WO2010073294A1 - Interference checking device - Google Patents

Interference checking device Download PDF

Info

Publication number
WO2010073294A1
WO2010073294A1 PCT/JP2008/003912 JP2008003912W WO2010073294A1 WO 2010073294 A1 WO2010073294 A1 WO 2010073294A1 JP 2008003912 W JP2008003912 W JP 2008003912W WO 2010073294 A1 WO2010073294 A1 WO 2010073294A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
jig
machine
processing unit
data
Prior art date
Application number
PCT/JP2008/003912
Other languages
French (fr)
Japanese (ja)
Inventor
丹賀澤博道
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2008/003912 priority Critical patent/WO2010073294A1/en
Publication of WO2010073294A1 publication Critical patent/WO2010073294A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4069Simulating machining process on screen
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35316Interference checking between tool, machine, part, chuck, machining range
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49123Simulation of clamping workpiece, modeling fixture and workpiece

Definitions

  • the present invention provides a machine-machine, machine-tool, machine-jig, tool when moving a machine structure by controlling a machine tool manually or automatically by means of a numerical control (NC) device.
  • NC numerical control
  • -Interference check for determining whether interference occurs between jigs or the like based on a three-dimensional model (3-dimensional model, hereinafter referred to as 3D model) obtained by modeling a mechanical structure.
  • 3D model three-dimensional model
  • the present invention relates to a technique for easily setting a jig model which is one element constituting a 3D model used for interference check.
  • the conventional NC device is a machine that consists of a machine model, a tool model, a jig model, and a work model. Whether or not to interfere is determined using 3D model data obtained by modeling the structure.
  • the interference check determination unit determines whether or not to interfere, and if the interference is detected, the axis movement is stopped.
  • FIG. 7 is a block diagram showing a main part of a conventional NC device, in which 1 is a movement control unit, 2 is an axis control unit, 3 is an axis movement amount output circuit, 4 is a servo control unit, and 5 is a servo motor. is there.
  • Reference numeral 6 denotes an interference check determination unit
  • 7 denotes a 3D model update processing unit
  • 8 denotes a display unit.
  • the display unit includes a screen display processing unit 9, a 3D monitor 10, and a model data setting unit 11.
  • Reference numeral 12 denotes an input unit
  • 13 denotes a storage unit.
  • the storage unit 13 includes a machine model 15, a tool model 16, a jig model 17, and a work model 18, and 3D model data 14 serving as original data for generating a 3D model, and a machine structure that changes in real time.
  • 3D model space information 19 for stereoscopic display is stored.
  • the 3D model space information 19 is a machine structure model corresponding to an actual machine structure generated based on each data of the machine model 15, the tool model 16, the jig model 17, and the work model 18.
  • the machine model 15 that is a part of the machine structure is a structure that defines the structure, tool attachment coordinates, jig attachment coordinates, etc. that move with the shape, arrangement, and axis movement of the machine structure.
  • Information created by a CAD / CAM system outside the NC unit is input from the input unit 12.
  • the machine interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
  • the tool model 16 which is a part of the machine structure is used to model a tool, and includes information such as a tool type such as a flat end mill and a ball end mill, tool dimension data such as a tool length, and a tool diameter. . These pieces of information are input for each tool from the model data setting unit 11 by an operator's operation, whereby the interference determination area of each tool is automatically determined by a predetermined procedure inside the NC unit.
  • a jig model 17 which is a part of the mechanical structure is used to model a jig used to hold a workpiece.
  • the NC model device 11 is previously configured by the operator to operate the NC device. This is defined by designating an object having a desired shape from the jigs having a standard shape registered in, and inputting necessary dimensions, attachment positions, attachment angles, and the like. Thereby, the interference determination area
  • the work model 18 which is a part of the mechanical structure is for modeling a work, and has a standard shape registered in advance in the NC apparatus from the model data setting unit 11 by the operation of the operator. This is defined by designating a workpiece having a desired shape from the workpiece and inputting necessary dimensions, mounting positions, mounting angles, and the like.
  • the workpiece interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
  • the machine structure corresponding to the actual machine structure is converted into a 3D model by using the machine model 15, tool model 16, jig model 17, and workpiece model 18 data input to the storage unit 13 as described above.
  • the 3D modeled mechanical structure is displayed on the 3D monitor unit 10 on the display unit 8 as a two-dimensional display or a three-dimensional display, and interference check is performed.
  • the basic data is a three-dimensional display or a three-dimensional display, and interference check is performed.
  • the movement control unit 1 generates a movement signal for driving a machine (not shown).
  • An axis movement signal input by an operator operating an operation button from an operation panel (not shown), or via the input unit 12 or the display unit 8.
  • the axis control unit 2 Based on the analysis result of the input or generated machining program, the axis control unit 2 generates a movement amount per unit time of each control axis so that the machine draws a desired locus, and sends it to the axis movement amount output circuit 3. Output.
  • the movement amount per unit time is output to the servo control unit 4 and converted into electric power by each of the axis control units 4a, 4b... To drive the servo motors 5a, 5b.
  • the movement control unit 1 inputs the movement amount of each axis (for example, the movement amount per unit time during manual operation and the segment amount of the program trajectory during automatic operation) to the interference check determination unit 6.
  • the amount of movement of each axis is input to the 3D model update processing unit 7, and the 3D model update processing unit 7 makes the 3D model space information 19 so that the machine structure as 3D model data has the latest shape. Is updated in real time with the amount of movement per unit time.
  • the latest shape of this machine structure is stored in the storage unit 13 as 3D model space information 19 and displayed on the machine structure as a two-dimensional display or a three-dimensional display viewed from an arbitrary viewpoint by the screen display processing unit 9 in the display unit 8. It is converted into data and displayed in the area of the 3D monitor 10. With this machine structure display, the operator can confirm the movement of the machine on the display unit 8 without moving the machine.
  • the interference check determination unit 6 determines whether or not the machine structures are based on the interference determination area output from the storage unit 13, the coordinate values of the machine structure, the axis movement amount input from the movement control unit 1, and the like. It is checked whether interference occurs between the machine, the machine-tool, the machine-jig, and the tool-jig, and the determination result is output to the movement control unit 1. If the determination result is “interference”, the output of the axis movement amount is stopped, and if the determination result is “non-interference”, the output of the axis movement amount is continued, and the servo motors 5a, 5b through the servo control units 4a, 4b. ... is driven, and the workpiece is machined by moving the tool and the workpiece relatively.
  • the movement on the display is stopped during the simulation (program check) of the machining program, and the machine movement is also stopped if the machine is moving.
  • a determination result “interference” is output, a message for notifying the determination result and the interference target is stored in the storage unit 13, and the display unit 8 is connected via the screen display processing unit 9. A notification message indicating interference is displayed above.
  • a workpiece or jig is centered using a measuring means (see, for example, Document 1), and a detection target object is determined based on position data of the detection target object output from a contact detector.
  • a detection target object is determined based on position data of the detection target object output from a contact detector.
  • One that corrects the position of the CAD model of the work target object to be included for example, see Document 2
  • one that reads the shape of the model or workpiece with a measuring means, and generates a cutting path for the tool based on this data for example, see Document 3
  • the setting method of the jig model 16 in the conventional NC device is to select a desired jig from the shapes of jigs registered in advance and define all parameters for this shape. Therefore, there is a drawback that it is not possible to cope with any jig other than the registered jig.
  • model according to the setting method is in accordance with the drawing, there is a problem that the model (parameter) may not always match the reality due to an installation error by the operator, a missing jig, or the like.
  • the present invention has been made to solve such a problem, and refers to the most basic component used to express a large structure constituting a jig model in a device. ) Are stored, and the machine operator can easily combine them using this part and enter the required information such as dimensions to form an arbitrary jig.
  • An object of the present invention is to obtain an interference check device that can be arbitrarily arranged on an object.
  • Machine components such as a machine model, a tool model, and a jig model are recorded as 3D model data, respectively, and actual data is based on the 3D model data.
  • a storage unit that stores 3D model space information generated for stereoscopically displaying a machine structure model corresponding to the machine structure, and 3D that updates the 3D model space information in real time with data for controlling machine movement
  • a model update processing unit and a 3D monitor unit that checks whether the mechanical structures interfere with each other based on the 3D model space information updated by the 3D model update processing unit, and displays the check status in 3D
  • the jig model for newly generating the jig model by combining basic parts stored in advance. It is provided with a Le setting processing unit.
  • the present invention records machine components such as a machine model, a tool model, a jig model, etc. as 3D model data, and a machine structure model corresponding to an actual machine structure based on the 3D model data.
  • the interference check device including a 3D monitor unit that checks whether or not the machine structures interfere with each other based on the 3D model space information updated by the processing unit, and displays the check status in 3D, the actual check Take in the dimensions of the jig that actually fixes the workpiece, measured by the sensor that measures the coordinate position of the machine structure, and import this
  • a jig model that generates a new jig model by deforming and combining at least one or more basic parts stored in advance to match the shape of the jig that actually fixes the workpiece
  • a setting processing unit is provided
  • the present invention records machine components such as a machine model, a tool model, a jig model, etc. as 3D model data, and a machine structure model corresponding to an actual machine structure based on the 3D model data.
  • the interference check apparatus provided with a 3D monitor unit for checking whether or not the machine structures interfere with each other based on the 3D model space information updated by the processing unit and displaying the check status in 3D
  • the jig A model is newly generated by combining at least one or more basic parts stored in advance into any shape.
  • the mounting position of the jig that actually fixes the workpiece which is actually measured by the sensor that measures the coordinate position of the actual mechanical structure, is captured, and the mounting of the jig model is performed based on the captured value.
  • a jig model setting processing unit for correcting the position is provided.
  • the present invention records machine components such as a machine model, a tool model, a jig model, etc. as 3D model data, and a machine structure model corresponding to an actual machine structure based on the 3D model data.
  • the interference check device including a 3D monitor unit that checks whether or not the machine structures interfere with each other based on the 3D model space information updated by the processing unit, and displays the check status in 3D, the actual check Take in the dimensions of the jig that actually fixes the workpiece, measured by the sensor that measures the coordinate position of the machine structure, and import this And generating a new jig model by combining at least one or more basic parts stored in advance so as to match the shape of the jig that actually fixes the workpiece, A jig model setting processing unit that takes in the mounting position of the
  • a machine operator can create a jig model of an arbitrary shape by combining a plurality of primitive part models stored in advance, a wide variety of jigs other than the standard shape at the processing site. This has the effect of improving productivity.
  • the coordinate value information can be captured by applying a touch sensor, and correction and registration can be performed with the actual position and actual dimensions of the jig. Interference check can be performed and productivity is improved.
  • FIG. 1 is a block diagram showing the main configuration of an NC apparatus according to Embodiment 1 of the present invention.
  • 1 is a movement processing unit
  • 2 is an axis control unit
  • 3 is an axis movement amount output circuit
  • 4 is
  • the servo control unit 5 is a servo motor.
  • 6 is an interference check determination unit
  • 7 is a 3D model update processing unit
  • 8 is a display unit.
  • the display unit includes a screen display processing unit 9, a 3D monitor 10, and a model data setting unit 11.
  • Reference numeral 12 denotes an input unit
  • 13 denotes a storage unit.
  • the storage unit 13 includes a machine model 15, a tool model 16, a jig model 17, and a work model 18, and 3D model data 14 serving as original data for generating a 3D model, and an actual machine structure that changes in real time.
  • 3D model space information 19 for displaying the image three-dimensionally is stored.
  • the 3D model space information 19 is a machine structure model corresponding to an actual machine structure generated based on each data of the machine model 15, the tool model 16, the jig model 17, and the work model 18.
  • Reference numeral 21 denotes a jig model setting processing unit which is the main gist of the present invention, and includes a touch sensor position calculation means 22, a jig model arrangement position calculation means 23, a jig model registration means 24, and a basic part storage means 25.
  • the machine model 15 which is 3D model information of a machine tool defines a structure that moves with the shape, arrangement, and axis movement of a machine structure, tool attachment coordinates, jig attachment coordinates, and the like.
  • the machine model 15 is generally created by a CAD / CAM device outside the NC device, and 3D model information of a machine tool as a machine structure is input from the input unit 12.
  • the machine interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
  • the tool model 16 which is a part of the machine structure is used to model a tool, and includes information such as a tool type such as a flat end mill and a ball end mill, tool dimension data such as a tool length, and a tool diameter. . These pieces of information are input from the model data setting unit 11 for each tool, whereby the interference determination area of each tool is automatically determined by a predetermined procedure inside the NC apparatus.
  • the jig model 17 which is a part of the mechanical structure is for modeling a jig used for holding a workpiece.
  • the basic model storage means is previously set by the model data setting unit 11. This is defined by designating a desired shape from the standard shape jigs registered in 25 and inputting the necessary dimensions, mounting position, mounting angle, and the like. Thereby, the interference determination area
  • the workpiece model 18 which is a part of the mechanical structure is for modeling the workpiece, and is selected from a workpiece having a standard shape registered in advance in the NC apparatus by the model data setting unit 11. This is defined by designating a workpiece of the shape and inputting the necessary dimensions, mounting position, mounting angle, and the like.
  • the workpiece interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
  • the machine structure corresponding to the actual machine structure is converted into a 3D model by using the machine model 15, tool model 16, jig model 17, and workpiece model 18 data input to the storage unit 13 as described above.
  • the 3D modeled mechanical structure is displayed on the 3D monitor unit 10 on the display unit 8 as a two-dimensional display or a three-dimensional display, and interference check is performed.
  • the basic data is a three-dimensional display or a three-dimensional display, and interference check is performed.
  • the jig model setting processing unit 21 includes a touch sensor position calculation unit 22, a jig model arrangement position calculation unit 23, a jig model registration unit 24, and a basic part storage unit 25.
  • a desired shape as a base is selected from basic component storage means 25 storing so-called primitive shapes such as a rectangular parallelepiped, a cylinder, a triangular prism, etc., an attachment reference point is designated, and dimensions of each part are input. This attachment reference point is used when the jig is arranged on a machine table or the like.
  • the shape of the part to be mounted on the set jig is selected from the basic component storage means 25, the mounting position on the jig is designated, and the dimensions of each part are input.
  • a jig configured by combining arbitrary basic parts such as a rectangular parallelepiped, a cylinder, and a triangular prism can be created.
  • the jig model registration means 24 assigns a registration number to the new jig model and additionally registers it in the jig model 17 in the 3D model data 14. If there are other jigs other than the required standard shape, a new jig model is similarly generated and registered. The details will be described later with reference to FIG.
  • the machine can be moved manually by the operator while the workpiece is actually fixed. Measure the component surface of the jig with the touch sensor. Specifically, a coordinate position that constitutes a predetermined surface for determining the actual position of the jig is read. Based on these data, the actual mounting position, mounting angle, and actual shape are calculated and obtained, and the actual information is obtained to correct the registration information.
  • the operator operates the machine and applies touch sensors to a plurality of predetermined positions necessary for measurement, and captures data at each position.
  • the touch sensor position calculation means 22 calculates the position of the contact point from the coordinate value information of the touch sensor brought into contact with each surface of the jig fixing the workpiece placed on the machine.
  • the jig model arrangement position calculation means 23 is an arrangement position of the jig model based on a plurality of contact point coordinate values of the touch sensor, for example, coordinate information and inclination information for defining each surface in the case of a rectangular parallelepiped part, If the center position of the circular cross-section is a complex of these, information defining these is read as the touch position of the touch sensor and calculated.
  • the jig model registration means 24 registers a jig model (part model) based on the jig model arrangement position calculation result. Details of this will be described later with reference to FIG.
  • the movement control unit 1 generates a movement signal for driving a machine (not shown), and is input via an axis movement signal input by an operator operating an operation button from an operation panel (not shown), the input unit 12 or the display unit 8.
  • the axis control unit 2 based on the result of analyzing the generated machining program, the axis control unit 2 generates a movement amount per unit time of each control axis so that the machine draws a desired locus and outputs it to the axis movement amount output circuit 3 To do.
  • the movement amount per unit time is output to the servo control unit 4, and the power of each axis control unit 4a, 4b,... Is amplified to drive the servo motors 5a, 5b,. *
  • the movement control unit 1 inputs the movement amount of each axis (for example, the movement amount per unit time during manual operation and the segment amount of the program trajectory during automatic operation) to the interference check determination unit 6.
  • the amount of movement of each axis is input to the 3D model update processing unit 7, and the 3D model update processing unit 7 sets the 3D model space information so that the machine structure as 3D model data has the latest shape. Update in real time with the amount of movement per unit time.
  • the latest shape of the mechanical structure is stored in the 3D model space information 19 in the storage unit 13, and is displayed as a two-dimensional display or a stereoscopic (3D) view from an arbitrary viewpoint by the screen display processing unit 9 in the display unit 8. It is converted into display data of the object and displayed in the area of the 3D monitor 10. With this machine structure display, the operator can confirm the movement of the machine on the display unit 8 without moving the machine.
  • the interference check determination unit 6 uses the 3D model space information 19 and the amount of axial movement input from the movement control unit 1 to make mechanical structures, that is, machine-machine, machine-tool, machine-jig, tool- It is checked whether or not interference occurs between the jigs, and the determination result is output to the movement control unit 1. If the determination result is “interference”, the output of the axis movement amount is stopped, and if the determination result is “non-interference”, the output of the axis movement amount is continued, and the servo motors 5a, 5b through the servo control units 4a, 4b. ... is driven, and the workpiece is machined by moving the tool and the workpiece relatively.
  • the movement on the display is stopped during the simulation (program check) of the machining program, and the machine movement is also stopped if the machine is moving.
  • a determination result “interference” is output, a message for notifying the determination result and the interference target is stored in the storage unit 13, and the display unit 8 is connected via the screen display processing unit 9. A notification message indicating interference is displayed above.
  • FIG. 2 is a flowchart showing a procedure for creating a jig model other than the standard and general shapes by combining basic parts (parts) stored in the NC apparatus by the jig model setting processing unit 21.
  • step 21 for example, a rectangular parallelepiped and a cylinder shown in FIG.
  • a list of basic parts such as the shape of the composite part model group configured by the above is displayed on the display unit 8, and a basic part (part) to be used is selected from the list of basic parts.
  • each part of the selected part are designated and set to a desired size.
  • the mounting position of this part on the jig body is designated.
  • the selected item is a jig body (for example, when two parts are combined to form a jig, the base part) can be omitted.
  • the mounting angle of the part to the jig body is designated. If there is no designation of the mounting angle, it shall be created on a coordinate system parallel to the rectangular coordinate system of the jig body. Also in this case, when the first selected process is the jig body, it is created on the rectangular coordinate system of this basic part, and the mounting angle can be omitted.
  • the part shape displayed on the display unit 8 is visually confirmed to confirm whether or not the dimensions, the mounting position, and the mounting angle regarding the basic part selected this time have been set correctly. If correction is necessary, the process returns to S22, S23, and S24 to correct the data. If the setting has been performed correctly, the process proceeds to S26 to store the setting data for the selected basic part.
  • the first processing processing of the jig body
  • the second processing In the process of mounting other components on the jig body, the process of S28 is performed after the processes of S27 and S21 to S26.
  • the designation of the reference point for mounting the jig on the machine model 15 is input in an appropriate step before registration as a jig model (S28).
  • a jig model to be corrected is selected by specifying a registration number (step 01, hereinafter abbreviated as S01).
  • S01 a registration number
  • the 3D machine structure to which the selected jig model is assigned is displayed on the display unit 8.
  • the control axis is moved so that the touch sensor comes into contact with a desired position on the predetermined surface (S02).
  • the position recognized by the NC device is not the position of the touch point of the touch sensor but the center position of the touch sensor.
  • the touch sensor is moved in the surface direction in the order of A and B to make contact. Assuming that the radius of the touch sensor is (r), it is on the line A′B ′ parallel to the line segment AB in the direction of movement before contact and perpendicular to the line segment AB by the radius (r) of the touch sensor. Becomes the AB plane. Next, the touch sensor is moved and brought into contact with the C surface direction, and a surface that is perpendicular to the line segment A′B ′ and separated by the radius (r) of the touch sensor in the moving direction before the contact is the C surface.
  • the reading button on the jig model setting processing unit 21 of the display unit 8 is pressed to instruct reading of the contact point coordinate position (S03).
  • the touch sensor position calculation means 22 calculates the position of the contact point from the coordinate value information of the touch sensor brought into contact with each surface of the jig fixing the workpiece placed on the machine, If the tool model arrangement position calculation means 23 is a jig model arrangement position based on a plurality of touch point coordinate values of the touch sensor, for example, if it is a rectangular parallelepiped part, coordinate information and inclination information defining each surface, and if it is a cylindrical part, If the center position of the circular cross-section is a complex of these, information defining these is read as the touch position of the touch sensor and calculated.
  • the operator waits until the measurement completion display of the contact point appears on the display unit 8 in S04, and proceeds to S05 when the measurement is completed.
  • each jig has different planes and measurement positions and points depending on the shape of the jig, the operator determines whether or not the measurement of the contact points necessary for the jig has been completed in S05.
  • the measurement work of S02 to S04 is executed until the measurement of the above is completed.
  • the rectangular parallelepiped has, for example, two faces + width + height as shown in FIG. 5, and the cylinder has all the contact points necessary for the jig, for example, three points on the circumference + height according to FIG.
  • the operator determines that the jig state is fixed, and determines the jig rearrangement data (S06).
  • the jig model registration unit 24 registers and corrects the jig model with the determined relocation data in the storage unit 13. That is, if the data to be corrected is data related to the jig mounting position, the jig mounting coordinate value of the machine model 15 is corrected. If the data to be corrected is data related to the jig model itself, Make corrections.
  • the jig shape is finely adjusted. Also in S08, it is determined whether or not to perform fine adjustment based on the operator's judgment. If fine adjustment is to be performed, the process proceeds to S09 with "YES", and the coordinate position corresponding to the shape change is measured. In S10, the correction contents are displayed on the changed portion of the original data for fine adjustment using the measured position data. Display on the unit 8, and return to S07 according to the operator's instruction to perform correction registration of the jig model. If there is no need for fine adjustment in S08, the process proceeds to S11 with "NO".
  • the operator determines whether or not other parts constituting the jig are to be measured, and if it is necessary to perform measurement, the process returns to S02 to measure other parts (parts). If the measurement has been completed for all the parts that need to be measured, it is determined “NO”, and the process is terminated.
  • the center position can be specified from at least two points on the circumference if the approach direction of the sensor is taken into consideration, but in this embodiment, the center position is A method of measuring the positions of three points on the circumference that can be uniquely determined shall be used.
  • the interference check is performed by the numerical control device which is a substantially final control device in the production system from the construction program generation to the machining. Needless to say, the interference check may be performed before the device. Therefore, the present invention is not limited to the numerical control device. Moreover, although what used the measurement data of a touch sensor as a sensor was demonstrated, you may use the measurement data of a non-contact-type sensor. Further, in the above-described embodiment, the model data setting unit 11 and the jig model setting processing unit 21 are illustrated separately, and when creating a jig model other than the basic shape, only the jig model setting processing unit 21 is used. The case of generating by using the model data has been described. However, for the dimension input or the like, a function possessed by the model data setting unit 11 may be used, and the model data setting unit 11 is incorporated into the jig model setting processing unit 21. It is good.
  • the interference check device interferes between a machine-machine, a machine-tool, a machine-jig, a tool-jig, and the like when a machine structure is moved by controlling a machine tool by a numerical control device. This is suitable for checking in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

There is provided an interference checking device capable of simply setting, for example, a jig shape used in interference checking for preventing collisions between machine structures. The interference checking device comprises a jig model setting processing unit (21). The jig model setting unit (21) newly generates a jig model (17) by combining a plurality of primitive basic components stored in advance. The jig model setting unit (21) also retrieves the dimensions and attachment position of a jig actually securing a work and actually measured by a sensor that measures the coordinate position of an actual machine structure, modifies the jig model (17) based on the retrieved values, and changes the attachment position of the jig.

Description

干渉チェック装置Interference check device
 この発明は、数値制御(Numerical Control;以下NCという)装置により工作機械を手動運転または自動運転で制御して機械構造物を移動させる時、機械-機械、機械-工具、機械-治具、工具-治具等の間で干渉するか否かを、機械構造物をモデル化した三次元モデル(3-dimensional model、以下3Dモデルという)を基に判定する干渉チェックに係るものである。更に詳しくは干渉チェックに用いる3Dモデルを構成する一つの要素である治具モデルを簡易に設定する技術に関する。 The present invention provides a machine-machine, machine-tool, machine-jig, tool when moving a machine structure by controlling a machine tool manually or automatically by means of a numerical control (NC) device. -Interference check for determining whether interference occurs between jigs or the like based on a three-dimensional model (3-dimensional model, hereinafter referred to as 3D model) obtained by modeling a mechanical structure. More specifically, the present invention relates to a technique for easily setting a jig model which is one element constituting a 3D model used for interference check.
 従来のNC装置は機械構造物同士の衝突を防止するために、自動運転または手動運転による機械可動部の移動で、機械可動部が、機械モデル、工具モデル、治具モデル、ワークモデルから成る機械構造物をモデル化した3Dモデルデータを用いて干渉するか否かを干渉チェック判定部で判定し、干渉するようであれば軸移動を止め、干渉しなければ実行するように制御される。 In order to prevent the collision between machine structures, the conventional NC device is a machine that consists of a machine model, a tool model, a jig model, and a work model. Whether or not to interfere is determined using 3D model data obtained by modeling the structure. The interference check determination unit determines whether or not to interfere, and if the interference is detected, the axis movement is stopped.
 図7は従来のNC装置の要部を示すブロック図であり、図において1は移動制御部、2は軸制御部、3は軸移動量出力回路、4はサーボ制御部、5はサーボモータである。6は干渉チェック判定部、7は3Dモデル更新処理部、8は表示部であり、この表示部は、画面表示処理部9、3Dモニタ10、モデルデータ設定部11を含む。12は入力部、13は記憶部である。記憶部13には、機械モデル15、工具モデル16、治具モデル17、ワークモデル18からなり、3Dモデルを生成するための元データとなる3Dモデルデータ14と、リアルタイムに変化する機械構造物を立体的に表示するための3Dモデル空間情報19とが記憶される。
 なお、3Dモデル空間情報19は、機械モデル15、工具モデル16、治具モデル17、ワークモデル18の各データを基に生成された、実際の機械構造物に対応する機械構造物モデルである。
FIG. 7 is a block diagram showing a main part of a conventional NC device, in which 1 is a movement control unit, 2 is an axis control unit, 3 is an axis movement amount output circuit, 4 is a servo control unit, and 5 is a servo motor. is there. Reference numeral 6 denotes an interference check determination unit, 7 denotes a 3D model update processing unit, and 8 denotes a display unit. The display unit includes a screen display processing unit 9, a 3D monitor 10, and a model data setting unit 11. Reference numeral 12 denotes an input unit, and 13 denotes a storage unit. The storage unit 13 includes a machine model 15, a tool model 16, a jig model 17, and a work model 18, and 3D model data 14 serving as original data for generating a 3D model, and a machine structure that changes in real time. 3D model space information 19 for stereoscopic display is stored.
The 3D model space information 19 is a machine structure model corresponding to an actual machine structure generated based on each data of the machine model 15, the tool model 16, the jig model 17, and the work model 18.
 機械構造物の一部である機械モデル15は、機械構造物の形状・配置・軸移動に伴い可動する構造物、工具取付け座標、治具取付け座標等を定義したものであり、基本的にはNC装置外部のCAD/CAMシステムで作成された情報が入力部12より入力される。これによりNC装置内部で予め定めた手順により機械の干渉判定領域が自動的に決定される。 The machine model 15 that is a part of the machine structure is a structure that defines the structure, tool attachment coordinates, jig attachment coordinates, etc. that move with the shape, arrangement, and axis movement of the machine structure. Information created by a CAD / CAM system outside the NC unit is input from the input unit 12. As a result, the machine interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
 また、機械構造物の一部である工具モデル16は、工具をモデル化するためのもので、フラットエンドミル、ボールエンドミル等の工具種類、工具長、工具径等の工具寸法データなどの情報からなる。これらの情報は、オペレータの操作によってモデルデータ設定部11より工具毎に入力され、これによりNC装置内部で予め定めた手順により各工具の干渉判定領域が自動的に決定される。 The tool model 16 which is a part of the machine structure is used to model a tool, and includes information such as a tool type such as a flat end mill and a ball end mill, tool dimension data such as a tool length, and a tool diameter. . These pieces of information are input for each tool from the model data setting unit 11 by an operator's operation, whereby the interference determination area of each tool is automatically determined by a predetermined procedure inside the NC unit.
 また、機械構造物の一部である治具モデル17は、ワークを保持するなどに使用される治具をモデル化するためのもので、オペレータの操作によってモデルデータ設定部11より、予めNC装置に登録しておいた標準的な形状の治具から所望の形状の物を指定し、これについて必要な寸法や取付位置、取付角度等を入力することにより定義される。これによりNC装置内部で予め定めた手順により各治具の干渉判定領域が自動的に決定される。 A jig model 17 which is a part of the mechanical structure is used to model a jig used to hold a workpiece. The NC model device 11 is previously configured by the operator to operate the NC device. This is defined by designating an object having a desired shape from the jigs having a standard shape registered in, and inputting necessary dimensions, attachment positions, attachment angles, and the like. Thereby, the interference determination area | region of each jig | tool is automatically determined by the procedure predetermined inside NC apparatus.
 更にまた、機械構造物の一部であるワークモデル18は、ワークをモデル化するためのもので、オペレータの操作によってモデルデータ設定部11より、予めNC装置に登録してある標準的な形状のワークから所望の形状のワークを指定し、これについて必要な寸法や取付け位置、取付け角度等を入力することにより定義される。これによりNC装置内部で予め定めた手順によりワークの干渉判定領域が自動的に決定される。 Furthermore, the work model 18 which is a part of the mechanical structure is for modeling a work, and has a standard shape registered in advance in the NC apparatus from the model data setting unit 11 by the operation of the operator. This is defined by designating a workpiece having a desired shape from the workpiece and inputting necessary dimensions, mounting positions, mounting angles, and the like. Thus, the workpiece interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
 前記により記憶部13に入力された機械モデル15、工具モデル16、治具モデル17、ワークモデル18の各データを用いて、実際の機械構造物に対応する機械構造物を3Dモデル化し、この3Dモデル化した3Dモデル空間情報19を機械移動に同期して更新することにより、3Dモデル化した機械構造物を二次元表示または立体表示として表示部8上の3Dモニタ部10に表示すると共に干渉チェックの基データとする。 The machine structure corresponding to the actual machine structure is converted into a 3D model by using the machine model 15, tool model 16, jig model 17, and workpiece model 18 data input to the storage unit 13 as described above. By updating the modeled 3D model space information 19 in synchronization with the machine movement, the 3D modeled mechanical structure is displayed on the 3D monitor unit 10 on the display unit 8 as a two-dimensional display or a three-dimensional display, and interference check is performed. The basic data.
 移動制御部1は図示しない機械を駆動する移動信号を生成するものであり、オペレータが図示しない操作盤から操作ボタンを操作して入力する軸移動信号や、入力部12や表示部8を介して入力または生成される加工プログラムを解析した結果を基に、軸制御部2は機械が所望の軌跡を描くように各制御軸の単位時間毎の移動量を生成し、軸移動量出力回路3に出力する。前記単位時間毎の移動量はサーボ制御部4に出力され、各軸制御部4a、4b…で電力変換されて各軸のサーボモータ5a、5b…を駆動し、機械の動きを制御する。 The movement control unit 1 generates a movement signal for driving a machine (not shown). An axis movement signal input by an operator operating an operation button from an operation panel (not shown), or via the input unit 12 or the display unit 8. Based on the analysis result of the input or generated machining program, the axis control unit 2 generates a movement amount per unit time of each control axis so that the machine draws a desired locus, and sends it to the axis movement amount output circuit 3. Output. The movement amount per unit time is output to the servo control unit 4 and converted into electric power by each of the axis control units 4a, 4b... To drive the servo motors 5a, 5b.
 これと同時に前記移動制御部1は各軸の移動量(例えば手動運転の時は前記単位時間毎の移動量、自動運転の時はプログラム軌跡のセグメント量)を干渉チェック判定部6に入力する。これと同時に前記各軸移動量は3Dモデル更新処理部7に入力され、この3Dモデル更新処理部7により、3Dモデルデータである機械構造物が最新形状になるように、前記3Dモデル空間情報19を、前記単位時間毎の移動量でリアルタイムに更新する。この機械構造物の最新形状は3Dモデル空間情報19として記憶部13に記憶され、表示部8内の画面表示処理部9により、二次元表示または任意視点から見た立体表示として機械構造物の表示データに変換され、3Dモニタ10の領域に表示される。この機械構造物表示により、オペレータは機械を動かすことなく表示部8上で機械の動きを確認できる。 At the same time, the movement control unit 1 inputs the movement amount of each axis (for example, the movement amount per unit time during manual operation and the segment amount of the program trajectory during automatic operation) to the interference check determination unit 6. At the same time, the amount of movement of each axis is input to the 3D model update processing unit 7, and the 3D model update processing unit 7 makes the 3D model space information 19 so that the machine structure as 3D model data has the latest shape. Is updated in real time with the amount of movement per unit time. The latest shape of this machine structure is stored in the storage unit 13 as 3D model space information 19 and displayed on the machine structure as a two-dimensional display or a three-dimensional display viewed from an arbitrary viewpoint by the screen display processing unit 9 in the display unit 8. It is converted into data and displayed in the area of the 3D monitor 10. With this machine structure display, the operator can confirm the movement of the machine on the display unit 8 without moving the machine.
 前記干渉チェック判定部6は、記憶部13から出力された干渉判定領域、機械構造物の各座標値、前記移動制御部1から入力された軸移動量などから機械構造物同士、つまり、機械-機械、機械-工具、機械-治具、工具-治具夫々の間で干渉が発生するか否かをチェックし、判定結果を移動制御部1に出力する。判定結果が”干渉”であれば軸移動量の出力を中止し、判定結果が”非干渉”であれば軸移動量出力を続け、サーボ制御部4a、4b…を介してサーボモータ5a、5b…を駆動し、工具とワークを相対的に移動させてワークを加工する。これにより加工プログラムのシミュレーション(プログラムチェック)中であれは表示上の動きを中止し、機械移動中であれば機械移動も中止する。また、図示していないが、”干渉”という判定結果が出た時、判定結果と干渉対象を報知するメッセージを記憶部13内に記憶すると共に、画面表示処理部9を経由して表示部8上に干渉する旨の報知メッセージを表示する。 The interference check determination unit 6 determines whether or not the machine structures are based on the interference determination area output from the storage unit 13, the coordinate values of the machine structure, the axis movement amount input from the movement control unit 1, and the like. It is checked whether interference occurs between the machine, the machine-tool, the machine-jig, and the tool-jig, and the determination result is output to the movement control unit 1. If the determination result is “interference”, the output of the axis movement amount is stopped, and if the determination result is “non-interference”, the output of the axis movement amount is continued, and the servo motors 5a, 5b through the servo control units 4a, 4b. ... is driven, and the workpiece is machined by moving the tool and the workpiece relatively. Accordingly, the movement on the display is stopped during the simulation (program check) of the machining program, and the machine movement is also stopped if the machine is moving. Although not shown, when a determination result “interference” is output, a message for notifying the determination result and the interference target is stored in the storage unit 13, and the display unit 8 is connected via the screen display processing unit 9. A notification message indicating interference is displayed above.
 なお、他の背景技術として、測定手段を用いてワークや治具の芯出しを行うもの(例えば文献1参照)、接触検出子から出力される検出対象物体の位置データに基づいて検出対象物体を含む作業対象物体のCADモデルの位置を修正するもの(例えば文献2参照)、モデル又はワークの形状を測定手段で読み取り、このデータに基づいて工具のカッティングパスを生成するもの(例えば文献3参照)がある。 As another background art, a workpiece or jig is centered using a measuring means (see, for example, Document 1), and a detection target object is determined based on position data of the detection target object output from a contact detector. One that corrects the position of the CAD model of the work target object to be included (for example, see Document 2), one that reads the shape of the model or workpiece with a measuring means, and generates a cutting path for the tool based on this data (for example, see Document 3) There is.
特開平7-1281号公報Japanese Patent Laid-Open No. 7-1281 特開平4-340605号公報Japanese Unexamined Patent Publication No. 4-340605 特開平8-190416号公報Japanese Unexamined Patent Publication No. Hei 8-90416
 前記従来のNC装置における治具モデル16の設定方法は、予め登録されている治具の形状から所望の治具を選択し、この形状に対して全パラメータを設定して定義するものであったので、登録された治具以外の任意の治具を使いたい時に、これに対応できないという欠点があった。 The setting method of the jig model 16 in the conventional NC device is to select a desired jig from the shapes of jigs registered in advance and define all parameters for this shape. Therefore, there is a drawback that it is not possible to cope with any jig other than the registered jig.
 また、前記設定方法によるモデルは図面に従ったものであるので、オペレータによる取り付け誤差、治具の欠損等により、モデル(パラメータ)と現実とが必ずしも一致しないこともあり得るという課題もある。 Further, since the model according to the setting method is in accordance with the drawing, there is a problem that the model (parameter) may not always match the reality due to an installation error by the operator, a missing jig, or the like.
 この発明は、かかる問題点を解決するためになされたもので、装置に治具モデルを構成するプリミティブ(primitive;ある大きな構造を表現するのに使われる、最も基本的な構成要素のことを指す)な部品モデル(パーツ)を格納しておき、このパーツを用いて機械オペレータ自身が簡易に組み合わせ、寸法等の所要情報を入力することにより任意の治具を構成し、当該治具を機械構造物上に任意に配置させることができる干渉チェック装置を得ることを目的としている。 The present invention has been made to solve such a problem, and refers to the most basic component used to express a large structure constituting a jig model in a device. ) Are stored, and the machine operator can easily combine them using this part and enter the required information such as dimensions to form an arbitrary jig. An object of the present invention is to obtain an interference check device that can be arbitrarily arranged on an object.
 また、各治具でワークを固定した時、必ずしも図面どおりの位置や向きで組み付けられるとは限らないので、実際の治具に合わせたパラメータ設定をすることができる干渉チェック装置を得ることを目的としている。 Also, when the workpiece is fixed with each jig, it is not always assembled in the position and orientation as shown in the drawing, so an object is to obtain an interference check device that can set parameters according to the actual jig. It is said.
 この発明は上記課題を解決するためになされたもので、機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記治具モデルを、予め記憶されている基本部品を組み合わせることにより新たに生成する治具モデル設定処理部を設けたものである。 The present invention has been made to solve the above-mentioned problems. Machine components such as a machine model, a tool model, and a jig model are recorded as 3D model data, respectively, and actual data is based on the 3D model data. A storage unit that stores 3D model space information generated for stereoscopically displaying a machine structure model corresponding to the machine structure, and 3D that updates the 3D model space information in real time with data for controlling machine movement A model update processing unit, and a 3D monitor unit that checks whether the mechanical structures interfere with each other based on the 3D model space information updated by the 3D model update processing unit, and displays the check status in 3D In the interference check apparatus provided, the jig model for newly generating the jig model by combining basic parts stored in advance. It is provided with a Le setting processing unit.
 またこの発明は、機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記実際の機械構造物の座標位置を計測するセンサで実測された、実際にワークを固定している治具の寸法を取り込み、この取り込んだ値に基づいて、予め記憶されている少なくとも一つ以上の基本部品を、実際にワークを固定している治具形状に合致するよう変形させて組み合わせることにより新たな治具モデルを生成する治具モデル設定処理部を設けたものである。 Further, the present invention records machine components such as a machine model, a tool model, a jig model, etc. as 3D model data, and a machine structure model corresponding to an actual machine structure based on the 3D model data. A storage unit for storing 3D model space information generated for stereoscopic display, a 3D model update processing unit for updating the 3D model space information in real time by data for controlling machine movement, and the 3D model update In the interference check device including a 3D monitor unit that checks whether or not the machine structures interfere with each other based on the 3D model space information updated by the processing unit, and displays the check status in 3D, the actual check Take in the dimensions of the jig that actually fixes the workpiece, measured by the sensor that measures the coordinate position of the machine structure, and import this Based on the above, a jig model that generates a new jig model by deforming and combining at least one or more basic parts stored in advance to match the shape of the jig that actually fixes the workpiece A setting processing unit is provided.
 またこの発明は、機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記治具モデルを、予め記憶されている少なくとも一つ以上の基本部品を任意の形状に変形して組み合わせることにより新たに生成するとともに、前記実際の機械構造物の座標位置を計測するセンサで実測された、実際にワークを固定している治具の取り付け位置を取り込み、この取り込んだ値に基づいて、前記治具モデルの取り付け位置を修正する治具モデル設定処理部を設けたものである。 Further, the present invention records machine components such as a machine model, a tool model, a jig model, etc. as 3D model data, and a machine structure model corresponding to an actual machine structure based on the 3D model data. A storage unit for storing 3D model space information generated for stereoscopic display, a 3D model update processing unit for updating the 3D model space information in real time by data for controlling machine movement, and the 3D model update In the interference check apparatus provided with a 3D monitor unit for checking whether or not the machine structures interfere with each other based on the 3D model space information updated by the processing unit and displaying the check status in 3D, the jig A model is newly generated by combining at least one or more basic parts stored in advance into any shape. In both cases, the mounting position of the jig that actually fixes the workpiece, which is actually measured by the sensor that measures the coordinate position of the actual mechanical structure, is captured, and the mounting of the jig model is performed based on the captured value. A jig model setting processing unit for correcting the position is provided.
 またこの発明は、機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記実際の機械構造物の座標位置を計測するセンサで実測された、実際にワークを固定している治具の寸法を取り込み、この取り込んだ値に基づいて、予め記憶されている少なくとも一つ以上の基本部品を、実際にワークを固定している治具形状に合致するよう変形させて組み合わせることにより新たな治具モデルを生成するとともに、前記センサで実測された実際にワークを固定している治具の取り付け位置を取り込み、この取り込んだ値に基づいて、前記治具モデルの取り付け位置を修正する治具モデル設定処理部を設けたものである。 Further, the present invention records machine components such as a machine model, a tool model, a jig model, etc. as 3D model data, and a machine structure model corresponding to an actual machine structure based on the 3D model data. A storage unit for storing 3D model space information generated for stereoscopic display, a 3D model update processing unit for updating the 3D model space information in real time by data for controlling machine movement, and the 3D model update In the interference check device including a 3D monitor unit that checks whether or not the machine structures interfere with each other based on the 3D model space information updated by the processing unit, and displays the check status in 3D, the actual check Take in the dimensions of the jig that actually fixes the workpiece, measured by the sensor that measures the coordinate position of the machine structure, and import this And generating a new jig model by combining at least one or more basic parts stored in advance so as to match the shape of the jig that actually fixes the workpiece, A jig model setting processing unit that takes in the mounting position of the jig that actually fixes the workpiece measured by the sensor and corrects the mounting position of the jig model based on the acquired value is provided. is there.
 この発明によれば、予め格納している複数のプリミティブな部品モデルを組み合わせて任意形状の治具モデルを機械オペレータが作ることができるので、加工現場において標準的な形状以外の多種多様な治具に対応でき、生産性が向上するという効果がある。 According to the present invention, since a machine operator can create a jig model of an arbitrary shape by combining a plurality of primitive part models stored in advance, a wide variety of jigs other than the standard shape at the processing site. This has the effect of improving productivity.
 またこの発明によれば、タッチセンサを当ててその座標値情報を取り込み、治具の実位置や実測寸法で修正登録できるので、簡易な操作のみで治具モデルを配置することができ、精密な干渉チェックを行えると共に生産性が向上するという効果がある。 Further, according to the present invention, the coordinate value information can be captured by applying a touch sensor, and correction and registration can be performed with the actual position and actual dimensions of the jig. Interference check can be performed and productivity is improved.
この発明の実施の形態1に係るNC装置の要部を示すブロック図である。It is a block diagram which shows the principal part of NC apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る治具モデル設定処理部の治具モデル生成動作を示すフローチャートである。It is a flowchart which shows the jig | tool model production | generation operation | movement of the jig | tool model setting process part which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る治具モデル設定処理部の治具モデル修正動作を示すフローチャートである。It is a flowchart which shows the jig | tool model correction operation | movement of the jig | tool model setting process part which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る3Dモデルの基本部品形状の一例を示す説明図である。It is explanatory drawing which shows an example of the basic component shape of 3D model which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る直方体配置時のタッチセンサを用いた計測方法を示す説明図である。It is explanatory drawing which shows the measuring method using the touch sensor at the time of the rectangular parallelepiped arrangement | positioning which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る円柱配置時のタッチセンサを用いた計測方法を示す説明図である。It is explanatory drawing which shows the measuring method using the touch sensor at the time of the cylinder arrangement | positioning which concerns on Embodiment 1 of this invention. 従来のNC装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the conventional NC apparatus.
符号の説明Explanation of symbols
 1 移動制御部
 2 軸制御部
 3 軸移動量出力回路
 4 サーボ制御部
 5 サーボモータ
 6 干渉チェック判定部
 7 3Dモデル更新処理部
 8 表示部
 9 画面表示処理部
 10 3Dモニタ
 11 モデルデータ設定部
 12 入力部
 13 記億部
 14 3Dモデルデータ
 15 機械モデル
 16 工具モデル
 17 治具モデル
 18 ワークモデル
 19 3Dモデル空間情報
 21 治具モデル設定処理部
 22 タッチセンサ位置計算手段
 23 治具モデル配置位置計算手段
 24 治具モデル登録手段
 25 基本部品記億手段
DESCRIPTION OF SYMBOLS 1 Movement control part 2 Axis control part 3 Axis movement amount output circuit 4 Servo control part 5 Servo motor 6 Interference check judgment part 7 3D model update process part 8 Display part 9 Screen display process part 10 3D monitor 11 Model data setting part 12 Input Part 13 Storage part 14 3D model data 15 Machine model 16 Tool model 17 Jig model 18 Work model 19 3D model space information 21 Jig model setting processing unit 22 Touch sensor position calculation means 23 Jig model arrangement position calculation means 24 Tool model registration means 25 Basic parts storage means
実施の形態1.
 以下、この発明に係る干渉チェック装置を数値制御装置に適用した場合の実施の形態について、図1~図6を用いて説明する。
 図1はこの発明の実施の形態1に係るNC装置の要部構成を示すブロック図であり、図において、1は移動処理部、2は軸制御部、3は軸移動量出力回路、4はサーボ制御部、5はサーボモータである。6は干渉チェック判定部、7は3Dモデル更新処理部、8は表示部であり、この表示部は画面表示処理部9、3Dモニタ10、モデルデータ設定部11を含む。12は入力部、13は記憶部である。記憶部13には、機械モデル15、工具モデル16、治具モデル17、ワークモデル18からなり、3Dモデルを生成するための元データとなる3Dモデルデータ14と、リアルタイムに変化する実際機械構造物を立体的に表示するための3Dモデル空間情報19とが記憶される。
 なお、3Dモデル空間情報19は、機械モデル15、工具モデル16、治具モデル17、ワークモデル18の各データを基に生成された、実際の機械構造物に対応する機械構造物モデルである。
 また、21はこの発明の主要旨をなす治具モデル設定処理部で、タッチセンサ位置計算手段22、治具モデル配置位置計算手段23、治具モデル登録手段24、基本部品記憶手段25を含む。
Embodiment 1 FIG.
Hereinafter, an embodiment in which the interference check device according to the present invention is applied to a numerical control device will be described with reference to FIGS.
FIG. 1 is a block diagram showing the main configuration of an NC apparatus according to Embodiment 1 of the present invention. In FIG. 1, 1 is a movement processing unit, 2 is an axis control unit, 3 is an axis movement amount output circuit, and 4 is The servo control unit 5 is a servo motor. 6 is an interference check determination unit, 7 is a 3D model update processing unit, and 8 is a display unit. The display unit includes a screen display processing unit 9, a 3D monitor 10, and a model data setting unit 11. Reference numeral 12 denotes an input unit, and 13 denotes a storage unit. The storage unit 13 includes a machine model 15, a tool model 16, a jig model 17, and a work model 18, and 3D model data 14 serving as original data for generating a 3D model, and an actual machine structure that changes in real time. 3D model space information 19 for displaying the image three-dimensionally is stored.
The 3D model space information 19 is a machine structure model corresponding to an actual machine structure generated based on each data of the machine model 15, the tool model 16, the jig model 17, and the work model 18.
Reference numeral 21 denotes a jig model setting processing unit which is the main gist of the present invention, and includes a touch sensor position calculation means 22, a jig model arrangement position calculation means 23, a jig model registration means 24, and a basic part storage means 25.
 工作機械の3Dモデル情報である機械モデル15は、機械構造物の形状・配置・軸移動に伴い可動する構造物、工具取付け座標、治具取付け座標等を定義したものである。この機械モデル15は一般にNC装置外部のCAD/CAM装置で作成され、機械構造物としての工作機械の3Dモデル情報を入力部12より入力される。これによりNC装置内部で予め定めた手順により機械の干渉判定領域が自動的に決定される。 The machine model 15 which is 3D model information of a machine tool defines a structure that moves with the shape, arrangement, and axis movement of a machine structure, tool attachment coordinates, jig attachment coordinates, and the like. The machine model 15 is generally created by a CAD / CAM device outside the NC device, and 3D model information of a machine tool as a machine structure is input from the input unit 12. As a result, the machine interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
 また、機械構造物の一部である工具モデル16は、工具をモデル化するためのもので、フラットエンドミル、ボールエンドミル等の工具種類、工具長、工具径等の工具寸法データなどの情報からなる。これらの情報は、モデルデータ設定部11より工具毎に入力され、これによりNC装置内部で予め定めた手順により各工具の干渉判定領域が自動的に決定される。 The tool model 16 which is a part of the machine structure is used to model a tool, and includes information such as a tool type such as a flat end mill and a ball end mill, tool dimension data such as a tool length, and a tool diameter. . These pieces of information are input from the model data setting unit 11 for each tool, whereby the interference determination area of each tool is automatically determined by a predetermined procedure inside the NC apparatus.
 また、機械構造物の一部である治具モデル17は、ワークを保持するなどに使用される治具をモデル化するためのもので、通常はモデルデータ設定部11より、予め基本部品記憶手段25に登録しておいた標準的な形状の治具から所望の形状の物を指定し、これについて必要な寸法や取付位置、取付角度等を入力することにより定義される。これによりNC装置内部で予め定めた手順により各治具の干渉判定領域が自動的に決定される。 The jig model 17 which is a part of the mechanical structure is for modeling a jig used for holding a workpiece. Usually, the basic model storage means is previously set by the model data setting unit 11. This is defined by designating a desired shape from the standard shape jigs registered in 25 and inputting the necessary dimensions, mounting position, mounting angle, and the like. Thereby, the interference determination area | region of each jig | tool is automatically determined by the procedure predetermined inside NC apparatus.
 更にまた、機械構造物の一部であるワークモデル18は、ワークをモデル化するためのもので、モデルデータ設定部11より、予めNC装置に登録してある標準的な形状のワークから所望の形状のワークを指定し、これについて必要な寸法や取付け位置、取付け角度等を入力することにより定義される。これによりNC装置内部で予め定めた手順によりワークの干渉判定領域が自動的に決定される。 Furthermore, the workpiece model 18 which is a part of the mechanical structure is for modeling the workpiece, and is selected from a workpiece having a standard shape registered in advance in the NC apparatus by the model data setting unit 11. This is defined by designating a workpiece of the shape and inputting the necessary dimensions, mounting position, mounting angle, and the like. Thus, the workpiece interference determination area is automatically determined by a predetermined procedure in the NC apparatus.
 前記により記憶部13に入力された機械モデル15、工具モデル16、治具モデル17、ワークモデル18の各データを用いて、実際の機械構造物に対応する機械構造物を3Dモデル化し、この3Dモデル化した3Dモデル空間情報19を機械移動に同期して更新することにより、3Dモデル化した機械構造物を二次元表示または立体表示として表示部8上の3Dモニタ部10に表示すると共に干渉チェックの基データとする。 The machine structure corresponding to the actual machine structure is converted into a 3D model by using the machine model 15, tool model 16, jig model 17, and workpiece model 18 data input to the storage unit 13 as described above. By updating the modeled 3D model space information 19 in synchronization with the machine movement, the 3D modeled mechanical structure is displayed on the 3D monitor unit 10 on the display unit 8 as a two-dimensional display or a three-dimensional display, and interference check is performed. The basic data.
 また、治具モデル設定処理部21は、タッチセンサ位置計算手段22、治具モデル配置位置計算手段23、治具モデル登録手段24、基本部品記憶手段25を備えるもので、標準的な治具を理想的な形で使用する場合は前述の操作で十分対応できるが、標準的形状以外の治具を使いたい場合、治具の取付位置がずれていたり治具の一部が欠けている場合など、標準的ではない形状や理想的ではない状態の治具を使用したい場合には、従来のものはその形状指定や取付位置等の設定ができないので、これに対応するために設けたものである。 The jig model setting processing unit 21 includes a touch sensor position calculation unit 22, a jig model arrangement position calculation unit 23, a jig model registration unit 24, and a basic part storage unit 25. When using in an ideal form, the above operations are sufficient, but if you want to use a jig other than the standard shape, the jig mounting position is misaligned, or part of the jig is missing. If you want to use a non-standard shape or a non-ideal jig, the conventional one cannot be used to specify the shape or set the mounting position. .
 この治具モデル設定処理部21は、標準的形状以外の、複数の部品(パーツ)で定義できるような治具を使いたい場合、治具モデル設定処理部21内の、図4に示すような、直方体、円柱、三角柱等の所謂プリミティブな形状を記憶した基本部品記憶手段25からベースとなる所望の形状を選択し、取付基準点を指定すると共に各部の寸法を入力する。なお、この取付基準点は、治具を機械のテーブルなどに配置する際に使用されるものである。続いてこの設定した治具上に取り付けるパーツの形状を前記基本部品記憶手段25から選択し、治具上への取付位置を指定すると共に各部の寸法を入力する。これらを繰り返すことにより、直方体、円柱、三角柱等任意の基本部品を組み合わせて構成される治具を作り上げることができる。治具モデル登録手段24により、この新たな治具モデルに登録番号を割り当て、3Dモデルデータ14内の治具モデル17に追加登録する。他に必要な標準形状以外の治具があれば、同様に新たな治具モデルを生成し、登録を行う。
 なお、この詳細については図2に基づいて後述する。
When it is desired to use a jig that can be defined by a plurality of parts (parts) other than the standard shape, the jig model setting processing unit 21 in the jig model setting processing unit 21 as shown in FIG. A desired shape as a base is selected from basic component storage means 25 storing so-called primitive shapes such as a rectangular parallelepiped, a cylinder, a triangular prism, etc., an attachment reference point is designated, and dimensions of each part are input. This attachment reference point is used when the jig is arranged on a machine table or the like. Subsequently, the shape of the part to be mounted on the set jig is selected from the basic component storage means 25, the mounting position on the jig is designated, and the dimensions of each part are input. By repeating these steps, a jig configured by combining arbitrary basic parts such as a rectangular parallelepiped, a cylinder, and a triangular prism can be created. The jig model registration means 24 assigns a registration number to the new jig model and additionally registers it in the jig model 17 in the 3D model data 14. If there are other jigs other than the required standard shape, a new jig model is similarly generated and registered.
The details will be described later with reference to FIG.
 また、治具が計画通りの使い方ができていない場合(治具の取付位置がずれている場合など)、実際にワークを固定している状態で、オペレータの手動操作により、機械を移動させてタッチセンサによる治具の構成面等の実測を行う。具体的には実際の治具の位置を決定するための、所定の面を構成する座標位置を読み込む。これらのデータに基づいて実際の取付位置、取付角度、実物形状を計算処理を行って求め、現実の情報を得て登録情報の修正を行う。 Also, if the jig is not used as planned (when the jig mounting position is shifted, etc.), the machine can be moved manually by the operator while the workpiece is actually fixed. Measure the component surface of the jig with the touch sensor. Specifically, a coordinate position that constitutes a predetermined surface for determining the actual position of the jig is read. Based on these data, the actual mounting position, mounting angle, and actual shape are calculated and obtained, and the actual information is obtained to correct the registration information.
 オペレータは機械を操作して計測に必要な複数の所定の位置にタッチセンサを当てて、夫々の位置のデータ取り込みを行う。タッチセンサ位置計算手段22は、機械上に載置したワークを固定している治具の各面に当接させたタッチセンサの座標値情報から接触点の位置を計算する。治具モデル配置位置計算手段23はタッチセンサの複数の接触点座標値を基に治具モデルの配置位置、例えば直方体部品であれば各面を定義付ける座標情報や傾き情報、円柱部品であればその円形断面の中心位置、これらの複合体であれば、これらを定義付ける情報等をタッチセンサの接触位置として読み取り、計算する。治具モデル登録手段24は前記治具モデル配置位置計算結果を基に治具モデル(部品モデル)を登録する。
 なお、この詳細については図3に基づいて後述する。
The operator operates the machine and applies touch sensors to a plurality of predetermined positions necessary for measurement, and captures data at each position. The touch sensor position calculation means 22 calculates the position of the contact point from the coordinate value information of the touch sensor brought into contact with each surface of the jig fixing the workpiece placed on the machine. The jig model arrangement position calculation means 23 is an arrangement position of the jig model based on a plurality of contact point coordinate values of the touch sensor, for example, coordinate information and inclination information for defining each surface in the case of a rectangular parallelepiped part, If the center position of the circular cross-section is a complex of these, information defining these is read as the touch position of the touch sensor and calculated. The jig model registration means 24 registers a jig model (part model) based on the jig model arrangement position calculation result.
Details of this will be described later with reference to FIG.
 移動制御部1は図示しない機械を駆動する移動信号を生成するものであり、オペレータが図示しない操作盤から操作ボタンを操作して入力する軸移動信号や入力部12や表示部8を介して入力または生成される加工プログラムを解析した結果を基に、軸制御部2は機械が所望の軌跡を描くように各制御軸の単位時間毎の移動量を生成し、軸移動量出力回路3に出力する。前記単位時間毎の移動量はサーボ制御部4に出力され、各軸制御部4a、4b…で電力増幅されて各軸のサーボモータ5a、5b…を駆動し、機械の動きを制御する。    The movement control unit 1 generates a movement signal for driving a machine (not shown), and is input via an axis movement signal input by an operator operating an operation button from an operation panel (not shown), the input unit 12 or the display unit 8. Alternatively, based on the result of analyzing the generated machining program, the axis control unit 2 generates a movement amount per unit time of each control axis so that the machine draws a desired locus and outputs it to the axis movement amount output circuit 3 To do. The movement amount per unit time is output to the servo control unit 4, and the power of each axis control unit 4a, 4b,... Is amplified to drive the servo motors 5a, 5b,. *
 これと同時に前記移動制御部1は各軸の移動量(例えば手動運転の時は前記単位時間毎の移動量、自動運転の時はプログラム軌跡のセグメント量)を干渉チェック判定部6に入力する。これと同時に前記各軸移動量は3Dモデル更新処理部7に入力され、この3Dモデル更新処理部7により3Dモデルデータである機械構造物が最新形状になるように、前記3Dモデル空間情報を、前記単位時間毎の移動量でリアルタイムに更新する。この機械構造物の最新形状は記憶部13内の3Dモデル空間情報19に記憶され、表示部8内の画面表示処理部9により二次元表示または任意視点から見た立体(3D)表示として機械構造物の表示データに変換され、3Dモニタ10の領域に表示される。この機械構造物表示により、オペレータは機械を動かすことなく表示部8上で機械の動きを確認できる。 At the same time, the movement control unit 1 inputs the movement amount of each axis (for example, the movement amount per unit time during manual operation and the segment amount of the program trajectory during automatic operation) to the interference check determination unit 6. At the same time, the amount of movement of each axis is input to the 3D model update processing unit 7, and the 3D model update processing unit 7 sets the 3D model space information so that the machine structure as 3D model data has the latest shape. Update in real time with the amount of movement per unit time. The latest shape of the mechanical structure is stored in the 3D model space information 19 in the storage unit 13, and is displayed as a two-dimensional display or a stereoscopic (3D) view from an arbitrary viewpoint by the screen display processing unit 9 in the display unit 8. It is converted into display data of the object and displayed in the area of the 3D monitor 10. With this machine structure display, the operator can confirm the movement of the machine on the display unit 8 without moving the machine.
 前記干渉チェック判定部6は、前記3Dモデル空間情報19と前記移動制御部1から入力された軸移動量から機械構造物同士、つまり、機械-機械、機械-工具、機械-治具、工具-治具夫々の間で干渉が発生するか否かをチェックし、判定結果を移動制御部1に出力する。判定結果が”干渉”であれば軸移動量の出力を中止し、判定結果が”非干渉”であれば軸移動量出力を続け、サーボ制御部4a、4b…を介してサーボモータ5a、5b…を駆動し、工具とワークを相対的に移動させてワークを加工する。これにより加工プログラムのシミュレーション(プログラムチェック)中であれは表示上の動きを中止し、機械移動中であれば機械移動も中止する。また、図示していないが、”干渉”という判定結果が出た時、判定結果と干渉対象を報知するメッセージを記憶部13内に記憶すると共に、画面表示処理部9を経由して表示部8上に干渉する旨の報知メッセージを表示する。 The interference check determination unit 6 uses the 3D model space information 19 and the amount of axial movement input from the movement control unit 1 to make mechanical structures, that is, machine-machine, machine-tool, machine-jig, tool- It is checked whether or not interference occurs between the jigs, and the determination result is output to the movement control unit 1. If the determination result is “interference”, the output of the axis movement amount is stopped, and if the determination result is “non-interference”, the output of the axis movement amount is continued, and the servo motors 5a, 5b through the servo control units 4a, 4b. ... is driven, and the workpiece is machined by moving the tool and the workpiece relatively. Accordingly, the movement on the display is stopped during the simulation (program check) of the machining program, and the machine movement is also stopped if the machine is moving. Although not shown, when a determination result “interference” is output, a message for notifying the determination result and the interference target is stored in the storage unit 13, and the display unit 8 is connected via the screen display processing unit 9. A notification message indicating interference is displayed above.
 図2は治具モデル設定処理部21によりNC装置内に記憶した基本部品(パーツ)を組み合わせて標準的・一般的な形状以外の治具モデルを作り上げる手順を示したフローチャートである。
 先ずステップ21(以下、S21の様に略す)で、基本部品記憶手段25に登録された、例えば図4に示す直方体や円柱の他、三角柱、CADデータにより構成された形状、または複数の部品モデルにより構成された複合部品モデル群等の形状などの基本部品のリストを、表示部8上に表示し、この基本部品のリストから使用したい基本部品(パーツ)を選択する。
FIG. 2 is a flowchart showing a procedure for creating a jig model other than the standard and general shapes by combining basic parts (parts) stored in the NC apparatus by the jig model setting processing unit 21.
First, in step 21 (hereinafter abbreviated as S21), for example, a rectangular parallelepiped and a cylinder shown in FIG. A list of basic parts such as the shape of the composite part model group configured by the above is displayed on the display unit 8, and a basic part (part) to be used is selected from the list of basic parts.
 S22では前記選択した部品の各部寸法を指定し、所望の大きさに設定する。続いてS23でこの部品の、治具本体への取付位置を指定する。但し、この処理の初回であって選択したものが治具本体(例えば2部品を組合せて治具を構成する場合、ベースとなる部品)である場合は取付位置の指定は省略できる。S24では前記部品の治具本体への取付角度を指定する。取付角度の指定が無ければ、治具本体の直角座標系に平行な座標系上で作成されるものとする。この場合も、この処理の初回であって選択したものが治具本体である場合はこの基本部品の直角座標系上で作成するものとし、取付角度は省略できる。 In S22, the dimensions of each part of the selected part are designated and set to a desired size. Subsequently, in S23, the mounting position of this part on the jig body is designated. However, if this is the first time in this process and the selected item is a jig body (for example, when two parts are combined to form a jig, the base part) can be omitted. In S24, the mounting angle of the part to the jig body is designated. If there is no designation of the mounting angle, it shall be created on a coordinate system parallel to the rectangular coordinate system of the jig body. Also in this case, when the first selected process is the jig body, it is created on the rectangular coordinate system of this basic part, and the mounting angle can be omitted.
 S25では今回選択した基本部品に関する寸法、取付位置、取付角度が正しく設定されたか否かを表示部8上に表示される部品形状を目視により確認する。もし修正する必要があればS22、S23、S24に戻ってデータの修正を行う。正しく設定が行われたのであれば、S26に進んで前記選択した基本部品についての設定データを記憶する。 In S25, the part shape displayed on the display unit 8 is visually confirmed to confirm whether or not the dimensions, the mounting position, and the mounting angle regarding the basic part selected this time have been set correctly. If correction is necessary, the process returns to S22, S23, and S24 to correct the data. If the setting has been performed correctly, the process proceeds to S26 to store the setting data for the selected basic part.
 S27では前記治具本体に組付ける基本部品が全て揃ったか否かを判断し、他にも組付ける部品があればS21に戻って新たな基本部品の設定を行う。全て揃っておれば治具本体の生成が完了したものとし、S28に進んで、治具モデル登録手段24により、今までの設定データを治具モデルとして3Dモデルデータ14内の治具モデルデータ17に登録し、標準外形状治具の3Dモデルデータの生成を終了する。
 例えば2部品を組合せて治具を構成する場合、処理の初回(治具本体の処理)は、S21、S22、(必要に応じてS24)、S25、S26の処理を行い、処理の二回目(治具本体に他の部品を搭載する処理)は、S27、S21~S26の処理後、S28の処理を行う。
 なお、治具の機械モデル15への取付け基準点の指定は、治具モデルとして登録する(S28)前の適当なステップで入力する。
In S27, it is determined whether or not all the basic parts to be assembled to the jig body have been prepared. If there are other parts to be assembled, the process returns to S21 to set a new basic part. If all of them are prepared, it is assumed that the generation of the jig body has been completed. The process proceeds to S28, and the jig model registration means 24 uses the jig model registration means 24 as the jig model to set the jig model data 17 in the 3D model data 14. And the generation of the 3D model data of the non-standard shape jig is completed.
For example, when a jig is configured by combining two parts, the first processing (processing of the jig body) performs the processing of S21, S22 (S24 if necessary), S25, S26, and the second processing ( In the process of mounting other components on the jig body, the process of S28 is performed after the processes of S27 and S21 to S26.
The designation of the reference point for mounting the jig on the machine model 15 is input in an appropriate step before registration as a jig model (S28).
 前記実施の形態では治具モデルの設定について、基本部品を組み合わせて標準的な形状以外の治具を登録設定するケースを説明したが、ワークについても治具の場合と同様の構成で、基本部品を組み合わせることによって直方体や円柱以外の任意の成型材ワークを設定するようにしてもよい。 In the above embodiment, the case of registering and setting jigs other than the standard shape by combining basic parts has been described for setting the jig model, but the basic parts have the same configuration as the jig. You may make it set arbitrary molding material workpieces other than a rectangular parallelepiped or a cylinder by combining.
 次に、記憶部13に既に登録されている治具について、タッチセンサにより登録情報を修正する方法を、図3を用いて説明する。
 先ず、登録番号を指定して修正する治具モデルを選択する(ステップ01、以下、S01の様に略す)。なお、この選択により、選択された治具モデルが付与された3D機械構造物が表示部8に表示される。続いてタッチセンサが所定面の所望の位置に当接するように制御軸を動かす(S02)。この時NC装置が認識している位置はタッチセンサの接触点の位置ではなく、タッチセンサの中心位置である。
Next, a method for correcting registration information using a touch sensor for a jig that has already been registered in the storage unit 13 will be described with reference to FIG.
First, a jig model to be corrected is selected by specifying a registration number (step 01, hereinafter abbreviated as S01). By this selection, the 3D machine structure to which the selected jig model is assigned is displayed on the display unit 8. Subsequently, the control axis is moved so that the touch sensor comes into contact with a desired position on the predetermined surface (S02). At this time, the position recognized by the NC device is not the position of the touch point of the touch sensor but the center position of the touch sensor.
 例えば、図5の直方体ではA及びBの順にタッチセンサを面方向に移動させて接触させる。タッチセンサの半径を(r)とすると、線分ABに対し接触前の移動方向かつ線分ABに対し直角方向にタッチセンサの半径(r)だけ離れた平行な線分A’B’の線上がAB面となる。
 次にC面方向にタッチセンサを移動させて接触させ、線分A’B’と直角かつ接触前の移動方向にタッチセンサの半径(r)だけ離れた面がC面となる。
For example, in the rectangular parallelepiped in FIG. 5, the touch sensor is moved in the surface direction in the order of A and B to make contact. Assuming that the radius of the touch sensor is (r), it is on the line A′B ′ parallel to the line segment AB in the direction of movement before contact and perpendicular to the line segment AB by the radius (r) of the touch sensor. Becomes the AB plane.
Next, the touch sensor is moved and brought into contact with the C surface direction, and a surface that is perpendicular to the line segment A′B ′ and separated by the radius (r) of the touch sensor in the moving direction before the contact is the C surface.
 表示部8の治具モデル設定処理部21上の読取ボタンを押して接触点座標位置の読み取りを指示する(S03)。このとき、タッチセンサ位置計算手段22が、機械上に載置したワークを固定している治具の各面に当接させたタッチセンサの座標値情報から接触点の位置を計算し、また治具モデル配置位置計算手段23が、タッチセンサの複数の接触点座標値を基に治具モデルの配置位置、例えば直方体部品であれば各面を定義付ける座標情報や傾き情報、円柱部品であればその円形断面の中心位置、これらの複合体であれば、これらを定義付ける情報等をタッチセンサの接触位置として読み取り、計算する。オペレータはS04において当該接触点の計測完了表示が表示部8に出るまで待機し、計測完了になるとS05に進む。 The reading button on the jig model setting processing unit 21 of the display unit 8 is pressed to instruct reading of the contact point coordinate position (S03). At this time, the touch sensor position calculation means 22 calculates the position of the contact point from the coordinate value information of the touch sensor brought into contact with each surface of the jig fixing the workpiece placed on the machine, If the tool model arrangement position calculation means 23 is a jig model arrangement position based on a plurality of touch point coordinate values of the touch sensor, for example, if it is a rectangular parallelepiped part, coordinate information and inclination information defining each surface, and if it is a cylindrical part, If the center position of the circular cross-section is a complex of these, information defining these is read as the touch position of the touch sensor and calculated. The operator waits until the measurement completion display of the contact point appears on the display unit 8 in S04, and proceeds to S05 when the measurement is completed.
 各治具は治具形状により、計測に必要な面や計測位置・点数が異なるので、オペレータはS05において、その治具に必要な接触点の計測が完了したか否かを判定し、全点の計測が完了するまで前記S02乃至S04の計測作業を実行する。直方体は、例えば図5に示すように2面+幅+高さ、円柱は例えば図6に倣って円周上の3点+高さ、の様にその治具に必要な全ての接触点のデータを取り込んだ時点でオペレータは治具状態が確定したと判断し、治具の再配置データを確定する(S06)。更にS07で、治具モデル登録手段24により記憶部13へ前記確定した再配置データで治具モデルの修正登録を行う。即ち、修正するデータが、治具取付け位置に係るデータであるならば、機械モデル15の治具取付け座標値の修正を行い、治具モデルそのものに係るデータであるならば、治具モデル17の修正を行う。 Since each jig has different planes and measurement positions and points depending on the shape of the jig, the operator determines whether or not the measurement of the contact points necessary for the jig has been completed in S05. The measurement work of S02 to S04 is executed until the measurement of the above is completed. The rectangular parallelepiped has, for example, two faces + width + height as shown in FIG. 5, and the cylinder has all the contact points necessary for the jig, for example, three points on the circumference + height according to FIG. When the data is taken in, the operator determines that the jig state is fixed, and determines the jig rearrangement data (S06). Further, in S07, the jig model registration unit 24 registers and corrects the jig model with the determined relocation data in the storage unit 13. That is, if the data to be corrected is data related to the jig mounting position, the jig mounting coordinate value of the machine model 15 is corrected. If the data to be corrected is data related to the jig model itself, Make corrections.
 次に当該治具において現在の形状が最初に登録した元の形状から変化している場合、治具形状の微調整を行う。これもS08でオペレータの判断により微調整を実施するか否かを決定する。微調整を行う場合は”YES”でS09に進み、形状の変化分の座標位置を計測し、S10では当該計測した位置データを用いて微調整のために元データの変更部分に修正内容を表示部8に表示し、オペレータの指示によりS07に戻って治具モデルの修正登録を行う。
 S08で微調整の必要がなければ”NO”でS11に進む。
Next, when the current shape of the jig is changed from the original shape registered first, the jig shape is finely adjusted. Also in S08, it is determined whether or not to perform fine adjustment based on the operator's judgment. If fine adjustment is to be performed, the process proceeds to S09 with "YES", and the coordinate position corresponding to the shape change is measured. In S10, the correction contents are displayed on the changed portion of the original data for fine adjustment using the measured position data. Display on the unit 8, and return to S07 according to the operator's instruction to perform correction registration of the jig model.
If there is no need for fine adjustment in S08, the process proceeds to S11 with "NO".
 S11では、当該治具を構成する他の部品についても計測を行うか否かをオペレータが判断し、計測を行う必要があればS02に戻り、他の部品(パーツ)についての計測を行う。計測が必要な部品全てについて計測が完了したのであれば”NO”と判断し、処理を終了する。 In S11, the operator determines whether or not other parts constituting the jig are to be measured, and if it is necessary to perform measurement, the process returns to S02 to measure other parts (parts). If the measurement has been completed for all the parts that need to be measured, it is determined “NO”, and the process is terminated.
 前記説明において、直方体状の治具や部品を測定する場合、ワークを載置するテーブルに垂直な長手方向の1面を決定すると取付角度も決定されることになる。また、円柱状治具や部品の場合は図6に示す様に、センサーのアプローチ方向も考慮に入れれば少なくとも円周上の2点より中心位置が特定できるが、この実施の形態では中心位置が一義的に決定できる円周上の3点の位置を測定する方法を用いるものとする。 In the above description, when measuring a rectangular parallelepiped jig or component, if one surface in the longitudinal direction perpendicular to the table on which the workpiece is placed is determined, the mounting angle is also determined. In the case of a cylindrical jig or component, as shown in FIG. 6, the center position can be specified from at least two points on the circumference if the approach direction of the sensor is taken into consideration, but in this embodiment, the center position is A method of measuring the positions of three points on the circumference that can be uniquely determined shall be used.
 また、前記実施の形態では工プログラム生成から機械加工までの生産システムにおける、実質的に最終的な制御装置である数値制御装置で干渉チェックを行う場合を想定して説明しているが、数値制御装置以前の段階で干渉チェックを行ってもよいことは言うまでもない。従って本願発明は数値制御装置に限定して適用されるものではない。
 また、センサとしてタッチセンサの測定データを用いるものについて説明したが、非接触式のセンサの測定データを用いてもよい。
 また、前記の実施の形態では、モデルデータ設定部11と治具モデル設定処理部21とを別個に図示し、基本形状以外の治具モデルを作成する際、治具モデル設定処理部21のみを使用して生成する場合について説明したが、寸法入力などはモデルデータ設定部11が保有している機能を利用してもよく、またモデルデータ設定部11を治具モデル設定処理部21に取り込む構成としてもよい。
In the above-described embodiment, the case where the interference check is performed by the numerical control device which is a substantially final control device in the production system from the construction program generation to the machining is described. Needless to say, the interference check may be performed before the device. Therefore, the present invention is not limited to the numerical control device.
Moreover, although what used the measurement data of a touch sensor as a sensor was demonstrated, you may use the measurement data of a non-contact-type sensor.
Further, in the above-described embodiment, the model data setting unit 11 and the jig model setting processing unit 21 are illustrated separately, and when creating a jig model other than the basic shape, only the jig model setting processing unit 21 is used. The case of generating by using the model data has been described. However, for the dimension input or the like, a function possessed by the model data setting unit 11 may be used, and the model data setting unit 11 is incorporated into the jig model setting processing unit 21. It is good.
 この発明に係る干渉チェック装置は、数値制御装置により工作機械を制御して機械構造物を移動させる時、機械-機械、機械-工具、機械-治具、工具-治具等の間で干渉するか否かを、事前にチェックするのに適している。 The interference check device according to the present invention interferes between a machine-machine, a machine-tool, a machine-jig, a tool-jig, and the like when a machine structure is moved by controlling a machine tool by a numerical control device. This is suitable for checking in advance.

Claims (4)

  1.  機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記治具モデルを、予め記憶されている基本部品を組み合わせることにより新たに生成する治具モデル設定処理部を備えてなる干渉チェック装置。 Machine components such as machine models, tool models, and jig models are recorded as 3D model data, and the machine structure model corresponding to the actual machine structure is displayed three-dimensionally based on the 3D model data. A storage unit for storing the 3D model space information generated to perform the update, a 3D model update processing unit for updating the 3D model space information in real time with data for controlling machine movement, and an update by the 3D model update processing unit In the interference check device having a 3D monitor unit that checks whether or not the mechanical structures interfere with each other based on the 3D model space information, and displays the check status in 3D, the jig model is stored in advance. An interference check device comprising a jig model setting processing unit newly generated by combining the basic parts.
  2.  機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記実際の機械構造物の座標位置を計測するセンサで実測された、実際にワークを固定している治具の寸法を取り込み、この取り込んだ値に基づいて、予め記憶されている基本部品を、実際にワークを固定している治具形状に合致するよう変形させて組み合わせることにより新たな治具モデルを生成する治具モデル設定処理部を備えてなる干渉チェック装置。 Machine components such as machine models, tool models, and jig models are recorded as 3D model data, and the machine structure model corresponding to the actual machine structure is displayed three-dimensionally based on the 3D model data. A storage unit for storing the 3D model space information generated to perform the update, a 3D model update processing unit for updating the 3D model space information in real time with data for controlling machine movement, and an update by the 3D model update processing unit In the interference check device having a 3D monitor unit that checks whether or not the machine structures interfere with each other based on the 3D model space information and displays the check status in 3D, the coordinates of the actual machine structure Take in the dimensions of the jig that actually fixes the workpiece, measured by the sensor that measures the position, and based on this value, Interference check device provided with a jig model setting processing unit that generates a new jig model by deforming and combining the stored basic parts to match the shape of the jig that actually fixes the workpiece .
  3.  機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記治具モデルを、予め記憶されている基本部品を組み合わせることにより新たに生成するとともに、前記実際の機械構造物の座標位置を計測するセンサで実測された、実際にワークを固定している治具の取付け位置を取り込み、この取り込んだ値に基づいて、前記治具モデルの取付け位置を修正する治具モデル設定処理部を備えてなる干渉チェック装置。 Machine components such as machine models, tool models, and jig models are recorded as 3D model data, and the machine structure model corresponding to the actual machine structure is displayed three-dimensionally based on the 3D model data. A storage unit for storing the 3D model space information generated to perform the update, a 3D model update processing unit for updating the 3D model space information in real time with data for controlling machine movement, and an update by the 3D model update processing unit In the interference check device having a 3D monitor unit that checks whether or not the mechanical structures interfere with each other based on the 3D model space information, and displays the check status in 3D, the jig model is stored in advance. Sensors that are newly generated by combining the basic parts that are used, and that measure the coordinate position of the actual machine structure Interference check provided with a jig model setting processing unit that takes in the measured mounting position of the jig that actually fixes the workpiece and corrects the mounting position of the jig model based on the acquired value. apparatus.
  4.  機械モデル・工具モデル・治具モデル等の機械構成要素を3Dモデルデータとして夫々記億するとともに、前記3Dモデルデータを基に、実際の機械構造物に対応する機械構造物モデルを立体的に表示するために生成された3Dモデル空間情報を記憶する記憶部と、機械移動を制御するデータにより前記3Dモデル空間情報をリアルタイムに更新する3Dモデル更新処理部と、前記3Dモデル更新処理部にて更新された3Dモデル空間情報を基に前記機械構造物同士が干渉するか否かをチェックし、このチェック状況を3D表示させる3Dモニタ部を備えた干渉チェック装置において、前記実際の機械構造物の座標位置を計測するセンサで実測された、実際にワークを固定している治具の寸法を取り込み、この取り込んだ値に基づいて、予め記憶されている基本部品を、実際にワークを固定している治具形状に合致するよう変形させて組み合わせることにより新たな治具モデルを生成するとともに、前記センサで実測された実際にワークを固定している治具の取付け位置を取り込み、この取り込んだ値に基づいて、前記治具モデルの取付け位置を修正する治具モデル設定処理部を備えてなる干渉チェック装置。 Machine components such as machine models, tool models, and jig models are recorded as 3D model data, and the machine structure model corresponding to the actual machine structure is displayed three-dimensionally based on the 3D model data. A storage unit for storing the 3D model space information generated to perform the update, a 3D model update processing unit for updating the 3D model space information in real time with data for controlling machine movement, and an update by the 3D model update processing unit In the interference check device having a 3D monitor unit that checks whether or not the machine structures interfere with each other based on the 3D model space information and displays the check status in 3D, the coordinates of the actual machine structure Take in the dimensions of the jig that actually fixes the workpiece, measured by the sensor that measures the position, and based on this value, A new jig model is generated by combining the stored basic parts so that they match the shape of the jig that is actually fixing the workpiece, and the workpiece is actually fixed as measured by the sensor. An interference check apparatus comprising a jig model setting processing unit that takes in a mounting position of a jig that is being used and corrects the mounting position of the jig model based on the acquired value.
PCT/JP2008/003912 2008-12-24 2008-12-24 Interference checking device WO2010073294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/003912 WO2010073294A1 (en) 2008-12-24 2008-12-24 Interference checking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/003912 WO2010073294A1 (en) 2008-12-24 2008-12-24 Interference checking device

Publications (1)

Publication Number Publication Date
WO2010073294A1 true WO2010073294A1 (en) 2010-07-01

Family

ID=42286966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003912 WO2010073294A1 (en) 2008-12-24 2008-12-24 Interference checking device

Country Status (1)

Country Link
WO (1) WO2010073294A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157081A1 (en) * 2012-04-17 2013-10-24 株式会社牧野フライス製作所 Interference determination method and interference determination device for machine tool
JP2016087736A (en) * 2014-11-04 2016-05-23 本田技研工業株式会社 Method and device for setting interference area of robot
EP3226181A1 (en) * 2016-03-30 2017-10-04 Mitsubishi Jidosha Engineering Kabushiki Kaisha Apparatus, method, and program for supporting development of production line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271610A (en) * 1987-04-30 1988-11-09 Mazda Motor Corp Operation programming method for equipment for machining or assembly
JPH09244724A (en) * 1996-03-11 1997-09-19 Asahi Sanac Kk Method and device for generating operation program for robot
JP2001154715A (en) * 1999-11-25 2001-06-08 Toshiba Corp Three-dimensional cad device, three-dimensional cam device and storage medium
JP2006181591A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Teaching method for welding robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271610A (en) * 1987-04-30 1988-11-09 Mazda Motor Corp Operation programming method for equipment for machining or assembly
JPH09244724A (en) * 1996-03-11 1997-09-19 Asahi Sanac Kk Method and device for generating operation program for robot
JP2001154715A (en) * 1999-11-25 2001-06-08 Toshiba Corp Three-dimensional cad device, three-dimensional cam device and storage medium
JP2006181591A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Teaching method for welding robot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157081A1 (en) * 2012-04-17 2013-10-24 株式会社牧野フライス製作所 Interference determination method and interference determination device for machine tool
CN104245228A (en) * 2012-04-17 2014-12-24 株式会社牧野铣床制作所 Interference determination method and interference determination device for machine tool
JPWO2013157081A1 (en) * 2012-04-17 2015-12-21 株式会社牧野フライス製作所 Machine tool interference judgment method and interference judgment device
KR101607586B1 (en) * 2012-04-17 2016-03-30 마키노 밀링 머신 주식회사 Interference determination method and interference determination device for machine tool
US9873175B2 (en) 2012-04-17 2018-01-23 Makino Milling Machine Co,. Ltd. Interference determination method and interference determination device for machine tool
CN104245228B (en) * 2012-04-17 2018-04-20 株式会社牧野铣床制作所 The interference decision method and interference decision maker of lathe
JP2016087736A (en) * 2014-11-04 2016-05-23 本田技研工業株式会社 Method and device for setting interference area of robot
EP3226181A1 (en) * 2016-03-30 2017-10-04 Mitsubishi Jidosha Engineering Kabushiki Kaisha Apparatus, method, and program for supporting development of production line
CN107272606A (en) * 2016-03-30 2017-10-20 三菱自动车工程株式会社 Device, method and computer-readable medium for supporting production line development

Similar Documents

Publication Publication Date Title
JP5384178B2 (en) Machining simulation method and machining simulation apparatus
US8988032B2 (en) Numerical controller having display function for trajectory of tool
JP5670416B2 (en) Robot system display device
JP3950805B2 (en) Teaching position correction device
CN101657767B (en) Method and device for controlling robots for welding workpieces
WO2013157081A1 (en) Interference determination method and interference determination device for machine tool
JP4266946B2 (en) Offline teaching device
US9477216B2 (en) Numerical control device including display part for displaying information for evaluation of machining process
JP6667376B2 (en) Component press-in method and component press-in system
JP6091153B2 (en) Welding robot system and placement method of placement object on surface plate in welding robot
JP2011031346A (en) Apparatus and method for measuring position of tool end point of robot
JP5897671B1 (en) Trajectory display device for displaying trajectories of motor end and machine end
JP2016207156A (en) Locus display device displaying locus of tool axis
WO2019066034A1 (en) On-machine measuring method and control device of machine tool
JP2015075846A (en) Tool locus display device including display unit of locus data
US20130030758A1 (en) Shape measurement device for machine tool workpiece
WO2010073294A1 (en) Interference checking device
JP2017037460A (en) Machining system and machining method
JP6567949B2 (en) Processing apparatus and program
WO2017130412A1 (en) Machining apparatus correction method and machining apparatus
JP6425009B2 (en) Three-dimensional measuring machine and shape measuring method using the same
JP2013175229A (en) Numerical control machine tool
JPH03287343A (en) Base coordinate system correcting device
JP5622250B1 (en) Workpiece processing device with calibration function
JP7169168B2 (en) Structure manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP