WO2015167092A1 - 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기 - Google Patents

처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기 Download PDF

Info

Publication number
WO2015167092A1
WO2015167092A1 PCT/KR2014/010570 KR2014010570W WO2015167092A1 WO 2015167092 A1 WO2015167092 A1 WO 2015167092A1 KR 2014010570 W KR2014010570 W KR 2014010570W WO 2015167092 A1 WO2015167092 A1 WO 2015167092A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
optical fiber
repetition rate
laser resonator
fiber
Prior art date
Application number
PCT/KR2014/010570
Other languages
English (en)
French (fr)
Inventor
김승우
박지용
김영진
김승만
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2015167092A1 publication Critical patent/WO2015167092A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium

Definitions

  • the present invention relates to a broadband fast repetition rate scanning optical fiber femtosecond laser resonator using a pair of chirped fiber Bragg gratings, comprising a chirp fiber Bragg grating pair inside the resonator, which is a broadband femtosecond laser resonator capable of scanning a broadband, high speed repetition rate.
  • the fiber-optic femtosecond laser resonator is a resonator composed of a fiber type rather than a bulk type, and is composed of a single mode fiber (SMF), a rare earth doped fiber, and a diode pump laser. do.
  • SMF single mode fiber
  • a rare earth doped fiber a rare earth doped fiber
  • diode pump laser a diode pump laser. do.
  • Small volume resonator configuration, turn-key easy operation, relatively insensitive to environmental changes compared to bulk type, and the availability of fiber components in widely available communication bands are typical advantages of fiber femtosecond laser resonators. It can be applied to various industrial fields such as measuring, measuring, spectroscopy and processing.
  • Representative rare earth-doped optical fibers used as a gain medium include Ytterbium Doped Fiber (YDF) having a dozen-nm emission band around 1030 nm and Erbium Doped Fiber that emits tens of nm band around 1550 nm. EDF).
  • YDF Ytterbium Doped Fiber
  • EDF Erbium Doped Fiber
  • the wide emission band of these rare earth additive optical fibers allows the presence of multiple frequency modes in the resonator to form an optical comb.
  • Each of the generated frequency modes oscillates independently, but includes a nonlinear polarization rotation (NPR) method, a method using a saturable absorber (SA),
  • NPR nonlinear polarization rotation
  • SA saturable absorber
  • Hybrid phases using both can be used to synchronize the phases of each mode. This is called mode-locking, which generates a periodic sequence of time domain pulses and a large number of modes are synchronized. The pulse width becomes narrower.
  • the factors that determine the mode locking are polarization, pumping power, nonlinearity, and dispersion, and thus, the four modes can be adjusted to achieve stable mode locking. This can be found in Republic of Korea Patent Publication No. 10-2012-0116127.
  • the optical measuring method by adjusting the repetition rate of the femtosecond laser resonator will be described. Since the optical measuring method can measure a shape with high precision using a light source without contacting the measuring surface, it is used in various measurement industries.
  • an interference method using interference of light is a method of obtaining the shape or property information of the measurement surface by analyzing the interference signal between the reflected light on the measurement surface and the reflected light on the reference surface.
  • This method is widely used because of its precision and its ability to be applied to various specimens.
  • the shape acquisition method also varies depending on the light source used.Phase-shifting when using a light source with good time coherence and spatial coherence, such as a helium-neon laser low coherence method or white light interference method is used in case of using a light source having low time and space coherence such as LED and tungsten-halogen lamp.
  • the degree of freedom of the system can be increased since the light alignment is easy, but the measurement range is limited to the wavelength level of the light source due to the formation of parasitic interference patterns or 2 ⁇ -phase ambiguity.
  • the latter case has the merit that there is no measurement limit and there is no 2 ⁇ -phase ambiguity, but it is a symmetric optical path and must be composed of an symmetric interferometer. It has the disadvantage of being limited.
  • femtosecond laser When femtosecond laser is used as a light source, it generates high frequency coherence and repeatedly oscillates pulse train, so it is possible to construct low coherence interferometer, unequal path, and non-symetric optical path. This can solve problems such as 2 ⁇ -phase ambiguity and parasitic interference pattern, which were problematic. In addition, due to its high spatial coherence, large area measurements of more than 100 mm are also possible in micro-measurements for sub-mm ranges.
  • the repetition rate scanning of the femtosecond laser is possible by varying the length of the resonator.
  • modulators such as a motor stage, a piezoelectric element (PZT), an electro-optic modulator (EOM), and the like are controlled inside the resonator.
  • the motor stage has a wide scan band of several tens of millimeters, but has a maximum speed of 30 ⁇ m / s, which is relatively slower than the PZT speed of 1 m / s and EOM 9 mm / s.
  • PZT and EOM can scan at speeds more than 100 times faster than motor stages, but have a narrow scan band of ⁇ m. Therefore, there is a need for a new type of scanning system capable of simultaneously scanning a wide scan band and high speed.
  • the optical path Bragg grating having the same reflection bandwidth and chirping structure as one optical fiber Bragg grating opposite to the circulator to connect the optical path difference
  • the retarder when one Bragg grating is stretched, a larger optical path difference than a change in the length of the optical fiber generated in the tensioner can be obtained.
  • the optical path difference that occurs is Where OPD is the optical path difference, n is the refractive index of the fiber Bragg grating, Is the center wavelength, Is the reflected wavelength bandwidth, Is the photoelastic coefficient, and a is the length of the actual optical fiber tension.)
  • Group Delay Dispersion (GDD) is constant during tension, and the pulse is generated through the effect that only Group Delay (GD) occurs. Is maintained, and only the OPD is amplified.
  • the amplification factor which is the rate at which the actual optical path difference is amplified compared to the tension of the optical fiber, is a coefficient Expressed as Calculated through
  • the present invention for solving the above problems is a novel method using a fiber Bragg grating pair to overcome the limitations in the measurement range and measurement speed of the repetition rate scanning method of the pulse laser used in the conventional femtosecond laser-based optical shape measurement technology
  • an object of the present invention is to develop an optical fiber femtosecond laser resonator having a wide repetition rate scanning range and capable of fast repetition rate scanning.
  • the optical fiber femtosecond laser resonator, the femtosecond laser resonator is composed of a laser resonator composed of optical fiber-based components, the optical fiber-based saturable absorber mode lock, non-linear implementation of mode lock And a repetition rate scanning unit for adjusting the repetition rate of the femtosecond laser resonator.
  • the optical fiber femtosecond laser resonator is a ring-type optical fiber resonator, has a ring cavity (ring cavity) structure, the rare earth-added optical fiber, which implements the gain medium of the resonator corresponding to the absorption light wavelength of the gain medium
  • a diode laser for outputting light
  • a wavelength division multiplexer for injecting light emitted from the diode laser into a rare earth-added optical fiber
  • a single mode optical fiber in charge of Kerr medium in nonlinear polarization rotation and a pulse generated in the resonator It comprises an optical fiber isolator for reducing the optical noise to advance in one direction, a piezo element (PZT) for stabilizing the resonator repetition rate and an optical coupler constituting the output stage.
  • PZT piezo element
  • the saturable absorber mode locking unit is composed of a transmission type saturable absorber between two optical connectors.
  • the transmissive saturable absorber may include any one selected from a semiconductor saturable absorber, carbon nanotubes, and graphene.
  • the saturable absorber is implemented to have a higher saturation fluence and a slower relaxation time than the pulse fluence in the resonator.
  • the nonlinear polarization rotation mode locking unit a pair of optical ports for collimating and focusing the light output from the optical fiber again, 1/2 wavelength plate and 1/4 wavelength implemented for polarization control It comprises a plate and a polarized light splitter.
  • the repetition rate scanning unit includes a tensile system composed of a chirp optical fiber Bragg grating pair, a PZT flexure structure, and a fixed stage, and includes a circulator for injecting light from the resonator.
  • the chirped fiber Bragg gratings each have a reflection bandwidth of 100 nm and a reflectance of 90% or more based on a center wavelength of 1555 nm.
  • the pulse of the light output from the non-linear polarization rotation mode lock portion into the circulator through the isolator is incident on one chirp fiber Bragg grating, only the light of the reflected wavelength band is reflected, the other chirp fiber Bragg grating After entering, it is reflected again and enters the resonator.
  • the tension system is installed on one side of the chirp fiber Bragg grating, and configured to enable PZT adjustment between 0 and 1 kV through a PZT amplifier connected to a PZT flexure.
  • the circulator may have a structure in which one four-port circulator is used or three port circulators are configured in two and input to the chirp optical fiber Bragg grating, respectively.
  • the circulator is configured to connect the three-port circulator in a serial structure.
  • nonlinear polarization rotation mode locking unit a pair of optical ports for collimating and focusing the light output from the optical fiber again, 1/2 wavelength plate and 1/4 wavelength implemented for polarization control
  • a polarizing light splitter comprising a plate and a polarizer, wherein the output end of the resonator is configured as an optocoupler.
  • the saturable absorber mode locking part includes a circulator, and the light incident through the circulator is collimated through the optical port to be incident to the reflective saturable absorber, and then focused at the optical port to be incident into the resonator. It is configured to be.
  • the present invention constructed and operated as described above is to provide broadband and high-speed repetition rate frequency scanning through optical path amplification based on the length control of the double chirp fiber Bragg grating pair inside the resonator.
  • femtosecond lasers enable high effective spatial coherence measurements and high temporal coherence, creating a series of repetitive oscillations, resulting in parasitic fringes and 2 ⁇ -phase ambiguity. And so on.
  • repetition rate it is possible to replace the mechanical scanning system of the existing interferometer, and to configure the asymmetric optical path to extend the scanning speed and range, so that not only the industrial surface shape but also the thin film on the surface or the surface roughness In close proximity, it is also possible to measure difficult-to-measure specimens, such as structures with different reflectances and high steps. It is also applicable to shape standard corrections such as gauge blocks.
  • the amplified repetition rate change can realize a wide scan range by overcoming the repetition rate modulation of a narrow bandwidth of several ⁇ m to several tens of ⁇ m, which the EOM or PZT used for the conventional fast scan speed has.
  • a fast mechanical scanning device of narrow scanning range such as PZT can be applied, and the amplification rate of 10 times or more of the speed of the mechanical scanning device can be applied.
  • the resonator since the resonator stably fires an ultra-short femtosecond laser, it is possible to construct a low coherence interferometer using repetitive short time coherence, and the interferometer is a Michelson interferometry, a Twiman-green interferometer ( Twyman-Green interferometry, Mach-Zehnder interferometry, Fizeau interferometry, Mirau interferometry, Linnik interferometry, and the like.
  • Twyman-Green interferometry Mach-Zehnder interferometry
  • Fizeau interferometry Mirau interferometry
  • Linnik interferometry and the like.
  • the pulse generated in the resonator has high spatial coherence, it is possible to measure from a micro area of several mm or less to a large area shape of several hundred mm or more without changing the configuration of the interferometer.
  • the pulse generated in the resonator is oscillated repeatedly at a constant repetition rate, which is precise enough to trace back to the time standard.
  • the pulse generated in the resonator is oscillated repeatedly at a constant repetition rate, which is precise enough to trace back to the time standard.
  • FIG. 1 is a block diagram illustrating a wideband, high speed repetition rate scanning fiber femtosecond laser resonator using a chirp fiber Bragg grating pair according to the present invention
  • Figure 2 is an optical spectrum and pulse autocorrelation signal generated in the mode-locked resonator of the present invention.
  • Figure 3 is a graph of the repetition rate frequency change 300 of the resonator represented by a frequency meter during repetition rate scanning of the present invention.
  • FIG 4 is a graph 401 and an allan deviation graph 402 of the repetition rate RF (400) and stabilized repetition rate frequency of the mode locked resonator according to the present invention.
  • FIG. 5 is a configuration diagram of a resonator in which a four-port circulator 109 is replaced by two combinations of three-port circulators 501 in the repetition rate scanning unit of FIG. 1.
  • FIG. 6 is a configuration diagram of the modified resonator of FIG. 5.
  • FIG. 7 is a configuration diagram of a resonator in which the polarized light splitter 105 of FIG. 1 is replaced with a polarizer 700 and an optical fiber output terminal 702.
  • FIG. 8 is a configuration diagram of a resonator in which the optical fiber-based saturable absorber mode locking part 100 of FIG.
  • FIG. 9 is a diagram illustrating an entire optical fiber-based resonator including only the optical fiber-based saturable absorber mode lock 100 and the optical fiber output terminal 702 without the straight nonlinear polarization rotation mode lock 101 of FIG. 1.
  • FIG. 10 is a configuration diagram of an entire optical fiber-based resonator including only a linear nonlinear polarization rotation mode lock 101 and an optical fiber output terminal 702.
  • FIG. 10 is a configuration diagram of an entire optical fiber-based resonator including only a linear nonlinear polarization rotation mode lock 101 and an optical fiber output terminal 702.
  • the broadband fast repetition rate scanning fiber femtosecond laser resonator using a chirp fiber Bragg grating pair is an optical fiber femtosecond laser resonator, and the femtosecond laser resonator is composed of a laser resonator composed of optical fiber-based components and implements mode locking. And a repetition rate scanning unit for adjusting the repetition rate of the femtosecond laser resonator.
  • the optical fiber femtosecond laser resonator is a ring-type optical fiber resonator, has a ring cavity (ring cavity) structure, the rare earth-added optical fiber, which implements the gain medium of the resonator corresponding to the absorption light wavelength of the gain medium
  • a diode laser for outputting light
  • a wavelength division multiplexer for injecting light emitted from the diode laser into a rare earth-added optical fiber
  • a single mode optical fiber in charge of Kerr medium in nonlinear polarization rotation and a pulse generated in the resonator It comprises an optical fiber isolator for reducing the optical noise to advance in one direction, a piezo element (PZT) for stabilizing the resonator repetition rate and an optical coupler constituting the output stage.
  • PZT piezo element
  • the optical fiber-based saturable absorber according to the present invention absorbs light when the intensity of the light is below a predetermined standard and passes the light when the light intensity is higher, thereby facilitating initial pulse oscillation by absorbing portions except the center of the pulse. And a nonlinear filter for suppressing the dispersion wave.
  • the non-linear polarization rotation control unit is composed of a polarizer (Polarizer) or a polarization beam splitter (wave polarizer) and a wave plate (Waveplate), a narrow through a specific combination of angles that can be locked mode by adjusting the angle of the wave plate It acts as a pulse shaping to generate pulses of width.
  • the repetition rate scanning unit is composed of a portion for connecting the pair of optical fiber Bragg grating to the circulator in the opposite direction and a structure for tensioning the optical fiber Bragg grating.
  • the tension structure one side of the optical fiber Bragg grating is fixed, and the other side is characterized in that the tension of the optical fiber Bragg grating is controlled by installing a mechanical scanning device (PZT, PZT Flagsure, VCM, etc.).
  • Fiber optic bragg grating The repetition rate scan range at tension as Calculated according to, characterized in that the group delay variance of the pulse is constant and only the group delay changes. Repetition rate scanning range, Beam, Resonator length, Therefore, a wideband repetition rate change can be obtained through chirp fiber Bragg grating tension of the PZT flexure structure of the repetition rate scanning unit.
  • a femtosecond laser is a resonator composed of fiber-based components and a fiber-based saturable absorber mode lock for mode lock 100, a linear nonlinear polarization rotation mode lock 101, and a repetition rate scan for controlling the repetition rate frequency of mode locked pulses. It consists largely of 102.
  • the pulse generated through the present invention is a femtosecond laser having a repetition rate of stability retroactive to a time standard, and is characterized in that a fast repetition rate scan of a broadband is possible through the repetition rate scanning unit.
  • FIG. 1 is a representative diagram of a broadband, high-speed repetition rate scanning optical fiber femtosecond laser resonator using a chirp fiber Bragg grating pair and shows the overall configuration of the resonator.
  • the resonator according to the present invention is a ring-type optical fiber based resonator, which has a ring cavity structure, and the resonator is a rare earth-added optical fiber 114 serving as a gain medium, and absorption light of the gain medium.
  • the optical fiber-based saturable absorber mode locking part 100 of FIG. 1 includes two optical connectors 107 and a transmissive saturable absorber 106 therebetween.
  • the transmission type saturable absorber includes a semiconductor saturable absorber, carbon nanotube, graphene, and the like, and may be preferably selected from three absorbers. Since the saturable absorber has a higher saturation fluence and a slower relaxation time than the pulse fluence in the resonator, the saturable absorber induces an amplifiable mode lock without excessive nonlinear phenomenon of the pulse.
  • the linear nonlinear polarization rotation mode lock 101 of FIG. 1 includes a pair of optical ports 103 for collimating and focusing light from an optical fiber, a plurality of quarter wave plates for polarization control, and 1 /. It consists of two wave plates, and polarized light splitter 105. The rotation of the wave plates can lead to an optimal mode lock state and can be automated through a mode lock automation device.
  • FIG. 2 shows a spectrum 200 and an autocorrelation signal 201 of a femtosecond laser that is mode-locked and oscillated in the resonator of the present invention when the erbium-doped optical fiber is used as a gain medium.
  • a clear pulse is generated in the time domain without the dispersion wave of 470 fs.
  • the repetition rate scanning unit 102 of FIG. 1 is composed of a chirp fiber Bragg grating pair, a tension system 110 composed of a PZT flexure structure and a fixed stage, and a four-port circulator 109.
  • the chirped optical fiber Bragg gratings each have a reflection bandwidth of 100 nm and a reflectance of 90% or more based on the center wavelength of 1555 nm, and connect the chirped optical fiber Bragg gratings of the same specification to the circulator in reverse.
  • the pulse that enters the four-port circulator 109 through the isolator 113 is incident on one chirp fiber Bragg grating, only the light of the reflected wavelength band is reflected, enters the other chirp fiber Bragg grating, and is reflected again to enter the resonator.
  • Tension system 110 is installed on one side of the chirp fiber Bragg grating, and PZT adjustment between 0 and 1kV is possible through a PZT amplifier connected to the PZT flexure.
  • the optical path difference of light can be changed, and as mentioned above, the optical path difference is amplified more than the actual length of the optical fiber according to the amplification factor.
  • this is a change in the internal length of the resonator, which leads to a change in the repetition rate frequency inside the resonator, thereby changing the interval between the respective frequency modes of the optical comb.
  • FIG 3 is a graph 300 of the resonator repetition rate frequency expressed through a frequency meter when a ramp waveform of 0 V to 115 V generated by the signal generator is injected into the PZT flexure controller of the repetition rate scanning unit.
  • the code 400 shows that the repetition rate is well maintained at a constant interval of about 42 MHz up to 1 GHz, and the code 401 shows that the repetition rate is stably maintained for 3600 seconds with a standard deviation of about 0.15 mHz.
  • the Alan deviation graph 402 can confirm the stability corresponding to 12 powers of 10 in 10 seconds similar to the stability of the optical clock, which means that it is retroactive to the time standard.
  • FIG. 5 is a diagram illustrating a resonator in which the four-port circulator 109 is replaced by two combinations of the three-port circulator 501 in the repetition rate scanning unit of FIG. 1.
  • FIG. 6 is another configuration diagram of a resonator in which the four-port circulator 109 is replaced by two combinations of the three-port circulator 501 in the repetition rate scanning unit of FIG. 1.
  • FIG. 7 is a resonator structure in which a polarizer 700 is used instead of the polarized light splitter 105 of FIG. 1 and an optical coupler 701 is installed to replace a free space output terminal of the polarized light splitter 105 with an optical fiber output terminal 702. It is also.
  • FIG. 8 is a configuration diagram of a resonator in which the optical fiber-based saturable absorber mode locking part 100 of FIG. 1 is replaced with a volume type saturable absorber mode locking part 800.
  • Light incident through the three-port circulator 501 is collimated through the optical port 103 and then incident on the reflective saturable absorber 801 and then reflected again to be focused at the optical port 103 to enter the resonator and circulate. do.
  • FIG. 9 is a configuration diagram of a resonator in which mode lock is induced only to the optical fiber-based saturable absorber mode lock unit 100, and the output terminal is output to the optical fiber output terminal 702 through the optical coupler 701.
  • FIG. 10 is a schematic diagram illustrating an optical fiber based resonator in which all components of the resonator are replaced by the optical fiber-based polarization rotation mode lock 1000 instead of the volumetric nonlinear polarization rotation mode lock 101 of FIG. 1.
  • the optical fiber-based polarization rotation mode lock unit 1000 is composed of an optical fiber-based polarization controller 1001 and an optical fiber-based polarizer 1002, the polarization control is to rotate, twist or pressure the optical fiber wound around a plurality of paddles Adjust the polarization like a plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

본 발명은 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기에 관한 것으로, 광섬유 펨토초 레이저 공진기이며, 상기 펨토초 레이저 공진기는 광섬유 기반의 부품으로 구성된 레이저 공진기로 구성되고, 모드 잠금을 구현하는 광섬유 기반의 포호흡수체 모드잠금부, 비선형 편광 회전 모드잠금부 및 상기 펨토초 레이저 공진기의 반복률을 조절하기 위한 반복률 주사부를 포함하여 구성된다. 또한, 상기 광섬유 펨토초 레이저 공진기는, 링타입(Ring-type)의 광섬유 공진기이며 링캐비티(Ring cavity) 구조를 가지며, 공진기의 이득 매질을 구현하는 희토류 첨가 광섬유, 이득 매질의 흡수 광 파장에 해당하는 광을 출력하는 다이오드 레이저, 상기 다이오드 레이저에서 발진된 광을 희토류 첨가 광섬유로 입사시켜주는 파장 분할 다중화기, 비선형 편광 회전에서 커 미디움(Kerr medium)을 담당하는 단일모드광섬유, 상기 공진기 내 생성된 펄스를 단방향으로 진행시키는 광잡음을 줄여주는 광섬유 아이솔레이터, 공진기 반복률의 안정화를 위한 피에조 소자(PZT) 및 출력단을 구성하는 광커플러를 포함하여 구성된다.

Description

처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기
본 발명은 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기에 관한 것으로, 공진기 내부에 처프 광섬유 브래그 격자 쌍을 포함하여 광대역, 고속의 반복률 주사가 가능한 광섬유 펨토초 레이저 공진기로서, 처프 광섬유 브래그 격자의 길이 제어를 통해 공진기 내부 펄스의 광경로를 조절하여 반복률 주파수를 주사할 수 있는 광섬유 펨토초 레이저 공진기에 대한 것이다.
우선, 광섬유 기반 펨토초 레이저 공진기의 특징 및 수동모드잠금 유형을 설명한다. 광섬유 펨토초 레이저 공진기는 공진기의 구성 물품이 벌크 타입이 아닌 광섬유 타입으로 구성된 공진기로서 크게 단일 모드 광섬유(Single Mode Fiber, SMF), 이득매질인 희토류 첨가 광섬유(Rare earth doped fiber), 다이오드 펌프 레이저로 구성된다. 작은 부피의 공진기 구성과 턴키방식의 쉬운 동작, 벌크 타입에 비해 상대적으로 환경변화에 둔감한 점, 그리고 이미 널리 상용화된 통신 대역의 광섬유 구성품을 이용할 수 있는 점 등은 광섬유 펨토초 레이저 공진기의 대표적인 장점들이며, 측정, 분광, 가공 등 다양한 산업 분야에도 적용을 용이하게 한다.
이득매질로 사용되는 대표적인 희토류 첨가 광섬유는 방출대역이 1030 nm 중심으로 수십 nm인 이터븀 첨가 광섬유(Ytterbium Doped Fiber, YDF)와 1550 nm 중심으로 수십 nm 대역을 방출하는 어븀 첨가 광섬유(Erbium Doped Fiber, EDF)가 있다. 이 희토류 첨가 광섬유들의 넓은 방출대역으로 인해 공진기 내에 다수의 주파수 모드들이 존재할 수 있게 하여 광 빗을 형성한다. 발생된 각 주파수 모드들은 대개 독립적으로 진동하나, 비선형 편광회전(Nonlinear Polarization Rotation, NPR)방법, 포화흡수체(Saturable Absorber, SA)를 이용하는 방법,
두 가지를 모두 사용한 하이브리드 방법 등을 통해 각 모드들의 위상을 동기 시킬 수 있다.이를 모드잠금이라(Mode-locking)이라 하며, 주기적인 시간 영역의 펄스 열을 생성하고 많은 수의 모드가 동기 될 경우 펄스 폭이 좁아진다.
또한, 모드잠금을 결정짓는 요소는 편광(Polarization), 펌핑출력(Pumping power), 비선형(Nonlinearity), 분산(Dispersion)이며, 따라서 이 4가지 요소를 조절하여 안정된 모드잠금을 할 수 있다. 이는 대한민국 공개특허 제10-2012-0116127호에서 확인할 수 있다.
다음으로 펨토초 레이저 공진기의 반복률 조절을 통한 광학식 측정방법에 대해 설명하면, 광학식 측정방식은 측정 표면에 접촉하지 않고도 광원을 이용하여 높은 정밀도로 형상을 측정할 수 있기 때문에 다양한 측정 산업 분야에서 사용되고 있다.
특히, 마이크로 전자 산업과 나노 기술들의 발달로 인해 PCB, 반도체 웨이퍼, 평판 디스플레이, 태양전지 등 나날이 복잡하고 다양한 단차 시편들의 측정 수요에 대응하기 위하여 기존의 제한적인 성능의 공초점 광학 현미경이나 모아레 등의 형상 측정법을 넘어선 실시간의 고정밀도, 고속 측정의 광학 측정 기술들이 요구된다.
이 중 빛의 간섭을 이용하는 간섭법은 측정면에 대한 반사광과 기준면에 대한 반사광과의 간섭신호를 분석하여 측정면의 형상 또는, 물성 정보를 획득하는 방법이다. 이 방법은 정밀도와 다양한 시편에 적용할 수 있다는 장점이 있으므로 널리 사용되고 있다. 사용 광원에 따라 형상획득 방법도 달라지는데, 헬륨-네온 레이저(He-Ne laser)와 같이 시간가간섭성(Time coherence) 및 공간가간섭성(Spatial coherence)이 좋은 광원을 사용할 경우 위상천이법(Phase-shifting method)을 사용하고 LED, 텅스텐-할로겐 램프와 같이 시간 및 공간가간섭성이 떨어지는 광원을 사용하는 경우 저결맞음 간섭법 또는 백색광 간섭법이 이용된다. 전자의 경우, 광정렬이 용이하므로 시스템의 자유도를 높일 수 있는 장점 등이 있으나 기생간섭무늬가 형성되거나 2π-위상모호성으로 인하여 광원의 파장 수준으로 측정 범위가 제한되는 단점을 지닌다. 반면, 후자의 경우는 이론적으로 측정 한계가 없으며 2π-위상모호성이 없다는 장점을 지니나, 동일(Symetric) 광경로이며, 대칭형(Equal path) 간섭계로 구성해야 하므로 시스템 구성이 제한적이며 측정면의 종류가 제한적이라는 단점을 지닌다.
펨토초 레이저를 광원으로 사용할 경우, 높은 시간가간섭성은 지니면서 반복적으로 펄스열을 발진시키므로 저결맞음 간섭계 구성과 비대칭(Unequal path), 비동일(Non-symetric) 광경로 구성이 가능하여, 기존 단색광 레이저를 사용했을 때 문제가 되었던 2π-위상모호성 및 기생간섭무늬 발생 등의 문제를 해결할 수 있다. 또한 높은 공간가간섭성을 지니기 때문에 수 mm 이하 영역에 대한 마이크로 측정에서 100 mm 이상의 대면적 측정 역시 가능하다.
더불어, 시간 표준에 상응하는 정밀도로 제어 및 주사가 가능하므로 정밀도가 높게 측정할 수 있으며, 반복률(Repetition rate)을 조절하여 기존 간섭계의 기계적 주사시스템을 대체할 수 있고, 비대칭 광경로를 구성하여 주사속도 및 범위의 확장도 가능하다. 이러한 장점으로 인하여 대구경 거울, 박막, 미세 패턴, 곡면 광학계 대구경 웨이퍼 등 다양한 산업 시편들이 측정 가능하다.
펨토초 레이저의 반복률 주사는 공진기의 길이를 변화를 통해 가능하며, 일반적으로 모터 스테이지, 압전소자(PZT), 전자광학변조기(Electro-Optic Modulator: EOM) 등의 변조기들을 공진기 내부에 적용하여 조절한다. 모터스테이지는 수십 mm에 달하는 넓은 주사대역을 가지나 최대속도가 30 μm/s로 PZT속도 1 m/s, EOM 9 mm/s에 비해 상대적으로 느린 주사속도를 갖는다.
반면, PZT, EOM은 모터 스테이지에 비해 100 배 이상의 속도로 주사가 가능하나μm 수준의 좁은 주사대역을 갖는다. 따라서 넓은 주사대역과 빠른 속도의 주사가 동시에 가능한 새로운 형태의 주사 시스템이 요구된다.
한편, 광섬유 브래그 격자(CFBG)쌍을 이용한 광경로차지연기술에 대해 설명하면, 하나의 광섬유 브래그 격자와 똑같은 반사대역폭 및 처핑 구조를 가진 광섬유 브래그 격자를 써큘레이터(Circulator)에 반대로 접속하여 광경로차 지연기를 구성할 경우 한 쪽 브래그 격자를 인장 시, 인장기에서 발생한 광섬유의 길이변화보다 더 큰 양의 광경로차를 얻을 수 있다.
발생하는 광경로차는 수학식
Figure PCTKR2014010570-appb-I000001
을 통해 산출된다.(여기서 OPD는 광경로차, n은 광섬유 브래그 격자의 굴절률,
Figure PCTKR2014010570-appb-I000002
는 중심 파장,
Figure PCTKR2014010570-appb-I000003
는 반사되는 파장대역폭,
Figure PCTKR2014010570-appb-I000004
는 광탄성 계수, 그리고 a는 실제광섬유를 인장한 길이를 의미한다.) 인장 시 군지연분산(Group Delay Dispersion, GDD)은 일정하며, 군지연(Group Delay, GD)만 발생하는 효과를 통해 펄스는 유지되고, OPD만 증폭되는 효과를 갖게 된다. 광섬유를 인장한 것에 비해 실제 광경로차가 증폭되는 비율인 증폭률은 계수
Figure PCTKR2014010570-appb-I000005
로 표현되며, 수학식
Figure PCTKR2014010570-appb-I000006
을 통해 산출된다.
상기 기술을 간섭계의 구성에 적용할 경우 하나의 광원에서 분리된 두 빛 간의 광경로차를 조절할 수 있고, 극 초단광 펄스의 시간축 상에서 폭을 재는 자기상관(Auto-correlation)기 제작이나 OCT(Optical Coherence Tomography) 시스템 제작에 필요한 광경로차 지연기 제작에 응용될 수 있음이 제안되었다.
상기와 같은 문제점을 해결하기 위한 본 발명은 종래의 펨토초 레이저 기반 광학 형상측정기술에서 사용되던 펄스 레이저의 반복률 주사 방식이 가지는 측정 범위와 측정 속도에서의 한계를 극복하기 위해 광섬유 브래그 격자쌍을 이용한 새로운 변조 방식을 펨토초 레이저 공진기 내부에 도입하여, 넓은 반복률 주사 범위를 가지며 동시에 빠른 반복률 주사가 가능한 광섬유 펨토초 레이저 공진기 개발하는 데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명은, 광섬유 펨토초 레이저 공진기이며, 상기 펨토초 레이저 공진기는 광섬유 기반의 부품으로 구성된 레이저 공진기로 구성되고, 모드 잠금을 구현하는 광섬유 기반의 포화흡수체 모드잠금부, 비선형 편광 회전 모드잠금부 및 상기 펨토초 레이저 공진기의 반복률을 조절하기 위한 반복률 주사부를 포함하여 구성된다.
또한, 상기 광섬유 펨토초 레이저 공진기는, 링타입(Ring-type)의 광섬유 공진기이며 링캐비티(Ring cavity) 구조를 가지며, 공진기의 이득 매질을 구현하는 희토류 첨가 광섬유, 이득 매질의 흡수 광 파장에 해당하는 광을 출력하는 다이오드 레이저, 상기 다이오드 레이저에서 발진된 광을 희토류 첨가 광섬유로 입사시켜주는 파장 분할 다중화기, 비선형 편광 회전에서 커 미디움(Kerr medium)을 담당하는 단일모드광섬유, 상기 공진기 내 생성된 펄스를 단방향으로 진행시키는 광잡음을 줄여주는 광섬유 아이솔레이터, 공진기 반복률의 안정화를 위한 피에조 소자(PZT) 및 출력단을 구성하는 광커플러를 포함하여 구성된다.
또한, 상기 포화흡수체 모드잠금부는, 두 개의 광 접속기 사이에 투과형 포화흡수체로 구성된다.
또한, 상기 투과형 포화흡수체는, 반도체 포화흡수체(Semiconductor saturable absorber), 탄소나노튜브(Carbon nanotube), 그래핀(Graphene) 중 선택된 어느 하나를 포함한다.
또한, 상기 포화흡수체는, 상기 공진기 내부의 펄스 플루엔스보다 높은 포화 플루엔스와 느린 완화시간(Relaxation time)을 가지도록 구현되는 된다.
또한, 상기 비선형 편광 회전 모드잠금부는, 상기 광섬유에서 출력되는 빛을 콜리메이팅(Collimating)하고 다시 포커싱(Focusing)하는 한 쌍의 광포트, 편광 조절을 위해 구현되는 1/2파장판과 1/4파장판 및 편광 광 분할기를 포함하여 구성된다.
또한, 상기 반복률 주사부는, 처프 광섬유 브래그 격자 쌍과 PZT 플렉슈어 구조와 고정 스테이지로 구성된 인장시스템을 포함하고, 공진기로부터 광을 입사시키는 써큘레이터를 포함한다.
또한, 상기 처프 광섬유 브래그 격자는 각각 1555nm의 중심 파장을 기준으로 100nm의 반사 대역폭과 90% 이상의 반사율을 가진다.
또한, 상기 공진기는, 비선형 편광 회전 모드잠금부에서 출력되는 광을 아이솔레이터를 통해 상기 써큘레이터로 들어간 펄스는 한 쪽 처프 광섬유 브래그 격자에 입사되었다가 반사 파장대역의 빛만 반사되어 다른 쪽 처프 광섬유 브래그 격자로 들어간 후 다시 반사되어 공진기로 입사된다.
또한, 상기 인장시스템은, 상기 처프 광섬유 브래그 격자 중 한 쪽에 설치되며, PZT 플렉슈어와 연결된 PZT 앰프를 통해 0 ~ 1kV 사이의 PZT 조절이 가능하도록 구성된다.
또한, 상기 써큘레이터는, 네 포트 써큘레이터를 하나 사용하거나, 세 포트 써큘레이터를 두 개로 구성하여 처프 광섬유 브래그 격자로 각각 입력되는 구조를 가진다.
또한, 상기 써큘레이터는, 세 포트 써큘레이터를 직렬 구조로 연결되도록 구성한다.
또한, 상기 비선형 편광 회전 모드잠금부는, 상기 광섬유에서 출력되는 빛을 콜리메이팅(Collimating)하고 다시 포커싱(Focusing)하는 한 쌍의 광포트, 편광 조절을 위해 구현되는 1/2파장판과 1/4파장판 및 편광기를 포함하고, 공진기의 출력단을 광커플러로 구성하는 것을 특징으로 하는 편광 광 분할기를 포함하여 구성된다.
또한, 상기 포화흡수체 모드잠금부는, 써큘레이터를 포함하고, 상기 써큘레이터를 통해 입사된 광은 광 포트를 통해 콜리메이팅되어 반사형 포화흡수체로 입사된 후 다시 상기 광 포트에서 포커싱되어 공진기 내부로 입사되도록 구성된다.
상기와 같이 구성되고 작용되는 본 발명은 공진기 내부의 이중 처프 광섬유 브래그 격자 쌍의 길이 제어를 기반으로 광경로의 증폭효과를 통하여 광대역 및 고속의 반복률 주파수 주사를 제공하고자 한다.
또한, 본 발명을 형상측정장치에 적용할 경우 시간표준에 소급된 주파수측정기에 의해 정밀하게 반복률 주사가 측정되므로, 간섭계 내부에 별도의 주사장치 없이 높은 단차 및 복잡 형상을 측정할 수 있는 이점이 있다.
또한, 펨토초 레이저를 사용하므로 높은 공간가간섭성을 통해 넓은 유효면적 측정이 가능하고, 높은 시간가간섭성은 지니면서 반복적으로 발진하는 펄스열을 생성하므로 기생간섭무늬(Parasitic fringe), 2π-위상모호성 등의 제한 등을 해결할 수 있다. 뿐만 아니라, 반복률을 조절하므로 기존 간섭계의 기계적 주사시스템을 대체할 수 있고, 비대칭 광경로를 구성하여 주사속도 및 범위의 확장도 가능하여 산업 표면 형상뿐 아니라 표면에 박막이 있거나, 표면 거칠기가 파장에 근접한 경우, 반사율이 다른 구조물이 섞인 경우, 단차가 높은 경우 등의 측정이 난해한 시편들의 측정도 가능하게 하다. 또한 ,게이지 블록과 같은 형상 표준 보정에도 적용 가능하다.
또한, 상기의 증폭된 반복률 변화를 통해 기존의 빠른 주사속도를 위해 사용되던 EOM 혹은 PZT 등이 갖던 수 μm 에서 수 십 μm 단위의 좁은 대역폭의 반복률 변조를 극복하여 넓은 주사 범위를 구현할 수 있다.
또한, 주사 범위의 증폭 효과로 인하여 기존의 광대역 반복률 조절을 위해 사용되던 모터 스테이지 대신, PZT와 같이 좁은 주사 범위의 빠른 기계적 주사장치가 적용 가능하고, 기계적 주사장치의 속도에 10배 이상의 증폭률
Figure PCTKR2014010570-appb-I000007
계수 를 곱한 속도를 따라가므로 빠른 속도의 주사가 가능해 진다.
또한, 상기 공진기는 펨토초의 극초단 레이저를 안정적으로 발사하므로, 반복적인 짧은 시간가간섭성을 이용하여 저결맞음 간섭계 구성이 가능하고, 간섭계는 마이켈슨 간섭계(Michelson interferometry), 트와이만-그린 간섭계(Twyman-Green interferometry), 마하젠다 간섭계(Mach-Zehnder interferometry), 피조 간섭계(Fizeau interferometry), 미라우 간섭계(Mirau interferometry), 리닉 간섭계(Linnik interferometry) 등의 형태로 구현이 가능하다.
또한, 상기 공진기에서 발생된 펄스는 높은 공간가간섭성을 지니므로 간섭계의구성 변화 없이 수 mm 이하의 마이크로 영역부터 수 백 mm 이상의 대면적 형상까지 측정 가능하다.
또한, 상기 공진기에서 생성된 펄스는 일정한 반복률에 따라 반복적으로 발진하고 이는 시간 표준에 소급할 정도로 정밀하다. 따라서, 고도의 정밀 측정이 가능할 뿐 아니라, 비동일 광경로 및 비대칭 구성이 가능하여 간섭계의 하드웨어 구성 시 매우 높은 자유도를 갖는다.
상기 본 발명의 장점과 특징으로 인해 대구경 웨이퍼의 평편도, 미세 패턴 형상, 비아 홀(Via hole)측정, PCB BGA(Ball Grid Array) 및 범프(Bump) 형상, 박막을 포함한 복잡 형상, 적혈구 및 백혈구 등의 바이오 샘플 측정 등 산업뿐 아니라 다양한 분야에 적용 가능한 이점이 있다.
도 1은 본 발명에 따른 처프 광섬유 브래그 격자 쌍을 이용한 광대역, 고속의 반복률 주사 광섬유 펨토초 레이저 공진기를 설명한 구성도.
도 2는 본 발명의 모드잠금 된 공진기에서 생성된 광 빗의 스펙트럼(Optical spectrum) 및 펄스의 자기상관신호.
도 3은 본 발명의 반복률 주사 시 주파수 측정기를 통해 표현된 공진기의 반복률 주파수 변화 그래프(300).
도 4는 본 발명의 모드잠금 된 공진기의 반복률 RF(Radio Frequency)스펙트럼(400)과 안정화된 반복률 주파수의 시간에 따른 변화 그래프(401) 및 앨런 편차(Allan deviation) 그래프(402).
도 5는 도 1의 반복률 주사부에서 네 포트 써큘레이터(109)를 세 포트 써큘레이터(501) 두 개의 조합으로 대체한 공진기 구성도.
도 6은 도 5의 변형 공진기 구성도.
도 7은 도 1의 편광 광 분할기(105)를 편광기(700)와 광섬유 출력단(702)으로 대체한 공진기 구성도.
도 8은 도 1의 광섬유 기반 포화흡수체 모드잠금부(100)를 부피형 포화흡수체(800) 조합으로 대체한 공진기 구성도.
도 9는 도 1의 일자형 비선형 편광 회전 모드잠금부(101)가 없이 오직 광섬유 기반 포화흡수체 모드잠금부(100)와 광섬유 출력단(702)으로 구성된 전체 광섬유 기반의 공진기 구성도.
도 10은 일자형 비선형 편광 회전 모드잠금부(101)와 광섬유 출력단(702)로만 이루어진 전체 광섬유 기반의 공진기 구성도.
이하, 첨부된 도면을 참조하여 본 발명에 따른 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기의 바람직한 실시예를 상세히 설명하면 다음과 같다.
본 발명에 따른 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기는, 광섬유 펨토초 레이저 공진기이며, 상기 펨토초 레이저 공진기는 광섬유 기반의 부품으로 구성된 레이저 공진기로 구성되고, 모드 잠금을 구현하는 광섬유 기반의 포화흡수체 모드잠금부, 비선형 편광 회전 모드잠금부 및 상기 펨토초 레이저 공진기의 반복률을 조절하기 위한 반복률 주사부를 포함하여 구성된다.
또한, 상기 광섬유 펨토초 레이저 공진기는, 링타입(Ring-type)의 광섬유 공진기이며 링캐비티(Ring cavity) 구조를 가지며, 공진기의 이득 매질을 구현하는 희토류 첨가 광섬유, 이득 매질의 흡수 광 파장에 해당하는 광을 출력하는 다이오드 레이저, 상기 다이오드 레이저에서 발진된 광을 희토류 첨가 광섬유로 입사시켜주는 파장 분할 다중화기, 비선형 편광 회전에서 커 미디움(Kerr medium)을 담당하는 단일모드광섬유, 상기 공진기 내 생성된 펄스를 단방향으로 진행시키는 광잡음을 줄여주는 광섬유 아이솔레이터, 공진기 반복률의 안정화를 위한 피에조 소자(PZT) 및 출력단을 구성하는 광커플러를 포함하여 구성된다.
본 발명에 따른 상기 광섬유 기반 포화흡수체는 빛의 세기가 일정 기준 이하일 경우 빛을 흡수하고 그 이상인 경우 통과시키는 특징을 이용하여 펄스의 중심부를 제외한 부분은 흡수시켜 초기 펄스 발진을 용이하게 하며 초과 비선형 현상 및 분산파를 억제하는 비선형필터(Nonlinear filter)의 역할을 한다.
또한, 상기 비선형 편광 회전 조절부는 편광판(Polarizer)또는 편광 광분할기(Polarization beam splitter)와 파장판(Waveplate)으로 구성되며, 파장판들의 각도를 조절하여 모드잠금이 될 수 있는 특정 각도 조합을 통해 좁은 폭의 펄스를 생성하는 펄스 형성 역할을 한다.
또한, 상기 반복률 주사부는 써큘레이터에 한 쌍의 광섬유 브래그 격자를 반대 방향으로 접속한 부분과 광섬유 브래그 격자를 인장하기 위한 구조물로 이루어진다. 인장 구조물에서 광섬유 브래그 격자의 한 쪽은 고정이 되어 있으며, 다른 한 쪽은 기계적 주사장치(PZT, PZT 플랙슈어, VCM 등)를 설치하여 광섬유 브래그 격자의 인장이 제어 되는 것을 특징으로 한다. 광섬유 브래그 격자를
Figure PCTKR2014010570-appb-I000008
만큼 인장 시 반복률 주사 범위는, 수학식
Figure PCTKR2014010570-appb-I000009
에 따라 산출되며, 펄스의 군지연 분산은 일정하고 군지연만 바뀌는 것을 특징으로 한다.(여기서,
Figure PCTKR2014010570-appb-I000010
은 반복률 주사 범위,
Figure PCTKR2014010570-appb-I000011
는 광속,
Figure PCTKR2014010570-appb-I000012
은 공진기 길이,
Figure PCTKR2014010570-appb-I000013
는 증폭률 계수를 의미한다.) 따라서, 상기 반복률 주사부의 PZT 플렉슈어 구조의 처프 광섬유 브래그 격자 인장을 통해 광대역의 반복률 변화를 얻을 수 있다.
아래 첨부된 도면을 참조하여 본 발명에 따른 처프 광섬유 브래그 격자 쌍을 이용한 광대역, 고속의 반복률 주사 광섬유 펨토초 레이저 공진기에 대해 설명하면 다음과 같다.
펨토초 레이저는 광섬유 기반 부품으로 구성된 공진기 및 모드잠금을 위한 광섬유 기반 포화흡수체 모드잠금부(100), 일자형 비선형 편광 회전 모드잠금부(101), 그리고 모드잠금된 펄스의 반복률 주파수 조절을 위한 반복률 주사부(102)로 크게 구성된다.
본 발명을 통해 생성된 펄스는 시간 표준에 소급하는 안정도의 반복률을 지닌 펨토초 레이저이며, 반복률 주사부를 통해 광대역의 빠른 반복률 주사가 가능함을 특징으로 한다.
도 1은 처프 광섬유 브래그 격자 쌍을 이용한 광대역, 고속의 반복률 주사 광섬유 펨토초 레이저 공진기의 대표도로서 공진기의 전체 구성을 나타낸 것이다.
본 발명에 따른 공진기는 링타입(Ring-type)의 광섬유 기반의 공진기로서, 링캐비티(Ring cavity) 구조를 가지며 상기 공진기는 이득 매질의 역할을 하는 희토류 첨가 광섬유(114), 이득매질의 흡수 광 파장에 해당하는 다이오드 레이저(116), 다이오드 레이저에서 발진된 광을 희토류 첨가 광섬유로 입사시켜주는 파장 분할 다중화기(115), 비선형 편광 회전에서 커 미디움(Kerr medium) 역할을 하는 단일모드광섬유(112), 공진기 내 생성 펄스가 단방향으로 진행시키고 광잡음을 줄여주는 광섬유 아이솔레이터(113), 공진기 반복률의 안정화를 위한 PZT(111) 및 공진기 출력단을 위한 광커플러(701)를 포함한다.
도 1의 광섬유 기반 포화흡수체 모드잠금부(100)는 광 접속기(107) 두 개와 그 사이의 투과형 포화흡수체(106)로 구성된다. 상기 투과형 포화흡수체의 종류는 반도체 포화흡수체(Semiconductor saturable absorber), 탄소나노튜브(Carbon nanotube), 그래핀(Graphene) 등이 있으며, 바람직하게는 3개의 흡수체 중 선택된 하나로 구성할 수 있다. 상기 포화흡수체는 공진기 내부의 펄스 플루엔스보다 높은 포화 플루엔스와 느린 완화시간(Relaxation time)을 가지므로 펄스의 초과 비선형 현상 없이 증폭 가능한 모드 잠금을 유도한다.
도 1의 일자형 비선형 편광 회전 모드잠금부(101)는 광섬유에서 나오는 빛을 시준(Collimating)하고 다시 포커싱(Focusing)하는 광포트(103) 쌍과 편광 조절을 위한 다수의 1/4 파장판과 1/2 파장판, 그리고 편광 광 분할기(105)로 구성된다. 파장판들의 회전을 통해 최적의 모드잠금 상태를 유도할 수 있으며 모드잠금 자동화 장치를 통해 자동화가 가능하다.
도 2는 어븀첨가 광섬유를 이득매질로 하였을 경우, 본 발명의 공진기 내에서 모드잠금되어 발진된 펨토초 레이저의 스펙트럼(200)과 자기상관신호(201)이다. 약 1570 nm를 중심으로 3 dB기준으로 7 nm 정도의 파장 대역폭을 갖고, 시간영역에서 470 fs의 분산파 없는 깨끗한 펄스가 생성됨을 보여준다.
도 1의 반복률 주사부(102)는 처프 광섬유 브래그 격자 쌍과 PZT 플렉슈어 구조와 고정스테이지로 구성된 인장시스템(110), 그리고 네 포트 써큘레이터(109)로 구성된다. 처프 광섬유 브래그 격자는 각각 1555 nm 의 중심 파장을 기준으로 100 nm의 반사 대역폭과 90% 이상의 반사율을 가지며, 같은 사양의 처프 광섬유 브래그 격자를 써큘레이터에 반대로 접속한다. 아이솔레이터(113)를 통해 네 포트 써큘레이터(109)로 들어간 펄스는 한 쪽 처프 광섬유 브래그 격자에 입사되었다가 반사 파장대역의 빛만 반사되어 다른 쪽 처프 광섬유 브래그 격자로 들어간 후 다시 반사되어 공진기로 들어간다. 인장 시스템(110)은 처프 광섬유 브래그 격자 중 한 쪽에 설치하며, PZT 플렉슈어와 연결된 PZT 앰프를 통하여 0 ~ 1kV 사이의 PZT 조절이 가능하다. 이를 통해 빛의 광경로차를 변화시킬 수 있으며,상기 언급된 바와 같이 증폭률에 따라 실제 광섬유의 인장길이보다 증폭된 광경로차를 제공한다. 또한 이는 곧 공진기 내부 길이의 변화이므로 공진기 내부의 반복률 주파수 변화로 이어져 광 빗의 각 주파수 모드 간 간격을 변화시키는 효과를 준다.
도 3은 신호발생기를 통해 생성한 0 V ~ 115 V의 램프 파형을 반복률 주사부의 PZT 플렉슈어 제어부에 주입 시 주파수 측정기를 통해 표현된 공진기 반복률 주파수의 변화 그래프(300)이다. 이 그래프를 통해 본 발명의 약 27 KHz에 해당하는 공진기의 주사 범위를 확인할 수 있고 주사 시 선형적으로 주사가 가능하며 상기 증폭률 계수는 약 15에 달한다.
도 4는 모드잠금된 본 발명의 공진기 반복률의 하모닉 RF 스펙트럼(400)과 반복률 안정화 시 반복률 주파수의 변화 그래프(401), 그리고 그에 대한 앨런 편차 그래프(402)이다. 부호 400을 통해 1 GHz까지 반복률이 약 42 MHz의 일정한 간격으로 잘 유지됨을 보여주며, 부호401을 통해 반복률이 약 0.15 mHz의 표준편차로 3600 초간 안정적으로 반복률이 유지됨을 확인할 수 있다.
또한, 앨런 편차 그래프(402)를 통해 광시계의 안정도와 비슷한 10초에 10의 12승에 해당하는 안정도를 확인할 수 있으며,이는 시간표준에 소급함을 의미한다.
도 5는 도 1의 반복률 주사부에서 네 포트 써큘레이터(109)를 세 포트 써큘레이터(501) 두 개의 조합으로 대체한 공진기 구성도이다.
도 6은 도 5와 마찬가지로 도 1의 반복률 주사부에서 네 포트 써큘레이터(109)를 세 포트 써큘레이터(501) 두 개의 조합으로 대체한 공진기의 다른 구성도이다.
도 7은 도 1의 편광 광분할기(105) 대신 편광기(700)를 사용하고, 광 커플러(701)를 설치하여 편광 광분할기(105)의 자유공간 출력단을 광섬유 출력단(702)로 교체한 공진기 구성도이다.
도 8은 도 1의 광섬유 기반 포화흡수체 모드잠금부(100)를 부피형의 포화흡수체 모드잠금부(800)로 대체한 공진기 구성도이다. 세 포트 써큘레이터(501)를 통해 입사된 빛은 광 포트(103)를 통해 시준되어 반사형 포화흡수체(801)로 입사된 후 다시 반사되어 광 포트(103)에서 포커싱 되어 공진기 내부로 들어가 순환하게 된다.
도 9는 광섬유 기반 포화흡수체 모드잠금부(100)로만 모드잠금이 유도되는 공진기 구성도로서 출력단은 광 커플러(701)를 통하여 광섬유 출력단(702)로 출력된다.
도 10은 공진기의 모든 부품이 광섬유 기반인 공진기 구성도로서 도 1의 부피형 비선형 편광 회전 모드잠금부(101) 대신 광섬유 기반의 편광 회전 모드잠금부(1000)로 대체되어 있다.
광섬유 기반의 편광 회전 모드잠금부(1000)는 광섬유 기반 편광조절기(1001)와 광섬유 기반 편광기(1002)로 구성되며, 편광 조절은 광섬유를 다수의 패들에 감아 회전시키거나, 비틀거나 압력을 주어 파장판과 같이 편광을 조절해 준다.
이상, 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (14)

  1. 광섬유 펨토초 레이저 공진기이며,
    상기 펨토초 레이저 공진기는 광섬유 기반의 부품으로 구성된 레이저 공진기로 구성되고,
    모드 잠금을 구현하는 광섬유 기반의 포화흡수체 모드잠금부;
    비선형 편광 회전 모드잠금부; 및
    상기 펨토초 레이저 공진기의 반복률을 조절하기 위한 반복률 주사부;를 포함하여 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  2. 제 1항에 있어서, 상기 광섬유 펨토초 레이저 공진기는,
    링타입(Ring-type)의 광섬유 공진기이며 링캐비티(Ring cavity) 구조를 가지며,
    공진기의 이득 매질을 구현하는 희토류 첨가 광섬유;
    이득 매질의 흡수 광 파장에 해당하는 광을 출력하는 다이오드 레이저;
    상기 다이오드 레이저에서 발진된 광을 희토류 첨가 광섬유로 입사시켜주는 파장 분할 다중화기;
    비선형 편광 회전에서 커 미디움(Kerr medium)을 담당하는 단일모드광섬유;
    상기 공진기 내 생성된 펄스를 단방향으로 진행시키는 광잡음을 줄여주는 광섬유 아이솔레이터;
    공진기 반복률의 안정화를 위한 피에조 소자(PZT); 및
    출력단을 구성하는 광커플러;를 포함하여 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  3. 제 1항에 있어서, 상기 포화흡수체 모드잠금부는,
    두 개의 광 접속기 사이에 투과형 포화흡수체로 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  4. 제 3항에 있어서, 상기 투과형 포화흡수체는,
    반도체 포화흡수체(Semiconductor saturable absorber), 탄소나노튜브(Carbon nanotube), 그래핀(Graphene) 중 선택된 어느 하나를 포함하는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  5. 제 3항 또는 제 4항에 있어서, 상기 포화흡수체는,
    상기 공진기 내부의 펄스 플루엔스보다 높은 포화 플루엔스와 느린 완화시간(Relaxation time)을 가지도록 구현되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  6. 제 1항에 있어서, 상기 비선형 편광 회전 모드잠금부는,
    상기 광섬유에서 출력되는 빛을 콜리메이팅(Collimating)하고 다시 포커싱(Focusing)하는 한 쌍의 광포트;
    편광 조절을 위해 구현되는 1/2파장판과 1/4파장판; 및
    편광 광 분할기;를 포함하여 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  7. 제 1항에 있어서, 상기 반복률주사부는,
    처프 광섬유 브래그 격자 쌍과 PZT 플렉슈어 구조와 고정 스테이지로 구성된 인장시스템을 포함하고,
    공진기로부터 광을 입사시키는 써큘레이터를 포함하는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  8. 제 1항에 있어서, 상기 처프 광섬유 브래그 격자는
    각각 1555nm의 중심 파장을 기준으로 100nm의 반사 대역폭과 90% 이상의 반사율을 가지는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  9. 제 7항에 있어서, 상기 공진기는,
    비선형 편광 회전 모드잠금부에서 출력되는 광을 아이솔레이터를 통해 상기 써큘레이터로 들어간 펄스는 한 쪽 처프 광섬유 브래그 격자에 입사되었다가 반사 파장대역의 빛만 반사되어 다른 쪽 처프 광섬유 브래그 격자로 들어간 후 다시 반사되어 공진기로 입사되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  10. 제 7항에 있어서, 상기 인장시스템은,
    상기 처프 광섬유 브래그 격자 중 한 쪽에 설치되며, PZT 플렉슈어와 연결된 PZT 앰프를 통해 0 ~ 1kV 사이의 PZT 조절이 가능하도록 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  11. 제 7항에 있어서, 상기 써큘레이터는,
    네 포트 써큘레이터를 하나 사용하거나, 세 포트 써큘레이터를 두 개로 구성하여 처프 광섬유 브래그 격자로 각각 입력되는 구조를 가지는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  12. 제 7항에 있어서, 상기 써큘레이터는,
    세 포트 써큘레이터를 직렬 구조로 연결되도록 구성하는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  13. 제 1항에 있어서, 상기 비선형 편광 회전 모드잠금부는,
    상기 광섬유에서 출력되는 빛을 콜리메이팅(Collimating)하고 다시 포커싱(Focusing)하는 한 쌍의 광포트;
    편광 조절을 위해 구현되는 1/2파장판과 1/4파장판; 및
    편광기;를 포함하고,
    공진기의 출력단을 광커플러로 구성하는 것을 특징으로 하는 편광 광 분할기;를 포함하여 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
  14. 제 1항에 있어서, 상기 포화흡수체 모드잠금부는,
    써큘레이터를 포함하고, 상기 써큘레이터를 통해 입사된 광은 광 포트를 통해 콜리메이팅되어 반사형 포화흡수체로 입사된 후 다시 상기 광 포트에서 포커싱되어 공진기 내부로 입사되도록 구성되는 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기.
PCT/KR2014/010570 2014-04-30 2014-11-05 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기 WO2015167092A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140052853A KR101589577B1 (ko) 2014-04-30 2014-04-30 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기
KR10-2014-0052853 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015167092A1 true WO2015167092A1 (ko) 2015-11-05

Family

ID=54358794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010570 WO2015167092A1 (ko) 2014-04-30 2014-11-05 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기

Country Status (2)

Country Link
KR (1) KR101589577B1 (ko)
WO (1) WO2015167092A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654856A (zh) * 2017-02-28 2017-05-10 武汉光迅科技股份有限公司 一种垂直腔面激光器及其制作方法
CN115102016A (zh) * 2022-06-06 2022-09-23 北京交通大学 一种单纵模窄线宽掺铥光纤激光器
CN115128822A (zh) * 2022-05-23 2022-09-30 之江实验室 一种基于光纤法珀微腔的光频梳偏振复用装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975407B1 (ko) * 2017-05-22 2019-05-07 한국기계연구원 거리 측정 시스템 및 이를 이용한 거리 측정 방법
KR101976130B1 (ko) * 2017-07-31 2019-05-07 한국기계연구원 광섬유 레이저의 반복률 주파수 제어 장치 및 제어 방법
KR102661708B1 (ko) * 2022-11-23 2024-04-29 한국전기연구원 감쇄기를 갖는 모드잠금 광섬유 레이저
KR102661706B1 (ko) * 2022-11-23 2024-04-29 한국전기연구원 커플러를 갖는 모드잠금 광섬유 레이저

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167869A (ja) * 1995-09-05 1997-06-24 Imra America Inc モードロック・レーザー装置
JP2006511949A (ja) * 2002-12-20 2006-04-06 株式会社アルネアラボラトリ 光パルスレーザ
KR20120058275A (ko) * 2010-11-29 2012-06-07 한국과학기술원 광섬유 펨토초 레이저의 모드잠금 자동화 장치
KR101312407B1 (ko) * 2013-01-30 2013-09-27 주식회사 지에이치허브 레이저 광원 생성 장치 및 그 방법
KR20130134199A (ko) * 2012-05-30 2013-12-10 한국과학기술원 포화흡수체와 비선형 편광 회전 현상을 통해 모드 동기가 되는 10 MHz 이하의 반복률을 갖는 광섬유 레이저 공진기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460776B1 (ko) 2001-11-16 2004-12-08 광주과학기술원 전광섬유 광경로차지연기
KR101379043B1 (ko) 2011-08-05 2014-03-28 한국과학기술원 펄스 레이저 반복률 주사 기반 고속 고정밀 표면형상 측정 간섭계

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167869A (ja) * 1995-09-05 1997-06-24 Imra America Inc モードロック・レーザー装置
JP2006511949A (ja) * 2002-12-20 2006-04-06 株式会社アルネアラボラトリ 光パルスレーザ
KR20120058275A (ko) * 2010-11-29 2012-06-07 한국과학기술원 광섬유 펨토초 레이저의 모드잠금 자동화 장치
KR20130134199A (ko) * 2012-05-30 2013-12-10 한국과학기술원 포화흡수체와 비선형 편광 회전 현상을 통해 모드 동기가 되는 10 MHz 이하의 반복률을 갖는 광섬유 레이저 공진기
KR101312407B1 (ko) * 2013-01-30 2013-09-27 주식회사 지에이치허브 레이저 광원 생성 장치 및 그 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654856A (zh) * 2017-02-28 2017-05-10 武汉光迅科技股份有限公司 一种垂直腔面激光器及其制作方法
CN115128822A (zh) * 2022-05-23 2022-09-30 之江实验室 一种基于光纤法珀微腔的光频梳偏振复用装置
CN115128822B (zh) * 2022-05-23 2023-11-07 之江实验室 一种基于光纤法珀微腔的光频梳偏振复用装置
CN115102016A (zh) * 2022-06-06 2022-09-23 北京交通大学 一种单纵模窄线宽掺铥光纤激光器

Also Published As

Publication number Publication date
KR20150125868A (ko) 2015-11-10
KR101589577B1 (ko) 2016-01-29

Similar Documents

Publication Publication Date Title
WO2015167092A1 (ko) 처프 광섬유 브래그 격자 쌍을 이용한 광대역 고속 반복률 주사 광섬유 펨토초 레이저 공진기
Yao Microwave photonic sensors
US8923349B2 (en) Fourier domain mode locking: method and apparatus for control and improved performance
US7414779B2 (en) Mode locking methods and apparatus
US9958252B1 (en) Intracavity fiber sensors using two orthogonal polarization modes in an optical parametric oscillator cavity coupled to a sensing element
WO2015064957A1 (en) Dual optical-comb femtosecond optical fiber laser
CN103606815A (zh) 基于双脉冲激光器系统的光学扫描和成像系统
KR101379043B1 (ko) 펄스 레이저 반복률 주사 기반 고속 고정밀 표면형상 측정 간섭계
JPS61214490A (ja) 単周波数の直線偏光レーザービームを2周波数直交偏光ビームに変成する装置
CN105141258A (zh) 一种微波变频方法及装置
US20230114758A1 (en) High-precision repetition rate locking apparatus for ultra-fast laser pulse
JP4696319B2 (ja) フィルタ方式高速波長掃引光源
CN109449734A (zh) 一种全保偏的多通道相干反斯托克斯拉曼散射光纤光源
Sulaiman et al. Multiwavelength fiber laser based on bidirectional Lyot filter in conjunction with intensity dependent loss mechanism
JPH05248996A (ja) 光ファイバの波長分散測定装置
CN113686366A (zh) 一种基于傅里叶域锁模的光频域反射计装置及测量方法
CN113285344A (zh) 一种宽波段可调谐的双色超快脉冲同步技术
CN111060896A (zh) 基于oeo快速切换的大量程、高精度绝对距离测量仪器
CN106996861A (zh) 一种基于双波长锁模脉冲光纤激光器的光纤色散测量方法
AU2013211513B2 (en) Fourier domain mode locking
Li et al. Femtosecond fiber laser mode-locked by a twisted Sagnac interferometer
Tan et al. Fiber gratings enabled interrogation of Mach-Zehnder interferometer tapered fiber sensor
Liu et al. Self-starting and repetition-rate-difference tunable dual combs in a bidirectional mode-locked fiber laser
Huang et al. All-fiber Passively Mode-locked Femtosecond Laser Based on a Femtosecond Laser Inscribed 45° Tilted Fiber Grating
CN113363794A (zh) 一种双重复频率光学频率梳光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890810

Country of ref document: EP

Kind code of ref document: A1