WO2015170562A1 - リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤 - Google Patents

リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤 Download PDF

Info

Publication number
WO2015170562A1
WO2015170562A1 PCT/JP2015/061717 JP2015061717W WO2015170562A1 WO 2015170562 A1 WO2015170562 A1 WO 2015170562A1 JP 2015061717 W JP2015061717 W JP 2015061717W WO 2015170562 A1 WO2015170562 A1 WO 2015170562A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
tmpp
biomolecule
saturated
unsaturated aliphatic
Prior art date
Application number
PCT/JP2015/061717
Other languages
English (en)
French (fr)
Inventor
和貴 平川
東彦 欧陽
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2016517852A priority Critical patent/JP6469096B2/ja
Publication of WO2015170562A1 publication Critical patent/WO2015170562A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom

Definitions

  • the present invention relates to a phosphorus porphyrin compound, a method for producing the same, and a biomolecule damaging agent.
  • Non-Patent Document 1 discloses dimethoxyline (V) tetraphenylporphyrin chloride (MeO 2 P (V) TPP) and tetrakis (1-methyl-4) as photosensitizers assumed to be used in photodynamic therapy.
  • Porphyrin compounds such as -pyridinio) porphyrin (H 2 TMPyP) are disclosed.
  • a main object of the present invention is to provide a biomolecule damaging agent capable of damaging biomolecules with high efficiency under low oxygen even when long wavelength light is used.
  • the present invention relates to a phosphorus porphyrin compound having a cation represented by the following general formula (1).
  • R 1 is a saturated or unsaturated aliphatic hydrocarbon having 1 to 4 carbon atoms which may be substituted with at least one substituent selected from a hydroxyl group, an amino group, an ammonium group and a fluoro group
  • R 2 represents a saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • a plurality of R 1 and R 2 in the same molecule may be the same or different.
  • a method for producing the above-mentioned limporphyrin compound includes a compound having a cation represented by the following general formula (2) and a compound represented by R 1 OH (R 1 is at least one selected from a hydroxyl group, an amino group, an ammonium group, and a fluoro group) A saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms which may be substituted with a certain substituent.)
  • R 1 is at least one selected from a hydroxyl group, an amino group, an ammonium group, and a fluoro group
  • R 1 is at least one selected from a hydroxyl group, an amino group, an ammonium group, and a fluoro group
  • R 1 is at least one selected from a hydroxyl group, an amino group, an ammonium group, and a fluoro group
  • R 1 is at least one selected from a hydroxyl group, an amino group, an ammonium group, and a fluoro group
  • X represents a bromo group or a chloro group
  • R 2 represents a saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • a plurality of R 2 in the same molecule may be the same or different.
  • the present invention relates to a biomolecule damaging agent comprising a phosphorus porphyrin compound having a cation represented by the general formula (1) or (2).
  • a biomolecule damaging agent comprising a phosphorus porphyrin compound having a cation represented by the general formula (1) or (2).
  • this biomolecule damaging agent even when light having a long wavelength is used, it can function as a photosensitizer for damaging the biomolecule by an electron transfer mechanism from the biomolecule. Therefore, compared with a photosensitizer that damages a biomolecule mainly by a reaction based on the generation of singlet oxygen (active oxygen), the biomolecule can be damaged with higher efficiency under low oxygen.
  • the biomolecule damaging agent can be used for damaging biomolecules with light of 550 to 670 nm. Therefore, the biomolecule damaging agent of the present invention can be used for damaging biomolecules by a method including irradiating light of 550 to 670 nm.
  • the use of such long-wavelength light for biomolecule damage is advantageous in that it suppresses the influence on the human body and reaches the deep part of the tissue in the living body.
  • the biomolecule damaging agent of the present invention even when light having a long wavelength is used, the biomolecule can be damaged with high efficiency under low oxygen.
  • the biomolecule damaging agent includes a phosphorus porphyrin compound composed of a cation represented by the following general formula (1) and an arbitrary anion.
  • R 1 is a saturated or unsaturated aliphatic hydrocarbon having 1 to 4 carbon atoms which may be substituted with at least one substituent selected from a hydroxyl group, an amino group, an ammonium group and a fluoro group Indicates a group.
  • a plurality of R 1 and R 2 in the same molecule may be the same or different.
  • the solubility in water can be enhanced while maintaining high sensitivity as a photosensitizer. In order to damage biomolecules in vivo, it is desirable that the photosensitizer has high water solubility.
  • R 1 may be an alkyl group having 1 to 4 carbon atoms, or a linear, branched or cyclic alkyl group. These may be substituted by the above substituents.
  • R 1 is, for example, a methyl group, an ethyl group, a 2-hydroxyethyl group (—CH 2 CH 2 OH), an n-propyl group, an isopropyl group, a 3-hydroxypropyl group (—CH 2 CH 2 CH 2 OH), It may be an n-butyl group, an isobutyl group, a t-butyl group, or a group formed by substituting one or more hydrogen atoms of these groups with fluorine atoms.
  • R 1 having a fluorine atom examples include isomers such as a difluoroethyl group (—CH 2 CHF 2 ), a trifluoroethyl group (—CH 2 CF 3 ), and a trifluoropropyl group (—CH 2 CH 2 CF 3 ).
  • Hexafluoropropyl group including isomers such as —CH 2 (CF 3 ) 2
  • trifluorobutyl group including isomers such as —CH 2 CH 2 CH 2 CF 3
  • hexafluorobutyl Groups including isomers such as —CH 2 CF 2 CHFCF 3
  • heptafluorobutyl groups including isomers such as —CH 2 CF 2 CF 2 CF 3
  • nonafluorobutyl groups —C (CF 3 And isomers such as 3 ).
  • R 1 represents a methyl group, a hydroxyalkyl group having 1 to 4 carbon atoms (such as a 2-hydroxyethyl group or a 3-hydroxypropyl group), an aminomethyl group, or 2-aminoethyl. It can be selected from the group, 3-amino-1-propyl group and 4-amino-1-butyl group.
  • R 2 in the formula (1) is a saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • the phosphorus-porphyrin compound in which the porphyrin ring is substituted with such a specific substituted phenyl group can shift the absorption maximum wavelength to a longer wavelength, so that the electron transfer reaction even under low oxygen due to the action of long-wavelength light Can efficiently damage biomolecules.
  • R 2 may be a group selected from a methyl group, an ethyl group, and a trifluoroethyl group.
  • the biomolecule damaging agent according to another embodiment includes a phosphorus porphyrin compound composed of a cation represented by the following general formula (2) and an arbitrary anion.
  • R 2 in the formula (2), and R 2 in the formula (1) is as defined, including preferred embodiments thereof.
  • X represents a bromo group or a chloro group. Since the porphyrin ring of the phosphoporphyrin compound having a cation of the formula (2) is substituted with a specific substituted phenyl group, biomolecules are efficiently converted by electron transfer reaction even under low oxygen due to the action of long-wavelength light. Can be damaged.
  • the anion constituting the lymphoporphyrin compound is not limited as long as it can function as a counter anion of the cation of formula (1) or (2), but when a biomolecule damaging agent is administered to a living body, it is pharmaceutically
  • An anion that forms an acceptable salt is selected.
  • Specific examples of anions include halide ions such as Cl ⁇ and Br ⁇ .
  • the biomolecule damaging agent may contain only the above-mentioned limporphyrin compound as an active ingredient.
  • the biomolecule damaging agent may contain a solvent such as water, or may further contain other optional components.
  • the concentration of the phosphorus porphyrin compound in the biomolecule damaging agent may be, for example, 0.01% by mass or more, 90% by mass or more, or 100% by mass or less based on the mass of the biomolecule damaging agent. .
  • the biomolecule damaging agent can be used as a photosensitizer for damaging a target cell biomolecule by light irradiation.
  • a photosensitizer for photodynamic therapy that includes both administering a biomolecule damaging agent to a patient and selectively damaging a biomolecule of a target cell in the living body by irradiation with light.
  • a biomolecule damaging agent can be used.
  • the biomolecule damaging agent can also be used as a photobactericidal agent for photobacterial treatment of teeth or gums infected with bacteria.
  • the biomolecule damaging agent according to the present embodiment can efficiently attack a biomolecule such as a protein molecule of a target cell by an electron transfer mechanism and kill the target cell even under low oxygen.
  • the electron transfer mechanism is a mechanism in which a molecule excited by light irradiation causes oxidative damage to a biomolecule by directly extracting electrons from the biomolecule.
  • the electron transfer mechanism can more effectively act on biomolecules even under hypoxia than the singlet oxygen mechanism that requires oxygen.
  • Tumor tissues including tumor cells (cancer cells) are generally under hypoxia, but the electron transfer mechanism can efficiently attack target cells under hypoxia such as tumor cells.
  • the biomolecule damaging agent according to this embodiment has little influence on the human body and efficiently damages biomolecules by irradiation with light having a long wavelength of about 550 to 670 nm that reaches the deep part of the in vivo tissue. be able to.
  • the biomolecule damaging agent can be used as a photosensitizer for damaging biomolecules by a method including irradiating light having a wavelength of 550 to 670 nm.
  • the wavelength of light used may be 600 to 670 nm.
  • the phosphorus porphyrin compound represented by the formula (2) can be obtained, for example, by a reaction of a substituted tetraphenylporphyrin represented by the following general formula (10) with phosphoryl chloride or phosphoryl bromide.
  • a substituted tetraphenylporphyrin of the formula (10) can be easily produced by a person skilled in the art by a known synthetic route starting from substituted benzaldehyde and pyrrole, porphyrin or the like.
  • the phosphorus porphyrin compound represented by the formula (1) includes, for example, a phosphorus porphyrin compound having a cation represented by the formula (2) and a compound represented by R 1 OH (R 1 is a hydroxyl group, an amino group, an ammonium group, and A saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms which may be substituted with at least one substituent selected from fluoro groups) to form a phosphorus porphyrin compound.
  • R 1 is a hydroxyl group, an amino group, an ammonium group, and A saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms which may be substituted with at least one substituent selected from fluoro groups
  • R 1 OH is a hydroxyl group, an amino group, an ammonium group, and A saturated or unsaturated aliphatic hydrocarbon group having 1 to 4 carbon atoms which may be substituted with at least one substituent selected from fluoro groups
  • It can manufacture by
  • the above process can be performed while heating if necessary.
  • the heating temperature varies depending on the starting material, the base, the compound represented by R 1 OH, and other reagents used in the reaction, but the reaction can be performed while heating to reflux.
  • the reaction time is usually about several hours to several days. Moreover, this process can be performed on dry conditions.
  • the fluorescence lifetime ⁇ f was measured for Cl 2 P (V) TMPP, MeO 2 P (V) TMPP and EG 2 P (V) TMPP. The measurement was performed in a 10 mM phosphate buffer (pH 7.6) using a fluorescence lifetime measuring apparatus (TemPro, manufactured by Horiba, Ltd.).
  • Solubility C absorption maximum wavelength ⁇ A max , maximum fluorescence wavelength ⁇ f max , fluorescence quantum yield ⁇ f , Cl 2 P (V) TMPP, MeO 2 P (V) TMPP and EG 2 P (V) TMPP in water
  • Table 1 shows the fluorescence lifetime ⁇ f and the singlet oxygen production quantum yield ⁇ ⁇ . The measured absorption spectrum is shown in FIG.
  • Cl 2 P (V) TMPP, MeO 2 P (V) TMPP, and EG 2 P (V) TMPP have an absorption maximum wavelength in the vicinity of 550 to 670 nm. confirmed. Moreover, it was confirmed that the absorption wavelengths of MeO 2 P (V) TMPP and EG 2 P (V) TMPP are shifted further to the longer wavelength side than Cl 2 P (V) TMPP. Furthermore, as shown in Table 1, it was confirmed that any compound had a high fluorescence quantum yield and a sufficiently long fluorescence lifetime. Moreover, it was confirmed from the value of a singlet oxygen production
  • red light-emitting diode light source ISL-150X150-RR, manufactured by CCS Corporation Irradiation with red light using a wavelength of 659 nm, 2 mW ⁇ cm ⁇ 2
  • the autofluorescence of tryptophan residues in HSA at that time was measured using a spectrofluorometer (manufactured by Hitachi High-Tech Fielding Co., Ltd., 650-60) Measured. This autofluorescence intensity is proportional to the amount of undamaged HSA contained in the evaluation solution.
  • FIG. 2 is a graph showing the relationship between the irradiation time of red light on the evaluation solution 1 and the amount of damage of HSA.
  • the amount of damage (damage rate, slope of the graph of FIG. 2) per unit time of HSA was calculated from the relationship between the irradiation time of red light and the autofluorescence intensity. All the HSA damage in the evaluation liquid 2 was considered to be due to the electron transfer mechanism, and the ratio of the HSA damage speed in the evaluation liquid 2 to the HSA damage speed in the evaluation liquid 1 was calculated as an electron transfer contribution rate.
  • ⁇ D (damage rate of HSA) / (number of photons absorbed by the phosphorus porphyrin compound per unit time)
  • the damage rate of HSA was calculated from the slope of the approximate line in the graph of FIG.
  • the number of photons absorbed per unit time by Cl 2 P (V) TMPP, MeO 2 P (V) TMPP, and EG 2 P (V) TMPP is based on the overlap between the absorption spectrum of each compound and the emission spectrum of the red light-emitting diode light source. Calculated.
  • Table 2 shows the evaluation results. Table 2 also shows the protein damage quantum yield ⁇ D of the photosensitizers (MeO 2 P (V) TMPP and H 2 TMPyP) described in Non-Patent Document 1.
  • Cl 2 P (V) TMPP, MeO 2 P (V) TMPP, and EG 2 P (V) TMPP have high protein damage quantum yields.
  • the quantum yield of protein damage of Cl 2 P (V) TMPP, MeO 2 P (V) TMPP and EG 2 P (V) TMPP is the quantum yield of protein damage of MeO 2 P (V) TMPP and H 2 TMPyP. Much higher than (literature value).
  • the fluorescence lifetime ⁇ f * (short lifetime component ⁇ f1 * , long lifetime component ⁇ f2 * ) and electron transfer rate constant k et of TMPP and EG 2 P (V) TMPP are shown in Table 3.
  • a single fluorescence lifetime component was confirmed.
  • HSA human serum albumin
  • a component having a lifetime longer than the fluorescence lifetime ⁇ f and a component having a lifetime shorter than the fluorescence lifetime ⁇ f were observed.
  • the component having a long lifetime is considered to be a component having a long lifetime due to suppression of vibration relaxation in the excited state due to the interaction between the phosphorus porphyrin compound and the protein molecule.
  • the component having a short lifetime is considered to be a component in which the fluorescence lifetime of the excited singlet state of porphyrin is shortened by extracting electrons from the tryptophan residue of the protein. That is, these results support that the phosphorus porphyrin compound causes protein damage by the electron transfer mechanism.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

下記一般式(1)で表されるカチオンを有するリンポルフィリン化合物が開示される。 (1) R1は水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。

Description

リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤
 本発明は、リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤に関する。
 近年、がんを低侵襲的に治療できる療法として光線力学的療法が注目されている。非特許文献1には、光線力学的療法において用いられることを想定した光増感剤として、ジメトキシリン(V)テトラフェニルポルフィリンクロライド(MeOP(V)TPP)及びテトラキス(1-メチル-4-ピリジニオ)ポルフィリン(HTMPyP)といったポルフィリン化合物が開示されている。
Bioorganic & Medicinal Chemistry Letters, 2013, 23, 2704-2707
 医療分野での適用を考慮すると、人体に影響の少ない550~670nm程度の長波長の光を用いることが望まれる。また、例えばがん細胞内の生体分子の場合、低酸素の環境下で生体分子を損傷させることが必要なこともある。しかし、従来、550~670nm程度の長波長の光を用いながら、低酸素下で生体分子を十分効率的に損傷させることは困難であった。
 そこで、本発明の主な目的は、長波長の光を用いた場合であっても、低酸素下で高い効率で生体分子を損傷させることができる生体分子損傷剤を提供することにある。
 一つの側面において、本発明は、下記一般式(1)で表されるカチオンを有するリンポルフィリン化合物に関する。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R1は水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。同一分子中の複数のR及びRは、それぞれ同一でも異なっていてもよい。
 別の側面において、本発明は、上記リンポルフィリン化合物を製造する方法に関する。一形態に係る方法は、下記一般式(2)で表されるカチオンを有する化合物と、ROHで表される化合物(Rは水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。)とを反応させて、式(1)で表されるリンポルフィリン化合物を生成させる工程を備える。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Xはブロモ基又はクロロ基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。同一分子中の複数のRは、同一でも異なっていてもよい。
 別の側面において、本発明は、上記一般式(1)又は(2)で表されるカチオンを有するリンポルフィリン化合物を含む、生体分子損傷剤に関する。この生体分子損傷剤によれば、長波長の光を用いた場合であっても、生体分子からの電子移動機構によって、生体分子を損傷させるための光増感剤として機能することができる。したがって、主として一重項酸素(活性酸素)の生成に基づく反応によって生体分子を損傷させる光増感剤と比較して、低酸素下においてより高い効率で生体分子を損傷させることができる。
 上記生体分子損傷剤は、550~670nmの光によって生体分子を損傷させるために用いることができる。したがって、本発明の生体分子損傷剤は、550~670nmの光を照射することを含む方法によって生体分子を損傷させるために用いることができる。生体分子の損傷のためにこのような長波長の光を用いることは、人体への影響を抑えるとともに、生体内組織の深部に到達する点で有利である。
 本発明の生体分子損傷剤によれば、長波長の光を用いた場合であっても、低酸素下で高い効率で生体分子を損傷させることができる。
リンポルフィリン化合物の吸収スペクトルである。 リンポルフィリン化合物に対する光照射時間とヒト血清アルブミン(HSA)の損傷量との関係を示すグラフである。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 いくつかの実施形態に係る生体分子損傷剤は、下記一般式(1)で表されるカチオンと、任意のアニオンとから構成されるリンポルフィリン化合物を含む。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、R1は水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。同一分子中の複数のR及びRは、それぞれ同一でも異なっていてもよい。リンポルフィリン化合物がリン原子に結合するアルコキシ基(-OR)等を有していることにより、光増感剤としての高い感度を維持しながら、水に対する溶解性を高めることができる。生体内で生体分子を損傷させるためには、光増感剤が高い水溶性を有していることが望ましい。
 Rは、炭素数1~4のアルキル基であってもよく、直鎖、分岐又は環状のアルキル基であってもよい。これらは上記置換基によって置換されていてもよい。Rは、例えば、メチル基、エチル基、2-ヒドロキシエチル基(-CHCHOH)、n-プロピル基、イソプロピル基、3-ヒドロキシプロピル基(-CHCHCHOH)、n-ブチル基、イソブチル基、t-ブチル基及びこれらの基の1個以上の水素原子をフッ素原子に置換して形成される基であってもよい。フッ素原子を有するRの例としては、ジフルオロエチル基(-CHCHF)、トリフルオロエチル基(-CHCF)、トリフルオロプロピル基(-CHCHCF等の異性体を含む)、ヘキサフルオロプロピル基(-CH(CF等の異性体を含む)、トリフルオロブチル基(-CHCHCHCF等の異性体を含む)、ヘキサフルオロブチル基(-CHCFCHFCF等の異性体を含む)、ヘプタフルオロブチル基(-CHCFCFCF等の異性体を含む)、及びノナフルオロブチル基(-C(CF等の異性体を含む)が挙げられる。リンポルフィリン化合物の水溶性の観点からは、Rは、メチル基、炭素数1~4のヒドロキシアルキル基(2-ヒドロキシエチル基、3-ヒドロキシプロピル基等)、アミノメチル基、2-アミノエチル基、3-アミノ-1-プロピル基、及び4-アミノ-1-ブチル基から選ぶことができる。
 式(1)中のRは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基である。ポルフィリン環がこのような特定の置換フェニル基で置換されているリンポルフィリン化合物は、吸収極大波長が、より長波長にシフトし得るため、長波長の光の作用により、低酸素下でも電子移動反応によって生体分子を効率的に損傷させることができる。生体分子の特に効率的な損傷のために、Rは、メチル基、エチル基、及びトリフルオロエチル基から選ばれる基であってもよい。
 他の実施形態に係る生体分子損傷剤は、下記一般式(2)で表されるカチオンと、任意のアニオンとから構成されるリンポルフィリン化合物を含む。
Figure JPOXMLDOC01-appb-C000008
 式(2)中のRは、式(1)中のRと、その好適な態様も含めて同義である。Xはブロモ基又はクロロ基を示す。式(2)のカチオンを有するリンポルフィリン化合物も、ポルフィリン環が特定の置換フェニル基で置換されていることから、長波長の光の作用により、低酸素下でも電子移動反応によって生体分子を効率的に損傷させることができる。
 リンポルフィリン化合物を構成するアニオンは、式(1)又は(2)のカチオンの対アニオンとして機能し得るものであれば制限はないが、生体分子損傷剤が生体に投与される場合、薬学的に許容される塩を形成するアニオンが選択される。アニオンの具体例としては、Cl、Br等のハロゲン化物イオンがある。
 生体分子損傷剤は、上記リンポルフィリン化合物のみを有効成分として含んでいてもよい。当業者には理解されるように、生体分子損傷剤は、水等の溶媒を含んでいてもよいし、他の任意の成分を更に含んでいてもよい。生体分子損傷剤におけるリンポルフィリン化合物の濃度は、生体分子損傷剤の質量を基準として、例えば0.01質量%以上又は90質量%以上であってもよいし、100質量%以下であってもよい。
 生体分子損傷剤は、光の照射により標的とする細胞の生体分子を損傷させるための光増感剤として用いることができる。例えば、生体分子損傷剤を患者に投与すること、及び生体内の標的細胞が有する生体分子を光の照射により選択的に損傷させることの両方を含む、光線力学的療法のための光増感剤として生体分子損傷剤を用いることができる。あるいは、生体分子損傷剤を、細菌感染した歯又は歯肉の光殺菌治療等のための光殺菌剤として用いることもできる。
 本実施形態に係る生体分子損傷剤によれば、低酸素下であっても、電子移動機構によって効率的に標的細胞のタンパク質分子等の生体分子を攻撃し、標的細胞を死滅させることができる。電子移動機構は、光の照射により励起された分子が、生体分子から直接電子を引き抜くことにより、生体分子を酸化損傷させる機構である。電子移動機構は、酸素を必要とする一重項酸素機構と比較して、低酸素下でも生体分子に対してより有効に作用することができる。腫瘍細胞(がん細胞)を含む腫瘍組織は一般に低酸素下にあるが、電子移動機構によれば、腫瘍細胞のような低酸素下の標的細胞を効率的に攻撃することができる。
 加えて、本実施形態に係る生体分子損傷剤は、人体への影響が少なく、生体内組織の深部に到達する550~670nm程度の長波長の光の照射によって、生体分子を効率的に損傷させることができる。言い換えると、生体分子損傷剤を、550~670nmの波長の光を照射することを含む方法により、生体分子を損傷させるための光増感剤として用いることができる。用いられる光の波長は、600~670nmであってもよい。
 式(2)で表されるリンポルフィリン化合物は、例えば、下記一般式(10)で表される置換テトラフェニルポルフィリンと塩化ホスホリル又は臭化ホスホリルとの反応により得ることができる。式(10)の置換テトラフェニルポルフィリンは、当業者であれば、置換ベンズアルデヒド及びピロール、又は、ポルフィリン等を出発物質とする公知の合成経路により容易に製造することができる。
Figure JPOXMLDOC01-appb-C000009
 式(1)で表されるリンポルフィリン化合物は、例えば、式(2)で表されるカチオンを有するリンポルフィリン化合物とROHで表される化合物(Rは水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。)とを反応させて、リンポルフィリン化合物を生成させる工程を備える方法により、製造することができる。この反応は、メタノール等の溶媒中で行ってもよく、そこに塩基を加えてもよい。用いられる塩基としては、特に限定されないが、例えば、ピリジンが挙げられる。塩基は、乾燥処理されたものであってもよい。ROHとの反応性の観点からは、式(2)中のXはクロロ基であってもよい。
 上記工程は、必要により加熱しながら行うことができる。加熱温度は出発原料、塩基、ROHで表される化合物、その他反応に用いる試薬によって異なるが、加熱還流しながら反応を行うことができる。反応時間は、通常、数時間~数日程度である。また、本工程は、乾燥条件下で行うことができる。
 以下、実施例を挙げて本発明について更に具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
 実施例1~3において得られた化合物の構造は、H-NMR(JEOL,JNM-AL-300)、質量分析(FAB-MS,JEOL,The MStation JMS-700)で確認した。
実施例1:ジクロロリン(V)テトラキス(4-メトキシフェニル)ポルフィリンクロライド(Cl2P(V)TMPP)の合成
Figure JPOXMLDOC01-appb-C000010
 5,10,15,20-テトラキス(4-メトキシフェニル)ポルフィリン(東京化成工業株式会社製)200mgを12mLの乾燥ピリジンに溶かした。そこに、4.2gの塩化ホスホリルを加え、72時間加熱還流した。このとき、塩化カルシウム管を還流管上部に取り付け、空気中の水分の混入を避けた。その後、反応液の溶媒をロータリーエバポレーターを用いて留去した。展開溶媒をクロロホルム:メタノール=4:1としたシリカゲルカラムクロマトグラフィーにて反応物を精製し、ジクロロリン(V)テトラキス(4-メトキシフェニル)ポルフィリンクロライド(Cl2P(V)TMPP)を230mg得た。
1H-NMR(CDCl3,TMS):δ4.03(s,12H,meso-phenyl-OCH3),7.30(d,8H,JH-H=7.5Hz,meso-m-phenyl-H),7.90(d,8H,JH-H=7.5Hz,meso-o-phenyl-H),9.12(d,8H,JH-H=3.0Hz,βH).
FAB-MS:m/z833.2(M+).
実施例2:ジメトキシリン(V)テトラキス(4-メトキシフェニル)ポルフィリンクロライド(MeOP(V)TMPP)の合成
Figure JPOXMLDOC01-appb-C000011
 実施例1で得られたCl2P(V)TMPP(55mg)を、0.5mLの乾燥ピリジンを含む5mLの乾燥メタノールの混合液に溶かし、78℃で10時間加熱還流した。その後、反応液の溶媒をロータリーエバポレーターを用いて留去した。展開溶媒をクロロホルム:メタノール=5:1としたシリカゲルカラムクロマトグラフィーにて、反応物を精製し、ジメトキシリン(V)テトラキス(4-メトキシフェニル)ポルフィリンクロライド(MeOP(V)TMPP)を52mg得た。
1H-NMR(CDCl3,TMS):δ-1.86(d,6H,JP-H=27Hz,P-OCH3),4.04(s,12H,meso-phenyl-OCH3),7.30(d,8H,JH-H=9.0Hz,meso-m-phenyl-H),7.86(d,8H,JH-H=9.0Hz,meso-o-phenyl-H),9.06(d,8H,JH-H=3.0Hz,βH).
FAB-MS:m/z825.3(M+).
実施例3:ジエチレングリコキシリン(V)テトラキス(4-メトキシフェニル)ポルフィリンクロライド(EGP(V)TMPP)の合成
Figure JPOXMLDOC01-appb-C000012
 実施例1で得られたCl2P(V)TMPP(70mg)を2mLの乾燥エチレングリコールと1mLの乾燥ピリジンとの混合液に溶かし、145℃で3時間加熱還流した。その後、反応液の溶媒をロータリーエバポレーターを用いて留去した。次いで、分液ロートを用いた水とクロロホルムの液-液抽出により、残渣から反応物を分離した。展開溶媒をクロロホルム:メタノール=5:1としたシリカゲルカラムクロマトグラフィーにて、反応物を精製し、ジエチレングリコキシリン(V)テトラキス(4-メトキシフェニル)ポルフィリンクロライド(EGP(V)TMPP)を73mg得た。
1H-NMR(CDCl3,TMS):δ-2.30~-2.22(m,4H,P-OCH2CO),0.71(brs,4H,P-OCCH2O),1.25(s,2H,P-OCCOH),3.99(s,12H,meso-phenyl-OCH3),7.25(d,8H,JH-H=9.0Hz,meso-m-phenyl-H),7.91(d,8H,JH-H=9.0Hz,meso-o-phenyl-H),9.00(brs,8H,βH).
FAB-MS:m/z885.3(M+).
<ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの物性値評価>
(吸収スペクトル)
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの吸収スペクトルを、分光光度計(島津製作所,UV-1650PC)を用いて測定した。測定には、10mMリン酸緩衝液(pH7.6)を使用した。
(蛍光分析)
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPについて、蛍光極大波長、蛍光量子収率を測定した。測定は、分光蛍光光度計(株式会社日立ハイテクフィールディング製,F-4500)を用い、10mMリン酸緩衝液(pH7.6)中で行った。
(蛍光寿命測定)
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPについて、蛍光寿命τfを測定した。測定は、蛍光寿命測定装置(株式会社堀場製作所製、TemPro)を用い、10mMリン酸緩衝液(pH7.6)中で行った。
(一重項酸素生成量子収率)
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの一重項酸素生成量子収率を、以下の方法により算出した。すなわち、近赤外発光分光測定装置(浜松ホトニクス株式会社製,NIR-PIIシステム)により、蒸留水中における一重項酸素の発光強度を測定した。測定された発光強度の、メチレンブルーによる一重項酸素の発光強度(蒸留水中での一重項酸素生成量子収率0.52)に対する相対的な比率を一重項酸素生成量子収率とした。なお、発光強度の測定には、10mMリン酸緩衝液(pH7.6)を使用した。
(水への溶解性)
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの25℃の蒸留水に対する溶解度を測定した。
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの水に対する溶解度C、吸収極大波長λ max、蛍光極大波長λ max、蛍光量子収率Φ、蛍光寿命τ、一重項酸素生成量子収率ΦΔを表1に示す。また、測定した吸収スペクトルを図1に示す。
Figure JPOXMLDOC01-appb-T000013
 表1及び図1に示すように、ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPは、550~670nm付近に吸収極大波長を有していることが確認された。また、MeOP(V)TMPP及びEGP(V)TMPPの吸収波長は、ClP(V)TMPPよりも更に長波長側にシフトしていることが確認された。さらに、表1に示すように、いずれの化合物も高い蛍光量子収率を有し、蛍光寿命も十分長いことが確認された。また、一重項酸素生成量子収率の値から、いずれの化合物も、赤色光を照射することにより一重項酸素を発生できることが確認された。MeOP(V)TMPP及びEGP(V)TMPPは、水に対する高い溶解度を有することも確認された。
<タンパク質に対する光損傷作用の評価>
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの光損傷作用を以下の方法により評価した。
(電子移動寄与率)
 5μMのClP(V)TMPPと10μMのヒト血清アルブミン(水溶性タンパク質、HSA)をそれぞれ含む1.2mLの10mMリン酸緩衝液(pH7.6)を、ClP(V)TMPPの評価用溶液1として調製した。同様にして、MeOP(V)TMPP及びEGP(V)TMPPそれぞれについて、評価用溶液1を調製した。
 光損傷作用の作用機構を確認するため、上記評価用溶液1(1.2mL)それぞれに一重項酸素の消去剤であるアジ化ナトリウム(0.78mg)を添加し、評価用溶液2を作製した。
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの評価用溶液1及び2に対し、赤色発光ダイオード光源(CCS株式会社製、ISL-150X150-RR、極大波長: 659nm、2mW・cm-2)を用いて赤色光を照射し、そのときのHSA中のトリプトファン残基の自家蛍光を分光蛍光光度計(株式会社日立ハイテクフィールディング製、650-60)を用いて測定した。この自家蛍光強度は、評価用溶液に含まれる損傷されていないHSA量に比例する。赤色光の照射前の自家蛍光強度と比較した自家蛍光強度の減少量から、HSAの損傷量を求めた。図2は、評価用溶液1に対する赤色光の照射時間とHSAの損傷量との関係を示すグラフである。赤色光の照射時間と自家蛍光強度との関係から、HSAの単位時間当たりの損傷量(損傷速度、図2のグラフの傾き)を算出した。評価用液2におけるHSA損傷が全て電子移動機構によるものとみなし、評価用液1におけるHSA損傷速度に対する、評価用液2におけるHSA損傷速度の比率を、電子移動寄与率として算出した。
(タンパク質損傷の量子収率)
 下記式により、タンパク質損傷の量子収率Φを算出した。
Φ=(HSAの損傷速度)/(リンポルフィリン化合物が単位時間当たりに吸収する光子数)
 HSAの損傷速度は、図2のグラフの近似直線の傾きから計算した。ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPが単位時間当たりに吸収する光子数は、各化合物の吸収スペクトルと赤色発光ダイオード光源の発光スペクトルの重なりから計算した。
 表2に評価結果を示す。表2には、非特許文献1に記載されている光増感剤(MeOP(V)TMPP及びHTMPyP)のタンパク質損傷の量子収率Φをあわせて示す。
Figure JPOXMLDOC01-appb-T000014
 表2に示すように、ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPは高いタンパク質損傷の量子収率を有していることが確認された。ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPのタンパク質損傷の量子収率は、MeOP(V)TMPP及びHTMPyPのタンパク質損傷の量子収率(文献値)よりも遥かに高い。また、一重項酸素の消去剤を用いた測定結果から、ClP(V)TMPP及びMeOP(V)TMPPのタンパク質に対する光損傷作用は、主に電子移動機構によるものであり、EGP(V)TMPPのタンパク質に対する光損傷作用は、一重項酸素機構及び電子移動機構の両方によるものであることが支持された。
(ヒト血清アルブミン含有時の蛍光寿命測定)
 評価用液1を用いて、ヒト血清アルブミン(10μM)含有時のClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの蛍光寿命τ *(短寿命成分τf1 *、長寿命成分τf2 *)を測定した。その結果と、それぞれの化合物単独の蛍光寿命τfに基づいて、下記式を用いて電子移動速度定数ketを算出した。
Figure JPOXMLDOC01-appb-M000015
 ClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの蛍光寿命τ、ヒト血清アルブミン(10μM)含有時のClP(V)TMPP、MeOP(V)TMPP及びEGP(V)TMPPの蛍光寿命τ *(短寿命成分τf1 *、長寿命成分τf2 *)及び電子移動速度定数ketを表3に示す。
Figure JPOXMLDOC01-appb-T000016
 リンポルフィリン化合物単独の試料に関しては、単一の蛍光寿命の成分が確認された。一方、ヒト血清アルブミン(HSA)を含む試料の場合、蛍光寿命τよりも長い寿命の成分、及び蛍光寿命τよりも短い寿命の成分が観測された。長い寿命の成分は、リンポルフィリン化合物とタンパク質分子との相互作用により、励起状態の振動緩和が抑制されて寿命が長くなった成分であると考えられる。短い寿命の成分は、ポルフィリンの励起一重項状態の蛍光寿命が、タンパク質のトリプトファン残基から電子を引き抜くことにより短縮された成分であると考えられる。すなわち、これらの結果は、リンポルフィリン化合物が、電子移動機構によるタンパク質の損傷を生じさせていることを支持している。

Claims (4)

  1.  下記一般式(1)で表されるカチオンを有するリンポルフィリン化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1は水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、同一分子中の複数のR及びRは、それぞれ同一でも異なっていてもよい。]
  2.  請求項1に記載のリンポルフィリン化合物を製造する方法であって、
     下記一般式(2)で表されるカチオンを有する化合物と、ROHで表される化合物(Rは水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示す。)とを反応させて、前記一般式(1)で表されるリンポルフィリン化合物を生成させる工程を備える、方法。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Xはブロモ基又はクロロ基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、同一分子中の複数のRは、同一でも異なっていてもよい。]
  3.  下記一般式(1)又は(2)で表されるカチオンを有するリンポルフィリン化合物を含む、生体分子損傷剤。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、R1は水酸基、アミノ基、アンモニウム基及びフルオロ基から選ばれる少なくとも1種の置換基で置換されていてもよい炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、同一分子中の複数のR及びRは、それぞれ同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000004
    [式(2)中、Xはブロモ基又はクロロ基を示し、Rは炭素数1~4の飽和又は不飽和の脂肪族炭化水素基を示し、同一分子中の複数のRは、同一でも異なっていてもよい。]
  4.  550~670nmの光を照射することを含む方法によって生体分子を損傷させるために用いられる、請求項3に記載の生体分子損傷剤。
PCT/JP2015/061717 2014-05-08 2015-04-16 リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤 WO2015170562A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517852A JP6469096B2 (ja) 2014-05-08 2015-04-16 リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-097016 2014-05-08
JP2014097016 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015170562A1 true WO2015170562A1 (ja) 2015-11-12

Family

ID=54392415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061717 WO2015170562A1 (ja) 2014-05-08 2015-04-16 リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤

Country Status (2)

Country Link
JP (1) JP6469096B2 (ja)
WO (1) WO2015170562A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120085A (ja) * 1990-09-10 1992-04-21 Takeo Shimizu ポルフイリン誘導体
WO2011043369A1 (ja) * 2009-10-07 2011-04-14 国立大学法人宮崎大学 水溶性ポルフィリン及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120085A (ja) * 1990-09-10 1992-04-21 Takeo Shimizu ポルフイリン誘導体
WO2011043369A1 (ja) * 2009-10-07 2011-04-14 国立大学法人宮崎大学 水溶性ポルフィリン及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDOU, YOSHITO ET AL.: "O-Alkylation of dihydroxo(tetraarylporphyrinato)phosphorus(V) and antimony(V) complexes with alkyl halides", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 75, no. 8, 2002, pages 1757 - 1760, XP055235614 *
HIRAKAWA, KAZUTAKA ET AL.: "Photosensitized protein damage by dimethoxyphosphorus(V) tetraphenylporphyrin", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 23, no. 9, May 2013 (2013-05-01), pages 2704 - 2707, XP028546940 *
SHIMIDZU, TAKEO ET AL.: "Porphyrin arrays connected with molecular wire", THIN SOLID FILMS, vol. 273, no. 1-2, February 1996 (1996-02-01), pages 14 - 19, XP004017463 *

Also Published As

Publication number Publication date
JPWO2015170562A1 (ja) 2017-04-20
JP6469096B2 (ja) 2019-02-20

Similar Documents

Publication Publication Date Title
JP2021503450A (ja) プログラム可能なポリマー薬
Li et al. Real-time in situ monitoring via europium emission of the photo-release of antitumor cisplatin from a Eu–Pt complex
CN110642852B (zh) 一种具有线粒体靶向的有机aie光敏探针及其制备方法和应用
Uchoa et al. Relationship between structure and photoactivity of porphyrins derived from protoporphyrin IX
EP2681228A1 (en) Platinum complexes and their use
Hirayama et al. Bismuth-rhodamine: a new red light-excitable photosensitizer
WO2017109217A1 (fr) Ligands macrocycliques avec groupement(s) picolinate(s), leurs complexes ainsi que leurs utilisations médicales
JPWO2008099914A1 (ja) 蛍光プローブ
WO2014055505A1 (en) Bodipy dyes for biological imaging
Gyenge et al. Photodynamic mechanisms induced by a combination of hypericin and a chlorin based‐photosensitizer in head and neck squamous cell carcinoma cells
JP5669123B2 (ja) 発光によるビタミンc検出法及び定量法
Kuzmina et al. Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: Synthesis, photophysical and TDDFT computational studies
US8545807B2 (en) Near infrared high emission rare-earth complex
JP6469096B2 (ja) リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤
RU2621710C1 (ru) Порфиразин, порфиразиновый комплекс гадолиния и их применение
JP6485799B2 (ja) 三光子励起により発光する発光性組成物
WO2016143699A1 (ja) ジピリンホウ素錯体及びこれを含有する医薬
Bortolus et al. Interaction of 4‐Hydroxybiphenyl with Cyclodextrins: Effect of Complex Structure on Spectroscopic and Photophysical Properties
Zhou et al. Novel fluorescent risedronates: Synthesis, photodynamic inactivation and imaging of Bacillus subtilis
JP2022036684A (ja) リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤
RU2478682C1 (ru) Люминесцентные координационные соединения лантаноидов для светоизлучающих диодов
JP7274134B2 (ja) 希土類化合物、発光体、発光デバイス、波長変換材料及びセキュリティ材料
JP6089324B2 (ja) 9−アミノアントラセン又はその誘導体の分解抑制剤及び分解抑制方法、プロトン性有機化合物の検出剤及びプロトン性有機化合物の検出方法
Taniguchi et al. Photophysical properties and application in live cell imaging of B, B-fluoro-perfluoroalkyl BODIPYs
WO2006093251A1 (ja) 新規光増感剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 02.02.2017.

122 Ep: pct application non-entry in european phase

Ref document number: 15789117

Country of ref document: EP

Kind code of ref document: A1