WO2015165102A1 - 用于干扰消除的方法和装置 - Google Patents

用于干扰消除的方法和装置 Download PDF

Info

Publication number
WO2015165102A1
WO2015165102A1 PCT/CN2014/076663 CN2014076663W WO2015165102A1 WO 2015165102 A1 WO2015165102 A1 WO 2015165102A1 CN 2014076663 W CN2014076663 W CN 2014076663W WO 2015165102 A1 WO2015165102 A1 WO 2015165102A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
reconstruction information
resource
interference
Prior art date
Application number
PCT/CN2014/076663
Other languages
English (en)
French (fr)
Inventor
刘晟
陈特彦
程宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/076663 priority Critical patent/WO2015165102A1/zh
Priority to CN201480078417.8A priority patent/CN106256097B/zh
Publication of WO2015165102A1 publication Critical patent/WO2015165102A1/zh
Priority to US15/337,407 priority patent/US9819385B2/en

Links

Classifications

    • H04B5/48
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present invention relate to the field of communications technologies and, more particularly, to methods and apparatus for interference cancellation. Background technique
  • a base station When the base station communicates with the terminal, it may be interfered by other base stations that are adjacent or similar. Specifically, a base station may transmit a signal to a terminal using the same time-frequency resource while a certain time-frequency resource receives a useful signal from the terminal while its neighboring or similar base station. In this case, a signal transmitted by an adjacent or similar interfering base station affects the base station receiving the signal, so that the base station cannot correctly receive the useful signal.
  • the uplink resources used by one base station and the downlink resources used by another base station may be set to be orthogonal when designing resource allocation.
  • the base station can simultaneously perform receiving and transmitting operations on one time-frequency resource, so that the interference problem between two adjacent or similar base stations is particularly prominent. Summary of the invention
  • Embodiments of the present invention provide a method and apparatus for interference cancellation, which can cancel an interference signal between base stations in a received signal.
  • a first aspect provides a method for interference cancellation, the method comprising: determining, by a first base station, a channel parameter of a transmit antenna of a second base station to a receive antenna of a first base station; the first base station receiving the first signal at the first resource
  • the first signal includes: a first interference signal and an uplink useful signal, where the first interference signal is an interference signal generated by the second base station transmitting the downlink second signal in the first resource; the first base station receives the second signal sent by the second base station
  • the reconstruction information of the signal, the resource used by the second base station to transmit the reconstruction information of the second signal is different from the first resource; the first base station determines the first one of the first signal according to the channel parameter and the reconstruction information of the second signal Interfering with the signal and eliminating the first interfering signal.
  • a second aspect provides a method for interference cancellation, where the method includes: transmitting, by a second base station, a downlink second signal, where the first resource receives the first signal, where the first signal includes : a first interference signal generated by the second signal and an uplink useful signal; Transmitting, by the first base station, the reconstruction information of the second signal, so that the first base station determines, according to the reconstruction information of the second signal and the channel parameter of the transmit antenna of the second base station to the receive antenna of the first base station, An interference signal, and eliminating the first interference signal, wherein the resource used by the second base station to transmit the reconstruction information of the second signal is different from the first resource.
  • a third aspect provides an apparatus for interference cancellation, the apparatus comprising: a determining module 310, configured to determine a channel parameter of a transmit antenna of a second device to a receive antenna of the device; a first receiving module 320, configured to The first signal includes: a first interference signal and an uplink useful signal, where the first interference signal is an interference signal generated by the second device transmitting the downlink second signal in the first resource; the second receiving module 330 Reconstruction information for receiving the second signal sent by the second device, the resource used by the second device to transmit the reconstruction information of the second signal is different from the first resource; the interference cancellation module 340 is configured to use the channel parameter and the The reconstruction information of the two signals determines a first interference signal in the first signal and cancels the first interference signal.
  • the fourth aspect provides an apparatus for interference cancellation, where the apparatus includes: a first sending module 410, configured to send a downlink second signal in a first resource, where the first resource receives the first signal in the first resource
  • the first signal includes: a first interference signal generated by the second signal and an uplink useful signal; a second sending module 420, configured to send, to the first device, reconstruction information of the second signal, so that the first device is configured according to the second Reconstructing information of the signal and channel parameters of the transmitting antenna of the device to the receiving antenna of the first device, determining a first interference signal in the first signal, and eliminating the first interference signal, wherein the device transmits the reconstruction information of the second signal
  • the resources used are different from the first resources.
  • the method and apparatus for interference cancellation provided by the embodiment of the present invention can implement the interfering base station by using the channel information between the two base stations according to the reconstructed information of the uplink signal sent by the interfering base station and the interfering base station. Elimination of interference signals generated by the transmitted uplink signal.
  • 1 is a schematic diagram of a scenario of a method for interference cancellation to which an embodiment of the present invention is applied.
  • 2 is a schematic flow diagram of a method for interference cancellation in accordance with one embodiment of the present invention.
  • 3 is a schematic flow chart of a method for interference cancellation according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow diagram of a method for interference cancellation in accordance with another embodiment of the present invention.
  • Figure 5 is a schematic block diagram of an apparatus for interference cancellation in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a determination module in accordance with one embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an apparatus for interference cancellation in accordance with another embodiment of the present invention.
  • 8 is a schematic block diagram of an apparatus for interference cancellation in accordance with another embodiment of the present invention.
  • 9 is a schematic block diagram of an apparatus for interference cancellation in accordance with another embodiment of the present invention.
  • Fig. 1 is a schematic diagram showing a scenario of a method for interference cancellation to which an embodiment of the present invention is applied.
  • two adjacent or similar base stations each communicate with a terminal.
  • the first base station receives the time-frequency resource of the signal transmitted by the first terminal, and may have the same time-frequency resource that the adjacent or similar second base station sends a signal to the second terminal.
  • the second base station transmitting the signal will cause interference to the first base station receiving the signal, so that the first base station cannot correctly receive the useful signal from the first terminal.
  • the uplink resources used by one base station and the downlink resources used by another base station may be set to be orthogonal when designing resource allocation.
  • the base station can simultaneously perform receiving and transmitting operations on one time-frequency resource, so that the interference problem between two adjacent or similar base stations is particularly prominent.
  • Embodiments of the present invention provide a scheme for performing interference cancellation for an interference signal between base stations as described above.
  • h ss can be obtained by channel estimation or other methods, and can be obtained from the base station generating the interference.
  • the portion of h ss x ss in the signal received by the interfering base station is hereinafter referred to as an interference signal, such as a first interference signal and a second interference signal.
  • the terminal is an access terminal that uses wireless full-duplex technology or wireless half-duplex technology, and may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • remote terminal mobile device, user terminal, terminal, wireless communication device, user agent, user device or user equipment (UE, User Equipment).
  • the terminal can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), with wireless communication.
  • the base station may be used to communicate with a mobile device, and the base station may be a Wi-Fi AP (Access Point, a wireless access point), or a GSM (Global System of Mobile communication). ) or BTS (Base Transceiver Station) in CDMA (Code Division Multiple Access), or NB (NodeB, Base Station) in WCDMA (Wideband Code Division Multiple Access) It may also be an eNB or an eNodeB (Evolved Node B) in an LTE (Long Term Evolution), or a relay station or an access point, or a base station device in a future 5G network.
  • Wi-Fi AP Access Point, a wireless access point
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NB NodeB, Base Station
  • WCDMA Wideband Code Division Multiple Access
  • FIG. 1 is only a typical scenario for applying the method for interference cancellation in the embodiment of the present invention, and may also include multiple base stations similar to the first base station or the second base station in the scenario of the application.
  • a plurality of terminals, which are similar to the first terminal or the second terminal, may be included in the embodiment of the present invention.
  • 2 illustrates a method 100 for interference cancellation, which may be performed by an interfered base station, ie, a first base station, in accordance with an embodiment of the present invention. As shown in FIG. 2, the method 100 includes:
  • the first base station determines a channel parameter of the transmit antenna of the second base station to the receive antenna of the first base station.
  • the first base station receives the first signal in the first resource, where the first signal includes: a first interference signal and an uplink useful signal, where the first interference signal is interference generated by the second base station transmitting the downlink second signal in the first resource Signal
  • the first base station receives the reconstruction information of the second signal sent by the second base station, and the resource used by the second base station to send the reconstruction information of the second signal is different from the first resource;
  • the first base station determines, according to the channel parameter and the reconstruction information of the second signal, the first interference signal in the first signal, and eliminates the first interference signal.
  • the first base station combines the transmit antenna of the second base station with the transmit antenna of the second base station to the receive antenna of the first base station according to the reconstruction information of the downlink signal sent by the second base station in the first resource.
  • the channel parameter can implement the cancellation of the interference signal between the base stations for the signal received at the first resource.
  • the first base station may determine that there are multiple channel parameters of the transmit antenna of the second base station to the receive antenna of the first base station.
  • S110 may include:
  • the first base station receives the second interference signal in the second resource, where the second interference signal is the interference signal generated by the second base station transmitting the downlink third signal in the second resource, where the second resource does not exist to the first base station.
  • the first base station receives the reconstruction information of the third signal sent by the second base station, and the resource used by the second base station to send the reconstruction information of the third signal is different from the second resource.
  • the first base station determines, according to the second interference signal and the reconstruction information of the third signal, a channel parameter of the transmit antenna of the second base station to the receive antenna of the first base station.
  • the terminal Since there is no uplink signal sent to the first base station in the second resource, that is, the terminal does not send a signal to the first base station, if the first base station does not send the signal in the second resource, the signal received by the first base station It can be approximated as the second interference signal generated by the second base station transmitting the third signal.
  • the third signal can be reconstructed by using the reconstruction information of the third signal, and the channel of the transmitting antenna of the second base station to the receiving antenna of the first base station can be estimated according to the second interference signal and the third signal obtained by the reconstruction. Parameters such as amplitude and phase.
  • the received signal may be first subjected to self-interference cancellation when estimating the channel parameter.
  • the residual signal after the interference cancellation can be approximated as the second interference signal, which is not limited by the embodiment of the present invention.
  • the third signal sent by the second base station in the second resource is a fixed signal that is agreed by the first base station and the second base station in advance.
  • the third signal is only used to test the channel parameters between the two base stations, not the downlink signals sent to the terminal.
  • the second base station since the third signal is a fixed signal that is agreed in advance, the second base station does not need to send the reconstruction information of the third signal to the first base station, but needs to allocate two base stations exclusively for estimating the channel.
  • the time-frequency resource of the parameter The schemes of S111 to S113 can save resource overhead to a large extent compared to the allocation of resources dedicated to estimating channel parameters for two base stations.
  • the channel parameters between the base stations may be estimated according to the configuration information and/or the location information of the base station, etc., which is not limited in this embodiment of the present invention.
  • the distance between adjacent base stations is about several kilometers or more, and the distance between the terminal and the base station is about several hundred meters.
  • the ratio of the path loss power between adjacent base stations and the path loss power between the base station and the terminal is generally greater than 5 dB, and the ratio of the transmission power of the base station to the transmission power of the terminal is generally about 20 dB. Therefore, for a base station, the power ratio between the received interference signal from the neighboring base station and the useful signal from the terminal is typically less than 15 dB. In this power ratio range, it is generally only necessary to eliminate the interference between the base stations in the digital baseband, but the embodiment of the present invention does not limit this.
  • the reconstruction information of the second signal may include: an unmodulated digital baseband signal and a modulation mode corresponding to the second signal; and the reconstruction information of the third signal may include: Unmodulated digital baseband signal and modulation.
  • the second resource is a resource used by the first base station to estimate channel parameters between the base stations.
  • the first base station obtains the second interference signal by processing the received second interference signal through a low noise amplifier (LNA, Low Noise Amplifier), a down conversion, and an analog-to-digital converter (ADC). Corresponding digital baseband signal.
  • LNA Low Noise amplifier
  • ADC analog-to-digital converter
  • the first base station may receive, by using an outband resource, reconstruction information of a third signal sent by the second base station, where the reconstruction information of the third signal includes an unmodulated digital baseband signal and a modulation mode corresponding to the third signal.
  • the out-of-band resource refers to a preset base station and a terminal for communicating.
  • the second base station may transmit reconstruction information of the third signal to the first base station by using an optical fiber, a microwave, or a cable.
  • the second base station may send the reconstruction information of the third signal to the first base station and the third downlink signal to the terminal may be simultaneously; the second base station may also advance to the first base station before transmitting the downlink third signal to the terminal. Transmitting information of the third signal is transmitted.
  • the above measures may enable the first base station to perform channel parameter estimation according to the reconstruction information of the third signal in time after receiving the second interference signal, thereby avoiding delay.
  • the first base station may reconstruct, according to the unmodulated digital baseband signal and the modulation manner corresponding to the third signal, the third signal sent by the second base station to the terminal at the first resource, and the third obtained by the reconstructing
  • the signal is a modulated digital baseband signal.
  • the channel parameters of the transmitting antenna of the second base station to the receiving antenna of the first base station may be estimated according to the digital baseband signal corresponding to the second interference signal and the third signal obtained by the reconstruction.
  • the location of the base station is fixed, if the environment in which the base station is located does not change greatly, it can be considered that the channel parameter remains unchanged for a period of time, so the channel parameter can be used for the second resource. Interference cancellation between base stations of first resources of similar time.
  • the first resource is a resource that the first base station needs to perform inter-base station interference cancellation.
  • the first signal received by the first base station includes: a first interference signal and an uplink useful signal, where the first interference signal is an interference signal generated by the second base station transmitting the downlink second signal in the first resource.
  • Inter-base station interference cancellation is to eliminate the first interference signal.
  • the first base station may process the received first signal through a LNA, a down-conversion, and an ADC to obtain a digital baseband signal corresponding to the first signal.
  • the first base station may receive, by using an out-of-band resource, reconstruction information of the second signal sent by the second base station, where the reconstruction information of the second signal includes an unmodulated digital baseband signal and a modulation mode corresponding to the second signal. . Similar to the channel parameters of the receiving antenna of the second base station to the receiving antenna of the first base station, in order to perform interference cancellation in time to avoid delay, the second base station sends the second signal reconstruction information to the terminal to the first base station.
  • the transmitting the second downlink signal may be simultaneous; the second base station may also send the reconstruction information of the second signal to the first base station in advance before transmitting the downlink second signal to the terminal.
  • the first base station may reconstruct, according to the unmodulated digital baseband signal and the modulation mode corresponding to the second signal, the second downlink signal sent by the second base station to the terminal by the first resource, where the reconstructed
  • the second signal is a modulated digital baseband signal.
  • it may be determined that the first base station receives at the first resource
  • the first interference signal to.
  • the first interference signal may be cancelled from the digital baseband signal corresponding to the first signal, thereby obtaining a digital baseband signal corresponding to the useful signal in the first signal.
  • the first base station may also not reconstruct the second signal, and directly estimate, according to the reconstruction information of the second signal and the channel parameter obtained in S113, that the first base station receives the second resource.
  • the first interference signal in the first signal is not limited in this embodiment of the present invention. It should be understood that, if the first base station further sends a signal to the first resource, the first signal may be self-interference canceled before the inter-base station digital interference cancellation is performed, which is not limited by the embodiment of the present invention.
  • reconstructing the second signal and the third signal refers to reconstructing the modulated digital baseband signal of the second signal and the third signal, in addition to reconstructing according to the unmodulated digital baseband signal and the modulation mode.
  • the modulated digital baseband signal can also be obtained directly from the second base station.
  • the reconstruction information of the second signal further comprises: a nonlinear estimation of the radio frequency channel of the second signal; and the reconstruction information of the third signal further comprises: a nonlinear estimation of the radio frequency channel of the third signal.
  • the embodiment of the present invention is applicable to the transmission medium.
  • the requirements are not high, and may be transmitted through a microwave or a common cable, which is not limited by the embodiment of the present invention.
  • the reconstruction information of the second signal includes: a radio frequency signal corresponding to the second signal; and the reconstruction information of the third signal includes: the radio frequency signal corresponding to the third signal.
  • the method of obtaining the channel parameters of the transmit antenna of the second base station to the receive antenna of the first base station may be similar to the acquisition method described in the previous embodiments S111 to S113.
  • the first base station receives the reconstruction information of the third signal sent by the second base station by using the outband resource, and includes the radio frequency signal corresponding to the third signal.
  • the first base station may obtain the digital baseband signal corresponding to the third signal by using a down conversion, a low pass filter (LPF, Low Pass Filter) and an ADC process.
  • LPF low pass filter
  • the second base station may send the third signal reconstruction information to the first base station and the downlink third signal to the terminal may be simultaneously; or may send the third to the first base station in advance before transmitting the downlink third signal to the terminal. Signal reconstruction information.
  • the first resource is a resource that the first base station needs to perform inter-base station interference cancellation.
  • the first signal received by the first base station includes: a first interference signal and an uplink useful signal.
  • the first base station may receive, by using an outband resource, reconfiguration information of the second signal sent by the second base station, where the reconstruction information of the second signal includes the radio frequency signal corresponding to the second signal.
  • the second base station may send the second signal reconstruction information to the first base station and the downlink second signal to the terminal.
  • the second base station may also send the downlink second signal to the terminal in advance.
  • the first base station transmits reconstruction information of the second signal.
  • the first base station performs LNA, down-conversion, and ADC processing on the received first signal to obtain a digital baseband signal corresponding to the first signal.
  • the first base station may also perform down-conversion, LPF, and ADC processing on the radio frequency signal corresponding to the second signal to obtain a digital baseband signal corresponding to the second signal.
  • the digital baseband signal corresponding to the first interference signal can be determined according to the digital baseband signal corresponding to the second signal and the channel parameter obtained in S113.
  • the first base station cancels the digital baseband signal corresponding to the first interference signal in the digital baseband signal corresponding to the first signal, thereby obtaining the useful signal in the first signal.
  • the reconstruction information of the second signal and the reconstruction information of the third signal sent by the second base station to the first base station, where the radio signal is included Therefore, even when the linearity of the radio channel of the second base station is insufficient, there is no need to separately transmit a nonlinear estimation of the radio frequency channel to the first base station, and the first base station can obtain the baseband with the nonlinearity of the transmission channel by using the received radio frequency signal. Reference signal.
  • the first base station receives the reconstruction information of the second signal sent by the second base station and/or the reconstruction information of the third signal sent by the first base station by the second base station, and may pass the optical fiber. , microwave or ordinary cable transmission.
  • the first base station and the second base station are micro-stations arranged in the form of a heterogeneous network (HetNet, Heterogeneous Network), they can communicate with the macro station through microwave, optical fiber or ordinary cable, thereby implementing the Communication between a base station and a second base station.
  • HetNet Heterogeneous Network
  • the transmission using the optical fiber can reduce the loss, so that the quality of the transmitted radio frequency signal is guaranteed.
  • other achievable direct communication methods are also available, which are not limited in the embodiment of the present invention. It should be understood that as long as the resources satisfying the condition for estimating the channel parameters can be used as the second resource to estimate the channel parameters, the channel parameters between the base stations can be measured in real time, so as to obtain the latest channel information between the base stations, so that The channel parameters used by a resource for inter-base station interference cancellation are more accurate, and a better interference cancellation effect can be achieved.
  • the first base station can accurately estimate the channel parameters between the base stations by using the reconstruction information of the downlink signal sent by the second base station in the second resource, the base station The inter-channel parameters are applied to the interference cancellation of the signals received at the first resource, and a better interference cancellation effect can be obtained.
  • the use of resources by each terminal is scheduled by the base station.
  • the first base station and the second base station may mutually transmit respective resource allocation conditions to each other.
  • the first base station and the second base station can determine a second resource for estimating channel parameters and a first resource for interference cancellation.
  • each base station only needs to notify the interfered base station of the downlink resources used by each base station.
  • the reference signal sent by the second base station to the first base station is a radio frequency signal
  • the second base station does not need to inform the first base station of the downlink resources used by the first base station.
  • the first base station can learn the downlink resources used by the second base station by receiving the radio frequency reference signal.
  • the method for the base station to determine the channel parameters or the resources for performing interference cancellation may also have other feasible methods, which are not limited in the embodiment of the present invention.
  • the interference cancellation may be to eliminate all interference components in the signal (including the main path interference signal and the near-field interference signal), or to eliminate some interference components in the signal (including main path interference). Part of the signal and part of the near-field interference signal).
  • the method 200 includes:
  • the second base station sends the downlink second signal in the first resource, where the first base station receives the first signal, where the first signal includes: the first interference signal generated by the second signal and the uplink useful signal;
  • the second base station sends the reconstruction information of the second signal to the first base station, so that the first base station determines, according to the reconstruction information of the second signal, and the channel parameter of the transmit antenna of the second base station to the receive antenna of the first base station. a first interference signal in the first signal, and eliminating the first interference signal, wherein the resource used by the second base station to transmit the reconstruction information of the second signal is different from the first resource. Therefore, the method for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first base station, the reconstruction information of the downlink signal sent by the second base station in the first resource, so that the first base station can The channel parameter can implement the cancellation of the interference signal between the base stations for the signal received at the first resource.
  • the method 200 may further include: the second base station sends a downlink third signal in the second resource, where the second resource does not have an uplink signal sent to the first base station.
  • the first base station receives the second interference signal generated by the third signal at the second resource; the second base station sends the reconstruction information of the third signal to the first base station, so that the first base station reconstructs information according to the third signal and
  • the second interference signal determines a channel parameter of the transmit antenna of the second base station to the receive antenna of the first base station, where the resource used by the second base station to transmit the reconstruction information of the third signal is different from the second resource.
  • the reconstruction information of the second signal includes: an unmodulated digital baseband signal corresponding to the second signal and a modulation mode; and the reconstruction information of the third signal includes: Modulated digital baseband signal and modulation scheme.
  • the reconstruction information of the second signal further includes: a nonlinear estimation of the radio frequency channel of the second signal; and the reconstruction information of the third signal further includes: the radio frequency channel of the third signal Nonlinear estimation.
  • the reconstruction information of the second signal includes: a radio frequency signal corresponding to the second signal; and the reconstruction information of the third signal includes: the radio frequency signal corresponding to the third signal.
  • the sending, by the second base station, the reconstruction information of the third signal to the first base station may include: the second base station transmitting the reconstruction information of the third signal to the first base station by using an optical fiber, a microwave, or a cable.
  • the sending, by the second base station, the reconstruction information of the second signal to the first base station may include: the second base station transmitting the reconstruction information of the second signal to the first base station by using an optical fiber, a microwave, or a cable.
  • the method for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first base station, the reconstruction information of the downlink signal sent by the second base station in the second resource, so that the first base station can accurately estimate the reconstructed information according to the reconstructed information.
  • the method for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first base station, the reconstruction information of the downlink signal sent by the second base station in the second resource, so that the first base station can accurately estimate the reconstructed information according to the reconstructed information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of an apparatus 300 for interference cancellation in accordance with an embodiment of the present invention.
  • the apparatus 300 includes:
  • a determining module 310 configured to determine a channel parameter of a transmit antenna of the second device to a receiving antenna of the device
  • the first receiving module 320 is configured to receive the first signal at the first resource, where the first signal includes: a first interference signal and an uplink useful signal, where the first interference signal is a second signal that is sent by the second device to the first resource. Interference signal generated;
  • the second receiving module 330 is configured to receive reconstruction information of the second signal sent by the second device, where the resource used by the second device to send the reconstruction information of the second signal is different from the first resource;
  • the interference cancellation module 340 is configured to determine, according to the channel parameter and the reconstruction information of the second signal, the first interference signal in the first signal, and eliminate the first interference signal.
  • the apparatus for interference cancellation combines the channel information of the transmitting antenna of the second apparatus to the receiving antenna of the first apparatus according to the reconstruction information of the downlink signal sent by the second apparatus in the first resource, Elimination of interfering signals between devices for signals received at the first resource can be achieved.
  • the determining module 310 includes: a first receiving unit 311, configured to receive a second interference signal at a second resource, where the second interference signal is a second device in the second resource Transmitting an interference signal generated by the downlink third signal, where the uplink signal sent to the device does not exist in the second resource;
  • a second receiving unit 312 configured to receive reconstruction information of a third signal sent by the second device, where the resource used by the second device to send the reconstruction information of the third signal is different from the second resource;
  • the determining unit 313 is configured to determine, according to the second interference signal and the reconstruction information of the third signal, a channel parameter of the transmit antenna of the second device to the receive antenna of the device.
  • the reconstruction information of the second signal received by the second receiving module 330 includes: an unmodulated digital baseband signal corresponding to the second signal and a modulation mode; and the second receiving unit 312 receives the first
  • the reconstruction information of the three signals includes: an unmodulated digital baseband signal corresponding to the third signal and a modulation mode.
  • the reconstruction information of the second signal received by the second receiving module 330 further includes: a nonlinear estimation of the radio frequency channel of the second signal; and reconstruction information of the third signal received by the second receiving unit 312 Also included is: a nonlinear estimate of the RF channel of the third signal.
  • the reconstruction information of the second signal received by the second receiving module 330 includes: a radio frequency signal corresponding to the second signal; and the reconstruction information of the third signal received by the second receiving unit 312 includes : The RF signal corresponding to the third signal.
  • the second receiving unit 312 may be specifically configured to: receive, by using an optical fiber, a microwave, or a cable, reconstruction information of the third signal sent by the second device.
  • the second receiving module 330 may be specifically configured to: receive, by using an optical fiber, a microwave, or a cable, the second device to transmit the reconstruction information of the second signal.
  • the apparatus 300 for interference cancellation may be a base station, a relay station or an access point, etc., and may be other means capable of exercising or partially exercising the functionality of the base station.
  • the apparatus for interference cancellation provided by the embodiment of the present invention can accurately estimate the channel parameter between the devices according to the reconstruction information of the downlink signal sent by the second device in the second resource, and the channel between the devices The parameters are applied to the interference cancellation of the signals received at the first resource, and a better interference cancellation effect can be obtained.
  • FIG. 7 shows a schematic block diagram of an apparatus 400 for interference cancellation in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • the first sending module 410 is configured to send the downlink second signal in the first resource, where the first device receives the first signal, where the first signal includes: the first interference signal generated by the second signal and the uplink Useful signal
  • the second sending module 420 is configured to send, to the first device, the reconstruction information of the second signal, so that the first device, according to the reconstruction information of the second signal, and the channel parameter of the transmitting antenna of the device to the receiving antenna of the first device, Determining a first interference signal in the first signal, and eliminating the first interference signal, wherein the resource used by the device to transmit the reconstruction information of the second signal is different from the first resource.
  • the apparatus for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first apparatus, the reconstruction information of the downlink signal sent by the apparatus in the first resource, so that the first apparatus can be based on the reconstruction information and the apparatus.
  • the channel parameter is used to cancel the interference signal between the devices received by the first resource.
  • the apparatus 400 may further include: a third sending module, configured to send, in the second resource, a downlink third signal, where the second resource does not have an uplink signal sent to the first device,
  • the first device receives the second interference signal generated by the third signal at the second resource
  • the fourth sending module is configured to send, to the first device, the reconstruction information of the third signal, so as to facilitate the first device root Determining, according to the reconstruction information of the third signal and the second interference signal, a channel parameter of the transmitting antenna of the device to the receiving antenna of the first device, where the resource used by the device to transmit the reconstruction information of the third signal is different from the second resource .
  • the reconstruction information of the second signal sent by the second sending module 420 includes: an unmodulated digital baseband signal corresponding to the second signal and a modulation mode; and a third sent by the fourth sending module.
  • the reconstruction information of the signal includes: an unmodulated digital baseband signal corresponding to the third signal and a modulation mode.
  • the reconstruction information of the second signal sent by the second sending module 420 further includes: a nonlinear estimation of the radio frequency channel of the second signal; and the reconstruction information of the third signal sent by the fourth sending module further includes: A nonlinear estimate of the RF channel of the signal.
  • the reconstruction information of the second signal sent by the second sending module 420 includes: a radio frequency signal corresponding to the second signal; and the reconstruction information of the third signal sent by the fourth sending module includes: The radio signal corresponding to the third signal.
  • the fourth sending module 440 may be specifically configured to: send the reconstruction information of the third signal to the first device by using an optical fiber, a microwave, or a cable.
  • the second sending module 420 may be specifically configured to: send the reconstruction information of the second signal to the first device by using an optical fiber, a microwave, or a cable.
  • the apparatus 400 for interference cancellation may be a base station, a relay station or an access point, etc., and may be other devices capable of exercising or partially exercising the functionality of the base station. Therefore, the apparatus for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first apparatus, the reconstruction information of the downlink signal sent by the apparatus in the second resource, so that the first apparatus can accurately estimate the reconstructed information according to the reconstructed information.
  • the channel parameters between the devices apply the channel parameters between the devices to the interference cancellation of the signals received at the first resource, so that a better interference cancellation effect can be obtained.
  • FIG. 8 shows a schematic block diagram of an apparatus 500 for interference cancellation in accordance with another embodiment of the present invention.
  • the apparatus 500 includes a processor 510, a receiver 520, a memory 530, and a bus 540.
  • the processor 510, the receiver 520, and the memory 530 are connected by a bus system 540 for storing instructions for executing instructions stored by the memory 530.
  • the receiver 520 is configured to:
  • the first signal includes: a first interference signal and an uplink useful signal, where the first interference signal is an interference signal generated by the second device transmitting the downlink second signal in the first resource;
  • Processor 510 is used to:
  • the apparatus for interference cancellation combines the channel information of the transmitting antenna of the second apparatus to the receiving antenna of the first apparatus according to the reconstruction information of the downlink signal sent by the second apparatus in the first resource, Elimination of interfering signals between devices for signals received at the first resource can be achieved.
  • the processor 510 may be a central processing unit (CPU), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor 510.
  • a portion of memory 530 may also include non-volatile random access memory.
  • the memory 530 can also store information of the device type.
  • the bus system 540 can include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 540 in the figure.
  • the steps of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 530, and the processor 510 reads the information in the memory 530 and performs the steps of the above method in combination with the hardware. To avoid repetition, it will not be described in detail here.
  • the receiver 520 when determining a channel parameter of the transmitting antenna of the second device to the receiving antenna of the device 500, the receiver 520 is further configured to:
  • the processor 510 is specifically configured to:
  • the channel parameters of the transmit antenna of the second device to the receive antenna of the device 500 are determined based on the reconstructed information of the second and third signals.
  • the reconstruction information of the second signal received by the receiver 520 includes: an unmodulated digital baseband signal corresponding to the second signal and a modulation mode; and a weight of the third signal received by the receiver 520
  • the information includes: an unmodulated digital baseband signal corresponding to the third signal and a modulation mode.
  • the reconstruction information of the second signal received by the receiver 520 further includes: a nonlinear estimation of the radio frequency channel of the second signal; the reconstruction information of the third signal received by the receiver 520 further includes: a radio frequency of the third signal A nonlinear estimate of the channel.
  • the reconstruction information of the second signal received by the receiver 520 includes: a radio frequency signal corresponding to the second signal; and the reconstruction information of the third signal received by the receiver 520 includes: the third signal Corresponding RF signal.
  • receiving the reconstruction information of the third signal sent by the second device by the receiver 520 may include: receiving, by using an optical fiber, a microwave, or a cable, reconstruction information of the third signal sent by the second device.
  • receiving the reconstruction information of the second signal sent by the second device by the receiver 520 may include: receiving, by the first device, the reconstruction information of the second signal by the second device by using an optical fiber, a microwave, or a cable.
  • the apparatus 500 for interference cancellation may be a base station, a relay station or an access point, etc., and may be other devices capable of exercising or partially exercising the functionality of the base station.
  • apparatus 500 in accordance with an embodiment of the present invention may correspond to a body that performs the methods of the embodiments of the present invention, and may also correspond to apparatus 300 in accordance with an embodiment of the present invention, and the above and other of the various modules in apparatus 500.
  • the operation and/or function is to implement the corresponding flow of the method of FIG. 2 to FIG. 4, and for brevity, no further details are provided herein.
  • FIG. 9 shows a schematic block diagram of an apparatus 600 for interference cancellation in accordance with another embodiment of the present invention.
  • the apparatus 600 includes a processor 610, a transmitter 620, a memory 630, and a bus 640.
  • the processor 610, the transmitter 620, and the memory 630 are connected by a bus system 640 for storing instructions for executing instructions stored by the memory 630.
  • the transmitter 620 is configured to:
  • the apparatus for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first apparatus, the reconstruction information of the downlink signal sent by the apparatus in the first resource, so that the first apparatus can be based on the reconstruction information and the apparatus.
  • the channel parameter is used to cancel the interference signal between the devices received by the first resource.
  • the processor 610 may be a central processing unit (CPU), and the processor 610 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 630 can include read only memory and random access memory and provides instructions and data to the processor 610.
  • a portion of memory 630 may also include non-volatile random access memory.
  • the memory 630 can also store information of the device type.
  • the bus system 640 can include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 640 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 630.
  • the processor 610 reads the information in the memory 630 and completes the steps of the above method in combination with hardware. To avoid repetition, it will not be described in detail here.
  • the transmitter 620 is further configured to:
  • the resource used by the second device to transmit the reconstruction information of the third signal is different from the second resource.
  • the reconstruction information of the second signal sent by the transmitter 620 includes: an unmodulated digital baseband signal corresponding to the second signal and a modulation mode; and a weight of the third signal sent by the transmitter 620
  • the information includes: an unmodulated digital baseband signal corresponding to the third signal and a modulation mode.
  • the reconstruction information of the second signal sent by the transmitter 620 further includes: a nonlinear estimation of the radio frequency channel of the second signal; the reconstruction information of the third signal sent by the transmitter 620 further includes: a radio frequency of the third signal A nonlinear estimate of the channel.
  • the reconstruction information of the second signal sent by the transmitter 620 includes: the radio frequency signal corresponding to the second signal; the reconstruction information of the third signal sent by the transmitter 620 includes: the third signal Corresponding RF signal.
  • the transmitting, by the transmitter 620, the reconstruction information of the third signal to the first device may include: transmitting the reconstruction information of the third signal to the first device by using an optical fiber, a microwave, or a cable.
  • the transmitting, by the transmitter 620, the reconstruction information of the second signal to the first device may include: transmitting the reconstruction information of the second signal to the first device by using an optical fiber, a microwave, or a cable.
  • the apparatus 600 for interference cancellation may be a base station, a relay station or an access point, etc., and may be other devices capable of exercising or partially exercising the functionality of the base station.
  • apparatus 600 in accordance with embodiments of the present invention may correspond to a body that performs the methods of the embodiments of the present invention, and may also correspond to apparatus 400 in accordance with an embodiment of the present invention, and the above and other
  • the operation and/or function is to implement the corresponding flow of the method of FIG. 2 to FIG. 4, and for brevity, no further details are provided herein. Therefore, the apparatus for interference cancellation provided by the embodiment of the present invention, by transmitting, to the first apparatus, the reconstruction information of the downlink signal sent by the apparatus in the second resource, so that the first apparatus can accurately estimate the reconstructed information according to the reconstructed information.
  • the channel parameters between the devices apply the channel parameters between the devices to the interference cancellation of the signals received at the first resource, so that a better interference cancellation effect can be obtained.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect connection or communication connection through some interface, device or unit, or may be an electrical, mechanical or other form. connection.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated in In a unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like. .

Abstract

本发明公开了一种用于干扰消除的方法和装置,该方法包括:第一基站确定第二基站的发射天线到第一基站的接收天线的信道参数;第一基站在第一资源接收第一信号,第一信号包括:第一干扰信号和上行的有用信号,第一干扰信号为第二基站在第一资源发送下行的第二信号产生的干扰信号;第一基站接收第二基站发送的第二信号的重构信息;第一基站根据信道参数和第二信号的重构信息,确定第一信号中的第一干扰信号,并消除第一干扰信号。本发明实施例的用于干扰消除的方法和装置,被干扰基站根据干扰基站发送的上行信号的相关信息,结合两个基站间的信道参数,可以实现对干扰基站发送的上行信号所产生的干扰信号的消除。

Description

用于干扰消除的方法和装置 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及用于干扰消除的 方法和装置。 背景技术
基站与终端进行通信时, 可能会受到相邻或相近的其它基站的干扰。 具 体而言, 一个基站在某一时频资源接收来自终端的有用信号的同时, 其相邻 或相近的其它基站可能在使用相同的时频资源向终端发送信号。在这种情况 下, 相邻或相近的干扰基站发送的信号会影响该基站接收信号, 使得该基站 无法正确接收有用信号。
通常地, 如果上述两个相邻或相近的基站不具有全双工通信能力, 在设 计资源的分配时,可以将一个基站使用的上行资源与另一个基站使用的下行 资源设置为正交的。 然而, 随着全双工通信技术的普及, 基站可以在一个时 频资源上同时进行接收与发送操作,使得两个相邻或相近的基站之间的干扰 问题显得尤为突出。 发明内容
本发明实施例提供一种用于干扰消除的方法和装置, 能够对接收到的信 号中的基站间的干扰信号进行消除。
第一方面提供了一种用于干扰消除的方法, 该方法包括: 第一基站确定 第二基站的发射天线到第一基站的接收天线的信道参数; 第一基站在第一资 源接收第一信号, 第一信号包括: 第一干扰信号和上行的有用信号, 第一干 扰信号为第二基站在第一资源发送下行的第二信号产生的干扰信号; 第一基 站接收第二基站发送的第二信号的重构信息, 第二基站发送第二信号的重构 信息所使用的资源与第一资源不同; 第一基站根据信道参数和第二信号的重 构信息, 确定第一信号中的第一干扰信号, 并消除第一干扰信号。
第二方面提供了一种用于干扰消除的方法, 该方法包括: 第二基站在第 一资源发送下行的第二信号, 其中, 在第一资源第一基站接收第一信号, 第 一信号包括: 第二信号产生的第一干扰信号和上行的有用信号; 第二基站向 第一基站发送第二信号的重构信息, 以便于第一基站根据第二信号的重构信 息和第二基站的发射天线到第一基站的接收天线的信道参数,确定第一信号 中的第一干扰信号, 并消除第一干扰信号, 其中, 第二基站发送第二信号的 重构信息所使用的资源与第一资源不同。
第三方面提供了一种用于干扰消除的装置,该装置包括: 确定模块 310, 用于确定第二装置的发射天线到装置的接收天线的信道参数; 第一接收模块 320, 用于在第一资源接收第一信号, 第一信号包括: 第一干扰信号和上行 的有用信号, 第一干扰信号为第二装置在第一资源发送下行的第二信号产生 的干扰信号; 第二接收模块 330, 用于接收第二装置发送的第二信号的重构 信息, 第二装置发送第二信号的重构信息所使用的资源与第一资源不同; 干 扰消除模块 340, 用于根据信道参数和第二信号的重构信息, 确定第一信号 中的第一干扰信号, 并消除第一干扰信号。
第四方面提供了一种用于干扰消除的装置, 该装置包括: 第一发送模块 410, 用于在第一资源发送下行的第二信号, 其中, 在第一资源第一装置接 收第一信号, 第一信号包括: 第二信号产生的第一干扰信号和上行的有用信 号; 第二发送模块 420, 用于向第一装置发送第二信号的重构信息, 以便于 第一装置根据第二信号的重构信息和装置的发射天线到第一装置的接收天 线的信道参数, 确定第一信号中的第一干扰信号, 并消除第一干扰信号, 其 中, 装置发送第二信号的重构信息所使用的资源与第一资源不同。
基于上述技术方案, 本发明实施例提供的用于干扰消除的方法和装置, 通过被干扰基站根据干扰基站发送的上行信号的重构信息, 结合两个基站间 的信道参数, 可以实现对干扰基站发送的上行信号所产生的干扰信号的消 除。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面所描述 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是应用本发明实施例的用于干扰消除的方法的一个场景的示意图。 图 2是根据本发明一个实施例的用于干扰消除的方法的示意性流程图。 图 3 是根据本发明另一个实施例的用于干扰消除的方法的示意性流程 图。
图 4 是根据本发明另一个实施例的用于干扰消除的方法的示意性流程 图。
图 5是根据本发明一个实施例的用于干扰消除的装置的示意性框图。 图 6是根据本发明一个实施例的确定模块的示意性框图。
图 7是根据本发明另一个实施例的用于干扰消除的装置的示意性框图。 图 8是根据本发明另一个实施例的用于干扰消除的装置的示意性框图。 图 9是根据本发明另一个实施例的用于干扰消除的装置的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
图 1示出了应用本发明实施例的用于干扰消除的方法的一个场景的示意 图。 在如图 1所示的场景中, 两个相邻或相近的基站各自和终端进行通信。 第一基站接收第一终端发送信号的时频资源,有可能与相邻或相近的第二基 站向第二终端发送信号的时频资源相同。 在这种情况下, 发送信号的第二基 站会对接收信号的第一基站产生干扰,使得第一基站无法正确接收来自第一 终端的有用信号。
通常地, 如果上述两个相邻或相近的基站不具有全双工通信能力, 在设 计资源的分配时,可以将一个基站使用的上行资源与另一个基站使用的下行 资源设置为正交的。 然而, 随着全双工通信技术的普及, 基站可以在一个时 频资源上同时进行接收与发送操作,使得两个相邻或相近的基站之间的干扰 问题显得尤为突出。本发明实施例提供了针对如上所述的基站间的干扰信号 进行干扰消除的方案。
下面结合相关公式, 对本发明实施例方案的原理进行简单说明。 假设相 邻的两个小区的基站在使用相同的时频资源跟各自小区内的终端进行全双 工通信,被干扰的基站同时接收到来自另一基站的干扰信号和来自本小区内 终端发送的有用信号, 其接收到的信号; y可以表示为: y = ^self Xself + ^BS XBS + ^UE XUE + U 其中, hself 、 hss和 分别为自干扰信道、基站间信道和通信信道的信 道参数, self . ^和 ^分别为该基站发送的信号、 产生干扰的基站发送的 信号和小区内的终端发送的信号。 由上述表达式可以看出, 要在信号)中获 得终端发送的有用信号, 需要将干扰部分 h^ x^和 hss Xi¾消除。 其中消除 self xself , 即自干扰信号, 不在本发明实施例中进行说明, 仅讨论基站间的 干扰信号 hss Xss的消除。要将该基站间的干扰信号进行消除,我们需要获得 基站间信道参数 hss和产生干扰的基站发送的信号 xss。 其中, hss可以通过 信道估计或其他方法获得, ^可以从产生干扰的基站获得。 为了描述方便, 下文中将被干扰基站接收到的信号中的 hss xss部分称为干扰信号,例如第一 干扰信号、 第二干扰信号。
应理解, 在本发明实施例中, 终端即釆用无线全双工技术或无线半双工 技术的接入终端, 也可以称为系统、 用户单元、 用户站、 移动站、 移动台、 远方站、 远程终端、 移动设备、 用户终端、 终端、 无线通信设备、 用户代理、 用户装置或用户设备(UE, User Equipment )。 终端可以是蜂窝电话、 无绳 电话、 SIP ( Session Initiation Protocol, 会话启动十办议)电话、 WLL ( Wireless Local Loop, 无线本地环路)站、 PDA ( Personal Digital Assistant, 个人数字 处理)、 具有无线通信功能的手持设备、 车载设备、 计算设备或连接到无线 调制解调器的其它处理设备。
还应理解, 在本发明实施例中, 基站可用于与移动设备通信, 基站可以 是 Wi-Fi的 AP ( Access Point, 无线接入点), 或者是 GSM ( Global System of Mobile communication, 全球移动通讯 )或 CDMA ( Code Division Multiple Access , 码分多址) 中的 BTS ( Base Transceiver Station, 基站), 也可以是 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址)中的 NB ( NodeB,基站),还可以是 LTE ( Long Term Evolution,长期演进)中的 eNB 或 eNodeB ( Evolutional Node B, 演进型基站), 或者中继站或接入点, 或者 未来 5G网络中的基站设备等。
还应理解, 图 1所示的仅为应用本发明实施例的用于干扰消除的方法的 一个典型场景,在应用的场景中还可以包括类似于第一基站或第二基站的多 个基站, 也可以包括类似于第一终端或第二终端的多个终端, 本发明实施例 对此不作限定。 图 2示出了根据本发明一个实施例的用于干扰消除的方法 100, 该方法 100可以由被干扰基站, 即第一基站执行。 如图 2所示, 该方法 100包括:
5110,第一基站确定第二基站的发射天线到第一基站的接收天线的信道 参数;
S120, 第一基站在第一资源接收第一信号, 第一信号包括: 第一干扰信 号和上行的有用信号, 第一干扰信号为第二基站在第一资源发送下行的第二 信号产生的干扰信号;
S130, 第一基站接收第二基站发送的第二信号的重构信息, 第二基站发 送第二信号的重构信息所使用的资源与第一资源不同;
S140, 第一基站根据信道参数和第二信号的重构信息, 确定第一信号中 的第一干扰信号, 并消除第一干扰信号。
因此, 本发明实施例提供的用于干扰消除的方法, 第一基站根据第二基 站在第一资源发送的下行信号的重构信息, 结合第二基站的发射天线到第一 基站的接收天线的信道参数, 能够实现对在第一资源接收的信号进行基站间 的干扰信号的消除。
在 S110中, 第一基站确定第二基站的发射天线到第一基站的接收天线 的信道参数可以有多种。 可选地, 如图 3所示, 作为一个实施例, S110可以 包括:
5111 , 第一基站在第二资源接收第二干扰信号, 第二干扰信号为第二基 站在第二资源发送下行的第三信号产生的干扰信号, 其中, 在第二资源不存 在向第一基站发送的上行信号;
5112, 第一基站接收第二基站发送的第三信号的重构信息, 第二基站发 送第三信号的重构信息所使用的资源与第二资源不同;
5113 , 第一基站根据第二干扰信号和第三信号的重构信息, 确定第二基 站的发射天线到第一基站的接收天线的信道参数。
由于在第二资源, 不存在向第一基站发送的上行信号, 即终端不向第一 基站发送信号, 如果在第二资源第一基站不向外发送信号, 那么第一基站所 接收到的信号可以近似地认为是第二基站发送第三信号产生的第二干扰信 号。 通过第三信号的重构信息可以重构获得第三信号, 进而可以根据该第二 干扰信号和重构获得的第三信号,估算出第二基站的发送天线到第一基站的 接收天线的信道参数, 如幅度与相位等。 应理解, 如果在第二资源, 第一基站在接收第二干扰信号的同时还向外 发送信号, 则在估算信道参数时, 可以首先对接收的信号进行自干扰消除。 自干扰消除后的残余信号可以近似认为是第二干扰信号, 本发明实施例对此 不作限定。
可选地, 还可以对上述实施例作一些变化, 来实现确定第二基站的发射 天线到第一基站的接收天线的信道参数。 例如, 第二基站在第二资源发送的 第三信号是第一基站与第二基站提前约定好的一个固定的信号。该第三信号 仅用于测试两基站间的信道参数, 不是向终端发送的下行信号。 在这种情况 下, 由于第三信号是提前约定好的固定的信号, 第二基站不需再向第一基站 发送第三信号的重构信息,但需要为两个基站分配专门用于估算信道参数的 时频资源。 S111至 S113的方案相比于为两个基站分配专门用于估算信道参 数的资源而言, 可以在很大的程度上节省资源的开销。
应理解,还可以根据基站的配置信息和 /或位置信息等,估算基站间的信 道参数, 本发明实施例对此不作限定。
一般而言, 相邻的基站间的距离约为几千米或者更远, 终端与基站的距 离约为在几百米。相邻基站间的路损功率和基站与终端间的路损功率的比值 一般大于 5 dB, 基站的发射功率和终端的发射功率的比值一般约为 20 dB。 因此, 对于基站而言, 其接收到来自相邻基站的干扰信号和来自终端的有用 信号之间的功率比值一般小于 15 dB。 在这个功率比值范围内, 一般只需要 在数字基带对基站间的干扰进行消除即可, 但本发明实施例对此并不作限 定。
可选地, 作为一个具体实施例, 第二信号的重构信息可以包括: 第二信 号对应的未经调制的数字基带信号和调制方式; 第三信号的重构信息可以包 括: 第三信号对应的未经调制的数字基带信号和调制方式。
在 S111 中, 第二资源是第一基站用于估算基站间信道参数的资源。 第 一基站将接收到的第二干扰信号通过低噪声放大器 (LNA, Low Noise Amplifier ), 下变频及模拟数字变换器(ADC, Analog-to-Digital Converter ) 等处理后, 可以获得第二干扰信号对应的数字基带信号。
在 S112中, 第一基站可以通过带外资源接收第二基站发送的第三信号 的重构信息, 该第三信号的重构信息包括第三信号对应的未经调制的数字基 带信号和调制方式。 其中, 带外资源是指预先设定的基站和终端进行通信的 时频资源以外的资源, 例如第二基站可以通过光纤、 微波或线缆等向第一基 站发送第三信号的重构信息。
第二基站向第一基站发送第三信号的重构信息与其向终端发送下行的 第三信号可以是同时的; 第二基站也可以在向终端发送下行的第三信号之 前, 提前向第一基站发送第三信号的重构信息。 以上举措可以使得第一基站 在接收到第二干扰信号后, 及时地根据第三信号的重构信息, 进行信道参数 的估算, 避免产生时延。
在 S113 中, 第一基站可以根据第三信号对应的未经调制的数字基带信 号和调制方式, 重构得到第二基站在第一资源向终端发送的第三信号, 该重 构获得的第三信号为经过调制的数字基带信号。根据第二干扰信号对应的数 字基带信号和重构获得的第三信号, 可以估算出第二基站的发送天线到第一 基站的接收天线的信道参数。 一般而言, 由于基站的位置是固定的, 如果基 站所处的环境不发生大的变化, 可以认为在一段时间内该信道参数是保持不 变的, 因此该信道参数可以用于与第二资源时间相近的第一资源的基站间的 干扰消除。
在 S120中, 第一资源是第一基站需要进行基站间干扰消除的资源。 在 第一资源,第一基站接收的第一信号包括:第一干扰信号和上行的有用信号, 第一干扰信号为第二基站在第一资源发送下行的第二信号产生的干扰信号。 基站间干扰消除是为了将第一干扰信号消除。 第一基站可以将接收到的第一 信号通过 LNA、 下变频及 ADC等处理获得第一信号对应的数字基带信号。
在 S130中, 第一基站可以通过带外资源接收第二基站发送的第二信号 的重构信息, 该第二信号的重构信息包括第二信号对应的未经调制的数字基 带信号和调制方式。 与获得第二基站的发送天线到第一基站的接收天线的信 道参数同理, 为了及时进行干扰消除, 避免产生时延, 第二基站向第一基站 发送第二信号的重构信息与向终端发送下行的第二信号可以是同时的; 第二 基站也可以在向终端发送下行的第二信号之前,提前向第一基站发送第二信 号的重构信息。
在 S140中, 第一基站可以根据第二信号对应的未经调制的数字基带信 号和调制方式, 重构得到第二基站在第一资源向终端发送的下行的第二信 号, 该重构获得的第二信号为经过调制的数字基带信号。 根据该重构获得的 第二信号和在 S113 中获得的信道参数, 可以确定第一基站在第一资源接收 到的第一干扰信号。可以从第一信号对应的数字基带信号中将该第一干扰信 号消除, 进而获得第一信号中的有用信号对应的数字基带信号。
应理解, 在本发明实施例中, 第一基站也可以不重构第二信号, 直接根 据第二信号的重构信息和在 S113 中获得的信道参数估算出第一基站在第二 资源接收到的第一信号中的第一干扰信号, 本发明实施例对此不作限定。 还 应理解, 如果第一基站在第一资源还对外发送信号, 则在进行基站间数字干 扰消除之前, 还可以对第一信号进行自干扰消除, 本发明实施例对此不作限 定。
在本发明实施例中, 重构第二信号和第三信号是指重构第二信号和第三 信号的经过调制的数字基带信号, 除根据未经调制的数字基带信号和调制方 式重构获得以外, 还可以直接从第二基站获取经过调制的数字基带信号。
此外, 在估算信道参数和进行干扰消除时, 如果第二基站估计到射频通 道线性度不足, 还需要向第一基站发送射频通道的非线性估计。 相应地, 第 二信号的重构信息还包括: 第二信号的射频通道的非线性估计; 第三信号的 重构信息还包括: 第三信号的射频通道的非线性估计。
在本发明实施例中, 第二基站向第一基站发送的第二信号的重构信息和 第三信号的重构信息, 其中包含的是数字基带参考信号, 因此, 本发明实施 例对传输介质的要求不高, 通过微波或普通线缆进行传输即可, 本发明实施 例对此不作限定。
可选地, 作为另一个具体实施例, 第二信号的重构信息包括: 第二信号 对应的射频信号; 第三信号的重构信息包括: 第三信号对应的射频信号。
在本具体实施例中,获得第二基站的发送天线到第一基站的接收天线的 信道参数的方法可以与上一实施例 S111至 S113中描述的获取方法相类似。 不同的是, 在本具体实施例 S112中, 第一基站通过带外资源接收第二基站 发送的第三信号的重构信息包括第三信号对应的射频信号。 在 S113 中, 第 一基站可以将该第三信号对应的射频信号通过下变频、 低通滤波器(LPF, Low Pass Filter )和 ADC处理获得第三信号对应的数字基带信号。 根据第二 干扰信号对应的数字基带信号和第三信号对应的数字基带信号, 可以估算出 第二基站的发送天线到第一基站的接收天线的信道参数, 该信道参数可以用 于与第二资源时间相近的第一资源的基站间的干扰消除。 同理, 如果在第二 资源, 第一基站在接收第二干扰信号的同时还向外发送信号, 则在估算信道 参数时, 可以首先进行自干扰消除。 第二基站向第一基站发送第三信号的重 构信息与其向终端发送下行的第三信号可以是同时的; 也可以在向终端发送 下行的第三信号之前, 提前向第一基站发送第三信号的重构信息。
在 S120中, 第一资源是第一基站需要进行基站间干扰消除的资源。 在 第一资源,第一基站接收的第一信号包括:第一干扰信号和上行的有用信号。 在 S130中, 第一基站可以通过带外资源接收第二基站发送的第二信号的重 构信息, 该第二信号的重构信息包括第二信号对应的射频信号。 同理, 第二 基站向第一基站发送第二信号的重构信息与向终端发送下行的第二信号可 以是同时的; 第二基站也可以在向终端发送下行的第二信号之前, 提前向第 一基站发送第二信号的重构信息。
在 S140中, 第一基站对接收到的第一信号进行 LNA、 下变频及 ADC 等处理, 获得第一信号对应的数字基带信号。 第一基站还可以对第二信号对 应的射频信号进行下变频、 LPF和 ADC等处理获得第二信号对应的数字基 带信号。 根据第二信号对应的数字基带信号和 S113 中获得的信道参数, 可 以确定第一干扰信号对应的数字基带信号。 第一基站在第一信号对应的数字 基带信号中将第一干扰信号对应的数字基带信号进行消除,从而获得第一信 号中的有用信号。
在本发明实施例中, 第二基站向第一基站发送的第二信号的重构信息和 第三信号的重构信息, 其中包含的是射频信号。 因此, 即使在第二基站的射 频通道线性度不足时, 也不需要向第一基站另外发送射频通道的非线性估 计, 第一基站可以通过接收到的射频信号获得带有发送通道非线性的基带参 考信号。
应理解, 在本发明各实施例中, 第一基站接收第二基站发送的第二信号 的重构信息和 /或第一基站接收第二基站发送的第三信号的重构信息,可以通 过光纤、 微波或普通线缆等方式进行传输。 例如, 如果第一基站和第二基站 是以异构网络(HetNet, Heterogeneous Network ) 的形式布设的微站, 它们 和宏站之间可以通过微波、 光纤或普通的线缆进行通信, 进而可以实现第一 基站与第二基站间的通信。 当第二基站向第一基站发送的第二信号的重构信 息和第三信号的重构信息中包含的是射频信号时,使用光纤进行传输可以降 低损耗, 使得传输的射频信号的质量得到保证。 此外, 在本发明各实施例中 还可以通过其他可实现的直接通信方式, 本发明实施例对此不作限定。 应理解, 只要符合估算信道参数的条件的资源, 均可以作为第二资源用 来估算信道参数, 因而可以实时地测量基站间的信道参数, 以便于获得最新 的基站间的信道信息,使得在第一资源进行基站间干扰消除时所使用的信道 参数更准确, 可以达到更好的干扰消除效果。
因此, 本发明实施例提供的用于干扰消除的方法, 第一基站通过根据第 二基站在第二资源发送的下行信号的重构信息, 可以准确地估算出基站间的 信道参数,将该基站间的信道参数应用于对在第一资源接收的信号的干扰消 除, 可以获得更好的干扰消除效果。
应理解,在本发明实施例中,各终端对资源的使用是由基站进行调度的。 第一基站和第二基站可以互相将各自的资源分配情况发送给对方。 由此, 第 一基站和第二基站可以确定估算信道参数的第二资源和进行干扰消除的第 一资源。 在本发明实施例中, 各基站仅需要将各自使用的下行资源告知被干 扰基站即可。 另外, 当第二基站向第一基站发送的参考信号为射频信号时, 第二基站间并不需要告知第一基站其使用的下行资源。第一基站通过接收射 频参考信号便可以得知第二基站所使用的下行资源。基站确定估算信道参数 或进行干扰消除的资源的方法还可以有其他一些可行的方法,本发明实施例 对此不作限定。
还应理解, 在本发明实施例中, 干扰消除可以是消除信号中的全部干 扰分量(包括主径干扰信号和近区干扰信号), 也可以是消除信号中的 部分干扰分量 (包括主径干扰信号的一部分和近区干扰信号的一部 分)。
图 4示出了根据本发明实施例的用于干扰消除的方法 200的示意性流程 图,该方法 200可以由干扰基站, 即第二基站执行。如图 4所示,该方法 200 包括:
S210, 第二基站在第一资源发送下行的第二信号, 其中, 在第一资源第 一基站接收第一信号, 第一信号包括: 第二信号产生的第一干扰信号和上行 的有用信号;
S220, 第二基站向第一基站发送第二信号的重构信息, 以便于第一基站 根据第二信号的重构信息和第二基站的发射天线到第一基站的接收天线的 信道参数, 确定第一信号中的第一干扰信号, 并消除第一干扰信号, 其中, 第二基站发送第二信号的重构信息所使用的资源与第一资源不同。 因此, 本发明实施例提供的用于干扰消除的方法, 通过向第一基站发送 第二基站在第一资源发送的下行信号的重构信息,使得第一基站可以根据该 重构信息和基站间的信道参数, 能够实现对在第一资源接收的信号进行基站 间的干扰信号的消除。
可选地, 作为一个实施例, 在 S210之前, 该方法 200还可以包括: 第 二基站在第二资源发送下行的第三信号, 其中, 在第二资源不存在向第一基 站发送的上行信号, 第一基站在第二资源接收由第三信号产生的第二干扰信 号; 第二基站向第一基站发送第三信号的重构信息, 以便于第一基站根据第 三信号的重构信息和第二干扰信号,确定第二基站的发射天线到第一基站的 接收天线的信道参数, 其中, 第二基站发送第三信号的重构信息所使用的资 源与第二资源不同。
可选地, 作为一个具体实施例, 第二信号的重构信息包括: 第二信号对 应的未经调制的数字基带信号和调制方式; 第三信号的重构信息包括: 第三 信号对应的未经调制的数字基带信号和调制方式。
可选地, 当射频通道线性度不足时, 第二信号的重构信息还包括: 第二 信号的射频通道的非线性估计; 第三信号的重构信息还包括: 第三信号的射 频通道的非线性估计。
可选地, 作为另一个具体实施例, 第二信号的重构信息包括: 第二信号 对应的射频信号; 第三信号的重构信息包括: 第三信号对应的射频信号。
应理解, 第二基站向第一基站发送第三信号的重构信息可以包括: 第二 基站通过光纤、 微波或线缆向第一基站发送第三信号的重构信息。
应理解, 第二基站向第一基站发送第二信号的重构信息可以包括: 第二 基站通过光纤、 微波或线缆向第一基站发送第二信号的重构信息。
因此, 本发明实施例提供的用于干扰消除的方法, 通过向第一基站发送 第二基站在第二资源发送的下行信号的重构信息,使得第一基站可以根据该 重构信息准确地估算出基站间的信道参数,将该基站间的信道参数应用到对 在第一资源接收的信号的干扰消除, 可以获得更好的干扰消除效果。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
上文中结合图 2至图 4, 详细描述了根据本发明实施例的用于干扰消除 的方法, 下面将结合图 5至图 7, 描述根据本发明实施例的用于干扰消除的 装置。
图 5 示出了根据本发明实施例的用于干扰消除的装置 300的示意性框 图。 如图 5所示, 该装置 300包括:
确定模块 310, 用于确定第二装置的发射天线到装置的接收天线的信道 参数;
第一接收模块 320, 用于在第一资源接收第一信号, 第一信号包括: 第 一干扰信号和上行的有用信号, 第一干扰信号为第二装置在第一资源发送下 行的第二信号产生的干扰信号;
第二接收模块 330, 用于接收第二装置发送的第二信号的重构信息, 第 二装置发送第二信号的重构信息所使用的资源与第一资源不同;
干扰消除模块 340, 用于根据信道参数和第二信号的重构信息, 确定第 一信号中的第一干扰信号, 并消除第一干扰信号。
因此, 本发明实施例提供的用于干扰消除的装置, 根据第二装置在第一 资源发送的下行信号的重构信息, 结合第二装置的发射天线到第一装置的接 收天线的信道参数, 能够实现对在第一资源接收的信号进行装置间的干扰信 号的消除。
可选地, 如图 6所示, 作为一个实施例, 确定模块 310包括: 第一接收单元 311, 用于在第二资源接收第二干扰信号, 第二干扰信号 为第二装置在第二资源发送下行的第三信号产生的干扰信号, 其中, 在第二 资源不存在向装置发送的上行信号;
第二接收单元 312, 用于接收第二装置发送的第三信号的重构信息, 第 二装置发送第三信号的重构信息所使用的资源与第二资源不同;
确定单元 313, 用于根据第二干扰信号和第三信号的重构信息, 确定第 二装置的发射天线到装置的接收天线的信道参数。
可选地, 作为一个具体实施例, 第二接收模块 330接收的第二信号的重 构信息包括: 第二信号对应的未经调制的数字基带信号和调制方式; 第二接 收单元 312接收的第三信号的重构信息包括: 第三信号对应的未经调制的数 字基带信号和调制方式。
可选地, 第二接收模块 330接收的第二信号的重构信息还包括: 第二信 号的射频通道的非线性估计; 第二接收单元 312接收的第三信号的重构信息 还包括: 第三信号的射频通道的非线性估计。
可选地, 作为另一个具体实施例, 第二接收模块 330接收的第二信号的 重构信息包括: 第二信号对应的射频信号; 第二接收单元 312接收的第三信 号的重构信息包括: 第三信号对应的射频信号。
应理解, 第二接收单元 312具体可以用于: 通过光纤、 微波或线缆接收 第二装置发送的第三信号的重构信息。
应理解, 第二接收模块 330具体可以用于: 通过光纤、 微波或线缆接收 第二装置发送第二信号的重构信息。
还应理解, 用于干扰消除的装置 300可以为基站、 中继站或接入点等, 还可以为能够行使或部分行使基站功能的其它装置。
因此, 本发明实施例提供的用于干扰消除的装置, 通过根据第二装置在 第二资源发送的下行信号的重构信息, 可以准确地估算出装置间的信道参 数, 将该装置间的信道参数应用于对在第一资源接收的信号的干扰消除, 可 以获得更好的干扰消除效果。
图 7示出了根据本发明实施例的用于干扰消除的装置 400的示意性框 图。 如图 7所示, 该装置 400包括:
第一发送模块 410, 用于在第一资源发送下行的第二信号, 其中, 在第 一资源第一装置接收第一信号, 第一信号包括: 第二信号产生的第一干扰信 号和上行的有用信号;
第二发送模块 420, 用于向第一装置发送第二信号的重构信息, 以便于 第一装置根据第二信号的重构信息和装置的发射天线到第一装置的接收天 线的信道参数, 确定第一信号中的第一干扰信号, 并消除第一干扰信号, 其 中, 装置发送第二信号的重构信息所使用的资源与第一资源不同。
因此, 本发明实施例提供的用于干扰消除的装置, 通过向第一装置发送 该装置在第一资源发送的下行信号的重构信息,使得第一装置可以根据该重 构信息和装置间的信道参数, 实现对在第一资源接收的信号进行装置间的干 扰信号的消除。
可选地, 作为一个实施例, 装置 400还可以包括: 第三发送模块, 用于 在第二资源发送下行的第三信号, 其中, 在第二资源不存在向第一装置发送 的上行信号, 第一装置在第二资源接收由第三信号产生的第二干扰信号; 第 四发送模块, 用于向第一装置发送第三信号的重构信息, 以便于第一装置根 据第三信号的重构信息和第二干扰信号,确定装置的发射天线到第一装置的 接收天线的信道参数, 其中, 装置发送第三信号的重构信息所使用的资源与 第二资源不同。
可选地, 作为一个具体实施例, 第二发送模块 420发送的第二信号的重 构信息包括: 第二信号对应的未经调制的数字基带信号和调制方式; 第四发 送模块发送的第三信号的重构信息包括: 第三信号对应的未经调制的数字基 带信号和调制方式。
可选地, 第二发送模块 420发送的第二信号的重构信息还包括: 第二信 号的射频通道的非线性估计; 第四发送模块发送的第三信号的重构信息还包 括: 第三信号的射频通道的非线性估计。
可选地, 作为另一个具体实施例, 第二发送模块 420发送的第二信号的 重构信息包括: 第二信号对应的射频信号; 第四发送模块发送的第三信号的 重构信息包括: 第三信号对应的射频信号。
应理解, 第四发送模块 440具体可以用于: 通过光纤、 微波或线缆向第 一装置发送第三信号的重构信息。
应理解, 第二发送模块 420具体可以用于: 通过光纤、 微波或线缆向第 一装置发送第二信号的重构信息。
还应理解, 用于干扰消除的装置 400可以为基站、 中继站或接入点等, 还可以为能够行使或部分行使基站功能的其它装置。 因此, 本发明实施例提 供的用于干扰消除的装置,通过向第一装置发送该装置在第二资源发送的下 行信号的重构信息,使得第一装置可以根据该重构信息准确地估算出装置间 的信道参数,将该装置间的信道参数应用到对在第一资源接收的信号的干扰 消除, 可以获得更好的干扰消除效果。
图 8示出了根据本发明另一实施例的用于干扰消除的装置 500的示意性 框图。 如图 8所示, 该装置 500包括处理器 510、 接收器 520、 存储器 530 和总线 540。 其中, 处理器 510、 接收器 520、 和存储器 530通过总线系统 540相连,该存储器 530用于存储指令,该处理器 510用于执行该存储器 530 存储的指令。 其中, 该接收器 520用于:
在第一资源接收第一信号, 第一信号包括: 第一干扰信号和上行的有用 信号, 第一干扰信号为第二装置在第一资源发送下行的第二信号产生的干扰 信号; 接收第二装置发送的第二信号的重构信息, 第二装置发送第二信号的重 构信息所使用的资源与第一资源不同;
处理器 510用于:
确定第二装置的发射天线到装置 500的接收天线的信道参数;
根据信道参数和第二信号的重构信息, 确定第一信号中的第一干扰信 号, 并消除第一干扰信号。
因此, 本发明实施例提供的用于干扰消除的装置, 根据第二装置在第一 资源发送的下行信号的重构信息, 结合第二装置的发射天线到第一装置的接 收天线的信道参数, 能够实现对在第一资源接收的信号进行装置间的干扰信 号的消除。
应理解,在本发明实施例中,该处理器 510可以是中央处理单元(CPU, Central Processing Unit ), 该处理器 510还可以是其他通用处理器、 数字信号 处理器 (DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或者 其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用 处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 530可以包括只读存储器和随机存取存储器, 并向处理器 510 提供指令和数据。存储器 530的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 530还可以存储设备类型的信息。
该总线系统 540除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 540。
在实现过程中, 上述方法的各步骤可以通过处理器 510中的硬件的集成 逻辑电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 530, 处理器 510读取存储器 530中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
可选地, 作为一个实施例, 在确定第二装置的发射天线到装置 500的接 收天线的信道参数时, 接收器 520还用于:
在第二资源接收第二干扰信号,第二干扰信号为第二装置在第二资源发 送下行的第三信号产生的干扰信号, 其中, 在第二资源不存在向第一装置发 送的上行信号;
接收第二装置发送的第三信号的重构信息, 第二装置发送第三信号的重 构信息所使用的资源与第二资源不同;
处理器 510具体用于:
根据第二干扰信号和第三信号的重构信息,确定第二装置的发射天线到 装置 500的接收天线的信道参数。
可选地, 作为一个具体实施例, 接收器 520接收的第二信号的重构信息 包括: 第二信号对应的未经调制的数字基带信号和调制方式; 接收器 520接 收的第三信号的重构信息包括: 第三信号对应的未经调制的数字基带信号和 调制方式。
可选地, 接收器 520接收的第二信号的重构信息还包括: 第二信号的射 频通道的非线性估计; 接收器 520接收的第三信号的重构信息还包括: 第三 信号的射频通道的非线性估计。
可选地, 作为另一个具体实施例, 接收器 520接收的第二信号的重构信 息包括: 第二信号对应的射频信号; 接收器 520接收的第三信号的重构信息 包括: 第三信号对应的射频信号。
应理解,接收器 520接收第二装置发送的第三信号的重构信息可以包括: 通过光纤、 微波或线缆接收第二装置发送的第三信号的重构信息。
应理解,接收器 520接收第二装置发送的第二信号的重构信息可以包括: 第一装置通过光纤、 微波或线缆接收第二装置发送第二信号的重构信息。
还应理解, 用于干扰消除的装置 500可以为基站、 中继站或接入点等, 还可以为能够行使或部分行使基站功能的其它装置。
还应理解,根据本发明实施例的装置 500可对应于执行本发明实施例中 的方法的主体, 还可以对应于根据本发明实施例的装置 300, 并且装置 500 中的各个模块的上述和其它操作和 /或功能是为了实现图 2至图 4的方法的相 应流程, 为了简洁, 在此不再赘述。
因此, 本发明实施例提供的用于干扰消除的装置, 通过根据第二装置在 第二资源发送的下行信号的重构信息, 可以准确地估算出装置间的信道参 数, 将该装置间的信道参数应用于对在第一资源接收的信号的干扰消除, 可 以获得更好的干扰消除效果。 图 9示出了根据本发明另一实施例的用于干扰消除的装置 600的示意性 框图。 如图 9所示, 该装置 600包括处理器 610、 发送器 620、 存储器 630 和总线 640。 其中, 处理器 610、 发送器 620、 和存储器 630通过总线系统 640相连,该存储器 630用于存储指令,该处理器 610用于执行该存储器 630 存储的指令。 其中, 该发送器 620用于:
在第一资源发送下行的第二信号, 其中, 在第一资源第一装置接收第一 信号, 第一信号包括: 第二信号产生的第一干扰信号和上行的有用信号; 向第一装置发送第二信号的重构信息, 以便于第一装置根据第二信号的 重构信息和装置 600的发射天线到第一装置的接收天线的信道参数,确定第 一信号中的第一干扰信号, 并消除第一干扰信号, 其中, 装置 600发送第二 信号的重构信息所使用的资源与第一资源不同。
因此, 本发明实施例提供的用于干扰消除的装置, 通过向第一装置发送 该装置在第一资源发送的下行信号的重构信息,使得第一装置可以根据该重 构信息和装置间的信道参数, 实现对在第一资源接收的信号进行装置间的干 扰信号的消除。
应理解,在本发明实施例中,该处理器 610可以是中央处理单元( Central Processing Unit, CPU ), 该处理器 610还可以是其他通用处理器、 数字信号 处理器 (DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或者 其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用 处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 630可以包括只读存储器和随机存取存储器, 并向处理器 610 提供指令和数据。存储器 630的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 630还可以存储设备类型的信息。
该总线系统 640除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 640。
在实现过程中, 上述方法的各步骤可以通过处理器 610中的硬件的集成 逻辑电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 630, 处理器 610读取存储器 630中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
可选地, 作为一个实施例, 为了便于第一装置确定装置间的信道参数, 发送器 620还用于:
在第二资源发送下行的第三信号, 其中, 在第二资源不存在向第一装置 发送的上行信号, 第一装置在第二资源接收由第三信号产生的第二干扰信 号;
向第一装置发送第三信号的重构信息, 以便于第一装置根据第三信号的 重构信息和第二干扰信号,确定第二装置的发射天线到第一装置的接收天线 的信道参数, 其中, 第二装置发送第三信号的重构信息所使用的资源与第二 资源不同。
可选地, 作为一个具体实施例, 发送器 620发送的第二信号的重构信息 包括: 第二信号对应的未经调制的数字基带信号和调制方式; 发送器 620发 送的第三信号的重构信息包括: 第三信号对应的未经调制的数字基带信号和 调制方式。
可选地, 发送器 620发送的第二信号的重构信息还包括: 第二信号的射 频通道的非线性估计; 发送器 620发送的第三信号的重构信息还包括: 第三 信号的射频通道的非线性估计。
可选地, 作为另一个具体实施例, 发送器 620发送的第二信号的重构信 息包括: 第二信号对应的射频信号; 发送器 620发送的第三信号的重构信息 包括: 第三信号对应的射频信号。
应理解, 发送器 620向第一装置发送第三信号的重构信息可以包括: 通 过光纤、 微波或线缆向第一装置发送第三信号的重构信息。
应理解, 发送器 620向第一装置发送第二信号的重构信息可以包括: 通 过光纤、 微波或线缆向第一装置发送第二信号的重构信息。
还应理解, 用于干扰消除的装置 600可以为基站、 中继站或接入点等, 还可以为能够行使或部分行使基站功能的其它装置。
还应理解,根据本发明实施例的装置 600可对应于执行本发明实施例中 的方法的主体, 还可以对应于根据本发明实施例的装置 400, 并且装置 600 中的各个模块的上述和其它操作和 /或功能是为了实现图 2至图 4的方法的相 应流程, 为了简洁, 在此不再赘述。 因此, 本发明实施例提供的用于干扰消除的装置, 通过向第一装置发送 该装置在第二资源发送的下行信号的重构信息,使得第一装置可以根据该重 构信息准确地估算出装置间的信道参数,将该装置间的信道参数应用到对在 第一资源接收的信号的干扰消除, 可以获得更好的干扰消除效果。
另外, 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表 示可以存在三种关系, 例如, A和 /或 可以表示: 单独存在 , 同时存在 八和^ 单独存在 B这三种情况。 另外, 本文中字符 "/", 一般表示前后关 联对象是一种 "或" 的关系。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和简洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另夕卜, 所显示或讨论的相互之间的 耦合或直接辆合或通信连接可以是通过一些接口、装置或单元的间接辆合或 通信连接, 也可以是电的, 机械的或其它的形式连接。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory ). 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1. 一种用于干扰消除的方法, 其特征在于, 包括:
第一基站确定第二基站的发射天线到所述第一基站的接收天线的信道 参数;
所述第一基站在第一资源接收第一信号, 所述第一信号包括: 第一干扰 信号和上行的有用信号, 所述第一干扰信号为所述第二基站在所述第一资源 发送下行的第二信号产生的干扰信号;
所述第一基站接收所述第二基站发送的所述第二信号的重构信息, 所述 第二基站发送所述第二信号的重构信息所使用的资源与所述第一资源不同; 所述第一基站根据所述信道参数和所述第二信号的重构信息,确定所述 第一信号中的所述第一干扰信号, 并消除所述第一干扰信号。
2. 根据权利要求 1所述的方法,其特征在于,所述第一基站确定第二基 站的发射天线到所述第一基站的接收天线的信道参数, 包括:
所述第一基站在第二资源接收第二干扰信号,所述第二干扰信号为第二 基站在所述第二资源发送下行的第三信号产生的干扰信号, 其中, 在所述第 二资源不存在向所述第一基站发送的上行信号;
所述第一基站接收所述第二基站发送的所述第三信号的重构信息, 所述 第二基站发送所述第三信号的重构信息所使用的资源与所述第二资源不同; 所述第一基站根据所述第二干扰信号和所述第三信号的重构信息,确定 第二基站的发射天线到所述第一基站的接收天线的信道参数。
3. 根据权利要求 2所述的方法,其特征在于,所述第二信号的重构信息 包括: 所述第二信号对应的未经调制的数字基带信号和调制方式;
所述第三信号的重构信息包括: 所述第三信号对应的未经调制的数字基 带信号和调制方式。
4. 根据权利要求 3所述的方法,其特征在于,所述第二信号的重构信息 还包括: 所述第二信号的射频通道的非线性估计;
所述第三信号的重构信息还包括: 所述第三信号的射频通道的非线性估 计。
5. 根据权利要求 2所述的方法,其特征在于,所述第二信号的重构信息 包括: 所述第二信号对应的射频信号;
所述第三信号的重构信息包括: 所述第三信号对应的射频信号。
6. 根据权利要求 2至 5中任一项所述的方法,其特征在于,所述第一基 站接收所述第二基站发送的所述第三信号的重构信息, 包括:
所述第一基站通过光纤、微波或线缆接收所述第二基站发送的所述第三 信号的重构信息。
7. 根据权利要求 1至 6中任一项所述的方法,其特征在于,所述第一基 站接收所述第二基站发送的所述第二信号的重构信息, 包括:
所述第一基站通过光纤、微波或线缆接收所述第二基站发送所述第二信 号的重构信息。
8. 一种用于干扰消除的方法, 其特征在于, 包括:
第二基站在第一资源发送下行的第二信号, 其中, 在所述第一资源第一 基站接收第一信号, 所述第一信号包括: 所述第二信号产生的第一干扰信号 和上行的有用信号;
所述第二基站向所述第一基站发送所述第二信号的重构信息, 以便于所 述第一基站根据所述第二信号的重构信息和所述第二基站的发射天线到所 述第一基站的接收天线的信道参数,确定所述第一信号中的所述第一干扰信 号, 并消除所述第一干扰信号, 其中, 所述第二基站发送所述第二信号的重 构信息所使用的资源与所述第一资源不同。
9. 根据权利要求 8所述的方法, 其特征在于, 所述方法还包括: 所述第二基站在第二资源发送下行的第三信号, 其中, 在所述第二资源 不存在向所述第一基站发送的上行信号, 所述第一基站在所述第二资源接收 由所述第三信号产生的第二干扰信号;
所述第二基站向所述第一基站发送所述第三信号的重构信息, 以便于所 述第一基站根据所述第三信号的重构信息和所述第二干扰信号,确定所述第 二基站的发射天线到所述第一基站的接收天线的信道参数, 其中, 所述第二 基站发送所述第三信号的重构信息所使用的资源与所述第二资源不同。
10. 根据权利要求 9所述的方法, 其特征在于, 所述第二信号的重构信 息包括: 所述第二信号对应的未经调制的数字基带信号和调制方式;
所述第三信号的重构信息包括: 所述第三信号对应的未经调制的数字基 带信号和调制方式。
11. 根据权利要求 10所述的方法,其特征在于, 所述第二信号的重构信 息还包括: 所述第二信号的射频通道的非线性估计; 所述第三信号的重构信息还包括: 所述第三信号的射频通道的非线性估 计。
12. 根据权利要求 9所述的方法, 其特征在于, 所述第二信号的重构信 息包括: 所述第二信号对应的射频信号;
所述第三信号的重构信息包括: 所述第三信号对应的射频信号。
13. 根据权利要求 9至 12中任一项所述的方法,其特征在于,所述第二 基站向所述第一基站发送所述第三信号的重构信息, 包括:
所述第二基站通过光纤、微波或线缆向所述第一基站发送所述第三信号 的重构信息。
14. 根据权利要求 8至 13中任一项所述的方法,其特征在于,所述第二 基站向所述第一基站发送所述第二信号的重构信息, 包括:
所述第二基站通过光纤、微波或线缆向所述第一基站发送所述第二信号 的重构信息。
15. 一种用于干扰消除的装置, 其特征在于, 包括:
确定模块(310 ), 用于确定第二装置的发射天线到所述装置的接收天线 的信道参数;
第一接收模块(320 ), 用于在第一资源接收第一信号, 所述第一信号包 括: 第一干扰信号和上行的有用信号, 所述第一干扰信号为所述第二装置在 所述第一资源发送下行的第二信号产生的干扰信号;
第二接收模块( 330 ), 用于接收所述第二装置发送的所述第二信号的重 构信息, 所述第二装置发送所述第二信号的重构信息所使用的资源与所述第 一资源不同;
干扰消除模块 ( 340 ), 用于根据所述信道参数和所述第二信号的重构信 息, 确定所述第一信号中的所述第一干扰信号, 并消除所述第一干扰信号。
16. 根据权利要求 15所述的装置, 其特征在于, 所述确定模块(310 ) 包括:
第一接收单元(311 ), 用于在第二资源接收第二干扰信号, 所述第二干 扰信号为第二装置在所述第二资源发送下行的第三信号产生的干扰信号, 其 中, 在所述第二资源不存在向所述装置发送的上行信号;
第二接收单元(312 ), 用于接收所述第二装置发送的所述第三信号的重 构信息, 所述第二装置发送所述第三信号的重构信息所使用的资源与所述第 二资源不同;
确定单元(313 ), 用于根据所述第二干扰信号和所述第三信号的重构信 息, 确定第二装置的发射天线到所述装置的接收天线的信道参数。
17. 根据权利要求 16所述的装置,其特征在于,所述第二接收模块( 330 ) 接收的所述第二信号的重构信息包括: 所述第二信号对应的未经调制的数字 基带信号和调制方式;
所述第二接收单元(312 )接收的所述第三信号的重构信息包括: 所述 第三信号对应的未经调制的数字基带信号和调制方式。
18. 根据权利要求 17所述的装置,其特征在于,所述第二接收模块( 330 ) 接收的所述第二信号的重构信息还包括: 所述第二信号的射频通道的非线性 估计;
所述第二接收单元(312 )接收的所述第三信号的重构信息还包括: 所 述第三信号的射频通道的非线性估计。
19. 根据权利要求 16所述的装置,其特征在于,所述第二接收模块( 330 ) 接收的所述第二信号的重构信息包括: 所述第二信号对应的射频信号;
所述第二接收单元(312 )接收的所述第三信号的重构信息包括: 所述 第三信号对应的射频信号。
20. 根据权利要求 16至 19中任一项所述的装置, 其特征在于, 所述第 二接收单元(312 )具体用于:
通过光纤、微波或线缆接收所述第二装置发送的所述第三信号的重构信 息。
21. 根据权利要求 15至 20中任一项所述的装置, 其特征在于, 所述第 二接收模块(330 )具体用于:
通过光纤、 微波或线缆接收所述第二装置发送所述第二信号的重构信 息。
22. 根据权利要求 15至 21中任一项所述的装置, 其特征在于, 所述装 置为基站、 中继站或接入点。
23. 一种装置, 其特征在于, 包括:
第一发送模块(410 ), 用于在第一资源发送下行的第二信号, 其中, 在 所述第一资源第一装置接收第一信号, 所述第一信号包括: 所述第二信号产 生的第一干扰信号和上行的有用信号; 第二发送模块(420 ), 用于向所述第一装置发送所述第二信号的重构信 息, 以便于所述第一装置根据所述第二信号的重构信息和所述装置的发射天 线到所述第一装置的接收天线的信道参数,确定所述第一信号中的所述第一 干扰信号, 并消除所述第一干扰信号, 其中, 所述装置发送所述第二信号的 重构信息所使用的资源与所述第一资源不同。
24. 根据权利要求 23所述的装置, 其特征在于, 所述装置还包括: 第三发送模块, 用于在第二资源发送下行的第三信号, 其中, 在所述第 二资源不存在向所述第一装置发送的上行信号, 所述第一装置在所述第二资 源接收由所述第三信号产生的第二干扰信号;
第四发送模块, 用于向所述第一装置发送所述第三信号的重构信息, 以 便于所述第一装置根据所述第三信号的重构信息和所述第二干扰信号,确定 所述装置的发射天线到所述第一装置的接收天线的信道参数, 其中, 所述装 置发送所述第三信号的重构信息所使用的资源与所述第二资源不同。
25. 根据权利要求 24所述的装置,其特征在于,所述第二发送模块( 420 ) 发送的所述第二信号的重构信息包括: 所述第二信号对应的未经调制的数字 基带信号和调制方式;
所述第四发送模块发送的所述第三信号的重构信息包括: 所述第三信号 对应的未经调制的数字基带信号和调制方式。
26. 根据权利要求 25所述的装置,其特征在于,所述第二发送模块( 420 ) 发送的所述第二信号的重构信息还包括: 所述第二信号的射频通道的非线性 估计;
所述第四发送模块发送的所述第三信号的重构信息还包括: 所述第三信 号的射频通道的非线性估计。
27. 根据权利要求 24所述的装置,其特征在于,所述第二发送模块( 420 ) 发送的所述第二信号的重构信息包括: 所述第二信号对应的射频信号;
所述第四发送模块发送的所述第三信号的重构信息包括: 所述第三信号 对应的射频信号。
28. 根据权利要求 24至 27中任一项所述的装置, 其特征在于, 所述第 四发送模块具体用于:
通过光纤、 微波或线缆向所述第一装置发送所述第三信号的重构信息。
29. 根据权利要求 23至 28中任一项所述的装置, 其特征在于, 所述第 二发送模块(420 )具体用于:
通过光纤、 微波或线缆向所述第一装置发送所述第二信号的重构信息。 30. 根据权利要求 23至 29中任一项所述的装置, 其特征在于, 所述装 置为基站、 中继站或接入点。
PCT/CN2014/076663 2014-04-30 2014-04-30 用于干扰消除的方法和装置 WO2015165102A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/076663 WO2015165102A1 (zh) 2014-04-30 2014-04-30 用于干扰消除的方法和装置
CN201480078417.8A CN106256097B (zh) 2014-04-30 2014-04-30 用于干扰消除的方法和装置
US15/337,407 US9819385B2 (en) 2014-04-30 2016-10-28 Method and apparatus for interference cancellation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076663 WO2015165102A1 (zh) 2014-04-30 2014-04-30 用于干扰消除的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/337,407 Continuation US9819385B2 (en) 2014-04-30 2016-10-28 Method and apparatus for interference cancellation

Publications (1)

Publication Number Publication Date
WO2015165102A1 true WO2015165102A1 (zh) 2015-11-05

Family

ID=54358054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076663 WO2015165102A1 (zh) 2014-04-30 2014-04-30 用于干扰消除的方法和装置

Country Status (3)

Country Link
US (1) US9819385B2 (zh)
CN (1) CN106256097B (zh)
WO (1) WO2015165102A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095327B2 (en) * 2017-07-27 2021-08-17 Huawei Technologies Co., Ltd. Method and apparatus for interference cancellation in full-duplex multi-cell networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296068A (zh) * 2007-04-26 2008-10-29 瑞昱半导体股份有限公司 数字同步化接收装置及其讯号处理方法
CN101471694A (zh) * 2007-12-24 2009-07-01 瑞昱半导体股份有限公司 干扰消除装置及其方法
CN101882965A (zh) * 2010-06-11 2010-11-10 北京交通大学 一种消干扰全双工中继通信系统和全双工中继设备
CN101946416A (zh) * 2008-01-02 2011-01-12 高通股份有限公司 干扰检测及减轻
CN103427874A (zh) * 2013-09-03 2013-12-04 电子科技大学 多径环境下大发射功率同时同频自干扰抵消系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1217556C (zh) * 2003-06-06 2005-08-31 北京大学 移动通信系统基站间干扰消除方法及相应的移动通信系统
US8270453B2 (en) * 2008-11-03 2012-09-18 Telefonaktiebolaget L M Ericsson (Publ) System and method for parallel interference cancellation with covariance root processing
CN102148787A (zh) * 2010-02-10 2011-08-10 思亚诺移动芯片有限公司 用于降低或消除接收信号噪声的方法、电路和系统
CN102347808B (zh) * 2011-09-30 2014-08-20 张胜利 在无线通信节点上消除已知干扰的方法及装置
US10003387B2 (en) * 2013-03-15 2018-06-19 Intel Deutschland Gmbh Communications terminal, a network component, a method for transmitting a signal, and a method for providing feedback information to a communications terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296068A (zh) * 2007-04-26 2008-10-29 瑞昱半导体股份有限公司 数字同步化接收装置及其讯号处理方法
CN101471694A (zh) * 2007-12-24 2009-07-01 瑞昱半导体股份有限公司 干扰消除装置及其方法
CN101946416A (zh) * 2008-01-02 2011-01-12 高通股份有限公司 干扰检测及减轻
CN101882965A (zh) * 2010-06-11 2010-11-10 北京交通大学 一种消干扰全双工中继通信系统和全双工中继设备
CN103427874A (zh) * 2013-09-03 2013-12-04 电子科技大学 多径环境下大发射功率同时同频自干扰抵消系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095327B2 (en) * 2017-07-27 2021-08-17 Huawei Technologies Co., Ltd. Method and apparatus for interference cancellation in full-duplex multi-cell networks

Also Published As

Publication number Publication date
CN106256097A (zh) 2016-12-21
CN106256097B (zh) 2019-06-11
US20170047964A1 (en) 2017-02-16
US9819385B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
CN111837354B (zh) 辅小区的小区激活的方法及其电子设备
WO2021083753A1 (en) Ue full duplex calibration for mobile systems
WO2020029276A1 (zh) 干扰检测方法、装置及存储介质
WO2016119687A1 (zh) 一种信号发送方法、接收方法及装置
WO2020164323A1 (zh) 传输探测参考信号的方法、装置和系统
WO2021000680A1 (zh) 一种协作传输方法及通信装置
JP2018533234A (ja) Idc問題のシグナリング
EP3579482B1 (en) Methods and corresponding devices for improved dci detection
KR101961919B1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
JP2022189829A (ja) New radioにおけるチャネルパラメータ推定に基づく適応同期及び非同期分類の技術
WO2013166657A1 (zh) 参考信号的测量方法、基站及用户设备
WO2019140668A1 (zh) 信道状态信息csi测量的方法、终端设备和网络设备
CN110831140A (zh) 一种功率确定方法和装置
CN106256143B (zh) 用于干扰消除的方法和终端
CN112600603B (zh) 传输信息的方法、网络设备和终端设备
CN111756492B (zh) 一种处理方法及设备
CN110225556A (zh) 一种资源预留方法及相关设备
CN108811010B (zh) 移动性测量方法、csi-rs资源配置方法及设备
WO2015165102A1 (zh) 用于干扰消除的方法和装置
TWI769159B (zh) 用於消除小區間干擾的方法和裝置
JP6733998B2 (ja) データ伝送方法およびデータ伝送方法のネットワークデバイス
WO2017152416A1 (zh) 传输上行控制信息的方法和装置
CN111865528B (zh) 一种触发信道状态信息上报的方法及设备
JP7113908B6 (ja) 情報伝送方法、ネットワーク機器および端末機器
CN115250484A (zh) 一种干扰消除方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890929

Country of ref document: EP

Kind code of ref document: A1