WO2015165294A1 - 一种发动机脉冲油气润滑系统及方法 - Google Patents
一种发动机脉冲油气润滑系统及方法 Download PDFInfo
- Publication number
- WO2015165294A1 WO2015165294A1 PCT/CN2015/072076 CN2015072076W WO2015165294A1 WO 2015165294 A1 WO2015165294 A1 WO 2015165294A1 CN 2015072076 W CN2015072076 W CN 2015072076W WO 2015165294 A1 WO2015165294 A1 WO 2015165294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- crankcase
- engine
- lubricating oil
- tank
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/04—Pressure lubrication using pressure in working cylinder or crankcase to operate lubricant feeding devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/12—Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M11/00—Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
- F01M11/04—Filling or draining lubricant of or from machines or engines
Definitions
- the invention relates to an engine lubrication system and method, in particular to a four-stroke engine lubrication system and method mainly used for a grass cutter, a chain saw and a rotary tiller.
- the lubrication system of the four-stroke engine can meet the normal use of any reversal, reduce the consumption rate of lubricating oil, and eliminate the suffocation of the vent pipe into the air filter to soak the filter cotton. To find a technical solution with reliable performance, simple structure and low cost. It is still a problem that needs to be explored in this field.
- the technical problem to be solved by the invention is to provide an engine pulse oil and gas lubrication system and method, which can meet the normal use of any flipping, reduce the lubricating oil consumption rate, and exclude the vent pipe from being inserted into the air filter soaking. Filtered cotton sputum, which meets the requirements of reliable performance, simple structure and reduced cost.
- an engine pulse oil and gas lubrication system comprising a crankcase and an oil tank disposed outside, the oil tank and the crankcase are separated by a tank wall, and a tank wall is provided with a
- the lubricating oil tank and the crankcase are communicated by the blowing suction hole, and the position of the blowing suction hole is set, when the oil quantity in the lubricating oil tank is lower than the maximum set oil quantity, the engine is arbitrarily turned over, and the lubricating oil is not It will flow directly from the oil tank into the crankcase.
- the suction hole is located in the range of one-half to one-eighth of the axial dimension of the lubricating oil tank and the crankcase wall.
- the shape of the blowing hole is square, diamond, round or triangular.
- the ratio of the sum of the areas of the blow holes to the cross-sectional area of the cylinder is less than one.
- the amount of lubricating oil added in the lubricating oil tank is such that when the engine is arbitrarily turned over, the oil surface is lower than any one of the blowing suction holes, and the distance is 0-50 mm.
- the above-mentioned engine pulse oil-gas lubrication system is used for lubrication: the piston moves up and down to cause the pulsed airflow generated in the crankcase to blow through the suction hole, suck the lubricating oil in the lubricating oil tank, and make the lubricating oil sway, a small amount of oil droplets Splashing into the crankcase from the suction hole, the high-speed rotating crank is slammed to make small oil particles, and the small oil particles are blown downward from the crankcase through the crankshaft bearing to the cam chamber-ejector
- the tunnel-valve rocker chamber-cylinder head-oil separation chamber-snorkel in this process, the small oil particles form an oil film to lubricate and cool the passing parts, and at the same time lubricate the crankshaft connecting rod and the cylinder wall and the piston.
- the piston moves up and down so that the pulsed airflow generated in the crankcase is blown and sucked at a frequency of 0.01-0.002 seconds, and the small oil particles first adhere to the closer chamber wall and the parts to form an oil film, and then Each time the compressed air flow is gradually blown to each of the parts requiring lubrication and cooling, the traveling speed of the oil film is 2-5 mm/s.
- the position, shape and size of the suction holes on the tank wall adjacent to the crankcase and the crankcase are determined by experiments, and the pulsed gas flow pressure and the amount of oil particles are controlled.
- one or more blowing holes are arranged on the wall of the tank adjacent to the crankcase, and the generated lubricating oil small oil particles are sequentially blown by the pulse airflow generated by the up and down movement of the piston.
- Each part that needs lubrication, and a small amount of lubricating oil that has played an effective role is sent out of the machine, and a pulse oil-oil lubrication method different from the traditional theoretical idea of "oil supply and oil return circulation lubrication system" is realized.
- the four-stroke engine adopting the pulse oil-gas lubrication system and method of the invention can be used at any time, and the vent pipe does not directly discharge the lubricating oil; for a long time continuous operation, the temperature of the exhaust gas discharged from the cylinder head vent pipe approximates the ambient temperature, that is, each of the verified The parts are fully lubricated and have no heat; the gas discharged from the vent pipe is separated by oil and gas, and a very small amount of lubricating oil collected is in the form of an emulsion, indicating that no fresh lubricating oil is discharged; after measurement, the lubricating oil consumption rate is ⁇ 2.8 g/kw.h, Far below the national standard of 6.8g/kw.h.
- Figure 1 is a schematic structural view 1 of the engine
- Figure 2 is a schematic structural view of the engine 2
- Figure 3 is a schematic structural view 3 of the engine
- Figure 4 is a schematic structural view of the engine in a horizontal state
- Figure 5 is a schematic view showing the structure of the engine in a left-right side flip state
- Figure 6 is a schematic view showing the structure of the engine in an inverted state
- Figure 7 is a schematic view showing the structure of the engine in a front rollover state
- Fig. 8 is a structural schematic view showing the engine in a rear rollover state.
- an engine pulse oil and gas lubrication system including a crankcase 2 and An oil tank 1 disposed outside the crankcase, the lubricating oil tank 1 is provided with more than one blowing suction hole 10 on the tank wall adjacent to the crankcase 2, and communicates with the inner cavity of the crankcase 2, which uses the pulse airflow generated by the up and down movement of the piston
- the lubricating oil in the lubricating oil tank 1 is blown and sucked, and the generated lubricating oil small oil particles are sequentially blown to the parts to be lubricated.
- the position of the blow suction hole 10 and the oil amount in the lubricating oil tank 1 are such that the lubricating oil does not flow into the crankcase from the lubricating oil tank when the engine is arbitrarily turned over.
- the lubricating oil tank has a U shape surrounding the bottom surface of the crankcase and two sides of the width.
- the blowing suction holes are provided in three, respectively located at the center of the bottom of the lubricating oil tank and at the center of the two side walls of the width, and the amount of oil in the lubricating oil tank is located at the center of the lubricating oil tank when the engine is in a horizontal state. Within 50mm above the oil level. As shown in Fig. 4 to Fig.
- the lubricating oil does not flow directly from the lubricating oil tank into the crankcase due to the rationality of the position of the blowing suction hole and the proper amount of oil in the lubricating oil tank.
- the ratio of the sum of the mouth areas of the blow holes to the cross-sectional area of the cylinder is less than one.
- the up and down movement of the piston causes the pulsed airflow generated in the crankcase 2 to blow through the blowing suction hole 10, sucking the lubricating oil in the lubricating oil tank 1, so that the lubricating oil swells, and a small amount of oil droplets are splashed into the crankcase 2 from the blowing suction hole, being
- the high-speed rotating crank is slammed to make small oil particles, and the small oil particles are blown down from the crankcase through the crankshaft bearing 3 to the cam chamber 4 - the jack hole 5 - the valve rocker chamber 6 - Cylinder head cover 7 - oil and gas separation chamber 8 - vent pipe 9, in which small oil particles lubricate and cool the passing parts.
- the crankshaft connecting rod and the cylinder wall and the piston are lubricated.
- the arrangement of the suction holes and the use of the piston up and down movement to lubricate the lubricating oil generated in the crankcase are the core; the remaining parts involved in lubrication, the crankshaft bearing, the cam chamber, the jack hole, the valve rocker arm
- the chamber, cylinder head cover, oil and gas separation chamber and vent tube are all integral mechanical components of all four-stroke engines.
- the present invention utilizes its own positional arrangement and existing structure to lubricate or participate in lubrication.
- the small oil particles will not travel very far at a time, and will first adhere to the wall and parts of the chamber near the vicinity, and the small oil particles are not It will go very far at a time. It will first adhere to the wall and parts of the chamber that is closer to form an oil film, and then gradually blow it to each part that needs lubrication and cooling with each downward air flow.
- the oil film travels at a very slow speed by monitoring with a transparent tube.
- the pulse airflow generated by the up and down movement of the piston is blown and sucked at a high frequency, and the vent pipe having a small cross section is larger than the frictional force, so that the absolute value of the positive pressure in the machine is absolute. It is always greater than the absolute value of the negative pressure. Therefore, although the lubricant film stops and stops, the general trend is to slowly climb toward the exit.
- the oil film travels at a speed of 2-5 mm/s by monitoring with a transparent tube.
- the viscosity of the lubricating oil that has played the role will decrease, which is lower than the viscosity of the lubricating oil that has not been used.
- the former is blown by the airflow faster than the latter, and finally from the snorkel. Only a small amount of the gas discharged into the air acts as a lubricant in the form of an emulsion.
- the lubricating oil is one-way traveling lubrication, and the lubricating oil that plays the role is no longer returned to the lubricating oil tank, which is beneficial to maintaining the quality and lubricating performance of the lubricating oil which has not played the role.
- the pulse gas flow pressure and the amount of oil particles can be controlled, and the pressure of the exhaust gas of the vent pipe and the discharge of the emulsion lubricating oil are controlled.
- the speed so as to ensure that under the premise of sufficient lubrication, the lubricating oil that has not fully exerted its effect will not be discharged out of the machine, thereby achieving the purpose of reducing the consumption of lubricating oil and reducing pollution.
- the invention proposes a new four-stroke engine pulse oil-gas lubrication method, which is different from all the four-stroke engine "oil supply, oil return circulation lubrication system" technical theory and component structure design. Solve the problems in this technical field in a simple and simple way. It does not require the one-way valve, rotary valve, oil-filling needle, oil supply passage, oil return passage, oil return pipe, hollow crankshaft, etc. in the previous design, which is provided for lubrication, only the lubricating oil tank is separated from the crankcase.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
一种发动机脉冲油气润滑系统,包括曲轴箱(2)及外侧设置的润滑油箱(1)。润滑油箱(1)与曲轴箱(2)由箱壁隔开,在箱壁上设置一个以上的吹吸孔(10)。润滑油箱(1)与曲轴箱(2)由吹吸孔(10)相通。吹吸孔的位置设置在润滑油箱(1)内的油量低于最高设定油量时,发动机任意翻转,润滑油均不会从润滑油箱(1)直接流进曲轴箱(2)。还公开了一种与之对应的方法,利用活塞上下运动产生的脉冲气流,将产生的润滑油小油粒顺序吹至各需要润滑的零件,并将极少量发挥过作用的润滑油送出机外。
Description
本发明涉及发动机润滑系统及方法,尤其涉及一种主要用于打草机、油锯、旋耕机的四冲程发动机润滑系统及方法。
目前,国内外相关四冲程发动机润滑系统的专利已有多项,除了那些四冲程发动机原理所必有的零部件结构外,我们所见到的资料表明,专利主要内容均为润滑系统的创意,旨在保证翻转使用中通气管不喷油且充分润滑,为之设计了诸如单向阀、转阀、搅油针、供油通道、回油通道、供油管、回油管,空心曲轴等等,并且无一例外沿用了“供油、回油循环润滑系统”的理论思路。在对多款国、内外机型的测试中发现,即使如上复杂的设计,运转中任意翻转,润滑油也还会从通气管大量喷出,至,不能正常运转,这是最大的缺陷;第二点,所有机型的通气管均接入空滤器,即使正常工位,运行一段时间,空滤器过滤棉也全被排出的润滑油浸湿甚至流出壳体,说明“供油、回油循环润滑系统”的回油理论及机构不可靠,造成其润滑油消耗率大多在5-6g/kw.h,虽然低于规定标准,但,较高。
四冲程发动机的润滑系统,如何满足任意翻转正常使用,降低润滑油消耗率,排除通气管接入空滤器浸湿过滤棉的瑕疵,为此找到一种性能可靠,结构简单,降低成本的技术方案,仍是本领域需要探讨解决的一个问题。
发明内容
本发明所要解决的技术问题就是提供了一种发动机脉冲油气润滑系统及方法,满足任意翻转正常使用,降低润滑油消耗率,排除通气管接入空滤器浸湿
过滤棉的瑕疵,其满足性能可靠,结构简单,降低成本的要求。
为解决上述技术问题,本发明采用如下技术方案:一种发动机脉冲油气润滑系统,包括曲轴箱及外侧设置的润滑油箱,所述润滑油箱与曲轴箱由箱壁隔开,在箱壁上设置一个以上的吹吸孔,润滑油箱与曲轴箱由吹吸孔相通,所述吹吸孔的位置设置在,润滑油箱内的油量低于最高设定油量时,发动机任意翻转,润滑油均不会从润滑油箱直接流进曲轴箱。
优选的,所述吹吸孔位于润滑油箱与曲轴箱箱壁轴向尺寸的二分之一至八分之一范围。
优选的,所述吹吸孔的形状为方形、菱形、圆形或者三角形。
优选的,所述吹吸孔的面积之和与汽缸截面积之比小于1。
优选的,润滑油箱内所加润滑油量,满足发动机任意翻转时,油面都低于任何一个吹吸孔,其距离为0-50mm。
另外,利用上述发动机脉冲油气润滑系统进行润滑的方法为:活塞上下运动使曲轴箱内产生的脉冲气流通过吹吸孔去吹、吸润滑油箱中的润滑油,使润滑油荡起,少量油滴从吹吸孔处溅入曲轴箱,被高速旋转的曲柄带起甩击,使之成小油粒,这些小油粒被下压的气流从曲轴箱通过曲轴轴承依次吹向凸轮室-顶杆孔道-气门摇臂室-缸头盖-油气分离室-通气管,在这个过程中,小油粒形成油膜对经过的零件进行润滑与冷却,同时,润滑了曲轴连杆及汽缸壁与活塞。
优选的,所述活塞上下运动使曲轴箱内产生的脉冲气流以0.01-0.002秒的频率吹、吸,小油粒先会附着在较近处的腔室壁及零件上形成油膜,再随着每次下压气流将其依次逐渐吹向各个需要润滑与冷却的零部件,所述油膜的行进速度为2-5mm/s。
优选的,通过试验确定润滑油箱与曲轴箱相邻箱壁上的吹吸孔的位置、形状与大小,控制脉冲气流压力及油粒产生量。
本发明的技术方案中,在润滑油箱与曲轴箱相邻的箱壁上,设置一个或一个以上的吹吸孔,利用活塞上下运动产生的脉冲气流,将产生的润滑油小油粒顺序吹至各需要润滑的零件,并将极少量发挥过作用的润滑油送出机外,实现了与“供油、回油循环润滑系统”的传统理论思路不同的脉冲油气润滑方法。
采用本发明脉冲油气润滑系统及方法的四冲程发动机,可任意翻转使用,通气管不会直接喷出润滑油;长时连续运行,缸头通气管排出废气的温度近似环境温度,即验证了各部件润滑充分,无发热;将通气管排出的气体进行油气分离,收集到的极少量润滑油呈乳液状,说明没有新鲜润滑油排出;经测定,润滑油消耗率≤2.8g/kw.h,远低于6.8g/kw.h的国家标准。
下面结合附图和具体实施方式对本发明作进一步描述:
图1为发动机的结构示意图一;
图2为发动机的结构示意图二;
图3为发动机的结构示意图三;
图4为发动机处于水平状态的结构示意图;
图5为发动机处于左右侧翻状态的结构示意图;
图6为发动机处于倒翻状态的结构示意图;
图7为发动机处于前侧翻状态的结构示意图;
图8为发动机处于后侧翻状态的结构示意图。
如图1至图3所示,一种发动机脉冲油气润滑系统,包括曲轴箱2以及在
曲轴箱外侧设置的润滑油箱1,所述润滑油箱1在与曲轴箱2相邻的箱壁上设置一个以上的吹吸孔10与曲轴箱2内腔连通,其利用活塞上下运动产生的脉冲气流,吹、吸润滑油箱1中的润滑油,将产生的润滑油小油粒顺序吹至各需要润滑的零件。
其中,吹吸孔10的位置设置以及与润滑油箱1内的油量设置使发动机任意翻转时润滑油均不会从润滑油箱流进曲轴箱。具体的,在本实施例中,所述润滑油箱呈U形包围曲轴箱的底面及宽度两侧面。所述吹吸孔设置有三个,分别位于润滑油箱底部中心以及宽度两侧壁中心位置,而润滑油箱内的油量,在发动机处于水平状态时,所述润滑油箱底部中心的吹吸孔位于润滑油液面上方50mm高度以内。如图4至图8所示,无论发动机如何翻转,由于吹吸孔位置设置的合理性,以及润滑油箱内油量合适,润滑油均不会从润滑油箱直接流进曲轴箱。所述吹吸孔的口部面积之和与汽缸截面积之比小于1。
活塞上下运动使曲轴箱2内产生的脉冲气流通过吹吸孔10去吹、吸润滑油箱1中的润滑油,使润滑油荡起,少量油滴从吹吸孔处溅入曲轴箱2,被高速旋转的曲柄带起甩击,使之成小油粒,这些小油粒被下压的气流从曲轴箱通过曲轴轴承3依次吹向凸轮室4-顶杆孔道5-气门摇臂室6-缸头盖7-油气分离室8-通气管9,在这个过程中,小油粒对经过的零件进行润滑与冷却。同时,润滑了曲轴连杆及汽缸壁与活塞。
在本发明中,吹吸孔的设置及利用活塞上下运动使曲轴箱内产生的脉冲吹吸润滑油进行润滑是核心;其余参与润滑的零件,曲轴轴承、凸轮室、顶杆孔道、气门摇臂室、缸头盖、油气分离室及通气管均为所有四冲程发动机不可或缺的机构部件,本发明是利用其本身的位置设置及既有结构使其被润滑或参与润滑。
由于活塞上下运动产生的脉冲气流以0.01-0.002秒的高频率吹、吸,小油粒不会一次走的很远,先会附着在较近处的腔室壁及零件上,小油粒不会一次走的很远,先会附着在较近处的腔室壁及零件上形成油膜,再随着每次下压气流将其依次逐渐吹向各个需要润滑与冷却的零部件。通过采用透明管监测,所述油膜呈很慢的速度行进。
在下压气流吹着润滑油膜向前走的过程中,由于活塞上下运动产生的脉冲气流高频率吹、吸变化,加之截面很小的通气管比摩阻很大,使机器内的正压绝对值总是大于负压绝对值,所以,润滑油膜虽然走一下停一下,但总趋势是向着出口慢慢爬去。通过采用透明管监控检测,油膜的行进速度为2-5mm/s。
在油膜润滑零件的过程中,发挥过作用的润滑油的粘度会下降,低于未发挥过作用的润滑油的粘度,前者被气流吹着行进的速度就会快于后者,最终从通气管排入空气中的气体中仅有极少量发挥过作用呈乳液状的润滑油。
本发明脉冲油气润滑方法,润滑油为单向行进润滑,发挥过作用的润滑油不再返回润滑油箱,有利于保持未发挥过作用的润滑油的品质纯净和润滑性能。
通过试验控制润滑油箱与曲轴箱相邻箱壁上的吹吸孔的位置与大小,可以控制脉冲气流压力及油粒产生量,也就控制了通气管排出气体的压力和乳液状润滑油的排出速度,从而保证在润滑充分的前提下,未完全发挥过作用的润滑油不会被排出机外,达到了降低润滑油消耗,减少污染的目的。
本发明提出了一种新的四冲程发动机脉冲油气润滑方法,其不同于在此之前所有的四冲程发动机“供油、回油循环润滑系统”技术理论及部件结构设计。以简单至极的方法,解决了此技术领域存在的难题。其不需要之前设计中的单向阀、转阀、搅油针、供油通道、回油通道、回油管、空心曲轴等等为润滑而设置的零部件,只在润滑油箱与曲轴箱相隔的箱壁上,设置一个或一个以上的
吹吸孔,利用活塞上下运动产生的脉冲气流,将产生的润滑油油膜顺序吹至各需要润滑的零件,并将极少量发挥过作用的润滑油送出机外,实现了与“供油、回油循环润滑系统”的传统理论思路不同的脉冲油气润滑方法。
Claims (8)
- 一种发动机脉冲油气润滑系统,包括曲轴箱(2)及外侧设置的润滑油箱(1),其特征在于:所述润滑油箱(1)与曲轴箱(2)由箱壁隔开,在箱壁上设置一个以上的吹吸孔(10),润滑油箱(1)与曲轴箱(2)由吹吸孔(10)相通,所述吹吸孔(10)的位置设置在,润滑油箱内的油量低于最高设定油量时,发动机任意翻转,润滑油均不会从润滑油箱(1)直接流进曲轴箱(2)。
- 根据权利要求1所述的发动机脉冲油气润滑系统,其特征在于:所述吹吸孔(10)位于润滑油箱(1)与曲轴箱(2)箱壁轴向尺寸的二分之一至八分之一范围。
- 根据权利要求2所述的发动机脉冲油气润滑系统,其特征在于:所述吹吸孔(10)的形状为方形、菱形、圆形或者三角形。
- 根据权利要求3所述的发动机脉冲油气润滑系统,其特征在于:所述吹吸孔(10)的面积之和与汽缸截面积之比小于1。
- 根据权利要求1所述的发动机脉冲油气润滑系统,其特征在于:润滑油箱(1)内所加润滑油量,满足发动机任意翻转时,油面都低于任何一个吹吸孔(10),其距离为0-50mm。
- 一种发动机脉冲油气润滑方法,其特征在于:活塞上下运动使曲轴箱(2)内产生的脉冲气流通过吹吸孔(10)去吹、吸润滑油箱(1)中的润滑油,使润滑油荡起,少量油滴从吹吸孔(10)处溅入曲轴箱,被高速旋转的曲柄带起甩击,使之成小油粒,这些小油粒被下压的气流从曲轴箱通过曲轴轴承(3)依次吹向凸轮室(4)-顶杆孔道(5)-气门摇臂室(6)-缸头盖(7)-油气分离室(8)-通气管(9),在这个过程中,小油粒形成油膜对经过的零件进行润滑与冷却,同时,润滑了曲轴连杆及汽缸壁与活塞。
- 根据权利要求6所述的发动机脉冲油气润滑方法,其特征在于:所述活塞上 下运动使曲轴箱内产生的脉冲气流以0.01-0.002秒的频率吹、吸,小油粒先会附着在较近处的腔室壁及零件上形成油膜,再随着每次下压气流将其依次逐渐吹向各个需要润滑与冷却的零部件,所述油膜的行进速度为2-5mm/s。
- 根据权利要求7所述的发动机脉冲油气润滑方法,其特征在于:通过试验确定润滑油箱(1)与曲轴箱(2)相邻箱壁上的吹吸孔(10)的位置、形状与大小,控制脉冲气流压力及油粒产生量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410174266.8 | 2014-04-28 | ||
CN201410174266.8A CN103993927B (zh) | 2014-04-28 | 2014-04-28 | 一种发动机脉冲油气润滑系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015165294A1 true WO2015165294A1 (zh) | 2015-11-05 |
Family
ID=51308228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/072076 WO2015165294A1 (zh) | 2014-04-28 | 2015-02-02 | 一种发动机脉冲油气润滑系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103993927B (zh) |
WO (1) | WO2015165294A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180156085A1 (en) * | 2016-03-18 | 2018-06-07 | Zhejiang Yat Electrical Appliance Co., Ltd | Quantitative one-way oil gas lubricant system and method for 4-stroke engine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103993927B (zh) * | 2014-04-28 | 2017-04-26 | 浙江亚特电器有限公司 | 一种发动机脉冲油气润滑系统及方法 |
CN104791048A (zh) * | 2015-03-17 | 2015-07-22 | 浙江亚特电器有限公司 | 一种发动机润滑系统余气利用装置 |
CN109731430B (zh) * | 2018-12-27 | 2023-09-15 | 无锡方盛换热器股份有限公司 | 一种铝制压缩机油气分离罐 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1560448A (zh) * | 1999-01-25 | 2005-01-05 | 布里格斯斯特拉顿公司 | 四冲程内燃机 |
CN1710259A (zh) * | 2004-06-18 | 2005-12-21 | 李新苍 | 四行程引擎的润滑装置 |
CN103993927A (zh) * | 2014-04-28 | 2014-08-20 | 浙江亚特电器有限公司 | 一种发动机脉冲油气润滑系统及方法 |
CN203925648U (zh) * | 2014-04-28 | 2014-11-05 | 浙江亚特电器有限公司 | 一种发动机脉冲油气润滑系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6877494B2 (en) * | 2002-07-12 | 2005-04-12 | Pearson Motor Company Limited | Lightweight four-stroke engine |
CN200978692Y (zh) * | 2006-11-15 | 2007-11-21 | 顾启华 | 微型可回转四冲程汽油机 |
CN101413412B (zh) * | 2007-10-16 | 2010-10-06 | 财团法人工业技术研究院 | 四冲程引擎的润滑装置 |
CN101280704B (zh) * | 2008-05-06 | 2013-07-31 | 孙鹤鸣 | 任意翻转四冲程发动机 |
CN201635790U (zh) * | 2010-01-08 | 2010-11-17 | 无锡力锦科技有限公司 | 手提式四冲程汽油机 |
-
2014
- 2014-04-28 CN CN201410174266.8A patent/CN103993927B/zh active Active
-
2015
- 2015-02-02 WO PCT/CN2015/072076 patent/WO2015165294A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1560448A (zh) * | 1999-01-25 | 2005-01-05 | 布里格斯斯特拉顿公司 | 四冲程内燃机 |
CN1710259A (zh) * | 2004-06-18 | 2005-12-21 | 李新苍 | 四行程引擎的润滑装置 |
CN103993927A (zh) * | 2014-04-28 | 2014-08-20 | 浙江亚特电器有限公司 | 一种发动机脉冲油气润滑系统及方法 |
CN203925648U (zh) * | 2014-04-28 | 2014-11-05 | 浙江亚特电器有限公司 | 一种发动机脉冲油气润滑系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180156085A1 (en) * | 2016-03-18 | 2018-06-07 | Zhejiang Yat Electrical Appliance Co., Ltd | Quantitative one-way oil gas lubricant system and method for 4-stroke engine |
EP3342994A4 (en) * | 2016-03-18 | 2019-04-24 | Zhejiang Yat Electrical Appliance Co., Ltd. | QUANTITATIVE UNIDIRECTIONAL OIL-AIR LUBRICATING SYSTEM AND METHOD FOR FOUR-STROKE ENGINE |
US11300020B2 (en) * | 2016-03-18 | 2022-04-12 | Zhejiang Yat Electrical Appliance Co., Ltd | Quantitative one-way oil gas lubricant system and method for 4-stroke engine |
Also Published As
Publication number | Publication date |
---|---|
CN103993927A (zh) | 2014-08-20 |
CN103993927B (zh) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015165294A1 (zh) | 一种发动机脉冲油气润滑系统及方法 | |
WO2017156814A1 (zh) | 一种四冲程发动机定量单向油气润滑系统及方法 | |
CN102428255B (zh) | 四冲程发动机、含该机器的灌木清除机和发动机驱动工具 | |
CN1285828C (zh) | 发动机的通气装置 | |
WO2016145920A1 (zh) | 一种发动机润滑系统余气利用装置 | |
CN103104308B (zh) | 四冲程发动机的润滑装置 | |
CN203239413U (zh) | 一种发动机油底壳 | |
CN209875245U (zh) | 一种手持式风冷四冲程汽油机润滑系统及汽油机 | |
CN203925648U (zh) | 一种发动机脉冲油气润滑系统 | |
CN201635790U (zh) | 手提式四冲程汽油机 | |
CN204663620U (zh) | 一种发动机润滑系统余气利用装置 | |
CN201963396U (zh) | 手持工具用四冲程内燃机 | |
CN204877673U (zh) | 一种垂直轴ohc结构四冲程发动机 | |
CN108343486B (zh) | 一种四冲程发动机的油气润滑系统和带四冲程发动机的工具设备 | |
CN209212333U (zh) | 一种四冲程发动机的润滑系统 | |
CN203081525U (zh) | 手持式四冲程汽油机的机油润滑机构 | |
JP6478356B2 (ja) | 4サイクルエンジンの潤滑システム | |
CN203130280U (zh) | 四冲程发动机的凸轮室 | |
CN205955791U (zh) | 摇臂室润滑构造及其发动机 | |
US2118633A (en) | Internal combustion engine | |
CN204961078U (zh) | 一种小型风冷四冲程汽油机 | |
CN207111200U (zh) | 防倾倒强制呼吸润滑系统 | |
CN213175854U (zh) | 一种可持续润滑的活塞机构 | |
CN204457935U (zh) | 一种新型车用呼吸器回油机构 | |
CN202300698U (zh) | 一种摩托车发动机曲轴箱结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786272 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15786272 Country of ref document: EP Kind code of ref document: A1 |