WO2015172495A1 - 一种补偿网络、开关电源电路及电路补偿方法 - Google Patents

一种补偿网络、开关电源电路及电路补偿方法 Download PDF

Info

Publication number
WO2015172495A1
WO2015172495A1 PCT/CN2014/087132 CN2014087132W WO2015172495A1 WO 2015172495 A1 WO2015172495 A1 WO 2015172495A1 CN 2014087132 W CN2014087132 W CN 2014087132W WO 2015172495 A1 WO2015172495 A1 WO 2015172495A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
resistor
capacitor
amplifier
pole
Prior art date
Application number
PCT/CN2014/087132
Other languages
English (en)
French (fr)
Inventor
韦东
耿玮生
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to US15/311,371 priority Critical patent/US9876424B2/en
Priority to EP14892037.4A priority patent/EP3145068A4/en
Publication of WO2015172495A1 publication Critical patent/WO2015172495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45526Indexing scheme relating to differential amplifiers the FBC comprising a resistor-capacitor combination and being coupled between the LC and the IC

Definitions

  • the present invention relates to the field of microelectronics, and in particular, to a compensation network, a switching power supply circuit, and a circuit compensation method.
  • Power technology belongs to the category of power electronics technology. It is a multi-disciplinary edge-crossing technology that integrates power conversion, modern electronics, and automatic control. It has been widely used in industry, energy, transportation, information, aviation, national defense, education, culture, etc. field. The development of power technology is actually based on the unremitting research of improving efficiency, improving performance, small and lightweight, safe and reliable, eliminating power pollution, reducing electromagnetic interference and electrical noise. Switching power supply is vital in the entire power supply technology.
  • the compensation network of the power regulator of PWM (Pulse Width Modulation) is an important research topic of switching power supply.
  • the switching power supply circuit consists of three basic modules, as shown in FIG. 1, including a power switching regulator 11, a low pass filtering network 12, and a compensation network 13.
  • the power switching regulator 11 is configured to generate a square wave signal to control the on/off state of the power tube;
  • the low pass filtering network 12, that is, the LC network is configured to filter the output voltage current to generate an LC dual pole;
  • the compensation network 13 is composed of a voltage sampling circuit, an error amplifier, and a compensation circuit component.
  • the error amplifier In the design of the switching power supply circuit, the error amplifier is often used. If the low frequency gain required by the switching power supply circuit is high, the error amplifier in the compensation network needs to be compensated to ensure that the switching power supply circuit has a large bandwidth and is very Good phase margin. In the voltage mode switching power supply circuit, a higher low frequency gain is required, but the power level transfer function has a low low frequency gain and a pair of LC conjugate poles, so it is necessary to add an error amplifier to obtain a higher low frequency gain, and at the same time The error amplifier compensates to eliminate the influence of the conjugate pole and make the switching power supply circuit It has a high phase margin while achieving a large bandwidth.
  • the traditional compensation network uses a resistor-capacitor network across the error amplifier AMP0.
  • the compensation network consisting of resistors R6, R7 and R8 and capacitors C5, C6 and C7 can compensate the original switching power supply. Three poles and two zeros in the circuit.
  • the thus obtained switching power supply circuit can obtain a high bandwidth and phase margin at a very low frequency, and at the same time, the gain at the switching frequency is small, and the switching noise is well suppressed.
  • the switching frequency required by the switching power supply circuit is high, the stability of the switching power supply circuit cannot be guaranteed due to the influence of the pole of the error amplifier itself.
  • a voltage divider resistor is required at the input of the error amplifier, a pole is also introduced, which has a great influence on the compensation.
  • embodiments of the present invention are expected to provide a compensation network, a switching power supply circuit, and a circuit compensation method.
  • An embodiment of the present invention provides a compensation network, where the compensation network includes: a resistor-capacitor network, a unity gain amplifier network, and an error amplifier network;
  • An output of the resistor-capacitor network is cascaded to an input of a unity gain amplifier network, and an output of the unity-gain amplifier network is cascaded to an input of the error amplifier network;
  • the resistor-capacitor network is configured to provide a voltage dividing resistor and generate a zero point and a pole point that cancel each other;
  • the unity gain amplifier network is configured to generate a zero point for canceling a pole in the low pass filtering network and a pole for suppressing high frequency noise to increase a phase margin of the switching power supply circuit;
  • the error amplifier network is configured to generate a pole for increasing low frequency gain and a zero point for canceling another pole in the low pass filtered network.
  • the resistor-capacitor network includes: a first resistor, a second resistor, a first capacitor, and a second capacitor; wherein the first resistor is connected in series between the first input end and the first output end, The second capacitor is connected to the first resistor, the first capacitor is connected between the first input terminal and the ground, and the second resistor is connected between the first output terminal and the ground.
  • the unity gain amplifier network includes: a first amplifier, a third resistor, a fourth resistor, and a third capacitor; wherein the third resistor is connected between the inverting input terminal and the output terminal of the first amplifier; The fourth resistor and the third capacitor are coupled between the inverting input of the first amplifier and ground; the forward input of the first amplifier is coupled to the first output of the resistor-capacitor network.
  • the error amplifier network includes: a second amplifier, a fifth resistor, and a fourth capacitor; wherein, the fifth resistor and the fourth capacitor are connected between the output end of the second amplifier and the ground; The forward input of the amplifier is connected to the output of the unity gain amplifier network.
  • the second capacitor is a variable capacitor
  • the first resistor and the second resistor are variable resistors.
  • the third capacitor is a variable capacitor
  • the third resistor and the fourth resistor are variable resistors.
  • the fourth capacitor is a variable capacitor
  • the fifth resistor is a variable resistor
  • the capacitance value of the fourth capacitor is much larger than the equivalent capacitance value of the second amplifier.
  • Embodiments of the present invention provide a switching power supply circuit including the above compensation network.
  • Embodiments of the present invention provide a circuit compensation method, the method comprising: a resistor-capacitor network providing a voltage dividing resistor, and generating a zero point and a pole offset each other; the unity gain amplifier is generated to cancel a pole in the low-pass filter network The zero point and a pole for suppressing high frequency noise to increase the phase margin of the switching power supply circuit; the error amplifier network produces a pole for increasing the low frequency gain and a zero point for canceling the other pole of the low pass filtered network.
  • a compensation network includes: a resistor-capacitor network, a unity gain amplifier network, and an error amplifier network; wherein an output end of the resistor-capacitor network is cascaded to An input of the unity gain amplifier network, the output of the unity gain amplifier network being cascaded to an input of the error amplifier network; the resistor-capacitor network configured to provide a voltage dividing resistor and generating a zero and a pole that cancel each other out
  • the unity gain amplifier network is configured to isolate the voltage divider resistor and error amplifier network, pass the voltage change at the input to the output of the error amplifier network, and generate a zero point for canceling a pole in the low pass filter network and for Suppressing high frequency noise to increase a pole of a phase margin of the switching power supply circuit; the error amplifier network configured to amplify the voltage change and output, and generate a pole for increasing low frequency gain, and for canceling the low Pass through the zero point of another pole in the network.
  • the switching frequency required by the system is high, the influence of the pole of the error amplifier itself on the compensation effect can be suppressed; and when the input voltage of the error amplifier is connected to the voltage dividing resistor, the pole pair caused by the voltage dividing resistor is suppressed.
  • the effect of the compensation effect thereby improving the low-frequency gain of the switching power supply circuit, solving the stability problem of the switching power supply circuit in the high-frequency voltage mode, and ensuring that the switching power supply circuit has a good phase margin while obtaining a high bandwidth.
  • FIG. 1 is a block diagram showing the basic structure of a switching power supply circuit in the prior art
  • FIG. 3 is a schematic structural diagram of a compensation network according to at least one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a basic structure of a resistor-capacitor network in a compensation network according to at least one embodiment of the present invention
  • FIG. 5 is a schematic diagram of a basic structure of a unity gain amplifier network in a compensation network according to at least one embodiment of the present invention
  • FIG. 6 is a schematic diagram of a basic structure of an error amplifier network in a compensation network according to at least one embodiment of the present invention.
  • a compensation network is provided in an embodiment of the present invention, including: a resistor-capacitor network, a unity gain amplifier network, and an error amplifier network, wherein an output end of the resistor-capacitor network is cascaded to an input end of a unity gain amplifier network, An output of the unity gain amplifier network is cascaded to an input of the error amplifier network; the resistor-capacitor network is configured to provide a voltage dividing resistor and generate a zero and a pole that cancel each other; the unity gain amplifier network is configured to Generating a zero for canceling a pole in the low pass filtering network and a pole for suppressing high frequency noise to increase the phase margin of the switching power supply circuit; the error amplifier network configured to generate a pole for increasing low frequency gain and A zero point used to cancel another pole in the low pass filtered network.
  • FIG. 3 is a schematic diagram of a basic structure of the compensation network. As shown in FIG. 3, the compensation network is composed of a three-level compensation network, and the three-level compensation network is: a resistor and a capacitor.
  • FIG. 4 is a schematic diagram of a basic structure of a resistor-capacitor network in a compensation network according to an embodiment of the present invention.
  • the resistor-capacitor network includes a first resistor R1, a second resistor R2, and a second capacitor C2.
  • the capacitor C1 is composed; the first resistor R1 and the second resistor R2 are voltage dividing resistors; the first resistor R1 is connected in series between the first input terminal A and the first output terminal B, and the second capacitor C2 is connected to the first resistor R1.
  • the first resistor R1 and the second resistor R2 may be a variable resistor
  • the first capacitor C1 and second capacitor C2 may be a variable capacitance; hypothesis, the switching power supply voltage V in the output circuit through the sample, or directly from the first input terminal of the resistor-capacitor network
  • the A input outputs a voltage V 1 from the first output terminal B after passing through the resistor-capacitor network; then, the transfer function of V in to V 1 is:
  • the resistor-capacitor network introduces a voltage divider resistor for the compensation network, and introduces a zero point and a pole point.
  • the pole-zero offsets will not affect the compensation network, and it will not be like the existing one.
  • a voltage dividing resistor is connected to the input terminal of the error amplifier, a pole is introduced, which has an influence on the compensation effect of the compensation network.
  • the unity gain amplifier network is composed of a first amplifier AMP1, a third resistor R3, a fourth resistor R4, and a third.
  • the capacitor C3 is composed; the inverting input terminal V N1 of the first amplifier AMP1 and the output terminal V OUT1 are connected to each other through a third resistor R3, and the fourth resistor R4 and the third capacitor C3 are connected in series at the inverting input terminal V N1 and the third resistor R3 Between the connection point and the ground; it should be noted that the third resistor R3 and the fourth resistor R4 may be variable resistors, the third resistor C3 may be a variable capacitor; at a low frequency, the third capacitor C3 is equivalent to an open circuit, the resistance between the inverting input terminal V N1 and ground is infinite, and the third resistor R3 can be regarded as a wire.
  • the amplifier AMP1 acts as a unity gain amplifier, and the change of V 1 is transmitted to V 2 ;
  • the equivalent impedance of the third capacitor C3 decreases continuously.
  • the impedance is reduced to be equivalent to the third resistor R3, the unity gain amplifier network is equivalent to only one amplifier;
  • One Increases the equivalent impedance of the third capacitor C3 is further decreased, much smaller than the final third resistor R3, the voltage change at this time action of the first amplifier AMP1 is input by the first amplifier AMP1 amplifies the positive input terminal V P1 1 +R3/R4 times; as shown in Figure 5, the output voltage V 1 of the resistor-capacitor network enters the forward input terminal V P1 of the amplifier and outputs V 2 . Therefore, the transfer function of V 1 to V 2 is:
  • a zero point and a pole are generated in the first stage unity gain amplifier network, and the zero point is just used to cancel one of a pair of conjugate poles introduced by the low pass filter network in the existing switching power supply circuit; At high frequencies, the effect of the pole of the error amplifier network itself on the compensation effect is suppressed.
  • FIG. 6 is a schematic diagram of a basic structure of an error amplifier network in a compensation network according to an embodiment of the present invention.
  • the error amplifier network is composed of a second amplifier AMP2, a fifth resistor R5, and a fourth capacitor C4.
  • a fifth resistor R5 and a fourth capacitor C4 are connected in series between the output of the second amplifier AMP2 and the ground;
  • the forward input terminal V P2 of the second amplifier AMP2 is connected to the reference voltage V ref ;
  • the fifth resistor R5 may be a variable resistor
  • the fourth capacitor C4 may be a variable capacitor;
  • the voltage V eaout is output from the output terminal V OUT2 of the error amplifier network, and the transconductance of the second amplifier AMP2 is g m , and the equivalent of the second amplifier AMP2
  • the output resistance is R out
  • the equivalent output capacitance of the second amplifier AMP2 is C out , then the transfer function between V 2 and V eaout is:
  • a zero and two poles are generated, one of which can cancel each other out of the other of the pair of LC conjugate poles introduced by the low-pass filter network in the existing switching power supply circuit;
  • the ⁇ p0 of the two poles generated herein is the main pole in the compensation network provided by the embodiment of the present invention, and the main pole can be used to achieve a high low frequency gain of the switching power supply circuit when the low frequency is used, thereby ensuring that the switching power supply circuit has Great bandwidth and good phase margin.
  • the overall compensation effect is not greatly affected, but while the voltage dividing function is provided, the overall compensation network is not only improved in the middle frequency band.
  • Gain and can provide a certain phase, which can easily improve the phase margin of the overall switching power supply circuit; the zero-point ⁇ z2 and the pole ⁇ p2 provided by the second-stage unity-gain amplifier network are the zeros and poles needed to compensate the network.
  • ⁇ z2 is used to cancel a pole formed by the low-pass filter network, and ⁇ p2 is set near the switching frequency, on the one hand for suppressing high-frequency noise, and on the other hand, improving the phase margin of the switching power supply circuit;
  • the transfer function of the unity gain amplifier network knows that once the capacitance value of the second capacitor C2 is determined, only the relative resistance values of the third resistor R3 and the fourth resistor R4 need to be adjusted to adjust the zero point ⁇ z2 and the pole according to the compensation requirement.
  • the relative position of the ⁇ p2; a third error amplifier stage network provides the dominant pole compensation network ⁇ p0, pole and zero in the compensation
  • the output resistance and output capacitance of the error amplifier itself have been considered.
  • the pole of the error amplifier itself is also considered in the design, so that the zero point can be adjusted by adjusting the resistance of the fifth resistor R5 and the capacitance of the third capacitor C3. And the position of the pole, the pole of the error amplifier itself will no longer affect the stability of the circuit.
  • the main pole ⁇ p0 is closest to the origin, which is beneficial to improve the low frequency gain;
  • the zero point ⁇ z3 is used to cancel another pole formed by the low pass filtering network, and the pole ⁇ p3 is set near the switching frequency like ⁇ p2 Also used to suppress switching frequency noise and improve phase margin.
  • the gain of the compensation network is the product of the gain of the three-stage circuit near the origin before the main pole, and the phase is 180°; from the main pole At the beginning of the position, the gain gradually decreases.
  • the change of the main pole position causes the phase to fall, and the phase has a drop of about 90°.
  • the positions of the two zero points ⁇ z2 and ⁇ z3 are very close, and before the poles ⁇ p2 and ⁇ p3
  • the gain of the compensation network starts to increase by 1 time after two zero points, and the phase also rises, with a rising space of 180°; the poles ⁇ p2 and ⁇ p3 are located close to each other, after the two poles
  • the gain begins to drop, ensuring that the gain is small enough at the switching frequency; thus, there is a very high phase between the zero and the pole, and if the phase is not enough, the resistor-capacitor network can be adjusted.
  • a first capacitor and a first resistor R1, a second resistor R2 value C1, thereby adjusting ⁇ z1 and ⁇ p1 pole-zero pair of the specific position can be improved pole ⁇ p2, ⁇ p3 and zero at ⁇ z2 switching power supply circuit,
  • the phase between ⁇ z3 the adjustment is very convenient and flexible, it is easy to achieve stable conditions and high bandwidth in the entire switching power supply circuit; in addition, if the input capacitor has Equivalent Series Resistance (ESR), it can also Use one of ⁇ p2 or ⁇ p3 to cancel the zero due to ESR.
  • ESR Equivalent Series Resistance
  • the amplifiers AMP1 and AMP2 in the embodiment of the present invention can select various types of operational amplifiers according to actual needs, for example, transconductance operational amplifiers that can be push-pull outputs.
  • Embodiments of the present invention also provide a circuit compensation method, the method comprising: a resistor-capacitor network providing a voltage dividing resistor, and generating a zero point and a pole offset each other; the unity gain amplifier network is generated for canceling the low-pass filtering network a pole zero and a pole for suppressing high frequency noise to increase the phase margin of the switching power supply circuit; the error amplifier network produces a pole for increasing the low frequency gain and for canceling the other pole of the low pass filtered network Zero point.
  • the embodiment of the present invention further provides a switching power supply circuit, and the compensation network of the switching power supply circuit uses the compensation network provided by the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

一种补偿网络,包括:电阻电容网络、单位增益放大器网络以及误差放大器网络;其中,所述电阻电容网络的输出端级联至单位增益放大器网络的输入端,所述单位增益放大器网络的输出端级联至误差放大器网络的输入端;所述电阻电容网络,配置为提供分压电阻,并产生相互抵消的一个零点和一个极点;所述单位增益放大器网络,配置为产生用于抵消低通滤波网络中一个极点的零点、以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;所述误差放大器网络,配置为产生用于提高低频增益的一个极点和用于抵消所述低通滤波网络中另一个极点的零点,另外,还涉及包含所述补偿网络的开关电源电路及电路补偿方法。

Description

一种补偿网络、开关电源电路及电路补偿方法 技术领域
本发明涉及微电子技术领域,尤其涉及一种补偿网络、开关电源电路及电路补偿方法。
背景技术
电源技术属于电力电子技术的范畴,是集电力变换、现代电子、自动控制等多学科于一体的边缘交叉技术,现今已广泛应用到工业、能源、交通、信息、航空、国防、教育、文化等领域。电源技术的发展实际上是围绕着提高效率、提高性能、小型轻量化、安全可靠、消除电力公害、减少电磁干扰和电噪声的轨迹所进行的不懈研究,开关电源是整个电源技术中至关重要的部分,其中的脉冲宽度调制(PWM,Pulse Width Modulation)电源调整器的补偿网络,是开关电源的重要研究课题。
通常,开关电源电路由三个基本模块组成,如图1所示:包括功率开关调节器11、低通滤波网络12和补偿网络13。其中功率开关调节器11配置为产生方波信号,以此来控制功率管的通断状态;低通滤波网络12,也就是LC网络,配置为对输出电压电流进行滤波,会产生LC双重极点;补偿网络13由电压采样电路、误差放大器、补偿电路元件组成。
在开关电源电路的设计中,经常要用到误差放大器,如果开关电源电路需要的低频增益很高,就需要对补偿网络中的误差放大器进行补偿,以保证开关电源电路有很大的带宽和很好的相位裕度。在电压模式的开关电源电路中,需要较高的低频增益,但是功率级的传递函数低频增益很低,而且有一对LC共轭极点,因此需要加入误差放大器获得较高的低频增益,同时需要对误差放大器进行补偿,消除共轭极点的影响,使开关电源电路 在得到较大带宽的同时能有很高的相位裕度。
如图2所示,传统的补偿网络采用的是在误差放大器AMP0两端跨接电阻电容网络,由电阻R6、R7和R8以及电容C5、C6及C7组成的补偿网络正好可以补偿原有开关电源电路中的三个极点和两个零点。这样得到的开关电源电路在频率很低的时候能得到很高的带宽和相位裕度,同时在开关频率处增益很小,对开关噪声有很好的抑制作用。但是当开关电源电路所需要的开关频率很高时,由于误差放大器本身的极点影响,已经不能保证开关电源电路的稳定性。另外,当在误差放大器的输入端需要连接分压电阻的时候也会引入极点,这对补偿的影响很大。
发明内容
为解决现有技术存在的问题,本发明实施例期望提供一种补偿网络、开关电源电路及电路补偿方法。
本发明实施例提供了一种补偿网络,所述补偿网络包括:电阻电容网络、单位增益放大器网络以及误差放大器网络;其中,
所述电阻电容网络的输出端级联至单位增益放大器网络的输入端,所述单位增益放大器网络的输出端级联至误差放大器网络的输入端;
所述电阻电容网络,配置为提供分压电阻,并产生相互抵消的一个零点和一个极点;
所述单位增益放大器网络,配置为产生用于抵消低通滤波网络中一个极点的零点、以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;
所述误差放大器网络,配置为产生用于提高低频增益的一个极点和用于抵消所述低通滤波网络中另一个极点的零点。
上述方案中,所述电阻电容网络,包括:第一电阻、第二电阻、第一电容以及第二电容;其中,第一电阻串联于第一输入端和第一输出端之间, 第二电容接在第一电阻两端,第一电容接在第一输入端与地之间,第二电阻接在第一输出端与地之间。
上述方案中,所述单位增益放大器网络,包括:第一放大器、第三电阻、第四电阻以及第三电容;其中,第三电阻连接于第一放大器的反向输入端和输出端之间;第四电阻和第三电容连接于第一放大器的反向输入端和地之间;第一放大器的正向输入端与电阻电容网络的第一输出端相连。
上述方案中,所述误差放大器网络,包括:第二放大器、第五电阻和第四电容;其中,第五电阻和第四电容连接于所述第二放大器的输出端和地之间;第二放大器的正向输入端与单位增益放大器网络中的输出端相连。
上述方案中,所述第二电容为可变电容,所述第一电阻和第二电阻为可变电阻。
上述方案中,所述第三电容为可变电容,所述第三电阻和第四电阻为可变电阻。
上述方案中,所述第四电容为可变电容,所述第五电阻为可变电阻。
上述方案中,所述第四电容的电容值远远大于第二放大器的等效电容值。
本发明实施例提供了一种开关电源电路,所述开关电源电路包括上述补偿网络。
本发明实施例提供了一种电路补偿方法,所述方法包括:电阻电容网络提供分压电阻,并产生相互抵消的一个零点和一个极点;单位增益放大器产生用于抵消低通滤波网络中一个极点的零点以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;误差放大器网络产生用于提高低频增益的一个极点、以及用于抵消所述低通滤波网络中另一个极点的零点。
本发明实施例所提供的补偿网络,包括:电阻电容网络、单位增益放大器网络以及误差放大器网络;其中,所述电阻电容网络的输出端级联至 单位增益放大器网络的输入端,所述单位增益放大器网络的输出端级联至误差放大器网络的输入端;所述电阻电容网络,配置为提供分压电阻,并产生相互抵消的一个零点和一个极点;所述单位增益放大器网络,配置为隔离分压电阻和误差放大器网络,将输入端的电压变化传递到误差放大器网络的输出端,并产生用于抵消低通滤波网络中一个极点的零点以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;所述误差放大器网络,配置为将所述电压变化放大后输出,并产生用于提高低频增益的一个极点、以及用于抵消所述低通滤波网络中另一个极点的零点。如此,能够在系统所需要的开关频率较高时,抑制误差放大器本身的极点对补偿效果的影响;并且,当误差放大器输入端需要连接分压电阻时,抑制由分压电阻带来的极点对补偿效果的影响;从而提高开关电源电路的低频增益,解决在高频电压模式开关电源电路的稳定性问题,保证开关电源电路在得到很高的带宽的同时有很好的相位裕度。
附图说明
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为现有技术中开关电源电路的基本结构框图;
图2为现有技术中补偿网络的基本结构图;
图3为本发明至少一个实施例提供的补偿网络的结构示意图;
图4为本发明至少一个实施例提供的补偿网络中电阻电容网络的基本结构示意图;
图5为本发明至少一个实施例提供的补偿网络中单位增益放大器网络的基本结构示意图;
图6为本发明至少一个实施例提供的补偿网络中误差放大器网络的基本结构示意图。
具体实施方式
本发明实施例中提供了一种补偿网络,包括:电阻电容网络、单位增益放大器网络以及误差放大器网络,其中,所述电阻电容网络的输出端级联至单位增益放大器网络的输入端,所述单位增益放大器网络的输出端级联至误差放大器网络的输入端;所述电阻电容网络,配置为提供分压电阻,并产生相互抵消的一个零点和一个极点;所述单位增益放大器网络,配置为产生用于抵消低通滤波网络中一个极点的零点、以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;所述误差放大器网络,配置为产生用于提高低频增益的一个极点和用于抵消所述低通滤波网络中另一个极点的零点。
下面通过附图及具体实施例对本发明做进一步的详细说明。
本发明实施例提供了一种补偿网络,图3为所述补偿网络的基本结构示意图,如图3所示,所述补偿网络采用三级补偿网络组成,这三级补偿网络分别为:电阻电容网络31、单位增益放大器网络32以及误差放大器网络33;所述电阻电容网络31的输出端级联至单位增益放大器网络32的输入端,所述单位增益放大器网络32的输出端级联至误差放大器网络33的输入端;因此,开关电源的输出电压Vin输入电阻电容网络31后,输出电压V1,所述电压V1输入单位增益放大器网络32后,输出电压V2,所述电压V2进入误差放大器网络33后,产生输出电压Veaout;其中,所述电阻电容网络31,配置为提供分压电阻,并产生相互抵消的一个零点和一个极点;所述单位增益放大器网络32,配置为隔离分压电阻和误差放大器网络33,将输入端的电压变化传递到误差放大器网络33的输出端,并产生用于抵消低通滤波网络中一个极点的零点以及用于抑制高频噪声提高开关电源电路 相位裕度的一个极点;所述误差放大器网络33,配置为将所述电压变化放大后输出,并产生用于提高低频增益的一个极点和用于抵消所述低通滤波网络中另一个极点的零点;实际应用中,所述误差放大器网络33可以将所述变化放大后输出到PWM调制器,同时在更高的频率处降低增益,从而达到抑制噪声的目的。
图4为本发明实施例提供的补偿网络中的电阻电容网络的基本结构示意图,如图4所示,所述电阻电容网络由第一电阻R1、第二电阻R2以及第二电容C2、第一电容C1组成;第一电阻R1和第二电阻R2为分压电阻;第一电阻R1串联于第一输入端A和第一输出端B之间,第二电容C2接在第一电阻R1的两端;C1接在第一输入端A和地之间,起到稳定输入的作用;第二电阻R2接在第一输出端B与地之间;需要说明的是,所述第一电阻R1和第二电阻R2可以为可变电阻,所述第一电容C1和第二电容C2可以为可变电容;假设,开关电源电路的输出电压Vin经过采样或直接从电阻电容网络的第一输入端A输入,经过电阻电容网络后从第一输出端B输出电压V1;则,Vin到V1的传递函数为:
Figure PCTCN2014087132-appb-000001
由上式可以得到一个零点ωz1和一个极点ωp1分别为:
Figure PCTCN2014087132-appb-000002
Figure PCTCN2014087132-appb-000003
可见,电阻电容网络在为补偿网络提供了分压电阻的同时,引入了一个零点和一个极点,这样,零极点相互对消,将不会给补偿网络带来影响,也就不会像现有技术中,在误差放大器的输入端连接分压电阻时,引入一个极点,而对补偿网络的补偿效果产生影响。
图5为本发明实施例提供的补偿网络中的单位增益放大器网络的基本结构示意图,如图5所示,单位增益放大器网络由第一放大器AMP1、第 三电阻R3、第四电阻R4和第三电容C3组成;第一放大器AMP1的反向输入端VN1和输出端VOUT1通过第三电阻R3相互连接,第四电阻R4和第三电容C3串联在反向输入端VN1和第三电阻R3的连接点和地之间;需要说明的是,所述第三电阻R3和第四电阻R4可以为可变电阻,所述第三电阻C3可以为可变电容;在低频情况下,第三电容C3相当于开路,反向输入端VN1和地之间的电阻无穷大,第三电阻R3可以看成导线,此时放大器AMP1就作为一个单位增益放大器,将V1的变化传递到V2;随着频率的升高,第三电容C3的等效阻抗不断降低,当阻抗降低到和第三电阻R3相当的时候,此时所述单位增益放大器网络就仅相当于一个放大器;随着频率的进一步升高,第三电容C3的等效阻抗进一步降低,最终远远小于第三电阻R3,此时第一放大器AMP1的作用就是将由第一放大器AMP1的正向输入端VP1输入的电压变化放大1+R3/R4倍;如图5所示,电阻电容网络的输出电压V1进入放大器的正向输入端VP1,并输出为V2,因此,V1到V2的传递函数为:
Figure PCTCN2014087132-appb-000004
这样,传递函数中存在一个零点ωz2和一个极点ωp2
Figure PCTCN2014087132-appb-000005
Figure PCTCN2014087132-appb-000006
这一级单位增益放大器网络中产生了一个零点和一个极点,所述零点正好可用于抵消现有开关电源电路中由低通滤波网络引入的一对共轭极点中的一个极点;所述极点可在高频时,抑制误差放大器网络本身极点对补偿效果的影响。
图6为本发明实施例提供的补偿网络中的误差放大器网络的基本结构 示意图,如图6所示,所述误差放大器网络由第二放大器AMP2、第五电阻R5以及第四电容C4组成;第二放大器AMP2的输出端和地之间串联了一个第五电阻R5和一个第四电容C4;所述第二放大器AMP2的正向输入端VP2接参考电压Vref;需要说明的是,所述第五电阻R5可以为可变电阻,所述第四电容C4可以为可变电容;
从单位增益放大器网络输出的电压V2经过误差放大器网络电路后,从误差放大器网络的输出端VOUT2输出电压Veaout,设第二放大器AMP2的跨导为gm,第二放大器AMP2的等效输出电阻为Rout,第二放大器AMP2的等效的输出电容为Cout,则V2到Veaout之间的传递函数为:
Figure PCTCN2014087132-appb-000007
上述传递函数中有一个零点ωz3
Figure PCTCN2014087132-appb-000008
补偿网络满足C4>>Cout时,传递函数中存在两个极点ωp0和ωp3
Figure PCTCN2014087132-appb-000009
Figure PCTCN2014087132-appb-000010
这一级误差放大器网络中,产生了一个零点和两个极点,其中的一个零点可以与现有开关电源电路中由低通滤波网络引入的一对LC共轭极点之中的另外一个相互抵消;这里产生的两个极点中的ωp0是本发明实施例提供的补偿网络中的主极点,所述主极点可用于低频时,使开关电源电路达到较高的低频增益,从而保证开关电源电路有很大的带宽和很好的相位裕度。
本实例中,由于第一级电阻电容网络的极点ωp1和零点ωz1相互抵消, 因而对整体的补偿效果影响不大,但是在提供分压功能的同时,不仅提高了整体补偿网络在中频段的增益,而且能提供一定的相位,从而很容易就能改善整体开关电源电路的相位裕度;第二级单位增益放大器网络提供的零点ωz2和极点ωp2是补偿网络需要的零点和极点,其中,ωz2用于抵消低通滤波网络所形成的一个极点,而ωp2设置在开关频率附近,一方面用于抑制高频噪声,一方面改善开关电源电路的相位裕度;从第二级单位增益放大器网络的传递函数可知,一旦确定了第二电容C2的电容值以后,只需要调整第三电阻R3和第四电阻R4的电阻相对值就可以根据补偿的需要来调整零点ωz2和极点ωp2的相对位置;第三级的误差放大器网络,提供补偿网络的主极点ωp0,在补偿极点和零点的时候已经考虑了误差放大器本身的输出电阻和输出电容,误差放大器本身的极点同时也被考虑在设计中,这样通过调整第五电阻R5的阻值和第三电容C3的电容值就能调整零点和极点的位置,误差放大器本身的极点不会再影响电路的稳定性。其中所述的主极点ωp0距离原点最近,有利于提高低频增益;零点ωz3用于抵消低通滤波网络所形成的另一个极点,而所述极点ωp3同ωp2一样设置在开关频率附近,同样用于抑制开关频率噪声和改善相位裕度从所有零极点的分布位置来看,在主极点之前原点附近,补偿网络的增益为三级电路增益的乘积,相位为180°;从主极点的位置开始,增益逐渐下降,主极点位置变化会引起相位的下降,相位会有90°左右的下降;两个零点ωz2、ωz3的位置相距很近,且在极点ωp2和ωp3之前,所述补偿网络的增益在两个零点之后开始以1倍的频程上升,相位也会上升,有180°的上升空间;极点ωp2和ωp3位置相距很近,在这两个极点之后增益开始下降,保证在开关频率处增益足够小;这样,在零点和极点之间就会有很高的相位,如果相位不够,可以调整电阻电容网络中第一电容C1和第一电阻R1、第二电阻R2的值,从而调 整ωz1和ωp1这对零极点对的具体位置,能够提高开关电源电路在极点ωp2、ωp3和零点ωz2、ωz3之间的相位;调整非常方便灵活,很容易在整个开关电源电路中得到满足稳定的条件和高的带宽;此外,如果输入电容存在等效串联电阻(ESR,Equivalent Series Resistance),也可以利用ωp2或者ωp3其中的一个极点去抵消因为ESR所产生的零点。
本发明实施例中的放大器AMP1、AMP2可以依据实际需要选择各种类型运算放大器,例如,可以是推挽输出的跨导运算放大器。
本发明实施例还提供了一种电路补偿方法,所述方法包括:电阻电容网络提供分压电阻,并产生相互抵消的一个零点和一个极点;单位增益放大器网络产生用于抵消低通滤波网络中一个极点的零点以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;误差放大器网络产生用于提高低频增益的一个极点、以及用于抵消所述低通滤波网络中另一个极点的零点。
本发明实施例还提供了一种开关电源电路,所述开关电源电路的补偿网络采用本发明实施例所提供的补偿网络。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

  1. 一种补偿网络,所述补偿网络包括:电阻电容网络、单位增益放大器网络以及误差放大器网络;其中,
    所述电阻电容网络的输出端级联至单位增益放大器网络的输入端,所述单位增益放大器网络的输出端级联至误差放大器网络的输入端;
    所述电阻电容网络,配置为提供分压电阻,并产生相互抵消的一个零点和一个极点;
    所述单位增益放大器网络,配置为产生用于抵消低通滤波网络中一个极点的零点、以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;
    所述误差放大器网络,配置为产生用于提高低频增益的一个极点和用于抵消所述低通滤波网络中另一个极点的零点。
  2. 根据权利要求1所述的补偿网络,其中,所述电阻电容网络,包括:第一电阻、第二电阻、第一电容以及第二电容;其中,第一电阻串联于第一输入端和第一输出端之间,第二电容接在第一电阻两端,第一电容接在第一输入端与地之间,第二电阻接在第一输出端与地之间。
  3. 根据权利要求1所述的补偿网络,其中,所述单位增益放大器网络,包括:第一放大器、第三电阻、第四电阻以及第三电容;其中,第三电阻连接于第一放大器的反向输入端和输出端之间;第四电阻和第三电容连接于第一放大器的反向输入端和地之间;第一放大器的正向输入端与电阻电容网络的第一输出端相连。
  4. 根据权利要求1所述的补偿网络,其中,所述误差放大器网络,包括:第二放大器、第五电阻和第四电容;其中,第五电阻和第四电容连接于所述第二放大器的输出端和地之间;第二放大器的正向输入端与单位增益放大器网络中的输出端相连。
  5. 根据权利要求2所述的补偿网络,其中,所述第二电容为可变电容,所述第一电阻和第二电阻为可变电阻。
  6. 根据权利要求3所述的补偿网络,其中,所述第三电容为可变电容,所述第三电阻和第四电阻为可变电阻。
  7. 根据权利要求4所述的补偿网络,其中,所述第四电容为可变电容,所述第五电阻为可变电阻。
  8. 根据权利要求4或7所述的补偿网络,其中,所述第四电容的电容值远远大于第二放大器的等效电容值。
  9. 一种开关电源电路,所述开关电源电路包括权利要求1至8其中任一项所述的补偿网络。
  10. 一种电路补偿方法,所述方法包括:电阻电容网络提供分压电阻,并产生相互抵消的一个零点和一个极点;单位增益放大器产生用于抵消低通滤波网络中一个极点的零点以及用于抑制高频噪声提高开关电源电路相位裕度的一个极点;误差放大器网络产生用于提高低频增益的一个极点、以及用于抵消所述低通滤波网络中另一个极点的零点。
PCT/CN2014/087132 2014-05-16 2014-09-22 一种补偿网络、开关电源电路及电路补偿方法 WO2015172495A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/311,371 US9876424B2 (en) 2014-05-16 2014-09-22 Compensation network, switching power supply circuit and circuit compensation method
EP14892037.4A EP3145068A4 (en) 2014-05-16 2014-09-22 Compensation network, switch power supply circuit and circuit compensation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410210175.5A CN105099171B (zh) 2014-05-16 2014-05-16 一种补偿网络、开关电源电路及电路补偿方法
CN201410210175.5 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015172495A1 true WO2015172495A1 (zh) 2015-11-19

Family

ID=54479247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087132 WO2015172495A1 (zh) 2014-05-16 2014-09-22 一种补偿网络、开关电源电路及电路补偿方法

Country Status (4)

Country Link
US (1) US9876424B2 (zh)
EP (1) EP3145068A4 (zh)
CN (1) CN105099171B (zh)
WO (1) WO2015172495A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050559B2 (en) * 2016-01-20 2018-08-14 Linear Technology Llc Control architecture with improved transient response
CN105958953B (zh) * 2016-04-15 2019-05-31 二十一世纪(北京)微电子技术有限公司 一种数据接收器
CN107482912A (zh) * 2016-10-31 2017-12-15 黑龙江省电力科学研究院 基于k因子提高峰值电流模式的Buck电路稳定性的方法
US10778089B2 (en) * 2017-04-07 2020-09-15 Texas Instruments Incorporated Cascaded active electro-magnetic interference filter
CN108268695B (zh) * 2017-12-13 2021-06-29 杨娇丽 一种放大电路的设计方法及放大电路
CN110233600B (zh) * 2018-03-05 2024-02-20 联发科技股份有限公司 放大器电路及补偿电路
CN111751605B (zh) * 2019-03-29 2024-01-16 全球能源互联网研究院有限公司 一种高电位电压测量装置及方法
US11601045B2 (en) 2019-04-01 2023-03-07 Texas Instruments Incorporated Active electromagnetic interference filter with damping network
TWI687032B (zh) * 2019-08-15 2020-03-01 茂達電子股份有限公司 用於電源轉換器的任意切換頻率的自動頻寬控制系統
CN110868229B (zh) * 2019-10-28 2021-04-13 西安空间无线电技术研究所 一种基于共轭双极点的射频前端电路宽带补偿方法
CN111273720B (zh) * 2020-03-04 2022-02-22 中国电子科技集团公司第二十四研究所 一种用于线性稳压器的补偿零点产生电路
CN112286275B (zh) * 2020-09-16 2022-09-20 中国电力科学研究院有限公司 一种有源电容分压器的补偿方法及装置
CN114326520B (zh) * 2021-12-31 2024-05-10 杭州长川科技股份有限公司 外部补偿方法、系统及计算机可读存储介质
CN115425841B (zh) * 2022-11-03 2023-03-31 禹创半导体(深圳)有限公司 一种补偿电路及其控制方法、装置、电子设备、介质
CN116599478B (zh) * 2023-07-17 2023-09-12 江苏润石科技有限公司 一种带宽稳定的可配置增益差分放大器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988378A (zh) * 2005-12-20 2007-06-27 Bcd半导体制造有限公司 一种倍增电容实现方法及其电路
CN101063890A (zh) * 2007-03-21 2007-10-31 北京中星微电子有限公司 一种低压差的电压调节器
CN101126937A (zh) * 2006-07-10 2008-02-20 麦奎尔有限公司 使用外部零位的用于切换调节器的频率补偿电路和方法
CN101459381A (zh) * 2008-12-10 2009-06-17 浙江大学 一种Boost型开关变换器的控制装置及控制方法
CN101478234A (zh) * 2009-01-13 2009-07-08 浙江大学 一种开关电容式直流-直流变换器
CN101694962A (zh) * 2009-10-16 2010-04-14 电子科技大学 一种用于开关稳压电源控制器的环路补偿电路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908566A (en) * 1989-02-22 1990-03-13 Harris Corporation Voltage regulator having staggered pole-zero compensation network
US7061313B2 (en) * 2000-05-05 2006-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Dual feedback linear amplifier
US6518737B1 (en) * 2001-09-28 2003-02-11 Catalyst Semiconductor, Inc. Low dropout voltage regulator with non-miller frequency compensation
JP3953443B2 (ja) * 2003-07-08 2007-08-08 ローム株式会社 昇降圧dc−dcコンバータ及びこれを用いたポータブル機器
US6940189B2 (en) * 2003-07-31 2005-09-06 Andrew Roman Gizara System and method for integrating a digital core with a switch mode power supply
JP4171784B2 (ja) * 2004-09-09 2008-10-29 トレックス・セミコンダクター株式会社 位相補償回路及びこれを有する電源回路
US7224153B2 (en) * 2005-04-26 2007-05-29 Texas Instruments Incorporated Apparatus and method to compensate for effects of load capacitance on power regulator
JP4811850B2 (ja) * 2005-08-11 2011-11-09 ルネサスエレクトロニクス株式会社 スイッチング・レギュレータ
US8575908B2 (en) * 2008-09-24 2013-11-05 Intersil Americas LLC Voltage regulator including constant loop gain control
US8188723B2 (en) * 2009-01-22 2012-05-29 Infineon Technologies Ag Switching converter and method to control a switching converter
CN102541134A (zh) * 2011-05-11 2012-07-04 电子科技大学 一种基于动态零极点跟踪技术的ldo
TW201448435A (zh) * 2013-06-07 2014-12-16 Hon Hai Prec Ind Co Ltd 供電電路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988378A (zh) * 2005-12-20 2007-06-27 Bcd半导体制造有限公司 一种倍增电容实现方法及其电路
CN101126937A (zh) * 2006-07-10 2008-02-20 麦奎尔有限公司 使用外部零位的用于切换调节器的频率补偿电路和方法
CN101063890A (zh) * 2007-03-21 2007-10-31 北京中星微电子有限公司 一种低压差的电压调节器
CN101459381A (zh) * 2008-12-10 2009-06-17 浙江大学 一种Boost型开关变换器的控制装置及控制方法
CN101478234A (zh) * 2009-01-13 2009-07-08 浙江大学 一种开关电容式直流-直流变换器
CN101694962A (zh) * 2009-10-16 2010-04-14 电子科技大学 一种用于开关稳压电源控制器的环路补偿电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3145068A4 *

Also Published As

Publication number Publication date
EP3145068A1 (en) 2017-03-22
CN105099171B (zh) 2018-10-26
US9876424B2 (en) 2018-01-23
CN105099171A (zh) 2015-11-25
EP3145068A4 (en) 2018-02-14
US20170077802A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015172495A1 (zh) 一种补偿网络、开关电源电路及电路补偿方法
US9712159B2 (en) Differential signal driving circuit
CN103178852A (zh) 一种高速采样前端电路
US20150188417A1 (en) Control apparatus applied to digital power supply device, and digital power supply device
CN103856174A (zh) 基于多模运算放大器的电路
CN108345341A (zh) 一种自适应增强电源抑制的线性稳压器
CN203326960U (zh) 前馈补偿放大器中的精确参考电压发生器
US10911004B2 (en) Sampled moving average notch filter for ripple reduction in chopper stabilized operational amplifiers
CN105183063A (zh) 具有宽频带高电源抑制比的低压差电压调整器
CN104270107A (zh) 一种有源前馈电路构成频率补偿的差分运算放大器
EP3079256A1 (en) Zero drift, limitless and adjustable reference voltage generation
CN112987837B (zh) 一种用于补偿ldo输出极点的前馈补偿方法和电路
CN104166034B (zh) 一种高精度差分采样电路
US20170346456A1 (en) Active rc filters
CN203596803U (zh) 一种频率补偿的装置
JP2012114914A5 (zh)
CN205039782U (zh) 一种改进的补偿电路
CN208386501U (zh) 一种简易数字控制高增益宽带放大器装置
CN202586351U (zh) 一种输电线路工频干扰信号抑制装置
US20170324435A1 (en) DC offset cancellation method and device
CN102355220B (zh) 陷波器及低通滤波器
CN203225653U (zh) 用于可调精密直流高电压源的降低纹波和抑制噪声电路
CN104503294A (zh) 一种基于直流负反馈原理的梯形-矩形加权数字积分器
CN202257350U (zh) 直流电压偏移消除电路
CN202210783U (zh) 运算放大电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15311371

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014892037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892037

Country of ref document: EP