WO2015162740A1 - Galvano scanner and laser machining device - Google Patents

Galvano scanner and laser machining device Download PDF

Info

Publication number
WO2015162740A1
WO2015162740A1 PCT/JP2014/061490 JP2014061490W WO2015162740A1 WO 2015162740 A1 WO2015162740 A1 WO 2015162740A1 JP 2014061490 W JP2014061490 W JP 2014061490W WO 2015162740 A1 WO2015162740 A1 WO 2015162740A1
Authority
WO
WIPO (PCT)
Prior art keywords
front bearing
galvano scanner
resonance
rotating shaft
rotating body
Prior art date
Application number
PCT/JP2014/061490
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 鉾館
尚弘 高橋
研吾 内山
悌史 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014557924A priority Critical patent/JP5714196B1/en
Priority to PCT/JP2014/061490 priority patent/WO2015162740A1/en
Priority to CN201480003159.7A priority patent/CN105209958B/en
Priority to TW103139350A priority patent/TWI540338B/en
Publication of WO2015162740A1 publication Critical patent/WO2015162740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a galvano scanner and a laser processing apparatus.
  • Laser processing devices equipped with galvano scanners are used for, for example, drilling printed circuit boards and precision electronic components. As the electronic circuits and electronic parts that are products are being refined, the laser processing apparatus is required to control the processing position with high accuracy.
  • the galvano scanner repeats the movement of the machining position at the same pitch, when the movement frequency of the machining position matches the natural frequency of the rotating body, the galvano scanner vibrates in the direction perpendicular to the mirror surface (surface tilt). Resonance) may occur.
  • the surface tilt resonance occurs, the traveling direction of the laser beam from the mirror changes, so that an error occurs in the position of the laser beam on the workpiece.
  • Patent Document 1 discloses a shaft support device in which a cylindrical roller bearing is incorporated between a shaft and a shaft box, and provides a member that absorbs vibration between the outer ring of the bearing and the shaft box. Yes.
  • Rotating bodies of galvano scanners may undergo thermal expansion due to temperature rise due to driving.
  • the bearing provided in the galvano scanner is arranged with a slight gap with respect to the frame case in which the rotating body is accommodated.
  • the galvano scanner is required to be able to absorb the dimensional change due to the thermal expansion of the rotating body and to reduce the vibration that deteriorates the accuracy of the processing position.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a galvano scanner and a laser processing apparatus that can reduce surface tilt resonance and realize high positional accuracy.
  • the present invention is provided with a rotating shaft, and is connected to a rotating body that is rotatable around the rotating shaft, and one front end of the rotating shaft,
  • a front-side bearing which is a bearing that is provided at a front end portion of the internal space and rotatably supports the rotary shaft, a mirror that deflects incident light, a frame case that includes an internal space for rotating the rotating body, and the internal space.
  • a vibration suppressing structure that suppresses vibration of the front bearing caused by driving of the rotating shaft, and the vibration suppressing structure includes a contact member that contacts an outer peripheral side surface of the front bearing, and the contact member Is movable according to the displacement of the front bearing in the axial direction parallel to the rotating shaft.
  • the galvano scanner according to the present invention reduces the surface tilt resonance that is difficult to adjust by bringing the contact member of the vibration suppressing structure into contact with the outer peripheral side surface of the front bearing.
  • the galvano scanner can absorb the dimensional change due to the thermal expansion of the rotating body by making the contact member movable according to the displacement of the front bearing in the axial direction. The contact of the contact member to the can be maintained. As a result, the galvano scanner can reduce surface tilt resonance and achieve an effect of realizing high positional accuracy.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a galvano scanner according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the ball plunger.
  • FIG. 3 is a diagram for explaining the occurrence of the first surface tilt resonance.
  • FIG. 4 is a diagram illustrating an example of the relationship between the frequency and amplitude of the first surface tilt resonance.
  • FIG. 5 is a diagram for explaining the occurrence of the second surface tilt resonance.
  • FIG. 6 is a diagram illustrating an example of the relationship between the frequency and amplitude of the second surface tilt resonance.
  • FIG. 7 is a diagram for explaining the relationship between the resonance frequency and amplitude when the first surface-inclined resonance and the second surface-inclined resonance occur.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a galvano scanner according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the ball
  • FIG. 8 is a diagram showing a cross-sectional configuration of the galvano scanner according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the roller plunger.
  • FIG. 10 is a diagram showing a cross-sectional configuration of the galvano scanner according to the third embodiment of the present invention.
  • FIG. 11 is an exploded side view of the spring structure.
  • FIG. 12 is a diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a galvano scanner according to a first embodiment of the present invention.
  • the galvano scanner 1 scans a laser beam from a laser light source with a workpiece.
  • the galvano scanner 1 includes a rotating body and a fixed body.
  • the rotating body includes a scan mirror 2, a rotating shaft 3, and a magnet 5.
  • the rotating body is rotatable around the rotation shaft 3.
  • the scan mirror 2 is a mirror that deflects incident light.
  • the scan mirror 2 is connected to one end of the rotating shaft 3 on the front side.
  • the mirror mount 12 connects the scan mirror 2 to the rotation shaft 3.
  • the mount retainer 13 fixes the mirror mount 12 to the rotating shaft 3 in a state where the fastener 14 is inserted.
  • the magnet 5 is located between the front bearing 8 and the rear bearing 9.
  • the fixed body includes a frame case 4, a coil 6 and an iron core 7.
  • the coil 6 is provided around the magnet 5.
  • the iron core 7 is provided around the coil 6.
  • the frame case 4 houses the magnet 5, the coil 6 and the iron core 7 inside.
  • the frame case 4 includes an internal space for rotating the magnet 5 of the rotating body.
  • the front bearing 8 and the rear bearing 9 are bearings that rotatably support the rotary shaft 3.
  • the front bearing 8 is provided at the front end of the internal space of the frame case 4.
  • the rear bearing 9 is provided at the rear end of the internal space of the frame case 4.
  • the rear bearing 9 is fixed to the frame case 4.
  • the front bearing 8 is not fixed to the frame case 4.
  • the preload spring 16 applies preload to the front bearing 8 via a washer 17.
  • the holding plate 15 is provided in contact with the front outer end surface of the frame case 4 and the preload spring 16.
  • the through hole 11 is formed in the frame case 4.
  • the through hole 11 penetrates between the outer peripheral surface of the frame case 4 and the internal space of the frame case 4.
  • the through hole 11 is formed perpendicular to the axial direction which is a direction parallel to the rotation shaft 3.
  • the end portion on the inner space side of the through hole 11 is located on the outer peripheral side surface of the front bearing 8.
  • a thread groove is formed on the inner surface of the through hole 11.
  • the ball plunger 10 having a vibration suppressing structure is disposed in the through hole 11.
  • the ball plunger 10 suppresses the vibration of the front bearing 8 due to the driving of the rotating shaft 3.
  • the ball plunger 10 is inserted into the through hole 11 by being screwed into the through hole 11 from the outer surface of the frame case 4.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the ball plunger.
  • the ball plunger 10 includes a spherical member 21, a main body portion 22, and a coil spring 23.
  • the main body 22 has a cylindrical shape with the lower end closed and the upper end opened. A thread groove is formed on the side surface of the main body 22.
  • the spherical member 21 is rotatable at the upper end of the main body 22.
  • the spherical member 21 abuts on the outer peripheral side surface of the front bearing 8.
  • the coil spring 23 which is an elastic member, is disposed inside the main body 22.
  • the coil spring 23 applies a force that pushes up the spherical member 21 toward the front bearing 8 to the spherical member 21.
  • the upper end of the coil spring 23 contacts the spherical member 21.
  • the lower end of the coil spring 23 contacts the bottom surface inside the main body 22.
  • the ball plunger 10 is tightened in the through hole 11 to a position where the spherical member 21 contacts the front bearing 8.
  • a tool such as a screwdriver is used to tighten the ball plunger 10.
  • the ball plunger 10 is further screwed in so that the spherical member 21 slightly presses the front bearing 8 with a predetermined force. Whether or not the ball plunger 10 has been screwed in until such a state is determined, for example, from the result of measuring the torque when the ball plunger 10 is screwed in. In addition, the position of the ball plunger 10 may be determined by turning the driver a predetermined amount after the spherical member 21 reaches the front bearing 8. After the ball plunger 10 is positioned in this way, it is fixed using an adhesive or the like.
  • the rotating body may undergo thermal expansion due to temperature rise.
  • heat is apt to be insufficient for the rotating body positioned on the inner side relative to the fixed body positioned on the outer side, so that the thermal expansion is larger for the rotating body than for the fixed body. .
  • the galvano scanner 1 displaces the front bearing 8 in the axial direction against the thermal expansion of the rotating body in the axial direction by fixing the rear bearing 9 to the frame case 4 and not fixing the front bearing 8 to the frame case 4. Make it possible. Thereby, the galvano scanner 1 can absorb the dimensional change of the rotating body in the axial direction.
  • the galvano scanner 1 is provided with a slight gap between the front bearing 8 and the frame case 4 so that the front bearing 8 can be freely displaced in the axial direction with respect to the dimensional change of the rotating body in the axial direction.
  • the galvano scanner 1 is designed with such a gap of, for example, about 6 ⁇ m or less, but it is difficult to manage tolerances for such fine dimensions.
  • the galvano scanner 1 generates a surface tilt resonance with the position of the front bearing 8 as a fulcrum (node).
  • the surface tilt resonance using the position of the front bearing 8 as a fulcrum is appropriately referred to as a first surface tilt resonance.
  • the galvano scanner 1 is driven at a higher speed, surface tilt resonance is observed with the position of the boundary between the scan mirror 2 and the mirror mount 12 as a fulcrum.
  • the surface tilt resonance using the position of the boundary between the scan mirror 2 and the mirror mount 12 as a fulcrum is appropriately referred to as a second surface tilt resonance. It has been found by the inventor's experiment that the second surface collapse resonance is induced when the gap between the front bearing 8 and the frame case 4 is relatively large.
  • FIG. 3 is a diagram for explaining the occurrence of the first surface-inclined resonance.
  • FIG. 4 is a diagram illustrating an example of the relationship between the frequency and amplitude of the first surface tilt resonance.
  • a part of the configuration of the galvano scanner 1 is simplified as appropriate, and the configuration unnecessary for the description is omitted.
  • the galvano scanner 1 may generate the first surface tilt resonance.
  • the frequency is f1.
  • the deflection angle of the scan mirror 2 is, for example, ⁇ with the position of the front bearing 8 as a fulcrum.
  • the galvano scanner 1 in the repeated reciprocating rotation of the rotating body in the same cycle, when the frequency of the rotation matches the natural frequency of the rotating body, surface tilt resonance occurs. Due to surface tilt resonance, the reflection surface of the scan mirror 2 is periodically displaced in a direction perpendicular to the reflection surface. When the reflecting surface of the scan mirror 2 is displaced in the direction perpendicular to the reflecting surface, the galvano scanner 1 causes an error in the position of the laser beam in the direction perpendicular to the scanning direction of the laser beam. It becomes.
  • an error in the position of the laser beam due to the first surface tilt resonance is adjusted by adjusting the weight balance of the rotating body so that the amplitude h is as small as possible. Reduce.
  • the weight balance of the rotating body is adjusted, for example, by sticking a seal on the back surface of the scan mirror 2.
  • the back surface is the surface of the scan mirror 2 opposite to the reflecting surface.
  • FIG. 5 is a diagram for explaining the occurrence of the second surface-inclined resonance.
  • FIG. 6 is a diagram illustrating an example of the relationship between the frequency and amplitude of the second surface tilt resonance.
  • a part of the configuration of the galvano scanner 1 is simplified as appropriate and illustrations of components unnecessary for the description are omitted.
  • the galvano scanner 1 may generate the second surface-inclined resonance.
  • the frequency is f2 (f2> f1).
  • the deflection angle of the scan mirror 2 is, for example, ⁇ ′ with the position of the boundary between the scan mirror 2 and the mirror mount 12 as a fulcrum.
  • the front bearing 8 suppresses vibration of the rotating body by causing the moving of the rotating body in a direction perpendicular to the axial direction. Is considered to be weakened.
  • the distance between the end of the scan mirror 2 opposite to the side fixed to the mirror mount 12 and the resonance fulcrum is longer in the case of the second surface-inclined resonance than in the first surface-inclined resonance. Become. When the amplitude of any resonance is the same h, ⁇ ′ is larger than ⁇ ( ⁇ ′> ⁇ ).
  • the galvano scanner 1 may cause the second surface-inclined resonance and the first surface-inclined resonance to occur irregularly in a situation where the second surface-inclined resonance occurs.
  • the first surface fall resonance and the second surface fall resonance may occur together.
  • FIG. 7 is a diagram for explaining the relationship between the resonance frequency and amplitude when the first surface-inclined resonance and the second surface-inclined resonance occur.
  • the galvano scanner 1 cannot reach the weight balance of the rotating body so as to reduce the amplitude of both surface falling resonances.
  • the amplitude of the first surface-inclined resonance is adjusted. May increase.
  • the amplitude of the second surface-inclined resonance may increase.
  • the galvano scanner 1 is desired to be able to suppress as much as possible the second surface tilt resonance, which is disadvantageous in improving the accuracy of the processing position. Since there is a limit in reducing the resonance amplitude h by adjusting the weight balance of the rotating body, it is desirable that the galvano scanner 1 be able to improve the second surface tilt resonance from the generation factor. Furthermore, the galvano scanner 1 also has the second surface tilt resonance in order to suppress the occurrence of the first surface tilt resonance in the situation where the second surface tilt resonance occurs and to suppress the mixture of both surface tilt resonances. It is desirable to be able to improve from the generation factor.
  • the galvano scanner 1 In the galvano scanner 1 assembled with normal manufacturing accuracy, it is extremely difficult to strictly carry out tolerance management for a dimension of, for example, 10 ⁇ m. Even if the gap between the front bearing 8 and the frame case 4 is designed to be, for example, about 6 ⁇ m or less, the gap may actually be 6 ⁇ m or more. It is difficult to stably manufacture the galvano scanner 1 in which the gap satisfies a desired dimensional condition. When a manufactured product of the galvano scanner 1 that does not satisfy such dimensional conditions is handled as a defective product, the yield of the galvano scanner 1 is greatly reduced.
  • the spherical member 21 of the ball plunger 10 is brought into contact with the outer peripheral side surface 19 of the front bearing 8 so that the front bearing 8 is moved with a predetermined force acting perpendicular to the axial direction. Press down.
  • the galvano scanner 1 can effectively suppress the vibration of the rotating body caused by the gap around the front bearing 8.
  • the galvano scanner 1 may adjust the position of the ball plunger 10 while observing the state of occurrence of resonance.
  • the galvano scanner 1 can improve the second surface-inclined resonance that may be caused by a relatively large gap around the front bearing 8 from the cause.
  • the galvano scanner 1 can suppress both the state in which the second surface-inclined resonance and the first surface-inclined resonance are irregularly generated, and the state in which the first surface-inclined resonance and the second surface-inclined resonance are mixed. .
  • the galvano scanner 1 can reduce the second surface fall resonance by installing the ball plunger 10, thereby enabling adjustment of the weight balance of the rotating body exclusively for reducing the amplitude with respect to the first surface fall resonance. To do. Through the adjustment of the position of the ball plunger 10 and the adjustment of the weight balance of the rotating body, the galvano scanner 1 can effectively reduce surface tilt resonance in high-speed driving.
  • the spherical member 21 rotates in conjunction with the displacement of the front bearing 8 in the axial direction.
  • the spherical member 21 is movable in accordance with the displacement of the front bearing 8 in the axial direction while maintaining a state in contact with the outer peripheral side surface 19 of the front bearing 8.
  • the galvano scanner 1 includes a spherical member 21 that freely rotates while in contact with the front bearing 8 in the ball plunger 10 that is a vibration suppressing structure, thereby making it possible to absorb the dimensional change of the rotating body due to thermal expansion. The vibration of the rotating body can be suppressed.
  • the galvano scanner 1 has an effect that the surface tilt resonance can be reduced and high positional accuracy can be realized.
  • the galvano scanner 1 can improve the yield by reducing the surface tilt resonance without using strict tolerance management of the gap between the front bearing 8 and the frame case 4.
  • the vibration suppressing structure is not limited to the ball plunger 10 having the configuration described in the present embodiment.
  • the vibration suppressing structure may be any structure as long as the spherical member in contact with the front bearing 8 rotates in conjunction with the displacement of the front bearing 8 in the axial direction, and the configuration described in the present embodiment may be changed as appropriate. .
  • FIG. FIG. 8 is a diagram showing a cross-sectional configuration of the galvano scanner according to the second embodiment of the present invention.
  • the galvano scanner 30 scans the processing target with the laser light from the laser light source.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.
  • the roller plunger 31 having a vibration suppressing structure is disposed in the through hole 11.
  • the roller plunger 31 suppresses the vibration of the front bearing 8 due to the driving of the rotating shaft 3.
  • the roller plunger 31 is inserted into the through hole 11 by being screwed into the through hole 11 from the outer surface of the frame case 4.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the roller plunger.
  • the roller plunger 31 includes a disk member 32, a main body portion 33, and a coil spring 34.
  • the main body 33 has a cylindrical shape with the lower end closed and the upper end opened. A thread groove is formed on the side surface of the main body 33.
  • the disk member 32 which is an abutting member is disposed on the main body portion 33.
  • the disk member 32 is supported such that the center of the circle is rotatable.
  • the outer peripheral surface of the disk member 32 is in contact with the outer peripheral side surface of the front bearing 8.
  • the roller plunger 31 is disposed so that the circular surface of the disk member 32 is parallel to the axial direction of the rotating body.
  • the coil spring 34 which is an elastic member, is disposed inside the main body 33.
  • the coil spring 34 applies a force that pushes up the disk member 32 toward the front bearing 8 to the disk member 32.
  • the upper end of the coil spring 34 abuts on the disk member 32.
  • the lower end of the coil spring 34 is in contact with the bottom surface inside the main body 33.
  • the roller plunger 31 is tightened in the through hole 11 to a position where the disk member 32 contacts the front bearing 8.
  • a tool such as a screwdriver is used to tighten the roller plunger 31.
  • the roller plunger 31 is further screwed in so that the disk member 32 slightly presses the front bearing 8 with a predetermined force. Whether or not the roller plunger 31 has been screwed in until such a state is determined, for example, from the result of measuring the torque when the roller plunger 31 is screwed in. In addition, the position of the roller plunger 31 may be determined by turning the driver a predetermined amount after the disk member 32 reaches the front bearing 8. After the roller plunger 31 is positioned in this way, it is fixed using an adhesive or the like.
  • the galvano scanner 30 presses the front bearing 8 with a predetermined force acting perpendicular to the axial direction by bringing the disk member 32 of the roller plunger 31 into contact with the outer peripheral side surface of the front bearing 8. wear.
  • the galvano scanner 30 can effectively suppress the vibration of the rotating body caused by the gap around the front bearing 8.
  • the galvano scanner 30 may adjust the position of the roller plunger 31 while observing the state of occurrence of resonance.
  • the galvano scanner 30 can improve the second surface tilt resonance that may be caused by a relatively large gap around the front bearing 8 from the cause.
  • the galvano scanner 30 can suppress both the state in which the second surface-inclined resonance and the first surface-inclined resonance are irregularly generated, and the state in which the first surface-inclined resonance and the second surface-inclined resonance are mixed. .
  • the galvano scanner 30 can reduce the second surface tilt resonance by installing the roller plunger 31, and thereby can adjust the weight balance of the rotating body exclusively for reducing the amplitude with respect to the first surface tilt resonance. To do. Through the adjustment of the position of the roller plunger 31 and the adjustment of the weight balance of the rotating body, the galvano scanner 30 can effectively reduce surface tilt resonance in high-speed driving.
  • the disk member 32 rotates in conjunction with the displacement of the front bearing 8 in the axial direction.
  • the disc member 32 is movable in accordance with the displacement of the front bearing 8 in the axial direction while maintaining a state in contact with the outer peripheral side surface of the front bearing 8.
  • the galvano scanner 30 includes a disk member 32 that freely rotates while being in contact with the front bearing 8 in a roller plunger 31 that is a vibration suppressing structure, thereby making it possible to absorb the dimensional change of the rotating body due to thermal expansion. The vibration of the rotating body can be suppressed. As described above, the galvano scanner 30 has an effect that the surface tilt resonance can be reduced and high positional accuracy can be realized.
  • the vibration suppressing structure is not limited to the roller plunger 31 having the configuration described in the present embodiment.
  • the vibration suppressing structure may be any structure as long as the disk member in contact with the front bearing 8 rotates in conjunction with the displacement of the front bearing 8 in the axial direction, and the configuration described in the present embodiment may be changed as appropriate. .
  • FIG. 10 is a diagram showing a cross-sectional configuration of the galvano scanner according to the third embodiment of the present invention.
  • the galvano scanner 40 scans the processing target with the laser light from the laser light source.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.
  • the spring structure 41 which is a vibration suppressing structure is inserted into the through hole 11.
  • the spring structure 41 suppresses the vibration of the front bearing 8 due to the driving of the rotating shaft 3.
  • FIG. 11 is an exploded side view of the spring structure.
  • the spring structure 41 includes a spring member 42, a positioning member 43 and a main body 44.
  • the spring member 42 which is an elastic member, is also an abutting member that abuts on the outer peripheral side surface of the front bearing 8.
  • the spring member 42 is, for example, a coil spring.
  • the spring member 42 applies a force for pushing up the front bearing 8 to the front bearing 8.
  • the outer diameter of the spring member 42 is smaller than the inner diameter of the through hole 11. A gap is provided between the inner wall of the through hole 11 and the spring member 42.
  • the positioning member 43 is provided at the upper end of the main body 44.
  • the positioning member 43 has a cylindrical shape with a diameter smaller than the inner diameter of the spring member 42.
  • the positioning member 43 is inserted into the lower part of the spring member 42.
  • the positioning member 43 fixes the position of the spring member 42 on the side of the spring member 42 opposite to the side in contact with the front bearing 8.
  • the main body 44 has a columnar shape that is thicker than the positioning member 43.
  • a thread groove is formed on the side surface of the main body 44.
  • the spring structure 41 is inserted into the through hole 11 by screwing the main body 44 with the spring member 42 set on the positioning member 43 into the through hole 11 from the outer surface of the frame case 4.
  • the upper end of the spring member 42 contacts the outer peripheral side surface of the front bearing 8.
  • the lower end of the spring member 42 contacts the upper end of the main body 44.
  • the main body 44 is tightened in the through hole 11 to a position where the upper end of the spring member 42 contacts the front bearing 8.
  • a tool such as a screwdriver is used to tighten the main body 44.
  • the main body 44 After the upper end of the spring member 42 reaches the front bearing 8, the main body 44 is further screwed in so that the spring member 42 slightly presses the front bearing 8 with a predetermined force. Whether or not the main body 44 has been screwed in until such a state is determined, for example, from the result of measuring the torque when the main body 44 is screwed. In addition, the position of the main body 44 may be determined by turning the driver a predetermined amount after the upper end of the spring member 42 reaches the front bearing 8. After being positioned in this way, the main body 44 is fixed using an adhesive or the like.
  • the galvano scanner 40 presses the front bearing 8 with a predetermined force acting perpendicular to the axial direction by bringing the spring member 42 of the spring structure 41 into contact with the outer peripheral side surface of the front bearing 8. wear.
  • the galvano scanner 40 can effectively suppress the vibration of the rotating body caused by the gap around the front bearing 8.
  • the galvano scanner 40 may adjust the position of the main body 44 while observing the state of occurrence of resonance.
  • the galvano scanner 40 can improve the second surface-inclined resonance that may be caused by a relatively large gap around the front bearing 8 from the cause.
  • the galvano scanner 40 can suppress a state in which the second surface-inclined resonance and the first surface-inclined resonance are irregularly generated, and a state in which the first surface-inclined resonance and the second surface-inclined resonance are mixed.
  • the galvano-scanner 40 can reduce the second surface fall resonance by installing the spring structure 41, so that the adjustment of the weight balance of the rotating body can be performed exclusively for the purpose of reducing the amplitude with respect to the first surface fall resonance. To do. Through the adjustment of the position of the spring structure 41 and the adjustment of the weight balance of the rotating body, the galvano scanner 40 can effectively reduce surface tilt resonance in high-speed driving.
  • the position of the lower portion of the spring member 42 is fixed by inserting the positioning member 43.
  • the portion of the spring member 42 above the portion where the positioning member 43 is inserted (on the front bearing 8 side) is movable within the range of the gap between the inner wall of the through hole 11.
  • the spring structure 41 secures a gap between the spring member 42 and the inner wall of the through hole 11 by providing the positioning member 43.
  • the spring member 42 When the front bearing 8 is displaced due to thermal expansion of the rotating body, the spring member 42 is deformed so as to bend in the direction in which the front bearing 8 is displaced.
  • the spring member 42 is movable according to the displacement of the front bearing 8 in the axial direction while maintaining a state in which the spring member 42 is in contact with the outer peripheral side surface of the front bearing 8.
  • the galvano scanner 40 includes a spring member 42 that freely deforms in a state of being in contact with the front bearing 8 in the spring structure 41 that is a vibration suppressing structure, so that the dimensional change of the rotating body due to thermal expansion can be absorbed. The vibration of the rotating body can be suppressed. As described above, the galvano scanner 40 has an effect that the surface tilt resonance can be reduced and high positional accuracy can be realized.
  • vibration suppressing structure is not limited to the spring structure 41 having the configuration described in the present embodiment.
  • the vibration suppressing structure may be any structure as long as the elastic member in contact with the front bearing 8 is deformed in conjunction with the displacement of the front bearing in the axial direction, and the configuration described in the present embodiment may be changed as appropriate.
  • FIG. FIG. 12 is a diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention.
  • the laser processing apparatus 50 is an apparatus that forms a minute hole in a processing target by irradiation with laser light (pulse laser light).
  • the laser processing apparatus 50 performs, for example, a processing process (cycle pulse mode) in which a plurality of processing positions set on a processing target are sequentially scanned and laser irradiation is performed on each processing position in a plurality of cycles.
  • the laser processing device 50 includes a laser oscillator 51, a bend mirror 52, a Y-axis galvano scanner 53, an X-axis galvano scanner 54, scan mirrors 55 and 56, an f ⁇ lens 57, a galvano driver 60, and a control device 61.
  • the workpiece 58 that is the object to be processed is, for example, a printed circuit board.
  • the work 58 is placed on an XY table (not shown).
  • the XY table moves the work 58 in a two-dimensional direction including the X-axis direction and the Y-axis direction.
  • the laser oscillator 51 which is a laser light source, emits laser light 62.
  • the laser beam 62 is a laser beam output in a pulse shape.
  • any one of infrared light having a wavelength of 9 to 10 ⁇ m, ultraviolet light having a wavelength of 0.5 ⁇ m, and the like is used as a laser beam.
  • the bend mirror 52 reflects the laser light 62 from the laser oscillator 51 and advances it to the scan mirror 55.
  • the scan mirror 55 reflects the laser light 62 from the laser oscillator 51.
  • the scan mirror 55 is a mirror that deflects the incident laser light 62.
  • the Y-axis galvano scanner 53 drives the scan mirror 55.
  • the scan mirror 56 reflects the laser light 62 from the scan mirror 55.
  • the scan mirror 56 is a mirror that deflects the incident laser light 62.
  • the X-axis galvano scanner 54 drives a scan mirror 56.
  • the scan mirror 55 is connected to the rotation axis of the Y-axis galvano scanner 53.
  • the Y-axis galvano scanner 53 reciprocates the rotating body around the rotation axis.
  • the Y-axis galvano scanner 53 scans the irradiation position of the laser beam 62 on the workpiece 58 in the Y-axis direction.
  • the scan mirror 56 is connected to the rotation axis of the X-axis galvano scanner 54.
  • the X-axis galvano scanner 54 reciprocates the rotating body around the rotation axis.
  • the X-axis galvano scanner 54 scans the irradiation position of the laser beam 62 on the workpiece 58 in the X-axis direction.
  • the f ⁇ lens 57 converts the laser beam 62 from the scan mirror 56 into a laser beam 63 perpendicular to the processed surface of the workpiece 58.
  • the f ⁇ lens 57 condenses the laser beam 63 at the machining position 59 in the work 58.
  • the galvano driver 60 drives the Y-axis galvano scanner 53 and the X-axis galvano scanner 54.
  • the control device 61 which is a control unit, controls the overall operation of the laser processing device 50.
  • the control device 61 controls the oscillation of the laser beam 62 of the laser oscillator 51 and the driving of the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 by the galvano driver 60.
  • the control device 61 controls a motor (not shown) that drives the XY table.
  • the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 have the same configuration as the galvano scanner 1 according to the first embodiment, for example.
  • the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 can reduce surface tilt resonance and realize high positional accuracy.
  • the laser processing apparatus 50 has the effect that the laser beam 63 can be advanced to the correct processing position 59 and high-precision processing can be performed.
  • the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 may have the same configuration as any of the galvano scanner 30 according to the second embodiment and the galvano scanner 40 according to the third embodiment.
  • the laser processing apparatus 50 only needs to have at least one of the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 having the same configuration as any of the galvano scanners 1, 30, and 40 of the first to third embodiments. Shall. In any case, the laser processing apparatus 50 can advance the laser beam 63 to the accurate processing position 59, and can realize highly accurate processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a galvano scanner comprising a rotating body that is provided with a rotation shaft (3) and is capable of rotating around the rotation shaft; a scan mirror (2) which is a mirror that deflects incident light and is connected to one end at the front side of the rotation shaft; a frame case (4) provided with an inner space in which the rotating body is rotated; a front-side bearing (8) which is a bearing provided at the front side end section of the inner space and rotatably supports the rotation shaft; and a ball plunger (10) which is a vibration suppression structure that suppresses vibrations of the front-side bearing caused by the driving of the rotation shaft. The vibration suppression structure has an abutting member that abuts an outer periphery side surface of the front-side bearing, and the abutting member is movable in accordance with displacement of the front-side bearing in an axial direction parallel to the rotation shaft.

Description

ガルバノスキャナおよびレーザ加工装置Galvano scanner and laser processing equipment
 本発明は、ガルバノスキャナおよびレーザ加工装置に関する。 The present invention relates to a galvano scanner and a laser processing apparatus.
 ガルバノスキャナを備えるレーザ加工装置は、例えば、プリント配線基板、精密電子部品の穴開け加工に利用されている。製品となる電子回路、電子部品の精細化が進められるにしたがい、レーザ加工装置は、加工位置の高精度な制御が要求されている。 Laser processing devices equipped with galvano scanners are used for, for example, drilling printed circuit boards and precision electronic components. As the electronic circuits and electronic parts that are products are being refined, the laser processing apparatus is required to control the processing position with high accuracy.
 ガルバノスキャナは、同じピッチでの加工位置の移動を繰り返した場合において、加工位置の移動周波数が回転体の固有振動数と一致したとき、ミラーの面に対して垂直な方向への振動(面倒れ共振)が発生することがある。面倒れ共振が発生することで、ミラーからのレーザ光の進行方向が変化するため、加工対象物におけるレーザ光の位置に誤差が生じることになる。 When the galvano scanner repeats the movement of the machining position at the same pitch, when the movement frequency of the machining position matches the natural frequency of the rotating body, the galvano scanner vibrates in the direction perpendicular to the mirror surface (surface tilt). Resonance) may occur. When the surface tilt resonance occurs, the traveling direction of the laser beam from the mirror changes, so that an error occurs in the position of the laser beam on the workpiece.
 例えば特許文献1には、軸と軸箱との間に円筒ころ軸受が組み込まれた軸支持装置に関し、軸受の外輪と軸箱との間にて振動を吸収させる部材を設けることが開示されている。 For example, Patent Document 1 discloses a shaft support device in which a cylindrical roller bearing is incorporated between a shaft and a shaft box, and provides a member that absorbs vibration between the outer ring of the bearing and the shaft box. Yes.
特開2008-138779号公報JP 2008-138779 A
 ガルバノスキャナの回転体は、駆動による温度上昇を受けて、熱膨張を生じることがある。軸方向における回転体の寸法変化を吸収可能とするために、ガルバノスキャナに設けられる軸受は、回転体が収納されるフレームケースに対してわずかな隙間を介して配置されている。ガルバノスキャナは、回転体の熱膨張による寸法変化を吸収できるとともに、加工位置の精度を悪化させる振動を低減可能であることが求められる。 Rotating bodies of galvano scanners may undergo thermal expansion due to temperature rise due to driving. In order to be able to absorb the dimensional change of the rotating body in the axial direction, the bearing provided in the galvano scanner is arranged with a slight gap with respect to the frame case in which the rotating body is accommodated. The galvano scanner is required to be able to absorb the dimensional change due to the thermal expansion of the rotating body and to reduce the vibration that deteriorates the accuracy of the processing position.
 近年、ガルバノスキャナは、高速駆動が要請されているために、回転体の駆動力が大きくなる傾向にある。ガルバノスキャナは、駆動力が増大することで、不要な振動についても振幅が大きくなり易くなる。ガルバノスキャナは、駆動力の増大に対し不要な振動を十分低減できるような、軸受の周辺の隙間の公差管理が困難となっている。 In recent years, since the galvano scanner is required to be driven at high speed, the driving force of the rotating body tends to increase. In the galvano scanner, an increase in driving force easily increases the amplitude of unnecessary vibration. In the galvano scanner, it is difficult to manage the tolerance of the clearance around the bearing so that unnecessary vibrations can be sufficiently reduced as the driving force increases.
 本発明は、上記に鑑みてなされたものであって、面倒れ共振を低減可能とし、高い位置精度を実現可能とするガルバノスキャナおよびレーザ加工装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a galvano scanner and a laser processing apparatus that can reduce surface tilt resonance and realize high positional accuracy.
 上述した課題を解決し、目的を達成するために、本発明は、回転軸を備え、前記回転軸を中心として回転可能とされた回転体と、前記回転軸のうち前側の一端に連結され、入射した光を偏向させるミラーと、前記回転体を回転させる内部スペースを備えるフレームケースと、前記内部スペースのうち前側の端部に設けられ、前記回転軸を回転可能に支持する軸受である前側軸受と、前記回転軸の駆動による前記前側軸受の振動を抑制する振動抑制構造と、を有し、前記振動抑制構造は、前記前側軸受の外周側面に当接する当接部材を備え、前記当接部材は、前記回転軸に平行な軸方向における前記前側軸受の変位に応じて可動とされていることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is provided with a rotating shaft, and is connected to a rotating body that is rotatable around the rotating shaft, and one front end of the rotating shaft, A front-side bearing which is a bearing that is provided at a front end portion of the internal space and rotatably supports the rotary shaft, a mirror that deflects incident light, a frame case that includes an internal space for rotating the rotating body, and the internal space. And a vibration suppressing structure that suppresses vibration of the front bearing caused by driving of the rotating shaft, and the vibration suppressing structure includes a contact member that contacts an outer peripheral side surface of the front bearing, and the contact member Is movable according to the displacement of the front bearing in the axial direction parallel to the rotating shaft.
 本発明にかかるガルバノスキャナは、振動抑制構造の当接部材を前側軸受の外周側面に当接させることで、調整困難な面倒れ共振を低減する。ガルバノスキャナは、軸方向における前側軸受の変位に応じて当接部材を可動とすることで、回転体の熱膨張による寸法変化を吸収可能とするとともに、回転体の寸法変化があっても前側軸受への当接部材の当接を維持することができる。これにより、ガルバノスキャナは、面倒れ共振を低減可能とし、高い位置精度を実現できるという効果を奏する。 The galvano scanner according to the present invention reduces the surface tilt resonance that is difficult to adjust by bringing the contact member of the vibration suppressing structure into contact with the outer peripheral side surface of the front bearing. The galvano scanner can absorb the dimensional change due to the thermal expansion of the rotating body by making the contact member movable according to the displacement of the front bearing in the axial direction. The contact of the contact member to the can be maintained. As a result, the galvano scanner can reduce surface tilt resonance and achieve an effect of realizing high positional accuracy.
図1は、本発明の実施の形態1にかかるガルバノスキャナの断面構成を示す図である。FIG. 1 is a diagram showing a cross-sectional configuration of a galvano scanner according to a first embodiment of the present invention. 図2は、ボールプランジャーの断面構成を示す図である。FIG. 2 is a diagram showing a cross-sectional configuration of the ball plunger. 図3は、第1の面倒れ共振の発生について説明する図である。FIG. 3 is a diagram for explaining the occurrence of the first surface tilt resonance. 図4は、第1の面倒れ共振の周波数と振幅との関係の例を示す図である。FIG. 4 is a diagram illustrating an example of the relationship between the frequency and amplitude of the first surface tilt resonance. 図5は、第2の面倒れ共振の発生について説明する図である。FIG. 5 is a diagram for explaining the occurrence of the second surface tilt resonance. 図6は、第2の面倒れ共振の周波数と振幅との関係の例を示す図である。FIG. 6 is a diagram illustrating an example of the relationship between the frequency and amplitude of the second surface tilt resonance. 図7は、第1の面倒れ共振と第2の面倒れ共振とが発生する場合における共振の周波数と振幅との関係について説明する図である。FIG. 7 is a diagram for explaining the relationship between the resonance frequency and amplitude when the first surface-inclined resonance and the second surface-inclined resonance occur. 図8は、本発明の実施の形態2にかかるガルバノスキャナの断面構成を示す図である。FIG. 8 is a diagram showing a cross-sectional configuration of the galvano scanner according to the second embodiment of the present invention. 図9は、ローラプランジャーの断面構成を示す図である。FIG. 9 is a diagram showing a cross-sectional configuration of the roller plunger. 図10は、本発明の実施の形態3にかかるガルバノスキャナの断面構成を示す図である。FIG. 10 is a diagram showing a cross-sectional configuration of the galvano scanner according to the third embodiment of the present invention. 図11は、ばね構造体を分解して示す側面図である。FIG. 11 is an exploded side view of the spring structure. 図12は、本発明の実施の形態4にかかるレーザ加工装置の構成を示す図である。FIG. 12 is a diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention.
 以下に、本発明にかかるガルバノスキャナおよびレーザ加工装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a galvano scanner and a laser processing apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるガルバノスキャナの断面構成を示す図である。ガルバノスキャナ1は、レーザ光源からのレーザ光を加工対象物にて走査させる。ガルバノスキャナ1は、回転体および固定体からなる。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a cross-sectional configuration of a galvano scanner according to a first embodiment of the present invention. The galvano scanner 1 scans a laser beam from a laser light source with a workpiece. The galvano scanner 1 includes a rotating body and a fixed body.
 回転体は、スキャンミラー2、回転軸3および磁石5を備える。回転体は、回転軸3を中心として回転可能とされている。スキャンミラー2は、入射した光を偏向させるミラーである。スキャンミラー2は、回転軸3のうち前側の一端に連結されている。ミラーマウント12は、回転軸3にスキャンミラー2を連結する。マウント押さえ具13は、留め具14が挿入された状態で、回転軸3にミラーマウント12を固定する。磁石5は、前側軸受8および後側軸受9の間に位置する。 The rotating body includes a scan mirror 2, a rotating shaft 3, and a magnet 5. The rotating body is rotatable around the rotation shaft 3. The scan mirror 2 is a mirror that deflects incident light. The scan mirror 2 is connected to one end of the rotating shaft 3 on the front side. The mirror mount 12 connects the scan mirror 2 to the rotation shaft 3. The mount retainer 13 fixes the mirror mount 12 to the rotating shaft 3 in a state where the fastener 14 is inserted. The magnet 5 is located between the front bearing 8 and the rear bearing 9.
 固定体は、フレームケース4、コイル6および鉄芯7を備える。コイル6は、磁石5の周囲に設けられている。鉄芯7は、コイル6の周囲に設けられている。リード線18に接続された電源(図示省略)からコイル6へ電流が流れることで、コイル6は、電磁力を発生させる。磁石5の磁界の周囲にて電磁力を作用させることで、磁石5を回転させる回転トルクが発生する。回転体は、磁石5に作用する回転トルクを利用して回転する。 The fixed body includes a frame case 4, a coil 6 and an iron core 7. The coil 6 is provided around the magnet 5. The iron core 7 is provided around the coil 6. When a current flows from the power source (not shown) connected to the lead wire 18 to the coil 6, the coil 6 generates an electromagnetic force. By applying an electromagnetic force around the magnetic field of the magnet 5, a rotational torque that rotates the magnet 5 is generated. The rotating body rotates using the rotational torque acting on the magnet 5.
 フレームケース4は、磁石5、コイル6および鉄芯7を内部に収納する。フレームケース4は、回転体の磁石5を回転させる内部スペースを備える。前側軸受8および後側軸受9は、回転軸3を回転可能に支持する軸受である。前側軸受8は、フレームケース4の内部スペースのうち前側の端部に設けられている。後側軸受9は、フレームケース4の内部スペースのうち後側の端部に設けられている。 The frame case 4 houses the magnet 5, the coil 6 and the iron core 7 inside. The frame case 4 includes an internal space for rotating the magnet 5 of the rotating body. The front bearing 8 and the rear bearing 9 are bearings that rotatably support the rotary shaft 3. The front bearing 8 is provided at the front end of the internal space of the frame case 4. The rear bearing 9 is provided at the rear end of the internal space of the frame case 4.
 後側軸受9は、フレームケース4に固定されている。前側軸受8は、フレームケース4に固定されていない。予圧バネ16は、座金17を介して前側軸受8へ予圧を付与する。押さえ板15は、フレームケース4のうち前側の外端面と予圧バネ16とに当接させて設けられている。 The rear bearing 9 is fixed to the frame case 4. The front bearing 8 is not fixed to the frame case 4. The preload spring 16 applies preload to the front bearing 8 via a washer 17. The holding plate 15 is provided in contact with the front outer end surface of the frame case 4 and the preload spring 16.
 貫通孔11は、フレームケース4に形成されている。貫通孔11は、フレームケース4の外周面と、フレームケース4の内部スペースとの間を貫通する。貫通孔11は、回転軸3に平行な方向である軸方向に対して垂直に形成されている。貫通孔11のうち内部スペース側の端部は、前側軸受8の外周側面の位置にある。貫通孔11の内表面には、ねじ溝が形成されている。 The through hole 11 is formed in the frame case 4. The through hole 11 penetrates between the outer peripheral surface of the frame case 4 and the internal space of the frame case 4. The through hole 11 is formed perpendicular to the axial direction which is a direction parallel to the rotation shaft 3. The end portion on the inner space side of the through hole 11 is located on the outer peripheral side surface of the front bearing 8. A thread groove is formed on the inner surface of the through hole 11.
 振動抑制構造であるボールプランジャー10は、貫通孔11に配置されている。ボールプランジャー10は、回転軸3の駆動による前側軸受8の振動を抑制する。ボールプランジャー10は、フレームケース4の外表面から貫通孔11内へねじ込まれることで、貫通孔11に挿入されている。 The ball plunger 10 having a vibration suppressing structure is disposed in the through hole 11. The ball plunger 10 suppresses the vibration of the front bearing 8 due to the driving of the rotating shaft 3. The ball plunger 10 is inserted into the through hole 11 by being screwed into the through hole 11 from the outer surface of the frame case 4.
 図2は、ボールプランジャーの断面構成を示す図である。ボールプランジャー10は、球形部材21、本体部22およびコイルばね23を備える。本体部22は、下端が塞がれるとともに上端が開放された円筒形状を備える。本体部22の側面には、ねじ溝が形成されている。 FIG. 2 is a diagram showing a cross-sectional configuration of the ball plunger. The ball plunger 10 includes a spherical member 21, a main body portion 22, and a coil spring 23. The main body 22 has a cylindrical shape with the lower end closed and the upper end opened. A thread groove is formed on the side surface of the main body 22.
 当接部材である球形部材21は、本体部22の上端より上に一部を突出させた状態として、本体部22に配置されている。球形部材21は、本体部22の上端にて回転可能とされている。球形部材21は、前側軸受8の外周側面に当接する。 The spherical member 21, which is a contact member, is disposed on the main body 22 in a state in which a part protrudes above the upper end of the main body 22. The spherical member 21 is rotatable at the upper end of the main body 22. The spherical member 21 abuts on the outer peripheral side surface of the front bearing 8.
 弾性部材であるコイルばね23は、本体部22の内部に配置されている。コイルばね23は、前側軸受8の方向へ球形部材21を押し上げる力を、球形部材21に対して付与する。コイルばね23の上端は球形部材21に当接する。コイルばね23の下端は本体部22内部の底面に当接する。 The coil spring 23, which is an elastic member, is disposed inside the main body 22. The coil spring 23 applies a force that pushes up the spherical member 21 toward the front bearing 8 to the spherical member 21. The upper end of the coil spring 23 contacts the spherical member 21. The lower end of the coil spring 23 contacts the bottom surface inside the main body 22.
 例えばガルバノスキャナ1の製造時において、ボールプランジャー10は、球形部材21が前側軸受8に当接する位置にまで貫通孔11内にて締め込まれる。ボールプランジャー10の締め込みには、ドライバ等の工具が使用される。 For example, when the galvano scanner 1 is manufactured, the ball plunger 10 is tightened in the through hole 11 to a position where the spherical member 21 contacts the front bearing 8. A tool such as a screwdriver is used to tighten the ball plunger 10.
 球形部材21が前側軸受8に到達してから、さらにボールプランジャー10をわずかにねじ込むことで、球形部材21が所定の力で前側軸受8をわずかに押圧する状態とする。かかる状態となるまでボールプランジャー10がねじ込まれたか否かは、例えば、ボールプランジャー10をねじ込む際のトルクを測定した結果から判断する。この他、球形部材21が前側軸受8に到達してからドライバを所定量回すことで、ボールプランジャー10の位置を決定することとしても良い。ボールプランジャー10は、このようにして位置決めされた後、接着剤等を使用して固定される。 After the spherical member 21 reaches the front bearing 8, the ball plunger 10 is further screwed in so that the spherical member 21 slightly presses the front bearing 8 with a predetermined force. Whether or not the ball plunger 10 has been screwed in until such a state is determined, for example, from the result of measuring the torque when the ball plunger 10 is screwed in. In addition, the position of the ball plunger 10 may be determined by turning the driver a predetermined amount after the spherical member 21 reaches the front bearing 8. After the ball plunger 10 is positioned in this way, it is fixed using an adhesive or the like.
 ガルバノスキャナ1の駆動を継続するうち、回転体は、温度上昇による熱膨張を生じることがある。フレームケース4の内部では、外側に位置する固定体に対して、内側に位置する回転体のほうが放熱は不十分となりがちであるため、熱膨張は、固定体に比べて回転体のほうが大きくなる。 As the galvano scanner 1 continues to be driven, the rotating body may undergo thermal expansion due to temperature rise. In the frame case 4, heat is apt to be insufficient for the rotating body positioned on the inner side relative to the fixed body positioned on the outer side, so that the thermal expansion is larger for the rotating body than for the fixed body. .
 ガルバノスキャナ1は、後側軸受9をフレームケース4に固定する一方、前側軸受8をフレームケース4に固定しないことで、軸方向における回転体の熱膨張に対し、前側軸受8を軸方向において変位可能とする。これにより、ガルバノスキャナ1は、軸方向における回転体の寸法変化を吸収可能とする。 The galvano scanner 1 displaces the front bearing 8 in the axial direction against the thermal expansion of the rotating body in the axial direction by fixing the rear bearing 9 to the frame case 4 and not fixing the front bearing 8 to the frame case 4. Make it possible. Thereby, the galvano scanner 1 can absorb the dimensional change of the rotating body in the axial direction.
 ここで、本実施の形態の比較例として、ガルバノスキャナ1にボールプランジャー10を備えない場合における面倒れ共振について説明する。ガルバノスキャナ1は、軸方向における回転体の寸法変化に対し、軸方向において前側軸受8を自在に変位可能とするために、前側軸受8とフレームケース4との間にわずかな隙間が設けられる。ガルバノスキャナ1は、かかる隙間を例えば6μm程度以下として設計される一方、このような微細な寸法についての公差管理は困難とされている。 Here, as a comparative example of the present embodiment, surface tilt resonance when the galvano scanner 1 is not provided with the ball plunger 10 will be described. The galvano scanner 1 is provided with a slight gap between the front bearing 8 and the frame case 4 so that the front bearing 8 can be freely displaced in the axial direction with respect to the dimensional change of the rotating body in the axial direction. The galvano scanner 1 is designed with such a gap of, for example, about 6 μm or less, but it is difficult to manage tolerances for such fine dimensions.
 従来、ガルバノスキャナ1は、前側軸受8の位置を支点(節)とする面倒れ共振を発生させることが知られている。以下の説明では、前側軸受8の位置を支点とする面倒れ共振を、適宜、第1の面倒れ共振と称する。 Conventionally, it is known that the galvano scanner 1 generates a surface tilt resonance with the position of the front bearing 8 as a fulcrum (node). In the following description, the surface tilt resonance using the position of the front bearing 8 as a fulcrum is appropriately referred to as a first surface tilt resonance.
 さらに、ガルバノスキャナ1は、駆動の高速化が進められるうち、スキャンミラー2とミラーマウント12との境界の位置を支点とする面倒れ共振が観測されるようにもなっている。以下の説明では、スキャンミラー2とミラーマウント12との境界の位置を支点とする面倒れ共振を、適宜、第2の面倒れ共振と称する。前側軸受8とフレームケース4との間の隙間が比較的大きい場合に第2の面倒れ共振が誘発されるということが、発明者の実験により分かった。 Furthermore, as the galvano scanner 1 is driven at a higher speed, surface tilt resonance is observed with the position of the boundary between the scan mirror 2 and the mirror mount 12 as a fulcrum. In the following description, the surface tilt resonance using the position of the boundary between the scan mirror 2 and the mirror mount 12 as a fulcrum is appropriately referred to as a second surface tilt resonance. It has been found by the inventor's experiment that the second surface collapse resonance is induced when the gap between the front bearing 8 and the frame case 4 is relatively large.
 図3は、第1の面倒れ共振の発生について説明する図である。図4は、第1の面倒れ共振の周波数と振幅との関係の例を示す図である。図3では、ガルバノスキャナ1の一部の構成を適宜簡略化して示すとともに、説明に不要な構成については図示を省略している。 FIG. 3 is a diagram for explaining the occurrence of the first surface-inclined resonance. FIG. 4 is a diagram illustrating an example of the relationship between the frequency and amplitude of the first surface tilt resonance. In FIG. 3, a part of the configuration of the galvano scanner 1 is simplified as appropriate, and the configuration unnecessary for the description is omitted.
 前側軸受8の外周側面19とフレームケース4の内面との間の隙間が例えば6μm以下であるとき、ガルバノスキャナ1は、第1の面倒れ共振を発生させることがある。第1の面倒れ共振は、例えば周波数がf1とする。共振の振幅がhであるとき、スキャンミラー2の振れ角は、前側軸受8の位置を支点として、例えばθとする。 When the gap between the outer peripheral side surface 19 of the front bearing 8 and the inner surface of the frame case 4 is, for example, 6 μm or less, the galvano scanner 1 may generate the first surface tilt resonance. In the first surface tilt resonance, for example, the frequency is f1. When the amplitude of resonance is h, the deflection angle of the scan mirror 2 is, for example, θ with the position of the front bearing 8 as a fulcrum.
 ガルバノスキャナ1は、同じ周期での回転体の往復回動の繰り返しにおいて、かかる回転の周波数と回転体の固有振動数とが一致したときに、面倒れ共振が発生する。面倒れ共振が生じることで、スキャンミラー2の反射面は、反射面に対して垂直な方向において周期的に変位する。反射面に対して垂直な方向にてスキャンミラー2の反射面が変位することで、ガルバノスキャナ1は、レーザ光の走査方向に対して垂直な方向において、レーザ光の位置に誤差を生じさせることとなる。 In the galvano scanner 1, in the repeated reciprocating rotation of the rotating body in the same cycle, when the frequency of the rotation matches the natural frequency of the rotating body, surface tilt resonance occurs. Due to surface tilt resonance, the reflection surface of the scan mirror 2 is periodically displaced in a direction perpendicular to the reflection surface. When the reflecting surface of the scan mirror 2 is displaced in the direction perpendicular to the reflecting surface, the galvano scanner 1 causes an error in the position of the laser beam in the direction perpendicular to the scanning direction of the laser beam. It becomes.
 第1の面倒れ共振を発生させるガルバノスキャナ1に対しては、振幅hができるだけ小さくなるように回転体の重量バランスを調整することで、第1の面倒れ共振によるレーザ光の位置の誤差を低減させる。回転体の重量バランスは、例えば、スキャンミラー2の裏面にシールを貼ることで調整される。裏面は、スキャンミラー2のうち反射面とは反対側の面である。 For the galvano scanner 1 that generates the first surface tilt resonance, an error in the position of the laser beam due to the first surface tilt resonance is adjusted by adjusting the weight balance of the rotating body so that the amplitude h is as small as possible. Reduce. The weight balance of the rotating body is adjusted, for example, by sticking a seal on the back surface of the scan mirror 2. The back surface is the surface of the scan mirror 2 opposite to the reflecting surface.
 図5は、第2の面倒れ共振の発生について説明する図である。図6は、第2の面倒れ共振の周波数と振幅との関係の例を示す図である。図5では、ガルバノスキャナ1の一部の構成を適宜簡略化して示すとともに、説明に不要な構成については図示を省略している。 FIG. 5 is a diagram for explaining the occurrence of the second surface-inclined resonance. FIG. 6 is a diagram illustrating an example of the relationship between the frequency and amplitude of the second surface tilt resonance. In FIG. 5, a part of the configuration of the galvano scanner 1 is simplified as appropriate and illustrations of components unnecessary for the description are omitted.
 前側軸受8の外周側面19とフレームケース4の内面との間の隙間が図3に示す場合よりも大きい場合、ガルバノスキャナ1は、第2の面倒れ共振を発生させることがある。第2の面倒れ共振は、例えば周波数がf2とする(f2>f1)。共振の振幅がhであるとき、スキャンミラー2の振れ角は、スキャンミラー2とミラーマウント12との境界の位置を支点として、例えばθ’とする。 When the gap between the outer peripheral side surface 19 of the front bearing 8 and the inner surface of the frame case 4 is larger than the case shown in FIG. 3, the galvano scanner 1 may generate the second surface-inclined resonance. In the second surface tilt resonance, for example, the frequency is f2 (f2> f1). When the amplitude of resonance is h, the deflection angle of the scan mirror 2 is, for example, θ ′ with the position of the boundary between the scan mirror 2 and the mirror mount 12 as a fulcrum.
 前側軸受8とフレームケース4との間の隙間が例えば6μm以上と比較的大きい場合、軸方向に対し垂直な方向における回転体の移動が生じることで、前側軸受8が回転体の振動を抑える効果が弱められるものと考えられる。 When the clearance between the front bearing 8 and the frame case 4 is relatively large, for example, 6 μm or more, the front bearing 8 suppresses vibration of the rotating body by causing the moving of the rotating body in a direction perpendicular to the axial direction. Is considered to be weakened.
 スキャンミラー2のうちミラーマウント12に固定された側とは反対の端部と、共振の支点との間の距離は、第1の面倒れ共振に比べて第2の面倒れ共振の場合に長くなる。いずれの共振の振幅も同じhとした場合に、θ’はθより大きくなる(θ’>θ)。 The distance between the end of the scan mirror 2 opposite to the side fixed to the mirror mount 12 and the resonance fulcrum is longer in the case of the second surface-inclined resonance than in the first surface-inclined resonance. Become. When the amplitude of any resonance is the same h, θ ′ is larger than θ (θ ′> θ).
 レーザ加工装置に備えられたレンズの焦点距離をFとした場合に、第1の面倒れ共振によって及ぼされる加工位置のずれは、Δx=2Fθと表される。また、第2の面倒れ共振によって及ぼされる加工位置のずれは、Δx’=2Fθ’と表される。θ’>θであるため、Δx’>Δxの関係が成り立つ。このように、第1の面倒れ共振と第2の面倒れ共振とを互いに同じ振幅hにできたとしても、第2の面倒れ共振の場合のほうが、第1の面倒れ共振の場合に比べて加工位置のずれが大きくなる。 When the focal length of the lens provided in the laser processing apparatus is F, the processing position shift caused by the first surface tilt resonance is expressed as Δx = 2Fθ. Further, the processing position shift caused by the second surface tilt resonance is expressed as Δx ′ = 2Fθ ′. Since θ ′> θ, the relationship Δx ′> Δx is established. As described above, even if the first surface-inclined resonance and the second surface-inclined resonance can be set to the same amplitude h, the case of the second surface-inclined resonance is greater than that in the case of the first surface-inclined resonance. As a result, the displacement of the machining position increases.
 ガルバノスキャナ1は、第2の面倒れ共振が発生する状況下において、第2の面倒れ共振と第1の面倒れ共振とを不規則に生じさせることがある。ガルバノスキャナ1は、第1の面倒れ共振と第2の面倒れ共振とが混在して発生することもある。図7は、第1の面倒れ共振と第2の面倒れ共振とが発生する場合における共振の周波数と振幅との関係について説明する図である。 The galvano scanner 1 may cause the second surface-inclined resonance and the first surface-inclined resonance to occur irregularly in a situation where the second surface-inclined resonance occurs. In the galvano scanner 1, the first surface fall resonance and the second surface fall resonance may occur together. FIG. 7 is a diagram for explaining the relationship between the resonance frequency and amplitude when the first surface-inclined resonance and the second surface-inclined resonance occur.
 それぞれ異なる周波数の共振が混在している場合、ガルバノスキャナ1は、双方の面倒れ共振について振幅を低減させるような、回転体の重量バランスには到達し得ないことになる。例えば周波数f1の第1の面倒れ共振と周波数f2の第2の面倒れ共振のうち、第2の面倒れ共振に対して振幅を抑える調整を行った場合に、第1の面倒れ共振の振幅が増大する場合がある。また、第1の面倒れ共振に対して振幅を抑える調整を行った場合に、第2の面倒れ共振の振幅が増大する場合がある。 When the resonances of different frequencies are mixed, the galvano scanner 1 cannot reach the weight balance of the rotating body so as to reduce the amplitude of both surface falling resonances. For example, when an adjustment is performed to suppress the amplitude of the first surface-inclined resonance at the frequency f1 and the second surface-inclined resonance at the frequency f2, the amplitude of the first surface-inclined resonance is adjusted. May increase. In addition, when the adjustment for suppressing the amplitude with respect to the first surface-inclined resonance is performed, the amplitude of the second surface-inclined resonance may increase.
 ガルバノスキャナ1は、加工位置の精度を改善させる上で不利となる第2の面倒れ共振をできるだけ抑制可能であることが望まれる。回転体の重量バランスの調整によって共振の振幅hを低減可能とするには限界があるため、ガルバノスキャナ1は、第2の面倒れ共振を発生要因から改善できることが望まれる。さらに、ガルバノスキャナ1は、第2の面倒れ共振が発生する状況での第1の面倒れ共振の発生の抑制、双方の面倒れ共振の混在の抑制のためにも、第2の面倒れ共振を発生要因から改善できることが望まれる。 The galvano scanner 1 is desired to be able to suppress as much as possible the second surface tilt resonance, which is disadvantageous in improving the accuracy of the processing position. Since there is a limit in reducing the resonance amplitude h by adjusting the weight balance of the rotating body, it is desirable that the galvano scanner 1 be able to improve the second surface tilt resonance from the generation factor. Furthermore, the galvano scanner 1 also has the second surface tilt resonance in order to suppress the occurrence of the first surface tilt resonance in the situation where the second surface tilt resonance occurs and to suppress the mixture of both surface tilt resonances. It is desirable to be able to improve from the generation factor.
 通常の製造精度で組み立てられるガルバノスキャナ1において、例えば10μmの寸法についての公差管理を厳格に実施することは極めて困難である。前側軸受8とフレームケース4との間の隙間が例えば6μm程度以下として設計されていても、当該隙間が実際には6μm以上となる場合がある。当該隙間が所望の寸法条件を満足するガルバノスキャナ1を安定して製造することは困難である。かかる寸法条件を満足しないガルバノスキャナ1の製造品を不良品と扱う場合、ガルバノスキャナ1の歩留まりを大幅に低下させることになる。 In the galvano scanner 1 assembled with normal manufacturing accuracy, it is extremely difficult to strictly carry out tolerance management for a dimension of, for example, 10 μm. Even if the gap between the front bearing 8 and the frame case 4 is designed to be, for example, about 6 μm or less, the gap may actually be 6 μm or more. It is difficult to stably manufacture the galvano scanner 1 in which the gap satisfies a desired dimensional condition. When a manufactured product of the galvano scanner 1 that does not satisfy such dimensional conditions is handled as a defective product, the yield of the galvano scanner 1 is greatly reduced.
 本実施の形態にかかるガルバノスキャナ1は、ボールプランジャー10の球形部材21を前側軸受8の外周側面19に当接させることで、軸方向に対して垂直に働く所定の力で前側軸受8を押さえ付ける。ガルバノスキャナ1は、前側軸受8の周囲の隙間が要因となって生じる回転体の振動を効果的に抑制することができる。なお、ガルバノスキャナ1は、共振の発生状態を観測しながら、ボールプランジャー10の位置を調整することとしても良い。 In the galvano scanner 1 according to the present embodiment, the spherical member 21 of the ball plunger 10 is brought into contact with the outer peripheral side surface 19 of the front bearing 8 so that the front bearing 8 is moved with a predetermined force acting perpendicular to the axial direction. Press down. The galvano scanner 1 can effectively suppress the vibration of the rotating body caused by the gap around the front bearing 8. The galvano scanner 1 may adjust the position of the ball plunger 10 while observing the state of occurrence of resonance.
 ボールプランジャー10が設けられることで、ガルバノスキャナ1は、前側軸受8の周囲の比較的大きな隙間が要因となって生じ得る第2の面倒れ共振を、発生要因から改善可能とする。ガルバノスキャナ1は、第2の面倒れ共振および第1の面倒れ共振を不規則に発生させる状態、および第1の面倒れ共振と第2の面倒れ共振とが混在する状態をいずれも抑制できる。 By providing the ball plunger 10, the galvano scanner 1 can improve the second surface-inclined resonance that may be caused by a relatively large gap around the front bearing 8 from the cause. The galvano scanner 1 can suppress both the state in which the second surface-inclined resonance and the first surface-inclined resonance are irregularly generated, and the state in which the first surface-inclined resonance and the second surface-inclined resonance are mixed. .
 ガルバノスキャナ1は、ボールプランジャー10の設置により第2の面倒れ共振を低減させることで、回転体の重量バランスの調整を、専ら第1の面倒れ共振に対する振幅の低減のためとして実施可能とする。ボールプランジャー10の位置調整と回転体の重量バランスの調整とを経ることで、ガルバノスキャナ1は、高速駆動における面倒れ共振を効果的に低減できる。 The galvano scanner 1 can reduce the second surface fall resonance by installing the ball plunger 10, thereby enabling adjustment of the weight balance of the rotating body exclusively for reducing the amplitude with respect to the first surface fall resonance. To do. Through the adjustment of the position of the ball plunger 10 and the adjustment of the weight balance of the rotating body, the galvano scanner 1 can effectively reduce surface tilt resonance in high-speed driving.
 球形部材21は、軸方向における前側軸受8の変位に連動して回転する。球形部材21は、前側軸受8の外周側面19に当接した状態を維持しながら、軸方向における前側軸受8の変位に応じて可動とされている。 The spherical member 21 rotates in conjunction with the displacement of the front bearing 8 in the axial direction. The spherical member 21 is movable in accordance with the displacement of the front bearing 8 in the axial direction while maintaining a state in contact with the outer peripheral side surface 19 of the front bearing 8.
 ガルバノスキャナ1は、前側軸受8に当接した状態で自在に回転する球形部材21を、振動抑制構造であるボールプランジャー10に含めることで、熱膨張による回転体の寸法変化を吸収可能としながら、回転体の振動を抑制することができる。 The galvano scanner 1 includes a spherical member 21 that freely rotates while in contact with the front bearing 8 in the ball plunger 10 that is a vibration suppressing structure, thereby making it possible to absorb the dimensional change of the rotating body due to thermal expansion. The vibration of the rotating body can be suppressed.
 以上により、ガルバノスキャナ1は、面倒れ共振を低減可能とし、高い位置精度を実現できるという効果を奏する。前側軸受8とフレームケース4との間の隙間の厳格な公差管理によらなくても面倒れ共振を低減できることで、ガルバノスキャナ1は、歩留まりの向上が可能となる。 As described above, the galvano scanner 1 has an effect that the surface tilt resonance can be reduced and high positional accuracy can be realized. The galvano scanner 1 can improve the yield by reducing the surface tilt resonance without using strict tolerance management of the gap between the front bearing 8 and the frame case 4.
 なお、振動抑制構造は、本実施の形態で説明する構成のボールプランジャー10である場合に限られない。振動抑制構造は、前側軸受8に当接する球形部材が、軸方向における前側軸受8の変位に連動して回転するものであれば良く、本実施の形態で説明する構成を適宜変更しても良い。 The vibration suppressing structure is not limited to the ball plunger 10 having the configuration described in the present embodiment. The vibration suppressing structure may be any structure as long as the spherical member in contact with the front bearing 8 rotates in conjunction with the displacement of the front bearing 8 in the axial direction, and the configuration described in the present embodiment may be changed as appropriate. .
実施の形態2.
 図8は、本発明の実施の形態2にかかるガルバノスキャナの断面構成を示す図である。ガルバノスキャナ30は、レーザ光源からのレーザ光を加工対象物にて走査させる。実施の形態1と同一の部分には同一の符号を付し、重複する説明を適宜省略する。
Embodiment 2. FIG.
FIG. 8 is a diagram showing a cross-sectional configuration of the galvano scanner according to the second embodiment of the present invention. The galvano scanner 30 scans the processing target with the laser light from the laser light source. The same parts as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.
 振動抑制構造であるローラプランジャー31は、貫通孔11に配置されている。ローラプランジャー31は、回転軸3の駆動による前側軸受8の振動を抑制する。ローラプランジャー31は、フレームケース4の外表面から貫通孔11内へねじ込まれることで、貫通孔11に挿入されている。 The roller plunger 31 having a vibration suppressing structure is disposed in the through hole 11. The roller plunger 31 suppresses the vibration of the front bearing 8 due to the driving of the rotating shaft 3. The roller plunger 31 is inserted into the through hole 11 by being screwed into the through hole 11 from the outer surface of the frame case 4.
 図9は、ローラプランジャーの断面構成を示す図である。ローラプランジャー31は、円盤部材32、本体部33およびコイルばね34を備える。本体部33は、下端が塞がれるとともに上端が開放された円筒形状を備える。本体部33の側面には、ねじ溝が形成されている。 FIG. 9 is a diagram showing a cross-sectional configuration of the roller plunger. The roller plunger 31 includes a disk member 32, a main body portion 33, and a coil spring 34. The main body 33 has a cylindrical shape with the lower end closed and the upper end opened. A thread groove is formed on the side surface of the main body 33.
 当接部材である円盤部材32は、本体部33の上に配置されている。円盤部材32は、円形の中心が回転可能に支持されている。円盤部材32の外周面は、前側軸受8の外周側面に当接する。ローラプランジャー31は、円盤部材32の円形の面が回転体の軸方向に平行になるように配置されている。 The disk member 32 which is an abutting member is disposed on the main body portion 33. The disk member 32 is supported such that the center of the circle is rotatable. The outer peripheral surface of the disk member 32 is in contact with the outer peripheral side surface of the front bearing 8. The roller plunger 31 is disposed so that the circular surface of the disk member 32 is parallel to the axial direction of the rotating body.
 弾性部材であるコイルばね34は、本体部33の内部に配置されている。コイルばね34は、前側軸受8の方向へ円盤部材32を押し上げる力を、円盤部材32に対して付与する。コイルばね34の上端は円盤部材32に当接する。コイルばね34の下端は本体部33内部の底面に当接する。 The coil spring 34, which is an elastic member, is disposed inside the main body 33. The coil spring 34 applies a force that pushes up the disk member 32 toward the front bearing 8 to the disk member 32. The upper end of the coil spring 34 abuts on the disk member 32. The lower end of the coil spring 34 is in contact with the bottom surface inside the main body 33.
 例えばガルバノスキャナ30の製造時において、ローラプランジャー31は、円盤部材32が前側軸受8に当接する位置にまで貫通孔11内にて締め込まれる。ローラプランジャー31の締め込みには、ドライバ等の工具が使用される。 For example, when the galvano scanner 30 is manufactured, the roller plunger 31 is tightened in the through hole 11 to a position where the disk member 32 contacts the front bearing 8. A tool such as a screwdriver is used to tighten the roller plunger 31.
 円盤部材32が前側軸受8に到達してから、さらにローラプランジャー31をわずかにねじ込むことで、円盤部材32が所定の力で前側軸受8をわずかに押圧する状態とする。かかる状態となるまでローラプランジャー31がねじ込まれたか否かは、例えば、ローラプランジャー31をねじ込む際のトルクを測定した結果から判断する。この他、円盤部材32が前側軸受8に到達してからドライバを所定量回すことで、ローラプランジャー31の位置を決定することとしても良い。ローラプランジャー31は、このようにして位置決めされた後、接着剤等を使用して固定される。 After the disk member 32 reaches the front bearing 8, the roller plunger 31 is further screwed in so that the disk member 32 slightly presses the front bearing 8 with a predetermined force. Whether or not the roller plunger 31 has been screwed in until such a state is determined, for example, from the result of measuring the torque when the roller plunger 31 is screwed in. In addition, the position of the roller plunger 31 may be determined by turning the driver a predetermined amount after the disk member 32 reaches the front bearing 8. After the roller plunger 31 is positioned in this way, it is fixed using an adhesive or the like.
 本実施の形態にかかるガルバノスキャナ30は、ローラプランジャー31の円盤部材32を前側軸受8の外周側面に当接させることで、軸方向に対して垂直に働く所定の力で前側軸受8を押さえ付ける。ガルバノスキャナ30は、前側軸受8の周囲の隙間が要因となって生じる回転体の振動を効果的に抑制することができる。なお、ガルバノスキャナ30は、共振の発生状態を観測しながら、ローラプランジャー31の位置を調整することとしても良い。 The galvano scanner 30 according to this embodiment presses the front bearing 8 with a predetermined force acting perpendicular to the axial direction by bringing the disk member 32 of the roller plunger 31 into contact with the outer peripheral side surface of the front bearing 8. wear. The galvano scanner 30 can effectively suppress the vibration of the rotating body caused by the gap around the front bearing 8. The galvano scanner 30 may adjust the position of the roller plunger 31 while observing the state of occurrence of resonance.
 ローラプランジャー31が設けられることで、ガルバノスキャナ30は、前側軸受8の周囲の比較的大きな隙間が要因となって生じ得る第2の面倒れ共振を、発生要因から改善可能とする。ガルバノスキャナ30は、第2の面倒れ共振および第1の面倒れ共振を不規則に発生させる状態、および第1の面倒れ共振と第2の面倒れ共振とが混在する状態をいずれも抑制できる。 By providing the roller plunger 31, the galvano scanner 30 can improve the second surface tilt resonance that may be caused by a relatively large gap around the front bearing 8 from the cause. The galvano scanner 30 can suppress both the state in which the second surface-inclined resonance and the first surface-inclined resonance are irregularly generated, and the state in which the first surface-inclined resonance and the second surface-inclined resonance are mixed. .
 ガルバノスキャナ30は、ローラプランジャー31の設置により第2の面倒れ共振を低減させることで、回転体の重量バランスの調整を、専ら第1の面倒れ共振に対する振幅の低減のためとして実施可能とする。ローラプランジャー31の位置調整と回転体の重量バランスの調整とを経ることで、ガルバノスキャナ30は、高速駆動における面倒れ共振を効果的に低減できる。 The galvano scanner 30 can reduce the second surface tilt resonance by installing the roller plunger 31, and thereby can adjust the weight balance of the rotating body exclusively for reducing the amplitude with respect to the first surface tilt resonance. To do. Through the adjustment of the position of the roller plunger 31 and the adjustment of the weight balance of the rotating body, the galvano scanner 30 can effectively reduce surface tilt resonance in high-speed driving.
 円盤部材32は、軸方向における前側軸受8の変位に連動して回転する。円盤部材32は、前側軸受8の外周側面に当接した状態を維持しながら、軸方向における前側軸受8の変位に応じて可動とされている。 The disk member 32 rotates in conjunction with the displacement of the front bearing 8 in the axial direction. The disc member 32 is movable in accordance with the displacement of the front bearing 8 in the axial direction while maintaining a state in contact with the outer peripheral side surface of the front bearing 8.
 ガルバノスキャナ30は、前側軸受8に当接した状態で自在に回転する円盤部材32を、振動抑制構造であるローラプランジャー31に含めることで、熱膨張による回転体の寸法変化を吸収可能としながら、回転体の振動を抑制することができる。以上により、ガルバノスキャナ30は、面倒れ共振を低減可能とし、高い位置精度を実現できるという効果を奏する。 The galvano scanner 30 includes a disk member 32 that freely rotates while being in contact with the front bearing 8 in a roller plunger 31 that is a vibration suppressing structure, thereby making it possible to absorb the dimensional change of the rotating body due to thermal expansion. The vibration of the rotating body can be suppressed. As described above, the galvano scanner 30 has an effect that the surface tilt resonance can be reduced and high positional accuracy can be realized.
 なお、振動抑制構造は、本実施の形態で説明する構成のローラプランジャー31である場合に限られない。振動抑制構造は、前側軸受8に当接する円盤部材が、軸方向における前側軸受8の変位に連動して回転するものであれば良く、本実施の形態で説明する構成を適宜変更しても良い。 The vibration suppressing structure is not limited to the roller plunger 31 having the configuration described in the present embodiment. The vibration suppressing structure may be any structure as long as the disk member in contact with the front bearing 8 rotates in conjunction with the displacement of the front bearing 8 in the axial direction, and the configuration described in the present embodiment may be changed as appropriate. .
実施の形態3.
 図10は、本発明の実施の形態3にかかるガルバノスキャナの断面構成を示す図である。ガルバノスキャナ40は、レーザ光源からのレーザ光を加工対象物にて走査させる。実施の形態1と同一の部分には同一の符号を付し、重複する説明を適宜省略する。
Embodiment 3 FIG.
FIG. 10 is a diagram showing a cross-sectional configuration of the galvano scanner according to the third embodiment of the present invention. The galvano scanner 40 scans the processing target with the laser light from the laser light source. The same parts as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.
 振動抑制構造であるばね構造体41は、貫通孔11に挿入されている。ばね構造体41は、回転軸3の駆動による前側軸受8の振動を抑制する。 The spring structure 41 which is a vibration suppressing structure is inserted into the through hole 11. The spring structure 41 suppresses the vibration of the front bearing 8 due to the driving of the rotating shaft 3.
 図11は、ばね構造体を分解して示す側面図である。ばね構造体41は、ばね部材42、位置決め部材43および本体部44を備える。弾性部材であるばね部材42は、前側軸受8の外周側面に当接する当接部材でもある。ばね部材42は、例えばコイルばねである。ばね部材42は、前側軸受8を押し上げる力を前側軸受8へ付与する。ばね部材42の外径は、貫通孔11の内径より小さくされている。貫通孔11の内壁とばね部材42との間には隙間が設けられている。 FIG. 11 is an exploded side view of the spring structure. The spring structure 41 includes a spring member 42, a positioning member 43 and a main body 44. The spring member 42, which is an elastic member, is also an abutting member that abuts on the outer peripheral side surface of the front bearing 8. The spring member 42 is, for example, a coil spring. The spring member 42 applies a force for pushing up the front bearing 8 to the front bearing 8. The outer diameter of the spring member 42 is smaller than the inner diameter of the through hole 11. A gap is provided between the inner wall of the through hole 11 and the spring member 42.
 位置決め部材43は、本体部44の上端に設けられている。位置決め部材43は、ばね部材42の内径より小さい径の円柱形状をなしている。位置決め部材43は、ばね部材42のうち下側部分に挿入されている。位置決め部材43は、ばね部材42のうち前側軸受8に当接する側とは反対側においてばね部材42の位置を固定させる。 The positioning member 43 is provided at the upper end of the main body 44. The positioning member 43 has a cylindrical shape with a diameter smaller than the inner diameter of the spring member 42. The positioning member 43 is inserted into the lower part of the spring member 42. The positioning member 43 fixes the position of the spring member 42 on the side of the spring member 42 opposite to the side in contact with the front bearing 8.
 本体部44は、位置決め部材43より太い円柱形状をなしている。本体部44の側面には、ねじ溝が形成されている。位置決め部材43にばね部材42がセットされた状態の本体部44がフレームケース4の外表面から貫通孔11内へねじ込まれることで、ばね構造体41は、貫通孔11に挿入されている。ばね部材42の上端は、前側軸受8の外周側面に当接する。ばね部材42の下端は、本体部44の上端に当接する。 The main body 44 has a columnar shape that is thicker than the positioning member 43. A thread groove is formed on the side surface of the main body 44. The spring structure 41 is inserted into the through hole 11 by screwing the main body 44 with the spring member 42 set on the positioning member 43 into the through hole 11 from the outer surface of the frame case 4. The upper end of the spring member 42 contacts the outer peripheral side surface of the front bearing 8. The lower end of the spring member 42 contacts the upper end of the main body 44.
 例えばガルバノスキャナ40の製造時において、本体部44は、ばね部材42の上端が前側軸受8に当接する位置にまで貫通孔11内にて締め込まれる。本体部44の締め込みには、ドライバ等の工具が使用される。 For example, when the galvano scanner 40 is manufactured, the main body 44 is tightened in the through hole 11 to a position where the upper end of the spring member 42 contacts the front bearing 8. A tool such as a screwdriver is used to tighten the main body 44.
 ばね部材42の上端が前側軸受8に到達してから、さらに本体部44をわずかにねじ込むことで、ばね部材42が所定の力で前側軸受8をわずかに押圧する状態とする。かかる状態となるまで本体部44がねじ込まれたか否かは、例えば、本体部44をねじ込む際のトルクを測定した結果から判断する。この他、ばね部材42の上端が前側軸受8に到達してからドライバを所定量回すことで、本体部44の位置を決定することとしても良い。本体部44は、このようにして位置決めされた後、接着剤等を使用して固定される。 After the upper end of the spring member 42 reaches the front bearing 8, the main body 44 is further screwed in so that the spring member 42 slightly presses the front bearing 8 with a predetermined force. Whether or not the main body 44 has been screwed in until such a state is determined, for example, from the result of measuring the torque when the main body 44 is screwed. In addition, the position of the main body 44 may be determined by turning the driver a predetermined amount after the upper end of the spring member 42 reaches the front bearing 8. After being positioned in this way, the main body 44 is fixed using an adhesive or the like.
 本実施の形態にかかるガルバノスキャナ40は、ばね構造体41のばね部材42を前側軸受8の外周側面に当接させることで、軸方向に対して垂直に働く所定の力で前側軸受8を押さえ付ける。ガルバノスキャナ40は、前側軸受8の周囲の隙間が要因となって生じる回転体の振動を効果的に抑制することができる。なお、ガルバノスキャナ40は、共振の発生状態を観測しながら、本体部44の位置を調整することとしても良い。 The galvano scanner 40 according to the present embodiment presses the front bearing 8 with a predetermined force acting perpendicular to the axial direction by bringing the spring member 42 of the spring structure 41 into contact with the outer peripheral side surface of the front bearing 8. wear. The galvano scanner 40 can effectively suppress the vibration of the rotating body caused by the gap around the front bearing 8. Note that the galvano scanner 40 may adjust the position of the main body 44 while observing the state of occurrence of resonance.
 ばね構造体41が設けられることで、ガルバノスキャナ40は、前側軸受8の周囲の比較的大きな隙間が要因となって生じ得る第2の面倒れ共振を、発生要因から改善可能とする。ガルバノスキャナ40は、第2の面倒れ共振および第1の面倒れ共振を不規則に発生させる状態、および第1の面倒れ共振と第2の面倒れ共振とが混在する状態を抑制できる。 By providing the spring structure 41, the galvano scanner 40 can improve the second surface-inclined resonance that may be caused by a relatively large gap around the front bearing 8 from the cause. The galvano scanner 40 can suppress a state in which the second surface-inclined resonance and the first surface-inclined resonance are irregularly generated, and a state in which the first surface-inclined resonance and the second surface-inclined resonance are mixed.
 ガルバノスキャナ40は、ばね構造体41の設置により第2の面倒れ共振を低減させることで、回転体の重量バランスの調整を、専ら第1の面倒れ共振に対する振幅の低減のためとして実施可能とする。ばね構造体41の位置調整と回転体の重量バランスの調整とを経ることで、ガルバノスキャナ40は、高速駆動における面倒れ共振を効果的に低減できる。 The galvano-scanner 40 can reduce the second surface fall resonance by installing the spring structure 41, so that the adjustment of the weight balance of the rotating body can be performed exclusively for the purpose of reducing the amplitude with respect to the first surface fall resonance. To do. Through the adjustment of the position of the spring structure 41 and the adjustment of the weight balance of the rotating body, the galvano scanner 40 can effectively reduce surface tilt resonance in high-speed driving.
 ばね部材42の下側部分は、位置決め部材43が挿入されることで、位置が固定されている。これに対し、ばね部材42のうち位置決め部材43が挿入されている部分より上側(前側軸受8の側)の部分は、貫通孔11の内壁との間の隙間の範囲で可動とされている。ばね構造体41は、位置決め部材43を設けることで、ばね部材42と貫通孔11の内壁との間の隙間を確保する。 The position of the lower portion of the spring member 42 is fixed by inserting the positioning member 43. On the other hand, the portion of the spring member 42 above the portion where the positioning member 43 is inserted (on the front bearing 8 side) is movable within the range of the gap between the inner wall of the through hole 11. The spring structure 41 secures a gap between the spring member 42 and the inner wall of the through hole 11 by providing the positioning member 43.
 回転体の熱膨張による前側軸受8の変位があったとき、ばね部材42は、前側軸受8が変位する方向へたわむように変形する。ばね部材42は、前側軸受8の外周側面に当接した状態を維持しながら、軸方向における前側軸受8の変位に応じて可動とされている。 When the front bearing 8 is displaced due to thermal expansion of the rotating body, the spring member 42 is deformed so as to bend in the direction in which the front bearing 8 is displaced. The spring member 42 is movable according to the displacement of the front bearing 8 in the axial direction while maintaining a state in which the spring member 42 is in contact with the outer peripheral side surface of the front bearing 8.
 ガルバノスキャナ40は、前側軸受8に当接した状態で自在に変形するばね部材42を、振動抑制構造であるばね構造体41に含めることで、熱膨張による回転体の寸法変化を吸収可能としながら、回転体の振動を抑制することができる。以上により、ガルバノスキャナ40は、面倒れ共振を低減可能とし、高い位置精度を実現できるという効果を奏する。 The galvano scanner 40 includes a spring member 42 that freely deforms in a state of being in contact with the front bearing 8 in the spring structure 41 that is a vibration suppressing structure, so that the dimensional change of the rotating body due to thermal expansion can be absorbed. The vibration of the rotating body can be suppressed. As described above, the galvano scanner 40 has an effect that the surface tilt resonance can be reduced and high positional accuracy can be realized.
 なお、振動抑制構造は、本実施の形態で説明する構成のばね構造体41である場合に限られない。振動抑制構造は、前側軸受8に当接する弾性部材が、軸方向における前側軸受の変位に連動して変形するものであれば良く、本実施の形態で説明する構成を適宜変更しても良い。 Note that the vibration suppressing structure is not limited to the spring structure 41 having the configuration described in the present embodiment. The vibration suppressing structure may be any structure as long as the elastic member in contact with the front bearing 8 is deformed in conjunction with the displacement of the front bearing in the axial direction, and the configuration described in the present embodiment may be changed as appropriate.
実施の形態4.
 図12は、本発明の実施の形態4にかかるレーザ加工装置の構成を示す図である。レーザ加工装置50は、レーザ光(パルスレーザ光)の照射によって加工対象物に微細穴を穴開け加工する装置である。レーザ加工装置50は、例えば、加工対象物に設定された複数の加工位置を順次走査し、各加工位置に対するレーザ照射を複数サイクルで行なう加工処理(サイクルパルスモード)を実施する。
Embodiment 4 FIG.
FIG. 12 is a diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention. The laser processing apparatus 50 is an apparatus that forms a minute hole in a processing target by irradiation with laser light (pulse laser light). The laser processing apparatus 50 performs, for example, a processing process (cycle pulse mode) in which a plurality of processing positions set on a processing target are sequentially scanned and laser irradiation is performed on each processing position in a plurality of cycles.
 レーザ加工装置50は、レーザ発振器51、ベンドミラー52、Y軸ガルバノスキャナ53、X軸ガルバノスキャナ54、スキャンミラー55,56、fθレンズ57、ガルバノドライバ60および制御装置61を有する。 The laser processing device 50 includes a laser oscillator 51, a bend mirror 52, a Y-axis galvano scanner 53, an X-axis galvano scanner 54, scan mirrors 55 and 56, an fθ lens 57, a galvano driver 60, and a control device 61.
 加工対象物であるワーク58は、例えばプリント基板である。ワーク58は、XYテーブル(図示省略)に載置されている。XYテーブルは、X軸方向およびY軸方向を含む二次元方向へワーク58を移動させる。 The workpiece 58 that is the object to be processed is, for example, a printed circuit board. The work 58 is placed on an XY table (not shown). The XY table moves the work 58 in a two-dimensional direction including the X-axis direction and the Y-axis direction.
 レーザ光源であるレーザ発振器51は、レーザ光62を射出する。レーザ光62は、パルス状に出力されるレーザビームである。プリント基板の加工には、レーザビームとして、例えば、9~10μmの波長の赤外光、0.5μmの波長の紫外光などのいずれかが用いられる。ベンドミラー52は、レーザ発振器51からのレーザ光62を反射して、スキャンミラー55へ進行させる。 The laser oscillator 51, which is a laser light source, emits laser light 62. The laser beam 62 is a laser beam output in a pulse shape. For processing the printed circuit board, for example, any one of infrared light having a wavelength of 9 to 10 μm, ultraviolet light having a wavelength of 0.5 μm, and the like is used as a laser beam. The bend mirror 52 reflects the laser light 62 from the laser oscillator 51 and advances it to the scan mirror 55.
 スキャンミラー55は、レーザ発振器51からのレーザ光62を反射する。スキャンミラー55は、入射したレーザ光62を偏向させるミラーである。Y軸ガルバノスキャナ53は、スキャンミラー55を駆動する。スキャンミラー56は、スキャンミラー55からのレーザ光62を反射する。スキャンミラー56は、入射したレーザ光62を偏向させるミラーである。X軸ガルバノスキャナ54は、スキャンミラー56を駆動する。 The scan mirror 55 reflects the laser light 62 from the laser oscillator 51. The scan mirror 55 is a mirror that deflects the incident laser light 62. The Y-axis galvano scanner 53 drives the scan mirror 55. The scan mirror 56 reflects the laser light 62 from the scan mirror 55. The scan mirror 56 is a mirror that deflects the incident laser light 62. The X-axis galvano scanner 54 drives a scan mirror 56.
 スキャンミラー55は、Y軸ガルバノスキャナ53の回転軸に連結されている。Y軸ガルバノスキャナ53は、回転軸を中心として回転体を往復回転させる。Y軸ガルバノスキャナ53は、ワーク58におけるレーザ光62の照射位置をY軸方向において走査させる。 The scan mirror 55 is connected to the rotation axis of the Y-axis galvano scanner 53. The Y-axis galvano scanner 53 reciprocates the rotating body around the rotation axis. The Y-axis galvano scanner 53 scans the irradiation position of the laser beam 62 on the workpiece 58 in the Y-axis direction.
 スキャンミラー56は、X軸ガルバノスキャナ54の回転軸に連結されている。X軸ガルバノスキャナ54は、回転軸を中心として回転体を往復回転させる。X軸ガルバノスキャナ54は、ワーク58におけるレーザ光62の照射位置をX軸方向において走査させる。 The scan mirror 56 is connected to the rotation axis of the X-axis galvano scanner 54. The X-axis galvano scanner 54 reciprocates the rotating body around the rotation axis. The X-axis galvano scanner 54 scans the irradiation position of the laser beam 62 on the workpiece 58 in the X-axis direction.
 fθレンズ57は、スキャンミラー56からのレーザ光62を、ワーク58の加工表面に対して垂直なレーザ光63とする。fθレンズ57は、ワーク58内の加工位置59にレーザ光63を集光させる。ガルバノドライバ60は、Y軸ガルバノスキャナ53およびX軸ガルバノスキャナ54を駆動する。 The fθ lens 57 converts the laser beam 62 from the scan mirror 56 into a laser beam 63 perpendicular to the processed surface of the workpiece 58. The fθ lens 57 condenses the laser beam 63 at the machining position 59 in the work 58. The galvano driver 60 drives the Y-axis galvano scanner 53 and the X-axis galvano scanner 54.
 制御部である制御装置61は、レーザ加工装置50の全体の動作を制御する。制御装置61は、レーザ発振器51のレーザ光62の発振、ガルバノドライバ60によるY軸ガルバノスキャナ53およびX軸ガルバノスキャナ54の駆動を制御する。また、制御装置61は、XYテーブルを駆動するモータ(図示省略)を制御する。 The control device 61, which is a control unit, controls the overall operation of the laser processing device 50. The control device 61 controls the oscillation of the laser beam 62 of the laser oscillator 51 and the driving of the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 by the galvano driver 60. The control device 61 controls a motor (not shown) that drives the XY table.
 Y軸ガルバノスキャナ53およびX軸ガルバノスキャナ54は、例えば、実施の形態1にかかるガルバノスキャナ1と同様の構成を備える。Y軸ガルバノスキャナ53およびX軸ガルバノスキャナ54は、面倒れ共振を低減でき、高い位置精度を実現できる。レーザ加工装置50は、正確な加工位置59へレーザ光63を進行可能とし、高精度な加工ができるという効果を奏する。 The Y-axis galvano scanner 53 and the X-axis galvano scanner 54 have the same configuration as the galvano scanner 1 according to the first embodiment, for example. The Y-axis galvano scanner 53 and the X-axis galvano scanner 54 can reduce surface tilt resonance and realize high positional accuracy. The laser processing apparatus 50 has the effect that the laser beam 63 can be advanced to the correct processing position 59 and high-precision processing can be performed.
 Y軸ガルバノスキャナ53およびX軸ガルバノスキャナ54は、実施の形態2にかかるガルバノスキャナ30、および実施の形態3にかかるガルバノスキャナ40のいずれかと同様の構成を備えるものであっても良い。レーザ加工装置50は、Y軸ガルバノスキャナ53およびX軸ガルバノスキャナ54の少なくともいずれかが、実施の形態1から3のガルバノスキャナ1,30,40のいずれかと同様の構成を備えるものであれば良いものとする。いずれの場合も、レーザ加工装置50は、正確な加工位置59へレーザ光63を進行可能とし、高精度な加工を実現できる。 The Y-axis galvano scanner 53 and the X-axis galvano scanner 54 may have the same configuration as any of the galvano scanner 30 according to the second embodiment and the galvano scanner 40 according to the third embodiment. The laser processing apparatus 50 only needs to have at least one of the Y-axis galvano scanner 53 and the X-axis galvano scanner 54 having the same configuration as any of the galvano scanners 1, 30, and 40 of the first to third embodiments. Shall. In any case, the laser processing apparatus 50 can advance the laser beam 63 to the accurate processing position 59, and can realize highly accurate processing.
 1 ガルバノスキャナ、2 スキャンミラー、3 回転軸、4 フレームケース、5 磁石、6 コイル、7 鉄芯、8 前側軸受、9 後側軸受、10 ボールプランジャー、11 貫通孔、12 ミラーマウント、13 マウント押さえ具、14 留め具、15 押さえ板、16 予圧ばね、17 座金、18 リード線、19 外周側面、21 球形部材、22 本体部、23 コイルばね、30 ガルバノスキャナ、31 ローラプランジャー、32 円盤部材、33 本体部、34 コイルばね、40 ガルバノスキャナ、41 ばね構造体、42 ばね部材、43 位置決め部材、44 本体部、50 レーザ加工装置、51 レーザ発振器、52 ベンドミラー、53 Y軸ガルバノスキャナ、54 X軸ガルバノスキャナ、55 スキャンミラー、56 スキャンミラー、57 fθレンズ、58 ワーク、59 加工位置、60 ガルバノドライバ、61 制御装置、62,63 レーザ光。 1 Galvano Scanner, 2 Scan Mirror, 3 Rotating Shaft, 4 Frame Case, 5 Magnet, 6 Coil, 7 Iron Core, 8 Front Bearing, 9 Rear Bearing, 10 Ball Plunger, 11 Through Hole, 12 Mirror Mount, 13 Mount Presser, 14 Fastener, 15 Presser plate, 16 Preload spring, 17 Washer, 18 Lead wire, 19 Outer peripheral surface, 21 Spherical member, 22 Body part, 23 Coil spring, 30 Galvano scanner, 31 Roller plunger, 32 Disc member , 33 main body, 34 coil spring, 40 galvano scanner, 41 spring structure, 42 spring member, 43 positioning member, 44 main body, 50 laser processing device, 51 laser oscillator, 52 bend mirror, 53 Y-axis galvano scanner, 54 X-axis galvo scanner 55 scan mirror 56 scan mirror, 57 f [theta] lens, 58 work, 59 processing position 60 galvanometer driver 61 control unit, 62, 63 a laser beam.

Claims (9)

  1.  回転軸を備え、前記回転軸を中心として回転可能とされた回転体と、
     前記回転軸のうち前側の一端に連結され、入射した光を偏向させるミラーと、
     前記回転体を回転させる内部スペースを備えるフレームケースと、
     前記内部スペースのうち前側の端部に設けられ、前記回転軸を回転可能に支持する軸受である前側軸受と、
     前記回転軸の駆動による前記前側軸受の振動を抑制する振動抑制構造と、を有し、
     前記振動抑制構造は、前記前側軸受の外周側面に当接する当接部材を備え、
     前記当接部材は、前記回転軸に平行な軸方向における前記前側軸受の変位に応じて可動とされていることを特徴とするガルバノスキャナ。
    A rotating body that includes a rotating shaft and is rotatable about the rotating shaft;
    A mirror connected to one end on the front side of the rotating shaft and deflecting incident light;
    A frame case having an internal space for rotating the rotating body;
    A front bearing that is provided at the front end of the internal space and that rotatably supports the rotating shaft;
    A vibration suppressing structure that suppresses vibration of the front bearing by driving the rotating shaft,
    The vibration suppressing structure includes an abutting member that abuts on an outer peripheral side surface of the front bearing,
    The galvano scanner, wherein the contact member is movable in accordance with a displacement of the front bearing in an axial direction parallel to the rotation shaft.
  2.  前記フレームケースには、前記フレームケースの外周面と前記内部スペースとの間を貫通する貫通孔が形成され、
     前記振動抑制構造は、前記貫通孔に配置されていることを特徴とする請求項1に記載のガルバノスキャナ。
    The frame case is formed with a through-hole penetrating between the outer peripheral surface of the frame case and the internal space.
    The galvano scanner according to claim 1, wherein the vibration suppression structure is disposed in the through hole.
  3.  前記当接部材は、前記軸方向における前記前側軸受の変位に連動して回転する球形部材であることを特徴とする請求項1に記載のガルバノスキャナ。 The galvano scanner according to claim 1, wherein the contact member is a spherical member that rotates in conjunction with the displacement of the front bearing in the axial direction.
  4.  前記当接部材は、前記軸方向における前記前側軸受の変位に連動して回転する円盤部材であることを特徴とする請求項1に記載のガルバノスキャナ。 The galvano scanner according to claim 1, wherein the contact member is a disk member that rotates in conjunction with the displacement of the front bearing in the axial direction.
  5.  前記振動抑制構造は、前記前側軸受の方向へ押し上げる力を前記当接部材に対して付与する弾性部材を備えることを特徴とする請求項3または4に記載のガルバノスキャナ。 The galvano scanner according to claim 3 or 4, wherein the vibration suppressing structure includes an elastic member that applies a force to the contact member to push up toward the front bearing.
  6.  前記当接部材は、前記前側軸受を押し上げる力を前記前側軸受へ付与する弾性部材であって、
     前記弾性部材は、前記軸方向における前記前側軸受の変位に連動して変形することを特徴とする請求項1に記載のガルバノスキャナ。
    The contact member is an elastic member that imparts a force to push up the front bearing to the front bearing,
    The galvano scanner according to claim 1, wherein the elastic member is deformed in conjunction with a displacement of the front bearing in the axial direction.
  7.  前記振動抑制構造は、前記弾性部材のうち前記前側軸受に当接する側とは反対側において前記弾性部材の位置を固定させる位置決め部材を備えることを特徴とする請求項6に記載のガルバノスキャナ。 The galvano scanner according to claim 6, wherein the vibration suppressing structure includes a positioning member that fixes a position of the elastic member on a side opposite to a side of the elastic member that contacts the front bearing.
  8.  前記振動抑制構造は、前記貫通孔へねじ込まれていることを特徴とする請求項2に記載のガルバノスキャナ。 The galvano scanner according to claim 2, wherein the vibration suppressing structure is screwed into the through hole.
  9.  レーザ光源と、
     前記レーザ光源からのレーザ光を加工対象物にて走査させるガルバノスキャナと、を有し、
     前記ガルバノスキャナは、
     回転軸を備え、前記回転軸を中心として回転可能とされた回転体と、
     前記回転軸のうち前側の一端に連結され、入射した光を偏向させるミラーと、
     前記回転体を回転させる内部スペースを備えるフレームケースと、
     前記内部スペースのうち前側の端部に設けられ、前記回転軸を回転可能に支持する軸受である前側軸受と、
     前記回転軸の駆動による前記前側軸受の振動を抑制する振動抑制構造と、を有し、
     前記振動抑制構造は、前記前側軸受の外周側面に当接する当接部材を備え、
     前記当接部材は、前記回転軸に平行な軸方向における前記前側軸受の変位に応じて可動とされていることを特徴とするレーザ加工装置。
    A laser light source;
    A galvano scanner that scans a laser beam from the laser light source with a workpiece,
    The galvo scanner is
    A rotating body that includes a rotating shaft and is rotatable about the rotating shaft;
    A mirror connected to one end on the front side of the rotating shaft and deflecting incident light;
    A frame case having an internal space for rotating the rotating body;
    A front bearing that is provided at the front end of the internal space and that rotatably supports the rotating shaft;
    A vibration suppressing structure that suppresses vibration of the front bearing by driving the rotating shaft,
    The vibration suppressing structure includes an abutting member that abuts on an outer peripheral side surface of the front bearing,
    The laser processing apparatus, wherein the contact member is movable in accordance with a displacement of the front bearing in an axial direction parallel to the rotation shaft.
PCT/JP2014/061490 2014-04-23 2014-04-23 Galvano scanner and laser machining device WO2015162740A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014557924A JP5714196B1 (en) 2014-04-23 2014-04-23 Galvano scanner and laser processing equipment
PCT/JP2014/061490 WO2015162740A1 (en) 2014-04-23 2014-04-23 Galvano scanner and laser machining device
CN201480003159.7A CN105209958B (en) 2014-04-23 2014-04-23 electrical scanner and laser processing device
TW103139350A TWI540338B (en) 2014-04-23 2014-11-13 Galvanometer scanner and laser processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061490 WO2015162740A1 (en) 2014-04-23 2014-04-23 Galvano scanner and laser machining device

Publications (1)

Publication Number Publication Date
WO2015162740A1 true WO2015162740A1 (en) 2015-10-29

Family

ID=53277299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061490 WO2015162740A1 (en) 2014-04-23 2014-04-23 Galvano scanner and laser machining device

Country Status (4)

Country Link
JP (1) JP5714196B1 (en)
CN (1) CN105209958B (en)
TW (1) TWI540338B (en)
WO (1) WO2015162740A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051757A1 (en) * 2016-09-13 2018-03-22 三菱電機株式会社 Galvanoscanner and mirror unit
CN111872579B (en) * 2020-06-16 2022-07-29 江苏亚威艾欧斯激光科技有限公司 Laser drilling equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694751A (en) * 1991-02-25 1994-04-08 General Scanning Inc Movable magnet type galvanometer
JP2006227415A (en) * 2005-02-18 2006-08-31 Hitachi Via Mechanics Ltd Scanner and laser beam machine
JP2009271417A (en) * 2008-05-09 2009-11-19 Hitachi Via Mechanics Ltd Galvanoscanner apparatus and laser machining apparatus equipped with galvanoscanner apparatus
JP2011154196A (en) * 2010-01-27 2011-08-11 Hitachi Via Mechanics Ltd Galvano scanner and laser beam machining device
JP2012027446A (en) * 2010-06-23 2012-02-09 Mitsubishi Electric Corp Galvano scanning device
JP2013190669A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Galvano scanner and laser beam machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027359B2 (en) * 2003-12-25 2007-12-26 キヤノン株式会社 Micro oscillator, optical deflector, image forming device
KR100738114B1 (en) * 2006-05-18 2007-07-12 삼성전자주식회사 Actuator and two dimensional scanner
JP4285568B2 (en) * 2007-01-10 2009-06-24 セイコーエプソン株式会社 Actuator, optical scanner and image forming apparatus
JP5524254B2 (en) * 2012-02-14 2014-06-18 富士フイルム株式会社 Mirror drive device and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694751A (en) * 1991-02-25 1994-04-08 General Scanning Inc Movable magnet type galvanometer
JP2006227415A (en) * 2005-02-18 2006-08-31 Hitachi Via Mechanics Ltd Scanner and laser beam machine
JP2009271417A (en) * 2008-05-09 2009-11-19 Hitachi Via Mechanics Ltd Galvanoscanner apparatus and laser machining apparatus equipped with galvanoscanner apparatus
JP2011154196A (en) * 2010-01-27 2011-08-11 Hitachi Via Mechanics Ltd Galvano scanner and laser beam machining device
JP2012027446A (en) * 2010-06-23 2012-02-09 Mitsubishi Electric Corp Galvano scanning device
JP2013190669A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Galvano scanner and laser beam machine

Also Published As

Publication number Publication date
TW201541121A (en) 2015-11-01
TWI540338B (en) 2016-07-01
JP5714196B1 (en) 2015-05-07
CN105209958A (en) 2015-12-30
JPWO2015162740A1 (en) 2017-04-13
CN105209958B (en) 2016-08-31

Similar Documents

Publication Publication Date Title
US9864164B2 (en) Optical deflector, method for mirror finishing of mirror by cutting, and light detection and ranging device
US6107600A (en) Laser machining apparatus
JP6214193B2 (en) Vibration wave drive device, two-dimensional drive device, image shake correction device, interchangeable lens, imaging device, and automatic stage
JP2013504082A (en) Pattern generation system
KR101607776B1 (en) Shape variable mirror and laser processing apparatus
TWI494600B (en) Galvanometer scanner and laser process machine
JP5705390B1 (en) Galvano scanner and laser processing device
JP5714196B1 (en) Galvano scanner and laser processing equipment
JP4552848B2 (en) Variable shape mirror and laser processing apparatus using the variable shape mirror
JP6345064B2 (en) Deformable mirror and laser processing apparatus
JP2016018076A (en) Scanning mirror driving apparatus, optical scanner and laser rader system
JP6587603B2 (en) Galvano scanner and laser processing device
JP2017042808A (en) Laser processing device
Montagu Galvanometric and resonant scanners
JP2007183669A (en) Method for adjusting condensing lens device
JP2005262260A (en) Laser beam machining apparatus and laser beam machining control program
Montagu Galvanometric and resonant scanners
TWI641875B (en) Deformable mirror and laser processing apparatus
WO2024013985A1 (en) Galvano scanner and laser beam machine
JP6687268B1 (en) Adjusting structure of optical component and optical device
WO2015145681A1 (en) Laser machining apparatus
JP2658981B2 (en) Scanning optical device
JP3140312U (en) Laser etching equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014557924

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890201

Country of ref document: EP

Kind code of ref document: A1