JP2007218368A - Ball bearing for direct drive motor - Google Patents

Ball bearing for direct drive motor Download PDF

Info

Publication number
JP2007218368A
JP2007218368A JP2006040681A JP2006040681A JP2007218368A JP 2007218368 A JP2007218368 A JP 2007218368A JP 2006040681 A JP2006040681 A JP 2006040681A JP 2006040681 A JP2006040681 A JP 2006040681A JP 2007218368 A JP2007218368 A JP 2007218368A
Authority
JP
Japan
Prior art keywords
ball bearing
direct drive
drive motor
ball
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006040681A
Other languages
Japanese (ja)
Inventor
Kenji Kotaki
賢司 小滝
Katsuhiro Konno
勝廣 今野
Takashi Murai
隆司 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006040681A priority Critical patent/JP2007218368A/en
Publication of JP2007218368A publication Critical patent/JP2007218368A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • F16C19/166Four-point-contact ball bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ball bearing of a multipoint contact type such as a four-point contact type for compatibly securing insulating performance and durability and reducing its cost in a high order, when used for a direct drive motor. <P>SOLUTION: Each ball 14 to be assembled into the ball bearing is formed of metal. The surfaces of an outer ring 12, excluding the surface provided with an outer ring raceway 15, are coated with a ceramics insulating layer 22. This secures the insulating performance of the ball bearing without forming each ball 14 of ceramics, preventing separation between each ball 14 and each of the outer ring raceway 15 and an inner ring raceway 16 due to a difference in material property, and also reduces manufacturing cost as compared with a structure with each ball 14 formed of ceramics. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ロボット等の各種産業機械、医療機器、食品機械、半導体や液晶等の製造装置、光学若しくはオプトエレクトロニクス装置、更には自動車等に使用されるダイレクトドライブモータに組み込む玉軸受として使用する。   The present invention is used as a ball bearing incorporated in various industrial machines such as robots, medical equipment, food machines, semiconductor and liquid crystal manufacturing devices, optical or optoelectronic devices, and direct drive motors used in automobiles and the like.

ロボットや工作機械等の可動部分を制御する為に従来から、減速機を介さずにこの稼動部分を直接駆動する、ダイレクトドライブモータが使用されている。このダイレクトドライブモータは使用目的に応じて、様々な大きさ、形状を有するが、小型化を図る為にモータの固定部材に対する回転部材の支持を1個の転がり軸受により行なう構造が、例えば、特許文献1、2に記載されている。   In order to control movable parts such as robots and machine tools, conventionally, direct drive motors that directly drive the operating parts without using a reduction gear have been used. This direct drive motor has various sizes and shapes depending on the purpose of use. However, in order to reduce the size, a structure in which the rotating member is supported by a single rolling bearing to the fixed member of the motor is disclosed in, for example, a patent. Documents 1 and 2 are described.

図4は、このうちの特許文献1に記載されたダイレクトドライブモータ1を示している。このダイレクトドライブモータ1は、ファクトリーオートメーション(FA)の分野で使用されるアクチュエータ等に組み込まれて使用される。このダイレクトドライブモータ1は、使用時に回転しない円筒状の固定部材2に回転部材3を、1個の軸受7により回転自在に支持している。この回転部材3は断面コ字形で全体を円環状に形成しており、外径側円筒部5と内径側円筒部8とを有する。そして、これら外径側円筒部5と内径側円筒部8との間に上記固定部材2の先半部(図4の左半部)を挿入している。この固定部材2の先半部外周面にはステータ4を固定しており、このステータ4の外周面と上記外径側円筒部5の内周面に固定したロータ6の内周面とが、全周に亙って対向している。この様に構成されるダイレクトドライブモータ1は、上記ステータ4を構成する永久磁石に巻回されたコイルに通電する事により、上記ロータ6を固定した上記回転部材3が回転する。   FIG. 4 shows the direct drive motor 1 described in Patent Document 1 among them. The direct drive motor 1 is used by being incorporated in an actuator or the like used in the field of factory automation (FA). In the direct drive motor 1, a rotating member 3 is rotatably supported by a single bearing 7 on a cylindrical fixed member 2 that does not rotate during use. The rotating member 3 has a U-shaped cross section and is formed in an annular shape as a whole, and has an outer diameter side cylindrical portion 5 and an inner diameter side cylindrical portion 8. And the front half part (the left half part of FIG. 4) of the said fixing member 2 is inserted between the outer diameter side cylindrical part 5 and the inner diameter side cylindrical part 8. The stator 4 is fixed to the outer peripheral surface of the front half of the fixing member 2, and the outer peripheral surface of the stator 4 and the inner peripheral surface of the rotor 6 fixed to the inner peripheral surface of the outer diameter side cylindrical portion 5 are: It is facing all around. In the direct drive motor 1 configured in this manner, the rotating member 3 to which the rotor 6 is fixed rotates by energizing a coil wound around a permanent magnet constituting the stator 4.

一方、図5は、上記特許文献2に記載されたダイレクトドライブモータ1aを示している。このダイレクトドライブモータ1aは、円筒状に形成された固定部材であるハウジング9の径方向内側に、回転部材である回転軸10を配置している。そして、この回転軸10の一端部(図5の右端部)外周面と、上記ハウジング9の一端部内周面との間に1個の軸受7aを設けて、このハウジング9に対して上記回転軸10を回転自在に支持している。又、この回転軸10の他端部(図5の左端部)外周面にロータ6aを固定し、このロータ6aと対向した位置で上記ハウジング9の中間部内周面にステータ4aを固定している。そして、上述した図4のダイレクトドライブモータ1と同様に、上記ステータ4aへの通電により、上記ロータ6aを固定した上記回転軸10を回転駆動する。   On the other hand, FIG. 5 shows a direct drive motor 1a described in Patent Document 2. In the direct drive motor 1a, a rotating shaft 10 that is a rotating member is disposed on the radially inner side of a housing 9 that is a fixed member formed in a cylindrical shape. Then, one bearing 7 a is provided between the outer peripheral surface of one end portion (the right end portion in FIG. 5) of the rotary shaft 10 and the inner peripheral surface of the one end portion of the housing 9, and the rotary shaft is attached to the housing 9. 10 is rotatably supported. The rotor 6a is fixed to the outer peripheral surface of the other end portion (left end portion in FIG. 5) of the rotating shaft 10, and the stator 4a is fixed to the inner peripheral surface of the intermediate portion of the housing 9 at a position facing the rotor 6a. . Then, similarly to the direct drive motor 1 of FIG. 4 described above, the rotating shaft 10 to which the rotor 6a is fixed is rotationally driven by energizing the stator 4a.

上述した従来のダイレクトドライブモータ1、1aは、回転部材3を固定部材2に対して回転自在に支持する軸受7、若しくは、ハウジング9に対して回転軸10を回転自在に支持する軸受7aとして、それぞれクロスローラ軸受を使用している。このクロスローラ軸受は、円周方向に隣り合うころ同士が互いに90°傾く様に、互い違いに組み込まれたものであり、負荷能力が高い。従って、上記ダイレクトドライブモータ1、1aは、上記軸受7、7aをそれぞれの端部に1個のみ設置しただけで、上記回転部材3若しくは上記回転軸10を支持する事ができる。この様に、回転部材3若しくは回転軸10を支持する軸受を1個にする事ができれば、その分上記ダイレクトドライブモータ1、1aの軸方向寸法が小さくできて、これらダイレクトドライブモータ1、1aの小型化を図る事ができる。   The above-described conventional direct drive motors 1 and 1a include a bearing 7 that rotatably supports the rotating member 3 with respect to the fixed member 2, or a bearing 7a that rotatably supports the rotating shaft 10 with respect to the housing 9. Cross roller bearings are used for each. This cross roller bearing is incorporated in a staggered manner so that the rollers adjacent in the circumferential direction are inclined by 90 °, and has a high load capacity. Therefore, the direct drive motors 1 and 1a can support the rotating member 3 or the rotating shaft 10 by installing only one bearing 7 and 7a at each end. In this way, if the number of bearings that support the rotating member 3 or the rotating shaft 10 can be reduced to one, the axial dimension of the direct drive motors 1 and 1a can be reduced correspondingly. Miniaturization can be achieved.

又、上述の様なダイレクトドライブモータ1、1aの軸方向寸法を小さくする事を目的として、これらダイレクトドライブモータ1、1aに組み込む軸受を、上述のクロスローラ軸受に代えて、4点接触型の玉軸受とする事が考えられる。この様な用途に使用できる4点接触型の玉軸受として、例えば、特許文献3に記載された構造のものがある。図6は、この特許文献3に記載された構造を示している。この4点接触型の玉軸受11は、互いに同心に配置された外輪12及び内輪13と、複数個の玉14とを備える。このうちの外輪12の内周面には外輪軌道15を、内輪13の外周面には内輪軌道16を、それぞれ全周に亙って形成している。これら両軌道15、16の断面形状はそれぞれ、上記各玉14の直径の1/2よりも大きな曲率半径を有する円弧同士を中間部で交差させた、所謂ゴシックアーチ状である。従って、上記両軌道15、16と上記各玉14の転動面とは、それぞれ2点ずつ、これら各玉14毎に合計4点ずつで接触する。尚、この様に構成される玉軸受11を上記ダイレクトドライブモータ1、1aに組み込む場合に、上記各玉14の転動面と上記両軌道15、16との隙間である内部隙間を負の値として、上記玉軸受11に予圧を付与すれば、この玉軸受11の剛性をより高める事ができる。   Further, for the purpose of reducing the axial dimension of the direct drive motors 1 and 1a as described above, the bearings incorporated in the direct drive motors 1 and 1a are replaced with the above-described cross roller bearings and are of a four-point contact type. A ball bearing can be considered. As a four-point contact type ball bearing that can be used for such applications, for example, there is a structure described in Patent Document 3. FIG. 6 shows the structure described in Patent Document 3. The four-point contact type ball bearing 11 includes an outer ring 12 and an inner ring 13 that are arranged concentrically with each other, and a plurality of balls 14. Of these, an outer ring raceway 15 is formed on the inner peripheral surface of the outer ring 12, and an inner ring raceway 16 is formed on the outer peripheral surface of the inner ring 13 over the entire circumference. The cross-sectional shapes of both the tracks 15 and 16 are so-called gothic arch shapes in which arcs having a radius of curvature larger than ½ of the diameter of each ball 14 are intersected at an intermediate portion. Therefore, both the tracks 15 and 16 and the rolling surface of each ball 14 are in contact with each other at two points, and a total of four points for each ball 14. When the ball bearing 11 configured in this way is incorporated in the direct drive motor 1, 1 a, the internal clearance that is the clearance between the rolling surface of each ball 14 and both the tracks 15, 16 is a negative value. If the preload is applied to the ball bearing 11, the rigidity of the ball bearing 11 can be further increased.

この様な4点接触型の玉軸受11は、一般的な単列深溝型のラジアル玉軸受に比べてモーメント荷重に対する剛性が大きい。従って、ダイレクトドライブモータに組み込む軸受として使用した場合でも、回転部材3若しくは回転軸10(図5、6参照)を十分に支承できる。但し、ダイレクトドライブモータの場合、対策を講じないと、上記回転部材3若しくは回転軸10を支承する上記玉軸受11自体に、帰路電流、モータ軸電流等の電流が流れる可能性がある。この場合、玉14の転動面と外輪軌道15或は内輪軌道16との間で放電現象が発生し、この部分の腐食が進む、所謂電食が発生して、上記玉軸受11の寿命を著しく短縮してしまう。この様な電食の発生を防止する為、例えば、特許文献4に記載されている様に、玉軸受の玉としてセラミックス製の玉を使用する技術が従来から知られている。   Such a four-point contact type ball bearing 11 has higher rigidity against moment load than a general single row deep groove type radial ball bearing. Therefore, even when used as a bearing incorporated in a direct drive motor, the rotating member 3 or the rotating shaft 10 (see FIGS. 5 and 6) can be sufficiently supported. However, in the case of a direct drive motor, if measures are not taken, a current such as a return current or a motor shaft current may flow through the ball bearing 11 itself that supports the rotating member 3 or the rotating shaft 10. In this case, a discharge phenomenon occurs between the rolling surface of the ball 14 and the outer ring raceway 15 or the inner ring raceway 16, and so-called electrolytic corrosion occurs in which the corrosion progresses in this portion, thereby extending the life of the ball bearing 11. It will shorten significantly. In order to prevent the occurrence of such electric corrosion, for example, as described in Patent Document 4, a technique of using ceramic balls as balls of a ball bearing has been conventionally known.

上記特許文献4に記載された技術の場合、玉軸受に組み込む玉として、絶縁性に優れたセラミックス製のものを使用している為、上述した様な電流が流れる事を防止して電食を防止できる。但し、この様に、玉としてセラミックス製のものを使用した場合、これら各玉の加工コストが嵩み、玉軸受全体が非常に高価となる。又、外輪若しくは内輪を一般的な軸受鋼製とした場合、材料特性の違いにより、使用条件によっては、軌道面が摩耗し易くなり、剥離が生じる可能性がある。特に、玉軸受に予圧を付与した構造の場合(内部隙間を負の値とした場合)、剥離がより生じ易くなる。   In the case of the technique described in the above-mentioned Patent Document 4, since a ball made of a ceramic having excellent insulating properties is used as a ball to be incorporated in a ball bearing, it prevents electrolytic current from flowing as described above. Can be prevented. However, when ceramic balls are used in this way, the processing cost of these balls increases, and the entire ball bearing becomes very expensive. Further, when the outer ring or the inner ring is made of general bearing steel, the raceway surface is likely to be worn depending on the use conditions due to the difference in material characteristics, and peeling may occur. In particular, in the case of a structure in which a preload is applied to the ball bearing (when the internal gap is set to a negative value), peeling is more likely to occur.

特開昭63−213461号公報JP 63-213461 A 実開昭62−68455号公報Japanese Utility Model Publication No. 62-68455 特開2005−188685号公報Japanese Patent Laid-Open No. 2005-188865 特開2002−139048号公報JP 2002-139048 A

本発明は、上述の様な事情に鑑みて、ダイレクトドライブモータに4点接触型の玉軸受等の多点接触型の玉軸受を使用した場合でも、絶縁性能の確保と、耐久性の確保と、低コスト化とを高次元で並立させる事ができる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention ensures insulation performance and durability even when a multi-point contact ball bearing such as a 4-point contact ball bearing is used for a direct drive motor. The invention was invented to realize a structure capable of coexisting with low cost at a high level.

本発明のダイレクトドライブモータ用玉軸受は、例えば図1に示す様に、1対の軌道輪(外輪12及び内輪13)と、複数の玉14とを備える。
このうちの両軌道輪12、13は、互いに同心に配置された、それぞれが金属製のものである。
又、上記各玉14は、これら両軌道輪12、13の互いに対向する面に形成された1対の軌道面(外輪軌道15及び内輪軌道16)同士の間に転動自在に設けられた、それぞれが金属製のものである。
又、上記各玉14の転動面と上記両軌道面15、16とが、それぞれ2点ずつで接触する、所謂4点接触型の玉軸受である。尚、各玉14の転動面と両軌道面15、16のうちの一方とが、各玉毎に2点ずつで接触する、所謂3点接触型の玉軸受としても良い。
これと共に、上記各玉14の転動面と上記両軌道面15、16との隙間である内部隙間を負の値として、これら各玉14に予圧を付与し、玉軸受のモーメント剛性を向上させている。
更に、上記両軌道輪12、13のうち、一方の軌道輪には回転子を、他方の軌道輪には固定子を、それぞれ別の部材を介して設けている。そして、この回転子を設けた回転部材を、この固定子を設けた固定部材に対し回転自在に支持する。本発明の場合、上述の様に、玉軸受のモーメント剛性を向上させている為、上記回転部材を1個の玉軸受のみで十分に支承できる。
特に、本発明のダイレクトドライブモータ用玉軸受に於いては、上記両軌道輪12、13のうちの少なくとも一方の軌道輪の表面のうちで軌道面を設けた面以外の面、即ち、図1(A)に示す構造の場合には、外輪12の外周面18及びこの外輪12の軸方向両端面19、19、図1(B)に示す構造の場合には、内輪13の内周面20及びこの内輪13の軸方向両端面21、21を、セラミックス製の絶縁層22により被覆している。
The ball bearing for a direct drive motor according to the present invention includes a pair of race rings (an outer ring 12 and an inner ring 13) and a plurality of balls 14 as shown in FIG.
Of these, both race rings 12 and 13 are arranged concentrically with each other and are made of metal.
The balls 14 are provided between a pair of raceway surfaces (outer ring raceway 15 and inner ring raceway 16) formed on surfaces of the raceways 12 and 13 facing each other so as to freely roll. Each is made of metal.
The rolling contact surface of each ball 14 and the both raceway surfaces 15 and 16 are so-called four-point contact type ball bearings that contact each other at two points. The rolling surface of each ball 14 and one of the raceway surfaces 15 and 16 may be a so-called three-point contact type ball bearing in which two balls contact each ball.
At the same time, the internal clearance, which is the clearance between the rolling surfaces of the balls 14 and the raceways 15 and 16, is set to a negative value so that a preload is applied to the balls 14 to improve the moment stiffness of the ball bearings. ing.
Further, of the two race rings 12, 13, one of the race rings is provided with a rotor, and the other race ring is provided with a stator via different members. And the rotating member provided with this rotor is supported rotatably with respect to the fixing member provided with this stator. In the case of the present invention, as described above, since the moment rigidity of the ball bearing is improved, the rotating member can be sufficiently supported by only one ball bearing.
In particular, in the ball bearing for a direct drive motor according to the present invention, a surface other than the surface provided with the raceway surface among the surfaces of at least one of the raceways 12 and 13, that is, FIG. In the case of the structure shown in FIG. 1A, the outer peripheral surface 18 of the outer ring 12 and the axial end surfaces 19 and 19 of the outer ring 12, and in the case of the structure shown in FIG. Further, both end surfaces 21 and 21 in the axial direction of the inner ring 13 are covered with a ceramic insulating layer 22.

上記絶縁層22として好ましくは、請求項2に記載した様に、この絶縁層22を構成するセラミックスがアルミナ(Al2O3 )を99重量%以上含有するものとする。この場合、上記絶縁層22は、上記軌道面を設けた面以外に形成したセラミックス溶射層の表面を研磨する事により形成する。更に、このセラミックス溶射層の厚さを、隣り合う面同士の間の折れ曲がり連続部23、23(若しくは24、24)を除いて0.4mm以下とし、このセラミックス溶射層を研磨して得られた上記絶縁層22の厚さを0.25mm以上とする。 Preferably, as the insulating layer 22, as described in claim 2, the ceramic constituting the insulating layer 22 contains 99% by weight or more of alumina (Al 2 O 3 ). In this case, the insulating layer 22 is formed by polishing the surface of the ceramic sprayed layer formed on a surface other than the surface provided with the raceway surface. Furthermore, the thickness of this ceramic sprayed layer was 0.4 mm or less excluding the bent continuous portions 23, 23 (or 24, 24) between adjacent surfaces, and this ceramic sprayed layer was obtained by polishing. The insulating layer 22 has a thickness of 0.25 mm or more.

或は、上記絶縁層22を、請求項3、6、7に記載した様に、酸化チタン(TiO2)、ジルコニア(ZrO2)、酸化クロム(Cr2O3 )のうちの何れかを含有するアルミナの溶射層としても良い。
又、このうちの酸化チタンを含有する場合には、請求項4に記載した様に、この酸化チタンの含有量を、0.01〜0.2重量%とする事が好ましい。又、この場合に、請求項5に記載した様に、アルミナの含有量を99重量%以上とする事が、より好ましい。
又、上記ジルコニアを含有する場合には、このジルコニアの含有量を、0.5〜2.5重量%とし、アルミナの含有量を97重量%以上とする事が好ましい。
尚、この様な組成を有するセラミック溶射層の場合も、上記軌道面を設けた面以外に形成したセラミックス溶射層の表面を研磨する事により形成する事が好ましい。又、この場合も、このセラミックス溶射層の厚さを、隣り合う面同士の間の折れ曲がり連続部23、23(若しくは24、24)を除いて0.4mm以下とし、このセラミックス溶射層を研磨して得られた上記絶縁層22の厚さを0.25mm以上とする事が好ましい。
Alternatively, the insulating layer 22 contains any one of titanium oxide (TiO 2 ), zirconia (ZrO 2 ), and chromium oxide (Cr 2 O 3 ) as described in claims 3, 6, and 7. An alumina sprayed layer may be used.
Moreover, when it contains titanium oxide among these, as described in Claim 4, it is preferable to make content of this titanium oxide into 0.01 to 0.2 weight%. In this case, as described in claim 5, it is more preferable that the alumina content is 99% by weight or more.
Moreover, when it contains the said zirconia, it is preferable that content of this zirconia shall be 0.5 to 2.5 weight%, and content of alumina shall be 97 weight% or more.
In the case of the ceramic sprayed layer having such a composition, it is preferable to form the ceramic sprayed layer by polishing the surface of the ceramic sprayed layer other than the surface provided with the raceway surface. Also in this case, the thickness of the ceramic sprayed layer is set to 0.4 mm or less excluding the bent continuous portions 23 and 23 (or 24 and 24) between adjacent surfaces, and the ceramic sprayed layer is polished. The thickness of the insulating layer 22 obtained in this way is preferably 0.25 mm or more.

更に、上述した各発明を実施する場合には、請求項8に記載した様に、絶縁層22であるセラミックス溶射層の厚さ寸法に関する精度と、このセラミックス溶射層を構成するアルミナの付着効率の向上とを目的として、粒径が10〜50μmで、平均粒径が15〜25μmであるアルミナを使用する事が好ましい。   Furthermore, when each of the above-described inventions is carried out, as described in claim 8, the accuracy relating to the thickness dimension of the ceramic sprayed layer which is the insulating layer 22 and the adhesion efficiency of the alumina constituting the ceramic sprayed layer are improved. For the purpose of improvement, it is preferable to use alumina having a particle size of 10 to 50 μm and an average particle size of 15 to 25 μm.

上述の様に構成する本発明のダイレクトドライブモータ用玉軸受によれば、絶縁性能の確保と、耐久性の確保と、低コスト化とを高次元で並立させる事ができる。
即ち、両軌道輪のうちの少なくとも一方の軌道輪の表面のうちで軌道面を設けた面以外の面を、セラミックス製の絶縁層22により被覆している為、絶縁性能を十分に確保できる。又、絶縁する為に、加工コストが高いセラミックス製の玉を使用しない為、材料特性の違いによる剥離が生じる事はなく、耐久性を確保できると共に、低コスト化を図れる。
According to the ball bearing for a direct drive motor of the present invention configured as described above, it is possible to ensure insulation performance, durability, and cost reduction in parallel.
That is, since the surface other than the surface provided with the raceway surface among the surfaces of at least one of the raceways is covered with the ceramic insulating layer 22, the insulation performance can be sufficiently secured. In addition, since ceramic balls with high processing costs are not used for insulation, peeling due to differences in material characteristics does not occur, durability can be ensured, and costs can be reduced.

又、請求項2に記載した発明の場合には、アルミナを99重量%以上含有するセラミックス溶射層を使用しているが、この様なセラミックス溶射層は、比較的電気抵抗値が大きい(優れた絶縁性を有する)。従って、研磨後の絶縁層22の厚さを0.25mm以上確保すれば、ダイレクトドライブモータの回転支持部の電食防止効果を十分に確保できる。
又、研磨後の絶縁層22の厚さを0.25mm以上確保する為には、研磨前のセラミックス溶射層の厚さを0.4mm以下としても、十分に研磨代を確保できる。そして、このセラミックス溶射層の厚さを0.4mm以下に抑えられれば、隣り合う面同士の間の折れ曲がり連続部23、23(若しくは24、24)を覆ったセラミックス溶射層の厚さを0.5mm未満(更には0.48mm以下)に抑えられる。厚さが0.5mm(更には0.48mm)程度のセラミックス溶射層であれば、厚さ寸法が過大であるとは言えず、そのままであっても(研磨により厚さ寸法を小さくしなくても)、割れ、欠け等の損傷を発生しにくい。従って、上記セラミックス溶射層のうちで上記折れ曲がり連続部23、23(若しくは24、24)を被覆した部分を研磨する手間を省略して、コスト低減を図れる。又、コスト低減は、上記セラミックス溶射層の厚さを小さく{従来は0.5mm以上であったもの(一般的には0.6〜0.7mm程度)を0.4mm以下に}抑えられる事によっても図れる。
In the case of the invention described in claim 2, a ceramic sprayed layer containing 99% by weight or more of alumina is used. Such a ceramic sprayed layer has a relatively large electric resistance value (excellent Has insulating properties). Therefore, if the thickness of the insulating layer 22 after polishing is ensured to be 0.25 mm or more, the effect of preventing electrolytic corrosion of the rotation support portion of the direct drive motor can be sufficiently ensured.
Moreover, in order to ensure the thickness of the insulating layer 22 after polishing to be 0.25 mm or more, a sufficient polishing allowance can be ensured even if the thickness of the ceramic sprayed layer before polishing is 0.4 mm or less. If the thickness of the ceramic sprayed layer can be suppressed to 0.4 mm or less, the thickness of the ceramic sprayed layer covering the continuous bent portions 23, 23 (or 24, 24) between adjacent surfaces is set to 0. It is suppressed to less than 5 mm (further 0.48 mm or less). If it is a ceramic sprayed layer with a thickness of about 0.5 mm (or 0.48 mm), it cannot be said that the thickness dimension is excessive, even if it remains as it is (without reducing the thickness dimension by polishing). Also, it is difficult to cause damage such as cracking and chipping. Therefore, it is possible to reduce the cost by omitting the trouble of polishing the portion of the ceramic sprayed layer covering the bent continuous portions 23, 23 (or 24, 24). In addition, the cost can be reduced by reducing the thickness of the ceramic sprayed layer {the conventional thickness of 0.5 mm or more (generally about 0.6 to 0.7 mm) is reduced to 0.4 mm or less}. You can also plan by.

又、請求項3、6、7に記載したダイレクトドライブモータ用玉軸受の発明によれば、アルミナの溶射層に、酸化チタン、ジルコニア、酸化クロムのうちの何れかを含有する事により、絶縁性能の確保と、耐久性の確保と、低コスト化と、良好な外観の確保とを、高次元で並立させる事ができる。
特に、請求項4に記載した様に、アルミナの溶射層に含有する酸化チタンを、0.01〜0.2重量%、或は、請求項6に記載した様に、絶縁層を、ジルコニアを含有するアルミナの容射層とした場合には、アルミナの溶射層に含有するジルコニアの含有量を、0.5〜2.5重量%とし、アルミナの含有量を97重量%以上(請求項4に記載した構造の場合、好ましくは99重量%以上)とすれば、良好な外観の確保をより図り易くなる。即ち、アルミナを主成分とするセラミックス溶射層のうち、酸化チタン等を含まないホワイトアルミナの場合には、絶縁性能が優れている反面、封孔処理に伴って外観が悪化する。これに対して、上述した発明の場合には、0.01重量%以上の酸化チタン、或は、0.5重量%以上のジルコニアを含有している為、上記封孔処理に拘らず、外観悪化に結び付く様な色むらは発生しない。即ち、セラミックス溶射層内部に存在する微細な空隙を合成樹脂により塞ぐ為の封孔処理に伴って、この合成樹脂の一部が上記セラミックス溶射層の表面に表れる。表面の色彩が純白に近い、ホワイトアルミナの場合、この様に表面に表れた合成樹脂により、表面に色むらを生じて、製品の外観を悪くする。これに対して、0.01重量%以上の酸化チタンを含有したグレイアルミナ、或は、0.5重量%以上のジルコニアを含有したものの場合には、表面の色彩がグレー(灰色)がかっている為、上記封孔処理に使用する合成樹脂として、適切な(灰色系統の)色彩のものを使用すれば、表面に、製品の外観を悪くする程の色むらを生じる事はない。
Moreover, according to the invention of the ball bearing for direct drive motors described in claims 3, 6 and 7, the insulating performance can be obtained by containing any one of titanium oxide, zirconia and chromium oxide in the sprayed layer of alumina. Ensuring high durability, ensuring durability, reducing costs, and ensuring good appearance can be arranged in a high dimension.
In particular, as described in claim 4, the titanium oxide contained in the sprayed layer of alumina is 0.01 to 0.2% by weight, or as described in claim 6, the insulating layer is made of zirconia. When the alumina spray layer is contained, the content of zirconia contained in the alumina sprayed layer is 0.5 to 2.5% by weight, and the alumina content is 97% by weight or more (claim 4). In the case of the structure described in (1), it is preferable that 99% by weight or more be ensured to ensure a good appearance. That is, among the ceramic sprayed layers containing alumina as a main component, in the case of white alumina not containing titanium oxide or the like, the insulation performance is excellent, but the appearance deteriorates with the sealing treatment. On the other hand, in the case of the above-described invention, since it contains 0.01% by weight or more of titanium oxide or 0.5% by weight or more of zirconia, the appearance can be achieved regardless of the sealing treatment. Color unevenness that leads to deterioration does not occur. That is, a part of the synthetic resin appears on the surface of the ceramic sprayed layer in accordance with the sealing treatment for closing the fine voids existing inside the ceramic sprayed layer with the synthetic resin. In the case of white alumina whose surface color is close to pure white, the synthetic resin appearing on the surface in this way causes uneven color on the surface and deteriorates the appearance of the product. On the other hand, in the case of gray alumina containing 0.01% by weight or more of titanium oxide or 0.5% by weight or more of zirconia, the surface color is gray. Therefore, if an appropriate (gray type) color resin is used as the synthetic resin used for the sealing treatment, the surface does not cause uneven color to the extent that the appearance of the product is deteriorated.

但し、上記酸化チタンを、0.2重量%、或は、上記ジルコニアを2.5重量%を越えて含有させると、必要とする絶縁性能を確保する為に要する、上記セラミックス溶射層の厚さが大きくなる。そこで、上記酸化チタンの含有量を0.01〜0.2重量%、或は、上記ジルコニアの含有量を0.5〜2.5重量%の範囲に規制する。
尚、セラミックス溶射層中に於ける、上記酸化チタンの含有量を0.2重量%以下、或は、上記ジルコニアの含有量を2.5重量%以下に抑える事により、溶射層形成時の材料(アルミナ粒)の歩留が多少は悪化する。但し、請求項8に記載した様に、粒径が10〜50μmで、平均粒径が15〜25μmであるアルミナを使用すれば、上記セラミックス溶射層を構成するアルミナの付着効率を向上させる事と合わせて、上記セラミックス溶射層の厚さ寸法に関する精度を向上させ、コスト上昇を抑えられる。即ち、付着効率の向上による材料費の節約と、寸法精度の向上による仕上加工の容易化(仕上加工時間の短縮化)とにより、ダイレクトドライブモータ用玉軸受の製造コストの低廉化を図れる。
更に、アルミナの溶射層に、高強度、高靱性を有するジルコニアを含有させた場合には、このアルミナの溶射層の密着力を向上させる事ができる。この為、耐久性を十分確保できる。
However, if the titanium oxide is contained in an amount of 0.2% by weight or the zirconia exceeds 2.5% by weight, the thickness of the ceramic sprayed layer required to ensure the required insulation performance. Becomes larger. Therefore, the titanium oxide content is regulated to 0.01 to 0.2% by weight or the zirconia content to 0.5 to 2.5% by weight.
In addition, by controlling the content of the titanium oxide in the ceramic sprayed layer to 0.2% by weight or less, or the content of the zirconia to 2.5% by weight or less, a material for forming the sprayed layer. The yield of (alumina grains) is somewhat deteriorated. However, as described in claim 8, if alumina having a particle size of 10 to 50 μm and an average particle size of 15 to 25 μm is used, the adhesion efficiency of alumina constituting the ceramic sprayed layer is improved. In addition, the accuracy related to the thickness dimension of the ceramic sprayed layer can be improved, and the cost increase can be suppressed. That is, the manufacturing cost of the ball bearing for the direct drive motor can be reduced by saving the material cost by improving the adhesion efficiency and facilitating the finishing process by reducing the dimensional accuracy (shortening the finishing process time).
Further, when zirconia having high strength and high toughness is contained in the alumina sprayed layer, the adhesion of the alumina sprayed layer can be improved. For this reason, sufficient durability can be secured.

図1(A)、図2は、本発明の実施の形態の1例を示している。本例の場合には、ダイレクトドライブモータ用玉軸受を構成する外輪12及び内輪13を、それぞれ、例えば軸受鋼等の金属製としている。又、外輪軌道15及び内輪軌道16同士の間に転動自在に設けられ、保持器17により保持された、複数個の玉14も、それぞれ、例えば軸受鋼等の金属製としている。そして、上記外輪12の外周面18及びこの外輪12の軸方向両端面19、19を、セラミックス製の絶縁層22により被覆している。   1A and 2 show an example of an embodiment of the present invention. In the case of this example, the outer ring 12 and the inner ring 13 constituting the ball bearing for the direct drive motor are each made of metal such as bearing steel. A plurality of balls 14 provided between the outer ring raceway 15 and the inner ring raceway 16 so as to roll freely and held by the cage 17 are also made of metal such as bearing steel, for example. And the outer peripheral surface 18 of the said outer ring | wheel 12 and the axial direction both end surfaces 19 and 19 of this outer ring | wheel 12 are coat | covered with the insulating layer 22 made from ceramics.

又、本例の場合、上記ダイレクトドライブモータ用玉軸受を4点接触型としている。即ち、上記両軌道15、16の断面形状はそれぞれ、上記各玉14の直径の1/2よりも大きな曲率半径を有する円弧同士を中間部で交差させた、所謂ゴシックアーチ状である。従って、上記両軌道15、16と上記各玉14の転動面とは、それぞれ2点ずつ、これら各玉14毎に合計4点ずつで接触する。又、本例の場合、これら各玉14の転動面と上記両軌道15、16との隙間である内部隙間を負の値として、上記玉軸受に予圧を付与している。更に、本例の玉軸受は、ダイレクトドライブモータに組み込んだ状態で、一方の軌道輪には回転子(ロータ)を、他方の軌道輪には固定子(ステータ)を、それぞれ別の部材を介して設ける。例えば、前述の図4に示したダイレクトドライブモータ1に組み込む場合、外輪12を、ロータ6を設けた回転部材3の一部に内嵌固定し、内輪13を、ステータ4を設けた固定部材2の一部に外嵌固定する。又、図5に示したダイレクトドライブモータ1aに組み込む場合、内輪13を、ロータ6aを設けた回転軸10の一部に外嵌固定し、外輪12を、ステータ4aを設けたハウジング9の一部に内嵌固定する。そして、上記回転部材3或は回転軸10を、上記固定部材2或はハウジング9に対し回転自在に支持する。   In the case of this example, the ball bearing for the direct drive motor is a four-point contact type. That is, the cross-sectional shapes of both the tracks 15 and 16 are so-called gothic arch shapes in which arcs having a radius of curvature larger than ½ of the diameter of each ball 14 are intersected at an intermediate portion. Therefore, both the tracks 15 and 16 and the rolling surface of each ball 14 are in contact with each other at two points, and a total of four points for each ball 14. In the case of this example, a preload is applied to the ball bearing by setting the internal gap, which is a gap between the rolling surfaces of the balls 14 and the raceways 15 and 16, to a negative value. Further, the ball bearing of this example is incorporated in a direct drive motor, and a rotor (rotor) is provided on one of the race rings, and a stator (stator) is provided on the other race ring via different members. Provide. For example, when incorporated in the direct drive motor 1 shown in FIG. 4, the outer ring 12 is fitted and fixed to a part of the rotating member 3 provided with the rotor 6, and the inner ring 13 is fixed to the fixing member 2 provided with the stator 4. The outer fitting is fixed to a part of. Further, when incorporated in the direct drive motor 1a shown in FIG. 5, the inner ring 13 is fitted and fixed to a part of the rotating shaft 10 provided with the rotor 6a, and the outer ring 12 is fixed to a part of the housing 9 provided with the stator 4a. Fit inside. The rotating member 3 or the rotating shaft 10 is rotatably supported with respect to the fixed member 2 or the housing 9.

又、本例の場合、前記絶縁層22は、アルミナを99重量%以上含むセラミックスの溶滴を上記外周面18及び軸方向両端面19、19に、例えばプラズマ溶射により噴射して成る、セラミックス溶射層である。この様なセラミックス溶射層である、上記絶縁層22は、上記外周面18及び軸方向両端面19、19の他、この外周面18の軸方向両端縁とこれら軸方向両端面19、19の外周縁とを連続させる、断面四分の一円弧状の折れ曲がり連続部23、23の表面も覆っている。   In the case of this example, the insulating layer 22 is formed by spraying ceramic droplets containing 99% by weight or more of alumina onto the outer peripheral surface 18 and both axial end surfaces 19 and 19, for example, by plasma spraying. Is a layer. The insulating layer 22, which is such a ceramic sprayed layer, includes the outer peripheral surface 18 and both axial end surfaces 19, 19, as well as the both axial end edges of the outer peripheral surface 18 and the outer ends 19, 19 of the axial direction. It also covers the surfaces of the bent continuous portions 23 and 23 having a circular arc shape with a quarter of a cross section that is continuous with the periphery.

又、上記各面を覆っている、上記絶縁層22の厚さ寸法T18、T19、T23(図2参照)のうち、上記外周面18及び軸方向両端面19、19の表面を覆っている部分の厚さ寸法T18、T19に関しては、0.4mm以下に抑えている。そして、これら各部分の厚さ寸法T18、T19を0.4mm以下に抑える事により、上記両折れ曲がり連続部23、23の表面を覆っている部分の厚さ寸法T23を、0.5mm未満(好ましくは0.48mm以下)に抑えている。 Of the thicknesses T 18 , T 19 , T 23 (see FIG. 2) of the insulating layer 22 covering the surfaces, the surfaces of the outer peripheral surface 18 and the axial end surfaces 19, 19 are covered. The thickness dimensions T 18 and T 19 of the portions are limited to 0.4 mm or less. Then, by suppressing the thickness dimensions T 18 and T 19 of each part to 0.4 mm or less, the thickness dimension T 23 of the part covering the surfaces of the both bent continuous parts 23 and 23 is set to 0.5 mm. Less than (preferably 0.48 mm or less).

又、上記絶縁層22のうち、上記外周面18及び軸方向両端面19、19の表面を覆っている部分を研磨する事により、これら各部分を平滑面とし、これら各面18、19と上記外輪12を内嵌固定する、回転部材3(図4参照)或はハウジング9(図5参照)の内面とが密に当接する様にしている。この様な研磨に伴って、上記各面18、19を覆っている上記絶縁層22の表面部分(図2の斜格子部分)が、図2に示した研磨取代δ分だけ除去されて、この絶縁層22の厚さ寸法が、セラミックス溶射層を形成した状態よりも薄くなっている。但し、上記研磨取代δを除去した後の厚さt18(=T18−δ)、t19(=T19−δ)に関しても、0.25mm以上確保している。これに対して、上記絶縁層22のうちで上記両折れ曲がり連続部23、23の表面を覆っている部分に関しては、コスト低減の為に、研磨する事なく、そのままの(セラミックスの溶滴を噴射したままの)状態としている。 Further, by polishing the portion of the insulating layer 22 that covers the surfaces of the outer peripheral surface 18 and the axial end surfaces 19 and 19, these portions are made smooth, and the surfaces 18 and 19 The rotating member 3 (see FIG. 4) or the inner surface of the housing 9 (see FIG. 5) that fits and fixes the outer ring 12 is in close contact. Along with such polishing, the surface portion of the insulating layer 22 (the oblique lattice portion in FIG. 2) covering the surfaces 18 and 19 is removed by the polishing allowance δ shown in FIG. The thickness dimension of the insulating layer 22 is thinner than the state in which the ceramic sprayed layer is formed. However, the thicknesses t 18 (= T 18 −δ) and t 19 (= T 19 −δ) after the removal of the polishing allowance δ are also secured to 0.25 mm or more. On the other hand, the portion of the insulating layer 22 covering the surfaces of the both bent continuous portions 23, 23 is sprayed as it is without being polished for the purpose of cost reduction. State).

上述の様なダイレクトドライブモータ用玉軸受は、上記絶縁層22の絶縁性能の確保と、耐久性の確保と、低コスト化とを、高次元で並立させる事ができる。
先ず、絶縁性能の確保は、上記絶縁層22を構成するセラミックス溶射層として、アルミナを99重量%以上含有するものを使用する事により図れる。即ち、アルミナを99重量%以上含有するセラミックス溶射層は電気抵抗値が大きい(優れた絶縁性を有する)為、研磨後の(使用状態での)絶縁層22の厚さを0.25mm以上確保すれば、電位差が3000V程度までの回転支持部である限り、電食防止効果を十分に確保できる。例えば、図3に示す様に、研磨後の絶縁層22の厚さ寸法を0.3mmとした場合(実施例)、1000V印加の条件で、5000MΩ以上の絶縁抵抗値を確保できる。これに対して、玉軸受に組み込む玉をセラミックス製とした場合(比較例)には、20000MΩ程度の絶縁抵抗値を有するが、ダイレクトドライブモータに組み込む玉軸受の絶縁抵抗値は、一般的に10MΩ以上あれば良い。従って、本例の構造により、必要十分な絶縁抵抗値を確保できる事が分かる。尚、図3には、従来品として、玉軸受に組み込む玉を金属製とすると共に、絶縁層を形成していない構造に就いても記載したが、絶縁抵抗値はほぼ0である。
The ball bearing for the direct drive motor as described above can ensure the insulation performance of the insulating layer 22, ensure the durability, and reduce the cost at a high level.
First, the insulation performance can be ensured by using a ceramic sprayed layer constituting the insulating layer 22 that contains 99% by weight or more of alumina. That is, the ceramic sprayed layer containing 99% by weight or more of alumina has a large electric resistance value (having excellent insulating properties), so that the thickness of the insulating layer 22 after polishing (in use) is secured to 0.25 mm or more. Then, as long as the rotation support portion has a potential difference of up to about 3000 V, the effect of preventing electrolytic corrosion can be sufficiently secured. For example, as shown in FIG. 3, when the thickness dimension of the insulating layer 22 after polishing is 0.3 mm (Example), an insulation resistance value of 5000 MΩ or more can be secured under the condition of 1000 V application. On the other hand, when the ball incorporated in the ball bearing is made of ceramics (comparative example), it has an insulation resistance value of about 20000 MΩ, but the insulation resistance value of the ball bearing incorporated in the direct drive motor is generally 10 MΩ. That's all you need. Therefore, it can be seen that the structure of this example can secure a necessary and sufficient insulation resistance value. FIG. 3 shows a structure in which the ball incorporated in the ball bearing is made of metal and has no insulating layer as a conventional product, but the insulation resistance value is almost zero.

又、研磨後の絶縁層22の厚さを0.25mm以上確保する為には、研磨前のセラミックス溶射層の厚さを0.4mm以下としても、十分に(最大で0.15mm程度の)研磨代を確保できる。即ち、上記絶縁層22の表面と、例えば前記回転部材3或はハウジング9の内面とを均一に当接させて、前記外輪3の姿勢を安定させると共に、上記絶縁層22の一部に過大な力が加わる事を防止する為には、上記外周面18及び軸方向両端面19、19の表面を覆っている部分を研磨する必要がある。この場合でも、必要な研磨代は0.15mm以下であるから、上記研磨前のセラミックス溶射層の厚さを0.4mm以下に抑えても、研磨後の絶縁層22の厚さを0.25mm以上確保できる。   Moreover, in order to ensure the thickness of the insulating layer 22 after polishing to be 0.25 mm or more, it is sufficient (about 0.15 mm at maximum) even if the thickness of the ceramic sprayed layer before polishing is 0.4 mm or less. Polishing allowance can be secured. That is, the surface of the insulating layer 22 and, for example, the inner surface of the rotating member 3 or the housing 9 are brought into uniform contact with each other to stabilize the posture of the outer ring 3, and an excessive portion of the insulating layer 22 is excessive. In order to prevent the force from being applied, it is necessary to polish the portions covering the surfaces of the outer peripheral surface 18 and the axial end surfaces 19 and 19. Even in this case, since the necessary polishing allowance is 0.15 mm or less, even if the thickness of the ceramic sprayed layer before polishing is suppressed to 0.4 mm or less, the thickness of the insulating layer 22 after polishing is 0.25 mm. This can be secured.

そして、上記セラミックス溶射層の厚さを0.4mm以下に抑えられれば、前述した通り、前記両折れ曲がり連続部23、23の表面を覆っている部分の厚さ寸法T23を、0.5mm(更には0.48mm)以下に抑えられる。即ち、これら両折れ曲がり連続部23、23には、上記外周面18に径方向外方から噴射するセラミックス溶滴、及び、上記軸方向両端面19、19に軸方向外方から噴射するセラミックス溶滴が付着する。この為、上記両折れ曲がり連続部23、23を覆うセラミックス溶射層の厚さ寸法は、上記外周面18及び上記軸方向両端面19、19を覆うセラミックス溶射層の厚さ寸法よりも大きくなる。この場合でも、上記厚さ寸法T23を0.5mm以下に抑えれば、上記両折れ曲がり連続部を覆っているセラミック溶射層に、割れや欠け等の損傷が生じにくくできる。 If the thickness of the ceramic sprayed layer can be suppressed to 0.4 mm or less, as described above, the thickness dimension T 23 of the portion covering the surfaces of the both bent continuous portions 23 , 23 is set to 0.5 mm ( Furthermore, it is suppressed to 0.48 mm) or less. That is, in these two bent continuous portions 23, 23, ceramic droplets that are ejected radially outward on the outer peripheral surface 18, and ceramic droplets that are ejected axially outward on the axial end surfaces 19, 19. Adheres. For this reason, the thickness dimension of the ceramic sprayed layer covering the two bent continuous portions 23, 23 is larger than the thickness dimension of the ceramic sprayed layer covering the outer peripheral surface 18 and the axial end surfaces 19, 19. In this case, if Osaere the thickness dimension T 23 to 0.5mm or less, the ceramic spray layer covering the both bent continuous unit, it hardly occurs damage cracks or chipping.

又、本例の場合、玉14として金属製のものを使用している為、外輪12及び内輪13との材料特性の違いによる剥離が生じる事がない。この為、玉軸受の耐久性を確保できる。更に、ダイレクトドライブモータ用玉軸受として、特許文献4に記載されている様な、セラミックス製の玉を使用した構造と、本例の様な、玉14を金属製とし、外周面18及び軸方向両端面19、19に絶縁層22を設けた玉軸受の場合との製造コストを比べた場合、本例の構造の方が製造コストを低くできる。即ち、セラミックス製の玉を製造するのに要するコストと、外輪12の一部をセラミックス溶射層により被覆するのに要するコストとを比べた場合、セラミックス溶射層により被覆する方が、製造コストを低くできる。この製造コストの差は、軸受のサイズ等により異なるが、例えば、呼び番号6316(外径170mm、内径80mm、幅39mm)の玉軸受で比べた場合、約1/5〜1/6のコストダウンが可能となる。尚、軸受サイズが大きくなる程、更に製造コストの差が大きくなり、コストダウンの効果を高める事ができる。
尚、上述の作用効果は、図1(B)に示す様に、絶縁層22を内輪13側に被覆した場合も同様である。
In the case of this example, since a ball made of metal is used as the ball 14, peeling due to a difference in material characteristics between the outer ring 12 and the inner ring 13 does not occur. For this reason, the durability of the ball bearing can be secured. Further, as a ball bearing for a direct drive motor, a structure using ceramic balls as described in Patent Document 4, and a ball 14 made of metal as in this example, the outer peripheral surface 18 and the axial direction are used. When the manufacturing cost is compared with the case of the ball bearing in which the insulating layers 22 are provided on the both end faces 19, 19, the manufacturing cost can be reduced with the structure of this example. That is, when comparing the cost required to manufacture a ceramic ball with the cost required to coat a part of the outer ring 12 with a ceramic sprayed layer, the manufacturing cost is lower when coated with a ceramic sprayed layer. it can. The difference in manufacturing cost varies depending on the size of the bearing. For example, when compared with a ball bearing having a nominal number 6316 (outer diameter 170 mm, inner diameter 80 mm, width 39 mm), the cost is reduced by about 1/5 to 1/6. Is possible. In addition, as the bearing size increases, the difference in manufacturing cost further increases, and the cost reduction effect can be enhanced.
In addition, the above-mentioned effect is the same also when the insulating layer 22 is coat | covered to the inner ring | wheel 13 side, as shown in FIG.1 (B).

上述した説明では、ダイレクトドライブモータ用玉軸受として、4点接触型の玉軸受を使用した場合に就いて説明したが、本発明は、各玉の転動面と両軌道面のうちの一方とが、各玉毎に2点ずつ接触する、所謂3点接触型の玉軸受にも適用できる。又、この場合にも、玉軸受のモーメント剛性を確保する為、内部隙間を負の値として各玉に予圧を付与する。   In the above description, the case where a four-point contact type ball bearing is used as the ball bearing for the direct drive motor has been described. However, the present invention is not limited to the rolling surface of each ball and one of both raceway surfaces. However, the present invention can also be applied to a so-called three-point contact type ball bearing in which two balls contact each ball. Also in this case, in order to ensure the moment rigidity of the ball bearing, a preload is applied to each ball with the internal gap as a negative value.

本発明の実施の形態の2例を示す半部断面図。The half part sectional view which shows two examples of embodiment of this invention. 図1(A)のイ部拡大図。FIG. 従来品と、玉がセラミックス製の構造と、本発明の構造との、絶縁抵抗値を比較したグラフ。The graph which compared the insulation resistance value of the structure of a conventional product, a ball | bowl made from ceramics, and the structure of this invention. 本発明の玉軸受を組み込むダイレクトドライブモータの第1例を示す断面図。Sectional drawing which shows the 1st example of the direct drive motor incorporating the ball bearing of this invention. 同じく第2例を示す断面図。Sectional drawing which similarly shows the 2nd example. 本発明の対象となる4点接触型の玉軸受を示す半部断面図。The half part sectional view showing the ball bearing of the 4 point contact type used as the object of the present invention.

符号の説明Explanation of symbols

1、1a ダイレクトドライブモータ
2 固定部材
3 回転部材
4、4a ステータ
5 外径側円筒部
6、6a ロータ
7、7a 軸受
8 内径側円筒部
9 ハウジング
10 回転軸
11 玉軸受
12 外輪
13 内輪
14 玉
15 外輪軌道
16 内輪軌道
17 保持器
18 外周面
19 端面
20 内周面
21 端面
22 絶縁層
23 折れ曲がり連続部
24 折れ曲がり連続部
DESCRIPTION OF SYMBOLS 1, 1a Direct drive motor 2 Fixed member 3 Rotating member 4, 4a Stator 5 Outer diameter side cylindrical part 6, 6a Rotor 7, 7a Bearing 8 Inner diameter side cylindrical part 9 Housing 10 Rotating shaft 11 Ball bearing 12 Outer ring 13 Inner ring 14 Ball 15 Outer ring raceway 16 Inner ring raceway 17 Cage 18 Outer peripheral surface 19 End surface 20 Inner peripheral surface 21 End surface 22 Insulating layer 23 Bending continuous portion 24 Bending continuous portion

Claims (8)

互いに同心に配置された、それぞれが金属製である1対の軌道輪と、これら両軌道輪の互いに対向する面に形成された1対の軌道面同士の間に転動自在に設けられた、それぞれが金属製である複数個の玉とを備え、これら各玉の転動面と上記両軌道面のうちの少なくとも一方とが、2点で接触すると共に、これら各玉の転動面とこれら両軌道面との隙間である内部隙間が負の値であり、上記両軌道輪のうち、一方の軌道輪には回転子を、他方の軌道輪には固定子を、それぞれ別の部材を介して設け、この回転子を設けた回転部材をこの固定子を設けた固定部材に対し回転自在に支持するダイレクトドライブモータ用玉軸受に於いて、上記両軌道輪のうちの少なくとも一方の軌道輪の表面のうちで軌道面を設けた面以外の面を、セラミックス製の絶縁層により被覆した事を特徴とする、ダイレクトドライブモータ用玉軸受。   Rollers are provided between a pair of raceways arranged concentrically, each made of metal, and a pair of raceways formed on opposite surfaces of these raceways. A plurality of balls each made of metal, and the rolling surface of each ball and at least one of the two raceways contact at two points, and the rolling surface of each ball and these The internal clearance, which is the clearance between both raceways, is a negative value. Of the above raceways, one raceway has a rotor, the other raceway has a stator, and a separate member. In a ball bearing for a direct drive motor that rotatably supports a rotating member provided with the rotor with respect to a fixing member provided with the stator, at least one of the two bearing rings is provided. The surface other than the surface provided with the raceway is made of ceramics. And wherein the coated by an insulating layer, ball bearings for direct drive motor. 絶縁層を構成するセラミックスがアルミナを99重量%以上含有するものであり、この絶縁層は、上記軌道面を設けた面以外に形成したセラミックス溶射層の表面を研磨する事により形成したものであり、このセラミックス溶射層の厚さは、隣り合う面同士の間の折れ曲がり連続部を除いて0.4mm以下であり、このセラミックス溶射層を研磨して得られた上記絶縁層の厚さは0.25mm以上である、請求項1に記載したダイレクトドライブモータ用玉軸受。   The ceramic constituting the insulating layer contains 99% by weight or more of alumina, and this insulating layer is formed by polishing the surface of the ceramic sprayed layer formed on the surface other than the surface provided with the raceway surface. The thickness of the ceramic sprayed layer is 0.4 mm or less excluding the continuous bent portion between adjacent surfaces. The thickness of the insulating layer obtained by polishing the ceramic sprayed layer is 0. The ball bearing for a direct drive motor according to claim 1, wherein the ball bearing is 25 mm or more. 絶縁層を、酸化チタンを含有するアルミナの溶射層とした、請求項1に記載したダイレクトドライブモータ用玉軸受。   The ball bearing for a direct drive motor according to claim 1, wherein the insulating layer is a sprayed layer of alumina containing titanium oxide. アルミナの溶射層に含有する酸化チタンを、0.01〜0.2重量%とした、請求項3に記載したダイレクトドライブモータ用玉軸受。   The ball bearing for a direct drive motor according to claim 3, wherein the titanium oxide contained in the sprayed layer of alumina is 0.01 to 0.2% by weight. アルミナの含有量を99重量%以上とした、請求項4に記載したダイレクトドライブモータ用玉軸受。   The ball bearing for a direct drive motor according to claim 4, wherein the alumina content is 99% by weight or more. 絶縁層を、ジルコニアを含有するアルミナの溶射層とした、請求項1に記載したダイレクトドライブモータ用玉軸受。   The ball bearing for a direct drive motor according to claim 1, wherein the insulating layer is a sprayed layer of alumina containing zirconia. 絶縁層を、酸化クロムを含有するアルミナの溶射層とした、請求項1に記載したダイレクトドライブモータ用玉軸受。   The ball bearing for a direct drive motor according to claim 1, wherein the insulating layer is a sprayed layer of alumina containing chromium oxide. 絶縁層であるセラミックス溶射層の厚さ寸法に関する精度と、このセラミックス溶射層を構成するアルミナの付着効率の向上とを目的として、粒径が10〜50μmで、平均粒径が15〜25μmであるアルミナを使用した、請求項2〜7のうちの何れか1項に記載したダイレクトドライブモータ用玉軸受。   The particle size is 10 to 50 μm and the average particle size is 15 to 25 μm for the purpose of improving the accuracy with respect to the thickness dimension of the ceramic sprayed layer, which is an insulating layer, and improving the adhesion efficiency of alumina constituting the ceramic sprayed layer. The ball bearing for direct drive motors according to any one of claims 2 to 7, wherein alumina is used.
JP2006040681A 2006-02-17 2006-02-17 Ball bearing for direct drive motor Pending JP2007218368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040681A JP2007218368A (en) 2006-02-17 2006-02-17 Ball bearing for direct drive motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040681A JP2007218368A (en) 2006-02-17 2006-02-17 Ball bearing for direct drive motor

Publications (1)

Publication Number Publication Date
JP2007218368A true JP2007218368A (en) 2007-08-30

Family

ID=38495890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040681A Pending JP2007218368A (en) 2006-02-17 2006-02-17 Ball bearing for direct drive motor

Country Status (1)

Country Link
JP (1) JP2007218368A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304318A1 (en) * 2005-10-27 2009-12-10 Nsk Ltd Electrolytic Erosion Preventing Insulated Rolling Bearing, Manufacturing Method Thereof, and Bearing Device
WO2014119631A1 (en) 2013-01-30 2014-08-07 日本精工株式会社 Multipoint contact ball bearing
US20150380124A1 (en) * 2013-04-25 2015-12-31 Coatec Gmbh Bearing Ring, Electrically Insulating Coating and Method for Applying an Electrically Insulating Coating
US10823229B2 (en) 2017-03-24 2020-11-03 Aktiebolaget Skf Rolling-element bearing including an electrically insulating layer
JP7241994B1 (en) * 2022-07-15 2023-03-17 三菱電機株式会社 Galvanometer scanner and laser processing machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090304318A1 (en) * 2005-10-27 2009-12-10 Nsk Ltd Electrolytic Erosion Preventing Insulated Rolling Bearing, Manufacturing Method Thereof, and Bearing Device
US8425120B2 (en) * 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
WO2014119631A1 (en) 2013-01-30 2014-08-07 日本精工株式会社 Multipoint contact ball bearing
US9593718B2 (en) 2013-01-30 2017-03-14 Nsk Ltd. Multipoint contact ball bearing
US20150380124A1 (en) * 2013-04-25 2015-12-31 Coatec Gmbh Bearing Ring, Electrically Insulating Coating and Method for Applying an Electrically Insulating Coating
KR20160002706A (en) * 2013-04-25 2016-01-08 코아텍 게엠베하 Bearing ring, electrically insulating coating and method for applying an electrically insulating coating
US9646737B2 (en) * 2013-04-25 2017-05-09 Coatec Gmbh Bearing ring, electrically insulating coating and method for applying an electrically insulating coating
KR102038367B1 (en) * 2013-04-25 2019-10-30 코아텍 게엠베하 Bearing ring, electrically insulating coating and method for applying an electrically insulating coating
US10823229B2 (en) 2017-03-24 2020-11-03 Aktiebolaget Skf Rolling-element bearing including an electrically insulating layer
JP7241994B1 (en) * 2022-07-15 2023-03-17 三菱電機株式会社 Galvanometer scanner and laser processing machine
WO2024013985A1 (en) * 2022-07-15 2024-01-18 三菱電機株式会社 Galvano scanner and laser beam machine

Similar Documents

Publication Publication Date Title
JP2007218368A (en) Ball bearing for direct drive motor
WO2014119631A1 (en) Multipoint contact ball bearing
JP2009287658A (en) Electrolytic corrosion preventive insulating rolling bearing
JP2008050669A (en) Insulating rolling bearing for electrical corrosion prevention
US7786637B2 (en) Touchdown bearing
JP2007292114A (en) Insulated rolling bearing for preventing electric erosion
JP2007292094A (en) Insulated rolling bearing for preventing electric erosion
JP2007198519A (en) Insulating roller bearing for preventing electric corrosion
JP2006214456A (en) Roller bearing
JP2006214456A5 (en)
JP5112830B2 (en) Tapered roller bearings
JP2010196861A (en) Roll bearing
JP2010001934A (en) Method of manufacturing raceway ring for electrolytic corrosion preventive insulated rolling bearing
JP2014105809A (en) Retainer for rolling bearing
WO2022270295A1 (en) Bearing device and electric motor
JP2007147072A (en) Electrolytic corrosion preventive insulating rolling bearing and its manufacturing method
WO2019146768A1 (en) Angular ball bearing
JPH04210124A (en) Electrically insulated bearing
JP5229499B2 (en) Magnetic bearing device and vacuum pump including the same
JP2006077944A (en) Insulating rolling bearing for preventing electric corrosion
JP2005061431A (en) Ball bearing
CN214727897U (en) Novel omnidirectional wheel, mobile base and mobile robot
WO2005040626A1 (en) Sealed roller bearing
JP4539861B2 (en) Touchdown bearing
JP2006189133A (en) Thrust roller bearing