In particular, it was confirmed that RO water can be generated by the reverse osmosis membrane unit 40 after initialization even when using raw water (about 800 ppm) that is about 10 times as much as Japan. Ex. 20 to Ex. In 24, the backwashing step (S10) was not performed, and only chelate cleaning was performed. According to this result, after performing the backwashing process (S10) once, chelate washing is performed a plurality of times, and the effect of initialization of the reverse osmosis membrane module 20 (reverse osmosis membrane unit 40) (recovery of RO water generation capability). It has also been found that the effect) can be sustained and prolonged.
また、補足実験(比較例)として、キレート剤を入れた洗浄液の逆洗工程(S10)を行う実験を行ったところ、キレート剤を入れた洗浄液の逆洗工程(S10)単独では、初期化はすることができず、塩類溶解質(TDS)の値は悪いままであった。すなわち、キレート剤を入れた洗浄液の逆洗工程の一工程では、初期化はできないことが確認された。
In addition, as a supplementary experiment (comparative example), an experiment for performing a backwashing step (S10) of a cleaning solution containing a chelating agent was performed. The salt solute (TDS) value remained poor. That is, it was confirmed that initialization cannot be performed in one step of the backwashing process of the cleaning liquid containing the chelating agent.
この補足実験(比較例)の結果を図18に示す。図18では、逆浸透膜モジュール20(又は逆浸透膜ユニット40)の初期化実験の結果、および、初期化後の動作確認の結果を表している。なお、原水は日本のものであるので、原水の水質は悪くない(例えば、原水TDSは77.6ppm)。
The results of this supplementary experiment (comparative example) are shown in FIG. FIG. 18 shows the result of the initialization experiment of the reverse osmosis membrane module 20 (or the reverse osmosis membrane unit 40) and the result of the operation check after the initialization. Since raw water is Japanese, the quality of raw water is not bad (for example, raw water TDS is 77.6 ppm).
図18におけるEx.30~33は、GDP100の能力を有する逆浸透膜ユニット40(ダウケミカル社製)を用いた。また、図18におけるEx.40~43のサンプルは、GDP150の能力を有する逆浸透膜ユニット40(2012LPメンブレン;ウンジンケミカル社製(韓国)のCSM製品)を用いた。
Ex. For Nos. 30 to 33, a reverse osmosis membrane unit 40 (manufactured by Dow Chemical Company) having the capacity of GDP 100 was used. In addition, Ex. For the samples 40 to 43, a reverse osmosis membrane unit 40 (2012LP membrane; CSM product of Unjin Chemical Co., Ltd. (Korea)) having the capacity of GDP 150 was used.
Ex.30のサンプルは、初期化前の逆浸透膜ユニット40であり、通常運転を10分間行った測定においては、RO流量は188cc/分で、RO水のTDSは25.9ppm(原水77.6ppm)であった。このEx.30のサンプルに対して、キレート剤を入れた洗浄液の逆洗工程(S10)を行ったところ、Ex.31に示すように、RO流量は237cc/分に向上したものの(1.26倍向上)、RO水のTDSは、34.6ppmへと増加して、RO水の品質は悪化した。ここでのキレート剤を入れた洗浄液の逆洗工程(S10)は、キレート剤濃度301ppmの洗浄液で1分間の逆洗浄を行った後、通常運転10分間を行った。この通常運転10分間の時のRO水のTDSが34.6ppmである。
Ex. 30 samples are the reverse osmosis membrane unit 40 before initialization, and in the measurement which performed normal operation for 10 minutes, RO flow rate is 188cc / min and TDS of RO water is 25.9ppm (raw water 77.6ppm). Met. This Ex. When the back washing process (S10) of the washing | cleaning liquid which put the chelating agent was performed with respect to 30 samples, Ex. As shown in FIG. 31, although the RO flow rate was improved to 237 cc / min (improved 1.26 times), the TDS of RO water increased to 34.6 ppm, and the quality of RO water deteriorated. The back washing process (S10) of the washing | cleaning liquid containing the chelating agent here performed normal operation for 10 minutes, after performing back washing for 1 minute with the washing | cleaning liquid with a chelating agent density | concentration of 301 ppm. The TDS of RO water during this normal operation for 10 minutes is 34.6 ppm.
その後の経過を調べるために、キレート剤入りの逆洗工程を行った次の日におけるEx31のサンプルに対して、通常運転を10分間行ったEx32のサンプルでは、そのTDSは34.9ppmであった。すなわち、依然として、TDSの値は高いままで、経過を見ても、逆洗浄膜ユニットの初期化はできていなかった。
In order to examine the subsequent process, the TDS of the Ex32 sample that was subjected to normal operation for 10 minutes was 34.9 ppm with respect to the Ex31 sample on the next day after the backwashing step with the chelating agent was performed. . That is, the TDS value still remained high, and the reverse cleaning membrane unit could not be initialized even when the progress was observed.
さらに、そのEx.32のサンプルに対して、キレート剤濃度305ppmの洗浄液で加圧状態にて1分間の循環洗浄を行った後に6時間放置を行った(Ex.33のサンプル)。この放置処理したEx.33のサンプルに対して、通常運転を10分間行った場合、そのTDSは34.6ppmであった。つまり、TDSの値は高いままであった。
Furthermore, the Ex. 32 samples were subjected to circulating cleaning for 1 minute in a pressurized state with a cleaning solution having a chelating agent concentration of 305 ppm, and then left for 6 hours (sample of Ex.33). Ex. When 33 samples were subjected to normal operation for 10 minutes, their TDS was 34.6 ppm. That is, the TDS value remained high.
また、Ex.30とは別のEx.40のサンプルで比較実験を行った。Ex.40のサンプルは、初期化前の逆浸透膜ユニット40であり、通常運転を10分間行った測定においては、RO流量は326cc/分で、RO水のTDSは18.7ppm(原水77.6ppm)であった。
Also, Ex. 30 other than Ex. A comparative experiment was performed with 40 samples. Ex. The 40 samples are the reverse osmosis membrane unit 40 before the initialization, and the RO flow rate is 326 cc / min and the TDS of the RO water is 18.7 ppm (raw water 77.6 ppm) in the measurement performed for 10 minutes in the normal operation. Met.
このEx.40のサンプルに対して、キレート剤を入れた洗浄液の逆洗工程(S10)を行ったところ、Ex.41に示すように、RO流量は318cc/分で、ほぼ変わらず、RO水のTDSは、21.3ppmへと増加した。ここでのキレート剤を入れた洗浄液の逆洗工程(S10)は、キレート剤濃度301ppmの洗浄液で1分間の逆洗浄を行った後、通常運転10分間を行った。この通常運転10分間の時のRO水のTDSが21.3ppmである。
This Ex. When the back washing process (S10) of the washing | cleaning liquid which put the chelating agent was performed with respect to 40 samples, Ex. As shown in 41, the RO flow rate was 318 cc / min, almost unchanged, and the TDS of RO water increased to 21.3 ppm. The back washing process (S10) of the washing | cleaning liquid containing the chelating agent here performed normal operation for 10 minutes, after performing back washing for 1 minute with the washing | cleaning liquid with a chelating agent density | concentration of 301 ppm. The TDS of RO water during this normal operation for 10 minutes is 21.3 ppm.
その後の経過を調べるために、キレート剤入りの逆洗工程を行った次の日におけるEx41のサンプルに対して、通常運転を10分間行ったEx42のサンプルでは、そのTDSは20ppmであった。すなわち、依然として、TDSの値は高いままで、経過を見ても、逆洗浄膜ユニットの初期化はできていなかった。
In order to investigate the subsequent process, the ExDS sample on the next day after the backwashing step with the chelating agent was performed for 10 minutes on the Ex41 sample, and the TDS was 20 ppm. That is, the TDS value still remained high, and the reverse cleaning membrane unit could not be initialized even when the progress was observed.
さらに、そのEx.42のサンプルに対して、キレート剤濃度307ppmの洗浄液で加圧状態にて1分間の循環洗浄を行った後に6時間放置を行った(Ex.43のサンプル)。この放置処理したEx.43のサンプルに対して、通常運転を10分間行った場合、そのTDSは18.8ppmであった。つまり、TDSの値の低下は見られなかった。
Furthermore, the Ex. Forty-two samples were circulated and washed for 1 minute in a pressurized state with a cleaning solution having a chelating agent concentration of 307 ppm, and then allowed to stand for 6 hours (ex.43 sample). Ex. When 43 samples were subjected to normal operation for 10 minutes, their TDS was 18.8 ppm. That is, no decrease in TDS value was observed.
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、逆浸透膜モジュール20は1本だけでなく、複数本設けることが可能である。図19は、本実施形態の逆浸透膜浄水装置(ダイレクト式逆浸透膜浄水装置、家庭用の逆浸透膜浄水装置)100において、複数の逆浸透膜モジュール20(20A、20B)が搭載された構成例を示している。図19に示した構成では、筐体10を上に持ち上げて、内部が見えるようにしている。複数本の逆浸透膜モジュール20の場合、すべての逆浸透膜モジュール20に初期化機構(S10、S20を実行するプロセス機構)を搭載してもよいし、一つの逆浸透膜モジュール20の箇所に初期化機構を搭載して、逆浸透膜モジュール20を交換することで全ての逆浸透膜モジュール20の初期化を行うようにしてもよい。なお、本発明の非侵害実施を説明する目的ために上記比較例を利用したとしても、比較例の実施で初期化ができなかった逆浸透膜モジュールに対して、本発明の初期化工程を実行すれば、本発明の実施になることは言うまでもない。
As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and, of course, various modifications are possible. For example, it is possible to provide not only one reverse osmosis membrane module 20 but also a plurality. FIG. 19 shows a reverse osmosis membrane water purification apparatus (direct reverse osmosis membrane water purification apparatus, household reverse osmosis membrane water purification apparatus) 100 according to the present embodiment, on which a plurality of reverse osmosis membrane modules 20 (20A, 20B) are mounted. A configuration example is shown. In the configuration shown in FIG. 19, the housing 10 is lifted up so that the inside can be seen. In the case of a plurality of reverse osmosis membrane modules 20, an initialization mechanism (a process mechanism for executing S10 and S20) may be mounted on all the reverse osmosis membrane modules 20, or at one reverse osmosis membrane module 20 location. All the reverse osmosis membrane modules 20 may be initialized by mounting an initialization mechanism and replacing the reverse osmosis membrane modules 20. Even if the above comparative example is used for the purpose of explaining the non-infringing implementation of the present invention, the initialization process of the present invention is executed for the reverse osmosis membrane module that could not be initialized by the implementation of the comparative example. Needless to say, the present invention is implemented.
図20は、ダイレクト式ではなく、貯水タンク(110)を備えた逆浸透膜浄水装置140の一例を示す図面である。図21は、貯水タンク110Aの一例を示している。図22は、他の貯水タンク110Bの一例を示している。なお、図14に示した(タンク式の)逆浸透膜浄水装置130と基本構成は同じである。
FIG. 20 is a drawing showing an example of a reverse osmosis membrane water purifier 140 provided with a water storage tank (110), not a direct type. FIG. 21 shows an example of the water storage tank 110A. FIG. 22 shows an example of another water storage tank 110B. The basic configuration is the same as that of the (tank type) reverse osmosis membrane water purifier 130 shown in FIG.
図20に示した逆浸透膜浄水装置140は、筐体(背面筐体)12aに収納されたフィルタ(20、29)と、筐体(背面筐体)12bに収納されたポンプ30とから構成されている。この例では、筐体12aには、逆浸透膜モジュール20が1つと、プレカーボンフィルタが複数(ここでは、3つ)収納されている。なお、逆浸透膜モジュール20を複数本にしてもよいし、あるいは、プレカーボンフィルタを1本にしてもよい。フィルタ(20、29)は、配管(チューブ)を介して、モータ30に接続されることになる。図示した例では、モータ30を収納する筐体20bは、フィルタ(20、29)を収納する筐体20aとは別体であるが、同一の筐体にてモータ30とフィルタ(20、29)を収容できるような筐体を用いても構わない。なお、別体の方がコストを抑えやすくできるが、全体の収納場所は大きくなる。
The reverse osmosis membrane water purifier 140 shown in FIG. 20 includes a filter (20, 29) housed in a housing (rear housing) 12a and a pump 30 housed in the housing (rear housing) 12b. Has been. In this example, the housing 12a stores one reverse osmosis membrane module 20 and a plurality (three in this case) of pre-carbon filters. In addition, you may make the reverse osmosis membrane module 20 into multiple pieces, or you may make a pre-carbon filter into one piece. The filters (20, 29) are connected to the motor 30 via pipes (tubes). In the illustrated example, the housing 20b that houses the motor 30 is separate from the housing 20a that houses the filter (20, 29). However, the motor 30 and the filter (20, 29) in the same housing. You may use the housing | casing which can accommodate this. In addition, although the separate body can make it easier to reduce the cost, the entire storage place becomes larger.
モータ30の力でフィルタ(20、29)の中を水が通過し、逆浸透膜モジュール20での膜分離によって透過水(RO水)が生成される。生成した透過水(RO水)は、図21に示した貯水タンク110Aに貯められる。具体的には、貯水タンク110Aの接続口110eに配管(チューブ。特に分岐チューブ)が接続されて、RO水が貯水タンク110A内に貯蔵される。貯水タンク110Aの内部には、貯蔵水に圧力を加えるためバルーンが設置されており、貯水タンク110A内にRO水が貯まると、そのバルーン圧(風船圧)によって、RO水は、貯水タンク110Aの接続口110eから外部に排出できるような構成にされている。
The water passes through the filters (20, 29) by the force of the motor 30, and permeated water (RO water) is generated by membrane separation in the reverse osmosis membrane module 20. The generated permeated water (RO water) is stored in the water storage tank 110A shown in FIG. Specifically, a pipe (tube, particularly a branch tube) is connected to the connection port 110e of the water storage tank 110A, and the RO water is stored in the water storage tank 110A. Inside the water storage tank 110A, a balloon is installed to apply pressure to the stored water. When RO water is stored in the water storage tank 110A, the RO water is stored in the water storage tank 110A by the balloon pressure (balloon pressure). It is configured to be able to be discharged from the connection port 110e to the outside.
また、生成したRO水は、図22に示したような貯水タンク110Bに貯めることもできる。貯水タンク110Bは、透明材料からなるタンク部110cにRO水を貯蔵することができる。また、タンク部110cに貯蔵されたRO水は、取り出し口110dから取り出すことができる。
Also, the generated RO water can be stored in a water storage tank 110B as shown in FIG. The water storage tank 110B can store RO water in a tank portion 110c made of a transparent material. Further, the RO water stored in the tank part 110c can be taken out from the take-out port 110d.
図20に示した逆浸透膜浄水装置140を使用し続けて、逆浸透膜モジュール20の性能が落ちた場合、この逆浸透膜モジュール20を筐体12aから取り出す。次いで、その使用済みの逆浸透膜モジュール20を、図4又は図9C(図10)に示した逆浸透膜浄水装置(初期化装置)100における逆浸透膜モジュール20の箇所にセットして、初期化工程を実行する(図8中の工程S10、S20)。これにより、逆浸透膜モジュール20の初期化が完了する。具体的には、目詰まりしていた使用済みの逆浸透膜モジュール20を初期化すると、RO水生成の流量はほぼ新品同様に回復し、TDSもほぼ新品同様に回復する。本実施形態の一例では、新品のスペック(流量、TDS)の90%以上まで流量・TDSが回復したら、初期化が完了したものとするが、その基準は95%以上であってもよいし、80%以上であってもよい。
When the performance of the reverse osmosis membrane module 20 is deteriorated by continuing to use the reverse osmosis membrane water purification device 140 shown in FIG. 20, the reverse osmosis membrane module 20 is taken out from the housing 12a. Next, the used reverse osmosis membrane module 20 is set at the location of the reverse osmosis membrane module 20 in the reverse osmosis membrane water purification device (initialization device) 100 shown in FIG. 4 or FIG. 9C (FIG. 10). The process is performed (steps S10 and S20 in FIG. 8). Thereby, initialization of the reverse osmosis membrane module 20 is completed. Specifically, when the used reverse osmosis membrane module 20 that has been clogged is initialized, the flow rate of the RO water generation is restored almost as new, and the TDS is also restored almost as new. In an example of this embodiment, initialization is completed when the flow rate / TDS is recovered to 90% or more of a new spec (flow rate, TDS), but the reference may be 95% or more. It may be 80% or more.
なお、初期化工程を行う初期化装置(逆浸透膜浄水装置)は、図4、図9C(図10)に示したものは、初期化処理とRO水生成処理の両方を実行できる構成のものであるが、本実施形態の初期化装置は、その構成のものに限定されるものではない。逆洗洗浄(工程S10)とキレート洗浄(工程S20)の二つの工程を実行でき、RO水生成処理は実行できないような初期化装置を構築してもよい。あるいは、逆洗洗浄(工程S10)を実行できる第1の初期化装置と、キレート洗浄(工程S20)を実行できる第2の初期化装置をそれぞれ準備して、第1の初期化装置で逆洗洗浄(工程S10)を実行した後、装置を移動して、第2の初期化装置でキレート洗浄(工程S20)を実行して、初期化を完了させてもよい。
In addition, the initialization apparatus (reverse osmosis membrane water purification apparatus) which performs an initialization process is a thing of the structure which can perform both an initialization process and RO water production | generation process what was shown to FIG. 4, FIG. 9C (FIG. 10). However, the initialization apparatus according to the present embodiment is not limited to the configuration. An initialization device that can perform two steps of backwashing (step S10) and chelate cleaning (step S20) and cannot perform the RO water generation process may be constructed. Alternatively, a first initialization device that can perform backwashing (step S10) and a second initialization device that can perform chelate cleaning (step S20) are prepared, and backwashing is performed using the first initialization device. After executing the cleaning (step S10), the apparatus may be moved, and chelate cleaning (step S20) may be executed by the second initialization apparatus to complete the initialization.
また、専用の初期化装置に使用済みの逆浸透膜モジュール20をセットして、その使用済みの逆浸透膜モジュール20の初期化を行うのではなく、図20に示した構成において、配管の接続および洗浄水の流れる方向を適切にして、逆洗洗浄(工程S10)およびキレート洗浄(工程S20)を実行して、それにより、逆浸透膜モジュール20の初期化を行うことも可能である。
In addition, instead of setting the used reverse osmosis membrane module 20 in a dedicated initialization device and initializing the used reverse osmosis membrane module 20, in the configuration shown in FIG. Also, it is possible to initialize the reverse osmosis membrane module 20 by executing the backwashing (step S10) and the chelate washing (step S20) by making the flow direction of the washing water appropriate.
次に、図10に示した構成を有する逆浸透膜浄水装置100において、液体容器68からのキレート剤の排出(吐出)が自動制御されている場合、液体容器68内のキレート剤が空になった時に、空を検出する装置(液面検出器、質量測定器など)を設け、その検出信号に基づいて、キレート剤の交換を表示する装置(例えば、LEDランプ、交換表示のためのディスプレイなど)を設けてもよい。また、その交換のための信号がインターネットを介して、逆浸透膜浄水装置100のメーカ又はサポートセンターに届くようにしてもよい。その場合、図23に示したようなペットボトルタイプの液体容器68Aが、逆浸透膜浄水装置100のところに届いて、そのままキャップ67Bを外してボトル部67aを、図10の液体容器68Aの箇所にセット(例えば、ワンタッチで)して、キレート剤55Aを供給できるような構成であるとよい。本実施形態の液体溶液68Aは、樹脂(例えば、PET)から構成されているが、キレート液55Aの液面又は重さ等を検出して交換時期を特定できるのであれば、ガラス製でも金属製でもセラミック製などでも構わない。
Next, in the reverse osmosis membrane water purification apparatus 100 having the configuration shown in FIG. 10, when the discharge (discharge) of the chelating agent from the liquid container 68 is automatically controlled, the chelating agent in the liquid container 68 becomes empty. A device that detects the sky (liquid level detector, mass measuring device, etc.) and displays the exchange of the chelating agent based on the detection signal (for example, an LED lamp, a display for replacement indication, etc.) ) May be provided. Moreover, you may make it the signal for the replacement | exchange reach the manufacturer or support center of the reverse osmosis membrane water purification apparatus 100 via the internet. In that case, the PET bottle type liquid container 68A as shown in FIG. 23 arrives at the reverse osmosis membrane water purifier 100, and the cap 67B is removed as it is, and the bottle portion 67a is placed at the position of the liquid container 68A in FIG. It is preferable that the chelating agent 55A can be supplied by setting (for example, with one touch). The liquid solution 68A of the present embodiment is made of a resin (for example, PET), but may be made of glass or metal as long as the liquid surface or weight of the chelating solution 55A can be detected and the replacement time can be specified. However, it may be made of ceramic.
また、図24は、プリフォームタイプの液体容器68Bを示している。プリフォームは、ペットボトルの形に成形する前のコマ形状(又は、試験管形状)の容器である。図24に示した液体容器68Bには、キャップ67dでボトル部67cの開口部を覆っている。キャップ67dを開放するか、キャップ67dに注射器のような器具で刺すことで、ボトル部67c内のキレート剤55Bを取り出せる構成にすればよい。本実施形態の液体溶液68Bは、樹脂(例えば、PET)から構成されているが、キレート液55Bの液面又は重さ等を検出して交換時期を特定できるのであれば、ガラス製でも金属製でもセラミック製などでも構わない。
FIG. 24 shows a preform type liquid container 68B. The preform is a frame-shaped (or test tube-shaped) container before being formed into a PET bottle shape. The liquid container 68B shown in FIG. 24 covers the opening of the bottle portion 67c with a cap 67d. What is necessary is just to make it the structure which can take out the chelating agent 55B in the bottle part 67c by open | releasing the cap 67d or piercing the cap 67d with an instrument like a syringe. The liquid solution 68B of the present embodiment is made of a resin (for example, PET). However, the liquid solution 68B can be made of glass or metal as long as the liquid surface or weight of the chelating solution 55B can be detected and the replacement time can be specified. However, it may be made of ceramic.
なお、家庭用の逆浸透膜浄水装置とは、工場で使用するプラント用逆浸透膜浄水装置と比較して、小型の逆浸透膜浄水装置のことを意味しているので、家庭用逆浸透膜浄水装置を、飲食店(例えば、中華料理店)、ホテル、映画館、モール、体育館・ジムなどの商業施設に商業用として設置して使用することは当然問題ない。
It should be noted that the household reverse osmosis membrane water purification device means a smaller reverse osmosis membrane water purification device compared to the plant reverse osmosis membrane water purification device used in the factory, so the household reverse osmosis membrane water purification device Naturally, there is no problem in installing the water purification apparatus for commercial use in commercial facilities such as restaurants (for example, Chinese restaurants), hotels, movie theaters, malls, gymnasiums and gyms.
本発明によれば、使用済みの逆浸透膜の能力を回復(初期化)できる逆浸透膜浄水装置を提供することができる。
According to the present invention, it is possible to provide a reverse osmosis membrane water purifier that can recover (initialize) the capacity of a used reverse osmosis membrane.
10 筐体(表面筐体)
11 凹部
12 背面筐体
14 外部配管ソケット
17 電源コード
18 電源スイッチ
20 逆浸透膜モジュール
21 逆浸透膜モジュール用容器
22 蓋部
23 濃縮水口
23a 濃縮水ライン
24 透過水口
24a 透過水ライン
25 原水供給口
25a 原水供給ライン
30 圧力ポンプ
40 逆浸透膜ユニット
54 洗浄水ライン
55 洗浄液
60 電磁弁
61 原水
62 濃縮水
63 透過水
64a 抵抗(定流量弁)
64b バイパス経路
64 抵抗付き弁(流量調整弁)
65 弁
68 液体容器
69 洗浄タンク
80 原水
81 DMフィルタ
82 セディメントフィルタ
83 カーボンフィルタ
90 演算装置(CPU)
93A 浄水中ランプ
93B 洗浄中ランプ
100 逆浸透膜浄水装置(ダイレクト式逆浸透膜浄水装置)
101 透過チャネル
102 原水・濃縮液チャネル
105 逆浸透膜(半透膜)
109 スペーサ
110 貯水タンク
120 蛇口
130 逆浸透膜浄水装置(タンク式逆浸透膜浄水装置)
140 逆浸透膜浄水装置(タンク式逆浸透膜浄水装置)
200 逆浸透膜システム
220 透過水口
230 濃縮水口
1000 浄水システム 10 Housing (surface housing)
11Recess 12 Rear housing 14 External piping socket 17 Power cord 18 Power switch 20 Reverse osmosis membrane module 21 Reverse osmosis membrane module container 22 Lid 23 Concentrated water port 23a Concentrated water line 24 Permeated water port 24a Permeated water line 25 Raw water supply port 25a Raw water supply line 30 Pressure pump 40 Reverse osmosis membrane unit 54 Wash water line 55 Wash liquid 60 Solenoid valve 61 Raw water 62 Concentrated water 63 Permeated water 64a Resistance (constant flow valve)
64b Bypass path 64 Valve with resistance (Flow control valve)
65Valve 68 Liquid container 69 Cleaning tank 80 Raw water 81 DM filter 82 Cement filter 83 Carbon filter 90 Arithmetic unit (CPU)
93AClean water lamp 93B Washing lamp 100 Reverse osmosis membrane water purification device (direct reverse osmosis membrane water purification device)
101Permeation channel 102 Raw water / concentrate channel 105 Reverse osmosis membrane (semi-permeable membrane)
109Spacer 110 Water storage tank 120 Faucet 130 Reverse osmosis membrane water purification device (tank type reverse osmosis membrane water purification device)
140 Reverse osmosis membrane water purification device (tank type reverse osmosis membrane water purification device)
200 ReverseOsmosis Membrane System 220 Permeation Port 230 Concentrated Water Port 1000 Water Purification System
11 凹部
12 背面筐体
14 外部配管ソケット
17 電源コード
18 電源スイッチ
20 逆浸透膜モジュール
21 逆浸透膜モジュール用容器
22 蓋部
23 濃縮水口
23a 濃縮水ライン
24 透過水口
24a 透過水ライン
25 原水供給口
25a 原水供給ライン
30 圧力ポンプ
40 逆浸透膜ユニット
54 洗浄水ライン
55 洗浄液
60 電磁弁
61 原水
62 濃縮水
63 透過水
64a 抵抗(定流量弁)
64b バイパス経路
64 抵抗付き弁(流量調整弁)
65 弁
68 液体容器
69 洗浄タンク
80 原水
81 DMフィルタ
82 セディメントフィルタ
83 カーボンフィルタ
90 演算装置(CPU)
93A 浄水中ランプ
93B 洗浄中ランプ
100 逆浸透膜浄水装置(ダイレクト式逆浸透膜浄水装置)
101 透過チャネル
102 原水・濃縮液チャネル
105 逆浸透膜(半透膜)
109 スペーサ
110 貯水タンク
120 蛇口
130 逆浸透膜浄水装置(タンク式逆浸透膜浄水装置)
140 逆浸透膜浄水装置(タンク式逆浸透膜浄水装置)
200 逆浸透膜システム
220 透過水口
230 濃縮水口
1000 浄水システム 10 Housing (surface housing)
11
65
93A
101
109
140 Reverse osmosis membrane water purification device (tank type reverse osmosis membrane water purification device)
200 Reverse
Claims (22)
- 原水から浄水を生成するダイレクト式逆浸透膜浄水装置であって、
原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールと、
前記逆浸透膜モジュールの原水供給口に接続された原水供給ラインと、
前記逆浸透膜モジュールの透過水口に接続された透過水ラインと、
前記逆浸透膜モジュールの濃縮水口に接続された濃縮水ラインと
を備え、
前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流量を調整する流量調整弁が設けられており、
前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている、ダイレクト式逆浸透膜浄水装置。 A direct reverse osmosis membrane water purification device that produces purified water from raw water,
A reverse osmosis membrane module for membrane separation treatment of raw water to produce permeated water and concentrated water;
Raw water supply line connected to the raw water supply port of the reverse osmosis membrane module;
A permeate line connected to a permeate port of the reverse osmosis membrane module;
A concentrated water line connected to the concentrated water inlet of the reverse osmosis membrane module,
The concentrated water line is provided with a flow rate adjusting valve for adjusting the flow rate of the liquid passing through the concentrated water line,
A direct type reverse osmosis membrane water purification apparatus, wherein a washing water line through which washing water passes is connected to a permeate opening of the reverse osmosis membrane module. - 前記原水を前記逆浸透膜モジュールに導入する圧力ポンプが設けられており、
前記流量調整弁は、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁であり、
前記抵抗付き弁は、前記抵抗となる定流量弁と、前記定流量弁のバイパス経路とを備えており、前記バイパス経路には、前記バイパス経路のオン/オフを切り替えるコックが設けられており、
前記洗浄水ラインは、前記透過水ラインから分岐した形態で、前記透過水口に接続されており、
前記ダイレクト式逆浸透膜浄水装置には、前記逆浸透膜モジュールの前記透過水ラインから送り出される前記透過水を貯蔵する貯蔵タンクが設けられていないことを特徴とする、請求項1に記載のダイレクト式逆浸透膜浄水装置。 A pressure pump for introducing the raw water into the reverse osmosis membrane module is provided;
The flow rate adjusting valve is a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line,
The valve with resistance includes a constant flow valve serving as the resistance and a bypass path of the constant flow valve, and the bypass path is provided with a cock for switching on / off of the bypass path,
The washing water line is connected to the permeate opening in a form branched from the permeate line,
The direct reverse osmosis membrane water purification apparatus is not provided with a storage tank for storing the permeate discharged from the permeate line of the reverse osmosis membrane module. Type reverse osmosis membrane water purifier. - 前記ダイレクト式逆浸透膜浄水装置には、前記原水供給ラインと前記透過水ラインと前記濃縮水ラインと前記洗浄液体ライン以外に、複数の液体ラインが設けられており、
前記ダイレクト式逆浸透膜浄水装置には、さらに、前記原水供給ライン、前記透過水ライン、前記濃縮水ライン、前記洗浄液体ライン、および、前記複数の液体ラインの流れをオン/オフする複数の弁が設けられており、
前記ダイレクト式逆浸透膜浄水装置は、前記複数の弁のそれぞれの弁のオン/オフを設定するとともに、前記流量調整弁の設定により、
前記透過水および前記濃縮水を生成する浄水モード配管構成と;
前記逆浸透膜モジュールを順方向の流れで洗浄する洗浄モード配管構成と;
前記逆浸透膜モジュールを逆方向の流れで洗浄する逆洗モード配管構成と;
を切り替え可能な構成を有していることを特徴とする、請求項1または2に記載のダイレクト式逆浸透膜浄水装置。 In addition to the raw water supply line, the permeated water line, the concentrated water line, and the washing liquid line, the direct reverse osmosis membrane water purification device is provided with a plurality of liquid lines,
The direct reverse osmosis membrane water purifier further includes a plurality of valves for turning on / off the raw water supply line, the permeate water line, the concentrated water line, the washing liquid line, and the flow of the plurality of liquid lines. Is provided,
The direct reverse osmosis membrane water purifier sets each of the plurality of valves on / off, and by setting the flow rate adjustment valve,
A water purification mode piping configuration for generating the permeate and the concentrated water;
A cleaning mode piping configuration for cleaning the reverse osmosis membrane module with a forward flow;
A backwash mode piping configuration for washing the reverse osmosis membrane module with a reverse flow;
The direct reverse osmosis membrane water purification device according to claim 1, wherein the direct reverse osmosis membrane water purification device has a configuration capable of switching between. - 前記複数の弁は、それぞれ、電磁弁であり、
前記電磁弁は、前記浄水モード配管構成、前記洗浄モード配管構成、および、前記逆洗モード配管構成を切り替える制御回路によって制御されている、請求項3に記載のダイレクト式逆浸透膜浄水装置。 Each of the plurality of valves is a solenoid valve;
The direct type reverse osmosis membrane water purification apparatus according to claim 3, wherein the solenoid valve is controlled by a control circuit that switches between the water purification mode piping configuration, the washing mode piping configuration, and the back washing mode piping configuration. - さらに、洗浄溶液を導通させる洗浄溶液ラインが設けられており、
前記洗浄溶液ラインの一端は、前記洗浄溶液が保持されている洗浄溶液容器に配置され、
前記洗浄溶液ラインの他端は、前記原水供給ラインおよび前記洗浄水ラインを介して、前記逆浸透膜モジュールの前記原水供給口および前記透過水口に接続されている、請求項1から3の何れか一つに記載のダイレクト式逆浸透膜浄水装置。 In addition, a cleaning solution line for conducting the cleaning solution is provided,
One end of the cleaning solution line is disposed in a cleaning solution container in which the cleaning solution is held,
The other end of the cleaning solution line is connected to the raw water supply port and the permeated water port of the reverse osmosis membrane module via the raw water supply line and the cleaning water line. The direct type reverse osmosis membrane water purifier according to one. - さらに、前記ダイレクト式逆浸透膜浄水装置を収容する筐体を備えており、
前記筐体は、縦50cm以下、横50cm以下および厚さ30cm以下の寸法を有しており、
前記ダイレクト式逆浸透膜浄水装置の浄水生成能力は、2.5リットル/1分間以下である、請求項1から5の何れか一つに記載のダイレクト式逆浸透膜浄水装置。 Furthermore, it has a housing for housing the direct reverse osmosis membrane water purification device,
The casing has dimensions of 50 cm or less in length, 50 cm or less in width and 30 cm or less in thickness,
The direct reverse osmosis membrane water purification apparatus according to any one of claims 1 to 5, wherein the water purification capacity of the direct reverse osmosis membrane water purification apparatus is 2.5 liters per minute or less. - 前記筐体内には、前記逆浸透膜モジュールは1つだけ配置されている、請求項6に記載のダイレクト式逆浸透膜浄水装置。 The direct reverse osmosis membrane water purifier according to claim 6, wherein only one reverse osmosis membrane module is disposed in the casing.
- 原水から浄水を生成する逆浸透膜浄水装置であって、
原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールと、
前記逆浸透膜モジュールの原水供給口に接続された原水供給ラインと、
前記逆浸透膜モジュールの透過水口に接続された透過水ラインと、
前記逆浸透膜モジュールの濃縮水口に接続された濃縮水ラインと
を備え、
前記原水を前記逆浸透膜モジュールに導入する圧力ポンプが設けられており、
前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流量を調整する流量調整弁が設けられており、
前記逆浸透膜モジュールの透過水口には、洗浄水が通過する洗浄水ラインが接続されている、逆浸透膜浄水装置。 A reverse osmosis membrane water purification device that produces purified water from raw water,
A reverse osmosis membrane module for membrane separation treatment of raw water to produce permeated water and concentrated water;
Raw water supply line connected to the raw water supply port of the reverse osmosis membrane module;
A permeate line connected to a permeate port of the reverse osmosis membrane module;
A concentrated water line connected to the concentrated water inlet of the reverse osmosis membrane module,
A pressure pump for introducing the raw water into the reverse osmosis membrane module is provided;
The concentrated water line is provided with a flow rate adjusting valve for adjusting the flow rate of the liquid passing through the concentrated water line,
A reverse osmosis membrane water purifier, wherein a washing water line through which washing water passes is connected to a permeate opening of the reverse osmosis membrane module. - 前記流量調整弁は、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁であり、
前記抵抗付き弁は、前記抵抗となる定流量弁と、前記定流量弁のバイパス経路とを備えており、
前記バイパス経路には、前記バイパス経路のオン/オフを切り替えるコックが設けられている、請求項8に記載の逆浸透膜浄水装置。 The flow rate adjusting valve is a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line,
The resistance valve includes a constant flow valve serving as the resistance, and a bypass path of the constant flow valve,
The reverse osmosis membrane water purification apparatus according to claim 8, wherein the bypass path is provided with a cock for switching on / off of the bypass path. - 原水は、水道水、プール水、池水、河川水、および、災害時に使用可能な水からなる群から選択される水であり、
前記逆浸透膜浄水装置は、さらに、
原水に含まれる鉄さび・ゴミ・砂を除去する第1フィルタと、
第1フィルタの下流に配置され、鉄さび・チリを除去する第2フィルタと、
第2フィルタの下流に配置され、塩素・臭気を除去する第3フィルタと
を備え、
前記第3フィルタの下流に、前記逆浸透膜モジュールが位置している、請求項8または9に記載の逆浸透膜浄水装置。 Raw water is water selected from the group consisting of tap water, pool water, pond water, river water, and water that can be used in the event of a disaster,
The reverse osmosis membrane water purification device further comprises:
A first filter for removing iron rust, dust and sand contained in raw water;
A second filter disposed downstream of the first filter to remove iron rust and dust;
A third filter disposed downstream of the second filter to remove chlorine and odor,
The reverse osmosis membrane water purification apparatus according to claim 8 or 9, wherein the reverse osmosis membrane module is located downstream of the third filter. - 原水から浄水を生成する逆浸透膜浄水装置の動作方法であって、
前記逆浸透膜浄水装置は、原水を膜分離処理して、透過水および濃縮水を生成する逆浸透膜モジュールを備え、
前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、
前記逆浸透膜モジュールの前記濃縮水口には、前記濃縮水が通過する前記濃縮水ラインが接続されており、
前記濃縮水ラインには、前記濃縮水ライン内を通過する液体の流れを定量にする抵抗を備えた抵抗付き弁が設けられており、
前記抵抗付き弁の前記抵抗をオンにした状態で、前記逆浸透膜モジュール内を加圧状態にし、前記原水の膜分離処理を実行する浄水工程と、
前記抵抗付き弁の前記抵抗をオフにした状態で、前記浄水工程よりも前記逆浸透膜モジュール内を流れる液量を増加させることによって、前記逆浸透膜モジュールの洗浄を実行するフラッシング洗浄工程と、
前記抵抗付き弁の前記抵抗をオフにした状態で、前記透過水口から洗浄液を導入することによって、前記逆浸透膜モジュールの洗浄を実行する逆洗工程と
を実行する、逆浸透膜浄水装置の動作方法。 A method of operating a reverse osmosis membrane water purification device that produces purified water from raw water,
The reverse osmosis membrane water purification apparatus includes a reverse osmosis membrane module that performs raw membrane separation processing to generate permeated water and concentrated water,
The reverse osmosis membrane module comprises a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port through which concentrated water is discharged,
The concentrated water line through which the concentrated water passes is connected to the concentrated water port of the reverse osmosis membrane module,
The concentrated water line is provided with a resistance valve having a resistance for quantifying the flow of liquid passing through the concentrated water line,
In a state where the resistance of the valve with resistance is turned on, the reverse osmosis membrane module is pressurized and the membrane separation process of the raw water is performed.
A flushing cleaning process for cleaning the reverse osmosis membrane module by increasing the amount of liquid flowing in the reverse osmosis membrane module rather than the water purification process with the resistance of the valve with resistance turned off,
An operation of a reverse osmosis membrane water purification device that performs a backwashing step of washing the reverse osmosis membrane module by introducing a washing liquid from the permeate opening with the resistance of the resistance valve turned off. Method. - 逆浸透膜モジュールを用いて、原水から浄水を生成する精製水の生成方法であって、
前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備えており、
前記逆浸透膜モジュール内を加圧状態にし、前記原水の膜分離処理を実行する浄水工程を含み、
前記生成方法は、前記浄水工程の他に、前記逆浸透モジュールの洗浄工程を含み、
前記洗浄工程は、
前記浄水工程と同じ向きに前記逆浸透膜モジュール内に液体を流すことによって、前記逆浸透膜モジュールの洗浄を実行するフラッシング洗浄工程と、
前記浄水工程と逆向きに前記逆浸透膜モジュール内に液体を流すことによって、前記逆浸透膜モジュールの洗浄を実行する逆洗工程と
を含んでいる、精製水の生成方法。 A method for producing purified water using a reverse osmosis membrane module to produce purified water from raw water,
The reverse osmosis membrane module comprises a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port through which concentrated water is discharged,
Including a water purification step in which the inside of the reverse osmosis membrane module is pressurized and the membrane separation process of the raw water is performed,
The production method includes a washing step of the reverse osmosis module in addition to the water purification step,
The washing step includes
A flushing washing step for washing the reverse osmosis membrane module by flowing a liquid in the reverse osmosis membrane module in the same direction as the water purification step,
A method of producing purified water, comprising: a backwashing step of washing the reverse osmosis membrane module by flowing a liquid in the reverse osmosis membrane module in a direction opposite to the water purification step. - 逆浸透膜浄水装置における逆浸透膜モジュールを洗浄する洗浄方法であって、
前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備え、
第1洗浄液を前記透過水口から導入して、前記原水供給口および前記濃縮水口から排出する工程(a)と、
第2洗浄液を前記原水供給口から導入して、前記透過水口および前記濃縮水口から排出する工程(b)と
を含む、洗浄方法。 A cleaning method for cleaning a reverse osmosis membrane module in a reverse osmosis membrane water purification device,
The reverse osmosis membrane module includes a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port through which concentrated water is discharged.
A step (a) of introducing the first cleaning liquid from the permeated water port and discharging it from the raw water supply port and the concentrated water port;
A step (b) of introducing a second cleaning liquid from the raw water supply port and discharging the second cleaning liquid from the permeate water port and the concentrated water port. - 前記工程(a)を実行した後に、前記工程(b)を実行することを特徴とする、請求項13に記載の洗浄方法。 The cleaning method according to claim 13, wherein the step (b) is performed after the step (a) is performed.
- 前記工程(a)と前記工程(b)との組み合わせを繰り返し実行することを特徴とする、請求項13に記載の洗浄方法。 The cleaning method according to claim 13, wherein the combination of the step (a) and the step (b) is repeatedly executed.
- 前記第1洗浄液は、逆浸透水である、請求項13から15の何れか一つに記載の洗浄方法。 The cleaning method according to any one of claims 13 to 15, wherein the first cleaning liquid is reverse osmosis water.
- 前記第2洗浄液は、キレート剤を含有する溶液である、請求項13から16の何れか一つに記載の洗浄方法。 The cleaning method according to any one of claims 13 to 16, wherein the second cleaning liquid is a solution containing a chelating agent.
- 前記第2洗浄液には、前記キレート剤に加えて、アルカリ成分が含有されている、請求項17に記載の洗浄方法。 The cleaning method according to claim 17, wherein the second cleaning liquid contains an alkali component in addition to the chelating agent.
- 前記第2洗浄液は、濃縮された前記キレート剤を含む濃縮洗浄液を希釈して生成され、
前記濃縮洗浄液は、液体容器に収納されている、請求項17または18に記載の洗浄方法。 The second cleaning solution is generated by diluting the concentrated cleaning solution containing the concentrated chelating agent,
The cleaning method according to claim 17 or 18, wherein the concentrated cleaning liquid is stored in a liquid container. - 前記液体容器に収納された前記濃縮洗浄液が空になったことを検知する工程と、
前記濃縮洗浄液が収納された前記液体容器を、前記空になった前記濃縮洗浄液と交換する工程と
を含む、請求項19に記載の洗浄方法。 Detecting that the concentrated cleaning liquid stored in the liquid container is empty;
The method according to claim 19, further comprising: replacing the liquid container in which the concentrated cleaning liquid is stored with the emptied concentrated cleaning liquid. - 逆浸透膜浄水装置における逆浸透膜モジュールを初期化する方法であって、
前記逆浸透膜モジュールは、原水が導入される原水供給口と、透過水が導出される透過水口と、濃縮水が排出される濃縮水口とを備え、
逆浸透水を前記透過水口から導入して、前記原水供給口および前記濃縮水口から排出する工程(a)と、
前記工程(a)の後、キレート剤を含有する洗浄液を前記原水供給口から導入して、前記透過水口および前記濃縮水口から排出する工程(b)と
を含む、初期化方法。 A method for initializing a reverse osmosis membrane module in a reverse osmosis membrane water purification device,
The reverse osmosis membrane module comprises a raw water supply port through which raw water is introduced, a permeated water port through which permeated water is derived, and a concentrated water port through which concentrated water is discharged,
Introducing reverse osmosis water from the permeate port, and discharging the raw water supply port and the concentrated water port (a);
After the step (a), there is a step (b) of introducing a cleaning liquid containing a chelating agent from the raw water supply port and discharging it from the permeate water port and the concentrated water port. - 逆浸透膜浄水装置における逆浸透膜モジュールを初期化する装置であって、
使用済みの逆浸透膜モジュールの原水供給口に接続される原水供給ラインと、
前記逆浸透膜モジュールの透過水口に接続される透過水ラインと、
前記逆浸透膜モジュールの濃縮水口に接続される濃縮水ラインと
を備え、
前記逆浸透膜モジュールに液体を導入する圧力ポンプが設けられており、
前記逆浸透膜モジュールの透過水口には、洗浄水が通過する逆洗用の洗浄水ラインが接続され、そして、
前記原水供給ラインは、キレート剤を含有する洗浄液が通過するフラッシング用ラインを兼ねている、初期化装置。
A device for initializing a reverse osmosis membrane module in a reverse osmosis membrane water purification device,
Raw water supply line connected to the raw water supply port of the used reverse osmosis membrane module,
A permeate line connected to the permeate port of the reverse osmosis membrane module;
A concentrated water line connected to the concentrated water inlet of the reverse osmosis membrane module,
A pressure pump for introducing liquid into the reverse osmosis membrane module is provided;
The permeation water port of the reverse osmosis membrane module is connected to a washing water line for back washing through which washing water passes, and
The raw water supply line is an initialization device that also serves as a flushing line through which a cleaning liquid containing a chelating agent passes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014098204 | 2014-05-10 | ||
JP2014-098204 | 2014-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015173981A1 true WO2015173981A1 (en) | 2015-11-19 |
Family
ID=54479543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078537 WO2015173981A1 (en) | 2014-05-10 | 2014-10-27 | Direct reverse osmosis membrane water purification apparatus with regenerable reverse osmosis membrane |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015173981A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109701391A (en) * | 2019-03-01 | 2019-05-03 | 宁波斯蒂罗科技有限公司 | A kind of combination type low voltage putamina |
CN110407296A (en) * | 2018-04-27 | 2019-11-05 | 青岛经济技术开发区海尔热水器有限公司 | Water purifier control method and water purifier |
CN111111457A (en) * | 2020-01-13 | 2020-05-08 | 北京亦庄水务有限公司 | Adjustable section type reverse osmosis membrane detection system |
US11772025B1 (en) | 2022-08-02 | 2023-10-03 | W. L. Gore & Associates, Inc. | Industrial filter assembly enhancement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0596138A (en) * | 1991-10-07 | 1993-04-20 | Nitto Denko Corp | Method for cleaning spiral type membrane module |
JP2001029756A (en) * | 1999-07-16 | 2001-02-06 | Nitto Denko Corp | Treatment system using spiral membrane module and operation method thereof |
JP2001179058A (en) * | 1999-12-24 | 2001-07-03 | Nitto Denko Corp | Spiral type membrane element and method for operating spiral type membrane module and spiral type membrane module |
JP2001239136A (en) * | 2000-03-02 | 2001-09-04 | Nitto Denko Corp | Treating system and operating method therefor |
JP2001314734A (en) * | 2000-05-08 | 2001-11-13 | Nitto Denko Corp | Method for cleaning membrane separator |
US20130193059A1 (en) * | 2012-01-31 | 2013-08-01 | Scott Shumway | Reverse osmosis filter flush device and method |
-
2014
- 2014-10-27 WO PCT/JP2014/078537 patent/WO2015173981A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0596138A (en) * | 1991-10-07 | 1993-04-20 | Nitto Denko Corp | Method for cleaning spiral type membrane module |
JP2001029756A (en) * | 1999-07-16 | 2001-02-06 | Nitto Denko Corp | Treatment system using spiral membrane module and operation method thereof |
JP2001179058A (en) * | 1999-12-24 | 2001-07-03 | Nitto Denko Corp | Spiral type membrane element and method for operating spiral type membrane module and spiral type membrane module |
JP2001239136A (en) * | 2000-03-02 | 2001-09-04 | Nitto Denko Corp | Treating system and operating method therefor |
JP2001314734A (en) * | 2000-05-08 | 2001-11-13 | Nitto Denko Corp | Method for cleaning membrane separator |
US20130193059A1 (en) * | 2012-01-31 | 2013-08-01 | Scott Shumway | Reverse osmosis filter flush device and method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110407296A (en) * | 2018-04-27 | 2019-11-05 | 青岛经济技术开发区海尔热水器有限公司 | Water purifier control method and water purifier |
CN109701391A (en) * | 2019-03-01 | 2019-05-03 | 宁波斯蒂罗科技有限公司 | A kind of combination type low voltage putamina |
CN109701391B (en) * | 2019-03-01 | 2024-01-05 | 宁波斯蒂罗科技有限公司 | Combined low-pressure membrane shell |
CN111111457A (en) * | 2020-01-13 | 2020-05-08 | 北京亦庄水务有限公司 | Adjustable section type reverse osmosis membrane detection system |
US11772025B1 (en) | 2022-08-02 | 2023-10-03 | W. L. Gore & Associates, Inc. | Industrial filter assembly enhancement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5822286B1 (en) | Reverse osmosis membrane water purifier that can initialize the reverse osmosis membrane | |
CN101514060B (en) | Device for treating emergency drinking water | |
US20130062219A1 (en) | Water treatment apparatus and sterilizing and cleansing method thereof | |
US10159939B2 (en) | Reverse osmosis system | |
JP2017518176A (en) | System for treating water | |
CA2775542A1 (en) | Reverse osmosis system with circulation and cleaning and/or disinfection device | |
WO2015173981A1 (en) | Direct reverse osmosis membrane water purification apparatus with regenerable reverse osmosis membrane | |
CN106830187A (en) | With the water purifier for preventing reverse osmosis membrane secondary pollution function | |
CN105692965A (en) | Emergency drinking water purifying treatment device | |
KR100221225B1 (en) | Apparatus for brine conversion | |
JP2014076428A (en) | Water purifier | |
SI24500A (en) | Mobile cleaning system for drink water preparation, chemical multimedia filter and functioning thereof | |
RU100070U1 (en) | INSTALLATION FOR CLEANING AND DISINFECTION OF DRINKING WATER (OPTIONS) | |
CN201395538Y (en) | Emergency drinking water treatment equipment | |
CN206970356U (en) | Cleaning system containing micro-polluted water | |
KR20140128841A (en) | Apparatus for Cross cleaning water of membrane module and the operating method thereof | |
JP2005279614A (en) | Water cleaning device | |
Groendijk et al. | Development of a mobile water maker, a sustainable way to produce safe drinking water in developing countries | |
JP2011041907A (en) | Water treatment system | |
WO2013042462A1 (en) | Water treatment apparatus | |
KR100758380B1 (en) | Treatment apparatus for recycling concentrated-water using reverse osmosis process | |
KR20040024777A (en) | Water purified system for wastewater saving | |
JP2013252505A (en) | Apparatus of manufacturing water for dialysis | |
CN209292134U (en) | A kind of Potable water equipment | |
JP2011255348A (en) | Electrolytic water generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14892090 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14892090 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |