JP2015070751A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2015070751A
JP2015070751A JP2013205192A JP2013205192A JP2015070751A JP 2015070751 A JP2015070751 A JP 2015070751A JP 2013205192 A JP2013205192 A JP 2013205192A JP 2013205192 A JP2013205192 A JP 2013205192A JP 2015070751 A JP2015070751 A JP 2015070751A
Authority
JP
Japan
Prior art keywords
output
contact portion
rotating shaft
contact
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013205192A
Other languages
Japanese (ja)
Other versions
JP6229414B2 (en
Inventor
藤岡 琢志
Takushi Fujioka
琢志 藤岡
田邉 洋一
Yoichi Tanabe
洋一 田邉
祐樹 相澤
Yuki Aizawa
祐樹 相澤
浩志 武田
Hiroshi Takeda
浩志 武田
裕加 三浦
Yuka Miura
裕加 三浦
佐藤 大介
Daisuke Sato
大介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013205192A priority Critical patent/JP6229414B2/en
Publication of JP2015070751A publication Critical patent/JP2015070751A/en
Application granted granted Critical
Publication of JP6229414B2 publication Critical patent/JP6229414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/002Conductive elements, e.g. to prevent static electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive member on which stress concentration due to torsional torque generated by a rotational shaft contacting the conductive member is reduced, the life of which as the components is prolonged as a result, and to provided an electric motor using the conductive member.SOLUTION: A conductive member 60, which electrically conducts an inner ring 401 and an outer ring 402 of a bearing 42 to each other, comprises: a contact portion 61 that contacts a center of an output rotary shaft 31 journaled by the inner ring 401; a holding portion 62 that is mounted in the outer ring 402, and surrounds the contact portion 61 while being apart from it at an axial-direction opposite side of the output rotary shaft 31; a connection portion 63 that extends in a curved manner, at an angle (a rotation direction angle θ) formed by a solid line R relative to a dotted line R', from an outer peripheral edge 61E of the contact portion 61 to an inner peripheral edge 62E of the holding portion 62 and holds the contact portion 61 horizontally.

Description

本発明は、電動機に関する。   The present invention relates to an electric motor.

電動機の回転軸を軸支するボールベアリングの内輪と外輪との間には、グリス等の非導電性の物質の存在によって電位差が生じる。この電位差によって、内輪と外輪との間に放電が生じ、ボール及び転動面に電食痕が発生する。電食痕は、ボールの回転を阻害し、ボールベアリングの性能を低下させる。ボールベアリングの内輪で軸支された回転軸とボールベアリングの外輪とを電気的に導通させて、ボールベアリングの内輪と外輪との間の電位差を小さくする導通部材が知られている(例えば、特許文献1及び特許文献2参照)。   A potential difference is generated between the inner ring and the outer ring of the ball bearing that supports the rotating shaft of the electric motor due to the presence of a non-conductive substance such as grease. Due to this potential difference, electric discharge is generated between the inner ring and the outer ring, and electrolytic corrosion marks are generated on the ball and the rolling surface. The electric corrosion mark inhibits the rotation of the ball and reduces the performance of the ball bearing. There is known a conducting member that electrically connects a rotating shaft supported by an inner ring of a ball bearing and an outer ring of the ball bearing to reduce a potential difference between the inner ring and the outer ring of the ball bearing (for example, patents). Reference 1 and Patent Document 2).

特開2002−139056号公報JP 2002-139056 A 特開2003−92850号公報JP 2003-92850 A

本発明は、導通部材に接触する回転軸によって生じるねじりトルクによる導通部材への応力集中が低下し、部品寿命がより延びた導通部材及びこれを用いた電動機を提供することを目的とする。   An object of the present invention is to provide a conducting member in which stress concentration on the conducting member due to a torsional torque generated by a rotating shaft in contact with the conducting member is reduced, and a component life is further extended, and an electric motor using the conducting member.

上記課題を解決するため、本発明の電動機は、導電性材料からなる回転軸と、導電性材料からなる外輪と内輪とで構成され、前記回転軸を前記内輪で軸支するベアリングと、前記外輪を保持するベアリングハウスが形成された導電性材料からなるブラケットと、前記回転軸と前記ブラケットとの間に配置され、前記ベアリングの内輪と外輪とを導通する導通部材とを備える電動機であって、前記導通部材は、前記回転軸の端面と接触する接触部と、同接触部から放射状に延びる連結部と、同連結部と接続される環状の保持部とを有し、前記回転軸の回転方向を正としたとき、前記連結部の前記保持部側端部と前記保持部の中心とを結ぶ線分に対して前記連結部の前記接触部側端部と前記保持部の中心とを結ぶ線分がなす角度が正の角度を有する。   In order to solve the above problems, an electric motor of the present invention includes a rotating shaft made of a conductive material, an outer ring and an inner ring made of a conductive material, a bearing that supports the rotating shaft with the inner ring, and the outer ring. An electric motor comprising a bracket made of a conductive material in which a bearing house is formed, and a conductive member that is disposed between the rotating shaft and the bracket and connects the inner ring and the outer ring of the bearing, The conducting member includes a contact portion that contacts an end surface of the rotating shaft, a connecting portion that extends radially from the contact portion, and an annular holding portion that is connected to the connecting portion, and the rotation direction of the rotating shaft Is a line connecting the contact portion side end of the connecting portion and the center of the holding portion with respect to a line segment connecting the holding portion side end portion of the connecting portion and the center of the holding portion. The angle between the minutes has a positive angle .

本発明の電動機によれば、導通部材に接触する回転軸によって生じるねじりトルクによる応力集中が低下し、部品寿命がより延びた導通部材を用いた電動機が得られる。   According to the electric motor of the present invention, it is possible to obtain an electric motor using a conductive member in which stress concentration due to torsion torque generated by a rotating shaft that contacts the conductive member is reduced, and the life of the component is further extended.

実施形態におけるモールドモータの概略断面図である。It is a schematic sectional drawing of the mold motor in embodiment. 実施形態における導通部材の(a)は平面図、(b)は側面図である。(A) of the conduction | electrical_connection member in embodiment is a top view, (b) is a side view. 他の実施形態における導通部材の(a)は平面図、(b)は側面図である。(A) of the conduction | electrical_connection member in other embodiment is a top view, (b) is a side view. 変形例1における導通部材の(a)は平面図、(b)は側面図である。(A) of the conduction | electrical_connection member in the modification 1 is a top view, (b) is a side view. 変形例2における導通部材の(a)は平面図、(b)は側面図である。(A) of the conduction | electrical_connection member in the modification 2 is a top view, (b) is a side view. 比較例における導通部材の(a)は平面図、(b)は側面図である。(A) of the conduction | electrical_connection member in a comparative example is a top view, (b) is a side view.

以下、本発明の実施形態における電動機の一例としてのモールドモータ100を添付図面に基づき詳細に説明する。図1は、モールドモータ100の概略断面図である。   Hereinafter, a molded motor 100 as an example of an electric motor according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a molded motor 100.

(第1の実施形態)
図1において、モールドモータ100は、ステータコア10と、外郭20と、ロータ30と、軸方向に与圧された導電性の回転軸である出力回転軸31と、出力回転軸31の一端側(端面311側)を導電性の内輪421で軸支するベアリング42と、ベアリング42の導電性の外輪422を保持するベアリングハウス520が形成された導電性のブラケット52と、出力回転軸31の一端とブラケット52との間に配置された導通部材60とを備える。
(First embodiment)
In FIG. 1, a molded motor 100 includes a stator core 10, an outer shell 20, a rotor 30, an output rotation shaft 31 that is a conductive rotation shaft pressurized in the axial direction, and one end side (end surface) of the output rotation shaft 31. 311 side) with a conductive inner ring 421, a bearing 42, a conductive bracket 52 formed with a bearing house 520 for holding a conductive outer ring 422 of the bearing 42, one end of the output rotating shaft 31, and a bracket And a conduction member 60 disposed between the two.

ステータコア10は、鋼板を積層して構成され、図示しない円環状のヨーク部と、ヨーク部から内径側に延びる複数のティース部11とを備えている。ステータコア10にプレモールドによってインシュレータ12が形成され、インシュレータ12を介してティース部11に巻線13が巻回されている。巻線13が巻回されたステータコア10を、内周面を除いてモールド樹脂でモールド成形して円筒状の外郭20を形成することでステータを構成している。なお、インシュレータ12は、プレモールドによらず、ステータコア10とは別に成形してステータコア10に取付けてもよい。   The stator core 10 is configured by laminating steel plates, and includes an annular yoke portion (not shown) and a plurality of teeth portions 11 extending from the yoke portion toward the inner diameter side. An insulator 12 is formed on the stator core 10 by pre-molding, and a winding 13 is wound around the tooth portion 11 via the insulator 12. The stator core 10 around which the windings 13 are wound is molded with a molding resin except for the inner peripheral surface to form a cylindrical outer shell 20, thereby forming a stator. The insulator 12 may be molded separately from the stator core 10 and attached to the stator core 10 without using pre-molding.

外郭20の反出力側には、例えば亜鉛メッキ鋼板からなる金属製のブラケット52が一体に埋設されている。反出力側のブラケット52は、反出力側のベアリング42が収容されるベアリングハウス520が外郭20から露出した状態になっている。   A metal bracket 52 made of, for example, a galvanized steel plate is integrally embedded on the opposite output side of the outer shell 20. The bracket 52 on the non-output side is in a state where the bearing house 520 in which the bearing 42 on the non-output side is accommodated is exposed from the outer shell 20.

ロータ30は、出力回転軸31と複数の磁極をもつ永久磁石32とを備えている。永久磁石32の磁極は、等間隔で、かつ、隣接同士がN、S交互に逆磁極となるようにして出力回転軸31の周囲に配置され(不図示)、出力回転軸31と一体化されている。永久磁石32は、樹脂材にフェライト磁性体を混入させて成形後、着磁することでフェライトボンド磁石として形成することができる。なお、永久磁石32はこれに限らず、フェライト磁石の代わりに希土類磁石を用い、ボンド磁石の代わりに焼結磁石を用いてもよい。   The rotor 30 includes an output rotating shaft 31 and a permanent magnet 32 having a plurality of magnetic poles. The magnetic poles of the permanent magnet 32 are arranged around the output rotating shaft 31 (not shown) so that the magnetic poles of the permanent magnet 32 are spaced at equal intervals and alternately adjacent to each other, and are integrated with the output rotating shaft 31. ing. The permanent magnet 32 can be formed as a ferrite-bonded magnet by mixing a ferrite magnetic material into a resin material and magnetizing it. The permanent magnet 32 is not limited to this, and a rare earth magnet may be used instead of the ferrite magnet, and a sintered magnet may be used instead of the bonded magnet.

ロータ30は、ステータコア10の内周より内側に、所定の空隙(ギャップ)をもって対向して収められている。そして、出力回転軸31は、出力側のベアリング41及び反出力側のベアリング42によって回転可能に軸支されている。出力側のベアリング41及び反出力側のベアリング42には、ボールベアリングが用いられ、転動体としてのボール410、420と内輪411、421と外輪412、422とを備えている。   The rotor 30 is accommodated oppositely with a predetermined gap (gap) inside the inner periphery of the stator core 10. The output rotating shaft 31 is rotatably supported by an output-side bearing 41 and a counter-output-side bearing 42. Ball bearings are used for the output-side bearing 41 and the counter-output-side bearing 42, and include balls 410 and 420 as rolling elements, inner rings 411 and 421, and outer rings 412 and 422.

出力側のベアリング41は、例えば亜鉛メッキ鋼板からなる金属製の出力側のブラケット51に形成された出力側のベアリングハウス510に収容されている。出力側のブラケット51は、外郭20の出力側の側面に嵌合している。   The output-side bearing 41 is accommodated in an output-side bearing house 510 formed on a metal output-side bracket 51 made of, for example, a galvanized steel plate. The output side bracket 51 is fitted to the output side surface of the outer shell 20.

ロータ30は、ブラケット51と出力側のベアリング41の外輪412との間に配置された予圧ばね43によって反出力側に荷重(与圧)が加えられる。予圧ばね43によって反出力側に与圧を与えることにより、外輪412とボール400と内輪411の隙間が無くなり、出力回転軸31の回転が安定化する(回転軸方向のブレが小さくなる)。予圧ばね43により外輪412に予圧が加えられると、ボール400を介して内輪411と内輪411に軸支される出力回転軸31も同様に反出力側に押される。その与圧は、20N〜30N程度で、例えば、25.7Nが加えられる。   The rotor 30 is subjected to a load (pressurization) on the non-output side by a preload spring 43 disposed between the bracket 51 and the outer ring 412 of the output side bearing 41. By applying pressure to the non-output side by the preload spring 43, there is no gap between the outer ring 412, the ball 400, and the inner ring 411, and the rotation of the output rotating shaft 31 is stabilized (blurring in the rotating shaft direction is reduced). When preload is applied to the outer ring 412 by the preload spring 43, the inner ring 411 and the output rotating shaft 31 that is pivotally supported by the inner ring 411 via the ball 400 are also pushed to the opposite output side. The pressurization is about 20N to 30N, for example, 25.7N is applied.

反出力側のベアリングハウス520は、例えば、プレス加工によって有底円筒状に形成されている。反出力側のベアリングハウス520の内側には環状のベアリング受け44とベアリング42が収容され、ベアリング受け44の内径側には導通部材60が配置されている。   The bearing house 520 on the non-output side is formed into a bottomed cylindrical shape by, for example, pressing. An annular bearing receiver 44 and a bearing 42 are accommodated inside the bearing house 520 on the non-output side, and a conducting member 60 is disposed on the inner diameter side of the bearing receiver 44.

以下に、実施形態における導通部材60について詳細に説明する。図2(a)は、導通部材60の平面図、(b)は側面図である。図1及び図2において、導通部材60は、ベアリング42の内輪421と外輪422とを電気的に導通させる導通部材60であって、内輪421に軸支された出力回転軸31の端面311と接触する接触部61と、接触部61を取り囲む環状の保持部62と、接触部61の外周縁61Eから保持部62の内周縁62Eまで、出力回転軸31の回転方向(反時計回り方向)に沿って曲がりながら放射状に延在し、接触部61を水平に保持する連結部63とを備える。従って、接触部61と保持部62は連結部63により接続される構造となる。なお、連結部63の保持部側端部632と接触面610の中心Oとを結ぶ線分(点線R’)に対して連結部63の接触部側端部631と接触面610の中心Oとを結ぶ線分(実線R)がなす角度を、回転方向角度θとする。   Below, the conduction | electrical_connection member 60 in embodiment is demonstrated in detail. 2A is a plan view of the conducting member 60, and FIG. 2B is a side view. 1 and 2, the conducting member 60 is a conducting member 60 that electrically connects the inner ring 421 and the outer ring 422 of the bearing 42, and contacts the end surface 311 of the output rotation shaft 31 that is pivotally supported by the inner ring 421. The rotation part (counterclockwise direction) of the output rotating shaft 31 from the outer peripheral edge 61E of the contact part 61 to the inner peripheral edge 62E of the holding part 62. And a connecting portion 63 that extends radially while bending and holds the contact portion 61 horizontally. Accordingly, the contact portion 61 and the holding portion 62 are connected by the connecting portion 63. The contact portion side end 631 of the connection portion 63 and the center O of the contact surface 610 with respect to a line segment (dotted line R ′) connecting the holding portion side end portion 632 of the connection portion 63 and the center O of the contact surface 610. An angle formed by a line segment (solid line R) connecting the two is defined as a rotation direction angle θ.

接触部61の形状は円盤形状で、出力回転軸31の端面311と接する円形の接触面610を有している。円形の接触面610の中心Oと出力回転軸31の回転中心とは一致するように配置されているのが好ましい。ここで、接触面610は平面に限らず、出力回転軸31に向かって膨らんだ球面状であってもよい。出力回転軸31は回転中心付近では速度が遅いので、接触面610の中心Oと出力回転軸31の回転中心とが一致すると、出力回転軸31と接触面610との摩擦、摺動が少なくなる。   The shape of the contact portion 61 is a disk shape, and has a circular contact surface 610 that contacts the end surface 311 of the output rotation shaft 31. The center O of the circular contact surface 610 and the rotation center of the output rotation shaft 31 are preferably arranged so as to coincide with each other. Here, the contact surface 610 is not limited to a flat surface, but may be a spherical surface that swells toward the output rotation shaft 31. Since the output rotation shaft 31 is slow in the vicinity of the rotation center, if the center O of the contact surface 610 and the rotation center of the output rotation shaft 31 coincide with each other, friction and sliding between the output rotation shaft 31 and the contact surface 610 are reduced. .

保持部62の形状は円環形状で、ベアリング受け44の内径よりも小さい外径を有し、ベアリング受け44の内径側でベアリングハウス520に載置される。保持部62がベアリングハウス520に載置されることで、保持部62と外輪422とは、ブラケット52を介して電気的に接続される。図2(b)において、接触部61の接触面610は、保持部62から回転軸方向にdだけ突出するように離間して配置されている。このdは、導通部材60の高さに相当し、本実施例ではdは、例えば、1mmの距離で離間して配置されている。   The holding portion 62 has an annular shape, has an outer diameter smaller than the inner diameter of the bearing receiver 44, and is placed on the bearing house 520 on the inner diameter side of the bearing receiver 44. By holding the holding portion 62 on the bearing house 520, the holding portion 62 and the outer ring 422 are electrically connected via the bracket 52. In FIG. 2B, the contact surface 610 of the contact portion 61 is disposed so as to protrude from the holding portion 62 by d in the rotation axis direction. This d corresponds to the height of the conducting member 60, and in the present embodiment, d is arranged at a distance of 1 mm, for example.

連結部63の形状は、平面視において渦巻き形状であるが、導通部材60は高さdを有するため、立体視においては螺旋形状である。連結部63は、接触部61の外周縁61E及び保持部62の内周縁62Eの周りに等間隔になるように形成されるのが好ましい。また、連結部63は、3本以上設けるのが好ましい。   The shape of the connecting portion 63 is a spiral shape in a plan view, but the conducting member 60 has a height d, and thus has a spiral shape in a stereoscopic view. The connecting part 63 is preferably formed so as to be equidistant around the outer peripheral edge 61E of the contact part 61 and the inner peripheral edge 62E of the holding part 62. In addition, it is preferable to provide three or more connecting portions 63.

導通部材60は、導電性、バネ性及び剛性を有する金属等からなり、これらの性質を備えた例えばステンレスからなる材料で形成されている。なお、導通部材60は、導電性、バネ性及び剛性の性質を備えていれば、鉄、鋼、真鍮、りん青銅などからなる材料で形成されていてもよい。   The conducting member 60 is made of a metal having conductivity, springiness and rigidity, and is made of a material made of, for example, stainless steel having these properties. The conductive member 60 may be formed of a material made of iron, steel, brass, phosphor bronze, or the like as long as it has conductivity, springiness, and rigidity.

本発明の導通部材60及びモールドモータ100によれば、与圧の加えられた出力回転軸31の端面311と接触部61が接触すると、接触部61が、保持部62に向けて押されて変位する。接触部61は、出力回転軸31に加えられる予圧と導通部材60から出力回転軸31に加えられる反力(接触部61が端面311により保持部62に向けて押されて変位した場合に、接触部61が元の位置に戻ろうとする力)とが釣り合う位置まで変位する。本実施例では接触部61が保持部62に向けて押されることで、dは、例えば、0.8mmまで変位する。予圧の加えられた出力回転軸31が接触部61を押すことで、連結部には応力が発生する。また、本実施例では、出力回転軸31は反時計回りで回転するため、接触部61が出力回転軸31と同じ回転方向に引っ張られ(ねじりトルク)、このねじりトルクによって連結部63が回転方向に引っ張られる。   According to the conducting member 60 and the molded motor 100 of the present invention, when the end surface 311 of the output rotating shaft 31 to which pressure is applied and the contact portion 61 come into contact with each other, the contact portion 61 is pushed toward the holding portion 62 and displaced. To do. The contact portion 61 has a preload applied to the output rotation shaft 31 and a reaction force applied from the conducting member 60 to the output rotation shaft 31 (if the contact portion 61 is displaced toward the holding portion 62 by the end surface 311 and is displaced) The portion 61 is displaced to a position where it balances with the force for returning to the original position. In this embodiment, when the contact portion 61 is pushed toward the holding portion 62, d is displaced to, for example, 0.8 mm. When the output rotary shaft 31 to which the preload is applied pushes the contact portion 61, stress is generated in the connecting portion. In this embodiment, since the output rotation shaft 31 rotates counterclockwise, the contact portion 61 is pulled in the same rotation direction as the output rotation shaft 31 (torsion torque), and the connection portion 63 rotates in the rotation direction due to this torsion torque. Pulled on.

ここで、接触部61と保持部62とを連結する連結部63は、回転方向角度θが出力回転軸31の回転方向に所定の角度を有するように延在する。すなわち、連結部63が出力回転軸31の回転方向(反時計回り)に沿って渦を巻くように放射状に延在する。従って、回転方向角度θを大きくすることで、連結部63の長さを長くすることができるため、接触部61が端面311により保持部62に向けて押された際に接触部が変位しやすくなり、接触部61が元の位置に戻ろうとする力、すなわち、出力回転軸31への反力を小さく抑えることができ、これにより連結部63に生じる応力を抑えることができる。また、連結部63がねじりトルクによって出力回転軸31の回転方向に引っ張られても、保持部側端部632および接触部側端部631のそれぞれが、内周縁62Eおよび外周縁61Eの接線方向に延在するため、連結部63の長さ方向と異なる方向へ荷重が加わることによる連結部分への応力集中が抑えられ、応力による連結部63の劣化が抑えられる。   Here, the connecting portion 63 that connects the contact portion 61 and the holding portion 62 extends so that the rotation direction angle θ has a predetermined angle in the rotation direction of the output rotation shaft 31. That is, the connecting portion 63 extends radially so as to vortex along the rotation direction (counterclockwise) of the output rotation shaft 31. Therefore, since the length of the connecting portion 63 can be increased by increasing the rotation direction angle θ, the contact portion is easily displaced when the contact portion 61 is pushed toward the holding portion 62 by the end surface 311. Thus, the force that the contact portion 61 tries to return to the original position, that is, the reaction force to the output rotation shaft 31, can be suppressed to a small value, and thereby the stress generated in the connecting portion 63 can be suppressed. Even if the connecting portion 63 is pulled in the rotational direction of the output rotating shaft 31 by the torsional torque, the holding portion side end portion 632 and the contact portion side end portion 631 are respectively tangential to the inner peripheral edge 62E and the outer peripheral edge 61E. Since it extends, the stress concentration to the connection part by applying a load in a direction different from the length direction of the connection part 63 is suppressed, and the deterioration of the connection part 63 due to the stress is suppressed.

また、接触部61が水平に保たれているので、接触部61が、出力回転軸31の回転中心と安定して接触し、連結部63に加わる応力がより抑えられる。また、連結部63が、出力回転軸31の回転方向に略等間隔に離間して3本以上形成されていると、接触部61が略等間隔に離間した3点以上の接触部側端部631で支持されるため、端面311に押されても、接触部61をより水平に保つことができ、出力回転軸31の回転中心からのずれも抑えられる。   In addition, since the contact portion 61 is kept horizontal, the contact portion 61 is in stable contact with the rotation center of the output rotation shaft 31, and the stress applied to the connecting portion 63 is further suppressed. Further, when three or more connecting portions 63 are formed at substantially equal intervals in the rotation direction of the output rotation shaft 31, three or more contact portion side end portions at which the contact portions 61 are spaced at substantially equal intervals are provided. Since it is supported by 631, even if it is pushed by the end surface 311, the contact part 61 can be kept more horizontal, and the deviation from the rotation center of the output rotating shaft 31 is also suppressed.

本実施形態において、連結部63の回転方向角度θは360°で形成されている。したがって、連結部63は、接触部61の外周縁61Eのほぼ接線方向に延びている。例えば、導通部材60をステンレスで形成し、連結部63の厚さを0.2mm、幅を0.2mmとすると、導通部材60は、出力回転軸31方向に反力を有し、反力は0.03Nであった。連結部63の長さが延びて出力回転軸31方向の変位が同じであれば、変位の比が小さくなるので反力が小さくなる。また、幅が狭くなるほど反力は小さくなる。連結部63に生じる応力は、62.20MPaであった。   In the present embodiment, the rotation direction angle θ of the connecting portion 63 is 360 °. Therefore, the connecting portion 63 extends in a substantially tangential direction of the outer peripheral edge 61E of the contact portion 61. For example, when the conducting member 60 is made of stainless steel, and the thickness of the connecting portion 63 is 0.2 mm and the width is 0.2 mm, the conducting member 60 has a reaction force in the direction of the output rotation shaft 31, and the reaction force is 0.03N. If the length of the connecting portion 63 is extended and the displacement in the direction of the output rotation shaft 31 is the same, the ratio of displacement becomes small, so the reaction force becomes small. Further, the reaction force decreases as the width decreases. The stress generated in the connecting part 63 was 62.20 MPa.

反力は、出力回転軸31の回転軸方向へのブレを抑える与圧のバランスを崩さない程度の大きさであることが好ましく、出力回転軸31に加わる与圧の1/100程度が好ましい。本実施形態では、20〜30Nの与圧に対し、1/100程度の反力であった。また、連結部63に生じる応力は、連結部63の材質であるステンレスの降伏応力250MPa以下であるのが好ましく、安全率を考慮すると降伏応力の1/2〜1/5であるのが好ましい。本実施形態では、1/4程度であった。   The reaction force is preferably a magnitude that does not break the balance of the pressurization that suppresses blurring of the output rotation shaft 31 in the rotation axis direction, and is preferably about 1/100 of the pressurization applied to the output rotation shaft 31. In this embodiment, the reaction force was about 1/100 against a pressure of 20 to 30 N. Further, the stress generated in the connecting portion 63 is preferably a yield stress of 250 MPa or less of stainless steel as the material of the connecting portion 63, and is preferably 1/2 to 1/5 of the yield stress in consideration of the safety factor. In this embodiment, it was about 1/4.

(他の実施形態)
図3(a)は、本実施形態における導通部材60Aの平面図、(b)は側面図である。図3(a)において、本実施形態は、連結部63Aの回転方向角度θを連結部63Aの360°から180°にした以外は、実施形態と同じ材料、同じ構成である。実施形態と同じ部位には同じ符号を付した。
(Other embodiments)
FIG. 3A is a plan view of the conducting member 60A in the present embodiment, and FIG. 3B is a side view. 3A, the present embodiment has the same material and the same configuration as the embodiment except that the rotation direction angle θ of the connecting portion 63A is changed from 360 ° to 180 ° of the connecting portion 63A. The same parts as those in the embodiment are denoted by the same reference numerals.

回転方向角度θを360°から180°にしたことにより、連結部63Aの長さは短くなった。導通部材60Aの反力は、6.13Nであった。また、連結部63Aに生じる応力は、221.19MPaであった。回転方向角度θを180°にすることで、導通部材60Aの反力を大きくすることができるため、上記第1の実施形態における効果と同様の効果を得つつ、出力回転軸31の端面311に対して接触部61をより確実に当接することができる。   By changing the rotation direction angle θ from 360 ° to 180 °, the length of the connecting portion 63A is shortened. The reaction force of the conductive member 60A was 6.13N. Moreover, the stress which arises in the connection part 63A was 222.19 MPa. Since the reaction force of the conducting member 60A can be increased by setting the rotation direction angle θ to 180 °, the end surface 311 of the output rotation shaft 31 can be obtained while obtaining the same effect as that of the first embodiment. On the other hand, the contact part 61 can be more reliably contacted.

以下に実施形態の変形例を示す。変形例では、連結部の本数、回転方向角度が実施形態と異なる。実施形態と同じ部位には同じ符号を付した。
(変形例1)
図4(a)は、本変形例における導通部材60Bの平面図、(b)は側面図である。図4(a)において、連結部63Bは、8本形成されている。連結部63Bの厚さが0.2mmで幅が0.2mmで、回転方向角度θは45°で形成されている。
The modification of embodiment is shown below. In the modification, the number of connecting portions and the rotation direction angle are different from those of the embodiment. The same parts as those in the embodiment are denoted by the same reference numerals.
(Modification 1)
FIG. 4A is a plan view of a conducting member 60B in this modification, and FIG. 4B is a side view. In FIG. 4A, eight connecting portions 63B are formed. The connecting portion 63B has a thickness of 0.2 mm, a width of 0.2 mm, and a rotation direction angle θ of 45 °.

(変形例2)
図5(a)は、本変形例における導通部材60Cの平面図、(b)は側面図である。図5(a)において、連結部63Cは、3本形成されている。連結部63Cの厚さが0.2mmで幅が0.2mmで、回転方向角度θは45°で形成されている。
(Modification 2)
FIG. 5A is a plan view of a conducting member 60C in the present modification, and FIG. 5B is a side view. In FIG. 5A, three connecting portions 63C are formed. The connecting portion 63C has a thickness of 0.2 mm, a width of 0.2 mm, and a rotation direction angle θ of 45 °.

(比較例)
図6(a)は、比較例における導通部材600の平面図、(b)は側面図である。図6において、導通部材600は、円環状の保持部620と保持部620の内周縁から図1に示す内輪401に軸支された出力回転軸31の中心に向かって延びる触片630を備えている。触片630の先端には、出力回転軸31の中心に接触する接触部640が形成されている。触片630の厚さが0.2mmで幅が2.34mmの場合、反力は0.31Nであった。また、触片630に生じる応力は、509.15MPaであった。
(Comparative example)
6A is a plan view of the conducting member 600 in the comparative example, and FIG. 6B is a side view. 6, the conducting member 600 includes an annular holding portion 620 and a contact piece 630 that extends from the inner peripheral edge of the holding portion 620 toward the center of the output rotation shaft 31 that is pivotally supported on the inner ring 401 shown in FIG. 1. Yes. A contact portion 640 that contacts the center of the output rotation shaft 31 is formed at the tip of the contact piece 630. When the thickness of the contact piece 630 was 0.2 mm and the width was 2.34 mm, the reaction force was 0.31 N. The stress generated in the contact piece 630 was 509.15 MPa.

モールドモータ100は、図示しない位置検出センサにより検出されるロータ30の回転位置に応じて、電流を巻線13に流し、ステータに回転磁界を発生させることにより、ロータ30を出力回転軸31と共に回転させることができる。なお、位置検出センサ付のモールドモータ100について説明したが、センサレスのモールドモータでもよい。モールドモータ100は、例えば、空気調和機に搭載される送風ファンを駆動する電動機モータとして使用することができ、室内機での使用では出力回転軸31にクロスフローファンが取付けられ、室外機での使用では出力回転軸31にプロペラファンが取付けられる。   The mold motor 100 rotates the rotor 30 together with the output rotary shaft 31 by causing a current to flow through the winding 13 and generating a rotating magnetic field in the stator according to the rotational position of the rotor 30 detected by a position detection sensor (not shown). Can be made. In addition, although the mold motor 100 with a position detection sensor was demonstrated, a sensorless mold motor may be used. The mold motor 100 can be used as, for example, an electric motor that drives a blower fan mounted on an air conditioner. When used in an indoor unit, a cross flow fan is attached to the output rotating shaft 31, and the outdoor motor In use, a propeller fan is attached to the output rotating shaft 31.

なお、実施形態におけるモールドモータ100では、導通部材の連結部の形状は曲線状であるが、本発明はこれに限らず、出力回転軸の径方向に対して時計回り方向を正とする回転方向角度を持って延在していれば直線状でも良い。また、実施形態におけるモールドモータ100では、保持部を円環状、接触部を円板状にするようにしたが、本発明はこれに限らず、例えば、多角形状であっても良い。さらに、本発明はモールドモータに限られず、出力回転軸が導電性材料からなる電動機であれば適用可能であり、例えば外郭が鋼板で構成された鋼板ブラケットモータであっても良い。   In the molded motor 100 according to the embodiment, the shape of the connecting portion of the conductive member is a curved shape, but the present invention is not limited to this, and the rotation direction is positive in the clockwise direction with respect to the radial direction of the output rotation shaft If it extends with an angle, it may be linear. Further, in the molded motor 100 according to the embodiment, the holding portion has an annular shape and the contact portion has a disc shape. However, the present invention is not limited thereto, and may be, for example, a polygonal shape. Furthermore, the present invention is not limited to a mold motor, and can be applied as long as the output rotation shaft is an electric motor made of a conductive material. For example, a steel plate bracket motor whose outer shell is made of a steel plate may be used.

10 ステータコア
11 ティース部
12 インシュレータ
13 巻線
20 外郭
30 ロータ
31 出力回転軸
311 端面
32 永久磁石
400 ボール
401 内輪
402 外輪
41 出力側のベアリング
42 反出力側のベアリング
43 予圧ばね
44 ベアリング受け
51 出力側のブラケット
510 出力側のベアリングハウス
52 反出力側のブラケット
520 反出力側のベアリングハウス
60 導通部材
60A 導通部材
60B 導通部材
60C 導通部材
61 接触部
61E 外周縁
62 保持部
62E 内周縁
63 連結部
631 接触部側端部
632 保持部側端部
63A 連結部
63A1 接触部側端部
63A2 保持部側端部
63B 連結部
63B1 接触部側端部
63B2 保持部側端部
63C 連結部
63C1 接触部側端部
63C2 保持部側端部
100 モールドモータ
600 導通部材
610 接触面
620 保持部
630 触片
640 接触部
O 回転中心
R 連結部63の接触部側端部631(63A1、63B1、63C1)と接触面610の中心Oとを結ぶ線分(実線)
R’連結部63の保持部側端部632(63A2、63B2、63C2)と接触面610の中心Oとを結ぶ線分(点線)
θ 回転方向角度
d 接触部の高さ(保持部と接触部との間隔)
DESCRIPTION OF SYMBOLS 10 Stator core 11 Teeth part 12 Insulator 13 Winding 20 Outer shell 30 Rotor 31 Output rotating shaft 311 End surface 32 Permanent magnet 400 Ball 401 Inner ring 402 Outer ring 41 Output side bearing 42 Anti-output side bearing 43 Preload spring 44 Bearing receiver 51 Output side Bracket 510 Output-side bearing house 52 Non-output-side bracket 520 Non-output-side bearing house 60 Conductive member 60A Conductive member 60B Conductive member 60C Conductive member 61 Contact portion 61E Outer peripheral edge 62 Holding portion 62E Inner peripheral edge 63 Connecting portion 631 Contact portion Side end 632 Holding portion side end 63A Connection portion 63A1 Contact portion side end 63A2 Holding portion side end 63B Connection portion 63B1 Contact portion side end 63B2 Holding portion side end 63C Connection portion 63C1 Contact portion side end 63C2 Holding Part side end 100 Mall Motor 600 Conducting member 610 Contact surface 620 Holding portion 630 Contact piece 640 Contact portion O Rotation center R Line segment connecting contact portion side end 631 (63A1, 63B1, 63C1) of connecting portion 63 and center O of contact surface 610 ( solid line)
A line segment (dotted line) connecting the holding portion side end 632 (63A2, 63B2, 63C2) of the R ′ connecting portion 63 and the center O of the contact surface 610.
θ Rotational direction angle d Height of contact part (distance between holding part and contact part)

Claims (3)

導電性材料からなる回転軸と、
導電性材料からなる外輪と内輪とで構成され、前記回転軸を前記内輪で軸支するベアリングと、
前記外輪を保持するベアリングハウスが形成された導電性材料からなるブラケットと、
前記回転軸と前記ブラケットとの間に配置され、前記ベアリングの内輪と外輪とを導通する導通部材とを備える電動機であって、
前記導通部材は、前記回転軸の端面と接触する接触部と、同接触部から放射状に延びる連結部と、同連結部と接続される環状の保持部とを有し、
前記回転軸の回転方向を正としたとき、
前記連結部の前記保持部側端部と前記接触部の中心とを結ぶ線分に対して前記連結部の前記接触部側端部と前記接触部の中心とを結ぶ線分がなす角度が正の角度を有する
ことを特徴とする電動機。
A rotating shaft made of a conductive material;
A bearing composed of an outer ring and an inner ring made of a conductive material, and supporting the rotating shaft with the inner ring;
A bracket made of a conductive material in which a bearing house for holding the outer ring is formed;
An electric motor that is disposed between the rotating shaft and the bracket and includes a conductive member that conducts the inner ring and the outer ring of the bearing,
The conducting member has a contact portion that contacts an end surface of the rotating shaft, a connecting portion that extends radially from the contact portion, and an annular holding portion that is connected to the connecting portion.
When the rotation direction of the rotating shaft is positive,
The angle formed by the line connecting the contact part side end of the connecting part and the center of the contact part with respect to the line connecting the holding part side end of the connecting part and the center of the contact part is positive. An electric motor having an angle of
前記連結部が3本以上備えられたことを特徴とする請求項1に記載の電動機。   The electric motor according to claim 1, wherein three or more connecting portions are provided. 前記角度が180°以上であることを特徴とする請求項1又は2に記載の電動機。
The electric motor according to claim 1, wherein the angle is 180 ° or more.
JP2013205192A 2013-09-30 2013-09-30 Electric motor Active JP6229414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205192A JP6229414B2 (en) 2013-09-30 2013-09-30 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205192A JP6229414B2 (en) 2013-09-30 2013-09-30 Electric motor

Publications (2)

Publication Number Publication Date
JP2015070751A true JP2015070751A (en) 2015-04-13
JP6229414B2 JP6229414B2 (en) 2017-11-15

Family

ID=52836935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205192A Active JP6229414B2 (en) 2013-09-30 2013-09-30 Electric motor

Country Status (1)

Country Link
JP (1) JP6229414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241994B1 (en) * 2022-07-15 2023-03-17 三菱電機株式会社 Galvanometer scanner and laser processing machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193390U (en) * 1982-06-18 1983-12-22 トキコ株式会社 magnetic disk recording device
US4515417A (en) * 1982-11-24 1985-05-07 Mitsubishi Denki Kabushiki Kaisha Grounding device for preventing electrolytic corrosion in the bearings of rotary electric machines
JPS6372769U (en) * 1986-10-30 1988-05-16
JP2002139056A (en) * 2000-11-01 2002-05-17 Ntn Corp Ball bearing with rotational directionality
JP2002139065A (en) * 2000-11-06 2002-05-17 Tsurumi Mfg Co Ltd Electrolytic corrosion preventing device of underwater rotary machine
JP2002146568A (en) * 2000-11-06 2002-05-22 Tsurumi Mfg Co Ltd Device for preventing electrolytic corrosion for underwater rotating machine
JP2003092850A (en) * 2001-09-19 2003-03-28 Hitachi Car Eng Co Ltd Electrolytic corrosion-proof motor
JP2005114119A (en) * 2003-10-10 2005-04-28 Nsk Ltd Energization device, and rolling support device
US20100187946A1 (en) * 2005-06-25 2010-07-29 Orlowski David C Current Diverter Ring

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193390U (en) * 1982-06-18 1983-12-22 トキコ株式会社 magnetic disk recording device
US4515417A (en) * 1982-11-24 1985-05-07 Mitsubishi Denki Kabushiki Kaisha Grounding device for preventing electrolytic corrosion in the bearings of rotary electric machines
JPS6372769U (en) * 1986-10-30 1988-05-16
JP2002139056A (en) * 2000-11-01 2002-05-17 Ntn Corp Ball bearing with rotational directionality
JP2002139065A (en) * 2000-11-06 2002-05-17 Tsurumi Mfg Co Ltd Electrolytic corrosion preventing device of underwater rotary machine
JP2002146568A (en) * 2000-11-06 2002-05-22 Tsurumi Mfg Co Ltd Device for preventing electrolytic corrosion for underwater rotating machine
JP2003092850A (en) * 2001-09-19 2003-03-28 Hitachi Car Eng Co Ltd Electrolytic corrosion-proof motor
JP2005114119A (en) * 2003-10-10 2005-04-28 Nsk Ltd Energization device, and rolling support device
US20100187946A1 (en) * 2005-06-25 2010-07-29 Orlowski David C Current Diverter Ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7241994B1 (en) * 2022-07-15 2023-03-17 三菱電機株式会社 Galvanometer scanner and laser processing machine
WO2024013985A1 (en) * 2022-07-15 2024-01-18 三菱電機株式会社 Galvano scanner and laser beam machine

Also Published As

Publication number Publication date
JP6229414B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US9812932B2 (en) Motor
JP6167434B2 (en) Brushless motor and blower using the motor
JP5685506B2 (en) Rotating electric machine rotor, rotating electric machine and rotor end face member
JP5292530B2 (en) Brushless motor
JP5741126B2 (en) Mold motor
JP2015211558A (en) Motor and air blower
US20190242389A1 (en) Inner-rotor fan
CN110971033B (en) Motor
JP6662740B2 (en) Three-phase DC brushless motor
JP6229414B2 (en) Electric motor
US9118222B2 (en) Outer rotor-type brushless motor
JP2007221877A (en) Magnet rotor
JP2017225318A (en) motor
JP2018113758A (en) Outer rotor motor
US10312771B2 (en) Brushless motor
JP2016052181A (en) Brushless motor
JP7256453B2 (en) Rotating electric machine
WO2017056768A1 (en) Motor and spinning machine
JP2018125918A (en) Outer rotor motor
JP6461293B2 (en) Electric motor and its motor shaft
JP6065541B2 (en) Molded motor
JP2008259368A (en) Rotary machine
JP6700595B2 (en) Brushless motor
US20170194839A1 (en) Motor And Airflow Generating Device
JP2013215024A (en) Armature and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R151 Written notification of patent or utility model registration

Ref document number: 6229414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151