WO2015169229A1 - 一种功率强度估计和确定干扰小区的方法及设备 - Google Patents

一种功率强度估计和确定干扰小区的方法及设备 Download PDF

Info

Publication number
WO2015169229A1
WO2015169229A1 PCT/CN2015/078401 CN2015078401W WO2015169229A1 WO 2015169229 A1 WO2015169229 A1 WO 2015169229A1 CN 2015078401 W CN2015078401 W CN 2015078401W WO 2015169229 A1 WO2015169229 A1 WO 2015169229A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
crs
receiving antenna
column
threshold
Prior art date
Application number
PCT/CN2015/078401
Other languages
English (en)
French (fr)
Inventor
熊芳
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2015169229A1 publication Critical patent/WO2015169229A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power strength estimation and method and apparatus for determining an interference cell.
  • LTE Long Term Evolution
  • R11 version 11
  • FeICIC Fether Enhanced ICIC
  • PBCH Physical Broadcast Channels
  • CRSs Cell-specific reference signals
  • PBCH Physical Broadcast Channels
  • the existing interference cell strength estimation steps are as follows:
  • the RSRP Reference Signal Received Power
  • the strong interference signal is superimposed on the frequency domain channel estimation result, and the current method cannot accurately estimate the strength of the cell.
  • the primary problem to be solved is to determine the set of cells included in the interference cancellation and the order of interference cancellation. If the interference cell is not properly selected and the order of interference cancellation, the interference cancellation will occur, because the channel estimation of the interference cell is not Accurately affect the reconstruction of interference information, Ultimately affects the demodulation performance of the user equipment.
  • the strong interference signal is superimposed on the frequency domain channel estimation result.
  • the strength of the cell cannot be accurately estimated in the scheme of the interference cell strength estimation, thereby causing the estimated cell strength. Inaccurate.
  • the embodiment of the invention provides a method and a device for estimating the power strength, which are used to solve the problem that the strong interference neighboring region exists in the prior art, and the strong interference signal is superimposed in the frequency domain channel estimation result, so that the channel cannot be accurately estimated.
  • the strength of the cell resulting in an inaccurate estimate of the cell strength.
  • a method for estimating power intensity provided by an embodiment of the present invention includes:
  • the sum values of each of the receiving antennas of the cell are added to obtain an estimated power intensity of the cell.
  • a channel estimation module configured to perform least-squares LS channel estimation on each column-specific cell-specific pilot signal CRS of a cell for a receiving antenna to obtain a frequency-domain channel estimation result corresponding to the receiving antenna;
  • a port determining module configured to determine a time domain channel impulse response corresponding to the receiving antenna according to a frequency domain channel estimation result corresponding to the receiving antenna, and determine a port number according to a time domain channel impulse response corresponding to the receiving antenna;
  • a threshold determining module configured to determine a tap threshold of each column CRS of the port corresponding to the port number value
  • a value determining module configured to sum the path energy of all the paths larger than the tap threshold, and obtain a sum of CRS receiving power of each column of the corresponding port of the receiving antenna
  • the estimated value determining module is configured to add the sum values of each receiving antenna of the cell to obtain an estimated power intensity of the cell.
  • the embodiment of the present invention further provides a method and a device for determining an interference cell by using the power strength estimation value obtained by the embodiment of the present invention, which is used to solve the interference information reconstruction in the prior art due to inaccurate channel estimation of the interference cell, and finally A problem that affects the demodulation performance of the user equipment.
  • a method for determining an interference cell by using the power strength estimation value obtained by using the foregoing method includes:
  • the neighboring region is included in the interference deleted cell set.
  • the apparatus for determining an interference cell by using the power strength estimation value obtained by using the foregoing method includes:
  • the ratio determining module is configured to determine, according to the power intensity estimation value of the neighboring cell, a first ratio indicating a relationship between the power of the neighboring cell and the noise floor, and a power indicating the power of the neighboring cell and the power of the local area, respectively.
  • a processing module configured to: if the first ratio is greater than a third threshold, and the second ratio is greater than a fourth threshold, the neighboring area is included in the interference deleted cell set.
  • the frequency domain channel estimation is transformed into the time domain, and the port corresponding to the strongest power tap of the receiving antenna is searched in the time domain, and the power intensity is estimated by the power of the effective path, so that when there is a strong interference neighboring area exists
  • the strong interference signal is superimposed on the frequency domain channel estimation result, the strength of the cell can be accurately estimated, and the influence of noise or interference can be effectively overcome, and the estimated cell strength accuracy is improved.
  • FIG. 1 is a schematic flowchart of a method for estimating power intensity according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a method for determining an interference cell according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic flowchart of a method for determining an interfering cell according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic structural diagram of an apparatus for estimating power intensity according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for estimating power strength according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a device for determining an interference cell according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a device for determining an interference cell according to Embodiment 7 of the present invention.
  • the frequency domain channel estimation is transformed into the time domain, and the port corresponding to the strongest power tap of the receiving antenna is searched in the time domain, and the power intensity is estimated by the power of the effective path, so that when there is a strong interference neighboring area exists
  • the strong interference signal is superimposed on the frequency domain channel estimation result, the strength of the cell can be accurately estimated, and the influence of noise or interference can be effectively overcome, and the estimated cell strength accuracy is improved.
  • the method for estimating power strength provided by Embodiment 1 of the present invention includes:
  • Step 100 Perform LS channel estimation on each column CRS of the cell for one receiving antenna, and obtain a frequency domain channel estimation result corresponding to the receiving antenna.
  • Step 101 Determine a port number according to the frequency domain channel estimation result corresponding to the receiving antenna. Specifically, determine a time domain channel impulse response corresponding to the receiving antenna according to a frequency domain channel estimation result corresponding to the receiving antenna. Determining, according to the time domain channel impulse response corresponding to the receiving antenna, a port number, for example, performing frequency domain channel estimation results corresponding to the receiving antenna in a frequency domain to a time domain. Transforming, obtaining a time domain channel impulse response corresponding to the receiving antenna, and determining a port number corresponding to the maximum power tap according to the time domain channel impulse response corresponding to the receiving antenna, the port being used for subsequently calculating the radial energy of the receiving antenna Sum.
  • Step 102 Determine a tap threshold of each column CRS of the port corresponding to the port number.
  • Step 103 summing the radial energy of all the paths larger than the tap threshold to obtain a sum value corresponding to the receiving antenna; that is, summing the radial energy of all the paths larger than the tap threshold to obtain The receiving antenna corresponds to a sum of CRS received power per column of the port;
  • Step 104 Add a sum value of each receiving antenna of the cell to obtain an estimated power intensity of the cell; that is, add the sum of values of each receiving antenna of the cell to obtain a The estimated power intensity of the cell.
  • step 100 to step 103 may be performed to obtain a sum value corresponding to each receiving antenna, and then step 104 is performed to obtain an estimated power intensity of the cell.
  • Neighbor cell ID is For example, the above process will be described.
  • step 100 the cell The CRS performs LS channel estimation to obtain a frequency domain channel estimation result, which is expressed as
  • r is the receiving antenna number index and p is the antenna port index.
  • the number of pilot columns for port p Indicates the number of port p The frequency domain channel estimation result of the column pilot.
  • step 101 determining a port number according to the frequency domain channel estimation result corresponding to the antenna, including:
  • the foregoing process of determining a port number may include the following steps 1 to 3:
  • N' is an integer power of two.
  • step 102 determining a tap threshold of each column of the CRS corresponding to the port number, including:
  • a second threshold value of each column CRS is determined; a maximum threshold value is selected from a first threshold value and a second threshold value of each column CRS as a tap gate of each column CRS of the port corresponding to the port number Limit.
  • the tap threshold of the receiving antenna r can be determined according to the following formula
  • the first threshold of each column of CRS is determined according to the following formula:
  • the number of the port number p of the receiving antenna r of the cell i The first threshold of the column CRS; ⁇ noise is the noise threshold coefficient; ⁇ CP is the CP coefficient; The port number corresponding to the receiving antenna r corresponds to the port number The noise tap of the time domain impulse response of the column CRS; ⁇ N is the CRS frequency interval; N' is the IFFT point number, and p is the determined port number of the receiving antenna r;
  • the number of the port number p of the receiving antenna r of the cell i The second threshold of the column CRS; ⁇ cir is the impulse response threshold coefficient; N' is the number of IFFT points.
  • step 103 the path energy of all the paths larger than the tap threshold is summed, and when the sum value corresponding to the receiving antenna is obtained, the path set larger than the tap threshold is found. That is, find the effective path and sum the path energy of the effective path.
  • step 104 summing the sum values of each receiving antenna of the cell to obtain an estimated power intensity of the cell, for each cell
  • the receiving antenna and the pilot column are separately added to obtain power intensity measurement results of each cell.
  • an interference cell is determined by using an estimated power intensity of each cell obtained in FIG. 1 according to the embodiment of the present invention. Specifically, the following steps are included:
  • Step 200 Determine, for a neighboring cell of the cell, a first ratio indicating a relationship between the power of the neighboring cell and the noise floor, and a second ratio indicating the power of the neighboring cell and the power of the local area according to the power intensity estimation value of the neighboring cell. ;
  • Step 201 If the first ratio is greater than a third threshold, and the second ratio is greater than a fourth threshold, the neighboring area is included in the interference deleted cell set.
  • step 200 determining a first ratio according to the power intensity estimation value of the neighboring cell, including: estimating a power intensity of the neighboring cell and a multi-antenna average value of the Nth time of the local area a ratio as the first ratio; or, an estimate of the power intensity of the neighboring region and use
  • the ratio of the multi-antenna average of the Mth noise measurement performed in one subframe is taken as the first ratio; wherein N and M are positive integers.
  • step 200 determining a second ratio according to the power intensity estimation value of the neighboring cell, including: comparing a power strength estimation value of the neighboring cell with a power intensity estimation value of the local cell as the first Two ratios.
  • threshold third threshold Th3 and a fourth threshold Th4 when the cell Satisfy and Time zone Incorporate interference to delete the cell range.
  • the multi-antenna average of this area for the first noise measurement or the multi-antenna average of the second noise measurement of the previous sub-frame can be used.
  • the set of cells satisfying the condition is recorded as The number of elements is denoted as N Cell_Num .
  • the research on LTE system FeICIC focuses on two heterogeneous network macro-pico deployment scenarios and macro-femto deployment scenarios.
  • the embodiment of the present invention may also select whether to include the local cell in the deleted cell set. specific:
  • the method further includes: if the power intensity estimation value of each neighboring cell in the set of the scrambling and deleting cells is greater than the power intensity estimation value of the current cell, the cell is excluded from the cell The interference deletes the cell set; otherwise, the cell is included in the interference deletion cell set.
  • the method further includes: if all the neighboring cells of the interference-deleted cell set include a specific neighboring cell, deleting the cell set in the interference
  • the neighboring cells are arranged in front of all the specific neighboring cells according to the power intensity from large to small; or in the neighboring cells of the interference deleting cell set, according to the power intensity from small to large, the cell is arranged Behind all specific neighborhoods.
  • the specific cell is a corresponding power intensity estimation value equal to the power intensity estimation value of the local cell or the absolute value of the difference between the power intensity estimation value of the local cell and the power intensity estimation value of the local cell is not greater than the fifth threshold value, and a CRS collision occurs with the local cell. Neighborhood.
  • the threshold fourth threshold Th4 or the fifth threshold Th5 is set to represent the power difference. or Within this area, the sorting priority of this area is prioritized when the interference is deleted. Since the current timing synchronization of the cell is relatively accurate, the channel estimation is relatively accurate in the case of similar power.
  • the embodiment of the present invention performs a sorting operation on multiple cells, so that the UE performs channel estimation on the strongest cell at a time, so that when a CRS collision occurs, the channel estimation of the strong neighbor region is first estimated, and the channel estimation accuracy is compared. High, it can effectively perform channel estimation on cells with smaller power intensity after CRS interference is deleted, and improve channel estimation accuracy.
  • the protection threshold is increased to avoid the small interference neighboring area or the power intensity of the area is high, and the introduction of unnecessary interference deletion operation brings about deterioration of performance.
  • the method for determining an interference cell according to Embodiment 3 of the present invention includes:
  • Step 300 for a cell
  • the CRS performs LS channel estimation to obtain a frequency domain channel estimation, and the result is expressed as
  • Step 301 will Time domain channel impulse response obtained by N-point IFFT transform
  • Step 302 calculating Tap power
  • Step 303 determining a cell The port number corresponding to the maximum power tap of the receiving antenna r, marked as
  • Step 304 Determine a receiving antenna r port number. The tap threshold of each column of the corresponding port of the CRS
  • Step 305 summing the radial energy of all the paths larger than the tap threshold, and obtaining the sum value corresponding to the tap threshold receiving antenna of each column of the corresponding port.
  • Step 306 Add the sum value of each receiving antenna of the cell to obtain a power intensity estimation value S cell_i (0 ⁇ i ⁇ I) of the cell.
  • Step 307 Determine, according to the power strength estimation value of the neighboring cell, a first ratio indicating a relationship between the power of the neighboring cell and the noise floor, and a second ratio indicating the power of the neighboring cell and the power of the local area, respectively. If the first ratio is greater than a third threshold, and the second ratio is greater than a fourth threshold, the neighboring region is included in the interference deleted cell set.
  • Step 308 If the power strength estimation value of each neighboring cell in the set of the scrambling and deleting cells is greater than the power intensity estimation value of the local cell, the local cell is excluded from the set of the scrambling and deleting cell; otherwise, The cell is included in the interference deletion cell set.
  • Step 309 If all neighboring cells in the interference-deleted cell set include a specific neighboring cell, if the neighboring cells of the interference-deleting cell set are arranged according to power intensity from large to small, the cell is ranked in all specific neighbors. In front of the area; or in the neighboring areas of the interference-deleted cell set, according to the power intensity from small to large, the cell is ranked behind all the specific neighboring areas.
  • the device for estimating the power intensity is also provided in the embodiment of the present invention.
  • the device for estimating the power strength is the device corresponding to the method for estimating the power strength of the embodiment of the present invention.
  • the principle and method of the device to solve the problem are similar, so the implementation of the device can refer to the implementation of the method, and the repeated description will not be repeated.
  • the device for estimating power intensity according to Embodiment 4 of the present invention includes:
  • the channel estimation module 400 is configured to perform least-squares LS channel estimation on each column of CRSs of the cell for one antenna to obtain a frequency domain channel estimation result corresponding to the receiving antenna;
  • a port determining module 410 configured to determine a port number according to the frequency domain channel estimation result corresponding to the antenna; specifically, determining a time domain corresponding to the receiving antenna according to a frequency domain channel estimation result corresponding to the receiving antenna a channel impulse response, the port number is determined according to the time domain channel impulse response corresponding to the receiving antenna, for example, the frequency domain channel estimation result corresponding to the receiving antenna is transformed into a frequency domain to a time domain, and the corresponding receiving antenna is obtained.
  • the time domain channel impulse response is determined, and the port number corresponding to the maximum power tap is determined according to the time domain channel impulse response corresponding to the receiving antenna, and the port is used to calculate the sum of the path energy of the receiving antenna.
  • a threshold value determining module 420 configured to determine a tap threshold value of each column CRS of the port corresponding to the port number
  • a value determining module 430 configured to sum the radial energy of all the paths larger than the tap threshold to obtain a sum of CRS received power per column of the corresponding port of the receiving antenna; that is, the pair is greater than the tap threshold The path energy of all the paths is summed to obtain the sum value corresponding to the receiving antenna;
  • the estimated value determining module 440 is configured to add a sum of CRS received power per column of each receiving antenna corresponding port of the cell to obtain an estimated power intensity of the cell. That is, the sum of the values of each of the receiving antennas of the cell is added to obtain an estimated power intensity of the cell.
  • the port determining module 410 is specifically configured to:
  • the time domain channel impulse response determines a tap power corresponding to each column CRS of each port of the receiving antenna; and determines a port number corresponding to the largest tap power of all tap powers corresponding to the receiving antenna.
  • the threshold value determining module 420 is specifically configured to:
  • a second threshold value of each column CRS is determined; a maximum threshold value is selected from a first threshold value and a second threshold value of each column CRS as a tap gate of each column CRS of the port corresponding to the port number Limit.
  • the threshold value determining module 420 is specifically configured to determine a first threshold value of each column CRS according to the following formula:
  • the number of the port number p of the receiving antenna r of the cell i The first threshold of the column CRS; ⁇ noise is the noise threshold coefficient; ⁇ CP is the CP coefficient; The port number corresponding to the receiving antenna r corresponds to the port number The noise tap of the time domain impulse response of the column CRS; ⁇ N is the CRS frequency interval; N' is the IFFT point number, and p is the determined port number of the receiving antenna r;
  • the threshold value determining module 420 is specifically configured to determine a second threshold according to the following formula:
  • the number of the port number p of the receiving antenna r of the cell i The second threshold of the column CRS; ⁇ cir is the impulse response threshold coefficient; N' is the number of IFFT points.
  • the processor 500 is configured to perform least-squares LS channel estimation on each column CRS of the cell for one antenna to obtain a frequency domain channel estimation result corresponding to the receiving antenna, and determine, according to the frequency domain channel estimation result corresponding to the antenna, a port number; determining a tap threshold of each column of the CRS corresponding to the port number; summing the path energies of all the paths larger than the tap threshold, and obtaining a tap threshold receiving antenna of each column of the corresponding port Corresponding sum value; summing the sum values of each receiving antenna of the cell to obtain an estimated power intensity of the cell;
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • a port number specifically, determining a time domain channel impulse response corresponding to the receiving antenna according to a frequency domain channel estimation result corresponding to the receiving antenna, Determining a port number according to a time domain channel impulse response corresponding to the receiving antenna, for example, performing frequency domain to time domain transform on the frequency domain channel estimation result corresponding to the receiving antenna, to obtain a time domain channel impact corresponding to the receiving antenna
  • the port number corresponding to the maximum power tap is determined according to the time domain channel impulse response corresponding to the receiving antenna, and the port is used to calculate the sum of the radial energy of the receiving antenna.
  • the sum of the radial energy of all the diameters larger than the tap threshold is obtained, and the sum value corresponding to the receiving antenna is obtained, that is, the radial energy of all the diameters larger than the tap threshold is summed, and the obtained The sum of the CRS received power of each column of the corresponding port of the receiving antenna.
  • Adding the sum value of each receiving antenna of the cell to obtain an estimated power intensity of the cell that is, adding the sum of values of each receiving antenna of the cell, to obtain the Estimated power intensity of the cell.
  • the processor 500 is specifically configured to:
  • the time domain channel impulse response determines a tap power corresponding to each column CRS of each port of the receiving antenna; and determines a port number corresponding to the largest tap power of all tap powers corresponding to the receiving antenna.
  • the processor 500 is specifically configured to:
  • a second threshold value of each column CRS is determined; a maximum threshold value is selected from a first threshold value and a second threshold value of each column CRS as a tap gate of each column CRS of the port corresponding to the port number Limit.
  • the processor 500 is specifically configured to determine a first threshold of each column CRS according to the following formula:
  • the number of the port number p of the receiving antenna r of the cell i The first threshold of the column CRS; ⁇ noise is the noise threshold coefficient; ⁇ CP is the CP coefficient; The port number corresponding to the receiving antenna r corresponds to the port number The noise tap of the time domain impulse response of the column CRS; ⁇ N is the CRS frequency interval; N' is the IFFT point number, and p is the determined port number of the receiving antenna r;
  • the processor 500 is specifically configured to determine a second threshold according to the following formula:
  • the number of the port number p of the receiving antenna r of the cell i The second threshold of the column CRS; ⁇ cir is the impulse response threshold coefficient; N' is the number of IFFT points.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 500 and various memories of memory represented by memory 520.
  • the roads are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the device for determining an interfering cell is also provided in the embodiment of the present invention.
  • the device for estimating the power strength is the device corresponding to the method for determining the interfering cell in the embodiment of the present invention, and the principle and method for solving the problem are similar. Therefore, the implementation of the device can be referred to the implementation of the method, and the repeated description will not be repeated.
  • the device for determining an interfering cell in the embodiment of the present invention determines the interfering cell by using the power strength estimation value obtained by the embodiment of the present invention, which specifically includes:
  • the ratio determining module 600 is configured to determine, according to the power intensity estimation value of the neighboring cell, a first ratio indicating a relationship between the neighboring cell power and the noise floor, and a power indicating the neighboring cell power and the local area power, respectively, for a neighboring cell of the local cell. Second ratio
  • the processing module 610 is configured to: if the first ratio is greater than a third threshold, and the second ratio is greater than a fourth threshold, the neighboring region is included in the interference deleted cell set.
  • the ratio determining module 600 is specifically configured to:
  • the ratio of the power intensity estimation value of the neighboring cell to the power intensity estimation value of the local cell is used as the second ratio.
  • processing module 610 is further configured to:
  • the local cell is excluded from the set of the scrambling and deleting cell; otherwise, the cell is included in the cell The interference is deleted in the cell set.
  • processing module 610 is further configured to:
  • the neighboring cell of the interference-deleting cell set is arranged in front of all the specific neighboring cells according to the power intensity from large to small; Or, when the neighboring areas of the interference deleting cell set are arranged according to the power intensity from small to large, the cell is arranged behind all the specific neighboring cells;
  • the specific cell is a corresponding power intensity estimation value equal to the power intensity estimation value of the local cell or the absolute value of the difference between the power intensity estimation value of the local cell and the power intensity estimation value of the local cell is not greater than the fifth threshold value, and a CRS collision occurs with the local cell. Neighborhood.
  • the device for estimating the power strength and the device determining the interfering cell may be one device, the modules of FIG. 4 and FIG. 6 may be combined in one entity.
  • the seventh embodiment of the present invention determines the device of the interfering cell, and uses the power strength estimation value obtained by the embodiment of the present invention to determine the interfering cell, which specifically includes:
  • the processor 700 is configured to determine, according to the power intensity estimation value of the neighboring cell, a first ratio indicating a relationship between the power of the neighboring cell and the noise floor, and a power indicating the power of the neighboring cell and the power of the local area, respectively. a second ratio; if the first ratio is greater than a third threshold, and the second ratio is greater than a fourth threshold, the neighboring region is included in the interference deleted cell set;
  • the transceiver 710 is configured to receive and transmit data under the control of the processor 700.
  • the processor 700 is specifically configured to:
  • the ratio of the power intensity estimation value of the neighboring cell to the power intensity estimation value of the local cell is used as the second ratio.
  • the processor 700 is further configured to:
  • the local cell is excluded from the set of the scrambling and deleting cell; otherwise, the cell is included in the cell The interference is deleted in the cell set.
  • the processor 700 is further configured to:
  • the neighboring cell of the interference-deleting cell set is arranged in front of all the specific neighboring cells according to the power intensity from large to small; Or, when the neighboring areas of the interference deleting cell set are arranged according to the power intensity from small to large, the cell is arranged behind all the specific neighboring cells;
  • the specific cell is a corresponding power intensity estimation value equal to the power intensity estimation value of the local cell or the absolute value of the difference between the power intensity estimation value of the local cell and the power intensity estimation value of the local cell is not greater than the fifth threshold value, and a CRS collision occurs with the local cell. Neighborhood.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the device for estimating the power strength and the device determining the interfering cell may be one device, the modules of FIGS. 5 and 7 may be combined in one entity.
  • the embodiment of the present invention converts the frequency domain channel estimation into the time domain, searches for the port corresponding to the strongest power tap of the receiving antenna in the time domain, and performs power strength estimation through the power sum of the effective path, thereby
  • the frequency domain channel estimation result When the strong interference signal is superimposed, the strength of the cell can be accurately estimated, and the influence of noise or interference can be effectively overcome, and the estimated cell strength accuracy is improved.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率强度估计和确定干扰小区的方法及设备,用以解决现有技术中存在的当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号,目前干扰小区强度估计的方案中无法准确估计出小区的强度,从而造成估计的小区强度不准确的问题。本发明实施例通过将频域信道估计变换到时域,在时域寻找接收天线最强功率抽头对应的端口,通过有效径的功率和来进行功率强度估计,从而在当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号的情况下能够准确估计出小区的强度,能有效的克服噪声或干扰的影响,提高了估计的小区强度准确性。

Description

一种功率强度估计和确定干扰小区的方法及设备
本申请要求在2014年5月7日提交中国专利局、申请号为201410190679.5、发明名称为“一种功率强度估计和确定干扰小区的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种功率强度估计和确定干扰小区的方法及设备。
背景技术
LTE(Long Term Evolution,长期演进)R11(版本11)引入了FeICIC(Further Enhanced ICIC,进一步增强的小区间干扰协调)技术,应对异构场景如macro-pico(宏-微微)部署场景和macro-femto部署场景下出现的邻区CRS(Cell-specific reference signals,小区专属导频信号)/PBCH(Physical Broadcast Channel,物理广播信道)对本区的强干扰。该场景下CRE(Cell Range Expansion,小区覆盖扩展)区域用户设备(User Equipment,UE)受到宏站的CRS或是公共信道的强干扰,因此,UE需要对CRS/PBCH进行干扰消除。
目前已有的干扰小区强度估计步骤如下:
对小区进行LS(Least Square,最小二乘)信道估计得到频域信道估计结果
Figure PCTCN2015078401-appb-000001
根据频域信道估计结果采用求功率和的方式来计算各小区的RSRP(Reference signal received power,参考信号接收功率)。
当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号,目前的方法无法准确估计出小区的强度。
对于UE进行干扰消除,需要解决的首要问题是确定纳入干扰消除的小区集合以及干扰消除的顺序,如果未合理选择干扰小区以及干扰删除的顺序,那么会导致干扰删除时,由于干扰小区信道估计不准确影响干扰信息重构, 最终影响用户设备的解调性能。
综上所述,当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号,目前干扰小区强度估计的方案中无法准确估计出小区的强度,从而造成估计的小区强度不准确。
发明内容
本发明实施例提供一种功率强度估计的方法和设备,用以解决现有技术中当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号,因而无法准确估计出小区的强度,从而造成估计的小区强度不准确的问题。
本发明实施例提供的功率强度估计的方法,该方法包括:
针对一根接收天线,对小区的每列小区专属导频信号CRS进行最小二乘LS信道估计得到所述接收天线对应的频域信道估计结果;
根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号;
确定所述端口号对应端口的每列CRS的抽头门限值;
对大于所述抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值;
将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
本发明实施例提供的功率强度估计的设备,包括:
信道估计模块,用于针对一根接收天线,对小区的每列小区专属导频信号CRS进行最小二乘LS信道估计得到所述接收天线对应的频域信道估计结果;
端口确定模块,用于根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号;
门限值确定模块,用于确定所述端口号对应端口的每列CRS的抽头门限 值;
和值确定模块,用于对大于抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值;
估计值确定模块,用于将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
本发明实施例还提供一种利用本发明实施例得到的功率强度估计值确定干扰小区的方法及设备,用以解决现有技术中存在的由于干扰小区信道估计不准确影响干扰信息重构,最终影响用户设备的解调性能的问题。
本发明实施例提供的利用上述方法得到的功率强度估计值,确定干扰小区的方法,该方法包括:
针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值;
若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
本发明实施例提供的利用上述方法得到的功率强度估计值确定干扰小区的设备,该设备包括:
比值确定模块,用于针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值;
处理模块,用于若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
本发明实施例通过将频域信道估计变换到时域,在时域寻找接收天线最强功率抽头对应的端口,通过有效径的功率和来进行功率强度估计,从而在当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号的情况下能够准确估计出小区的强度,能有效的克服噪声或干扰的影响,提高了估计的小区强度准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的功率强度估计的方法流程示意图;
图2为本发明实施例二提供的确定干扰小区的方法流程示意图;
图3为本发明实施例三提供的确定干扰小区的方法流程示意图;
图4为本发明实施例四提供的功率强度估计的设备结构示意图;
图5为本发明实施例五提供的功率强度估计的设备结构示意图;
图6为本发明实施例六提供的确定干扰小区的设备结构示意图;
图7为本发明实施例七提供的确定干扰小区的设备结构示意图。
具体实施方式
本发明实施例通过将频域信道估计变换到时域,在时域寻找接收天线最强功率抽头对应的端口,通过有效径的功率和来进行功率强度估计,从而在当有强干扰邻区存在的情况下,频域信道估计结果中叠加了强干扰信号的情况下能够准确估计出小区的强度,能有效的克服噪声或干扰的影响,提高了估计的小区强度准确性。
如图1所示,本发明实施例一提供的功率强度估计的方法包括:
步骤100、针对一根接收天线,对小区的每列CRS进行LS信道估计,得到该接收天线对应的频域信道估计结果;
步骤101、根据该接收天线对应的所述频域信道估计结果,确定端口号;具体来说,根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号,比如:将所述接收天线对应的频域信道估计结果进行频域到时域的 变换,得到所述接收天线对应的时域信道冲击响应,再根据所述接收天线对应的时域信道冲击响应确定最大功率抽头对应的端口号,该端口用于后续计算所述接收天线的径能量之和。
步骤102、确定所述端口号对应端口的每列CRS的抽头门限值;
步骤103、对大于所述抽头门限值的所有径的径能量求和,得到该接收天线对应的和值;也即,对大于所述抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值;
步骤104、将所述小区的每根接收天线的和值相加,得到所述小区的功率强度估计值;也即,将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
上述流程中,针对每根接收天线,可执行步骤100至步骤103,从而得到每根接收天线对应的和值,再执行步骤104,得到所述小区的功率强度估计值。
下面以本区ID为
Figure PCTCN2015078401-appb-000002
邻小区ID为
Figure PCTCN2015078401-appb-000003
为例,对上述流程进行描述。
在步骤100中,对小区
Figure PCTCN2015078401-appb-000004
的CRS进行LS信道估计得到频域信道估计结果,表示为
Figure PCTCN2015078401-appb-000005
其中,r为接收天线号索引,p为天线端口索引,
Figure PCTCN2015078401-appb-000006
为端口p的导频列数,
Figure PCTCN2015078401-appb-000007
表示端口p的第
Figure PCTCN2015078401-appb-000008
列导频的频域信道估计结果。
在实施中,步骤101中,根据该天线对应的所述频域信道估计结果,确定端口号,包括:
根据该接收天线对应的所述频域信道估计结果,确定该接收天线的每个端口的每列CRS对应的时域信道冲击响应;根据该接收天线的每个端口的每列CRS对应的所述时域信道冲击响应,确定该接收天线的每个端口的每列CRS对应的抽头功率;确定该接收天线对应的所有抽头功率中最大的抽头功 率对应的端口号。
具体的,上述确定端口号的过程可包括以下步骤1至步骤3:
1、将
Figure PCTCN2015078401-appb-000009
作N′点的IFFT(inverse Fast Fourier Transform,快速傅里叶逆变换)得到时域信道冲激响应
Figure PCTCN2015078401-appb-000010
Figure PCTCN2015078401-appb-000011
其中,
Figure PCTCN2015078401-appb-000012
较佳地,N′为2的整数次幂。
Figure PCTCN2015078401-appb-000013
2、确定该接收天线的每个端口的每列CRS对应的抽头功率
Figure PCTCN2015078401-appb-000014
抽头功率
Figure PCTCN2015078401-appb-000015
为:
Figure PCTCN2015078401-appb-000016
3、确定小区
Figure PCTCN2015078401-appb-000017
接收天线r的最大功率抽头对应的端口号,标记为
Figure PCTCN2015078401-appb-000018
Figure PCTCN2015078401-appb-000019
其中,
Figure PCTCN2015078401-appb-000020
在实施中,在步骤102中,确定所述端口号对应端口的每列CRS的抽头门限值,包括:
根据所述端口号对应端口的每列CRS的时域冲击响应的噪声抽头,确定每列CRS的第一门限值,以及根据所述端口号对应端口的每列CRS的时域冲击响应的最大抽头,确定每列CRS的第二门限值;从每列CRS的第一门限值和第二门限值中选择最大的门限值作为所述端口号对应端口的每列CRS的抽头门限值。
具体的,可根据以下公式确定接收天线r的抽头门限
Figure PCTCN2015078401-appb-000021
Figure PCTCN2015078401-appb-000022
其中,
Figure PCTCN2015078401-appb-000023
为第一门限值,
Figure PCTCN2015078401-appb-000024
为第二门限值。
较佳地,根据下列公式确定每列CRS的第一门限值:
Figure PCTCN2015078401-appb-000025
其中,
Figure PCTCN2015078401-appb-000026
为小区i的接收天线r的端口号p的第
Figure PCTCN2015078401-appb-000027
列CRS的第一门限值;βnoise为噪声门限系数;τCP为CP系数;
Figure PCTCN2015078401-appb-000028
为接收天线r的端口号p对应端口的第
Figure PCTCN2015078401-appb-000029
列CRS的时域冲击响应的噪声抽头;△N为CRS频率间隔;N’为IFFT点数,p为确定的接收天线r的端口号;
根据下列公式确定第二门限值:
Figure PCTCN2015078401-appb-000030
其中,
Figure PCTCN2015078401-appb-000031
为小区i的接收天线r的端口号p的第
Figure PCTCN2015078401-appb-000032
列CRS的第二门限值;βcir为冲激响应门限系数;N’为IFFT点数。
在实施中,在步骤103中,对大于抽头门限值的所有径的径能量求和, 得到该接收天线对应的和值时,找到大于抽头门限的径集合
Figure PCTCN2015078401-appb-000033
即找到有效径,并对有效径的径能量求和得到
Figure PCTCN2015078401-appb-000034
Figure PCTCN2015078401-appb-000035
Figure PCTCN2015078401-appb-000036
在实施中,在步骤104中,将所述小区的每根接收天线的和值相加,得到所述小区的功率强度估计值时,对各个小区的
Figure PCTCN2015078401-appb-000037
分别进行接收天线和导频列相加得到各个小区的功率强度测量结果
Figure PCTCN2015078401-appb-000038
Figure PCTCN2015078401-appb-000039
如图2所示,本发明实施例二提供的确定干扰小区的方法中,利用本发明实施例图1中得到的每个小区的功率强度估计值,确定干扰小区。具体包括下列步骤:
步骤200、针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系的第一比值以及表示邻区功率和本区功率的第二比值;
步骤201、若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
在实施中,在步骤200中,根据所述邻区的功率强度估计值确定第一比值,包括:将所述邻区的功率强度估计值与本区第N次造成测量的多天线平均值的比值作为所述第一比值;或,将所述邻区的功率强度估计值与使用上 一子帧进行的第M次噪声测量的多天线平均值的比值作为所述第一比值;其中,N和M为正整数。
在实施中,在步骤200中,根据所述邻区的功率强度估计值确定第二比值,包括:将所述邻区的功率强度估计值与本小区的功率强度估计值的比值作为所述第二比值。
具体的,设置门限第三门限值Th3和第四门限值Th4,当小区
Figure PCTCN2015078401-appb-000040
满足
Figure PCTCN2015078401-appb-000041
并且
Figure PCTCN2015078401-appb-000042
时,小区
Figure PCTCN2015078401-appb-000043
纳入干扰删除小区范围。
其中,
Figure PCTCN2015078401-appb-000044
为第一次噪声测量的本区多天线平均值或是使用上一子帧第二次噪声测量的多天线平均值均可。满足条件的小区集合记为
Figure PCTCN2015078401-appb-000045
Figure PCTCN2015078401-appb-000046
的元素个数记为NCell_Num
针对LTE系统FeICIC的研究中重点关注两个异构网macro-pico部署场景和macro-femto部署场景。本发明实施例还可以选择是否将本小区纳入删除小区集合中。具体的:
将所述邻区纳入干扰删除小区集合中之后,还包括:若所述扰删除小区集合中的每一个邻区的功率强度估计值都大于本小区的功率强度估计值,则将本小区排除在所述扰删除小区集合之外;否则,将本小区纳入所述干扰删除小区集合中。
比如,将集合
Figure PCTCN2015078401-appb-000047
中的小区Scell_i(i>=0)进行从大到小排序即得到各个小区的强度排序。如果
Figure PCTCN2015078401-appb-000048
那么参数干扰删除的小区集合为
Figure PCTCN2015078401-appb-000049
否则参与干扰删除的小区集合表示为
Figure PCTCN2015078401-appb-000050
较佳地,将本小区纳入所述干扰删除小区集合中之后,还包括:若所述干扰删除小区集合的所有邻区中包括特定邻区,则在对所述干扰删除小区集 合的邻区按照功率强度从大到小排列时,将本小区排在所有特定邻区前面;或在对所述干扰删除小区集合的邻区按照功率强度从小到大排列时,将本小区排在所有特定邻区后面。其中,所述特定小区为对应的功率强度估计值等于本小区的功率强度估计值或与本小区的功率强度估计值之差的绝对值不大于第五门限值,且与本小区发生CRS碰撞的邻区。
比如,如果集合
Figure PCTCN2015078401-appb-000051
的小区Scell_i出现了强度相等或是强度差异很小且CRS碰撞的情况,设置门限第四门限值Th4或第五门限值Th5,表征功率差异。
Figure PCTCN2015078401-appb-000052
Figure PCTCN2015078401-appb-000053
之内,干扰删除排序时本区排序优先。由于本小区一般定时同步较为准确,在功率相近的情况下,信道估计会比较准确。
从上述实施例可以看出,本发明实施例对多小区进行排序操作,让UE每次对最强小区进行信道估计,这样出现CRS碰撞时,首先估计强邻区信道估计,信道估计准确度较高,可以有效进行CRS干扰删除后对功率强度较小小区进行信道估计,提升其信道估计准确性。另外增加保护门限,避免小干扰邻区或是本区功率强度较高时,引入不必要的干扰删除操作带来性能的恶化。
假定本区ID为
Figure PCTCN2015078401-appb-000054
邻小区ID为
Figure PCTCN2015078401-appb-000055
如图3所示,本发明实施例三提供的确定干扰小区的方法包括:
步骤300、对小区
Figure PCTCN2015078401-appb-000056
的CRS进行LS信道估计得到频域信道估计,结果表示为
Figure PCTCN2015078401-appb-000057
步骤301、将
Figure PCTCN2015078401-appb-000058
作N点的IFFT变换得到时域信道冲激响应
Figure PCTCN2015078401-appb-000059
Figure PCTCN2015078401-appb-000060
步骤302、计算
Figure PCTCN2015078401-appb-000061
的抽头功率
Figure PCTCN2015078401-appb-000062
步骤303、确定小区
Figure PCTCN2015078401-appb-000063
接收天线r的最大功率抽头对应的端口号,标记为
Figure PCTCN2015078401-appb-000064
步骤304、确定接收天线r端口号
Figure PCTCN2015078401-appb-000065
的对应端口的每列CRS的抽头门限值
Figure PCTCN2015078401-appb-000066
步骤305、对大于抽头门限值的所有径的径能量求和,得到该对应端口的每列CRS的抽头门限值接收天线对应的和值
Figure PCTCN2015078401-appb-000067
步骤306、将所述小区的每根接收天线的和值相加,得到所述小区的功率强度估计值Scell_i(0≤i≤I)。
步骤307、针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值,若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
步骤308、若所述扰删除小区集合中的每一个邻区的功率强度估计值都大于本小区的功率强度估计值,则将本小区排除在所述扰删除小区集合之外;否则,将本小区纳入所述干扰删除小区集合中。
步骤309、若所述干扰删除小区集合的所有邻区中包括特定邻区,则在对所述干扰删除小区集合的邻区按照功率强度从大到小排列时,将本小区排在所有特定邻区前面;或在对所述干扰删除小区集合的邻区按照功率强度从小到大排列时,将本小区排在所有特定邻区后面。
基于同一发明构思,本发明实施例中还提供了功率强度估计的设备,由于功率强度估计的设备是本发明实施例图1功率强度估计的方法对应的设备, 并且设备解决问题的原理与方法相似,因此设备的实施可以参见方法的实施,重复之处不再赘述。
如图4所示,本发明实施例四功率强度估计的设备包括:
信道估计模块400,用于针对一根天线,对小区的每列CRS进行最小二乘LS信道估计得到该接收天线对应的频域信道估计结果;
端口确定模块410,用于根据该天线对应的所述频域信道估计结果,确定端口号;具体来说,根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号,比如:将所述接收天线对应的频域信道估计结果进行频域到时域的变换,得到所述接收天线对应的时域信道冲击响应,再根据所述接收天线对应的时域信道冲击响应确定最大功率抽头对应的端口号,该端口用于后续计算所述接收天线的径能量之和。
门限值确定模块420,用于确定所述端口号对应端口的每列CRS的抽头门限值;
和值确定模块430,用于对大于抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值;也即,对大于所述抽头门限值的所有径的径能量求和,得到该接收天线对应的和值;
估计值确定模块440,用于将所述小区的每根接收天线对应端口每列CRS接收功率的和值相加,得到所述小区的功率强度估计值。也即,将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
较佳地,所述端口确定模块410具体用于:
根据该接收天线对应的所述频域信道估计结果,确定该接收天线的每个端口的每列CRS对应的时域信道冲击响应;根据该接收天线的每个端口的每列CRS对应的所述时域信道冲击响应,确定该接收天线的每个端口的每列CRS对应的抽头功率;确定该接收天线对应的所有抽头功率中最大的抽头功率对应的端口号。
较佳地,所述门限值确定模块420具体用于:
根据所述端口号对应端口的每列CRS的时域冲击响应的噪声抽头,确定每列CRS的第一门限值,以及根据所述端口号对应端口的每列CRS的时域冲击响应的最大抽头,确定每列CRS的第二门限值;从每列CRS的第一门限值和第二门限值中选择最大的门限值作为所述端口号对应端口的每列CRS的抽头门限值。
较佳地,所述门限值确定模块420具体用于,根据下列公式确定每列CRS的第一门限值:
Figure PCTCN2015078401-appb-000068
其中,
Figure PCTCN2015078401-appb-000069
为小区i的接收天线r的端口号p的第
Figure PCTCN2015078401-appb-000070
列CRS的第一门限值;βnoise为噪声门限系数;τCP为CP系数;
Figure PCTCN2015078401-appb-000071
为接收天线r的端口号p对应端口的第
Figure PCTCN2015078401-appb-000072
列CRS的时域冲击响应的噪声抽头;△N为CRS频率间隔;N’为IFFT点数,p为确定的接收天线r的端口号;
较佳地,所述门限值确定模块420具体用于,根据下列公式确定第二门限值:
Figure PCTCN2015078401-appb-000073
其中,
Figure PCTCN2015078401-appb-000074
为小区i的接收天线r的端口号p的第
Figure PCTCN2015078401-appb-000075
列CRS的第二门限值;βcir为冲激响应门限系数;N’为IFFT点数。
如图5所示,本发明实施例五功率强度估计的设备,
处理器500,用于针对一根天线,对小区的每列CRS进行最小二乘LS信道估计得到该接收天线对应的频域信道估计结果;根据该天线对应的所述频域信道估计结果,确定端口号;确定所述端口号对应端口的每列CRS的抽头门限值;对大于抽头门限值的所有径的径能量求和,得到该对应端口的每列CRS的抽头门限值接收天线对应的和值;将所述小区的每根接收天线的和值相加,得到所述小区的功率强度估计值;
收发机510,用于在处理器500的控制下接收和发送数据。
其中,根据该天线对应的所述频域信道估计结果,确定端口号,具体来说,就是根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号,比如:将所述接收天线对应的频域信道估计结果进行频域到时域的变换,得到所述接收天线对应的时域信道冲击响应,再根据所述接收天线对应的时域信道冲击响应确定最大功率抽头对应的端口号,该端口用于后续计算所述接收天线的径能量之和。
其中,对大于所述抽头门限值的所有径的径能量求和,得到该接收天线对应的和值,也即,对大于所述抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值。
其中,将所述小区的每根接收天线的和值相加,得到所述小区的功率强度估计值,也即,将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
较佳地,所述处理器500具体用于:
根据该接收天线对应的所述频域信道估计结果,确定该接收天线的每个端口的每列CRS对应的时域信道冲击响应;根据该接收天线的每个端口的每列CRS对应的所述时域信道冲击响应,确定该接收天线的每个端口的每列CRS对应的抽头功率;确定该接收天线对应的所有抽头功率中最大的抽头功率对应的端口号。
较佳地,所述处理器500具体用于:
根据所述端口号对应端口的每列CRS的时域冲击响应的噪声抽头,确定每列CRS的第一门限值,以及根据所述端口号对应端口的每列CRS的时域冲击响应的最大抽头,确定每列CRS的第二门限值;从每列CRS的第一门限值和第二门限值中选择最大的门限值作为所述端口号对应端口的每列CRS的抽头门限值。
较佳地,所述处理器500具体用于,根据下列公式确定每列CRS的第一门限值:
Figure PCTCN2015078401-appb-000076
其中,
Figure PCTCN2015078401-appb-000077
为小区i的接收天线r的端口号p的第
Figure PCTCN2015078401-appb-000078
列CRS的第一门限值;βnoise为噪声门限系数;τCP为CP系数;
Figure PCTCN2015078401-appb-000079
为接收天线r的端口号p对应端口的第
Figure PCTCN2015078401-appb-000080
列CRS的时域冲击响应的噪声抽头;△N为CRS频率间隔;N’为IFFT点数,p为确定的接收天线r的端口号;
较佳地,所述处理器500具体用于,根据下列公式确定第二门限值:
Figure PCTCN2015078401-appb-000081
其中,
Figure PCTCN2015078401-appb-000082
为小区i的接收天线r的端口号p的第
Figure PCTCN2015078401-appb-000083
列CRS的第二门限值;βcir为冲激响应门限系数;N’为IFFT点数。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电 路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
基于同一发明构思,本发明实施例中还提供了确定干扰小区的设备,由于功率强度估计的设备是本发明实施例图2确定干扰小区的方法对应的设备,并且设备解决问题的原理与方法相似,因此设备的实施可以参见方法的实施,重复之处不再赘述。
如图6所示,本发明实施例六确定干扰小区的设备,利用本发明实施例得到的功率强度估计值确定干扰小区,具体包括:
比值确定模块600,用于针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值;
处理模块610,用于若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
较佳地,所述比值确定模块600具体用于:
将所述邻区的功率强度估计值与本区第N次造成测量的多天线平均值的比值作为所述第一比值;或将所述邻区的功率强度估计值与使用上一子帧进行的第M次噪声测量的多天线平均值的比值作为所述第一比值;其中,N和M为正整数;
将所述邻区的功率强度估计值与本小区的功率强度估计值的比值作为所述第二比值。
较佳地,所述处理模块610还用于:
若所述扰删除小区集合中的每一个邻区的功率强度估计值都大于本小区的功率强度估计值,则将本小区排除在所述扰删除小区集合之外;否则,将本小区纳入所述干扰删除小区集合中。
较佳地,所述处理模块610还用于:
若所述干扰删除小区集合的所有邻区中包括特定邻区,则在对所述干扰删除小区集合的邻区按照功率强度从大到小排列时,将本小区排在所有特定邻区前面;或在对所述干扰删除小区集合的邻区按照功率强度从小到大排列时,将本小区排在所有特定邻区后面;
其中,所述特定小区为对应的功率强度估计值等于本小区的功率强度估计值或与本小区的功率强度估计值之差的绝对值不大于第五门限值,且与本小区发生CRS碰撞的邻区。
其中,由于功率强度估计的设备和确定干扰小区的设备可以是一个设备,所以图4和图6的模块可以合在一个实体中。
如图7所示,本发明实施例七确定干扰小区的设备,利用本发明实施例得到的功率强度估计值确定干扰小区,具体包括:
处理器700,用于针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值;若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中;
收发机710,用于在处理器700的控制下接收和发送数据。
较佳地,所述处理器700具体用于:
将所述邻区的功率强度估计值与本区第N次造成测量的多天线平均值的比值作为所述第一比值;或将所述邻区的功率强度估计值与使用上一子帧进行的第M次噪声测量的多天线平均值的比值作为所述第一比值;其中,N和M为正整数;
将所述邻区的功率强度估计值与本小区的功率强度估计值的比值作为所述第二比值。
较佳地,所述处理器700还用于:
若所述扰删除小区集合中的每一个邻区的功率强度估计值都大于本小区的功率强度估计值,则将本小区排除在所述扰删除小区集合之外;否则,将本小区纳入所述干扰删除小区集合中。
较佳地,所述处理器700还用于:
若所述干扰删除小区集合的所有邻区中包括特定邻区,则在对所述干扰删除小区集合的邻区按照功率强度从大到小排列时,将本小区排在所有特定邻区前面;或在对所述干扰删除小区集合的邻区按照功率强度从小到大排列时,将本小区排在所有特定邻区后面;
其中,所述特定小区为对应的功率强度估计值等于本小区的功率强度估计值或与本小区的功率强度估计值之差的绝对值不大于第五门限值,且与本小区发生CRS碰撞的邻区。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
其中,由于功率强度估计的设备和确定干扰小区的设备可以是一个设备,所以图5和图7的模块可以合在一个实体中。
从上述实施例可以看出:本发明实施例通过将频域信道估计变换到时域,在时域寻找接收天线最强功率抽头对应的端口,通过有效径的功率和来进行功率强度估计,从而在当有强干扰邻区存在的情况下,频域信道估计结果中 叠加了强干扰信号的情况下能够准确估计出小区的强度,能有效的克服噪声或干扰的影响,提高了估计的小区强度准确性。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种功率强度估计的方法,其特征在于,该方法包括:
    针对一根接收天线,对小区的每列小区专属导频信号CRS进行最小二乘LS信道估计得到所述接收天线对应的频域信道估计结果;
    根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号;
    确定所述端口号对应端口的每列CRS的抽头门限值;
    对大于所述抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值;
    将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
  2. 如权利要求1所述的方法,其特征在于,根据所述接收天线对应的频域信道估计结果,确定所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号,包括:
    根据所述接收天线对应的频域信道估计结果,确定所述接收天线的每个端口的每列CRS对应的时域信道冲击响应;
    根据所述接收天线的每个端口的每列CRS对应的时域信道冲击响应,确定所述接收天线的每个端口的每列CRS对应的抽头功率;
    确定所述接收天线对应的所有抽头功率中最大的抽头功率对应的端口号。
  3. 如权利要求1所述的方法,其特征在于,确定所述端口号对应端口的每列CRS的抽头门限值,包括:
    根据所述端口号对应端口的每列CRS的时域冲击响应的噪声抽头,确定每列CRS的第一门限值,以及根据所述端口号对应端口的每列CRS的时域冲击响应的最大抽头,确定每列CRS的第二门限值;
    从每列CRS的第一门限值和第二门限值中选择最大的门限值作为所述端 口号对应端口的每列CRS的抽头门限值。
  4. 如权利要求3所述的方法,其特征在于,根据下列公式确定每列CRS的第一门限值:
    Figure PCTCN2015078401-appb-100001
    其中,
    Figure PCTCN2015078401-appb-100002
    为小区i的接收天线r的端口号p的第
    Figure PCTCN2015078401-appb-100003
    列CRS的第一门限值;βnoise为噪声门限系数;τCP为CP系数;
    Figure PCTCN2015078401-appb-100004
    为接收天线r的端口号p对应端口的第
    Figure PCTCN2015078401-appb-100005
    列CRS的时域冲击响应的噪声抽头;△N为CRS频率间隔;N’为快速傅里叶逆变换IFFT点数,p为确定的接收天线r的端口号;
    根据下列公式确定第二门限值:
    Figure PCTCN2015078401-appb-100006
    其中,
    Figure PCTCN2015078401-appb-100007
    为小区i的接收天线r的端口号p的第
    Figure PCTCN2015078401-appb-100008
    列CRS的第二门限值;βcir为冲激响应门限系数;N’为IFFT点数。
  5. 一种利用权利要求1~4任一方法得到的功率强度估计值,确定干扰小区的方法,其特征在于,该方法包括:
    针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值;
    若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
  6. 如权利要求5所述的方法,其特征在于,根据所述邻区的功率强度估 计值确定第一比值,包括:
    将所述邻区的功率强度估计值与本区第N次造成测量的多天线平均值的比值作为所述第一比值;或
    将所述邻区的功率强度估计值与使用上一子帧进行的第M次噪声测量的多天线平均值的比值作为所述第一比值;其中,N和M为正整数;
    根据所述邻区的功率强度估计值确定第二比值,包括:
    将所述邻区的功率强度估计值与本小区的功率强度估计值的比值作为所述第二比值。
  7. 如权利要求5或6所述的方法,其特征在于,将所述邻区纳入干扰删除小区集合中之后,还包括:
    若所述扰删除小区集合中的每一个邻区的功率强度估计值都大于本小区的功率强度估计值,则将本小区排除在所述扰删除小区集合之外;
    否则,将本小区纳入所述干扰删除小区集合中。
  8. 如权利要求7所述的方法,其特征在于,将本小区纳入所述干扰删除小区集合中之后,还包括:
    若所述干扰删除小区集合的所有邻区中包括特定邻区,则在对所述干扰删除小区集合的邻区按照功率强度从大到小排列时,将本小区排在所有特定邻区前面;或在对所述干扰删除小区集合的邻区按照功率强度从小到大排列时,将本小区排在所有特定邻区后面;
    其中,所述特定小区为对应的功率强度估计值等于本小区的功率强度估计值或与本小区的功率强度估计值之差的绝对值不大于第五门限值,且与本小区发生CRS碰撞的邻区。
  9. 一种功率强度估计的设备,其特征在于,该设备包括:
    信道估计模块,用于针对一根接收天线,对小区的每列小区专属导频信号CRS进行最小二乘LS信道估计得到所述接收天线对应的频域信道估计结果;
    端口确定模块,用于根据所述接收天线对应的频域信道估计结果,确定 所述接收天线对应的时域信道冲击响应,根据所述接收天线对应的时域信道冲击响应确定端口号;
    门限值确定模块,用于确定所述端口号对应端口的每列CRS的抽头门限值;
    和值确定模块,用于对大于抽头门限值的所有径的径能量求和,得到所述接收天线对应端口每列CRS接收功率的和值;
    估计值确定模块,用于将所述小区的每根接收天线的所述和值相加,得到所述小区的功率强度估计值。
  10. 如权利要求9所述的设备,其特征在于,所述端口确定模块具体用于:
    根据所述接收天线对应的频域信道估计结果,确定所述接收天线的每个端口的每列CRS对应的时域信道冲击响应;根据所述接收天线的每个端口的每列CRS对应的时域信道冲击响应,确定所述接收天线的每个端口的每列CRS对应的抽头功率;确定所述接收天线对应的所有抽头功率中最大的抽头功率对应的端口号。
  11. 如权利要求9所述的设备,其特征在于,所述门限值确定模块具体用于:
    根据所述端口号对应端口的每列CRS的时域冲击响应的噪声抽头,确定每列CRS的第一门限值,以及根据所述端口号对应端口的每列CRS的时域冲击响应的最大抽头,确定每列CRS的第二门限值;从每列CRS的第一门限值和第二门限值中选择最大的门限值作为所述端口号对应端口的每列CRS的抽头门限值。
  12. 如权利要求11所述的设备,其特征在于,所述门限值确定模块具体用于,根据下列公式确定每列CRS的第一门限值:
    Figure PCTCN2015078401-appb-100009
    其中,
    Figure PCTCN2015078401-appb-100010
    为小区i的接收天线r的端口号p的第
    Figure PCTCN2015078401-appb-100011
    列CRS的第一门限值;βnoise为噪声门限系数;τCP为CP系数;
    Figure PCTCN2015078401-appb-100012
    为接收天线r的端口号p对应端口的第
    Figure PCTCN2015078401-appb-100013
    列CRS的时域冲击响应的噪声抽头;△N为CRS频率间隔;N′为快速傅里叶逆变换IFFT点数,p为确定的接收天线r的端口号;
    所述门限值确定模块具体用于,根据下列公式确定第二门限值:
    Figure PCTCN2015078401-appb-100014
    其中,
    Figure PCTCN2015078401-appb-100015
    为小区i的接收天线r的端口号p的第
    Figure PCTCN2015078401-appb-100016
    列CRS的第二门限值;βcir为冲激响应门限系数;N’为IFFT点数。
  13. 一种利用权利要求1~4任一方法得到的功率强度估计值确定干扰小区的设备,其特征在于,该设备包括:
    比值确定模块,用于针对本小区的一个邻区,根据所述邻区的功率强度估计值,分别确定表示邻区功率和底噪的关系第一比值以及表示邻区功率和本区功率的第二比值;
    处理模块,用于若所述第一比值大于第三门限值,且所述第二比值大于第四门限值,则将所述邻区纳入干扰删除小区集合中。
  14. 如权利要求13所述的设备,其特征在于,所述比值确定模块具体用于:
    将所述邻区的功率强度估计值与本区第N次造成测量的多天线平均值的比值作为所述第一比值;或将所述邻区的功率强度估计值与使用上一子帧进行的第M次噪声测量的多天线平均值的比值作为所述第一比值;其中,N和M为正整数;
    将所述邻区的功率强度估计值与本小区的功率强度估计值的比值作为所述第二比值。
  15. 如权利要求13或14所述的设备,其特征在于,所述处理模块还用于:
    若所述扰删除小区集合中的每一个邻区的功率强度估计值都大于本小区的功率强度估计值,则将本小区排除在所述扰删除小区集合之外;否则,将本小区纳入所述干扰删除小区集合中。
  16. 如权利要求14所述的设备,其特征在于,所述处理模块还用于:
    若所述干扰删除小区集合的所有邻区中包括特定邻区,则在对所述干扰删除小区集合的邻区按照功率强度从大到小排列时,将本小区排在所有特定邻区前面;或在对所述干扰删除小区集合的邻区按照功率强度从小到大排列时,将本小区排在所有特定邻区后面;
    其中,所述特定小区为对应的功率强度估计值等于本小区的功率强度估计值或与本小区的功率强度估计值之差的绝对值不大于第五门限值,且与本小区发生CRS碰撞的邻区。
PCT/CN2015/078401 2014-05-07 2015-05-06 一种功率强度估计和确定干扰小区的方法及设备 WO2015169229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410190679.5A CN105099964B (zh) 2014-05-07 2014-05-07 一种功率强度估计和确定干扰小区的方法及设备
CN201410190679.5 2014-05-07

Publications (1)

Publication Number Publication Date
WO2015169229A1 true WO2015169229A1 (zh) 2015-11-12

Family

ID=54392160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078401 WO2015169229A1 (zh) 2014-05-07 2015-05-06 一种功率强度估计和确定干扰小区的方法及设备

Country Status (2)

Country Link
CN (1) CN105099964B (zh)
WO (1) WO2015169229A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107508651B (zh) * 2016-06-14 2019-04-30 深圳市中兴微电子技术有限公司 干扰处理方法及装置
CN106658567B (zh) * 2016-12-09 2020-05-22 厦门安胜网络科技有限公司 一种移动通信终端检测设备
WO2019237285A1 (en) * 2018-06-13 2019-12-19 Qualcomm Incorporated Explicit channel state information (csi) with spatial and time domain compression
CN111628790B (zh) * 2020-05-28 2021-06-29 成都天奥信息科技有限公司 一种基于干扰带宽检测的高精度抗干扰方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948087A (zh) * 2010-06-23 2013-02-27 瑞典爱立信有限公司 异构网络部署中的参考信号干扰管理
CN103201970A (zh) * 2010-11-08 2013-07-10 摩托罗拉移动有限责任公司 具有增强小区间干扰协调能力的无线终端中的干扰测量
US20130260744A1 (en) * 2012-03-29 2013-10-03 Intel Mobile Communications GmbH Macro-femto inter-cell interference mitigation
CN103701478A (zh) * 2012-09-27 2014-04-02 富士通株式会社 干扰消除装置和接收机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237515B2 (en) * 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
CN102572894B (zh) * 2011-12-30 2014-09-03 华为技术有限公司 一种干扰小区选择方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948087A (zh) * 2010-06-23 2013-02-27 瑞典爱立信有限公司 异构网络部署中的参考信号干扰管理
CN103201970A (zh) * 2010-11-08 2013-07-10 摩托罗拉移动有限责任公司 具有增强小区间干扰协调能力的无线终端中的干扰测量
US20130260744A1 (en) * 2012-03-29 2013-10-03 Intel Mobile Communications GmbH Macro-femto inter-cell interference mitigation
CN103701478A (zh) * 2012-09-27 2014-04-02 富士通株式会社 干扰消除装置和接收机

Also Published As

Publication number Publication date
CN105099964B (zh) 2018-09-07
CN105099964A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
US20180083721A1 (en) Wireless analysis apparatus and wireless analysis method
US20150105107A1 (en) Autonomous muting indication to enable improved time difference of arrival measurements
WO2015169229A1 (zh) 一种功率强度估计和确定干扰小区的方法及设备
WO2017097053A1 (zh) 一种定时偏差的估计方法、装置及终端
EP2965452B1 (en) Channel estimation for interference cancellation
CN106256151B (zh) 用于借助网络辅助进行信号传输的方法和系统
JP2014072893A (ja) 干渉消去装置及び受信機
CN103597751A (zh) 干扰消除方法和检测错误相邻小区测量的方法
CN105407502A (zh) 一种确定存在重叠覆盖的小区的方法及装置
US10091727B2 (en) User equipment and access node and respective methods
US9648539B1 (en) Base station selection in ultra dense network handover scenarios
CN106507471A (zh) 无线通信系统中的定位增强方法、装置及系统
JP2014050102A (ja) セル探索方法、装置及びユーザ設備
CN104427520A (zh) 同频干扰下的邻区检测方法
WO2015176782A1 (en) Secondary cell measurement adaptation
CN110913407A (zh) 重叠覆盖的分析方法及装置
CN105208582A (zh) Lte网络中基于栅格干扰的信号优化的方法及系统
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
Jaziri et al. Traffic Hotspot localization in 3G and 4G wireless networks using OMC metrics
CN107343286B (zh) 用户终端及其邻小区的检测方法
JP2015065655A (ja) リファレンス信号受信パワーを確定するための方法、端末及びシステム
CN105451246A (zh) Lte网络中基于小区干扰总量的信号优化方法及系统
CN106411793A (zh) Dmrs信道参数估计方法、装置及用户终端
WO2016161644A1 (zh) 一种测量结果上报方法及装置
CN107182062A (zh) Lte网络中物理小区优化方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788958

Country of ref document: EP

Kind code of ref document: A1