JP7241994B1 - Galvanometer scanner and laser processing machine - Google Patents

Galvanometer scanner and laser processing machine Download PDF

Info

Publication number
JP7241994B1
JP7241994B1 JP2022574793A JP2022574793A JP7241994B1 JP 7241994 B1 JP7241994 B1 JP 7241994B1 JP 2022574793 A JP2022574793 A JP 2022574793A JP 2022574793 A JP2022574793 A JP 2022574793A JP 7241994 B1 JP7241994 B1 JP 7241994B1
Authority
JP
Japan
Prior art keywords
rotor
galvanometer scanner
laser beam
rotation axis
electrolytic corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022574793A
Other languages
Japanese (ja)
Inventor
尚弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP7241994B1 publication Critical patent/JP7241994B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本開示に係るガルバノスキャナ(32)は、モータ(35)と、電食抑制部(37)と、を備える。モータ(35)は、回転軸を中心に回転する永久磁石(341)および回転軸に沿った永久磁石(341)の両側に接続されるシャフト(342,343)を有するロータ(340)、並びにロータ(340)から定められた距離をおいて配置されるステータ(330)を有する。電食抑制部(37)は、回転軸の方向におけるモータ(35)の2つの端部の内のガルバノミラー(31)が設けられていない方の端部に設けられ、ステータ(330)とロータ(340)とを電気的に接続する。A galvanometer scanner (32) according to the present disclosure includes a motor (35) and an electrolytic corrosion suppressor (37). The motor (35) includes a rotor (340) having a permanent magnet (341) rotating about an axis of rotation and shafts (342, 343) connected to either side of the permanent magnet (341) along the axis of rotation, and a rotor It has a stator (330) positioned at a defined distance from (340). The electrolytic corrosion suppressing part (37) is provided at one of the two ends of the motor (35) in the direction of the rotation axis where the galvanomirror (31) is not provided. (340) are electrically connected.

Description

本開示は、レーザ光源からのレーザビームを加工対象上の所望の位置に照射させるガルバノミラーを回転駆動させるガルバノスキャナおよびレーザ加工機に関する。 The present disclosure relates to a galvanometer scanner and a laser processing machine that rotationally drive a galvanometer mirror that irradiates a desired position on an object to be processed with a laser beam from a laser light source.

レーザ加工機では、ガルバノスキャナによって被加工物へのレーザビームの照射位置、すなわち加工位置が制御される。ガルバノスキャナは、シャフトの一方の端部に取り付けられたガルバノミラーを回転させるサーボモータである。ガルバノスキャナは、シャフトを支持する軸受を有する。軸受は、一例では、シャフトを保持する円筒状の内輪と、内輪の外側に内輪と同心状に配置される円筒状の外輪と、内輪と外輪との間に配置される転動体と、を有する転がり軸受である。軸受では、内輪および外輪と転動体との間に油膜が存在する。 In a laser processing machine, a laser beam irradiation position on a workpiece, that is, a processing position is controlled by a galvanometer scanner. A galvo scanner is a servomotor that rotates a galvo mirror mounted on one end of a shaft. A galvo scanner has a bearing that supports a shaft. In one example, the bearing has a cylindrical inner ring that holds the shaft, a cylindrical outer ring arranged outside the inner ring concentrically with the inner ring, and rolling elements arranged between the inner ring and the outer ring. It is a rolling bearing. In bearings, an oil film exists between the inner and outer rings and the rolling elements.

ガルバノスキャナの駆動時における磁石の渦電流等の影響で、軸受の内輪と外輪との間で電位差である軸電圧が発生することがある。レーザ加工機の運転中に、軸受の油膜により内輪と外輪とが絶縁されている状態から、ある瞬間に油膜が切れ、内輪と外輪とが導通される状態になると、内輪と外輪との間で放電が発生し軸受が損傷してしまう場合がある。このような軸受の損傷は電食と称される。電食が発生すると、軸受の内部が傷つけられることになるので、軸受のスムーズな回転が妨げられ、レーザビームの照射位置の制御に悪影響を及ぼすことがある。 Axial voltage, which is a potential difference, may be generated between the inner ring and the outer ring of the bearing due to the influence of eddy current of the magnet when the galvanometer scanner is driven. During the operation of the laser processing machine, if the inner and outer rings are insulated by the oil film of the bearing at a certain moment, the oil film breaks and the inner and outer rings are electrically connected. Discharge may occur and damage the bearing. Such bearing damage is called galvanic corrosion. If electrolytic corrosion occurs, the inside of the bearing is damaged, which hinders smooth rotation of the bearing and may adversely affect the control of the irradiation position of the laser beam.

特許文献1には、車両駆動用のモータジェネレータのロータシャフトの軸受の電食を防止する構造が開示されている。特許文献1に記載の技術では、モータジェネレータのハウジングのうち、ロータシャフトの軸方向の一方の端部に油室が設けられる。モータジェネレータが高回転状態であるときに、ハウジング内の油室に油圧を付与することで、ロータシャフトに軸方向の力であるスラスト力を付与し、軸受の転動体と内輪および外輪とを積極的に接触させる。これによって、軸受の転動体と内輪および外輪との間で油膜が切れ、導通が強化され、上記した電食を抑制している。 Japanese Patent Application Laid-Open No. 2002-201001 discloses a structure for preventing electrolytic corrosion of a bearing of a rotor shaft of a motor generator for driving a vehicle. In the technique described in Patent Document 1, an oil chamber is provided at one end in the axial direction of the rotor shaft in the housing of the motor generator. By applying hydraulic pressure to the oil chamber in the housing when the motor generator is in a high rotation state, thrust force, which is an axial force, is applied to the rotor shaft, and the rolling elements of the bearing and the inner and outer rings are actively engaged. contact. As a result, the oil film is broken between the rolling elements of the bearing and the inner and outer rings, thereby enhancing electrical continuity and suppressing the above-described electrolytic corrosion.

特開2020-014359号公報JP 2020-014359 A

特許文献1に記載の技術では、自動車などの車両駆動用のモータジェネレータでの電食の抑制を対象としている。このため、油圧によってロータシャフトにスラスト力を付与し、軸受の転動体と内輪および外輪とを接触させても特に問題は生じない。しかし、特許文献1に記載の技術を、レーザ加工機のガルバノスキャナのように動作中に高い位置決め精度が要求される製品に適用することができない。具体的には、特許文献1に記載の技術では、油圧を付与するかしないかによって、軸受の予圧が変わり、軸受のラジアル方向の剛性が変化し、製品の精度、具体的にはレーザビームの照射位置の精度に大きな影響を与える可能性がある。つまり、レーザビームの精密な位置制御が要求されるレーザ加工機におけるガルバノミラーを駆動するガルバノスキャナに、位置精度の制御に大きな影響を与えてしまう特許文献1に記載の技術を適用することは困難であるという問題があった。 The technique described in Patent Literature 1 is aimed at suppressing electrolytic corrosion in a motor generator for driving a vehicle such as an automobile. Therefore, even if a thrust force is applied to the rotor shaft by hydraulic pressure to bring the rolling elements of the bearing into contact with the inner ring and the outer ring, there is no particular problem. However, the technology described in Patent Literature 1 cannot be applied to products that require high positioning accuracy during operation, such as galvanometer scanners for laser processing machines. Specifically, in the technique described in Patent Document 1, depending on whether or not hydraulic pressure is applied, the preload of the bearing changes, the rigidity of the bearing in the radial direction changes, and the accuracy of the product, specifically, the laser beam. This can have a large impact on the accuracy of the irradiation position. In other words, it is difficult to apply the technique described in Patent Document 1 to a galvanometer scanner that drives a galvanometer mirror in a laser processing machine that requires precise position control of a laser beam, because it greatly affects the control of position accuracy. There was a problem that

本開示は、上記に鑑みてなされたものであって、内輪と外輪との間の軸方向の変位を従来に比して抑えながら、電食を抑制することができるガルバノスキャナを得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a galvanometer scanner capable of suppressing electrolytic corrosion while suppressing displacement in the axial direction between the inner ring and the outer ring as compared with the conventional art. and

上述した課題を解決し、目的を達成するために、本開示に係るガルバノスキャナは、モータと、電食抑制部と、を備える。モータは、回転軸を中心に回転する永久磁石および回転軸に沿った永久磁石の両側に接続されるシャフトを有するロータ、並びにロータから定められた距離をおいて配置されるステータを有する。電食抑制部は、回転軸の方向におけるモータの2つの端部の内のガルバノミラーが設けられていない方の端部に設けられ、ステータとロータとを電気的に接続する。電食抑制部は、ロータと当接し、外周面にねじが切られた接地構造部と、内周面にねじが切られた貫通孔が回転軸の延長線上に設けられた第1部材と、第1部材をステータの端部で支持する第1脚部と、を有し、接地構造部を支持する第1支持構造部と、を有する。接地構造部は、回転軸の方向に移動可能に貫通孔に螺合される。接地構造部および第1支持構造部は、導電性材料によって構成される。 In order to solve the above-described problems and achieve the object, a galvanometer scanner according to the present disclosure includes a motor and an electrolytic corrosion suppressing section. The motor has a rotor with a permanent magnet rotating about an axis of rotation and a shaft connected to either side of the permanent magnet along the axis of rotation, and a stator positioned at a defined distance from the rotor. The electrolytic corrosion suppressing part is provided at one of the two ends of the motor in the direction of the rotation axis where the galvanomirror is not provided, and electrically connects the stator and the rotor. The electrolytic corrosion suppressing portion is in contact with the rotor and includes a grounding structure portion having a threaded outer peripheral surface, a first member having a through hole having a threaded inner peripheral surface provided on an extension of the rotating shaft, a first leg for supporting the first member at an end of the stator; and a first support structure for supporting the ground contact structure. The grounding structure is screwed into the through hole so as to be movable in the direction of the rotation axis. The ground structure and the first support structure are constructed from an electrically conductive material.

本開示に係るガルバノスキャナは、内輪と外輪との間の軸方向の変位を従来に比して抑えながら、電食を抑制することができるという効果を奏する。 The galvanometer scanner according to the present disclosure has the effect of being able to suppress electrolytic corrosion while suppressing displacement in the axial direction between the inner ring and the outer ring compared to the conventional art.

実施の形態1に係るレーザ加工機の構成の一例を示す図A diagram showing an example of a configuration of a laser processing machine according to Embodiment 1. 実施の形態1に係るガルバノスキャナの構成の一例を模式的に示す図1 is a diagram schematically showing an example of the configuration of a galvanometer scanner according to Embodiment 1; FIG. 実施の形態1に係るガルバノスキャナで使用される接地構造部の構成の一例を示す断面図FIG. 2 is a cross-sectional view showing an example of the configuration of the grounding structure used in the galvanometer scanner according to the first embodiment; 実施の形態1に係るガルバノスキャナの構成の他の例を模式的に示す図FIG. 4 is a diagram schematically showing another example of the configuration of the galvanometer scanner according to Embodiment 1; 実施の形態1に係るガルバノスキャナの構成の他の例を模式的に示す図FIG. 4 is a diagram schematically showing another example of the configuration of the galvanometer scanner according to Embodiment 1;

以下に、本開示の実施の形態に係るガルバノスキャナおよびレーザ加工機を図面に基づいて詳細に説明する。 A galvanometer scanner and a laser processing machine according to embodiments of the present disclosure will be described in detail below with reference to the drawings.

実施の形態1.
図1は、実施の形態1に係るレーザ加工機の構成の一例を示す図である。レーザ加工機1は、パルス状のレーザビームLの照射によって加工対象である被加工ワークWの穴あけ加工を行う。被加工ワークWの一例は、電子機器等に搭載されるプリント基板、IC(Integrated Circuit)パッケージ基板である。被加工ワークWは、穴あけ加工の対象となり得る物であればよく、上記したプリント基板、ICパッケージ基板以外の物であってもよい。
Embodiment 1.
FIG. 1 is a diagram showing an example of the configuration of a laser processing machine according to Embodiment 1. FIG. The laser processing machine 1 irradiates a pulsed laser beam L to perforate a workpiece W to be processed. An example of the workpiece W to be processed is a printed circuit board or an IC (Integrated Circuit) package substrate mounted on an electronic device or the like. The workpiece W to be processed may be any object that can be subjected to drilling processing, and may be any object other than the above-described printed circuit board and IC package substrate.

図1において、X軸、Y軸およびZ軸は、互いに垂直な3軸である。X軸とY軸とは、水平方向の軸である。Z軸は、鉛直方向の軸である。レーザ加工機1は、X軸方向とY軸方向とにおいて分散された複数の穴を高速に形成する穴あけ加工を行う。 In FIG. 1, the X-axis, Y-axis and Z-axis are three axes perpendicular to each other. The X and Y axes are horizontal axes. The Z-axis is the vertical axis. The laser processing machine 1 performs a drilling process of forming a plurality of holes dispersed in the X-axis direction and the Y-axis direction at high speed.

レーザ加工機1は、レーザビームLを出射するレーザ発振器10と、レーザビームLの形を成形し、出力を調整するレーザ光学素子20と、レーザビームLを所望の位置に照射させる加工ヘッド30と、被加工ワークWを保持するワーク搬送テーブル40と、を備える。 The laser processing machine 1 includes a laser oscillator 10 that emits a laser beam L, a laser optical element 20 that shapes the shape of the laser beam L and adjusts the output, and a processing head 30 that irradiates the laser beam L at a desired position. , and a work transfer table 40 for holding the work W to be processed.

レーザ発振器10は、パルス状のレーザビームLを出力する。パルス状のレーザビームLは、一例では赤外光である。レーザ発振器10の一例は、二酸化炭素(CO2)レーザである。パルス状のレーザビームLのピーク波長は、9.3μmから10.6μmの範囲に含まれる。以下では、パルス状のレーザビームLは、レーザビームLと称される。A laser oscillator 10 outputs a pulsed laser beam L. As shown in FIG. The pulsed laser beam L is, for example, infrared light. One example of laser oscillator 10 is a carbon dioxide (CO 2 ) laser. The peak wavelength of the pulsed laser beam L falls within the range of 9.3 μm to 10.6 μm. The pulsed laser beam L is referred to as laser beam L in the following.

レーザ光学素子20は、レーザ発振器10から出力されるレーザビームLの形を成形し、加工ヘッド30に出力する。レーザ光学素子20は、レーザ発振器10から出力されたレーザビームLの絞りを調整し、レーザビームLをコリメートするコリメートレンズ21と、被加工ワークWへ転写される形状となるように、レーザビームLを切り出すマスクホール22と、を有する。コリメートレンズ21は、1から複数配置される。マスクホール22のホールの形状は、通常、円形である。 The laser optical element 20 shapes the laser beam L output from the laser oscillator 10 and outputs it to the processing head 30 . The laser optical element 20 includes a collimating lens 21 that adjusts the aperture of the laser beam L output from the laser oscillator 10 to collimate the laser beam L, and a laser beam L that is shaped to be transferred to the workpiece W to be processed. and a mask hole 22 for cutting out. One or a plurality of collimator lenses 21 are arranged. The hole shape of the mask hole 22 is usually circular.

加工ヘッド30は、レーザビームLを偏向させるガルバノミラー31Y,31Xと、ガルバノミラー31Y,31Xを回転駆動するガルバノスキャナ32Y,32Xと、レーザビームLを集光させるレンズであるfθレンズ33と、を有する。 The processing head 30 includes galvanometer mirrors 31Y and 31X that deflect the laser beam L, galvanometer scanners 32Y and 32X that rotate the galvanometer mirrors 31Y and 31X, and an fθ lens 33 that converges the laser beam L. have.

ガルバノミラー31Yは、加工ヘッド30へ入射したレーザビームLを反射する。ガルバノスキャナ32Yは、ガルバノミラー31Yを位置決めするために使用されるサーボモータである。ガルバノスキャナ32Yは、位置指令に従った制御によりガルバノミラー31Yを回転させる。つまり、ガルバノスキャナ32Yは、fθレンズ33に入射するレーザビームLの位置および角度を調整する。具体的には、ガルバノスキャナ32Yは、特定の振り角の範囲内においてガルバノミラー31Yを回転させることによって、レーザビームLの照射位置をY軸方向へ移動させる。 The galvanomirror 31Y reflects the laser beam L incident on the processing head 30 . The galvanometer scanner 32Y is a servomotor used to position the galvanometer mirror 31Y. The galvanometer scanner 32Y rotates the galvanometer mirror 31Y under control according to the position command. That is, the galvanometer scanner 32Y adjusts the position and angle of the laser beam L incident on the fθ lens 33 . Specifically, the galvanometer scanner 32Y moves the irradiation position of the laser beam L in the Y-axis direction by rotating the galvanometer mirror 31Y within a specific swing angle range.

ガルバノミラー31Xは、ガルバノミラー31Yから入射したレーザビームLを反射する。ガルバノスキャナ32Xは、ガルバノミラー31Xを位置決めするために使用されるサーボモータである。ガルバノスキャナ32Xは、位置指令に従った制御によりガルバノミラー31Xを回転させる。つまり、ガルバノスキャナ32Xは、fθレンズ33に入射するレーザビームLの位置および角度を調整する。具体的には、ガルバノスキャナ32Xは、特定の振り角の範囲内においてガルバノミラー31Xを回転させることによって、レーザビームLの照射位置をX軸方向へ移動させる。 The galvanomirror 31X reflects the laser beam L incident from the galvanomirror 31Y. The galvanometer scanner 32X is a servomotor used to position the galvanometer mirror 31X. The galvanometer scanner 32X rotates the galvanometer mirror 31X under control according to the position command. That is, the galvanometer scanner 32X adjusts the position and angle of the laser beam L incident on the fθ lens 33 . Specifically, the galvanometer scanner 32X moves the irradiation position of the laser beam L in the X-axis direction by rotating the galvanometer mirror 31X within a specific swing angle range.

fθレンズ33は、ガルバノミラー31Xで反射したレーザビームLを集光させ、被加工ワークWに対してレーザビームLを垂直に照射するレンズである。 The f.theta.

ワーク搬送テーブル40は、位置指令に従った制御によって、X軸方向またはY軸方向に移動される。すなわち、ワーク搬送テーブル40は、X軸方向への駆動機構と、Y軸方向への駆動機構と、を有する。X軸方向への駆動機構およびY軸方向への駆動機構が、位置指令に従って駆動されることで、ワーク搬送テーブル40がXY面内で位置を変えることができる。ガルバノスキャナ32Y,32Xの駆動によるガルバノミラー31Y,31Xの可動範囲、すなわちガルバノミラー31Y,31XによるレーザビームLのX軸方向およびY軸方向の照射位置の変更は、極狭い範囲に限られる。このため、ガルバノスキャナ32Y,32Xの駆動によるガルバノミラー31Y,31Xの照射位置の変更のみでは、被加工ワークWの全体に穴あけ加工を行うことは困難である。そこで、ガルバノスキャナ32Y,32Xの駆動によるガルバノミラー31Y,31Xの可動範囲での加工が終了した後に、ワーク搬送テーブル40を使って被加工ワークWの位置を変え、ガルバノスキャナ32Y,32Xの駆動によるガルバノミラー31Y,31Xの可動範囲で再度加工を行うようにする。これによって、被加工ワークWの全体に穴あけ加工を行うことができる。 The work carrier table 40 is moved in the X-axis direction or the Y-axis direction by control according to the position command. That is, the work transfer table 40 has a drive mechanism for the X-axis direction and a drive mechanism for the Y-axis direction. The drive mechanism for the X-axis direction and the drive mechanism for the Y-axis direction are driven according to the position command, so that the position of the work transfer table 40 can be changed within the XY plane. The movable range of the galvanometer mirrors 31Y and 31X by driving the galvanometer scanners 32Y and 32X, that is, the change of the irradiation position of the laser beam L in the X-axis direction and the Y-axis direction by the galvanometer mirrors 31Y and 31X is limited to an extremely narrow range. Therefore, it is difficult to drill the entire workpiece W only by changing the irradiation positions of the galvanometer mirrors 31Y and 31X by driving the galvanometer scanners 32Y and 32X. Therefore, after finishing the machining within the movable range of the galvano mirrors 31Y and 31X by driving the galvano scanners 32Y and 32X, the position of the workpiece W to be processed is changed using the work transfer table 40, Processing is performed again within the movable range of the galvanomirrors 31Y and 31X. As a result, the entire workpiece W to be processed can be drilled.

レーザ加工機1は、レーザ加工機1の全体を制御する制御装置50をさらに備える。制御装置50は、レーザ発振器10、ガルバノスキャナ32Y,32X、ワーク搬送テーブル40等の動作を制御する。一例では、制御装置50は、ワーク搬送テーブル40に対する位置指令と、レーザ発振器10に対するレーザ出力指令と、ガルバノスキャナ32Y,32Xに対する位置指令と、を生成する。ワーク搬送テーブル40に対する位置指令は、ワーク搬送テーブル40のX軸方向への駆動機構およびY軸方向への駆動機構へと出力される。レーザ出力指令は、レーザ発振器10に出力される。ガルバノスキャナ32Y,32Xに対する位置指令は、ガルバノスキャナ32Y,32Xに出力される。なお、以下では、ガルバノスキャナ32Y,32Xは、個々に区別しない場合には、ガルバノスキャナ32と称される。また、ガルバノミラー31Y,31Xは、個々に区別しない場合には、ガルバノミラー31と称される。 The laser processing machine 1 further includes a control device 50 that controls the entire laser processing machine 1 . The control device 50 controls operations of the laser oscillator 10, the galvanometer scanners 32Y and 32X, the work transfer table 40, and the like. In one example, the control device 50 generates a position command for the workpiece transfer table 40, a laser output command for the laser oscillator 10, and a position command for the galvanometer scanners 32Y and 32X. A position command for the work carrier table 40 is output to the drive mechanism for the work carrier table 40 in the X-axis direction and the drive mechanism for the Y-axis direction. A laser output command is output to the laser oscillator 10 . Position commands for the galvanometer scanners 32Y and 32X are output to the galvanometer scanners 32Y and 32X. Note that the galvano-scanners 32Y and 32X are hereinafter referred to as the galvano-scanner 32 when they are not individually distinguished. Also, the galvanomirrors 31Y and 31X are referred to as galvanomirrors 31 when they are not individually distinguished.

つぎに、ガルバノスキャナ32の構成について説明する。図2は、実施の形態1に係るガルバノスキャナの構成の一例を模式的に示す図である。図2では、ガルバノスキャナ32に固定されるガルバノミラー31も図示されている。ガルバノスキャナ32は、モータ35と、モータ35の軸受351,352における電食の発生を抑制する電食抑制部37と、を有する。なお、後述するロータ340の回転軸の方向におけるモータ35の2つの端部の内、ガルバノミラー31が設けられる方の端部は第1端部と称され、電食抑制部37が設けられる方の端部は第2端部と称される。 Next, the configuration of the galvanometer scanner 32 will be described. FIG. 2 is a diagram schematically showing an example of the configuration of the galvanometer scanner according to Embodiment 1. FIG. FIG. 2 also shows the galvanometer mirror 31 fixed to the galvanometer scanner 32 . The galvanometer scanner 32 has a motor 35 and an electrolytic corrosion suppressor 37 that suppresses the occurrence of electrolytic corrosion in bearings 351 and 352 of the motor 35 . Of the two ends of the motor 35 in the direction of the rotation axis of the rotor 340 to be described later, the end on which the galvanomirror 31 is provided is referred to as the first end, and the end on which the electrolytic corrosion suppressing portion 37 is provided is referred to as the first end. is referred to as the second end.

ガルバノミラー31は、回転軸の方向におけるモータ35の2つの端部の内の一方の第1端部側で、モータ35の後述するロータ340のシャフト342に固定され、回転軸を中心に回転する。ガルバノミラー31は、ミラー311と、ミラーホルダ312と、を備える。ミラー311は、ミラーホルダ312に固定される。ミラーホルダ312は、モータ35のシャフト342に固定され、ミラー311を保持する。ミラー311は、入射されるレーザビームLを反射させる。ガルバノミラー31は、シャフト342に連動して回転することでレーザビームLを任意の角度に偏向させる。一般的にガルバノミラー31の回転角度は、±20度程度あれば十分である。 The galvanomirror 31 is fixed to a shaft 342 of a rotor 340 of the motor 35, which is one of the two ends of the motor 35 in the direction of the rotation axis, and rotates about the rotation axis. . The galvanomirror 31 has a mirror 311 and a mirror holder 312 . A mirror 311 is fixed to a mirror holder 312 . The mirror holder 312 is fixed to the shaft 342 of the motor 35 and holds the mirror 311 . The mirror 311 reflects the incident laser beam L. As shown in FIG. The galvanomirror 31 rotates in conjunction with the shaft 342 to deflect the laser beam L to an arbitrary angle. Generally, it is sufficient if the rotation angle of the galvanomirror 31 is about ±20 degrees.

モータ35は、ステータ330と、ロータ340と、一対の軸受351,352と、を有する。ステータ330は、導電性材料によって構成される。ステータ330は、筐体部331と、鉄心332と、コイル333と、導線334と、を有する。筐体部331は、鉄心332、コイル333、ロータ340および一対の軸受351,352を収容する。筐体部331は、ロータ340を内部に収容することができる中空の構造を有する。筐体部331は、導電性材料によって構成される。鉄心332は、モータ35のトルクを生じさせるための筒状の部材である。鉄心332は、鉄等の強磁性材料であることが望ましい。コイル333は、鉄心332の内周面に沿って配置され、筒状である。筒状の鉄心332の内側に筒状のコイル333が配置される。導線334は、図示しない電流アンプとコイル333とを電気的に接続する配線であり、電流アンプからの電流をコイル333に流す。導線334に電流を流すことによって、ロータ340が回転し、モータ35を駆動させることが可能となる。 The motor 35 has a stator 330 , a rotor 340 and a pair of bearings 351 and 352 . Stator 330 is made of a conductive material. The stator 330 has a housing portion 331 , an iron core 332 , coils 333 and conductors 334 . The housing part 331 accommodates an iron core 332 , a coil 333 , a rotor 340 and a pair of bearings 351 and 352 . The housing part 331 has a hollow structure capable of accommodating the rotor 340 inside. The housing part 331 is made of a conductive material. The iron core 332 is a tubular member for generating torque of the motor 35 . Iron core 332 is preferably a ferromagnetic material such as iron. The coil 333 is arranged along the inner peripheral surface of the iron core 332 and has a tubular shape. A cylindrical coil 333 is arranged inside a cylindrical iron core 332 . A lead wire 334 is a wiring that electrically connects a current amplifier (not shown) and the coil 333 , and passes current from the current amplifier to the coil 333 . By applying current to conductor 334 , rotor 340 rotates and motor 35 can be driven.

ロータ340は、導電性材料によって構成される。ロータ340は、永久磁石341と、シャフト342,343と、を有する。永久磁石341は、筒状のコイル333の内側に、コイル333から定められた距離を置いて配置される。一例では、永久磁石341は円柱状を有し、周方向に異なる磁極が交互に配置されている。永久磁石341は、筒状のコイル333の中心軸を中心に回転可能である。筒状のコイル333の中心軸は、回転軸に対応する。永久磁石341の回転軸に沿った両側にはシャフト342,343が接続される。永久磁石341とシャフト342,343とは一体的に形成されていてもよいし、溶接等の方法で接続されていてもよい。一方のシャフト342の端部には、ガルバノミラー31が固定される。他方のシャフト343は、ステータ330の筐体部331の端部よりも突出している。シャフト342,343は、永久磁石341の回転とともに回転し、これによってガルバノミラー31も回転軸を中心に回転する。 Rotor 340 is made of a conductive material. The rotor 340 has a permanent magnet 341 and shafts 342 and 343 . A permanent magnet 341 is placed inside the cylindrical coil 333 at a defined distance from the coil 333 . In one example, the permanent magnet 341 has a cylindrical shape, and different magnetic poles are alternately arranged in the circumferential direction. The permanent magnet 341 is rotatable around the central axis of the tubular coil 333 . A central axis of the tubular coil 333 corresponds to the rotation axis. Shafts 342 and 343 are connected to both sides along the rotation axis of the permanent magnet 341 . The permanent magnet 341 and the shafts 342, 343 may be integrally formed or may be connected by a method such as welding. A galvanomirror 31 is fixed to one end of the shaft 342 . The other shaft 343 protrudes from the end of the housing portion 331 of the stator 330 . The shafts 342 and 343 rotate together with the rotation of the permanent magnet 341, thereby rotating the galvanomirror 31 around the rotation axis.

一対の軸受351,352は、筐体部331の内部で、それぞれシャフト342,343を回転可能に保持する。一例では、軸受351,352は、筐体部331に固定される外輪と、シャフト342,343を保持する内輪と、内輪と外輪との間に保持される転動体と、を有する転がり軸受である。内輪および外輪と転動体との間には油膜が張られている。ロータ340の永久磁石341の回転によって、永久磁石341に固定されるシャフト342,343を保持する内輪は、筐体部331に固定されている外輪に対して回転軸を中心にして回転することになる。このとき、転動体も回転する。 A pair of bearings 351 and 352 rotatably hold shafts 342 and 343 inside the housing portion 331 . In one example, the bearings 351, 352 are rolling bearings having an outer ring fixed to the housing portion 331, an inner ring holding the shafts 342, 343, and rolling elements held between the inner ring and the outer ring. . An oil film is spread between the inner and outer rings and the rolling elements. Due to the rotation of the permanent magnet 341 of the rotor 340, the inner ring holding the shafts 342 and 343 fixed to the permanent magnet 341 rotates about the rotation axis with respect to the outer ring fixed to the housing portion 331. Become. At this time, the rolling elements also rotate.

電食抑制部37は、回転軸の方向におけるモータ35の2つの端部の内のガルバノミラー31が設けられていない方の第2端部側に設けられ、ステータ330とロータ340とを電気的に接続する。具体的には、電食抑制部37は、ガルバノミラー31とは反対側のステータ330の端部に設けられる。電食抑制部37は、ステータ330とロータ340とを電気的に接続する部材、すなわちステータ330とロータ340とを同電位とする部材である。電食抑制部37は、ステータ330と電気的に接続される支持構造部370と、ステータ330および支持構造部370とロータ340とを電気的に接続させる接地構造部380と、を有する。 The electrolytic corrosion suppressing portion 37 is provided on the second end side of the two ends of the motor 35 in the direction of the rotation axis where the galvanomirror 31 is not provided, and electrically connects the stator 330 and the rotor 340 together. connect to. Specifically, the electrolytic corrosion suppressing portion 37 is provided at the end portion of the stator 330 opposite to the galvanomirror 31 . Electrolytic corrosion suppressing portion 37 is a member that electrically connects stator 330 and rotor 340, that is, a member that makes stator 330 and rotor 340 at the same potential. The electrolytic corrosion suppressing portion 37 has a support structure portion 370 electrically connected to the stator 330 and a ground structure portion 380 electrically connecting the stator 330 and the support structure portion 370 to the rotor 340 .

支持構造部370は、ステータ330の第2端部で接地構造部380を支持する。具体的には、支持構造部370は、ステータ330のガルバノミラー31が設置される第1端部とは反対側の第2端部に設けられる。支持構造部370は、板状部材371と、脚部372と、を有する。板状部材371は、回転軸に垂直となるように配置される板状の部材であり第1部材に対応する。仮想的な直線である回転軸と交わる板状部材371の位置には、接地構造部380を支持する貫通孔371aが設けられる。貫通孔371aの内周面にはねじが切られており、雌ねじとなっている。脚部372は、板状部材371をステータ330の端部で支持する部材である。脚部372は、筒状の部材であってもよいし、回転軸の方向に延在した棒状の部材であってもよい。後者の場合には、2本以上の棒状の部材によって、板状部材371がステータ330の端部に支持されればよい。一例では、脚部372は、ステータ330の筐体部331とねじ、溶接等の固定方法によって固定される。また、脚部372は、板状部材371とねじ、溶接等の固定方法によって固定される。板状部材371および脚部372は、一例では、ステンレス等の導電性材料によって構成される。 Support structure 370 supports ground structure 380 at the second end of stator 330 . Specifically, the support structure 370 is provided at a second end of the stator 330 opposite to the first end where the galvanomirror 31 is installed. The support structure 370 has a plate member 371 and legs 372 . The plate-like member 371 is a plate-like member arranged perpendicular to the rotation axis and corresponds to the first member. A through hole 371a for supporting the grounding structure portion 380 is provided at a position of the plate-like member 371 that intersects the rotational axis, which is an imaginary straight line. The inner peripheral surface of the through hole 371a is threaded to form a female thread. The leg portion 372 is a member that supports the plate member 371 at the end portion of the stator 330 . The leg portion 372 may be a tubular member or a rod-shaped member extending in the direction of the rotation axis. In the latter case, plate-like member 371 may be supported at the end of stator 330 by two or more rod-like members. In one example, the leg portion 372 is fixed to the housing portion 331 of the stator 330 by a fixing method such as screws or welding. Also, the leg portion 372 is fixed to the plate-like member 371 by a fixing method such as screws or welding. The plate-like member 371 and the leg portion 372 are, for example, made of a conductive material such as stainless steel.

接地構造部380は、一方の端部でロータ340と当接し、他方の端部で支持構造部370に支持される、導電性材料によって構成される部材である。図2の例では、接地構造部380は、一方の端部が支持構造部370の板状部材371に設けられる貫通孔371aに配置される。具体的には、接地構造部380は、一方の端部が板状部材371の貫通孔371aに固定され、他方の端部がロータ340のシャフト343と当接するように、配置される。接地構造部380の外周面にはねじが切られており、雄ねじとなっている。接地構造部380を貫通孔371aに螺合させることで、支持構造部370に接地構造部380を固定することができる。接地構造部380は、シャフト343が回転しても、シャフト343との電気的な接続が維持される構成を有することが望ましい。接地構造部380は、一例では、針状部材であってもよいし、ボールプランジャであってもよい。接地構造部380は一例ではステンレスによって構成される。 Grounding structure 380 is a member made of an electrically conductive material that abuts rotor 340 at one end and is supported by support structure 370 at the other end. In the example of FIG. 2 , one end of the grounding structure 380 is arranged in a through hole 371 a provided in the plate-like member 371 of the support structure 370 . Specifically, the grounding structure 380 is arranged so that one end is fixed to the through hole 371 a of the plate-like member 371 and the other end is in contact with the shaft 343 of the rotor 340 . The outer peripheral surface of the grounding structure portion 380 is threaded to form a male thread. The ground structure portion 380 can be fixed to the support structure portion 370 by screwing the ground structure portion 380 into the through hole 371a. It is desirable that the grounding structure 380 have a configuration that maintains electrical connection with the shaft 343 even when the shaft 343 rotates. Ground structure 380 may be a needle-like member or a ball plunger, in one example. In one example, the grounding structure 380 is made of stainless steel.

図3は、実施の形態1に係るガルバノスキャナで使用される接地構造部の構成の一例を示す断面図である。図3では、接地構造部380がボールプランジャである場合を示している。接地構造部380は、導電性材料で構成される球状部材381と、球状部材381と接触して配置され、導電性材料で構成される弾性部材382と、球状部材381および弾性部材382を収容し、導電性材料で構成される筐体383と、を有する。筐体383の内部で、弾性部材382の一方の端部は、筐体383の内部に固定され、他方の端部が球状部材381と接触する。球状部材381は、弾性部材382に固定されておらず、接触しているだけである。また、球状部材381は、ロータ340のシャフト343に当接する。これによって、球状部材381は、ロータ340の回転角度に連動して回転する。つまり、球状部材381に当接するロータ340のシャフト343が回転すると、球状部材381も回転する。この結果、ロータ340のスムーズな回転が実現される。球状部材381は、第2部材に対応する。 FIG. 3 is a cross-sectional view showing an example of the configuration of the grounding structure used in the galvanometer scanner according to the first embodiment. FIG. 3 shows a case where the ground structure 380 is a ball plunger. The grounding structure 380 includes a spherical member 381 made of a conductive material, an elastic member 382 made of a conductive material, disposed in contact with the spherical member 381, and containing the spherical member 381 and the elastic member 382. , and a housing 383 made of a conductive material. Inside the housing 383 , one end of the elastic member 382 is fixed inside the housing 383 and the other end contacts the spherical member 381 . The spherical member 381 is not fixed to the elastic member 382 and is only in contact therewith. Also, the spherical member 381 contacts the shaft 343 of the rotor 340 . Thereby, the spherical member 381 rotates in conjunction with the rotation angle of the rotor 340 . That is, when the shaft 343 of the rotor 340 in contact with the spherical member 381 rotates, the spherical member 381 also rotates. As a result, smooth rotation of the rotor 340 is realized. The spherical member 381 corresponds to the second member.

また、球状部材381は、ロータ340と常時当接するように可動する。これによって、球状部材381がロータ340を回転軸の方向に押し込む押し付け力を調整することができる。一例では、ロータ340を回転軸の方向に押し込むことによって生じるガルバノミラー31で反射されるレーザビームLの位置精度が悪化しない条件で、球状部材381をロータ340に押し付けることができる。また、球状部材381とロータ340との間の接触信頼性を確保した状態で、ガルバノスキャナ32を使用することができる。 Also, the spherical member 381 is movable so as to be in constant contact with the rotor 340 . This makes it possible to adjust the pressing force with which the spherical member 381 pushes the rotor 340 in the direction of the rotation axis. In one example, the spherical member 381 can be pressed against the rotor 340 under the condition that the positional accuracy of the laser beam L reflected by the galvanomirror 31 caused by pushing the rotor 340 in the direction of the rotation axis does not deteriorate. In addition, the galvanometer scanner 32 can be used while ensuring contact reliability between the spherical member 381 and the rotor 340 .

さらに、球状部材381が回転している間も、球状部材381は弾性部材382と接触しているため、ロータ340と当接するように回転軸の方向に移動可能である。つまり、弾性部材382は、球状部材381と接触し、ロータ340に向かって球状部材381を押し付ける。これによって、弾性部材382によって、球状部材381をロータ340に対して常に接触させておくことが可能となる。そして、球状部材381と弾性部材382との間で電気的接触を保つとともに、ロータ340とステータ330との間で、接地構造部380および支持構造部370を介して電気的接触を保つことが可能となる。 Furthermore, since the spherical member 381 is in contact with the elastic member 382 while the spherical member 381 is rotating, it can move in the direction of the rotation axis so as to contact the rotor 340 . That is, the elastic member 382 contacts the spherical member 381 and presses the spherical member 381 toward the rotor 340 . Thereby, the spherical member 381 can be kept in contact with the rotor 340 at all times by the elastic member 382 . Thus, electrical contact can be maintained between the spherical member 381 and the elastic member 382, and electrical contact can be maintained between the rotor 340 and the stator 330 via the ground structure 380 and the support structure 370. becomes.

以上のように、弾性部材382は、球状部材381とロータ340との間で接触が保たれる程度の力で球状部材381を押し付ける。この弾性部材382の変位によって生じる力である押し付け力は、モータ35のロータ340を回転軸の方向に押し込み、ステータ330に対してロータ340が回転軸の方向に変位してしまうほどの大きさとならないように調整される。弾性部材382は、一例ではばねである。 As described above, the elastic member 382 presses the spherical member 381 with a force sufficient to maintain contact between the spherical member 381 and the rotor 340 . The pressing force, which is the force generated by the displacement of the elastic member 382, pushes the rotor 340 of the motor 35 in the direction of the rotation axis, and does not become large enough to displace the rotor 340 with respect to the stator 330 in the direction of the rotation axis. adjusted to The elastic member 382 is a spring in one example.

このようなガルバノスキャナ32での動作について説明する。制御装置50からの指示に従って、コイル333に電流が流されると、ロータ340が回転する。ロータ340の回転によって、シャフト342に固定されるガルバノミラー31も回転する。モータ35のガルバノミラー31が設置される第1端部とは反対側の第2端部では、接地構造部380が他方のシャフト343と接触した状態にある。つまり、ロータ340とステータ330とは、接地構造部380および支持構造部370を介して電気的に接続された状態にあり、ロータ340とステータ330とは同電位となる。このため、ガルバノスキャナ32の駆動時における磁石の渦電流等の影響で、軸受351,352の内輪と外輪との間で電位差である軸電圧が発生することが抑制される。また、軸受351,352の油膜によって内輪と外輪とが絶縁されている状態から、油膜が切れ、内輪と外輪とが接触するような状態になったとしても、内輪と外輪とは、電食抑制部37を介して同電位となっているため、内輪と外輪との間での放電の発生が抑制される。この結果、軸受351,352の内部の損傷が抑制される。軸受351,352の内部の損傷が抑制されるため、軸受351,352のスムーズな回転を継続させることができ、レーザビームLの照射位置の制御に悪影響を及ぼしてしまうことがない。 The operation of such a galvanometer scanner 32 will be described. When current is applied to coil 333 according to an instruction from control device 50, rotor 340 rotates. As the rotor 340 rotates, the galvanomirror 31 fixed to the shaft 342 also rotates. At the second end of the motor 35 opposite to the first end where the galvanomirror 31 is installed, the grounding structure 380 is in contact with the other shaft 343 . In other words, rotor 340 and stator 330 are electrically connected via grounding structure 380 and support structure 370, and rotor 340 and stator 330 are at the same potential. Therefore, the occurrence of axial voltage, which is a potential difference, between the inner and outer rings of the bearings 351 and 352 due to the influence of eddy currents of the magnets when the galvano scanner 32 is driven is suppressed. In addition, even if the inner ring and the outer ring are insulated by the oil film of the bearings 351 and 352 and the oil film breaks and the inner ring and the outer ring come into contact with each other, the inner ring and the outer ring are prevented from being subjected to electrolytic corrosion suppression. Since they have the same potential through the portion 37, the occurrence of discharge between the inner ring and the outer ring is suppressed. As a result, damage inside the bearings 351 and 352 is suppressed. Since damage inside the bearings 351 and 352 is suppressed, smooth rotation of the bearings 351 and 352 can be continued, and control of the irradiation position of the laser beam L is not adversely affected.

なお、電食抑制部37によってロータ340とステータ330との間の電気的な接触が保たれていれば、図2に示される構造に限定されるものではない。図2では、電食抑制部37の板状部材371の回転軸に垂直な方向の面積は、ステータ330の回転軸に垂直な方向の面積と略同じである。しかし、接地構造部380がシャフト343と接続を保てるとともに、板状部材371が接地構造部380を支持することができる構造であれば、板状部材371の回転軸に垂直な方向の面積の大きさおよび形状は特に限定されるものではない。 Note that the structure is not limited to that shown in FIG. 2 as long as electrical contact between rotor 340 and stator 330 is maintained by electrolytic corrosion suppressing portion 37 . In FIG. 2 , the area of the plate member 371 of the electrolytic corrosion suppressing portion 37 in the direction perpendicular to the rotation axis is substantially the same as the area of the stator 330 in the direction perpendicular to the rotation axis. However, if the grounding structure 380 can maintain connection with the shaft 343 and the plate-like member 371 can support the grounding structure 380, the area of the plate-like member 371 in the direction perpendicular to the rotation axis can be increased. The width and shape are not particularly limited.

また、接地構造部380の弾性部材382による押し付け力を安定させるためには、回転軸の方向における接地構造部380の筐体383の位置をしっかり決める必要がある。一例では、図2のように接地構造部380を板状部材371に固定した場合であっても、長い期間製品を使用していると、雄ねじとなっている接地構造部380が回転軸の方向に動いてしまう場合がある。このように、回転軸の方向における筐体383の位置が変化すると、弾性部材382の固定位置も変化してしまい、押し付け力の大きさも変化してしまう。すなわち、弾性部材382による押し付け力が安定しなくなる。そこで、球状部材381をロータ340に常時、定められた押し付け力で当接させておくことができるように、弾性部材382の位置を固定してもよい。 Further, in order to stabilize the pressing force of the elastic member 382 of the grounding structure 380, it is necessary to firmly determine the position of the housing 383 of the grounding structure 380 in the direction of the rotation axis. For example, even if the grounding structure 380 is fixed to the plate-like member 371 as shown in FIG. may move to As described above, when the position of the housing 383 in the direction of the rotation axis changes, the fixing position of the elastic member 382 also changes, and the magnitude of the pressing force also changes. That is, the pressing force by the elastic member 382 becomes unstable. Therefore, the position of the elastic member 382 may be fixed so that the spherical member 381 can always be brought into contact with the rotor 340 with a predetermined pressing force.

図4は、実施の形態1に係るガルバノスキャナの構成の他の例を模式的に示す図である。上記した構成要素と同一の構成要素には同一の符号を付して、その説明を省略する。図4では、接地構造部380aの長さが板状部材371の厚さよりも長くなっている。図2では、接地構造部380のモータ35とは反対側の端部は板状部材371の貫通孔371aの内部にある場合を示したが、図4では、接地構造部380aは、板状部材371の貫通孔371aを貫通している。また、図4の電食抑制部37は、接地構造部380aの回転軸の方向への移動を抑制し、弾性部材382の固定位置を決める位置決め部材であるナット385をさらに有する。図示を省略しているが、上記したように接地構造部380aの外周面にはねじが切られているので、板状部材371から突出した部分にナット385が螺合される。これによって、接地構造部380aの回転軸の方向への移動が抑制され、弾性部材382の固定位置が安定する。この結果、球状部材381をロータ340に常時、定められた押し付け力で当接させておくことが可能となる。 4 is a diagram schematically showing another example of the configuration of the galvanometer scanner according to Embodiment 1. FIG. The same symbols are attached to the same components as those described above, and the description thereof is omitted. In FIG. 4, the length of the ground structure portion 380a is longer than the thickness of the plate member 371. In FIG. 2 shows the case where the end of the grounding structure 380 on the side opposite to the motor 35 is inside the through hole 371a of the plate-like member 371, but in FIG. 371 through a through hole 371a. 4 further includes a nut 385 which is a positioning member for suppressing the movement of the grounding structure 380a in the direction of the rotating shaft and determining the fixed position of the elastic member 382. As shown in FIG. Although not shown, since the outer peripheral surface of the grounding structure portion 380a is threaded as described above, a nut 385 is screwed to the portion protruding from the plate-like member 371. As shown in FIG. As a result, the movement of the grounding structure portion 380a in the direction of the rotating shaft is suppressed, and the fixed position of the elastic member 382 is stabilized. As a result, it is possible to keep the spherical member 381 in contact with the rotor 340 at all times with a predetermined pressing force.

図5は、実施の形態1に係るガルバノスキャナの構成の他の例を模式的に示す図である。上記した構成要素と同一の構成要素には同一の符号を付して、その説明を省略する。図5の電食抑制部37は、図2に示される構造に加えて、接地構造部固定部390をさらに有する。接地構造部固定部390は、支持構造部370のモータ35とは反対側に設けられ、接地構造部380の回転軸の方向の位置が移動しないように固定する部材である。接地構造部固定部390は、位置決め部材に対応する。接地構造部固定部390は、支持構造部391と、位置固定部395と、を有する。 FIG. 5 is a diagram schematically showing another example of the configuration of the galvanometer scanner according to Embodiment 1. FIG. The same symbols are attached to the same components as those described above, and the description thereof is omitted. The electrolytic corrosion suppressing portion 37 of FIG. 5 further has a ground structure fixing portion 390 in addition to the structure shown in FIG. The grounding structure fixing portion 390 is provided on the opposite side of the support structure 370 to the motor 35 and is a member that fixes the grounding structure 380 so that its position in the direction of the rotation axis does not move. The ground structure fixing portion 390 corresponds to the positioning member. The ground structure fixing portion 390 has a support structure portion 391 and a position fixing portion 395 .

支持構造部391は、板状部材392と、脚部393と、を有する。板状部材392は、回転軸に垂直となるように配置される板状の部材である。仮想的な直線である回転軸と交わる板状部材392の位置には、位置固定部395を支持する貫通孔392aが設けられる。貫通孔392aは、ねじ孔であり、貫通孔392aの内周面にはねじが切られており、雌ねじとなっている。脚部393は、板状部材392を支持構造部370の板状部材371で支持する部材である。脚部393は、筒状の部材であってもよいし、回転軸の方向に延在した棒状の部材であってもよい。後者の場合には、2本以上の棒状の部材によって、板状部材392が支持構造部370の板状部材371に支持されればよい。一例では、脚部393は、支持構造部370の板状部材371とねじ、溶接等の固定方法によって固定される。また、脚部393は、板状部材392とねじ、溶接等の固定方法によって固定される。 The support structure 391 has a plate member 392 and legs 393 . The plate-like member 392 is a plate-like member arranged so as to be perpendicular to the rotation axis. A through hole 392 a that supports the position fixing portion 395 is provided at a position of the plate-like member 392 that intersects the rotation axis, which is an imaginary straight line. The through hole 392a is a threaded hole, and the inner peripheral surface of the through hole 392a is threaded to form a female thread. The leg portion 393 is a member that supports the plate-like member 392 with the plate-like member 371 of the support structure portion 370 . The leg portion 393 may be a tubular member or a rod-shaped member extending in the direction of the rotation axis. In the latter case, the plate-like member 392 may be supported by the plate-like member 371 of the support structure 370 by two or more rod-like members. In one example, the leg portion 393 is fixed to the plate-like member 371 of the support structure portion 370 by a fixing method such as screws or welding. Also, the leg portion 393 is fixed to the plate member 392 by a fixing method such as screws or welding.

位置固定部395は、一方の端部で接地構造部380の端部と当接し、他方の端部で支持構造部391に支持される部材である。一例では、位置固定部395は、回転軸の方向に延在した部材である。図5の例では、位置固定部395は、一方の端部が板状部材392の貫通孔392aに固定され、他方の端部が接地構造部380と当接するように配置される。位置固定部395の外周面にはねじが切られており、雄ねじとなっている。位置固定部395を貫通孔392aに螺合させることで、支持構造部391に位置固定部395を固定することができる。これによって、接地構造部380は、モータ35とは反対側から位置固定部395によって押し込まれる。つまり、接地構造部380の回転軸の方向の位置、より具体的には弾性部材382の固定位置が固定されることになる。この結果、球状部材381をロータ340に常時、定められた押し付け力で当接させておくことが可能となる。 The position fixing portion 395 is a member that abuts on one end portion of the grounding structure portion 380 and is supported by the support structure portion 391 on the other end portion. In one example, the position fixing portion 395 is a member that extends in the direction of the axis of rotation. In the example of FIG. 5 , the position fixing portion 395 is arranged so that one end is fixed to the through hole 392 a of the plate-like member 392 and the other end is in contact with the ground structure portion 380 . The outer peripheral surface of the position fixing portion 395 is threaded to form a male screw. The position fixing part 395 can be fixed to the support structure part 391 by screwing the position fixing part 395 into the through hole 392a. Thereby, the grounding structure 380 is pushed by the position fixing part 395 from the side opposite to the motor 35 . That is, the position of the grounding structure 380 in the direction of the rotation axis, more specifically, the fixed position of the elastic member 382 is fixed. As a result, it is possible to keep the spherical member 381 in contact with the rotor 340 at all times with a predetermined pressing force.

以上のように、実施の形態1のガルバノスキャナ32は、回転軸を中心に回転する永久磁石341および回転軸に沿った永久磁石341の両側に接続されるシャフト342,343を有するロータ340、ロータ340から定められた距離をおいて配置されるステータ330、並びにシャフト342,343を支持する軸受351,352を有するモータ35と、回転軸の方向におけるモータ35の2つの端部の内のガルバノミラー31が設けられていない方の端部に設けられ、ステータ330とロータ340とを電気的に接続する電食抑制部37と、を備える。これによって、ガルバノスキャナ32の動作時において、電食抑制部37がステータ330とロータ340との間を電気的に接続するので、軸受351,352における内輪と外輪とが同電位となる。また、電食抑制部37は、ロータ340のシャフト343との接触が保たれる程度の押し付け力でロータ340と接触する。このため、軸受351,352の内輪と外輪との間の回転軸の方向の変位を従来に比して抑えながら、軸受351,352の内輪と外輪との間での電食の発生を抑制することができるという効果を有する。 As described above, the galvanometer scanner 32 of the first embodiment includes a rotor 340 having a permanent magnet 341 rotating around the rotation axis and shafts 342 and 343 connected to both sides of the permanent magnet 341 along the rotation axis. A stator 330 arranged at a defined distance from 340 and a motor 35 with bearings 351, 352 supporting shafts 342, 343 and galvanometer mirrors in the two ends of the motor 35 in the direction of the axis of rotation. and an electrolytic corrosion suppressing portion 37 that is provided at the end portion where the stator 31 is not provided and electrically connects the stator 330 and the rotor 340 . As a result, when the galvano scanner 32 operates, the electrolytic corrosion suppressing portion 37 electrically connects the stator 330 and the rotor 340, so that the inner and outer rings of the bearings 351 and 352 are at the same potential. Further, the electrolytic corrosion suppressing portion 37 contacts the rotor 340 with such a pressing force as to keep the rotor 340 in contact with the shaft 343 . Therefore, the occurrence of electrolytic corrosion between the inner and outer rings of the bearings 351 and 352 is suppressed while suppressing the displacement in the direction of the rotation axis between the inner and outer rings of the bearings 351 and 352 compared to the conventional art. It has the effect of being able to

なお、従来の技術では、軸受351,352の転動体の周囲を包む油膜が切れ、内輪、転動体および外輪が導通するまで、油圧によってロータシャフトにスラスト力を付与し、導通の必要がなくなるとスラスト力を除去している。つまり、スラスト力を付与するオンかスラスト力を付与しないオフかの2通りで制御が行われる。このような従来の技術を厳しい位置決め精度が要求されるガルバノスキャナ32に適用すると、オンの場合にロータ340が回転軸の方向に変位し、これによってガルバノミラー31も回転軸の方向に変位してしまう。このような変位が生じると、ガルバノミラー31で反射するレーザビームLの位置精度が悪化する。オンからオフに切り替わる場合もロータ340が回転軸の方向に変位し、同様に位置精度が悪化する。一方、実施の形態1のガルバノスキャナ32では、電食抑制部37の接地構造部380は、ロータ340とステータ330との間の電気的な導通が取れればよいので、それほど強い力で押し込む必要がなく、接地構造部380とロータ340との接触が常に保たれる程度に抑えられていればよい。このため、従来の技術のスラスト力に比して、実施の形態1の回転軸の方向の押し付け力は弱く、ガルバノミラー31で反射するレーザビームLの位置精度に悪影響を与えることがない。また、実施の形態1では、積極的に軸受351,352の内輪、転動体および外輪を導通させることはなく、転動体が油膜につつまれた状態で使用されるので、上記したように、軸受351,352の内輪と外輪との間での電食の発生を抑制することができる。 In the conventional technology, thrust force is applied to the rotor shaft by hydraulic pressure until the oil film surrounding the rolling elements of the bearings 351 and 352 is cut off, and the inner rings, rolling elements, and outer rings are electrically connected. Removes thrust force. In other words, the control is performed in two ways, that is, ON to apply the thrust force or OFF to not apply the thrust force. When such a conventional technique is applied to the galvanometer scanner 32 that requires strict positioning accuracy, the rotor 340 is displaced in the direction of the rotation axis when it is turned on, and the galvanometer mirror 31 is also displaced in the direction of the rotation axis. put away. When such a displacement occurs, the positional accuracy of the laser beam L reflected by the galvanomirror 31 deteriorates. When switching from on to off, the rotor 340 is also displaced in the direction of the rotation axis, similarly degrading the positional accuracy. On the other hand, in the galvano-scanner 32 of Embodiment 1, the grounding structure portion 380 of the electrolytic corrosion suppressing portion 37 does not need to be pushed with such a strong force because it is sufficient to establish electrical continuity between the rotor 340 and the stator 330. Instead, it is sufficient that the contact between the ground contact structure portion 380 and the rotor 340 is always maintained. Therefore, the pressing force in the direction of the rotation axis of the first embodiment is weaker than the thrust force of the conventional technology, and the positional accuracy of the laser beam L reflected by the galvanomirror 31 is not adversely affected. Further, in Embodiment 1, the inner rings, rolling elements and outer rings of the bearings 351 and 352 are not positively connected, and the rolling elements are used in a state where they are covered with an oil film. The occurrence of electrolytic corrosion between the inner and outer rings of 351 and 352 can be suppressed.

さらに、図4および図5に示されるように、電食抑制部37は、接地構造部380にある弾性部材382の球状部材381と接触する位置以外の位置で、弾性部材382を固定する位置決め部材をさらに備えるようにした。これによって、弾性部材382の位置が固定され、押し付け力を安定させることができる。 Furthermore, as shown in FIGS. 4 and 5, the electrolytic corrosion suppressing portion 37 is a positioning member that fixes the elastic member 382 at a position other than the position where the elastic member 382 in the grounding structure portion 380 contacts the spherical member 381. was further prepared. Thereby, the position of the elastic member 382 is fixed, and the pressing force can be stabilized.

以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.

1 レーザ加工機、10 レーザ発振器、20 レーザ光学素子、21 コリメートレンズ、22 マスクホール、30 加工ヘッド、31,31X,31Y ガルバノミラー、32,32X,32Y ガルバノスキャナ、33 fθレンズ、35 モータ、37 電食抑制部、40 ワーク搬送テーブル、50 制御装置、311 ミラー、312 ミラーホルダ、330 ステータ、331 筐体部、332 鉄心、333 コイル、334 導線、340 ロータ、341 永久磁石、342,343 シャフト、351,352 軸受、370,391 支持構造部、371,392 板状部材、371a,392a 貫通孔、372,393 脚部、380,380a 接地構造部、381 球状部材、382 弾性部材、383 筐体、385 ナット、390 接地構造部固定部、395 位置固定部、L レーザビーム、W 被加工ワーク。 1 laser processing machine, 10 laser oscillator, 20 laser optical element, 21 collimator lens, 22 mask hole, 30 processing head, 31, 31X, 31Y galvano mirror, 32, 32X, 32Y galvano scanner, 33 fθ lens, 35 motor, 37 Electrolytic corrosion suppressing part 40 Work transfer table 50 Control device 311 Mirror 312 Mirror holder 330 Stator 331 Case part 332 Iron core 333 Coil 334 Lead wire 340 Rotor 341 Permanent magnet 342, 343 Shaft, 351,352 bearings 370,391 support structure 371,392 plate member 371a,392a through hole 372,393 leg 380,380a grounding structure 381 spherical member 382 elastic member 383 housing 385 nut, 390 grounding structure fixing part, 395 position fixing part, L laser beam, W workpiece to be processed.

Claims (9)

回転軸を中心に回転する永久磁石および前記回転軸に沿った前記永久磁石の両側に接続されるシャフトを有するロータ、並びに前記ロータから定められた距離をおいて配置されるステータを有するモータと、
前記回転軸の方向における前記モータの2つの端部の内のガルバノミラーが設けられていない方の端部に設けられ、前記ステータと前記ロータとを電気的に接続する電食抑制部と、
を備え
前記電食抑制部は、
前記ロータと当接し、外周面にねじが切られた接地構造部と、
内周面にねじが切られた貫通孔が前記回転軸の延長線上に設けられた第1部材と、前記第1部材を前記ステータの端部で支持する第1脚部と、を有し、前記接地構造部を支持する第1支持構造部と、
を有し、
前記接地構造部は、前記回転軸の方向に移動可能に前記貫通孔に螺合され、
前記接地構造部および前記第1支持構造部は、導電性材料によって構成されることを特徴とするガルバノスキャナ。
a motor having a rotor having a permanent magnet rotating about an axis of rotation and a shaft connected to each side of the permanent magnet along the axis of rotation, and a stator positioned at a defined distance from the rotor;
an electrolytic corrosion suppressing portion provided at one of the two ends of the motor in the direction of the rotation axis where the galvanomirror is not provided and electrically connecting the stator and the rotor;
with
The electrolytic corrosion suppressing section is
a grounding structure that abuts on the rotor and has a threaded outer peripheral surface;
a first member having a threaded through hole on the inner peripheral surface provided on an extension line of the rotating shaft; and a first leg supporting the first member at an end of the stator, a first support structure supporting the ground structure;
has
the ground structure portion is screwed into the through hole so as to be movable in the direction of the rotation axis;
A galvanometric scanner , wherein the ground structure and the first support structure are constructed of an electrically conductive material .
前記接地構造部は、前記ロータに当接する第2部材を有することを特徴とする請求項に記載のガルバノスキャナ。 2. The galvano-scanner according to claim 1 , wherein the grounding structure has a second member that contacts the rotor. 前記第2部材は、前記ロータと当接するように前記回転軸の方向に移動可能であることを特徴とする請求項に記載のガルバノスキャナ。 3. The galvanometer scanner according to claim 2 , wherein said second member is movable in the direction of said rotating shaft so as to come into contact with said rotor. 前記接地構造部は、前記第2部材と接触し、前記ロータに向かって前記第2部材を押し付ける弾性部材をさらに有することを特徴とする請求項に記載のガルバノスキャナ。 4. The galvanometer scanner according to claim 3 , wherein the grounding structure further comprises an elastic member that contacts the second member and presses the second member toward the rotor. 前記接地構造部は、前記第2部材および前記弾性部材を収容する筐体をさらに有し、 the grounding structure further has a housing that accommodates the second member and the elastic member;
前記筐体の外周面に前記ねじが切られ、 The thread is cut on the outer peripheral surface of the housing,
前記第2部材と当接する端部ではない前記弾性部材の端部と前記筐体との前記筐体の内部における当接位置は、前記接地構造部の前記貫通孔への螺合によって変化しないことを特徴とする請求項4に記載のガルバノスキャナ。 A contact position inside the housing between the end portion of the elastic member that is not the end portion that contacts the second member and the housing is not changed by screwing the grounding structure portion into the through hole. 5. The galvanometer scanner of claim 4, characterized by:
前記電食抑制部は、前記第2部材と接触する位置以外の位置で前記弾性部材を固定する位置決め部材をさらに備えることを特徴とする請求項に記載のガルバノスキャナ。 5. The galvanometer scanner according to claim 4 , wherein the electrolytic corrosion suppressing section further includes a positioning member that fixes the elastic member at a position other than a position that contacts the second member. 前記接地構造部の長さが前記第1部材の厚さよりも長く、 the length of the ground structure is longer than the thickness of the first member;
前記位置決め部材は、前記第1部材の前記モータとは反対側の位置で前記接地構造部に螺合するナットであることを特徴とする請求項6に記載のガルバノスキャナ。 7. The galvanometer scanner according to claim 6, wherein the positioning member is a nut that is screwed into the ground structure portion at a position on the side of the first member opposite to the motor.
前記位置決め部材は、 The positioning member is
前記接地構造部の端部と当接し、外周面にねじが切られた位置固定部と、 a position fixing portion abutting the end portion of the ground structure portion and having a threaded outer peripheral surface;
内周面にねじが切られた貫通孔が前記回転軸の延長線上に設けられた板状部材と、前記板状部材を前記第1支持構造部で支持する第2脚部と、を有し、前記位置固定部を支持する第2支持構造部と、 A plate-like member having a threaded through hole on the inner peripheral surface provided on an extension line of the rotating shaft, and a second leg supporting the plate-like member with the first support structure. , a second support structure for supporting the position fixing part;
を有し、 has
前記位置固定部は、前記板状部材の前記貫通孔に螺合されることを特徴とする請求項6に記載のガルバノスキャナ。 7. The galvanometer scanner according to claim 6, wherein the position fixing portion is screwed into the through hole of the plate member.
レーザビームを出射するレーザ発振器と、
前記レーザビームを集光させ、加工対象に対して前記レーザビームを照射するレンズと、
前記レーザビームの前記レンズに入射する位置および角度を調整する請求項1から8のいずれか1つに記載のガルバノスキャナと、
前記ガルバノスキャナの前記回転軸の方向における前記モータの2つの端部の内の前記電食抑制部が設けられていない方の端部で、前記シャフトに固定され、前記回転軸を中心に回転するガルバノミラーと、
を備えることを特徴とするレーザ加工機。
a laser oscillator that emits a laser beam;
a lens for condensing the laser beam and irradiating the laser beam onto a processing object;
The galvanometer scanner according to any one of claims 1 to 8, which adjusts the position and angle of incidence of the laser beam on the lens;
Of the two ends of the motor in the direction of the rotation axis of the galvanometer scanner, the end not provided with the electrolytic corrosion suppressor is fixed to the shaft and rotates about the rotation axis. galvanomirror and
A laser processing machine comprising:
JP2022574793A 2022-07-15 2022-07-15 Galvanometer scanner and laser processing machine Active JP7241994B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027875 WO2024013985A1 (en) 2022-07-15 2022-07-15 Galvano scanner and laser beam machine

Publications (1)

Publication Number Publication Date
JP7241994B1 true JP7241994B1 (en) 2023-03-17

Family

ID=85600311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022574793A Active JP7241994B1 (en) 2022-07-15 2022-07-15 Galvanometer scanner and laser processing machine

Country Status (3)

Country Link
JP (1) JP7241994B1 (en)
TW (1) TW202404726A (en)
WO (1) WO2024013985A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238205A (en) * 2001-02-13 2002-08-23 Tsurumi Mfg Co Ltd Electrolytic corrosion preventing device of submersible rotating machine
JP2003092850A (en) * 2001-09-19 2003-03-28 Hitachi Car Eng Co Ltd Electrolytic corrosion-proof motor
JP2007218368A (en) * 2006-02-17 2007-08-30 Nsk Ltd Ball bearing for direct drive motor
JP2007333873A (en) * 2006-06-13 2007-12-27 Sumitomo Heavy Ind Ltd Beam scanner
JP2013190669A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Galvano scanner and laser beam machine
JP2015070751A (en) * 2013-09-30 2015-04-13 株式会社富士通ゼネラル Electric motor
WO2016039058A1 (en) * 2014-09-09 2016-03-17 株式会社Top Motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238205A (en) * 2001-02-13 2002-08-23 Tsurumi Mfg Co Ltd Electrolytic corrosion preventing device of submersible rotating machine
JP2003092850A (en) * 2001-09-19 2003-03-28 Hitachi Car Eng Co Ltd Electrolytic corrosion-proof motor
JP2007218368A (en) * 2006-02-17 2007-08-30 Nsk Ltd Ball bearing for direct drive motor
JP2007333873A (en) * 2006-06-13 2007-12-27 Sumitomo Heavy Ind Ltd Beam scanner
JP2013190669A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Galvano scanner and laser beam machine
JP2015070751A (en) * 2013-09-30 2015-04-13 株式会社富士通ゼネラル Electric motor
WO2016039058A1 (en) * 2014-09-09 2016-03-17 株式会社Top Motor

Also Published As

Publication number Publication date
TW202404726A (en) 2024-02-01
WO2024013985A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US7471432B2 (en) Mirror mounting structures and methods for scanners employing limited rotation motors
JP2009154198A (en) Laser beam machining apparatus and laser beam machining controller
KR20160040097A (en) Laser machining apparatus
WO2011102193A1 (en) Piezoelectric actuator mechanism
US20070235430A1 (en) Laser beam processing machine
WO2014150604A1 (en) Coordination of beam angle and workpiece movement for taper control
JP2005532908A (en) Laser machining method for workpieces that expand the laser spot
JP7241994B1 (en) Galvanometer scanner and laser processing machine
JP2008136261A (en) Polygonal mirror scanner motor and manufacturing method therefor
US20050061682A1 (en) Method and device for electroerosive material machining of a workpiece
JP2008254114A (en) Magnetic bearing spindle device for machine tool
EP1170085B1 (en) A focusing head for a laser machine
JP2008298224A (en) Bearing structure and laser beam machine using the bearing structure
JP4674183B2 (en) Scanner device
JP5714196B1 (en) Galvano scanner and laser processing equipment
WO2019176688A1 (en) Liquid application device, liquid application method, and liquid application device
JP6587603B2 (en) Galvano scanner and laser processing device
JP2001129677A (en) Method and apparatus for welding rotating body with laser beam
TW201604584A (en) Galvano scanner and laser processing device
JP2007229744A (en) Laser beam machining method and apparatus
KR20050039913A (en) Assembling apparatus for motor core
JP2006227415A (en) Scanner and laser beam machine
JP4724087B2 (en) EDM machine
JP2005334990A (en) Boring device for workpiece having hole at location decentered from axial center
JP2010039337A (en) Polygon mirror scanner motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230307

R150 Certificate of patent or registration of utility model

Ref document number: 7241994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150