WO2015170639A1 - Laser processing machine, composite processing system, composite processing machine, and processing origin correction method - Google Patents

Laser processing machine, composite processing system, composite processing machine, and processing origin correction method Download PDF

Info

Publication number
WO2015170639A1
WO2015170639A1 PCT/JP2015/062781 JP2015062781W WO2015170639A1 WO 2015170639 A1 WO2015170639 A1 WO 2015170639A1 JP 2015062781 W JP2015062781 W JP 2015062781W WO 2015170639 A1 WO2015170639 A1 WO 2015170639A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
workpiece
unit
origin
machining
Prior art date
Application number
PCT/JP2015/062781
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 広一
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2015170639A1 publication Critical patent/WO2015170639A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a laser processing machine [laser processing machine], a combined processing system [combined processing system] that performs a plurality of processing including laser processing, a combined processing system [combined processing system], and a processing origin correction method [method for correction]. a working original point].
  • a general multi-tasking machine includes a punching unit [punchinglasunit], a laser irradiation unit [laser emitter], and a workpiece moving unit [workpiece carrier].
  • the workpiece moving unit includes a punching position [punching position] ([in a working program] punching position on the machining program) and an irradiation position [emitting position] (irradiation position on the machining program, irradiation reference position [
  • the workpiece is moved in the X-axis direction and the Y-axis direction (horizontal direction) relative to “emission (reference) position]).
  • a general multi-task machine has an NC (Numerical Control) device [NC (Numerical Control) device] (control unit [Control Unit [] controller]).
  • FIG. 1 An example of a workpiece before laser processing is shown in FIG.
  • the product portion [product portion (s)] (product portion [portion (s) to be a product]) M on the plate-like workpiece W held by the clamper 203 of the workpiece moving unit 201 has a punching portion.
  • Product hole [product hole] (product punched hole) Mh is formed by blanking [blanking] (a type of punching), and countersinking (countersinking) (molding [
  • a product forming part [product formed portion] Mf is formed by a kind of forming process: a forming process is a kind of punching process.
  • a reference hole [reference hole] reference punch hole
  • a pilot hole Mh ′ is formed in advance by punching before the product forming portion Mf is formed by dishing.
  • Patent Documents 1 and 2 below disclose prior art related to the present invention.
  • This problem is not limited to the combined processing machine (punch processing and laser processing), but the product portion M of the workpiece W is processed by the laser processing machine after punching or forming the product portion M of the workpiece W by a punch press. The same occurs when laser processing is performed.
  • An object of the present invention is to provide a laser processing machine, a combined processing system, a combined processing machine, and a processing origin correction method capable of solving the above-described problems.
  • a first feature of the present invention is a laser processing machine that laser-processes a plurality of product parts on the workpiece based on a machining program after forming a plate-shaped workpiece, and irradiates the workpiece with laser light.
  • a workpiece moving unit that moves the workpiece relatively in the horizontal direction with respect to the imaging position, and the workpiece moving unit is controlled based on the position of the reference hole on the machining program to bring the workpiece into the imaging position.
  • An image acquisition unit that positions the image in the horizontal direction relative to the image pickup unit and controls the image pickup unit to pick up the image and then acquires the image from the image pickup unit; and a laser by the laser irradiation unit.
  • a laser processing machine comprising a first origin correction unit that corrects a machining origin position of laser machining on the machining program based on the image acquired by the image acquisition unit before construction. .
  • the “laser processing machine” includes not only a laser processing machine that performs only laser processing but also a complex processing machine that can perform punching.
  • the “forming process” is a kind of punching process, and includes a dishing process and a burring process.
  • the “reference hole” is a hole that serves as a reference for correcting the origin of processing (including molding processing and laser processing), and is a punch hole formed as the starting point of laser processing, formed inside the product.
  • a second feature of the present invention is a combined processing system that performs punching including laser processing and laser processing on a plate-like workpiece, and includes the laser processing machine according to the first feature and punching including molding.
  • a punching unit that performs the processing on the plurality of product parts based on the machining program, and the workpiece moving unit moves the workpiece in the horizontal direction even with respect to the punching position of the punching unit.
  • the image capturing unit captures the image during the molding process, the image acquisition unit acquires the image during the molding process, and the composite processing system is acquired by the image acquisition unit.
  • a combined machining system further comprising a second origin correction unit that corrects the machining origin position of the molding process on the machining program based on the image.
  • the “composite processing system” is not only a system that combines a single punch press that performs punching and a single laser processing machine that performs laser processing, but also one that performs punching and laser processing. This includes systems equipped with only these multi-task machines.
  • the “correction data” also includes a correction amount of the machining origin position and data related to the correction amount.
  • a third feature of the present invention is a multi-tasking machine that forms a plurality of product parts on the workpiece based on a machining program, a laser irradiation unit that irradiates the workpiece with laser light, and a workpiece on the workpiece.
  • An imaging unit that captures an image of a reference hole formed in advance corresponding to at least one of the plurality of product parts, an irradiation position of the laser irradiation unit, and a relative position of the workpiece with respect to the imaging position of the imaging unit
  • a workpiece moving portion that moves horizontally in a horizontal direction and controls the workpiece moving portion based on the position of the reference hole on the machining program to position the workpiece in the horizontal direction relative to the imaging position.
  • the image acquisition unit acquires the image from the imaging unit, and the processing process is performed based on the image acquired by the image acquisition unit. And it includes a second origin correction unit for correcting the machining origin position of the molding on the ram, and provides a composite processing machine.
  • a fourth feature of the present invention is a processing origin correction method for laser processing of a plurality of product parts on the workpiece based on a processing program after forming the plate-shaped workpiece, [a] A reference hole is formed corresponding to at least one of the plurality of product parts, [b] an image of the reference hole is taken based on the position of the reference hole on the machining program, and [c] the image is taken Correcting the processing origin position of laser processing on the processing program based on the image, and [d] laser processing at least one of the plurality of product parts based on the corrected processing origin position; Provide machining origin correction method.
  • a fifth feature of the present invention is a machining origin correction method for forming a plurality of product parts on a plate-like workpiece based on a machining program, and [A] at least one of the plurality of product parts. And [B] an image of the reference hole based on the position of the reference hole on the processing program, and [C] the processing program based on the captured image.
  • a machining origin correction method in which the machining origin position of the above molding process is corrected, and [D] the at least one of the plurality of product parts is molded based on the corrected machining origin position.
  • FIG. 1 is a side view of a multi-task machine (system) according to first to sixth embodiments.
  • FIG. 2 is a plan view taken along line II-II in FIG.
  • FIG. 3 is a block diagram of the multi-tasking machine according to the first embodiment.
  • FIG. 4 is a flowchart showing the operation of the multi-task machine.
  • FIG. 5 is a flowchart of processing origin correction processing in the first embodiment.
  • FIG. 6 is a plan view showing a reference hole (first, fourth and sixth embodiments).
  • FIG. 7 is an enlarged plan view of a portion indicated by an arrow VII in FIG.
  • FIG. 8 is a plan view showing the workpiece after the punching process and the dishing process.
  • FIG. 9 is a block diagram of a multi-tasking machine according to the second embodiment.
  • FIG. 10 is a flowchart of processing origin correction processing in the second embodiment.
  • FIG. 11 is a plan view showing a predetermined locus and a reference hole (second, fifth and seventh embodiments).
  • FIG. 12 is a block diagram of a combined processing machine (combined processing system) according to the third embodiment.
  • FIG. 13A is a diagram illustrating a correction amount and a correction pattern in the X-axis direction
  • FIG. 13B is a diagram illustrating a correction amount and a correction pattern in the Y-axis direction.
  • FIG. 14 is a block diagram of a combined processing machine (combined processing system) according to the fourth embodiment.
  • FIG. 15 is a flowchart showing the operation of the multi-task machine.
  • FIG. 16 is a flowchart of processing origin correction processing in the fourth embodiment.
  • FIG. 17 is an enlarged plan view of a portion indicated by an arrow XVII in FIG.
  • FIG. 18 is a plan view showing the workpiece during dish-shaping.
  • FIG. 19 is a block diagram of a combined processing machine (combined processing system) according to the fifth embodiment.
  • FIG. 20 is a flowchart of processing origin correction processing in the fifth embodiment.
  • FIG. 21 is a block diagram of a combined processing machine (combined processing system) according to the sixth embodiment.
  • FIG. 22A is a diagram showing a deviation amount and a deviation pattern in the X-axis direction
  • FIG. 22B is a diagram showing a deviation amount and a deviation pattern in the Y-axis direction.
  • FIG. 23 is a block diagram of a combined processing machine (combined processing system) according to the seventh embodiment.
  • FIG. 24 is an explanatory diagram of the background art.
  • the multi-tasking machine 1 performs punching (dish frying, etc.) on a plurality of product parts (parts to be products) M of a plate-like workpiece W based on a machining program. Forming process and punching process).
  • the multi-task machine 1 performs laser machining (laser processing) along the outline of a plurality of product parts M cut out from the work W based on a machining program after punching the product part M of the work W. Disconnect).
  • the multi-task machine 1 performs laser machining (laser cutting) along the contours of a plurality of product parts M cut out from the workpiece W based on a machining program after punching the product part M of the workpiece W. ).
  • the multi-tasking machine 1 includes a main body base 3.
  • the main body base 3 includes an upper frame 5 and a lower frame 7 which are vertically opposed to each other.
  • the lower frame 7 is provided with a fixed table 9 that supports the workpiece W so as to be movable in the X-axis direction (horizontal direction: left-right direction) and the Y-axis direction (horizontal direction: front-rear direction).
  • movable tables 11 and 13 that support the workpiece W so as to be movable in the X-axis direction are provided on the lower frame 7 so as to be movable in the Y-axis direction.
  • the main body base 3 is provided with a punching section 15 that performs punching (including forming and punching such as dishing) on the product portion M based on a processing program.
  • the upper frame 5 is provided with an upper turret 19 that holds a plurality of upper molds [upper tools] 17 so as to be rotatable around a vertical axis.
  • the lower frame 7 is provided with a lower turret 23 that holds a plurality of lower molds [lower tools] 21 so as to face the upper turret 19 in the vertical direction so as to be rotatable around a vertical axis.
  • the desired upper die 17 and the desired lower die 21 are punched at the punching position of the punching unit 15 (punch processing on the processing program).
  • Position It can be positioned at P1.
  • a ram 25 is provided on the upper frame 5 so as to be movable up and down. The ram 25 is moved up and down by a hydraulic cylinder (not shown). Further, the ram 25 is provided with a striker 27 for hitting the upper die 17 positioned at the punching position P1 from above.
  • a laser irradiation unit 29 that irradiates a laser beam while injecting an assist gas toward the workpiece W is provided at a position separated from the punching unit 15.
  • a Y-axis slider 31 is provided on the upper frame 5 so as to be movable in the Y-axis direction.
  • a laser irradiation head 33 is provided on the Y-axis slider 31.
  • At the tip of the laser irradiation head 33 there is provided a nozzle 35 that emits laser light while ejecting an assist gas.
  • a laser oscillator 37 that oscillates laser light is disposed in the vicinity of the main body base 3. The laser oscillator 37 is optically connected to the laser irradiation head 33.
  • an assist gas supply source (assist gas supply unit) (not shown) for supplying assist gas is disposed.
  • the assist gas supply source is connected to the laser irradiation head 33.
  • a through slot 39 extending in the Y-axis direction is formed at a position on the fixed table 9 that is vertically opposed to the moving area of the laser irradiation head 33 along the Y-axis direction.
  • the through long hole 39 is connected to a recovery unit (not shown) that recovers scraps that are cut and dropped.
  • a CCD camera (imaging device) 41 is provided on the side of the laser irradiation head 33. For example, each time the nozzle 35 is replaced, the CCD camera 41 captures an image G (see FIG. 6) of the reference punch hole Wh that is formed in advance by the punching unit 15 and that corresponds to the product portion M. Further, a laser beam irradiation position (irradiation reference position / irradiation position on the processing program) P2 by the laser irradiation head 33 (laser irradiation unit 29) and an imaging position (camera center position / imaging position on the processing program) by the CCD camera 41.
  • the distance from P3 is calibrated by a known method disclosed in Patent Documents 1 and 2, for example. That is, the imaging position P3 is set relative to the irradiation position P2.
  • the work moving part 43 is provided over the fixed table 9 and the upper frame 5 and the like.
  • the workpiece moving unit 43 moves the workpiece W in the X-axis direction and the Y-axis direction relative to the punching position P1, the irradiation position P2, and the imaging position P3.
  • a carriage base 45 that extends in the X-axis direction is provided between the front portion of the movable table 11 and the front portion of the movable table 13 so as to connect the two.
  • the upper frame 5 is provided with a first Y-axis motor 47 for moving the carriage base 45 in the Y-axis direction integrally with the movable tables 11 and 13.
  • a carriage 49 is provided on the carriage base 45 so as to be movable in the X-axis direction.
  • the carriage base 45 is also provided with an X-axis motor 51 for moving the carriage 49 in the X-axis direction.
  • the carriage 49 is provided with a clamper 53 that holds the side edge of the workpiece W.
  • the upper frame 5 is provided with a second Y-axis motor 55 for moving the Y-axis slider 31 of the laser irradiation unit 29 in the Y-axis direction.
  • the multi-tasking machine 1 includes an NC device 57 in addition to the punching unit 15 and the laser irradiation unit 29.
  • the NC device 57 controls the punching unit 15, the laser irradiation unit 29, the CCD camera 41, and the workpiece moving unit 43 based on the machining program.
  • the NC device 57 includes a memory that stores a machining program, mold information, and the like, and a CPU that interprets and executes the machining program.
  • the NC device 57 functions as an image acquisition unit [image retriever] (image acquisition module [image retrieval module]) 59, and functions as a displacement calculation unit [displacement calculator] (displacement calculation module [displacement calculation module]) 61.
  • (first) origin correction unit 63 The image acquisition unit 59, the deviation amount calculation unit 61, and the origin correction unit 63 will be described later.
  • the first Y-axis motor 47 and the X-axis motor 51 are controlled based on the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15. Thereafter, the punching unit 15 is controlled, and the workpiece W is punched and dished (molded) (step S101).
  • a reference hole (reference punch hole) Wh corresponding to the product portion M is formed by punching and dishing (molding), and a product hole ( A product punch hole) Mh and a product molding portion Mf are formed.
  • the pilot hole Mh ′ is formed in advance by punching before forming the product forming portion Mf by dishing.
  • a process origin correction process is executed (step S102).
  • the processing origin correction process will be described in detail later.
  • the X-axis motor 51, the second Y-axis motor 55, and the like are controlled based on the machining program, and the laser irradiation unit moves the workpiece W in the X-axis direction and the Y-axis direction with respect to the irradiation position P2.
  • laser processing laser cutting is performed along the contour of the product portion M (step S103).
  • step S104 the processes of step S102 and step S103 are repeated (step S104). Further, the processes from step S101 to step S104 are repeated until the combined machining of the target number of workpieces W is completed (step S105).
  • step S102 and step S103 is repeated for each laser processing of one product part M. However, step S102 and step S103 are performed for each laser processing of a predetermined number (for example, 10) of product parts M. The above process may be repeated (that is, 10 product parts M are laser-cut by one process in step S103).
  • step S102 processing origin correction method
  • the processing origin correction process (method) of the present embodiment is performed before the laser processing (step S103) of the product part M based on the processing program after the punching processing and dish-shaping processing (step S101) based on the processing program, Correct the machining origin position on the machining program.
  • the “machining origin” on the program means the point that becomes the standard of machining.
  • one “machining origin” for the workpiece W is set on the program (for example, the lower left corner of the workpiece W shown in FIG. 8), and machining such as laser machining is performed based on this “machining origin”.
  • the center position (processing reference position) of the reference hole Wh becomes a reference point for processing, and therefore, this processing reference position can be regarded as the processing origin. That is, the “machining origin” on the program is a reference point for performing machining based on the program.
  • the workpiece W is moved in the X-axis direction and the Y-axis direction relative to the imaging position P3 of the CCD camera 41 by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51. Then, the center position (processing reference position) of the reference hole Wh on the processing program and the center position Gc (see FIG. 6) of the image G of the CCD camera 41 are positioned so as to coincide with each other (step S201). After the workpiece W is positioned, an image G of the reference hole Wh is taken by the CCD camera 41 (step S202). The image acquisition unit 59 acquires the image G from the CCD camera 41 (step S203).
  • the deviation amount calculation unit 61 determines the center position of the reference hole Wh on the machining program (matched with the center position Gc of the image G in step S201) and the actual reference hole Wh.
  • a deviation amount ( ⁇ X, ⁇ Y) from the center position Whc is calculated (step S204: see FIG. 6).
  • the origin correction unit 63 corrects the machining origin position on the machining program so that the deviation amounts ( ⁇ X, ⁇ Y) become zero (step S205). Thereby, the processing origin position of the laser processing can be corrected.
  • the combined accuracy of punching and laser processing including molding processing can be maintained high, and the product formed before laser processing with respect to the contour of the product formed by laser processing (laser cutting)
  • the relative displacement between the hole Mh and the product molding portion Mf (for example, caused by the displacement of the workpiece W due to dish-shaping) can be suppressed, and the product processing accuracy (product accuracy) can be sufficiently improved.
  • the multi-task machine 1 according to the second embodiment will be described with reference to FIGS.
  • the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted.
  • the same or equivalent components as those in the first embodiment are given the same reference numerals and detailed description thereof is omitted.
  • the NC device 57 of this embodiment includes a trajectory forming unit in addition to a function as an image acquisition unit 59, a function as a deviation amount calculation unit 61, and a function as an origin correction unit 63. It functions as [track [line marker] 65.
  • step S102 a machining origin correction process (method) different from the machining origin correction process (method) of the first embodiment described above is performed. Is called.
  • the processing origin correction processing in the present embodiment including the description of the locus forming unit 65 will be described with reference to the flowchart shown in FIG.
  • the trajectory forming unit 65 controls the laser oscillator 37 to irradiate the low-power laser beam from the nozzle 35, and relative to the irradiation position P2 of the laser irradiation head 33, the trajectory forming unit 65 is a reference in the machining program. Circular movement around the center position (processing reference position) of the hole Wh. As a result, a circular locus (marking line) T surrounding the reference hole Wh is formed on the workpiece W (step S301: see FIG. 11).
  • the “low output laser beam” is a laser beam with an output that does not cut the workpiece. Further, instead of the circular motion of the workpiece W, another specific operation such as a regular polygon motion of the workpiece W may be performed.
  • the workpiece W is picked up by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51, and the image pickup position P3 of the CCD camera 41.
  • the workpiece W is positioned so that the reference hole Wh can be imaged by being moved relative to the X axis direction and the Y axis direction.
  • an image G of the reference hole Wh including the locus T is taken by the CCD camera 41 (step S302: see FIG. 11). That is, the image G includes an actual reference hole Wh and a trajectory T formed based on the center position of the reference hole Wh on the machining program.
  • the image acquisition unit 59 acquires the image G from the CCD camera 41 (step S303).
  • the deviation amount calculation unit 61 determines the center position Tc of the trajectory T (formed about the center position of the reference hole Wh on the machining program in step S301) and the reference hole Wh.
  • the deviation ( ⁇ X, ⁇ Y) from the actual center position Whc is calculated (step S304: see FIG. 11).
  • the origin correction unit 63 corrects the machining origin position on the machining program based on the calculated deviation amounts ( ⁇ X, ⁇ Y) so that the deviation amounts ( ⁇ X, ⁇ Y) become zero (step S305). Thereby, the processing origin position of the laser processing can be corrected.
  • the trajectory T is formed on the workpiece W based on the center position of the reference hole Wh on the machining program, and the center position Tc of the trajectory T is determined based on the image G of the reference hole Wh including the trajectory T. Since the deviation amount ( ⁇ X, ⁇ Y) of the reference hole Wh from the actual center position Whc is calculated and the machining origin position of the laser machining on the machining program is corrected, the molding process performed before the laser machining is included. Even if the dimension of the workpiece W is changed by punching (e.g., the elongation indicated by the white arrow in FIG.
  • the deviation of the processing origin position of the laser processing caused by the change can be corrected on the processing program (processing) Program data can be modified). Therefore, it is possible to prevent the position of the reference punch hole Wh or product hole Mh formed by punching including molding and the laser processing position from being shifted. Also in this embodiment, since the contour of the product part M is cut by laser processing, the reference punch hole Wh and the product hole Mh are accurately arranged on the cut out product.
  • the combined accuracy of punching including molding and laser processing can be maintained high, and the product processing accuracy (product accuracy) can be sufficiently improved. be able to.
  • the multi-tasking machine 1 according to the third embodiment will be described with reference to FIG. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the NC device 57 of this embodiment has a correction data storage unit [corrected data storage] (correction data storage module). [corrected data storage module]) 73 function, correction pattern determining unit [correction pattern determining module] (correction pattern determining module 75) function, and second origin correcting unit 77 function Have.
  • the machining origin position is corrected based on at least two product parts M, and these correction amounts are stored in the correction data storage unit 73 as correction data.
  • the machining origin correction process for at least two product parts M is performed by the machining origin correction process in the first or second embodiment described above.
  • the correction pattern determination unit 75 determines the processing reference position (the center position of the reference hole Wh on the processing program). ) And a correction pattern RPx (a straight line or a curve obtained from a plurality of white triangles) indicating the relationship between the position in the X-axis direction and the amount of correction in the X-axis direction at that position.
  • the correction pattern determination unit 75 determines the processing reference position (the center of the reference hole Wh on the processing program) based on the correction data stored in the correction data storage unit 73 (see the white square in FIG. 13B).
  • a correction pattern RPy (a straight line or a curve obtained from a plurality of white squares) indicating the relationship between the position in the Y-axis direction position and the correction amount in the Y-axis direction at that position is also determined.
  • “at least two product portions M” used for a plurality of machining origin corrections are selected so that both data of ⁇ X and ⁇ Y can be suitably obtained.
  • “correction data” is acquired based on the machining origin correction of the product portion M in one row along the X-axis direction and one row along the Y-axis direction.
  • “correction data” is acquired based on the machining origin correction of the product portion M aligned on the diagonal line of the workpiece W. Since the deviation amount ( ⁇ X, ⁇ Y) tends to increase as the distance from the clamper 53 increases, the product portion M selected to acquire “correction data” includes the product portion M far from the clamper 53.
  • the “correction data” includes not only the deviation amounts ( ⁇ X, ⁇ Y) calculated by the deviation amount calculation unit 61 but also the correction amounts ( ⁇ X, ⁇ Y) corrected by the origin correction unit 63.
  • the second origin correction unit 77 is not used for a plurality of machining origin corrections (on the same workpiece W).
  • the machining origin position on the machining program is corrected. Accordingly, the machining origin position of the laser machining is corrected with respect to the other product part M (not used for the plurality of machining origin corrections) on the same workpiece W or the plurality of product parts M on the other workpiece W. be able to.
  • the same workpiece is determined based on the correction pattern (RPx, RPy) determined based on the correction data.
  • the machining origin position of another product part M on W or a plurality of product parts M on another workpiece W is corrected. For this reason, even if the dimension of the workpiece W is changed by punching including molding (e.g., the elongation indicated by the white arrow in FIG. 24 described above), the correction data created in advance is used to cause the change. Displacement of the processing origin position of laser processing can be easily and efficiently corrected on the processing program (processing program data can be corrected easily and efficiently).
  • the multi-task machine 1 according to the fourth embodiment will be described with reference to FIGS. 14 to 18.
  • the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted.
  • the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the NC device 57 of this embodiment includes an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a correction data storage unit 73, a correction pattern determination unit 75, and a first It has a function as the two origin correction unit 77.
  • the first Y-axis motor 47 and the X-axis motor 51 are controlled based on the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15. Thereafter, the punching unit 15 is controlled, and the workpiece W is punched (step S401). As shown in FIGS. 17 and 18 (excluding the product part M1 at the upper left) by punching, a reference hole (reference punch hole) Wh corresponding to each product part M is formed, and the product part M has a product. A hole (product punch hole) Mh and a pilot hole Mh ′ are formed.
  • dish mixing is started (step S402). Specifically, similarly to the punching process, the first Y-axis motor 47 and the X-axis motor 51 are controlled based on the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15. Thereafter, the punching section 15 is controlled, and the first upper left product portion M1 is dished (molded).
  • processing origin correction processing for dish-shaft processing is executed in the present embodiment (step S403).
  • processing origin correction processing for dish grinding will be described.
  • the processing origin correction processing for dish grinding according to the present embodiment is the same as the processing origin correction processing for laser processing according to the first embodiment.
  • the workpiece W is moved in the X-axis direction and the Y-axis direction relative to the imaging position P3 of the CCD camera 41 by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51.
  • the center position of the reference hole Wh on the machining program and the center position Gc of the image G of the CCD camera 41 are positioned so as to coincide with each other (step S501).
  • an image G of the reference hole Wh is captured by the CCD camera 41 (step S502).
  • the image acquisition unit 59 acquires the image G from the CCD camera 41 (step S503).
  • the deviation amount calculation unit 61 matches the center position of the reference hole Wh on the machining program (matched with the center position Gc of the image G in step 501) and the actual position of the reference hole Wh.
  • a deviation amount ( ⁇ X, ⁇ Y) from the center position Whc is calculated (step S504: see FIG. 6: the same as in the first embodiment).
  • the second origin correction unit 77 Based on the calculated deviation amount ( ⁇ X, ⁇ Y), the second origin correction unit 77 corrects the machining origin position on the machining program so that the deviation amount ( ⁇ X, ⁇ Y) becomes zero (step S505). This makes it possible to correct the processing origin position of dish grinding (molding).
  • step S403 the first Y-axis motor 47 and the X-axis motor 51 are controlled on the basis of the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15 in the same manner as the dish grinding already performed. The Thereafter, the punching unit 15 is controlled, and the dishing (molding) of the next product part M is resumed (step S404).
  • step S403 and step S404 are repeated until dishing (molding) of all product parts M is completed (step S405).
  • the processing of step S403 and step S404 is repeated for each dish milling of one product portion M.
  • step S403 and The process of step S404 may be repeated (that is, 10 product parts M are dished in one process of step S404). It should be noted that correction data similar to the correction data of the above-described third embodiment is generated during dishing (molding).
  • a processing origin correction process for laser processing is executed (step S406).
  • the first origin correction unit 63 performs laser processing in the same manner as in the third embodiment described above based on correction data (molding correction data) created during dishing of the product portion M. Correct the machining origin position. Thereby, the processing origin position of the laser processing can be corrected.
  • the “molding correction data” includes not only the deviation amounts ( ⁇ X, ⁇ Y) calculated by the deviation amount calculation unit 61 but also the correction amounts ( ⁇ X, ⁇ Y) corrected by the origin correction unit 63. included.
  • the processing origin position of the laser processing is corrected based on the correction data of the forming processing.
  • the machining origin correction process see FIG. 5 in the first embodiment or the machining origin correction process (see FIG. 10) in the second embodiment may be performed.
  • step S406 the X-axis motor 51, the second Y-axis motor 55, and the like are controlled based on the machining program, and the laser irradiation unit moves the workpiece W in the X-axis direction and the Y-axis direction with respect to the irradiation position P2.
  • laser processing laser cutting
  • step S407 the processes from step S401 to step S407 are repeated until the combined machining of the target number of workpieces W is completed (step S408).
  • machining origin positions of the plurality of product parts M on the workpiece W are corrected. For this reason, even if the dimension of the workpiece W is changed by punching including forming (elongation indicated by the white arrow in FIG. 24 described above), the laser caused by the change using the correction data described above. Displacement of the machining origin position of machining can be easily and efficiently corrected on the machining program (machining program data can be easily and efficiently corrected).
  • the combined accuracy of punching and laser processing including molding processing can be maintained high, and the product formed before laser processing with respect to the contour of the product formed by laser processing (laser cutting)
  • the relative displacement between the hole Mh and the product molding portion Mf (for example, caused by the displacement of the workpiece W due to dish-shaping) can be suppressed, and the product processing accuracy (product accuracy) can be sufficiently improved.
  • the machining accuracy (product accuracy) of the product can be further improved.
  • a multi-tasking machine 1 according to a fifth embodiment will be described with reference to FIGS. 19 and 20.
  • the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted.
  • the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the NC device 57 of the present embodiment is the same as the NC device 57 of the present embodiment in that an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a trajectory formation unit 65, a correction It has functions as a data storage unit 73, a correction pattern determination unit 75, and a second origin correction unit 77.
  • the processing origin correction processing for dishing As the processing origin correction processing for dishing (see step S403 in FIG. 15 and FIG. 16), the processing origin correction processing for laser processing in the first embodiment (see FIGS. 5 and 6). The same processing was performed.
  • processing similar to the processing origin correction processing (see FIGS. 10 and 11) for laser processing in the second embodiment is performed as processing origin correction processing (see FIG. 20) for dish-shaping.
  • correction data is also generated during dish kneading in this embodiment.
  • the trajectory forming unit 65 controls the laser oscillator 37 to irradiate the low-power laser beam from the nozzle 35, and relative to the irradiation position P2 of the laser irradiation head 33, the trajectory forming unit 65 is a reference in the machining program. Circular movement around the center position of the hole Wh. As a result, a circular trajectory (marking line) T surrounding the reference hole Wh is formed on the workpiece W (step S601: see FIG. 11: similar to the second embodiment).
  • the workpiece W is picked up by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51, and the image pickup position P3 of the CCD camera 41.
  • the workpiece W is positioned so that the reference hole Wh can be imaged by being moved relative to the X axis direction and the Y axis direction.
  • an image G of the reference hole Wh including the locus T is captured by the CCD camera 41 (step S602: see FIG. 11: the same as in the second embodiment). That is, the image G includes an actual reference hole Wh and a trajectory T formed based on the center position of the reference hole Wh on the machining program.
  • the image acquisition unit 59 acquires the image G from the CCD camera 41 (step S603).
  • the deviation amount calculation unit 61 determines the center position Tc of the trajectory T (formed about the center position of the reference hole Wh on the machining program in step S601) and the reference hole Wh.
  • the deviation ( ⁇ X, ⁇ Y) from the actual center position Whc is calculated (step S604: see FIG. 11: the same as in the second embodiment).
  • the second origin correction unit 77 Based on the calculated deviation amounts ( ⁇ X, ⁇ Y), the second origin correction unit 77 corrects the machining origin position on the machining program so that the deviation amounts ( ⁇ X, ⁇ Y) become zero (step S605). This makes it possible to correct the processing origin position for dish mixing.
  • the trajectory T is formed on the workpiece W based on the center position of the reference hole Wh on the machining program, and the center position Tc of the trajectory T is determined based on the image G of the reference hole Wh including the trajectory T. Since the deviation amount ( ⁇ X, ⁇ Y) of the reference hole Wh from the actual center position Whc is calculated and the processing origin position of dish grinding (molding) in the machining program is corrected, before the dish grinding Even if the dimension of the workpiece W is changed by punching including forming (such as elongation indicated by the white arrow in FIG. 24 described above), the deviation of the processing origin position of the dishing process due to the change is processed. Can be modified on the program (processing program data can be modified).
  • the deviation of the processing origin position of laser processing can be easily and efficiently corrected on the processing program (processing program data). Can be modified easily and efficiently). That is, according to the present embodiment, as in the fourth embodiment described above, the combined accuracy of punching including molding and laser processing can be maintained high, and the product processing accuracy (product accuracy) can be sufficiently improved. be able to.
  • FIGS. 21 and 22 A multi-tasking machine 1 according to a sixth embodiment will be described with reference to FIGS. 21 and 22. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the NC device 57 of the present embodiment includes an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a second origin correction unit 77, and a deviation amount storage unit [displacement storage].
  • the NC device 57 may include a trajectory forming unit 65, a correction data storage unit 73, and a correction pattern determining unit 75 in accordance with the processing origin correction process of laser processing.
  • the processing origin correction process (method) of dish grinding (molding) in this embodiment will be described below, including descriptions of the correction data storage unit 73, the deviation amount storage unit 79, and the deviation pattern determination unit 81. .
  • At least two product parts M are dished (molded).
  • the “at least two product portions M” to be dish-milled in advance are selected so that both ⁇ X and ⁇ Y data can be suitably obtained.
  • the preferable selection of the product part M for acquiring data is the same as the selection of the product part M for acquiring “correction data” in the third embodiment described above.
  • the CCD camera 41 captures an image G of the reference hole Wh of at least two product portions M that have been dished.
  • the image acquisition unit 59 acquires all the images G from the CCD camera 41.
  • the deviation amount calculation unit 61 determines the center position of the reference hole Wh on the processing program based on each image G (the center position of the image G). The amount of deviation ( ⁇ X, ⁇ Y) between the reference center Whc and the actual center position Whc is calculated. All the calculated shift amounts ( ⁇ X, ⁇ Y) are stored in the shift amount storage unit 79 (see the white triangle in FIG. 22A and the white square in FIG. 22B).
  • the deviation pattern determination unit 81 determines the X-axis direction position of the machining reference position (the center position of the reference hole Wh on the machining program) based on the deviation amount ⁇ X in the X-axis direction stored in the deviation amount storage unit 79.
  • a shift pattern SPx (a straight line or a curve obtained from a plurality of white triangles) indicating the relationship with the shift amount ⁇ X in the X-axis direction at that position is determined.
  • the deviation pattern determination unit 81 is based on the deviation amount ⁇ Y in the Y-axis direction stored in the deviation amount storage unit 79, and the Y-axis direction position of the machining reference position (the center position of the reference hole Wh on the machining program).
  • a displacement pattern SPy (a straight line or a curve obtained from a plurality of white squares) indicating the relationship between the displacement amount ⁇ Y in the Y-axis direction at that position.
  • the second origin correction unit 77 is another product part M on the same workpiece W (which is not subjected to dish kneading), or Then, with respect to the plurality of product parts M on the other workpiece W, the processing origin position of the dish grinding is corrected. Therefore, it is possible to correct the processing origin position of dish milling for other product parts M on the same workpiece W (not dish-milled) or a plurality of product parts M on other workpieces W. it can.
  • the origin machining position of the laser machining position is also corrected by the first origin correction unit 63 by the same process as in any of the first to fifth embodiments.
  • the origin machining position correction process of the laser machining position may be performed based on the above-described correction pattern (RPx, RPy), or may be performed based on the deviation pattern (SPx, SPy).
  • the processing origin position of the dish grinding process of the other product parts M on the same work W or the plurality of product parts M on the other work W is corrected. For this reason, even if the dimension of the workpiece W is changed by punching including dishing (molding) (e.g., the elongation indicated by the white arrow in FIG. 24 described above) The deviation of the processing origin position of dish milling due to the above change can be easily and efficiently corrected on the processing program (processing program data can be corrected easily and efficiently).
  • the processing origin position of laser processing is also corrected, it is possible to maintain a high combined accuracy of punch processing including dish milling (molding processing) and laser processing, and processing accuracy of the product (product Accuracy) can be sufficiently improved.
  • a multi-tasking machine 1 according to a seventh embodiment will be described with reference to FIG. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the NC device 57 of the present embodiment is the same as the NC device 57 of the present embodiment, in that an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a trajectory formation unit 65, It has functions as a two-origin correction unit 77, a deviation amount storage unit 79, and a deviation pattern determination unit 81. Further, the NC device 57 may include a correction data storage unit 73 and a correction pattern determination unit 75 in accordance with the processing origin correction process of laser processing.
  • the processing origin correction process (method) for dish-shaping (molding) in the present embodiment will be described below.
  • the same technique (see FIG. 6) as the processing origin correction process of laser processing in the first embodiment is used to calculate the deviation amount ( ⁇ X, ⁇ Y).
  • the same method (see FIG. 11) as the processing origin correction process of laser processing in the second embodiment is used to calculate the deviation amount ( ⁇ X, ⁇ Y).
  • the “at least two product portions M” on which the dishing is performed in advance is selected so that both ⁇ X and ⁇ Y data can be suitably obtained.
  • the preferable selection of the product part M for acquiring data is the same as the selection of the product part M for acquiring “correction data” in the third embodiment described above.
  • the locus forming unit 65 controls the laser oscillator 37 to irradiate the low-power laser beam from the nozzle 35 and controls the workpiece W as a reference in the machining program, similarly to the laser beam machining origin correction process in the second embodiment. Circular movement around the center position of the hole Wh. As a result, a circular trajectory T that surrounds each reference hole Wh of at least two product parts M on which dishing has been performed is formed.
  • images G (including the trajectory T) of the reference holes Wh of the at least two product portions M that have been dished by the CCD camera 41 are displayed.
  • Imaged The image acquisition unit 95 acquires all the images G from the CCD camera 41.
  • the deviation amount calculation unit 61 is based on each image G and has a trajectory T (centering on the center position of the reference hole Wh on the machining program).
  • the amount of deviation ( ⁇ X, ⁇ Y) between the center position Tc (which is formed) and the actual center position Whc of the reference hole Wh is calculated. All the calculated shift amounts ( ⁇ X, ⁇ Y) are stored in the shift amount storage unit 79.
  • the deviation pattern determination unit 81 is based on the deviation amount ⁇ X in the X-axis direction stored in the deviation amount storage unit 79 and shows a relationship between the X-axis direction position of the processing origin and the deviation amount ⁇ X in the X-axis direction.
  • a pattern SPx (see FIG. 22A: the same as in the sixth embodiment) is determined.
  • the deviation pattern determination unit 81 indicates the relationship between the Y-axis direction position of the processing origin and the Y-axis direction deviation amount ⁇ Y based on the Y-axis direction deviation amount ⁇ Y stored in the deviation amount storage unit 79.
  • the shift pattern SPy (see FIG. 22B: the same as in the sixth embodiment) is determined.
  • the second origin correction unit 77 is another product part M on the same workpiece W (which is not subjected to dish kneading), or Then, with respect to the plurality of product parts M on the other workpiece W, the processing origin position of the dish grinding is corrected. Therefore, it is possible to correct the processing origin position of dish milling for other product parts M on the same workpiece W (not dish-milled) or a plurality of product parts M on other workpieces W. it can.
  • the origin machining position of the laser machining position is also corrected by the first origin correction unit 63 by the same process as in any of the rudder 1 to the fifth embodiment.
  • the origin machining position correction process of the laser machining position may be performed based on the above-described correction pattern (RPx, RPy), or may be performed based on the deviation pattern (SPx, SPy).
  • the processing origin position of the dish grinding process of the other product parts M on the same work W or the plurality of product parts M on the other work W is corrected. For this reason, even if the dimension of the workpiece W is changed by punching including dishing (molding) (e.g., the elongation indicated by the white arrow in FIG. 24 described above) The deviation of the processing origin position of dish milling due to the above change can be easily and efficiently corrected on the processing program (processing program data can be corrected easily and efficiently).
  • the processing origin position of laser processing is also corrected, it is possible to maintain a high combined accuracy of punch processing including dish milling (molding processing) and laser processing, and processing accuracy of the product (product Accuracy) can be sufficiently improved.
  • the laser processing in the above embodiment may not be laser cutting along the contour of the product part M, and in that case, the product part M may be separated from the workpiece W by punching.
  • the scope of rights included in the invention of the laser processing machine is not limited to the combined processing machine as in the above embodiment, and the laser is applied to the product portion M of the workpiece W punched by another punch press (processing machine). Also includes a laser processing machine that performs processing. Furthermore, the scope of the invention of the composite processing system includes not only a composite processing system composed of one composite processing machine but also a composite processing system in which one punch press and one laser processing machine are combined. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

In the present invention, a laser processing machine comprises: a laser irradiation unit; an imaging unit that captures an image of a reference hole that has been pre-formed corresponding to at least one of a plurality of product portions on a workpiece; a workpiece moving unit that moves the workpiece horizontally relative to an irradiation position of the laser irradiation unit and an imaging position of the imaging unit; an image acquisition unit that acquires the image from the imaging unit after the workpiece has been moved by the workpiece moving unit based on a position of the reference hole in a processing program and the image has been captured by the imaging unit; and a first origin correction unit that, prior to laser processing by the laser irradiation unit, corrects a processing origin position of laser processing in the processing program, on the basis of the acquired image.

Description

レーザ加工機、複合加工システム、複合加工機、及び、加工原点補正方法Laser processing machine, combined processing system, combined processing machine, and processing origin correction method
 本発明は、レーザ加工機[laser processing machine]、レーザ加工を含む複数の加工を行う複合加工システム[combined working system]及び複合加工機[combined working machine]、並びに、加工原点補正方法[method for correcting a working original point]に関する。 The present invention relates to a laser processing machine [laser processing machine], a combined processing system [combined processing system] that performs a plurality of processing including laser processing, a combined processing system [combined processing system], and a processing origin correction method [method for correction]. a working original point].
 近年、板状のワークを複合加工(パンチ加工[punching]及びレーザ加工[laser processing][レーザ切断[laser cutting]])する複合加工機(複合タイプのレーザ加工機[combined-type laser processing machine])が広く使用されている。一般的な複合加工機は、パンチ加工部[punching unit]と、レーザ照射部[laser emitter]と、ワーク移動部[workpiece carrier]とを具備している。ワーク移動部は、パンチ加工位置[punching position](加工プログラム上の[in a working program]パンチ加工位置)及びレーザ照射部の照射位置[emitting position](加工プログラム上の照射位置、照射基準位置[emission reference position])に対して相対的に、ワークをX軸方向及びY軸方向(水平方向)に移動する。また、一般的な複合加工機は、パンチ加工部、レーザ照射部、及び、ワーク移動部を、加工プログラムに基づいて制御するNC(Numerical Control)装置[NC (Numerical Control) device](制御部[controller])を具備している。 In recent years, complex processing machines (combined-type laser processing (machine combined type laser processing [machine]) that process plate-like workpieces (punching and laser processing [laser processing] [laser cutting]) ) Is widely used. A general multi-tasking machine includes a punching unit [punchinglasunit], a laser irradiation unit [laser emitter], and a workpiece moving unit [workpiece carrier]. The workpiece moving unit includes a punching position [punching position] ([in a working program] punching position on the machining program) and an irradiation position [emitting position] (irradiation position on the machining program, irradiation reference position [ The workpiece is moved in the X-axis direction and the Y-axis direction (horizontal direction) relative to “emission (reference) position]). In addition, a general multi-task machine has an NC (Numerical Control) device [NC (Numerical Control) device] (control unit [Control Unit [] controller]).
 レーザ加工前のワークの一例が図24に示されている。ワーク移動部201のクランパ203に把持された板状のワークW上の製品部分[product portion(s)](製品となる部分[portion(s) to be a product])Mには、パンチ加工部による打ち抜き加工[blanking](パンチ加工の一種)によって製品穴[product hole](製品パンチ穴[product punched hole])Mhが形成されると共に、パンチ加工部による皿もみ加工[countersinking](成形加工[forming process]の一種:成形加工はパンチ加工の一種)によって製品成形部[product formed portion]Mfが形成されている。また、各製品部分Mの近傍には、レーザ加工の開始点としての基準穴[reference hole](基準パンチ穴[punched reference hole])Whがパンチ加工部による打ち抜き加工によって形成されている。なお、皿もみ加工による製品成形部Mfの形成前には、予め、打ち抜き加工によって下穴[pilot hole]Mh’が形成される。 An example of a workpiece before laser processing is shown in FIG. The product portion [product portion (s)] (product portion [portion (s) to be a product]) M on the plate-like workpiece W held by the clamper 203 of the workpiece moving unit 201 has a punching portion. Product hole [product hole] (product punched hole) Mh is formed by blanking [blanking] (a type of punching), and countersinking (countersinking) (molding [ A product forming part [product formed portion] Mf is formed by a kind of forming process: a forming process is a kind of punching process. Further, in the vicinity of each product portion M, a reference hole [reference hole] (reference punch hole) as a starting point of laser processing is formed by punching by a punching portion. A pilot hole Mh ′ is formed in advance by punching before the product forming portion Mf is formed by dishing.
 なお、下記特許文献1及び2は、本発明に関連する先行技術を開示している。 Note that Patent Documents 1 and 2 below disclose prior art related to the present invention.
日本国特開2013-154383号公報Japanese Unexamined Patent Publication No. 2013-154383 日本国特開2013-146733号公報Japanese Unexamined Patent Publication No. 2013-146733
 図24に示されるように、製品部分Mに打ち抜き加工等のパンチ加工や皿もみ加工等の成形加工を行うと、ワークWがX軸方向及びY軸方向の伸び(図24中の白矢印参照)、パンチ加工や成形加工の進展に伴って伸びがX軸方向及びY軸方向に累積される。このため、ワークWへのパンチ加工や成形加工回数が多いと、ワークWの位置ずれが生じ、製品の加工精度(製品精度)が低下する。 As shown in FIG. 24, when a punching process such as punching or a forming process such as dishing is performed on the product portion M, the workpiece W expands in the X-axis direction and the Y-axis direction (see white arrows in FIG. 24). ) Elongation is accumulated in the X-axis direction and the Y-axis direction with the progress of punching and molding. For this reason, if the number of times punching or forming is performed on the workpiece W, the workpiece W is displaced and the processing accuracy (product accuracy) of the product is lowered.
 なお、この問題は、複合加工機(パンチ加工及びレーザ加工)においてだけでなく、パンチプレスによってワークWの製品部分Mにパンチ加工や成形加工を行った後にレーザ加工機でワークWの製品部分Mにレーザ加工を行う場合にも、同様に生じる。 This problem is not limited to the combined processing machine (punch processing and laser processing), but the product portion M of the workpiece W is processed by the laser processing machine after punching or forming the product portion M of the workpiece W by a punch press. The same occurs when laser processing is performed.
 本発明の目的は、上記の問題を解決することのできるレーザ加工機、複合加工システム、複合加工機、及び、加工原点補正方法を提供することにある。 An object of the present invention is to provide a laser processing machine, a combined processing system, a combined processing machine, and a processing origin correction method capable of solving the above-described problems.
 本発明の第1の特徴は、板状のワークを成形加工した後に、加工プログラムに基づいて前記ワーク上の複数の製品部分をレーザ加工するレーザ加工機であって、前記ワークにレーザ光を照射するレーザ照射部と、前記ワーク上の前記複数の製品部分の少なくとも一つに対応して予め形成された基準穴の画像を撮像する撮像部と、前記レーザ照射部の照射位置及び前記撮像部の撮像位置に対して、前記ワークを相対的に水平方向に移動するワーク移動部と、前記加工プログラム上の前記基準穴の位置に基づいて前記ワーク移動部を制御して前記ワークを前記撮像位置に対して相対的に前記水平方向に位置決めし、前記撮像部を制御して前記画像を撮像した後に前記撮像部から前記画像を取得する画像取得部と、前記レーザ照射部によるレーザ加工前に、前記画像取得部によって取得された前記画像に基づいて、前記加工プログラム上のレーザ加工の加工原点位置を補正する第1原点補正部と、を備えている、レーザ加工機を提供する。 A first feature of the present invention is a laser processing machine that laser-processes a plurality of product parts on the workpiece based on a machining program after forming a plate-shaped workpiece, and irradiates the workpiece with laser light. A laser irradiation unit, an imaging unit that captures an image of a reference hole formed in advance corresponding to at least one of the plurality of product parts on the workpiece, an irradiation position of the laser irradiation unit, and an imaging unit A workpiece moving unit that moves the workpiece relatively in the horizontal direction with respect to the imaging position, and the workpiece moving unit is controlled based on the position of the reference hole on the machining program to bring the workpiece into the imaging position. An image acquisition unit that positions the image in the horizontal direction relative to the image pickup unit and controls the image pickup unit to pick up the image and then acquires the image from the image pickup unit; and a laser by the laser irradiation unit. Provided is a laser processing machine comprising a first origin correction unit that corrects a machining origin position of laser machining on the machining program based on the image acquired by the image acquisition unit before construction. .
 なお、ここで、「レーザ加工機」は、レーザ加工のみを行うレーザ加工機だけでなく、パンチ加工も行える複合加工機も含む。また、「成形加工」は、パンチ加工の一種であり、皿もみ加工及びバーリング加工[burring]等を含む。また、「基準穴」は、加工(成形加工及びレーザ加工を含む)の原点の補正のための基準となる穴であり、レーザ加工の開始点として形成されたパンチ穴、製品の内側に形成された製品穴(製品パンチ穴)、及び、製品の外側に形成されたパンチ穴を含む。 Here, the “laser processing machine” includes not only a laser processing machine that performs only laser processing but also a complex processing machine that can perform punching. The “forming process” is a kind of punching process, and includes a dishing process and a burring process. The “reference hole” is a hole that serves as a reference for correcting the origin of processing (including molding processing and laser processing), and is a punch hole formed as the starting point of laser processing, formed inside the product. Product holes (product punch holes) and punch holes formed on the outside of the product.
 本発明の第2の特徴は、板状のワークに成形加工を含むパンチ加工とレーザ加工とを行う複合加工システムであって、上記第1の特徴のレーザ加工機と、成形加工を含むパンチ加工を前記加工プログラムに基づいて前記複数の製品部分に行うパンチ加工部と、を備えており、前記ワーク移動部が、前記ワークを、前記パンチ加工部のパンチ加工位置に対しても水平方向に移動し、前記撮像部が、前記成形加工中に前記画像を撮像すると共に、前記画像取得部が、前記成形加工中に前記画像を取得し、前記複合加工システムが、前記画像取得部によって取得された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正する第2原点補正部をさらに備えている、複合加工システムを提供する。 A second feature of the present invention is a combined processing system that performs punching including laser processing and laser processing on a plate-like workpiece, and includes the laser processing machine according to the first feature and punching including molding. A punching unit that performs the processing on the plurality of product parts based on the machining program, and the workpiece moving unit moves the workpiece in the horizontal direction even with respect to the punching position of the punching unit. The image capturing unit captures the image during the molding process, the image acquisition unit acquires the image during the molding process, and the composite processing system is acquired by the image acquisition unit. Provided is a combined machining system further comprising a second origin correction unit that corrects the machining origin position of the molding process on the machining program based on the image.
 なお、「複合加工システム」とは、パンチ加工を行う1台のパンチプレスと、レーザ加工を行う1台のレーザ加工機とを組み合わせたシステムだけでなく、パンチ加工とレーザ加工とを行う1台の複合加工機のみを備えたシステムも含む。また、「補正データ」は、加工原点位置の補正量と、その補正量に関連するデータも含む。 The “composite processing system” is not only a system that combines a single punch press that performs punching and a single laser processing machine that performs laser processing, but also one that performs punching and laser processing. This includes systems equipped with only these multi-task machines. The “correction data” also includes a correction amount of the machining origin position and data related to the correction amount.
 本発明の第3の特徴は、加工プログラムに基づいて前記ワーク上の複数の製品部分を成形加工する複合加工機であって、前記ワークにレーザ光を照射するレーザ照射部と、前記ワーク上の前記複数の製品部分の少なくとも一つに対応して予め形成された基準穴の画像を撮像する撮像部と、前記レーザ照射部の照射位置及び前記撮像部の撮像位置に対して、前記ワークを相対的に水平方向に移動するワーク移動部と、前記加工プログラム上の前記基準穴の位置に基づいて前記ワーク移動部を制御して前記ワークを前記撮像位置に対して相対的に前記水平方向に位置決めし、前記撮像部を制御して前記画像を撮像した後に前記撮像部から前記画像を取得する画像取得部と、前記画像取得部によって取得された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正する第2原点補正部と、を備えている、複合加工機を提供する。 A third feature of the present invention is a multi-tasking machine that forms a plurality of product parts on the workpiece based on a machining program, a laser irradiation unit that irradiates the workpiece with laser light, and a workpiece on the workpiece. An imaging unit that captures an image of a reference hole formed in advance corresponding to at least one of the plurality of product parts, an irradiation position of the laser irradiation unit, and a relative position of the workpiece with respect to the imaging position of the imaging unit A workpiece moving portion that moves horizontally in a horizontal direction and controls the workpiece moving portion based on the position of the reference hole on the machining program to position the workpiece in the horizontal direction relative to the imaging position. Then, after controlling the imaging unit to capture the image, the image acquisition unit acquires the image from the imaging unit, and the processing process is performed based on the image acquired by the image acquisition unit. And it includes a second origin correction unit for correcting the machining origin position of the molding on the ram, and provides a composite processing machine.
 本発明の第4の特徴は、板状のワークへの成形加工後の、加工プログラムに基づく前記ワーク上の複数の製品部分へのレーザ加工のための加工原点補正方法であって、[a]前記複数の製品部分の少なくとも一つに対応して基準穴を形成し、[b]前記加工プログラム上の前記基準穴の位置に基づいて前記基準穴の画像を撮像し、[c]撮像された前記画像に基づいて、前記加工プログラム上のレーザ加工の加工原点位置を補正し、[d]補正された前記加工原点位置に基づいて、前記複数の製品部分の前記少なくとも一つをレーザ加工する、加工原点補正方法を提供する。 A fourth feature of the present invention is a processing origin correction method for laser processing of a plurality of product parts on the workpiece based on a processing program after forming the plate-shaped workpiece, [a] A reference hole is formed corresponding to at least one of the plurality of product parts, [b] an image of the reference hole is taken based on the position of the reference hole on the machining program, and [c] the image is taken Correcting the processing origin position of laser processing on the processing program based on the image, and [d] laser processing at least one of the plurality of product parts based on the corrected processing origin position; Provide machining origin correction method.
 本発明の第5の特徴は、加工プログラムに基づく板状のワーク上の複数の製品部分への成形加工のための加工原点補正方法であって、[A]前記複数の製品部分の少なくとも一つに対応して基準穴を形成し、[B]前記加工プログラム上の前記基準穴の位置に基づいて前記基準穴の画像を撮像し、[C]撮像された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正し、[D]補正された前記加工原点位置に基づいて、前記複数の製品部分の前記少なくとも一つを成形加工する、加工原点補正方法を提供する。 A fifth feature of the present invention is a machining origin correction method for forming a plurality of product parts on a plate-like workpiece based on a machining program, and [A] at least one of the plurality of product parts. And [B] an image of the reference hole based on the position of the reference hole on the processing program, and [C] the processing program based on the captured image. Provided is a machining origin correction method in which the machining origin position of the above molding process is corrected, and [D] the at least one of the plurality of product parts is molded based on the corrected machining origin position.
図1は、第1~第6実施形態に係る複合加工機(システム)の側面図である。FIG. 1 is a side view of a multi-task machine (system) according to first to sixth embodiments. 図2は、図1中のII-II線に沿った平面図である。FIG. 2 is a plan view taken along line II-II in FIG. 図3は、第1実施形態に係る複合加工機のブロック図である。FIG. 3 is a block diagram of the multi-tasking machine according to the first embodiment. 図4は、上記複合加工機の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the multi-task machine. 図5は、第1実施形態における加工原点補正処理のフローチャートである。FIG. 5 is a flowchart of processing origin correction processing in the first embodiment. 図6は、基準穴を示す平面図である(第1、第4及び第6実施形態)。FIG. 6 is a plan view showing a reference hole (first, fourth and sixth embodiments). 図7は、図8における矢印VIIで示される部分の拡大平面図である。FIG. 7 is an enlarged plan view of a portion indicated by an arrow VII in FIG. 図8は、打ち抜き加工及び皿もみ加工後のワークを示す平面図である。FIG. 8 is a plan view showing the workpiece after the punching process and the dishing process. 図9は、第2実施形態に係る複合加工機のブロック図である。FIG. 9 is a block diagram of a multi-tasking machine according to the second embodiment. 図10は、第2実施形態における加工原点補正処理のフローチャートである。FIG. 10 is a flowchart of processing origin correction processing in the second embodiment. 図11は、所定軌跡及び基準穴を示す平面図である(第2、第5及び第7実施形態)。FIG. 11 is a plan view showing a predetermined locus and a reference hole (second, fifth and seventh embodiments). 図12は、第3実施形態に係る複合加工機(複合加工システム)のブロック図である。FIG. 12 is a block diagram of a combined processing machine (combined processing system) according to the third embodiment. 図13(a)は、X軸方向の補正量及び補正パターンを示す図であり、図13(b)は、Y軸方向の補正量及び補正パターンを示す図である。FIG. 13A is a diagram illustrating a correction amount and a correction pattern in the X-axis direction, and FIG. 13B is a diagram illustrating a correction amount and a correction pattern in the Y-axis direction. 図14は、第4実施形態に係る複合加工機(複合加工システム)のブロック図である。FIG. 14 is a block diagram of a combined processing machine (combined processing system) according to the fourth embodiment. 図15は、上記複合加工機の動作を示すフローチャートである。FIG. 15 is a flowchart showing the operation of the multi-task machine. 図16は、第4実施形態における加工原点補正処理のフローチャートである。FIG. 16 is a flowchart of processing origin correction processing in the fourth embodiment. 図17は、図18における矢印XVIIで示される部分の拡大平面図である。FIG. 17 is an enlarged plan view of a portion indicated by an arrow XVII in FIG. 図18は、皿もみ加工中のワークを示す平面図である。FIG. 18 is a plan view showing the workpiece during dish-shaping. 図19は、第5実施形態に係る複合加工機(複合加工システム)のブロック図である。FIG. 19 is a block diagram of a combined processing machine (combined processing system) according to the fifth embodiment. 図20は、第5実施形態における加工原点補正処理のフローチャートである。FIG. 20 is a flowchart of processing origin correction processing in the fifth embodiment. 図21は、第6実施形態に係る複合加工機(複合加工システム)のブロック図である。FIG. 21 is a block diagram of a combined processing machine (combined processing system) according to the sixth embodiment. 図22(a)は、X軸方向のずれ量及びずれパターンを示す図であり、図22(b)は、Y軸方向のずれ量及びずれパターンを示す図である。FIG. 22A is a diagram showing a deviation amount and a deviation pattern in the X-axis direction, and FIG. 22B is a diagram showing a deviation amount and a deviation pattern in the Y-axis direction. 図23は、第7実施形態に係る複合加工機(複合加工システム)のブロック図である。FIG. 23 is a block diagram of a combined processing machine (combined processing system) according to the seventh embodiment. 図24は、背景技術の説明図である。FIG. 24 is an explanatory diagram of the background art.
(第1実施形態)
 図1~図8を参照しつつ第1実施形態に係る複合加工機1を説明する。なお、図面中、「L」は左方向、「R」は右方向、「FF」は前方向、「FR」は後方向をそれぞれ指している。
(First embodiment)
A multi-task machine 1 according to the first embodiment will be described with reference to FIGS. In the drawings, “L” indicates the left direction, “R” indicates the right direction, “FF” indicates the front direction, and “FR” indicates the rear direction.
 図1及び図2に示されるように、複合加工機1は、加工プログラムに基づいて、板状のワークWの複数の製品部分(製品となる部分)Mに対してパンチ加工(皿もみ加工等の成形加工及び打ち抜き加工を含む)を行う。また、複合加工機1は、ワークWの製品部分Mにパンチ加工を行った後に、加工プログラムに基づいて、ワークWから切り出される複数の製品部分Mの輪郭[outline]に沿ってレーザ加工(レーザ切断)を行う。換言すれば、複合加工機1は、ワークWの製品部分Mにパンチ加工を行った後に、加工プログラムに基づいて、ワークWから切り出される複数の製品部分Mの輪郭に沿ってレーザ加工(レーザ切断)を行う複合加工システムである。 As shown in FIG. 1 and FIG. 2, the multi-tasking machine 1 performs punching (dish frying, etc.) on a plurality of product parts (parts to be products) M of a plate-like workpiece W based on a machining program. Forming process and punching process). In addition, the multi-task machine 1 performs laser machining (laser processing) along the outline of a plurality of product parts M cut out from the work W based on a machining program after punching the product part M of the work W. Disconnect). In other words, the multi-task machine 1 performs laser machining (laser cutting) along the contours of a plurality of product parts M cut out from the workpiece W based on a machining program after punching the product part M of the workpiece W. ).
 複合加工機1は、本体ベース[main body base]3を具備している。本体ベース3は、上下に[vertically]互いに対向された上部フレーム5及び下部フレーム7を備えている。下部フレーム7には、ワークWをX軸方向(水平方向:左右方向)及びY軸方向(水平方向:前後方向)に移動可能に支持する固定テーブル9が設けられている。固定テーブル9のX軸方向に沿った両側には、ワークWをX軸方向に移動可能に支持する可動テーブル11及び13が、Y軸方向に移動可能に下部フレーム7上に設けられている。 The multi-tasking machine 1 includes a main body base 3. The main body base 3 includes an upper frame 5 and a lower frame 7 which are vertically opposed to each other. The lower frame 7 is provided with a fixed table 9 that supports the workpiece W so as to be movable in the X-axis direction (horizontal direction: left-right direction) and the Y-axis direction (horizontal direction: front-rear direction). On both sides of the fixed table 9 along the X-axis direction, movable tables 11 and 13 that support the workpiece W so as to be movable in the X-axis direction are provided on the lower frame 7 so as to be movable in the Y-axis direction.
 本体ベース3には、加工プログラムに基づいて、製品部分Mにパンチ加工(皿もみ加工等の成形加工及び打ち抜き加工を含む)を行うパンチ加工部15が設けられている。具体的には、上部フレーム5には、複数の上部金型[upper tools]17を保持する上部タレット19が、鉛直軸心周りに回転可能に設けられている。また、下部フレーム7には、上部タレット19と上下に対向するように、複数の下部金型[lower tools]21を保持する下部タレット23が、鉛直軸心周りに回転可能に設けられている。上部タレット19及び下部タレット23をモータ(図示せず)によって同期回転させることで、所望の上部金型17及び所望の下部金型21をパンチ加工部15のパンチ加工位置(加工プログラム上のパンチ加工位置)P1に位置決めできる。上部タレット19の上方には、ラム25が、上下移動可能に上部フレーム5上に設けられている。ラム25は、油圧シリンダ(図示せず)によって上下移動される。更に、ラム25には、パンチ加工位置P1に位置決めされた上部金型17を上方から打圧するストライカー27が設けられている。 The main body base 3 is provided with a punching section 15 that performs punching (including forming and punching such as dishing) on the product portion M based on a processing program. Specifically, the upper frame 5 is provided with an upper turret 19 that holds a plurality of upper molds [upper tools] 17 so as to be rotatable around a vertical axis. The lower frame 7 is provided with a lower turret 23 that holds a plurality of lower molds [lower tools] 21 so as to face the upper turret 19 in the vertical direction so as to be rotatable around a vertical axis. By rotating the upper turret 19 and the lower turret 23 synchronously with a motor (not shown), the desired upper die 17 and the desired lower die 21 are punched at the punching position of the punching unit 15 (punch processing on the processing program). Position) It can be positioned at P1. Above the upper turret 19, a ram 25 is provided on the upper frame 5 so as to be movable up and down. The ram 25 is moved up and down by a hydraulic cylinder (not shown). Further, the ram 25 is provided with a striker 27 for hitting the upper die 17 positioned at the punching position P1 from above.
 パンチ加工部15から離された位置に、ワークWに向けてアシストガスを噴射しつつレーザ光を照射するレーザ照射部29が設けられている。具体的には、上部フレーム5には、Y軸スライダ31が、Y軸方向に移動可能に設けられている。Y軸スライダ31には、レーザ照射ヘッド33が設けられている。レーザ照射ヘッド33の先端には、アシストガスを噴射しつつレーザ光を照射するノズル35が設けられている。また、本体ベース3の近傍には、レーザ光を発振するレーザ発振器37が配設されている。レーザ発振器37は、レーザ照射ヘッド33と光学的に接続されている。さらに、本体ベース3の近傍には、アシストガスを供給するアシストガス供給源[assist gas supply unit](図示せず)が配設されている。アシストガス供給源は、レーザ照射ヘッド33と接続されている。レーザ照射ヘッド33のY軸方向に沿った移動領域に対して上下に対向する、固定テーブル9上の位置には、Y軸方向に延びる貫通長穴39が形成されている。貫通長穴39は、切断されて落下するスクラップ等を回収する回収ユニット(図示せず)に接続されている。 A laser irradiation unit 29 that irradiates a laser beam while injecting an assist gas toward the workpiece W is provided at a position separated from the punching unit 15. Specifically, a Y-axis slider 31 is provided on the upper frame 5 so as to be movable in the Y-axis direction. A laser irradiation head 33 is provided on the Y-axis slider 31. At the tip of the laser irradiation head 33, there is provided a nozzle 35 that emits laser light while ejecting an assist gas. A laser oscillator 37 that oscillates laser light is disposed in the vicinity of the main body base 3. The laser oscillator 37 is optically connected to the laser irradiation head 33. Further, in the vicinity of the main body base 3, an assist gas supply source (assist gas supply unit) (not shown) for supplying assist gas is disposed. The assist gas supply source is connected to the laser irradiation head 33. A through slot 39 extending in the Y-axis direction is formed at a position on the fixed table 9 that is vertically opposed to the moving area of the laser irradiation head 33 along the Y-axis direction. The through long hole 39 is connected to a recovery unit (not shown) that recovers scraps that are cut and dropped.
 レーザ照射ヘッド33の側部には、CCDカメラ(撮像部[imaging device])41が設けられている。CCDカメラ41は、例えば、ノズル35の交換の度に、パンチ加工部15によって予め形成された、製品部分Mに対応する基準パンチ穴Whの画像G(図6参照)を撮像する。また、レーザ照射ヘッド33(レーザ照射部29)によるレーザ光の照射位置(照射基準位置/加工プログラム上の照射位置)P2とCCDカメラ41による撮像位置(カメラ中心位置/加工プログラム上の撮像位置)P3との距離は、例えば特許文献1及び2に開示された公知の手法によってキャリブレーションされている。即ち、照射位置P2に対する撮像位置P3は相対的に設定されている。 A CCD camera (imaging device) 41 is provided on the side of the laser irradiation head 33. For example, each time the nozzle 35 is replaced, the CCD camera 41 captures an image G (see FIG. 6) of the reference punch hole Wh that is formed in advance by the punching unit 15 and that corresponds to the product portion M. Further, a laser beam irradiation position (irradiation reference position / irradiation position on the processing program) P2 by the laser irradiation head 33 (laser irradiation unit 29) and an imaging position (camera center position / imaging position on the processing program) by the CCD camera 41. The distance from P3 is calibrated by a known method disclosed in Patent Documents 1 and 2, for example. That is, the imaging position P3 is set relative to the irradiation position P2.
 固定テーブル9及び上部フレーム5等にわたって、ワーク移動部43が設けられている。ワーク移動部43は、ワークWを、パンチ加工位置P1、照射位置P2及び撮像位置P3に対して相対的に、X軸方向及びY軸方向に移動させる。具体的には、可動テーブル11の前部と可動テーブル13の前部との間には、両者を連結するようにX軸方向に伸びるキャレッジベース[carriage base]45が設けられている。上部フレーム5には、キャレッジベース45を可動テーブル11及び13と一体的にY軸方向に移動するための第1Y軸モータ47が設けられている。キャレッジベース45には、キャレッジ49が、X軸方向に移動可能に設けられている。キャレッジベース45には、キャレッジ49をX軸方向に移動するためのX軸モータ51も設けられている。キャレッジ49には、ワークWの側縁を把持するクランパ53が設けられている。上部フレーム5には、レーザ照射部29のY軸スライダ31をY軸方向に移動するための第2Y軸モータ55が設けられている。 The work moving part 43 is provided over the fixed table 9 and the upper frame 5 and the like. The workpiece moving unit 43 moves the workpiece W in the X-axis direction and the Y-axis direction relative to the punching position P1, the irradiation position P2, and the imaging position P3. Specifically, a carriage base 45 that extends in the X-axis direction is provided between the front portion of the movable table 11 and the front portion of the movable table 13 so as to connect the two. The upper frame 5 is provided with a first Y-axis motor 47 for moving the carriage base 45 in the Y-axis direction integrally with the movable tables 11 and 13. A carriage 49 is provided on the carriage base 45 so as to be movable in the X-axis direction. The carriage base 45 is also provided with an X-axis motor 51 for moving the carriage 49 in the X-axis direction. The carriage 49 is provided with a clamper 53 that holds the side edge of the workpiece W. The upper frame 5 is provided with a second Y-axis motor 55 for moving the Y-axis slider 31 of the laser irradiation unit 29 in the Y-axis direction.
 図3に示されるように、複合加工機1は、パンチ加工部15及びレーザ照射部29に加えて、NC装置57も備えている。NC装置57は、加工プログラムに基づいて、パンチ加工部15、レーザ照射部29、CCDカメラ41、及び、ワーク移動部43を制御する。NC装置57は、加工プログラムや金型情報等を記憶するメモリと、加工プログラムを解釈して実行するCPUとを備えている。NC装置57は、画像取得部[image retriever](画像取得モジュール[image retrieval module])59としての機能、ずれ量演算部[displacement calculator](ずれ量演算モジュール[displacement calculation module])61としての機能、及び、(第1)原点補正部63としての機能を有している。なお、画像取得部59、ずれ量演算部61、及び、原点補正部63については後述する。 As shown in FIG. 3, the multi-tasking machine 1 includes an NC device 57 in addition to the punching unit 15 and the laser irradiation unit 29. The NC device 57 controls the punching unit 15, the laser irradiation unit 29, the CCD camera 41, and the workpiece moving unit 43 based on the machining program. The NC device 57 includes a memory that stores a machining program, mold information, and the like, and a CPU that interprets and executes the machining program. The NC device 57 functions as an image acquisition unit [image retriever] (image acquisition module [image retrieval module]) 59, and functions as a displacement calculation unit [displacement calculator] (displacement calculation module [displacement calculation module]) 61. And (first) origin correction unit 63. The image acquisition unit 59, the deviation amount calculation unit 61, and the origin correction unit 63 will be described later.
 続いて、複合加工機1の動作を図4に示されるフローチャートを参照して説明する。 Subsequently, the operation of the multi-task machine 1 will be described with reference to the flowchart shown in FIG.
 加工プログラムに基づいて第1Y軸モータ47及びX軸モータ51が制御され、ワークWがパンチ加工部15のパンチ加工位置P1に位置決めされる。その後、パンチ加工部15が制御され、ワークWが打ち抜き加工及び皿もみ加工(成形加工)される(ステップS101)。打ち抜き加工及び皿もみ加工(成形加工)によって、図7及び図8に示されるように、製品部分Mに対応する基準穴(基準パンチ穴)Whが形成され、かつ、製品部分Mに製品穴(製品パンチ穴)Mh及び製品成形部Mfが形成される。なお、皿もみ加工による製品成形部Mfの形成前には、予め、打ち抜き加工によって下穴Mh’が形成される。 The first Y-axis motor 47 and the X-axis motor 51 are controlled based on the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15. Thereafter, the punching unit 15 is controlled, and the workpiece W is punched and dished (molded) (step S101). As shown in FIG. 7 and FIG. 8, a reference hole (reference punch hole) Wh corresponding to the product portion M is formed by punching and dishing (molding), and a product hole ( A product punch hole) Mh and a product molding portion Mf are formed. Note that the pilot hole Mh ′ is formed in advance by punching before forming the product forming portion Mf by dishing.
 打ち抜き加工及び皿もみ加工(成形加工)後、加工原点補正処理が実行される(ステップS102)。加工原点補正処理については、追って詳しく説明する。ステップS102の後、加工プログラムに基づいてX軸モータ51及び第2Y軸モータ55等が制御することで照射位置P2に対してワークWをX軸方向及びY軸方向に移動させつつ、レーザ照射部29を制御することで製品部分Mの輪郭に沿ってレーザ加工(レーザ切断)が行なわれる(ステップS103)。 After the punching process and dish grinding process (molding process), a process origin correction process is executed (step S102). The processing origin correction process will be described in detail later. After step S102, the X-axis motor 51, the second Y-axis motor 55, and the like are controlled based on the machining program, and the laser irradiation unit moves the workpiece W in the X-axis direction and the Y-axis direction with respect to the irradiation position P2. By controlling 29, laser processing (laser cutting) is performed along the contour of the product portion M (step S103).
 全ての製品部分Mのレーザ加工が終了するまで、ステップS102及びステップS103の処理が繰り返される(ステップS104)。さらに、目標枚数のワークWの複合加工が終了するまで、ステップS101~ステップS104までの処理が繰り返される(ステップS105)。なお、本実施形態では、一つの製品部分Mのレーザ加工毎にステップS102及びステップS103の処理が繰り返されたが、所定数(例えば10)の製品部分Mのレーザ加工毎にステップS102及びステップS103の処理が繰り返されてもよい(即ち、ステップS103の1回の処理で、10個の製品部分Mがレーザ切断される)。 Until the laser processing of all the product parts M is completed, the processes of step S102 and step S103 are repeated (step S104). Further, the processes from step S101 to step S104 are repeated until the combined machining of the target number of workpieces W is completed (step S105). In the present embodiment, the processing of step S102 and step S103 is repeated for each laser processing of one product part M. However, step S102 and step S103 are performed for each laser processing of a predetermined number (for example, 10) of product parts M. The above process may be repeated (that is, 10 product parts M are laser-cut by one process in step S103).
 続いて、画像取得部59、ずれ量演算部61、及び、原点補正部63の説明を含めて、上述した加工原点補正処理(ステップS102:加工原点補正方法)について、図5に示されるフローチャートを参照しつつ説明する。本実施形態の加工原点補正処理(方法)は、加工プログラムに基づく打ち抜き加工及び皿もみ加工(ステップS101)後の、加工プログラムに基づく製品部分Mのレーザ加工(ステップS103)の前に行われ、加工プログラム上の加工原点位置を補正する。 Next, the flowchart shown in FIG. 5 for the processing origin correction processing (step S102: processing origin correction method) described above, including the description of the image acquisition unit 59, the deviation amount calculation unit 61, and the origin correction unit 63. This will be described with reference to FIG. The processing origin correction process (method) of the present embodiment is performed before the laser processing (step S103) of the product part M based on the processing program after the punching processing and dish-shaping processing (step S101) based on the processing program, Correct the machining origin position on the machining program.
 なお、プログラム上の「加工原点」とは、加工の基準になる点を意味する。例えば、ワークWに関して一つの「加工原点」をプログラム上で設定し(例えば、図8に示されるワークWに左下の角)、レーザ加工などの加工がこの「加工原点」に基づいて行われる。あるいは、各製品部分Mに着目してみれば、基準穴Whの中心位置(加工基準位置)が、加工の基準になる点となるので、この加工基準位置を加工原点とみなすこともできる。即ち、プログラム上の「加工原点」とは、プログラムに基づく加工を行う際の基準点である。 In addition, the “machining origin” on the program means the point that becomes the standard of machining. For example, one “machining origin” for the workpiece W is set on the program (for example, the lower left corner of the workpiece W shown in FIG. 8), and machining such as laser machining is performed based on this “machining origin”. Alternatively, if attention is paid to each product part M, the center position (processing reference position) of the reference hole Wh becomes a reference point for processing, and therefore, this processing reference position can be regarded as the processing origin. That is, the “machining origin” on the program is a reference point for performing machining based on the program.
 まず、第1Y軸モータ47(及び/又は第2Y軸モータ55)並びにX軸モータ51によって、ワークWが、CCDカメラ41の撮像位置P3に対して相対的にX軸方向及びY軸方向に移動されて、加工プログラム上の基準穴Whの中心位置(加工基準位置)とCCDカメラ41の画像Gの中心位置Gc(図6参照)とが互いに一致するように位置決めされる(ステップS201)。ワークWが位置決めされた後、CCDカメラ41によって基準穴Whの画像Gを撮像される(ステップS202)。画像取得部59は、CCDカメラ41から画像Gを取得する(ステップS203)。 First, the workpiece W is moved in the X-axis direction and the Y-axis direction relative to the imaging position P3 of the CCD camera 41 by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51. Then, the center position (processing reference position) of the reference hole Wh on the processing program and the center position Gc (see FIG. 6) of the image G of the CCD camera 41 are positioned so as to coincide with each other (step S201). After the workpiece W is positioned, an image G of the reference hole Wh is taken by the CCD camera 41 (step S202). The image acquisition unit 59 acquires the image G from the CCD camera 41 (step S203).
 続いて、ずれ量演算部61が、画像Gに基づいて、加工プログラム上の基準穴Whの中心位置(ステップS201で画像Gの中心位置Gcと一致されている)と、基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)を演算する(ステップS204:図6参照)。原点補正部63は、演算されたずれ量(ΔX,ΔY)に基づいて、ずれ量(ΔX,ΔY)がゼロになるように加工プログラム上の加工原点位置を補正する(ステップS205)。これにより、レーザ加工の加工原点位置を補正することができる。 Subsequently, based on the image G, the deviation amount calculation unit 61 determines the center position of the reference hole Wh on the machining program (matched with the center position Gc of the image G in step S201) and the actual reference hole Wh. A deviation amount (ΔX, ΔY) from the center position Whc is calculated (step S204: see FIG. 6). Based on the calculated deviation amounts (ΔX, ΔY), the origin correction unit 63 corrects the machining origin position on the machining program so that the deviation amounts (ΔX, ΔY) become zero (step S205). Thereby, the processing origin position of the laser processing can be corrected.
 本実施形態によれば、画像Gに基づいて、(画像Gの中心位置Gcと一致されている)加工プログラム上の基準穴Whの中心位置と基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)が演算されて、加工プログラム上のレーザ加工の加工原点位置が補正されるので、レーザー加工より前に行われる成形加工を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、上記変化に起因するレーザ加工の加工原点位置のずれを加工プログラム上で修正できる(加工プログラムのデータを修正できる)。従って、成形加工を含むパンチ加工によって形成された基準パンチ穴Whや製品穴Mhの位置とレーザ加工の加工位置とのずれを防止できる。本実施形態では、レーザ加工によって製品部分Mの輪郭が切断されるので、切り出された製品上に基準パンチ穴Whや製品穴Mhが正確に配置される。 According to the present embodiment, based on the image G, the deviation amount between the center position of the reference hole Wh on the machining program (which is coincident with the center position Gc of the image G) and the actual center position Whc of the reference hole Wh. Since (ΔX, ΔY) is calculated and the processing origin position of laser processing on the processing program is corrected, even if the dimension of the workpiece W is changed by punch processing including molding processing performed before laser processing ( The above-described change in the processing origin position of the laser processing due to the change can be corrected on the processing program (processing program data can be corrected). Therefore, it is possible to prevent the position of the reference punch hole Wh or product hole Mh formed by punching including molding and the laser processing position from being shifted. In this embodiment, since the outline of the product part M is cut by laser processing, the reference punch hole Wh and the product hole Mh are accurately arranged on the cut out product.
 即ち、本実施形態によれば、成形加工を含むパンチ加工とレーザ加工との複合精度を高く維持でき、レーザ加工(レーザ切断)によって形成される製品の輪郭に対する、レーザ加工前に形成された製品穴Mh及び製品成形部Mfの相対的位置ずれ(例えば、皿もみ加工によるワークWの位置ずれなどによって生じる)を抑制して、製品の加工精度(製品精度)を十分に向上させることができる。 That is, according to this embodiment, the combined accuracy of punching and laser processing including molding processing can be maintained high, and the product formed before laser processing with respect to the contour of the product formed by laser processing (laser cutting) The relative displacement between the hole Mh and the product molding portion Mf (for example, caused by the displacement of the workpiece W due to dish-shaping) can be suppressed, and the product processing accuracy (product accuracy) can be sufficiently improved.
(第2実施形態)
 図9~図11を参照しつつ第2実施形態に係る複合加工機1を説明する。なお、本実施形態に係る複合加工機1も、上述した第1実施形態の図1及び図2に示される構成と同様の構成を備えている。従って、これらの同様の構成についての詳しい説明は省略する。また、上記第1実施形態の構成部位と同一又は同等の構成部位に関しては、同一の符号を付してその詳しい説明を省略する。
(Second Embodiment)
The multi-task machine 1 according to the second embodiment will be described with reference to FIGS. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. In addition, the same or equivalent components as those in the first embodiment are given the same reference numerals and detailed description thereof is omitted.
 図9に示されるように、本実施形態のNC装置57は、画像取得部59としての機能、ずれ量演算部61としての機能、及び、原点補正部63としての機能に加えて、軌跡形成部[track line marker]65としての機能を有している。 As shown in FIG. 9, the NC device 57 of this embodiment includes a trajectory forming unit in addition to a function as an image acquisition unit 59, a function as a deviation amount calculation unit 61, and a function as an origin correction unit 63. It functions as [track [line marker] 65.
 本実施形態においても、図4に示されるフローチャートの動作が行なわれるが、そのステップS102では、上述した第1実施形態の加工原点補正処理(方法)とは異なる加工原点補正処理(方法)が行われる。軌跡形成部65の説明も含めて、本実施形態における加工原点補正処理について、図10に示されるフローチャートを参照しつつ説明する。 Also in the present embodiment, the operation of the flowchart shown in FIG. 4 is performed. In step S102, a machining origin correction process (method) different from the machining origin correction process (method) of the first embodiment described above is performed. Is called. The processing origin correction processing in the present embodiment including the description of the locus forming unit 65 will be described with reference to the flowchart shown in FIG.
 まず、軌跡形成部65は、レーザ発振器37を制御してノズル35から低出力レーザ光を照射させつつ、レーザ照射ヘッド33の照射位置P2に対して相対的に、ワークWを加工プログラム上の基準穴Whの中心位置(加工基準位置)周りに円運動させる。この結果、ワークW上に、基準穴Whを囲む円状の軌跡(けがき線)Tが形成される(ステップS301:図11参照)。なお、「低出力レーザ光」とは、ワークを切断しない程度の出力のレーザ光である。また、ワークWの円運動の代わりに、ワークWの正多角形運動等の別の特定動作を行ってもよい。 First, the trajectory forming unit 65 controls the laser oscillator 37 to irradiate the low-power laser beam from the nozzle 35, and relative to the irradiation position P2 of the laser irradiation head 33, the trajectory forming unit 65 is a reference in the machining program. Circular movement around the center position (processing reference position) of the hole Wh. As a result, a circular locus (marking line) T surrounding the reference hole Wh is formed on the workpiece W (step S301: see FIG. 11). The “low output laser beam” is a laser beam with an output that does not cut the workpiece. Further, instead of the circular motion of the workpiece W, another specific operation such as a regular polygon motion of the workpiece W may be performed.
 次に、加工プログラム上の基準穴Whの中心位置に基づいて、第1Y軸モータ47(及び/又は第2Y軸モータ55)並びにX軸モータ51によって、ワークWが、CCDカメラ41の撮像位置P3に対して相対的にX軸方向及びY軸方向に移動されて、基準穴Whが撮像できるようにワークWが位置決めされる。ワークWが位置決めされた後、CCDカメラ41によって軌跡Tを含む基準穴Whの画像Gが撮像される(ステップS302:図11参照)。即ち、画像Gは、実際の基準穴Whと、加工プログラム上の基準穴Whの中心位置に基づいて形成された軌跡Tとを含でいる。画像取得部59は、CCDカメラ41から画像Gを取得する(ステップS303)。 Next, based on the center position of the reference hole Wh on the machining program, the workpiece W is picked up by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51, and the image pickup position P3 of the CCD camera 41. The workpiece W is positioned so that the reference hole Wh can be imaged by being moved relative to the X axis direction and the Y axis direction. After the workpiece W is positioned, an image G of the reference hole Wh including the locus T is taken by the CCD camera 41 (step S302: see FIG. 11). That is, the image G includes an actual reference hole Wh and a trajectory T formed based on the center position of the reference hole Wh on the machining program. The image acquisition unit 59 acquires the image G from the CCD camera 41 (step S303).
 続いて、ずれ量演算部61が、画像Gに基づいて、軌跡T(ステップS301で加工プログラム上の基準穴Whの中心位置を中心として形成されている)の中心位置Tcと、基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)を演算する(ステップS304:図11参照)。原点補正部63は、演算されたずれ量(ΔX,ΔY)に基づいて、ずれ量(ΔX,ΔY)がゼロになるように加工プログラム上の加工原点位置を補正する(ステップS305)。これにより、レーザ加工の加工原点位置を補正することができる。 Subsequently, based on the image G, the deviation amount calculation unit 61 determines the center position Tc of the trajectory T (formed about the center position of the reference hole Wh on the machining program in step S301) and the reference hole Wh. The deviation (ΔX, ΔY) from the actual center position Whc is calculated (step S304: see FIG. 11). The origin correction unit 63 corrects the machining origin position on the machining program based on the calculated deviation amounts (ΔX, ΔY) so that the deviation amounts (ΔX, ΔY) become zero (step S305). Thereby, the processing origin position of the laser processing can be corrected.
 本実施形態によれば、加工プログラム上の基準穴Whの中心位置に基づいてワークWに軌跡Tが形成され、軌跡Tを含む基準穴Whの画像Gに基づいて、軌跡Tの中心位置Tcと基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)が演算されて、加工プログラム上のレーザ加工の加工原点位置が補正されるので、レーザー加工より前に行われる成形加工を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、上記変化に起因するレーザ加工の加工原点位置のずれを加工プログラム上で修正できる(加工プログラムのデータを修正できる)。従って、成形加工を含むパンチ加工によって形成された基準パンチ穴Whや製品穴Mhの位置とレーザ加工の加工位置とのずれを防止できる。本実施形態でも、レーザ加工によって製品部分Mの輪郭が切断されるので、切り出された製品上に基準パンチ穴Whや製品穴Mhが正確に配置される。 According to the present embodiment, the trajectory T is formed on the workpiece W based on the center position of the reference hole Wh on the machining program, and the center position Tc of the trajectory T is determined based on the image G of the reference hole Wh including the trajectory T. Since the deviation amount (ΔX, ΔY) of the reference hole Wh from the actual center position Whc is calculated and the machining origin position of the laser machining on the machining program is corrected, the molding process performed before the laser machining is included. Even if the dimension of the workpiece W is changed by punching (e.g., the elongation indicated by the white arrow in FIG. 24 described above), the deviation of the processing origin position of the laser processing caused by the change can be corrected on the processing program (processing) Program data can be modified). Therefore, it is possible to prevent the position of the reference punch hole Wh or product hole Mh formed by punching including molding and the laser processing position from being shifted. Also in this embodiment, since the contour of the product part M is cut by laser processing, the reference punch hole Wh and the product hole Mh are accurately arranged on the cut out product.
 即ち、本実施形態によれば、上述した第1実施形態と同様に、成形加工を含むパンチ加工とレーザ加工との複合精度を高く維持でき、製品の加工精度(製品精度)を十分に向上させることができる。 That is, according to the present embodiment, as in the first embodiment described above, the combined accuracy of punching including molding and laser processing can be maintained high, and the product processing accuracy (product accuracy) can be sufficiently improved. be able to.
 (第3実施形態)
 図12を参照しつつ第3実施形態に係る複合加工機1を説明する。なお、本実施形態に係る複合加工機1も、上述した第1実施形態の図1及び図2に示される構成と同様の構成を備えている。従って、これらの同様の構成についての詳しい説明は省略する。また、上述した実施形態の構成部位と同一又は同等の構成部位に関しては、同一の符号を付してその詳しい説明を省略する。
(Third embodiment)
The multi-tasking machine 1 according to the third embodiment will be described with reference to FIG. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図12に示されるように、本実施形態のNC装置57は、上述した第1又は第2実施形態のNC装置57の機能に加えて、補正データ記憶部[corrected data storage](補正データ記憶モジュール[corrected data storage module])73としての機能、補正パターン決定部[correction pattern determiner](補正パターン決定モジュール[correction pattern determination module])75としての機能、及び、第2原点補正部77としての機能を有している。 As shown in FIG. 12, in addition to the functions of the NC device 57 of the first or second embodiment described above, the NC device 57 of this embodiment has a correction data storage unit [corrected data storage] (correction data storage module). [corrected data storage module]) 73 function, correction pattern determining unit [correction pattern determining module] (correction pattern determining module 75) function, and second origin correcting unit 77 function Have.
 補正データ記憶部73、補正パターン決定部75、及び、第2原点補正部77の説明も含めて、本実施形態における加工原点補正処理(方法)について、以下に説明する。 Processing origin correction processing (method) in this embodiment will be described below, including descriptions of the correction data storage unit 73, the correction pattern determination unit 75, and the second origin correction unit 77.
 本実施形態では、少なくとも二つ製品部分Mに基づいて加工原点位置の補正が行われ、それらの補正量が補正データとして補正データ記憶部73に記憶される。少なくとも二つ製品部分Mに関する加工原点補正処理は、上述した第1又は第2実施形態での加工原点補正処理によって行われる。その後、補正パターン決定部75が、補正データ記憶部73に記憶された補正データ(図13(a)中の白三角形参照)に基づいて、加工基準位置(加工プログラム上の基準穴Whの中心位置)のX軸方向位置とその位置でのX軸方向の補正量との関係を示す補正パターンRPx(複数の白三角形から得られる直線又は曲線)を決定する。同様に、補正パターン決定部75は、補正データ記憶部73に記憶された補正データ(図13(b)中の白四角形参照)に基づいて、加工基準位置(加工プログラム上の基準穴Whの中心位置)のY軸方向位置とその位置でのY軸方向の補正量との関係を示す補正パターンRPy(複数の白四角形から得られる直線又は曲線)も決定する。 In the present embodiment, the machining origin position is corrected based on at least two product parts M, and these correction amounts are stored in the correction data storage unit 73 as correction data. The machining origin correction process for at least two product parts M is performed by the machining origin correction process in the first or second embodiment described above. Thereafter, based on the correction data (see the white triangle in FIG. 13A) stored in the correction data storage unit 73, the correction pattern determination unit 75 determines the processing reference position (the center position of the reference hole Wh on the processing program). ) And a correction pattern RPx (a straight line or a curve obtained from a plurality of white triangles) indicating the relationship between the position in the X-axis direction and the amount of correction in the X-axis direction at that position. Similarly, the correction pattern determination unit 75 determines the processing reference position (the center of the reference hole Wh on the processing program) based on the correction data stored in the correction data storage unit 73 (see the white square in FIG. 13B). A correction pattern RPy (a straight line or a curve obtained from a plurality of white squares) indicating the relationship between the position in the Y-axis direction position and the correction amount in the Y-axis direction at that position is also determined.
 なお、本実施形態では、複数回の加工原点補正に用いられる「少なくとも二つの製品部分M」は、ΔX及びΔYの両方のデータが好適に得られるように選択されるのが好ましい。例えば、X軸方向に沿って1列及びY軸方向に沿って1列の製品部分Mの加工原点補正に基づいて「補正データ」が取得される。あるいは、ワークWの対角線上に並んでいる製品部分Mの加工原点補正に基づいて「補正データ」が取得される。なお、ずれ量(ΔX,ΔY)は、クランパ53から遠いほど大きくなる傾向があるので、「補正データ」を取得するために選択された製品部分Mには、クランパ53から遠い製品部分Mが含まれるのが好ましい。また「補正データ」には、ずれ量演算部61によって演算されたずれ量(ΔX,ΔY)だけでなく、原点補正部63によって補正された補正量(-ΔX,-ΔY)も含まれる。 In the present embodiment, it is preferable that “at least two product portions M” used for a plurality of machining origin corrections are selected so that both data of ΔX and ΔY can be suitably obtained. For example, “correction data” is acquired based on the machining origin correction of the product portion M in one row along the X-axis direction and one row along the Y-axis direction. Alternatively, “correction data” is acquired based on the machining origin correction of the product portion M aligned on the diagonal line of the workpiece W. Since the deviation amount (ΔX, ΔY) tends to increase as the distance from the clamper 53 increases, the product portion M selected to acquire “correction data” includes the product portion M far from the clamper 53. Preferably. The “correction data” includes not only the deviation amounts (ΔX, ΔY) calculated by the deviation amount calculation unit 61 but also the correction amounts (−ΔX, −ΔY) corrected by the origin correction unit 63.
 そして、第2原点補正部77は、補正パターン決定部75によって決定された補正パターン(RPx,RPy)に基づいて、複数回の加工原点補正に用いられなかった(同一ワークW上の)他の製品部分M、又は、他のワークW上の複数の製品部分Mに関して、加工プログラム上の加工原点位置を補正する。従って、同一ワークW上の(複数回の加工原点補正に用いられなかった)他の製品部分M、又は、他のワークW上の複数の製品部分Mに関して、レーザ加工の加工原点位置を補正することができる。 Then, based on the correction pattern (RPx, RPy) determined by the correction pattern determination unit 75, the second origin correction unit 77 is not used for a plurality of machining origin corrections (on the same workpiece W). For the product part M or a plurality of product parts M on another workpiece W, the machining origin position on the machining program is corrected. Accordingly, the machining origin position of the laser machining is corrected with respect to the other product part M (not used for the plurality of machining origin corrections) on the same workpiece W or the plurality of product parts M on the other workpiece W. be able to.
 本実施形態によれば、ワークW上の少なくとも二つの製品部分Mに基づく複数回の加工原点補正の後に、その補正データに基づいて決定された補正パターン(RPx,RPy)に基づいて、同一ワークW上の他の製品部分M、又は、他のワークW上の複数の製品部分Mの加工原点位置が補正される。このため、成形加工を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、予め作成した補正データを利用して、上記変化に起因するレーザ加工の加工原点位置のずれを加工プログラム上で簡単かつ効率よく修正できる(加工プログラムのデータを簡単かつ効率よく修正できる)。 According to this embodiment, after a plurality of machining origin corrections based on at least two product parts M on the workpiece W, the same workpiece is determined based on the correction pattern (RPx, RPy) determined based on the correction data. The machining origin position of another product part M on W or a plurality of product parts M on another workpiece W is corrected. For this reason, even if the dimension of the workpiece W is changed by punching including molding (e.g., the elongation indicated by the white arrow in FIG. 24 described above), the correction data created in advance is used to cause the change. Displacement of the processing origin position of laser processing can be easily and efficiently corrected on the processing program (processing program data can be corrected easily and efficiently).
 (第4実施形態)
 図14~図18を参照しつつ第4実施形態に係る複合加工機1を説明する。なお、本実施形態に係る複合加工機1も、上述した第1実施形態の図1及び図2に示される構成と同様の構成を備えている。従って、これらの同様の構成についての詳しい説明は省略する。また、上述した実施形態の構成部位と同一又は同等の構成部位に関しては、同一の符号を付してその詳しい説明を省略する。
(Fourth embodiment)
The multi-task machine 1 according to the fourth embodiment will be described with reference to FIGS. 14 to 18. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図14に示されるように、本実施形態のNC装置57は、画像取得部59、ずれ量演算部61、第1原点補正部63、補正データ記憶部73、補正パターン決定部75、及び、第2原点補正部77としての機能を有している。 As shown in FIG. 14, the NC device 57 of this embodiment includes an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a correction data storage unit 73, a correction pattern determination unit 75, and a first It has a function as the two origin correction unit 77.
 続いて、本実施形態の加工原点補正処理(方法)を含めて、複合加工システムとしての複合加工機1の動作を図15に示されるフローチャートを参照して説明する。 Subsequently, the operation of the multi-task machine 1 as a multi-task machining system including the machining origin correction process (method) of the present embodiment will be described with reference to a flowchart shown in FIG.
 加工プログラムに基づいて第1Y軸モータ47及びX軸モータ51が制御され、ワークWがパンチ加工部15のパンチ加工位置P1に位置決めされる。その後、パンチ加工部15が制御され、ワークWが打ち抜き加工される(ステップS401)。打ち抜き加工によって、図17及び図18(左上の製品部分M1を除く)に示されるように、各製品部分Mに対応する基準穴(基準パンチ穴)Whが形成され、かつ、製品部分Mに製品穴(製品パンチ穴)Mh及び下穴Mh’が形成される。 The first Y-axis motor 47 and the X-axis motor 51 are controlled based on the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15. Thereafter, the punching unit 15 is controlled, and the workpiece W is punched (step S401). As shown in FIGS. 17 and 18 (excluding the product part M1 at the upper left) by punching, a reference hole (reference punch hole) Wh corresponding to each product part M is formed, and the product part M has a product. A hole (product punch hole) Mh and a pilot hole Mh ′ are formed.
 打ち抜き加工後、皿もみ加工が開始される(ステップS402)。具体的には、打ち抜き加工と同様に、加工プログラムに基づいて第1Y軸モータ47及びX軸モータ51が制御され、ワークWがパンチ加工部15のパンチ加工位置P1に位置決めされる。その後、パンチ加工部15が制御され、最初の左上の製品部分M1が皿もみ加工(成形加工)される。 After the punching process, dish mixing is started (step S402). Specifically, similarly to the punching process, the first Y-axis motor 47 and the X-axis motor 51 are controlled based on the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15. Thereafter, the punching section 15 is controlled, and the first upper left product portion M1 is dished (molded).
 皿もみ加工の途中、本実施形態では最初の製品部分M1の皿もみ加工後に、皿もみ加工の加工原点補正処理が実行される(ステップS403)。ここで、図16に示されるフローチャートを参照して皿もみ加工の加工原点補正処理について説明する。本実施形態の皿もみ加工の加工原点補正処理は、上記第1実施形態におけるレーザ加工の加工原点補正処理と同様である。 In the present embodiment, after the first product portion M1 is dish-milled, processing origin correction processing for dish-shaft processing is executed in the present embodiment (step S403). Here, with reference to the flowchart shown in FIG. 16, the processing origin correction processing for dish grinding will be described. The processing origin correction processing for dish grinding according to the present embodiment is the same as the processing origin correction processing for laser processing according to the first embodiment.
 まず、第1Y軸モータ47(及び/又は第2Y軸モータ55)並びにX軸モータ51によって、ワークWが、CCDカメラ41の撮像位置P3に対して相対的にX軸方向及びY軸方向に移動されて、加工プログラム上の基準穴Whの中心位置とCCDカメラ41の画像Gの中心位置Gc(図6参照:第1実施形態と同様)とが互いに一致するように位置決めされる(ステップS501)。ワークWが位置決めされた後、CCDカメラ41によって基準穴Whの画像Gを撮像される(ステップS502)。画像取得部59は、CCDカメラ41から画像Gを取得する(ステップS503)。 First, the workpiece W is moved in the X-axis direction and the Y-axis direction relative to the imaging position P3 of the CCD camera 41 by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51. Thus, the center position of the reference hole Wh on the machining program and the center position Gc of the image G of the CCD camera 41 (see FIG. 6: as in the first embodiment) are positioned so as to coincide with each other (step S501). . After the workpiece W is positioned, an image G of the reference hole Wh is captured by the CCD camera 41 (step S502). The image acquisition unit 59 acquires the image G from the CCD camera 41 (step S503).
 続いて、ずれ量演算部61が、画像Gに基づいて、加工プログラム上の基準穴Whの中心位置(ステップ501で画像Gの中心位置Gcと一致されている)と、基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)を演算する(ステップS504:図6参照:第1実施形態と同様)。第2原点補正部77は、演算されたずれ量(ΔX,ΔY)に基づいて、ずれ量(ΔX,ΔY)がゼロになるように加工プログラム上の加工原点位置を補正する(ステップS505)。これにより、皿もみ加工(成形加工)の加工原点位置を補正することができる。 Subsequently, based on the image G, the deviation amount calculation unit 61 matches the center position of the reference hole Wh on the machining program (matched with the center position Gc of the image G in step 501) and the actual position of the reference hole Wh. A deviation amount (ΔX, ΔY) from the center position Whc is calculated (step S504: see FIG. 6: the same as in the first embodiment). Based on the calculated deviation amount (ΔX, ΔY), the second origin correction unit 77 corrects the machining origin position on the machining program so that the deviation amount (ΔX, ΔY) becomes zero (step S505). This makes it possible to correct the processing origin position of dish grinding (molding).
 図15に示されるフローチャートに戻り、説明を続ける。ステップS403の後、既に行われた皿もみ加工と同様に、加工プログラムに基づいて第1Y軸モータ47及びX軸モータ51が制御され、ワークWがパンチ加工部15のパンチ加工位置P1に位置決めされる。その後、パンチ加工部15が制御され、次の製品部分Mの皿もみ加工(成形加工)が再開される(ステップS404)。 Returning to the flowchart shown in FIG. After step S403, the first Y-axis motor 47 and the X-axis motor 51 are controlled on the basis of the machining program, and the workpiece W is positioned at the punching position P1 of the punching unit 15 in the same manner as the dish grinding already performed. The Thereafter, the punching unit 15 is controlled, and the dishing (molding) of the next product part M is resumed (step S404).
 全ての製品部分Mの皿もみ加工(成形加工)が終了するまで、ステップS403及びステップS404の処理が繰り返される(ステップS405)。なお、本実施形態では、一つの製品部分Mの皿もみ加工毎にステップS403及びステップS404の処理が繰り返されたが、所定数(例えば10)の製品部分Mの皿もみ加工毎にステップS403及びステップS404の処理が繰り返されてもよい(即ち、ステップS404の1回の処理で、10個の製品部分Mが皿もみ加工される)。なお、皿もみ加工(成形加工)中には、上述した第3実施形態の補正データと同様の補正データが生成される。 The processing of step S403 and step S404 is repeated until dishing (molding) of all product parts M is completed (step S405). In this embodiment, the processing of step S403 and step S404 is repeated for each dish milling of one product portion M. However, for each dish processing of a predetermined number (for example, 10) of product portions M, step S403 and The process of step S404 may be repeated (that is, 10 product parts M are dished in one process of step S404). It should be noted that correction data similar to the correction data of the above-described third embodiment is generated during dishing (molding).
 全ての製品部分Mの皿もみ加工後(ステップS405でYES)に、レーザ加工の加工原点補正処理が実行される(ステップS406)。具体的には、第1原点補正部63は、製品部分Mの皿もみ加工中に作成された補正データ(成形加工の補正データ)に基づいて、上述した第3実施形態と同様にレーザ加工の加工原点位置を補正する。これにより、レーザ加工の加工原点位置を補正することができる。 After all the product parts M are dished (YES in step S405), a processing origin correction process for laser processing is executed (step S406). Specifically, the first origin correction unit 63 performs laser processing in the same manner as in the third embodiment described above based on correction data (molding correction data) created during dishing of the product portion M. Correct the machining origin position. Thereby, the processing origin position of the laser processing can be corrected.
 なお、「成形加工の補正データ」には、ずれ量演算部61によって演算されたずれ量(ΔX,ΔY)だけでなく、原点補正部63によって補正された補正量(-ΔX,-ΔY)も含まれる。また、本実施形態では、成形加工の補正データに基づいて、レーザ加工の加工原点位置を補正した。しかし、本願発明のステップS407で、上記第1実施形態における加工原点補正処理(図5参照)又は上記第2実施形態における加工原点補正処理(図10参照)が行われてもよい。 The “molding correction data” includes not only the deviation amounts (ΔX, ΔY) calculated by the deviation amount calculation unit 61 but also the correction amounts (−ΔX, −ΔY) corrected by the origin correction unit 63. included. In the present embodiment, the processing origin position of the laser processing is corrected based on the correction data of the forming processing. However, in step S407 of the present invention, the machining origin correction process (see FIG. 5) in the first embodiment or the machining origin correction process (see FIG. 10) in the second embodiment may be performed.
 ステップS406の後、加工プログラムに基づいてX軸モータ51及び第2Y軸モータ55等が制御することで照射位置P2に対してワークWをX軸方向及びY軸方向に移動させつつ、レーザ照射部29を制御することで製品部分Mの輪郭に沿ってレーザ加工(レーザ切断)が行なわれる(ステップS407)。そして、目標枚数のワークWの複合加工が終了するまで、ステップS401~ステップS407までの処理が繰り返される(ステップS408)。 After step S406, the X-axis motor 51, the second Y-axis motor 55, and the like are controlled based on the machining program, and the laser irradiation unit moves the workpiece W in the X-axis direction and the Y-axis direction with respect to the irradiation position P2. By controlling 29, laser processing (laser cutting) is performed along the contour of the product part M (step S407). Then, the processes from step S401 to step S407 are repeated until the combined machining of the target number of workpieces W is completed (step S408).
 本実施形態によれば、画像Gに基づいて、(画像Gの中心位置Gcと一致されている)加工プログラム上の基準穴Whの中心位置と基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)が演算されて、加工プログラム上の皿もみ加工(成形加工)の加工原点位置が補正されるので、皿もみ加工より前に行われる打ち抜き加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、上記変化に起因する皿もみ加工の加工原点位置のずれを加工プログラム上で修正できる(加工プログラムのデータを修正できる)。 According to the present embodiment, based on the image G, the deviation amount between the center position of the reference hole Wh on the machining program (which is coincident with the center position Gc of the image G) and the actual center position Whc of the reference hole Wh. Since (ΔX, ΔY) is calculated and the processing origin position of the dish milling (forming process) on the processing program is corrected, the dimension of the workpiece W is changed by punching performed before the dish milling. (Elongation indicated by the white arrow in FIG. 24 described above), the deviation of the processing origin position of the dish milling caused by the change can be corrected on the processing program (processing program data can be corrected).
 また、本実施形態によれば、皿もみ加工(成形加工)中に生成された補正データに基づいて決定された補正パターンに基づいて、同一ワークW上の他の製品部分M、又は、他のワークW上の複数の製品部分Mの加工原点位置が補正される。このため、成形加工を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、上述した補正データを利用して、上記変化に起因するレーザ加工の加工原点位置のずれを加工プログラム上で簡単かつ効率よく修正できる(加工プログラムのデータを簡単かつ効率よく修正できる)。 Moreover, according to this embodiment, based on the correction pattern determined based on the correction data generated during dish kneading (molding), another product part M on the same workpiece W, or other The machining origin positions of the plurality of product parts M on the workpiece W are corrected. For this reason, even if the dimension of the workpiece W is changed by punching including forming (elongation indicated by the white arrow in FIG. 24 described above), the laser caused by the change using the correction data described above. Displacement of the machining origin position of machining can be easily and efficiently corrected on the machining program (machining program data can be easily and efficiently corrected).
 即ち、本実施形態によれば、成形加工を含むパンチ加工とレーザ加工との複合精度を高く維持でき、レーザ加工(レーザ切断)によって形成される製品の輪郭に対する、レーザ加工前に形成された製品穴Mh及び製品成形部Mfの相対的位置ずれ(例えば、皿もみ加工によるワークWの位置ずれなどによって生じる)を抑制して、製品の加工精度(製品精度)を十分に向上させることができる。特に、皿もみ加工中にも加工プログラム上の加工原点位置を補正しているので、製品の加工精度(製品精度)をより一層向上させることができる。 That is, according to this embodiment, the combined accuracy of punching and laser processing including molding processing can be maintained high, and the product formed before laser processing with respect to the contour of the product formed by laser processing (laser cutting) The relative displacement between the hole Mh and the product molding portion Mf (for example, caused by the displacement of the workpiece W due to dish-shaping) can be suppressed, and the product processing accuracy (product accuracy) can be sufficiently improved. In particular, since the machining origin position on the machining program is corrected even during dish kneading, the machining accuracy (product accuracy) of the product can be further improved.
 (第5実施形態)
 図19及び図20を参照しつつ第5実施形態に係る複合加工機1を説明する。なお、本実施形態に係る複合加工機1も、上述した第1実施形態の図1及び図2に示される構成と同様の構成を備えている。従って、これらの同様の構成についての詳しい説明は省略する。また、上述した実施形態の構成部位と同一又は同等の構成部位に関しては、同一の符号を付してその詳しい説明を省略する。
(Fifth embodiment)
A multi-tasking machine 1 according to a fifth embodiment will be described with reference to FIGS. 19 and 20. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図19に示されるように、本実施形態のNC装置57は、本実施形態のNC装置57は、画像取得部59、ずれ量演算部61、第1原点補正部63、軌跡形成部65、補正データ記憶部73、補正パターン決定部75、及び、第2原点補正部77としての機能を有している。 As shown in FIG. 19, the NC device 57 of the present embodiment is the same as the NC device 57 of the present embodiment in that an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a trajectory formation unit 65, a correction It has functions as a data storage unit 73, a correction pattern determination unit 75, and a second origin correction unit 77.
 上記第4実施形態では、皿もみ加工の加工原点補正処理(図15のステップS403及び図16参照)として、上記第1実施形態でのレーザ加工の加工原点補正処理(図5及び図6参照)と同様の処理が行われた。本実施形態では、皿もみ加工の加工原点補正処理(図20参照)として、上記第2実施形態でのレーザ加工の加工原点補正処理(図10及び図11参照)と同様の処理が行われる。なお、上記第4実施形態と同様に、本実施形態でも、皿もみ加工中に補正データが生成される。 In the fourth embodiment, as the processing origin correction processing for dishing (see step S403 in FIG. 15 and FIG. 16), the processing origin correction processing for laser processing in the first embodiment (see FIGS. 5 and 6). The same processing was performed. In the present embodiment, processing similar to the processing origin correction processing (see FIGS. 10 and 11) for laser processing in the second embodiment is performed as processing origin correction processing (see FIG. 20) for dish-shaping. As in the fourth embodiment, correction data is also generated during dish kneading in this embodiment.
 本実施形態の皿もみ加工の加工原点補正処理を図20に示されるフローチャートを参照して説明する。まず、軌跡形成部65は、レーザ発振器37を制御してノズル35から低出力レーザ光を照射させつつ、レーザ照射ヘッド33の照射位置P2に対して相対的に、ワークWを加工プログラム上の基準穴Whの中心位置周りに円運動させる。この結果、ワークW上に、基準穴Whを囲む円状の軌跡(けがき線)Tが形成される(ステップS601:図11参照:第2実施形態と同様)。 Referring to the flowchart shown in FIG. 20, description will be given of the processing origin correction processing for dish grinding according to the present embodiment. First, the trajectory forming unit 65 controls the laser oscillator 37 to irradiate the low-power laser beam from the nozzle 35, and relative to the irradiation position P2 of the laser irradiation head 33, the trajectory forming unit 65 is a reference in the machining program. Circular movement around the center position of the hole Wh. As a result, a circular trajectory (marking line) T surrounding the reference hole Wh is formed on the workpiece W (step S601: see FIG. 11: similar to the second embodiment).
 次に、加工プログラム上の基準穴Whの中心位置に基づいて、第1Y軸モータ47(及び/又は第2Y軸モータ55)並びにX軸モータ51によって、ワークWが、CCDカメラ41の撮像位置P3に対して相対的にX軸方向及びY軸方向に移動されて、基準穴Whが撮像できるようにワークWが位置決めされる。ワークWが位置決めされた後、CCDカメラ41によって軌跡Tを含む基準穴Whの画像Gが撮像される(ステップS602:図11参照:第2実施形態と同様)。即ち、画像Gは、実際の基準穴Whと、加工プログラム上の基準穴Whの中心位置に基づいて形成された軌跡Tとを含でいる。画像取得部59は、CCDカメラ41から画像Gを取得する(ステップS603)。 Next, based on the center position of the reference hole Wh on the machining program, the workpiece W is picked up by the first Y-axis motor 47 (and / or the second Y-axis motor 55) and the X-axis motor 51, and the image pickup position P3 of the CCD camera 41. The workpiece W is positioned so that the reference hole Wh can be imaged by being moved relative to the X axis direction and the Y axis direction. After the workpiece W is positioned, an image G of the reference hole Wh including the locus T is captured by the CCD camera 41 (step S602: see FIG. 11: the same as in the second embodiment). That is, the image G includes an actual reference hole Wh and a trajectory T formed based on the center position of the reference hole Wh on the machining program. The image acquisition unit 59 acquires the image G from the CCD camera 41 (step S603).
 続いて、ずれ量演算部61が、画像Gに基づいて、軌跡T(ステップS601で加工プログラム上の基準穴Whの中心位置を中心として形成されている)の中心位置Tcと、基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)を演算する(ステップS604:図11参照:第2実施形態と同様)。第2原点補正部77は、演算されたずれ量(ΔX,ΔY)に基づいて、ずれ量(ΔX,ΔY)がゼロになるように加工プログラム上の加工原点位置を補正する(ステップS605)。これにより、皿もみ加工の加工原点位置を補正することができる。 Subsequently, based on the image G, the deviation amount calculation unit 61 determines the center position Tc of the trajectory T (formed about the center position of the reference hole Wh on the machining program in step S601) and the reference hole Wh. The deviation (ΔX, ΔY) from the actual center position Whc is calculated (step S604: see FIG. 11: the same as in the second embodiment). Based on the calculated deviation amounts (ΔX, ΔY), the second origin correction unit 77 corrects the machining origin position on the machining program so that the deviation amounts (ΔX, ΔY) become zero (step S605). This makes it possible to correct the processing origin position for dish mixing.
 本実施形態によれば、加工プログラム上の基準穴Whの中心位置に基づいてワークWに軌跡Tが形成され、軌跡Tを含む基準穴Whの画像Gに基づいて、軌跡Tの中心位置Tcと基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)が演算されて、加工プログラム上の皿もみ加工(成形加工)の加工原点位置が補正されるので、皿もみ加工より前に行われる成形加工を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、上記変化に起因する皿もみ加工の加工原点位置のずれを加工プログラム上で修正できる(加工プログラムのデータを修正できる)。 According to the present embodiment, the trajectory T is formed on the workpiece W based on the center position of the reference hole Wh on the machining program, and the center position Tc of the trajectory T is determined based on the image G of the reference hole Wh including the trajectory T. Since the deviation amount (ΔX, ΔY) of the reference hole Wh from the actual center position Whc is calculated and the processing origin position of dish grinding (molding) in the machining program is corrected, before the dish grinding Even if the dimension of the workpiece W is changed by punching including forming (such as elongation indicated by the white arrow in FIG. 24 described above), the deviation of the processing origin position of the dishing process due to the change is processed. Can be modified on the program (processing program data can be modified).
 また、本実施形態でも、皿もみ加工(成形加工)中に生成された補正データを利用して、レーザ加工の加工原点位置のずれを加工プログラム上で簡単かつ効率よく修正できる(加工プログラムのデータを簡単かつ効率よく修正できる)。即ち、本実施形態によれば、上述した第4実施形態と同様に、成形加工を含むパンチ加工とレーザ加工との複合精度を高く維持でき、製品の加工精度(製品精度)を十分に向上させることができる。 Also in this embodiment, using the correction data generated during dish grinding (molding), the deviation of the processing origin position of laser processing can be easily and efficiently corrected on the processing program (processing program data). Can be modified easily and efficiently). That is, according to the present embodiment, as in the fourth embodiment described above, the combined accuracy of punching including molding and laser processing can be maintained high, and the product processing accuracy (product accuracy) can be sufficiently improved. be able to.
 (第6実施形態)
 図21及び図22を参照しつつ第6実施形態に係る複合加工機1を説明する。なお、本実施形態に係る複合加工機1も、上述した第1実施形態の図1及び図2に示される構成と同様の構成を備えている。従って、これらの同様の構成についての詳しい説明は省略する。また、上述した実施形態の構成部位と同一又は同等の構成部位に関しては、同一の符号を付してその詳しい説明を省略する。
(Sixth embodiment)
A multi-tasking machine 1 according to a sixth embodiment will be described with reference to FIGS. 21 and 22. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図21に示されるように、本実施形態のNC装置57は、画像取得部59、ずれ量演算部61、第1原点補正部63、第2原点補正部77、ずれ量記憶部[displacement storage](ずれ量記憶モジュール[displacement storage module])79、及び、ずれパターン決定部[displacement pattern determiner](ずれパターン決定モジュール[displacement pattern determination module])81としての機能を有している。また、NC装置57は、レーザ加工の加工原点補正処理に応じて、軌跡形成部65、補正データ記憶部73、及び、補正パターン決定部75を有することがある。 As shown in FIG. 21, the NC device 57 of the present embodiment includes an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a second origin correction unit 77, and a deviation amount storage unit [displacement storage]. (Displacement storage module [displacement storage module]) 79 and a displacement pattern determination unit [displacement pattern determiner] (displacement pattern determination module [displacement pattern determination module]) 81. Further, the NC device 57 may include a trajectory forming unit 65, a correction data storage unit 73, and a correction pattern determining unit 75 in accordance with the processing origin correction process of laser processing.
 補正データ記憶部73、ずれ量記憶部79、及び、ずれパターン決定部81の説明も含めて、本実施形態における皿もみ加工(成形加工)の加工原点補正処理(方法)について、以下に説明する。 The processing origin correction process (method) of dish grinding (molding) in this embodiment will be described below, including descriptions of the correction data storage unit 73, the deviation amount storage unit 79, and the deviation pattern determination unit 81. .
 打ち抜き加工後に少なくとも二つの製品部分Mの皿もみ加工(成形加工)が行われる。本実施形態では、先行して皿もみ加工が行われる「少なくとも二つの製品部分M」は、ΔX及びΔYの両方のデータが好適に得られるように選択されるのが好ましい。データを取得するための製品部分Mの好ましい選択については、上述した第3実施形態における「補正データ」取得のための製品部分Mの選択と同様である。CCDカメラ41によって、皿もみ加工が行われた少なくとも二つの製品部分Mの基準穴Whの画像Gが撮像される。画像取得部59は、CCDカメラ41から全ての画像Gを取得する。 皿 After the punching process, at least two product parts M are dished (molded). In this embodiment, it is preferable that the “at least two product portions M” to be dish-milled in advance are selected so that both ΔX and ΔY data can be suitably obtained. The preferable selection of the product part M for acquiring data is the same as the selection of the product part M for acquiring “correction data” in the third embodiment described above. The CCD camera 41 captures an image G of the reference hole Wh of at least two product portions M that have been dished. The image acquisition unit 59 acquires all the images G from the CCD camera 41.
 続いて、上記第1実施形態におけるレーザ加工の加工原点補正処理と同様に、ずれ量演算部61が、各画像Gに基づいて、加工プログラム上の基準穴Whの中心位置(画像Gの中心位置Gcと一致されている)と、基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)を演算する。演算された全てのずれ量(ΔX,ΔY)は、ずれ量記憶部79に記憶される(図22(a)中の白三角形、及び、図22(b)中の白四角形参照)。 Subsequently, as in the processing origin correction process of laser processing in the first embodiment, the deviation amount calculation unit 61 determines the center position of the reference hole Wh on the processing program based on each image G (the center position of the image G). The amount of deviation (ΔX, ΔY) between the reference center Whc and the actual center position Whc is calculated. All the calculated shift amounts (ΔX, ΔY) are stored in the shift amount storage unit 79 (see the white triangle in FIG. 22A and the white square in FIG. 22B).
 その後、ずれパターン決定部81は、ずれ量記憶部79に記憶されたX軸方向のずれ量ΔXに基づいて、加工基準位置(加工プログラム上の基準穴Whの中心位置)のX軸方向位置とその位置でのX軸方向のずれ量ΔXとの関係を示すずれパターンSPx(複数の白三角形から得られる直線又は曲線)を決定する。同様に、ずれパターン決定部81は、ずれ量記憶部79に記憶されたY軸方向のずれ量ΔYに基づいて、加工基準位置(加工プログラム上の基準穴Whの中心位置)のY軸方向位置とその位置でのY軸方向のずれ量ΔYとの関係を示すずれパターンSPy(複数の白四角形から得られる直線又は曲線)を決定する。 Thereafter, the deviation pattern determination unit 81 determines the X-axis direction position of the machining reference position (the center position of the reference hole Wh on the machining program) based on the deviation amount ΔX in the X-axis direction stored in the deviation amount storage unit 79. A shift pattern SPx (a straight line or a curve obtained from a plurality of white triangles) indicating the relationship with the shift amount ΔX in the X-axis direction at that position is determined. Similarly, the deviation pattern determination unit 81 is based on the deviation amount ΔY in the Y-axis direction stored in the deviation amount storage unit 79, and the Y-axis direction position of the machining reference position (the center position of the reference hole Wh on the machining program). And a displacement pattern SPy (a straight line or a curve obtained from a plurality of white squares) indicating the relationship between the displacement amount ΔY in the Y-axis direction at that position.
 第2原点補正部77は、ずれパターン決定部81によって決定されたずれパターン(SPx,SPy)に基づいて、同一ワークW上の(皿もみ加工の行われていない)他の製品部分M、又は、他のワークW上の複数の製品部分Mに関して、皿もみ加工の加工原点位置を補正する。従って、同一ワークW上の(皿もみ加工の行われていない)他の製品部分M、又は、他のワークW上の複数の製品部分Mに関して、皿もみ加工の加工原点位置を補正することができる。 Based on the deviation pattern (SPx, SPy) determined by the deviation pattern determination unit 81, the second origin correction unit 77 is another product part M on the same workpiece W (which is not subjected to dish kneading), or Then, with respect to the plurality of product parts M on the other workpiece W, the processing origin position of the dish grinding is corrected. Therefore, it is possible to correct the processing origin position of dish milling for other product parts M on the same workpiece W (not dish-milled) or a plurality of product parts M on other workpieces W. it can.
 なお、その後、レーザ加工位置の原点加工位置も、第1原点補正部63によって、上記第1~第5実施形態の何れかと同様の処理で補正される。なお、レーザ加工位置の原点加工位置補正処理は、上述した補正パターン(RPx,RPy)に基づいて行われてもよいし、ずれパターン(SPx,SPy)に基づいて行われてもよい。 After that, the origin machining position of the laser machining position is also corrected by the first origin correction unit 63 by the same process as in any of the first to fifth embodiments. The origin machining position correction process of the laser machining position may be performed based on the above-described correction pattern (RPx, RPy), or may be performed based on the deviation pattern (SPx, SPy).
 本実施形態によれば、ワークW上の少なくとも二つの皿もみ加工後の製品部分Mのずれ量(ΔX,ΔY)算出後に、それらの(ΔX,ΔY)に基づいて決定されたずれパターン(SPx,SPy)に基づいて同一ワークW上の他の製品部分M、又は、他のワークW上の複数の製品部分Mの皿もみ加工の加工原点位置が補正される。このため、皿もみ加工(成形加工)を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、予め作成したずれパターンを利用して、上記変化に起因する皿もみ加工の加工原点位置のずれを加工プログラム上で簡単かつ効率よく補正できる(加工プログラムのデータを簡単かつ効率よく修正できる)。また、本実施形態によれば、レーザ加工の加工原点位置も補正されるので、皿もみ加工(成形加工)を含むパンチ加工とレーザ加工との複合精度を高く維持でき、製品の加工精度(製品精度)を十分に向上させることができる。 According to the present embodiment, after calculating the shift amount (ΔX, ΔY) of the product portion M after machining at least two dishes on the workpiece W, the shift pattern (SPx) determined based on the (ΔX, ΔY) thereof. , SPy), the processing origin position of the dish grinding process of the other product parts M on the same work W or the plurality of product parts M on the other work W is corrected. For this reason, even if the dimension of the workpiece W is changed by punching including dishing (molding) (e.g., the elongation indicated by the white arrow in FIG. 24 described above) The deviation of the processing origin position of dish milling due to the above change can be easily and efficiently corrected on the processing program (processing program data can be corrected easily and efficiently). In addition, according to the present embodiment, since the processing origin position of laser processing is also corrected, it is possible to maintain a high combined accuracy of punch processing including dish milling (molding processing) and laser processing, and processing accuracy of the product (product Accuracy) can be sufficiently improved.
 (第7実施形態)
 図23を参照しつつ第7実施形態に係る複合加工機1を説明する。なお、本実施形態に係る複合加工機1も、上述した第1実施形態の図1及び図2に示される構成と同様の構成を備えている。従って、これらの同様の構成についての詳しい説明は省略する。また、上述した実施形態の構成部位と同一又は同等の構成部位に関しては、同一の符号を付してその詳しい説明を省略する。
(Seventh embodiment)
A multi-tasking machine 1 according to a seventh embodiment will be described with reference to FIG. Note that the multi-tasking machine 1 according to the present embodiment also has a configuration similar to the configuration shown in FIGS. 1 and 2 of the first embodiment described above. Therefore, a detailed description of these similar configurations is omitted. Further, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図23に示されるように、本実施形態のNC装置57は、本実施形態のNC装置57は、画像取得部59、ずれ量演算部61、第1原点補正部63、軌跡形成部65、第2原点補正部77、ずれ量記憶部79、及び、ずれパターン決定部81としての機能を有している。また、NC装置57は、レーザ加工の加工原点補正処理に応じて、補正データ記憶部73、及び、補正パターン決定部75を有することがある。 As shown in FIG. 23, the NC device 57 of the present embodiment is the same as the NC device 57 of the present embodiment, in that an image acquisition unit 59, a deviation amount calculation unit 61, a first origin correction unit 63, a trajectory formation unit 65, It has functions as a two-origin correction unit 77, a deviation amount storage unit 79, and a deviation pattern determination unit 81. Further, the NC device 57 may include a correction data storage unit 73 and a correction pattern determination unit 75 in accordance with the processing origin correction process of laser processing.
 本実施形態における皿もみ加工(成形加工)の加工原点補正処理(方法)について、以下に説明する。上記第6実施形態では、ずれ量(ΔX,ΔY)を演算するために上記第1実施形態におけるレーザ加工の加工原点補正処理と同様の手法(図6参照)が用いられた。しかし、本実施形態では、ずれ量(ΔX,ΔY)を演算するために上記第2実施形態におけるレーザ加工の加工原点補正処理と同様の手法(図11参照)が用いられる。 The processing origin correction process (method) for dish-shaping (molding) in the present embodiment will be described below. In the sixth embodiment, the same technique (see FIG. 6) as the processing origin correction process of laser processing in the first embodiment is used to calculate the deviation amount (ΔX, ΔY). However, in the present embodiment, the same method (see FIG. 11) as the processing origin correction process of laser processing in the second embodiment is used to calculate the deviation amount (ΔX, ΔY).
 打ち抜き加工後に少なくとも二つの製品部分Mの皿もみ加工(成形加工)が行われる。本実施形態でも、先行して皿もみ加工が行われる「少なくとも二つの製品部分M」は、ΔX及びΔYの両方のデータが好適に得られるように選択されるのが好ましい。データを取得するための製品部分Mの好ましい選択については、上述した第3実施形態における「補正データ」取得のための製品部分Mの選択と同様である。軌跡形成部65は、上記第2実施形態におけるレーザ加工の加工原点補正処理と同様に、レーザ発振器37を制御してノズル35から低出力レーザ光を照射させつつ、ワークWを加工プログラム上の基準穴Whの中心位置周りに円運動させる。この結果、皿もみ加工が行われた少なくとも二つの製品部分Mの各基準穴Whを囲む円状の軌跡Tが形成される。 皿 After the punching process, at least two product parts M are dished (molded). Also in this embodiment, it is preferable that the “at least two product portions M” on which the dishing is performed in advance is selected so that both ΔX and ΔY data can be suitably obtained. The preferable selection of the product part M for acquiring data is the same as the selection of the product part M for acquiring “correction data” in the third embodiment described above. The locus forming unit 65 controls the laser oscillator 37 to irradiate the low-power laser beam from the nozzle 35 and controls the workpiece W as a reference in the machining program, similarly to the laser beam machining origin correction process in the second embodiment. Circular movement around the center position of the hole Wh. As a result, a circular trajectory T that surrounds each reference hole Wh of at least two product parts M on which dishing has been performed is formed.
 その後、上記第1実施形態におけるレーザ加工の加工原点補正処理と同様に、CCDカメラ41によって皿もみ加工が行われた少なくとも二つの製品部分Mの基準穴Whの画像G(軌跡Tも含む)が撮像される。画像取得部95は、CCDカメラ41から全ての画像Gを取得する。 Thereafter, similarly to the laser beam machining origin correction process in the first embodiment, images G (including the trajectory T) of the reference holes Wh of the at least two product portions M that have been dished by the CCD camera 41 are displayed. Imaged. The image acquisition unit 95 acquires all the images G from the CCD camera 41.
 続いて、上記第1実施形態におけるレーザ加工の加工原点補正処理と同様に、ずれ量演算部61が、各画像Gに基づいて、軌跡T(加工プログラム上の基準穴Whの中心位置を中心として形成されている)の中心位置Tcと、基準穴Whの実際の中心位置Whcとのずれ量(ΔX,ΔY)を演算する。演算された全てのずれ量(ΔX,ΔY)は、ずれ量記憶部79に記憶される。 Subsequently, similarly to the laser beam machining origin correction process in the first embodiment, the deviation amount calculation unit 61 is based on each image G and has a trajectory T (centering on the center position of the reference hole Wh on the machining program). The amount of deviation (ΔX, ΔY) between the center position Tc (which is formed) and the actual center position Whc of the reference hole Wh is calculated. All the calculated shift amounts (ΔX, ΔY) are stored in the shift amount storage unit 79.
 その後、ずれパターン決定部81は、ずれ量記憶部79に記憶されたX軸方向のずれ量ΔXに基づいて、加工原点のX軸方向位置とX軸方向のずれ量ΔXとの関係を示すずれパターンSPx(図22(a)参照:第6実施形態と同様)を決定する。同様に、ずれパターン決定部81は、ずれ量記憶部79に記憶されたY軸方向のずれ量ΔYに基づいて、加工原点のY軸方向位置とY軸方向のずれ量ΔYとの関係を示すずれパターンSPy(図22(b)参照:第6実施形態と同様)を決定する。 Thereafter, the deviation pattern determination unit 81 is based on the deviation amount ΔX in the X-axis direction stored in the deviation amount storage unit 79 and shows a relationship between the X-axis direction position of the processing origin and the deviation amount ΔX in the X-axis direction. A pattern SPx (see FIG. 22A: the same as in the sixth embodiment) is determined. Similarly, the deviation pattern determination unit 81 indicates the relationship between the Y-axis direction position of the processing origin and the Y-axis direction deviation amount ΔY based on the Y-axis direction deviation amount ΔY stored in the deviation amount storage unit 79. The shift pattern SPy (see FIG. 22B: the same as in the sixth embodiment) is determined.
 第2原点補正部77は、ずれパターン決定部81によって決定されたずれパターン(SPx,SPy)に基づいて、同一ワークW上の(皿もみ加工の行われていない)他の製品部分M、又は、他のワークW上の複数の製品部分Mに関して、皿もみ加工の加工原点位置を補正する。従って、同一ワークW上の(皿もみ加工の行われていない)他の製品部分M、又は、他のワークW上の複数の製品部分Mに関して、皿もみ加工の加工原点位置を補正することができる。 Based on the deviation pattern (SPx, SPy) determined by the deviation pattern determination unit 81, the second origin correction unit 77 is another product part M on the same workpiece W (which is not subjected to dish kneading), or Then, with respect to the plurality of product parts M on the other workpiece W, the processing origin position of the dish grinding is corrected. Therefore, it is possible to correct the processing origin position of dish milling for other product parts M on the same workpiece W (not dish-milled) or a plurality of product parts M on other workpieces W. it can.
 なお、その後、レーザ加工位置の原点加工位置も、第1原点補正部63によって、上記舵1~第5実施形態の何れかと同様の処理で補正される。なお、レーザ加工位置の原点加工位置補正処理は、上述した補正パターン(RPx,RPy)に基づいて行われてもよいし、ずれパターン(SPx,SPy)に基づいて行われてもよい。 After that, the origin machining position of the laser machining position is also corrected by the first origin correction unit 63 by the same process as in any of the rudder 1 to the fifth embodiment. The origin machining position correction process of the laser machining position may be performed based on the above-described correction pattern (RPx, RPy), or may be performed based on the deviation pattern (SPx, SPy).
 本実施形態によれば、ワークW上の少なくとも二つの皿もみ加工後の製品部分Mのずれ量(ΔX,ΔY)算出後に、それらの(ΔX,ΔY)に基づいて決定されたずれパターン(SPx,SPy)に基づいて同一ワークW上の他の製品部分M、又は、他のワークW上の複数の製品部分Mの皿もみ加工の加工原点位置が補正される。このため、皿もみ加工(成形加工)を含むパンチ加工によってワークWの寸法が変化しても(上述した図24中の白矢印で示される伸びなど)、予め作成したずれパターンを利用して、上記変化に起因する皿もみ加工の加工原点位置のずれを加工プログラム上で簡単かつ効率よく補正できる(加工プログラムのデータを簡単かつ効率よく修正できる)。また、本実施形態によれば、レーザ加工の加工原点位置も補正されるので、皿もみ加工(成形加工)を含むパンチ加工とレーザ加工との複合精度を高く維持でき、製品の加工精度(製品精度)を十分に向上させることができる。 According to the present embodiment, after calculating the shift amount (ΔX, ΔY) of the product portion M after machining at least two dishes on the workpiece W, the shift pattern (SPx) determined based on the (ΔX, ΔY) thereof. , SPy), the processing origin position of the dish grinding process of the other product parts M on the same work W or the plurality of product parts M on the other work W is corrected. For this reason, even if the dimension of the workpiece W is changed by punching including dishing (molding) (e.g., the elongation indicated by the white arrow in FIG. 24 described above) The deviation of the processing origin position of dish milling due to the above change can be easily and efficiently corrected on the processing program (processing program data can be corrected easily and efficiently). In addition, according to the present embodiment, since the processing origin position of laser processing is also corrected, it is possible to maintain a high combined accuracy of punch processing including dish milling (molding processing) and laser processing, and processing accuracy of the product (product Accuracy) can be sufficiently improved.
 本発明は、上記実施形態に限定されるものではなく、種々の態様で実施可能である。例えば、上記実施形態におけるレーザ加工は、製品部分Mの輪郭に沿ったレーザ切断でなくでもよく、その場合、製品部分Mが打ち抜き加工によってワークWから分離されてもよい。 The present invention is not limited to the above embodiment, and can be implemented in various modes. For example, the laser processing in the above embodiment may not be laser cutting along the contour of the product part M, and in that case, the product part M may be separated from the workpiece W by punching.
 また、レーザ加工機の発明に包含される権利範囲は、上記実施形態のような複合加工機に限定されず、他のパンチプレス(加工機)によってパンチ加工されたワークWの製品部分Mにレーザ加工を行うレーザ加工機も含む。さらに、複合加工システムの発明の権利範囲は、1台の複合加工機からなる複合加工システムだけでなく、1台のパンチプレスと1台のレーザ加工機とが組み合わされている複合加工システムも含む。 The scope of rights included in the invention of the laser processing machine is not limited to the combined processing machine as in the above embodiment, and the laser is applied to the product portion M of the workpiece W punched by another punch press (processing machine). Also includes a laser processing machine that performs processing. Furthermore, the scope of the invention of the composite processing system includes not only a composite processing system composed of one composite processing machine but also a composite processing system in which one punch press and one laser processing machine are combined. .

Claims (22)

  1.  板状のワークを成形加工した後に、加工プログラムに基づいて前記ワーク上の複数の製品部分をレーザ加工するレーザ加工機であって、
     前記ワークにレーザ光を照射するレーザ照射部と、
     前記ワーク上の前記複数の製品部分の少なくとも一つに対応して予め形成された基準穴の画像を撮像する撮像部と、
     前記レーザ照射部の照射位置及び前記撮像部の撮像位置に対して、前記ワークを相対的に水平方向に移動するワーク移動部と、
     前記加工プログラム上の前記基準穴の位置に基づいて前記ワーク移動部を制御して前記ワークを前記撮像位置に対して相対的に前記水平方向に位置決めし、前記撮像部を制御して前記画像を撮像した後に前記撮像部から前記画像を取得する画像取得部と、
     前記レーザ照射部によるレーザ加工前に、前記画像取得部によって取得された前記画像に基づいて、前記加工プログラム上のレーザ加工の加工原点位置を補正する第1原点補正部と、を備えている、レーザ加工機。
    A laser processing machine that performs laser processing on a plurality of product parts on the workpiece based on a processing program after forming a plate-shaped workpiece,
    A laser irradiation unit for irradiating the workpiece with laser light;
    An imaging unit that captures an image of a reference hole formed in advance corresponding to at least one of the plurality of product parts on the workpiece;
    A workpiece moving unit that moves the workpiece in a horizontal direction relative to the irradiation position of the laser irradiation unit and the imaging position of the imaging unit;
    The workpiece moving unit is controlled based on the position of the reference hole on the machining program to position the workpiece in the horizontal direction relative to the imaging position, and the imaging unit is controlled to display the image. An image acquisition unit for acquiring the image from the imaging unit after imaging;
    A first origin correction unit that corrects a processing origin position of laser processing on the processing program based on the image acquired by the image acquisition unit before laser processing by the laser irradiation unit; Laser processing machine.
  2.  請求項1に記載のレーザ加工機であって、
     前記画像取得部によって取得された前記画像に基づいて、前記画像における、前記加工プログラム上の前記基準穴の前記位置と前記基準穴の実際の位置とのずれ量を演算するずれ量演算部をさらに備えており、
     前記第1原点補正部は、前記ずれ量演算部によって演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上のレーザ加工の前記加工原点位置を補正する、レーザ加工機。
    The laser processing machine according to claim 1,
    A deviation amount calculation unit that calculates a deviation amount between the position of the reference hole on the processing program and the actual position of the reference hole in the image based on the image acquired by the image acquisition unit; Has
    The first origin correction unit corrects the machining origin position of laser processing on the machining program so that the deviation amount becomes zero based on the deviation amount calculated by the deviation amount calculation unit. Processing machine.
  3.  請求項1に記載のレーザ加工機であって、
     前記ワーク上に前記基準穴を囲む軌跡を形成する軌跡形成部と、
     前記画像取得部によって取得された前記画像に基づいて、前記画像における、前記軌跡の位置と前記基準穴の実際の位置とのずれ量を演算するずれ量演算部と、をさらに備えており、
     前記軌跡形成部は、前記撮像部による前記画像の撮像前に、
    前記レーザ照射部を制御して低出力レーザ光を照射させつつ、前記ワーク移動部を制御して前記加工プログラム上の前記基準穴の前記位置に基づいて前記ワークを相対的に動かして前記ワーク上に前記軌跡を形成し、
     前記第1原点補正部は、前記ずれ量演算部によって演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上のレーザ加工の前記加工原点位置を補正する、レーザ加工機。
    The laser processing machine according to claim 1,
    A trajectory forming unit that forms a trajectory surrounding the reference hole on the workpiece;
    A deviation amount calculation unit that calculates a deviation amount between the position of the trajectory and the actual position of the reference hole in the image based on the image acquired by the image acquisition unit;
    The trajectory forming unit is configured to capture the image by the imaging unit.
    While controlling the laser irradiation unit to irradiate the low-power laser beam, the workpiece moving unit is controlled to move the workpiece relatively based on the position of the reference hole on the machining program. Forming the trajectory,
    The first origin correction unit corrects the machining origin position of laser processing on the machining program so that the deviation amount becomes zero based on the deviation amount calculated by the deviation amount calculation unit. Processing machine.
  4.  請求項1~3の何れか一項に記載のレーザ加工機であって、
     前記第1原点補正部が、前記ワーク上の前記複数の製品部分の少なくとも二つに関して成形加工の前記加工原点位置を補正することで補正データを生成し、かつ、前記補正データを用いることで、上記ワーク上の残りの製品部分、又は、他のワーク上の複数の製品部分のレーザ加工の前記加工原点位置を補正する、レーザ加工機。
    A laser processing machine according to any one of claims 1 to 3,
    The first origin correction unit generates correction data by correcting the processing origin position of the forming process for at least two of the plurality of product parts on the workpiece, and using the correction data, The laser processing machine which correct | amends the said process | work origin position of the laser processing of the remaining product part on the said workpiece | work, or several product parts on another workpiece | work.
  5.  請求項1~4の何れか一項に記載のレーザ加工機であって、
     前記レーザ加工機が、前記成形加工を含むパンチ加工を前記加工プログラムに基づいて前記複数の製品部分に行うパンチ加工部をさらに備えている複合加工機である、レーザ加工機。
    A laser processing machine according to any one of claims 1 to 4,
    The laser processing machine, wherein the laser processing machine is a combined processing machine further comprising a punch processing unit that performs punch processing including the forming processing on the plurality of product parts based on the processing program.
  6.  板状のワークに成形加工を含むパンチ加工とレーザ加工とを行う複合加工システムであって、
     請求項1に記載のレーザ加工機と、
     成形加工を含むパンチ加工を前記加工プログラムに基づいて前記複数の製品部分に行うパンチ加工部と、を備えており、
     前記ワーク移動部が、前記ワークを、前記パンチ加工部のパンチ加工位置に対しても水平方向に移動し、
     前記撮像部が、前記成形加工中に前記画像を撮像すると共に、前記画像取得部が、前記成形加工中に前記画像を取得し、
     前記複合加工システムが、前記画像取得部によって取得された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正する第2原点補正部をさらに備えている、複合加工システム。
    It is a combined processing system that performs punch processing including molding processing and laser processing on a plate-shaped workpiece,
    A laser beam machine according to claim 1;
    A punching unit that performs punching including molding on the plurality of product parts based on the processing program,
    The workpiece moving unit moves the workpiece in the horizontal direction with respect to the punching position of the punching unit,
    The imaging unit captures the image during the molding process, and the image acquisition unit acquires the image during the molding process,
    The combined machining system further includes a second origin correction unit that corrects the machining origin position of the forming process on the machining program based on the image acquired by the image acquisition unit.
  7.  請求項6に記載の複合加工システムであって、
     前記画像取得部によって取得された前記画像に基づいて、前記画像における、前記加工プログラム上の前記基準穴の前記位置と前記基準穴の実際の位置とのずれ量を演算するずれ量演算部をさらに備えており、
     前記第2原点補正部は、前記ずれ量演算部によって演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上の成形加工の前記加工原点位置を補正する、複合加工システム。
    The combined machining system according to claim 6,
    A deviation amount calculation unit that calculates a deviation amount between the position of the reference hole on the processing program and the actual position of the reference hole in the image based on the image acquired by the image acquisition unit; Has
    The second origin correction unit corrects the machining origin position of the forming process on the machining program based on the deviation amount calculated by the deviation amount calculation unit so that the deviation amount becomes zero. Processing system.
  8.  請求項6に記載の複合加工システムであって、
     前記ワーク上に前記基準穴を囲む軌跡を形成する軌跡形成部と、
     前記画像取得部によって取得された前記画像に基づいて、前記画像における、前記軌跡の位置と前記基準穴の実際の位置とのずれ量を演算するずれ量演算部と、をさらに備えており、
     前記軌跡形成部は、前記撮像部による前記画像の撮像前に、
    前記レーザ照射部を制御して低出力レーザ光を照射させつつ、前記ワーク移動部を制御して前記加工プログラム上の前記基準穴の前記位置に基づいて前記ワークを相対的に動かして前記ワーク上に前記軌跡を形成し、
     前記第1原点補正部は、前記ずれ量演算部によって演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上のレーザ加工の前記加工原点位置を補正する、複合加工システム。
    The combined machining system according to claim 6,
    A trajectory forming unit that forms a trajectory surrounding the reference hole on the workpiece;
    A deviation amount calculation unit that calculates a deviation amount between the position of the trajectory and the actual position of the reference hole in the image based on the image acquired by the image acquisition unit;
    The trajectory forming unit is configured to capture the image by the imaging unit.
    While controlling the laser irradiation unit to irradiate the low-power laser beam, the workpiece moving unit is controlled to move the workpiece relatively based on the position of the reference hole on the machining program. Forming the trajectory,
    The first origin correction unit corrects the machining origin position of laser processing on the machining program so that the deviation amount becomes zero based on the deviation amount calculated by the deviation amount calculation unit. Processing system.
  9.  請求項7又は8に記載の複合加工システムであって、
     前記第2原点補正部が、前記ワーク上の前記複数の製品部分の少なくとも二つに関して成形加工の前記加工原点位置を補正することで補正データを生成し、
     前記第1原点補正部が、前記補正データを用いることで、前記ワーク上の前記複数の製品部分に関して、前記加工プログラム上のレーザ加工の加工原点位置を補正する、複合加工システム。
    The combined machining system according to claim 7 or 8,
    The second origin correction unit generates correction data by correcting the processing origin position of the forming process for at least two of the plurality of product parts on the workpiece,
    The combined machining system, wherein the first origin correction unit corrects a machining origin position of laser machining on the machining program for the plurality of product parts on the workpiece by using the correction data.
  10.  請求項7~9の何れか一項に記載の複合加工システムであって、
     前記第2原点補正部が、前記ワーク上の前記複数の製品部分の少なくとも二つに関して成形加工の前記加工原点位置を補正することで補正データを生成し、
     前記第2原点補正部が、前記補正データを用いることで、上記ワーク上の残りの製品部分、又は、他のワーク上の複数の製品部分の成形加工の前記加工原点位置を補正する、複合加工システム。
    A combined machining system according to any one of claims 7 to 9,
    The second origin correction unit generates correction data by correcting the processing origin position of the forming process for at least two of the plurality of product parts on the workpiece,
    The second origin correction unit corrects the processing origin position of the molding process of the remaining product part on the workpiece or a plurality of product parts on another workpiece by using the correction data. system.
  11.  請求項6~10の何れか一項に記載の複合加工システムであって、
     前記レーザ加工機が、前記成形加工を含むパンチ加工を前記加工プログラムに基づいて前記複数の製品部分に行うパンチ加工部をさらに備えている複合加工機である、複合加工システム。
    A combined machining system according to any one of claims 6 to 10,
    The combined processing system, wherein the laser processing machine is a combined processing machine further including a punch processing unit that performs punch processing including the forming processing on the plurality of product parts based on the processing program.
  12.  加工プログラムに基づいて前記ワーク上の複数の製品部分を成形加工する複合加工機であって、
     前記ワークにレーザ光を照射するレーザ照射部と、
     前記ワーク上の前記複数の製品部分の少なくとも一つに対応して予め形成された基準穴の画像を撮像する撮像部と、
     前記レーザ照射部の照射位置及び前記撮像部の撮像位置に対して、前記ワークを相対的に水平方向に移動するワーク移動部と、
     前記加工プログラム上の前記基準穴の位置に基づいて前記ワーク移動部を制御して前記ワークを前記撮像位置に対して相対的に前記水平方向に位置決めし、前記撮像部を制御して前記画像を撮像した後に前記撮像部から前記画像を取得する画像取得部と、
     前記画像取得部によって取得された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正する第2原点補正部と、を備えている、複合加工機。
    A multi-tasking machine that forms a plurality of product parts on the workpiece based on a processing program,
    A laser irradiation unit for irradiating the workpiece with laser light;
    An imaging unit that captures an image of a reference hole formed in advance corresponding to at least one of the plurality of product parts on the workpiece;
    A workpiece moving unit that moves the workpiece in a horizontal direction relative to the irradiation position of the laser irradiation unit and the imaging position of the imaging unit;
    The workpiece moving unit is controlled based on the position of the reference hole on the machining program to position the workpiece in the horizontal direction relative to the imaging position, and the imaging unit is controlled to display the image. An image acquisition unit for acquiring the image from the imaging unit after imaging;
    A multi-tasking machine comprising: a second origin correcting unit that corrects a processing origin position of molding processing on the processing program based on the image acquired by the image acquisition unit.
  13.  板状のワークへの成形加工後の、加工プログラムに基づく前記ワーク上の複数の製品部分へのレーザ加工のための加工原点補正方法であって、
     [a]前記複数の製品部分の少なくとも一つに対応して基準穴を形成し、
     [b]前記加工プログラム上の前記基準穴の位置に基づいて前記基準穴の画像を撮像し、
     [c]撮像された前記画像に基づいて、前記加工プログラム上のレーザ加工の加工原点位置を補正し、
     [d]補正された前記加工原点位置に基づいて、前記複数の製品部分の前記少なくとも一つをレーザ加工する、加工原点補正方法。
    A processing origin correction method for laser processing on a plurality of product parts on the workpiece based on a machining program after forming the plate-like workpiece,
    [A] forming a reference hole corresponding to at least one of the plurality of product parts;
    [B] taking an image of the reference hole based on the position of the reference hole on the machining program;
    [C] Based on the captured image, correct the processing origin position of the laser processing on the processing program,
    [D] A processing origin correction method of performing laser processing on at least one of the plurality of product portions based on the corrected processing origin position.
  14.  請求項13に記載の加工原点補正方法であって、
     [c]において、
     [c-1]撮像された前記画像に基づいて、前記画像における、前記加工プログラム上の前記基準穴の前記位置と前記基準穴の実際の位置とのずれ量を演算し、
     [c-2]演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上のレーザ加工の前記加工原点位置を補正する、加工原点補正方法。
    The processing origin correction method according to claim 13,
    In [c],
    [C-1] On the basis of the imaged image, a deviation amount between the position of the reference hole on the processing program and the actual position of the reference hole in the image is calculated,
    [C-2] A machining origin correction method for correcting the machining origin position of laser processing on the machining program so that the deviation amount becomes zero based on the calculated deviation amount.
  15.  請求項13に記載の加工原点補正方法であって、
     [b]より以前に、低出力レーザ光を照射させつつ、前記加工プログラム上の前記基準穴の前記位置に基づいて前記ワークを相対的に動かして前記ワーク上に前記軌跡を形成し、
     [c]において、
     [c-1’]撮像された前記画像に基づいて、前記画像における、前記軌跡の位置と前記基準穴の実際の位置とのずれ量を演算し、
     [c-2’]演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上のレーザ加工の前記加工原点位置を補正する、加工原点補正方法。
    The processing origin correction method according to claim 13,
    Prior to [b], while irradiating a low-power laser beam, relatively moving the workpiece based on the position of the reference hole on the machining program to form the locus on the workpiece,
    In [c],
    [C-1 ′] On the basis of the imaged image, a shift amount between the position of the locus and the actual position of the reference hole in the image is calculated,
    [C-2 ′] A machining origin correction method for correcting the machining origin position of laser processing on the machining program so that the deviation amount becomes zero based on the calculated deviation amount.
  16.  請求項13~15の何れか一項に記載の加工原点補正方法であって、
     前記ワーク上の前記複数の製品部分の少なくとも二つに関して成形加工の前記加工原点位置を補正することで補正データを生成し、
     前記補正データを用いて、上記ワーク上の残りの製品部分、又は、他のワーク上の複数の製品部分のレーザ加工の前記加工原点位置を補正する、加工原点補正方法。
    The machining origin correction method according to any one of claims 13 to 15,
    Correction data is generated by correcting the processing origin position of the molding processing for at least two of the plurality of product parts on the workpiece,
    A processing origin correction method for correcting the processing origin position of laser processing of the remaining product portion on the workpiece or a plurality of product portions on another workpiece using the correction data.
  17.  請求項13~16の何れか一項に記載の加工原点補正方法であって、
     [b]が成形加工中に行われ、
     [i]撮像された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正する、加工原点補正方法。
    The processing origin correction method according to any one of claims 13 to 16,
    [B] is performed during the molding process;
    [I] A processing origin correction method for correcting a processing origin position of molding processing on the processing program based on the captured image.
  18.  請求項17に記載の加工原点補正方法であって、
     [i]において、
     [i-1]撮像された前記画像に基づいて、前記画像における、前記加工プログラム上の前記基準穴の前記位置と前記基準穴の実際の位置とのずれ量を演算し、
     [i-2]演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上の成形加工の前記加工原点位置を補正する、加工原点補正方法。
    The processing origin correction method according to claim 17,
    In [i]
    [I-1] Based on the captured image, calculate a deviation amount between the position of the reference hole on the processing program and the actual position of the reference hole in the image,
    [I-2] A machining origin correction method for correcting the machining origin position of the forming process on the machining program so that the deviation amount becomes zero based on the calculated deviation amount.
  19.  請求項17に記載の加工原点補正方法であって、
     [b]より以前に、低出力レーザ光を照射させつつ、前記加工プログラム上の前記基準穴の前記位置に基づいて前記ワークを相対的に動かして前記ワーク上に前記軌跡を形成し、
     [i]において、
     [i-1’]撮像された前記画像に基づいて、前記画像における、前記軌跡の位置と前記基準穴の実際の位置とのずれ量を演算し、
     [i-2’]演算された前記ずれ量に基づいて、前記ずれ量がゼロになるように前記加工プログラム上の成形加工の前記加工原点位置を補正する、加工原点補正方法。
    The processing origin correction method according to claim 17,
    Prior to [b], while irradiating a low-power laser beam, relatively moving the workpiece based on the position of the reference hole on the machining program to form the locus on the workpiece,
    In [i]
    [I-1 ′] On the basis of the imaged image, a deviation amount between the position of the locus and the actual position of the reference hole in the image is calculated,
    [I-2 ′] A machining origin correction method for correcting the machining origin position of the forming process on the machining program so that the deviation amount becomes zero based on the calculated deviation amount.
  20.  請求項17又は18に記載の加工原点補正方法であって、
     成形加工中に、前記ワーク上の前記複数の製品部分の少なくとも二つに関して成形加工の前記加工原点位置を補正することで補正データを生成し、
     前記補正データを用いることで、前記ワーク上の前記複数の製品部分に関して、前記加工プログラム上のレーザ加工の加工原点位置を補正する、加工原点補正方法。
    The processing origin correction method according to claim 17 or 18,
    During the forming process, correction data is generated by correcting the processing origin position of the forming process for at least two of the plurality of product parts on the workpiece,
    A machining origin correction method for correcting a machining origin position of laser machining on the machining program for the plurality of product parts on the workpiece by using the correction data.
  21.  請求項17~19の何れか一項に記載の加工原点補正方法であって、
     成形加工中に、前記ワーク上の前記複数の製品部分の少なくとも二つに関して成形加工の前記加工原点位置を補正することで補正データを生成し、
     前記補正データを用いることで、上記ワーク上の残りの製品部分、又は、他のワーク上の複数の製品部分の成形加工の前記加工原点位置を補正する、加工原点補正方法。
    A machining origin correction method according to any one of claims 17 to 19,
    During the forming process, correction data is generated by correcting the processing origin position of the forming process for at least two of the plurality of product parts on the workpiece,
    A machining origin correction method for correcting the machining origin position of the molding process of the remaining product part on the workpiece or a plurality of product parts on another workpiece by using the correction data.
  22.  加工プログラムに基づく板状のワーク上の複数の製品部分への成形加工のための加工原点補正方法であって、
     [A]前記複数の製品部分の少なくとも一つに対応して基準穴を形成し、
     [B]前記加工プログラム上の前記基準穴の位置に基づいて前記基準穴の画像を撮像し、
     [C]撮像された前記画像に基づいて、前記加工プログラム上の成形加工の加工原点位置を補正し、
     [D]補正された前記加工原点位置に基づいて、前記複数の製品部分の前記少なくとも一つを成形加工する、加工原点補正方法。
    A processing origin correction method for forming a plurality of product parts on a plate-shaped workpiece based on a processing program,
    [A] forming a reference hole corresponding to at least one of the plurality of product parts;
    [B] Taking an image of the reference hole based on the position of the reference hole on the machining program;
    [C] Based on the captured image, correct the processing origin position of the forming process on the processing program,
    [D] A processing origin correction method in which the at least one of the plurality of product parts is formed based on the corrected processing origin position.
PCT/JP2015/062781 2014-05-09 2015-04-28 Laser processing machine, composite processing system, composite processing machine, and processing origin correction method WO2015170639A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-097527 2014-05-09
JP2014097527 2014-05-09
JP2014242950A JP5947869B2 (en) 2014-05-09 2014-12-01 Combined processing system, combined processing machine, and processing origin correction method
JP2014-242950 2014-12-01

Publications (1)

Publication Number Publication Date
WO2015170639A1 true WO2015170639A1 (en) 2015-11-12

Family

ID=54392491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062781 WO2015170639A1 (en) 2014-05-09 2015-04-28 Laser processing machine, composite processing system, composite processing machine, and processing origin correction method

Country Status (2)

Country Link
JP (1) JP5947869B2 (en)
WO (1) WO2015170639A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903425A (en) * 2015-12-22 2017-06-30 康拉德有限责任公司 method for processing workpiece
US11049268B2 (en) 2017-03-02 2021-06-29 Mitsubishi Electric Corporation Superimposing position correction device and superimposing position correction method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6730162B2 (en) * 2016-10-27 2020-07-29 株式会社アマダ Laser processing machine
JP7149085B2 (en) 2018-03-20 2022-10-06 株式会社アマダ Hole punching method and mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184742A (en) * 1989-12-15 1991-08-12 Fuji Electric Co Ltd Zero-position compensating method in nc machine
US20050205778A1 (en) * 2003-10-17 2005-09-22 Gsi Lumonics Corporation Laser trim motion, calibration, imaging, and fixturing techniques
JP2013154383A (en) * 2012-01-31 2013-08-15 Amada Co Ltd Thermal cutting processing apparatus, thermal cutting processing method, and composite processing method
JP2014013547A (en) * 2012-07-05 2014-01-23 Amada Co Ltd Error correction device and method in machining system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134742A (en) * 1989-10-20 1991-06-07 Mitsubishi Electric Corp Debug device
JP2012020297A (en) * 2010-07-12 2012-02-02 Opton Co Ltd Method of trimming press-formed article
JP5883656B2 (en) * 2012-01-17 2016-03-15 株式会社アマダホールディングス Thermal cutting apparatus and thermal cutting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184742A (en) * 1989-12-15 1991-08-12 Fuji Electric Co Ltd Zero-position compensating method in nc machine
US20050205778A1 (en) * 2003-10-17 2005-09-22 Gsi Lumonics Corporation Laser trim motion, calibration, imaging, and fixturing techniques
JP2013154383A (en) * 2012-01-31 2013-08-15 Amada Co Ltd Thermal cutting processing apparatus, thermal cutting processing method, and composite processing method
JP2014013547A (en) * 2012-07-05 2014-01-23 Amada Co Ltd Error correction device and method in machining system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903425A (en) * 2015-12-22 2017-06-30 康拉德有限责任公司 method for processing workpiece
US11049268B2 (en) 2017-03-02 2021-06-29 Mitsubishi Electric Corporation Superimposing position correction device and superimposing position correction method

Also Published As

Publication number Publication date
JP5947869B2 (en) 2016-07-06
JP2015226933A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015170639A1 (en) Laser processing machine, composite processing system, composite processing machine, and processing origin correction method
JP5502291B2 (en) Machine for machining a workpiece and method for machining a workpiece mechanically
JP5465957B2 (en) Machining state confirmation method and machining state confirmation apparatus
US8310539B2 (en) Calibration method and calibration device
US10315251B2 (en) Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
KR102051119B1 (en) Laser processing method and laser processing apparatus
US20130076287A1 (en) Numerical controller having display function for trajectory of tool
JP6177412B1 (en) Additive manufacturing equipment
JP2009266221A (en) Machining simulation method and machining simulation apparatus
EP2584419A2 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
JP6287293B2 (en) Display system, display device, and display method
US9902070B2 (en) Robot system and robot control method for adjusting position of coolant nozzle
JP2019521896A (en) Detection repair apparatus and method for powder additive manufacturing
US10241494B2 (en) Cutting method and tool path generating device
JP2005133120A (en) Working standard correction method for light beam fabrication, and light beam fabrication device
KR102609524B1 (en) Method and device for aligning cutting trajectories
CN111992895A (en) Intelligent marking system and method
JP6305195B2 (en) Laser processing machine and processing origin correction method
JP6730162B2 (en) Laser processing machine
JP5909355B2 (en) Automatic programming apparatus and method for laser processing machine and laser processing system
JP5530204B2 (en) Processing status monitoring device
KR20180031942A (en) Ore automatic cutting method and system for fine operation
JP5622250B1 (en) Workpiece processing device with calibration function
WO2010073294A1 (en) Interference checking device
CN117136116A (en) Method and control device for controlling a laser machining process of a workpiece surface and machining system for machining a workpiece surface by means of the machining process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789846

Country of ref document: EP

Kind code of ref document: A1