WO2022270295A1 - Bearing device and electric motor - Google Patents

Bearing device and electric motor Download PDF

Info

Publication number
WO2022270295A1
WO2022270295A1 PCT/JP2022/022950 JP2022022950W WO2022270295A1 WO 2022270295 A1 WO2022270295 A1 WO 2022270295A1 JP 2022022950 W JP2022022950 W JP 2022022950W WO 2022270295 A1 WO2022270295 A1 WO 2022270295A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ring
free
side bearing
crowning
Prior art date
Application number
PCT/JP2022/022950
Other languages
French (fr)
Japanese (ja)
Inventor
正典 上野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202280041877.8A priority Critical patent/CN117480327A/en
Publication of WO2022270295A1 publication Critical patent/WO2022270295A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings

Definitions

  • the present invention relates to bearing devices and electric motors.
  • the one that uses ceramic forms an insulating coating on the outer ring or the like by plasma spraying.
  • the insulating coating is formed by plasma spraying, it is difficult to increase the thickness of the insulating coating due to manufacturing costs. From the viewpoint of preventing electrolytic corrosion of the bearing, it is desirable that the electrostatic capacity of the bearing is small. Therefore, the technique described in Patent Document 1 aims to solve this problem by optimizing the material and film thickness of the insulating coating.
  • Patent Document 2 when resin is used, there are problems of deformation of the resin film and problems of bearing temperature rise due to the heat insulating effect of the resin. Therefore, in Patent Document 2, by limiting the resin material of the insulating coating, the creep resistance of the insulating coating is improved, and the interference of the bearing is stable over time even under high temperature and high load conditions. offers. Further, in Patent Document 3, the insulating coating is made of a resin composition containing a synthetic resin, glass fiber, and a heat conductive substance, and the diameter of the glass fiber is specified, and the heat conductive substance is used. Rolling bearings with highly reliable anti-electrolytic corrosion function by specifying the specific resistance and thermal conductivity and forming an insulating coating with excellent mechanical strength in addition to creep resistance and heat dissipation. offers.
  • Patent Document 4 there is a conventional bearing that uses ceramic spheres as rolling elements.
  • the electrostatic capacity of the bearing is 1/100 or less of that of the ceramic sprayed insulating bearing described in the aforementioned Patent Document 1.
  • an insulating coating is not provided on the outer ring of the bearing or the like, so the problem of increase in bearing temperature due to deformation of the coating and heat insulating effect can be solved.
  • bearing devices for medium-sized and large-sized electric motors usually have deep-groove ball bearings, NH-type cylindrical roller bearings, and NUP-type cylindrical roller bearings on one side of the rotating shaft as fixed-side bearings, and on the other side as free-side bearings.
  • NU-type cylindrical roller bearings and N-type cylindrical roller bearings are generally used.
  • the NU type cylindrical roller bearing is a cylindrical roller bearing that has no ribs on the inner ring and has ribs on both sides of the outer ring
  • the N type cylindrical roller bearing has ribs on both sides of the inner ring and has ribs on the outer ring.
  • the NUP type cylindrical roller bearing is a cylindrical roller bearing that has a flange on one side of the inner ring, flanges on both sides of the outer ring, and a flange ring on the inner ring side.
  • the NH-type cylindrical roller bearing is a cylindrical roller bearing in which an L-shaped flange ring is combined with the inner ring side of the NJ-type cylindrical roller bearing (having a flange on one side of the inner ring and flanges on both sides of the outer ring). .
  • edge stress is generated at the axial end of the contact area.
  • crowning When crowning is provided on the rolling surface of the roller, there are cut crowning provided only at both ends in the roller axial direction and full crowning over the entire length of the roller. Further, the formation of the crowning portion is generally performed by polishing, barrel processing, or the like.
  • ceramic rollers have higher hardness than steel rollers such as ordinary bearing steel, making crowning difficult and requiring a long time to process. Therefore, crowned ceramic rollers are expensive to manufacture.
  • the insulation performance is superior, and unlike the resin film insulation bearing, the deformation of the film and the heat insulating effect do not affect the bearing. For this reason, ceramic rollers have not been widely used as insulating bearings for electric motors, although they are excellent in performance.
  • a bearing device includes a fixed-side bearing structure having a fixed-side bearing and a free-side bearing structure having a free-side bearing, wherein the free-side bearing comprises a pair of bearing rings and a pair of bearing rings. and a plurality of rolling elements interposed between the raceway surfaces of the bearing ring, wherein the rolling elements are ceramic rollers having no crowning on their rolling surfaces, and at least one of The other bearing ring facing surface of the bearing ring is formed by the crowning portions at both ends in the axial direction and the straight portion between the crowning portions, the total length of the roller of the free side bearing is L R , and the roller of the free side bearing is The length in the axial direction of the chamfer is L CH , the straight length of the raceway surface of the free side bearing is L ST , the axial clearance of the fixed side bearing is ⁇ FXA , and the axial clearance of the free side bearing ring and roller is ⁇ FLA . It is set so that the following formula 1 is satisfied when
  • the bearing device of the present invention if it is set so as to satisfy the numerical formula shown in Equation 1, even if axial relative movement occurs between the raceway ring and the rollers having the crowning portion, the straight portion of the raceway surface and the rollers will not roll. It is possible to effectively prevent the contact of the face ends. Therefore, it is possible to suppress the edge stress due to the contact between the straight portion of the raceway surface and the end of the roller rolling surface.
  • the free-side bearing is a single-row cylindrical roller bearing in which one bearing ring constituting the inner ring has no flange and the other bearing ring constituting the outer ring has flanges on both sides in the axial direction, and at least constitutes the inner ring.
  • the outer diameter surface of one of the bearing rings may be formed by crowning portions at both ends in the axial direction and straight portions between the crowning portions.
  • the free-side bearing is a single-row cylindrical roller bearing in which the other bearing ring constituting the outer ring has no flange and one bearing ring constituting the inner ring has flanges on both sides in the axial direction, and at least the outer ring is
  • the inner diameter surface of the other bearing ring can be formed by the crowning portions at both ends in the axial direction and the straight portion between the crowning portions.
  • the ceramic rollers contain silicon nitride as the main component.
  • Silicon nitride exhibits excellent properties such as high-temperature mechanical strength, thermal shock resistance, wear resistance, corrosion resistance, electrical insulation, and high toughness. Therefore, ceramic rollers containing silicon nitride as a main component exhibit excellent performance as rollers and can provide stable bearings over a long period of time.
  • An electric motor includes at least a rotor, a stator, and a rotating shaft for transmitting rotation of the rotor to the outside, wherein the bearing device rotatably supports the rotating shaft. is.
  • FIG. 1 is an enlarged cross-sectional view of a free side bearing of the present invention
  • FIG. FIG. 4 is an enlarged cross-sectional view of the inner ring of the free-side bearing of the present invention
  • 1 is an enlarged cross-sectional view of a main part of a free-side bearing according to the present invention
  • FIG. It is sectional drawing which shows a free side bearing and shows an inner ring
  • 4 is an enlarged cross-sectional view of a fixed-side bearing
  • FIG. FIG. 2 is a cross-sectional view of a main part of a traction motor for railway vehicles
  • FIG. 5 is an enlarged cross-sectional view of a main part showing another embodiment of a free-side bearing;
  • FIG. 6 shows a traction motor for railway vehicles, which is an electric motor.
  • a frame 11 arranged to surround the child 13 is mainly provided.
  • a main shaft (rotating shaft) 15 is fixed to a portion including the central portion of the rotor 13 so as to pass therethrough.
  • the main motor 10 is supported by a bearing device according to the present invention so that the main shaft 15 can rotate about the axis with respect to a member disposed facing the outer peripheral surface 15a of the main shaft 15 .
  • This bearing device includes a fixed side bearing structure M1 having a fixed side bearing 21 and a free side bearing structure M2 having a free side bearing 22 .
  • a three-phase alternating current is supplied to the coils 12a of the stator 12.
  • a rotating magnetic field is formed around the rotor 13, and an induced current is generated in the rotor 13 by this rotating magnetic field.
  • a rotating magnetic field is formed around the rotor 13 and an induced current is generated in the rotor 13, thereby generating an electromagnetic force that acts to rotate the rotor 13 around the rotation axis. 13 rotates.
  • the rotation of the rotor 13 is extracted outside through the main shaft 15 .
  • the fixed-side bearing structure M1 of the bearing device includes a fixed-side bearing 21, a housing 25 as a fixed member, annular parts 26, 27, and the like.
  • the fixed side bearing 21 is a rolling bearing including a pair of bearing rings and a plurality of rolling elements interposed between the raceway surfaces of the pair of bearing rings. In this case, as shown in FIG. and a cylindrical roller 33 as a rolling element to be mounted.
  • the stationary side bearing 21 is a single-row NH-shaped cylindrical roller bearing.
  • the NH-type cylindrical roller bearing is a cylindrical roller bearing in which an L-shaped collar ring is combined with the inner ring 31 side of the NJ-type cylindrical roller bearing.
  • the NJ-type cylindrical roller bearing has a flange on one side of the inner ring and flanges on both sides of the outer ring. Therefore, as shown in FIG. 5, the fixed-side bearing 21 has an inner ring 31 with a flange 31b on one side, an outer ring 32 with flanges 32b, 32b on both sides, and an L-shaped flange ring 34 on the inner ring 31. combined. Cylindrical rollers 33 are held in pockets 30 a of retainer 30 interposed between inner ring 31 and outer ring 32 .
  • the inner ring 31, the outer ring 32, and the collar ring 34 are made of, for example, high-carbon chromium bearing steel such as JIS standard SUJ2, machine structural alloy such as SCM420, or machine structural carbon steel such as S53C. etc.
  • the cylindrical rollers 33 as rolling elements may be made of an iron-based metal material, ceramics, or the like. Examples of iron-based metal materials include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structural use, cold-rolled steel, hot-rolled steel, and the like. Ceramics are based on silicon nitride (Si 3 N 4 ).
  • the ceramic material is not limited to silicon nitride, and may be zirconia (Zr), alumina (Al 2 O 3 ), or the like.
  • the retainer material may be a metal material or a resin material. Metal materials include cold-rolled or hot-rolled steel, and resin materials preferably include engineering plastics (engineering plastics). engineering plastics) are included.
  • the free side bearing structure M2 includes a free side bearing 22, a housing 35 as a fixed member, annular parts 36 and 37, and the like.
  • the free side bearing 22 is a rolling bearing having a pair of bearing rings and a plurality of rolling elements interposed between the raceway surfaces of the pair of bearing rings.
  • an inner ring 41 constituting one bearing ring, an outer ring 42 constituting the other bearing ring, and a raceway surface 41a of the inner ring 41 and a raceway surface 42a of the outer ring 42 are interposed. and a cylindrical roller 43 as a rolling element to be mounted. Further, it is held in a pocket 40a of the retainer 40 interposed between the raceway surface 41a of the inner ring 41 and the raceway surface 42a of the outer ring 42.
  • FIG. 1 the free side bearing 22 is a rolling bearing having a pair of bearing rings and a plurality of rolling elements interposed between the raceway surfaces of the pair of bearing rings.
  • the free side bearing 22 is a single row NU cylindrical roller bearing in this embodiment. Therefore, the inner ring 41 has no flange, and the outer ring 42 has flanges 42b, 42b on both sides. In addition, relief portions 39, 39 are provided at axial ends of the raceway surface 42a of the outer ring 42. As shown in FIG.
  • the outer surface (surface facing the outer ring) of the inner ring 41 of the free side bearing 22 is defined by crowning portions 50, 50 at both ends in the axial direction and the straight portion 51 between the crowning portions 50, 50, as shown in FIG. forming.
  • crowning portions 50, 50 at both ends in the axial direction and the straight portion 51 between the crowning portions 50, 50, as shown in FIG. forming.
  • the ceramic roller 43 is mainly made of silicon nitride ( Si3N4 ), for example. be a component.
  • the ceramic material is not limited to silicon nitride, and may be zirconia (Zr), alumina (Al 2 O 3 ), or the like.
  • the cylindrical roller 43 has a chamfered portion 43b having a convex rounded shape at a corner portion between the end surface and the outer diameter surface (roller rolling surface).
  • the materials of the inner ring 41, the outer ring 42 and the retainer 40 of the free side bearing 22 are the same as the materials of the inner ring 41, the outer ring 42 and the retainer 40 of the fixed side bearing 21.
  • the total roller length of the free side bearing 22 is L R
  • the roller chamfered axial length of the free side bearing 22 (the axial length of the chamfered portion 43b) is L
  • CH be the length of the straight portion of the inner ring raceway surface of the free side bearing (the axial length of the straight portion 51)
  • L ST be the axial clearance of the flange 42b and the roller 43 of the raceway ring (outer ring 42) of the free side bearing 22.
  • the free-side NU cylindrical roller bearing 22 when the fixed-side bearing 21 is an NH-type cylindrical roller bearing with an outer diameter of 190 mm, and the free-side bearing 22 is an NU-type cylindrical roller bearing with an outer diameter of 320 mm, the free-side NU cylindrical roller bearing
  • the total roller length L R of the bearing 22 is 45 mm
  • the chamfered axial length L CH of the free side NU cylindrical roller bearing 22 is 2 mm
  • the flange 42b of the outer ring 42 of the free side NU cylindrical roller bearing 22 and the axial direction of the rollers 43 are Assuming that the clearance ⁇ FLA is 0.1 mm and the axial clearance ⁇ FXA of the fixed side NH cylindrical roller bearing 21 is 0.5 mm, the straight portion of the inner ring raceway surface of the free side NU cylindrical roller bearing 22 can be obtained from the above-described Equation 2.
  • the length L ST of 51 is L ST ⁇ 40.4 (mm).
  • the bearing device of the present invention if a setting is made so as to satisfy the numerical formula shown in Equation 2, even if axial relative movement occurs between the inner ring 41 having the crowning portions 50 and the cylindrical rollers 43, the inner ring The raceway surface straight portion 51 can effectively prevent contact with the roller rolling surface end, and the edge stress due to the contact between the inner ring raceway surface straight portion 51 and the roller rolling surface end can be suppressed.
  • the cylindrical rollers 43 of the free side bearing 22 are made of ceramic rollers mainly composed of silicon nitride, so that the cylindrical rollers 43 of the free side bearing 22 have excellent high-temperature mechanical strength, thermal shock resistance, wear resistance, and corrosion resistance. , showing excellent properties such as electrical insulation and high toughness. Therefore, the ceramic rollers 43 containing silicon nitride as a main component exhibit excellent performance as cylindrical rollers, and can provide stable bearings over a long period of time.
  • the bearing device is optimal for electric motors, particularly traction motors for railway vehicles. That is, in the bearing device in the electric locomotive main shaft motor, the free side bearing is often arranged on the gear side that mainly supports the gear load. This makes it possible to provide high-quality electric locomotive main shaft motors.
  • the rotor of the electric motor may move axially by the axial clearance of the NH side cylindrical roller bearing 21 on the stationary side during use of the electric motor.
  • the cylindrical rollers 43 of the NU-type cylindrical roller bearing 22 on the free side are axially movable by the clearance between the flange 42b of the outer ring 42 and the cylindrical rollers 43. As shown in FIG. Therefore, the inner ring 41 and the rollers 43 of the NU-type cylindrical roller bearing 22 on the free side can undergo relative axial movement equal to the sum of these (see FIG. 4).
  • the axial length of the inner ring raceway surface is sufficiently longer than the straight length of the roller rolling surface, so the above problem does not arise. .
  • the amount of relative axial movement between each bearing ring and roller is Determined only by clearance. For this reason, the axial clearance of the fixed side bearing, which is the other bearing used on the same axis, must be considered when determining the crowning dimension of the inner ring raceway surface. It is unique to NU cylindrical roller bearings.
  • an NU-type cylindrical roller bearing is used as the free-side bearing 22, but an N-type cylindrical roller bearing as shown in FIG. 7 may be used. It is a cylindrical roller bearing with In this case, the N-type cylindrical roller bearing has flanges 61b, 61b provided at both ends in the axial direction of the raceway surface 61a of the inner ring 61, and crowning portions 70 at both ends in the axial direction. 70 and a straight portion 71 between the crowning portions 70 , 70 .
  • Cylindrical rollers 73 as rolling elements are held in pockets 60 a of the retainer 60 interposed between the raceway surface 61 a of the inner ring 61 and the raceway surface 62 a of the outer ring 62 .
  • a raceway surface 61 a of the inner ring 61 is provided with relief portions 69 , 69 at both ends in the axial direction.
  • the total length of the rollers of the free side bearing 22 is L R
  • the axial length of the chamfered rollers of the free side bearing 22 is L CH
  • the straight length of the raceway surface of the free side bearing is L ST
  • the length of the straight portion of the free side bearing is L ST.
  • the axial clearance of the bearing rings and rollers is ⁇ FLA
  • the axial clearance of the fixed-side bearing is ⁇ FXA
  • Equation 2 above is established.
  • the free-side bearing 22 is an N-type cylindrical roller bearing shown in FIG. It is possible to achieve the same effects as in the case of using the NU-type cylindrical roller bearing.
  • N-type cylindrical roller bearings NUP-type cylindrical roller bearings, ball bearings (deep groove ball bearings), and the like may also be used.
  • the NUP type cylindrical roller bearing is a cylindrical roller bearing in which an inner ring has a flange on one side, an outer ring has flanges on both sides, and a flange ring is combined with the inner ring side.
  • the shape of the crowning portion 50 (70) may be linear (tapered surface), a single arc, or a combination of a plurality of arcs.
  • Applications of the bearing device are not limited to traction motors for electric motors and railway vehicles, but can be used for various devices and structures such as general machinery, electric machinery, and transportation machinery.
  • the inner ring and outer ring may have a straight portion and a crowning portion on the raceway surface. That is, the outer diameter surface of the inner ring has the straight portion and the crowning portion, and the inner diameter surface of the outer ring has the straight portion and the crowning portion. Further, the drop amount of the crowning portions formed on the inner ring and the outer ring can be arbitrarily set as long as the above-described formula (2) is satisfied for the bearing device.
  • the bearing device of the present invention can be used for electric motors such as traction motors for railway vehicles.
  • An electric motor for example, includes a rotor, a stator, and a rotating shaft that transmits the rotation of the rotor to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

In the present invention, a free-side bearing is a rolling bearing that comprises: a pair of race rings; and a plurality of rolling elements that are interposed between raceway surfaces of the pair of race rings. The rolling elements are constituted by ceramic rollers which do not have a crown section on the rolling surfaces thereof. In at least one of the race rings, a surface thereof opposing the other race ring is formed by a straight section between a crown section and a crown section at both ends in the axial direction.

Description

軸受装置および電動機Bearing gear and electric motor
 本発明は、軸受装置および電動機に関する。 The present invention relates to bearing devices and electric motors.
 鉄道車両用主電動機などの電動機に使用される軸受装置における軸受(転がり軸受)は、電食防止のため、従来から、電食防止転がり軸受等が使用される。また、電食防止ころがり軸受には、絶縁被膜(絶縁皮膜)に、セラミックを用いるもの(特許文献1)、樹脂を用いるもの(特許文献2、及び特許文献3)等がある。 For the bearings (rolling bearings) in bearing devices used in electric motors such as traction motors for railway vehicles, conventionally anti-electrical corrosion rolling bearings have been used in order to prevent electrolytic corrosion. In addition, there are anti-electrical corrosion rolling bearings that use ceramics (Patent Document 1) and resins (Patent Documents 2 and 3) for insulating coatings (insulating coatings).
 セラミックを用いるもの(特許文献1のもの)は、外輪等に、プラズマ溶射することによって絶縁被膜を形成している。しかしながら、プラズマ溶射することによって絶縁被膜を形成する場合、製造コストとの兼ね合いで絶縁被膜の膜厚を厚くすることが難しく、特に、寸法の大きい軸受では静電容量が大きくなる。また、軸受の電食防止の観点では、軸受の静電容量は小さい方が望ましい。そこで、特許文献1に記載のものでは、絶縁被膜の材質や膜厚を最適化することで、この課題の解決を目指している。 The one that uses ceramic (the one in Patent Document 1) forms an insulating coating on the outer ring or the like by plasma spraying. However, when the insulating coating is formed by plasma spraying, it is difficult to increase the thickness of the insulating coating due to manufacturing costs. From the viewpoint of preventing electrolytic corrosion of the bearing, it is desirable that the electrostatic capacity of the bearing is small. Therefore, the technique described in Patent Document 1 aims to solve this problem by optimizing the material and film thickness of the insulating coating.
 また、樹脂を用いる場合、樹脂被膜変形の問題や樹脂の断熱作用による軸受温度上昇の課題があった。そこで、特許文献2では、絶縁被膜の樹脂材質を限定することによって、絶縁被膜の耐クリープ性を良く、高温高荷重の条件でも長時間にわたって軸受の締め代が経時的に安定する防食防止転がり軸受を提供している。また、特許文献3では、絶縁被膜を、合成樹脂と、ガラス繊維と、熱伝導性物質とを含む樹脂組成物からなるようにするとともに、ガラス繊維の直径を特定したり、熱伝導性物質の比抵抗及び熱伝導率を特定したりすることにより、耐クリープ性及び放熱性に加えて機械的強度にも優れた絶縁被膜を形成することで、信頼性の高い電食防止機能を有する転がり軸受を提供している。 In addition, when resin is used, there are problems of deformation of the resin film and problems of bearing temperature rise due to the heat insulating effect of the resin. Therefore, in Patent Document 2, by limiting the resin material of the insulating coating, the creep resistance of the insulating coating is improved, and the interference of the bearing is stable over time even under high temperature and high load conditions. offers. Further, in Patent Document 3, the insulating coating is made of a resin composition containing a synthetic resin, glass fiber, and a heat conductive substance, and the diameter of the glass fiber is specified, and the heat conductive substance is used. Rolling bearings with highly reliable anti-electrolytic corrosion function by specifying the specific resistance and thermal conductivity and forming an insulating coating with excellent mechanical strength in addition to creep resistance and heat dissipation. offers.
 また、従来には、軸受の転動体として、セラミック製の球を用いたものがある(特許文献4)。このように、セラミック製の球を用いた場合、軸受の静電容量を、前記した特許文献1に記載されたセラミック溶射絶縁軸受の1/100以下となる。また、セラミック製の球を用いる場合、軸受外輪等に絶縁被膜を設けないので、被膜変形や断熱作用による軸受温度上昇の課題を解決することができる。 In addition, there is a conventional bearing that uses ceramic spheres as rolling elements (Patent Document 4). In this way, when ceramic balls are used, the electrostatic capacity of the bearing is 1/100 or less of that of the ceramic sprayed insulating bearing described in the aforementioned Patent Document 1. In addition, when ceramic balls are used, an insulating coating is not provided on the outer ring of the bearing or the like, so the problem of increase in bearing temperature due to deformation of the coating and heat insulating effect can be solved.
 ところで、中型や大型の電動機用軸受装置は、通常、回転軸の一方に固定側軸受として、深溝玉軸受やNH形円筒ころ軸受、NUP形円筒ころ軸受が配置され、他方に自由側軸受として、NU形円筒ころ軸受やN形円筒ころ軸受が配置されるのが一般的である。ここで、NU形円筒ころ軸受は、内輪に鍔がなく、外輪の両側に鍔をもつ円筒ころ軸受であり、N形円筒ころ軸受は、内輪の両側に鍔をもち、外輪に鍔をもたない円筒ころ軸受であり、NUP形円筒ころ軸受は、内輪の片側に鍔をもち、外輪の両側に鍔をもち、内輪側に鍔輪を組み合わせた円筒ころ軸受である。また、NH形円筒ころ軸受は、NJ形(内輪の片に鍔をもち、外輪の両側に鍔をもつもの)の円筒ころ軸受の内輪側に、L形鍔輪を組み合わせた円筒ころ軸受である。 By the way, bearing devices for medium-sized and large-sized electric motors usually have deep-groove ball bearings, NH-type cylindrical roller bearings, and NUP-type cylindrical roller bearings on one side of the rotating shaft as fixed-side bearings, and on the other side as free-side bearings. NU-type cylindrical roller bearings and N-type cylindrical roller bearings are generally used. Here, the NU type cylindrical roller bearing is a cylindrical roller bearing that has no ribs on the inner ring and has ribs on both sides of the outer ring, and the N type cylindrical roller bearing has ribs on both sides of the inner ring and has ribs on the outer ring. The NUP type cylindrical roller bearing is a cylindrical roller bearing that has a flange on one side of the inner ring, flanges on both sides of the outer ring, and a flange ring on the inner ring side. The NH-type cylindrical roller bearing is a cylindrical roller bearing in which an L-shaped flange ring is combined with the inner ring side of the NJ-type cylindrical roller bearing (having a flange on one side of the inner ring and flanges on both sides of the outer ring). .
 円筒ころ軸受では、内輪または外輪の軌道面ところ転動面(円筒ころの外径面で構成される面)が線接触するため、接触領域軸方向端に所謂エッジ応力が発生する。このエッジ応力を緩和するため、軌道面(内輪や外輪の軌道面)やころ転動面のいずれか又は双方にクラウニング部を設けるのが一般的である(特許文献5及び特許文献6参照)。すなわち、このようなクラウニング部を設けなければ、発生するエッジ応力により、当該部位に剥離などが生じ、軸受の早期破損につながるおそれがあるからである。 In a cylindrical roller bearing, since the raceway surface of the inner or outer ring and the roller rolling surface (surface formed by the outer diameter surface of the cylindrical roller) are in line contact, so-called edge stress is generated at the axial end of the contact area. In order to alleviate this edge stress, it is common to provide a crowning portion on either or both of the raceway surface (the raceway surface of the inner ring and the outer ring) or the roller rolling surface (see Patent Documents 5 and 6). That is, if such a crowning portion is not provided, the generated edge stress may cause peeling or the like at the relevant portion, leading to premature failure of the bearing.
特開2007-333031号公報Japanese Patent Application Laid-Open No. 2007-333031 特開2002-168253公報Japanese Patent Laid-Open No. 2002-168253 特開2005-140168号公報Japanese Patent Application Laid-Open No. 2005-140168 特開2013-139842号公報JP 2013-139842 A 特開2007-146941公報Japanese Patent Application Laid-Open No. 2007-146941 特開2016-089954号公報JP 2016-089954 A
 ころの転動面にクラウニング部を設ける場合、ころ軸方向の両端部のみに設けるカットクラウニングと、ころ全長にわたるフルクラウニングがある。また、クラウニング部の形成は、一般的に、研磨加工やバレル加工等で行われる。 When crowning is provided on the rolling surface of the roller, there are cut crowning provided only at both ends in the roller axial direction and full crowning over the entire length of the roller. Further, the formation of the crowning portion is generally performed by polishing, barrel processing, or the like.
 しかしながら、セラミック製ころは、通常の軸受鋼などの鋼製ころに比べて硬度が高くクラウニング加工が困難で加工に長時間を要することになる。このため、クラウニング付きセラミック製ころは製造コストが高い。しかしながら、セラミック溶射絶縁軸受や樹脂被膜絶縁軸受に比べて、絶縁性能に優れ、樹脂被膜絶縁軸受のような被膜の変形や断熱作用の影響がない。このため、セラミック製ころは性能的に優れるにも関わらず電動機用絶縁軸受として普及が進んでない。 However, ceramic rollers have higher hardness than steel rollers such as ordinary bearing steel, making crowning difficult and requiring a long time to process. Therefore, crowned ceramic rollers are expensive to manufacture. However, compared to the ceramic sprayed insulation bearing and the resin film insulation bearing, the insulation performance is superior, and unlike the resin film insulation bearing, the deformation of the film and the heat insulating effect do not affect the bearing. For this reason, ceramic rollers have not been widely used as insulating bearings for electric motors, although they are excellent in performance.
 そこで、本発明は斯かる実情に鑑み、電動機用に従来使用されてきたセラミック溶射絶縁軸受や樹脂被膜絶縁軸受よりも性能の優れた軸受装置を提供しようとするものである。 Therefore, in view of such circumstances, it is an object of the present invention to provide a bearing device that is superior in performance to ceramic sprayed insulation bearings and resin film insulation bearings conventionally used for electric motors.
 本発明の軸受装置は、固定側軸受を有する固定側軸受構造と自由側軸受を有する自由側軸受構造とを備えた軸受装置であって、前記自由側軸受は、一対の軌道輪と、この一対の軌道輪の軌道面間に介装される複数の転動体とを備えた転がり軸受であり、前記転動体は、転動面にクラウニング部を有さないセラミック製ころからなり、少なくともいずれか一方の軌道輪における他方の軌道輪対向面を、軸方向両端部のクラウニング部とこのクラウニング部との間のストレート部とで形成し、自由側軸受のころ全長をLRとし、自由側軸受のころ面取り軸方向長さをLCHとし、自由側軸受の軌道面ストレート部長さをLSTとし、固定側軸受のアキシアルすきまをδFXAとし、自由側軸受の軌道輪ところの軸方向すきまをδFLAとしたときに、次の数1の関係となるように設定したものである。
Figure JPOXMLDOC01-appb-M000002
A bearing device according to the present invention includes a fixed-side bearing structure having a fixed-side bearing and a free-side bearing structure having a free-side bearing, wherein the free-side bearing comprises a pair of bearing rings and a pair of bearing rings. and a plurality of rolling elements interposed between the raceway surfaces of the bearing ring, wherein the rolling elements are ceramic rollers having no crowning on their rolling surfaces, and at least one of The other bearing ring facing surface of the bearing ring is formed by the crowning portions at both ends in the axial direction and the straight portion between the crowning portions, the total length of the roller of the free side bearing is L R , and the roller of the free side bearing is The length in the axial direction of the chamfer is L CH , the straight length of the raceway surface of the free side bearing is L ST , the axial clearance of the fixed side bearing is δ FXA , and the axial clearance of the free side bearing ring and roller is δ FLA . It is set so that the following formula 1 is satisfied when
Figure JPOXMLDOC01-appb-M000002
 本発明の軸受装置では、数1で示される数式を満たすように設定すれば、クラウニング部を有する軌道輪ところとの間に、軸方向相対動きが生じたとしても、軌道面ストレート部ところ転動面端の接触を有効に防止できる。このため、この軌道面ストレート部ところ転動面端との接触によるエッジ応力を抑制することができる。 In the bearing device of the present invention, if it is set so as to satisfy the numerical formula shown in Equation 1, even if axial relative movement occurs between the raceway ring and the rollers having the crowning portion, the straight portion of the raceway surface and the rollers will not roll. It is possible to effectively prevent the contact of the face ends. Therefore, it is possible to suppress the edge stress due to the contact between the straight portion of the raceway surface and the end of the roller rolling surface.
 前記自由側軸受を、内輪を構成する一方の軌道輪に鍔がなく、外輪を構成する他方の軌道輪に軸方向両側に鍔を有する単列円筒ころ軸受とし、かつ、少なくとも、前記内輪を構成する一方の軌道輪の外径面を、軸方向両端部のクラウニング部とこのクラウニング部との間のストレート部とで形成したものとできる。 The free-side bearing is a single-row cylindrical roller bearing in which one bearing ring constituting the inner ring has no flange and the other bearing ring constituting the outer ring has flanges on both sides in the axial direction, and at least constitutes the inner ring. The outer diameter surface of one of the bearing rings may be formed by crowning portions at both ends in the axial direction and straight portions between the crowning portions.
 このように設定することによって、内輪と円筒ころとの間に、軸方向相対動きが生じたとしても、内輪の軌道面ストレート部ところ転動面端の接触を有効に防止でき、この軌道面ストレート部ところ転動面端との接触によるエッジ応力を抑制することができる。 With this setting, even if relative axial movement occurs between the inner ring and the cylindrical rollers, it is possible to effectively prevent contact between the inner ring raceway surface straight portion and the roller rolling surface ends. Edge stress due to contact with the end of the roller rolling surface can be suppressed.
 また、前記自由側軸受を、外輪を構成する他方の軌道輪に鍔がなく、内輪を構成する一方の軌道輪に軸方向両側に鍔を有する単列円筒ころ軸受とし、かつ、少なくとも、外輪を構成する他方の軌道輪の内径面を、軸方向両端部のクラウニング部とこのクラウニング部との間のストレート部とで形成したものとできる。 Further, the free-side bearing is a single-row cylindrical roller bearing in which the other bearing ring constituting the outer ring has no flange and one bearing ring constituting the inner ring has flanges on both sides in the axial direction, and at least the outer ring is The inner diameter surface of the other bearing ring can be formed by the crowning portions at both ends in the axial direction and the straight portion between the crowning portions.
 このように設定することによって、外輪と円筒ころとの間に、軸方向相対動きが生じたとしても、外輪の軌道面ストレート部ところ転動面端の接触を有効に防止でき、この軌道面ストレート部ところ転動面端との接触によるエッジ応力を抑制することができる。 With this setting, even if relative axial movement occurs between the outer ring and the cylindrical rollers, it is possible to effectively prevent contact between the outer ring raceway surface straight portion and the roller rolling surface ends. Edge stress due to contact with the end of the roller rolling surface can be suppressed.
 セラミック製ころが窒化ケイ素を主成分とするのが好ましい。窒化ケイ素は、高温機械強度,耐熱衝撃性,耐摩耗性,耐食性,電気絶縁性、及び、高靭性などに優れた特性を示す。このため、窒化ケイ素を主成分とするセラミック製ころは、ころとして優れた性能を示し、長期にわたって安定した軸受を提供できる。 It is preferable that the ceramic rollers contain silicon nitride as the main component. Silicon nitride exhibits excellent properties such as high-temperature mechanical strength, thermal shock resistance, wear resistance, corrosion resistance, electrical insulation, and high toughness. Therefore, ceramic rollers containing silicon nitride as a main component exhibit excellent performance as rollers and can provide stable bearings over a long period of time.
 本発明に係る電動機は、少なくとも、回転子と、固定子と、回転子の回転を外部に伝える回転軸とを備えた電動機であって、前記軸受装置で前記回転軸を回転自在に支持するものである。 An electric motor according to the present invention includes at least a rotor, a stator, and a rotating shaft for transmitting rotation of the rotor to the outside, wherein the bearing device rotatably supports the rotating shaft. is.
 本発明の電動機は、クラウニング部を有す軌道輪と円筒ころとの間に、軸方向相対動きが生じたとしても、軌道面ストレート部ところ転動面端の接触を有効に防止でき、軌道面ストレート部ところ転動面端との接触によるエッジ応力を抑制することができる。このため、電動機、特に、鉄道車両用主電動機に最適な軸受装置を用いることとなる。 In the electric motor of the present invention, even if relative axial movement occurs between the raceway ring having the crowning portion and the cylindrical roller, contact between the straight portion of the raceway surface and the end of the rolling contact surface of the roller can be effectively prevented. It is possible to suppress edge stress due to contact between the straight portion and the end of the roller rolling surface. For this reason, an optimal bearing device is used for electric motors, particularly traction motors for railway vehicles.
 エッジ応力を抑制することで、軸受早期破損を回避することができる。このため、従来から提案されているセラミック溶射軸受や樹脂被膜絶縁軸受よりも性能的に優れたセラミック転動体絶縁円筒ころ軸受を安価に提供できる。 By suppressing edge stress, early bearing failure can be avoided. Therefore, it is possible to inexpensively provide a ceramic rolling element insulated cylindrical roller bearing that is superior in performance to conventionally proposed ceramic sprayed bearings and resin film insulated bearings.
本発明の自由側軸受の拡大断面図である。1 is an enlarged cross-sectional view of a free side bearing of the present invention; FIG. 本発明の自由側軸受の内輪の拡大断面図であるFIG. 4 is an enlarged cross-sectional view of the inner ring of the free-side bearing of the present invention; 本発明の自由側軸受の要部拡大断面図である。1 is an enlarged cross-sectional view of a main part of a free-side bearing according to the present invention; FIG. 自由側軸受を示し、内輪ところと軸方向相対動き量を示す断面図である。It is sectional drawing which shows a free side bearing and shows an inner ring|wheel roller and axial direction relative motion amount. 固定側軸受の拡大断面図である。4 is an enlarged cross-sectional view of a fixed-side bearing; FIG. 鉄道車両用主電動機の要部断面図である。FIG. 2 is a cross-sectional view of a main part of a traction motor for railway vehicles; 自由側軸受の他の実施形態を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing another embodiment of a free-side bearing;
 以下本発明の実施の形態を図1~図7に基づいて説明する。図6は、電動機である鉄道車両用主電動機を示し、この主電動機10は、コイル12aを有する固定子12と、固定12に対向するように配置された回転子13と、固定子12および回転子13を取り囲むように配置されたフレーム11とを主に備えている。回転子13の中心部を含む部位には、主軸(回転軸)15が貫通するように固定されている。また、主電動機10は、主軸15を主軸15の外周面15aに対向して配置される部材に対して軸周りに回転自在に、本発明に係る軸受装置にて支持されている。この軸受装置は、固定側軸受21を有する固定側軸受構造M1と自由側軸受22を有する自由側軸受構造M2とを備える。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 7. FIG. FIG. 6 shows a traction motor for railway vehicles, which is an electric motor. A frame 11 arranged to surround the child 13 is mainly provided. A main shaft (rotating shaft) 15 is fixed to a portion including the central portion of the rotor 13 so as to pass therethrough. Further, the main motor 10 is supported by a bearing device according to the present invention so that the main shaft 15 can rotate about the axis with respect to a member disposed facing the outer peripheral surface 15a of the main shaft 15 . This bearing device includes a fixed side bearing structure M1 having a fixed side bearing 21 and a free side bearing structure M2 having a free side bearing 22 .
 この主電動機10の動作について説明すると、まず、3相交流電流が固定子12のコイル12aに供給される。このとき、回転子13の周りに回転磁界が形成され、この回転磁界により回転子13に誘導電流が発生する。このように、回転子13の周りに回転磁界が形成され、かつ回転子13に誘導電流が発生することにより、回転子13を回転軸周りに回転させるように働く電磁力が発生し、回転子13が回転する。そして、回転子13の当該回転は、主軸15を介して外部に取り出される。  The operation of the main motor 10 will be described. First, a three-phase alternating current is supplied to the coils 12a of the stator 12. At this time, a rotating magnetic field is formed around the rotor 13, and an induced current is generated in the rotor 13 by this rotating magnetic field. In this manner, a rotating magnetic field is formed around the rotor 13 and an induced current is generated in the rotor 13, thereby generating an electromagnetic force that acts to rotate the rotor 13 around the rotation axis. 13 rotates. Then, the rotation of the rotor 13 is extracted outside through the main shaft 15 .
 軸受装置の固定側軸受構造M1は、固定側軸受21と、固定部材としてのハウジング25と、環状部品26、27等を備えたものである。また、固定側軸受21は、一対の軌道輪と、この一対の軌道輪の軌道面間に介装される複数の転動体と備えた転がり軸受からなる。この場合、図5に示すように、一方の軌道輪を構成する内輪31と、他方の軌道輪を構成する外輪32と、内輪31の軌道面31aと外輪32の軌道面32aとの間に介装される転動体としての円筒ころ33とを備える。 The fixed-side bearing structure M1 of the bearing device includes a fixed-side bearing 21, a housing 25 as a fixed member, annular parts 26, 27, and the like. The fixed side bearing 21 is a rolling bearing including a pair of bearing rings and a plurality of rolling elements interposed between the raceway surfaces of the pair of bearing rings. In this case, as shown in FIG. and a cylindrical roller 33 as a rolling element to be mounted.
 また、この実施形態では、固定側軸受21を、単列のNH形の円筒ころ軸受としている。NH形の円筒ころ軸受は、NJ形の円筒ころ軸受の内輪31側に、L形鍔輪を組み合わせた円筒ころ軸受である。ここで、NJ形の円筒ころ軸受は、内輪の片側に鍔をもち、外輪の両側に鍔をもつものである。このため、固定側軸受21は、図5に示すように、内輪31に片側に鍔31bを有し、外輪32の両側に鍔部32b、32bを有し、内輪31にL形鍔輪34が組み合わされている。また、円筒ころ33は、内輪31と外輪32との間に介在される保持器30におけるポケット30aに保持されている。 Also, in this embodiment, the stationary side bearing 21 is a single-row NH-shaped cylindrical roller bearing. The NH-type cylindrical roller bearing is a cylindrical roller bearing in which an L-shaped collar ring is combined with the inner ring 31 side of the NJ-type cylindrical roller bearing. Here, the NJ-type cylindrical roller bearing has a flange on one side of the inner ring and flanges on both sides of the outer ring. Therefore, as shown in FIG. 5, the fixed-side bearing 21 has an inner ring 31 with a flange 31b on one side, an outer ring 32 with flanges 32b, 32b on both sides, and an L-shaped flange ring 34 on the inner ring 31. combined. Cylindrical rollers 33 are held in pockets 30 a of retainer 30 interposed between inner ring 31 and outer ring 32 .
 ところで、固定側軸受21において、内輪31、外輪32、及び鍔輪34は、例えば、JIS規格SUJ2などの高炭素クロム軸受鋼、SCM420などの機械構造用合金、またはS53Cなどの機械構造用炭素鋼などから構成されている。転動体としての円筒ころ33は、鉄系金属材やセラミック製等であってもよい。鉄系金属材としては、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等がある。セラミックは、窒化ケイ素(Si34)を主成分とする。なお、セラミック製として、窒化ケイ素に限らず、ジルコニア(Zr)やアルミナ(Al23)等であってもよい。保持器材料としては、金属材料であっても、樹脂材料であってもよい。金属材料としては、冷間または熱間圧延鋼等であり、樹脂材料としては、エンジニアリングプラスチック(エンプラ)が好ましく、ここでいうエンジニアプラスチックには、汎用エンジニアリングプラスチック(汎用エンプラ)とスーパーエンジニアリングプラスチック(スーパーエンプラ)の双方が含まれる。 By the way, in the fixed side bearing 21, the inner ring 31, the outer ring 32, and the collar ring 34 are made of, for example, high-carbon chromium bearing steel such as JIS standard SUJ2, machine structural alloy such as SCM420, or machine structural carbon steel such as S53C. etc. The cylindrical rollers 33 as rolling elements may be made of an iron-based metal material, ceramics, or the like. Examples of iron-based metal materials include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structural use, cold-rolled steel, hot-rolled steel, and the like. Ceramics are based on silicon nitride (Si 3 N 4 ). The ceramic material is not limited to silicon nitride, and may be zirconia (Zr), alumina (Al 2 O 3 ), or the like. The retainer material may be a metal material or a resin material. Metal materials include cold-rolled or hot-rolled steel, and resin materials preferably include engineering plastics (engineering plastics). engineering plastics) are included.
 自由側軸受構造M2は、図6に示すように、自由側軸受22と、固定部材としてのハウジング35と、環状部品36、37等を備えたものである。自由側軸受22は、一対の軌道輪と、この一対の軌道輪の軌道面間に介装される複数の転動体とを備えた転がり軸受からなる。この場合、図1に示すように、一方の軌道輪を構成する内輪41と、他方の軌道輪を構成する外輪42と、内輪41の軌道面41aと外輪42の軌道面42aとの間に介装される転動体としての円筒ころ43とを備える。また、内輪41の軌道面41aと外輪42の軌道面42aとの間に介在される保持器40におけるポケット40aに保持されている。 As shown in FIG. 6, the free side bearing structure M2 includes a free side bearing 22, a housing 35 as a fixed member, annular parts 36 and 37, and the like. The free side bearing 22 is a rolling bearing having a pair of bearing rings and a plurality of rolling elements interposed between the raceway surfaces of the pair of bearing rings. In this case, as shown in FIG. 1, an inner ring 41 constituting one bearing ring, an outer ring 42 constituting the other bearing ring, and a raceway surface 41a of the inner ring 41 and a raceway surface 42a of the outer ring 42 are interposed. and a cylindrical roller 43 as a rolling element to be mounted. Further, it is held in a pocket 40a of the retainer 40 interposed between the raceway surface 41a of the inner ring 41 and the raceway surface 42a of the outer ring 42. As shown in FIG.
 ところで、自由側軸受22は、この実施形態では、単列NU形の円筒ころ軸受としている。このため、内輪41に鍔がなく、外輪42の両側に鍔42b,42bをもつものである。なお、外輪42の軌道面42aの軸方向端部にはぬすみ部39,39が設けられている。 By the way, the free side bearing 22 is a single row NU cylindrical roller bearing in this embodiment. Therefore, the inner ring 41 has no flange, and the outer ring 42 has flanges 42b, 42b on both sides. In addition, relief portions 39, 39 are provided at axial ends of the raceway surface 42a of the outer ring 42. As shown in FIG.
 この自由側軸受22の内輪41の外面(外輪対向面)を、図2に示すように、軸方向両端部のクラウニング部50,50とこのクラウニング部50、50との間のストレート部51とで形成している。このように、ストレート部51を有することにより、クラウニング部のドロップ量を大きく設定できるいわゆるカットクラウニングとなる。このようにカットクラウニングとすることで、フルクラウニングに比べて最大面圧、エッジ応力の低減を図ることができ、軸受回転中の円筒ころ43の挙動の安定化を図れる。 The outer surface (surface facing the outer ring) of the inner ring 41 of the free side bearing 22 is defined by crowning portions 50, 50 at both ends in the axial direction and the straight portion 51 between the crowning portions 50, 50, as shown in FIG. forming. Thus, by having the straight portion 51, so-called cut crowning can be achieved in which the drop amount of the crowning portion can be set large. By using cut crowning in this way, it is possible to reduce the maximum surface pressure and edge stress compared to full crowning, and to stabilize the behavior of the cylindrical rollers 43 during rotation of the bearing.
 また、この場合の円筒ころ43の外径面であるころ43の転動面43aには、クラウニング部が形成されないものであって、セラミック製ころ43が例えば窒化ケイ素(Si34)を主成分とする。セラミック製として、窒化ケイ素に限らず、ジルコニア(Zr)やアルミナ(Al23)等であってもよい。この円筒ころ43は、端面と外径面(ころ転動面)との間のコーナ部には、凸アール形状の面取部43bが形成されている。 In this case, no crowning portion is formed on the rolling surface 43a of the roller 43, which is the outer diameter surface of the cylindrical roller 43. The ceramic roller 43 is mainly made of silicon nitride ( Si3N4 ), for example. be a component. The ceramic material is not limited to silicon nitride, and may be zirconia (Zr), alumina (Al 2 O 3 ), or the like. The cylindrical roller 43 has a chamfered portion 43b having a convex rounded shape at a corner portion between the end surface and the outer diameter surface (roller rolling surface).
 この自由側軸受22における、内輪41、外輪42、及び保持器40の各材質は、固定側軸受21の内輪41、外輪42、及び保持器40の各材質と同様である。 The materials of the inner ring 41, the outer ring 42 and the retainer 40 of the free side bearing 22 are the same as the materials of the inner ring 41, the outer ring 42 and the retainer 40 of the fixed side bearing 21.
 そして、この軸受装置では、図1に示すように、自由側軸受22のころ全長をLRとし、自由側軸受22のころ面取り軸方向長さ(面取部43bの軸方向長さ)をLCHとし、自由側軸受の内輪軌道面のストレート部長さ(ストレート部51の軸方向長さ)をLSTとし、自由側軸受22の軌道輪(外輪42)の鍔42bところ43の軸方向すきまをδFLAとし、固定側軸受21のアキシアルすきまをδFXA(図5参照)とし、次の数2の関係となるように設定している。 In this bearing device, as shown in FIG. 1, the total roller length of the free side bearing 22 is L R , and the roller chamfered axial length of the free side bearing 22 (the axial length of the chamfered portion 43b) is L Let CH be the length of the straight portion of the inner ring raceway surface of the free side bearing (the axial length of the straight portion 51), and L ST be the axial clearance of the flange 42b and the roller 43 of the raceway ring (outer ring 42) of the free side bearing 22. With δFLA and δFXA (see FIG. 5), the axial clearance of the fixed side bearing 21 is set so as to satisfy the following equation (2).
Figure JPOXMLDOC01-appb-M000003
 具体的には、固定側軸受21を、外径が190mmのNH形の円筒ころ軸受とし、自由側軸受22を外径が320mmのNU形の円筒ころ軸受とした場合に、自由側NU円筒ころ軸受22のころ全長LRを45mmとし、自由側NU形円筒ころ軸受22の面取り軸方向長さLCHを2mmとし、自由側NU形円筒ころ軸受22の外輪42の鍔42bところ43の軸方向すきまδFLAを0.1mmとし、固定側NH形円筒ころ軸受21のアキシアルすきまδFXAを0.5mmとした場合、前記数2の数式から、自由側NU円筒ころ軸受22の内輪軌道面ストレート部51の長さLSTは、LST<40.4(mm)となる。
Figure JPOXMLDOC01-appb-M000003
Specifically, when the fixed-side bearing 21 is an NH-type cylindrical roller bearing with an outer diameter of 190 mm, and the free-side bearing 22 is an NU-type cylindrical roller bearing with an outer diameter of 320 mm, the free-side NU cylindrical roller bearing The total roller length L R of the bearing 22 is 45 mm, the chamfered axial length L CH of the free side NU cylindrical roller bearing 22 is 2 mm, and the flange 42b of the outer ring 42 of the free side NU cylindrical roller bearing 22 and the axial direction of the rollers 43 are Assuming that the clearance δ FLA is 0.1 mm and the axial clearance δ FXA of the fixed side NH cylindrical roller bearing 21 is 0.5 mm, the straight portion of the inner ring raceway surface of the free side NU cylindrical roller bearing 22 can be obtained from the above-described Equation 2. The length L ST of 51 is L ST <40.4 (mm).
 本発明の軸受装置では、数2で示される数式を満たすように設定すれば、クラウニング部50,50を有する内輪41と円筒ころ43との間に、軸方向相対動きが生じたとしても、内輪軌道面ストレート部51ところ転動面端の接触を有効に防止でき、内輪軌道面ストレート部51ところ転動面端との接触によるエッジ応力を抑制することができる。 In the bearing device of the present invention, if a setting is made so as to satisfy the numerical formula shown in Equation 2, even if axial relative movement occurs between the inner ring 41 having the crowning portions 50 and the cylindrical rollers 43, the inner ring The raceway surface straight portion 51 can effectively prevent contact with the roller rolling surface end, and the edge stress due to the contact between the inner ring raceway surface straight portion 51 and the roller rolling surface end can be suppressed.
 すなわち、エッジ応力を抑制することで、軸受早期破損を回避することができる。このため、従来から提案されているセラミック溶射軸受や樹脂被膜絶縁軸受よりも性能的に優れたセラミック転動体絶縁円筒ころ軸受を安価に提供できる。 In other words, by suppressing edge stress, early bearing failure can be avoided. Therefore, it is possible to inexpensively provide a ceramic rolling element insulated cylindrical roller bearing that is superior in performance to conventionally proposed ceramic sprayed bearings and resin film insulated bearings.
 ところで、自由側軸受22の円筒ころ43に、窒化ケイ素を主成分とするセラミックころを用いたことにより、自由側軸受22の円筒ころ43は、高温機械強度,耐熱衝撃性,耐摩耗性,耐食性,電気絶縁性、高靭性などに優れた特性を示す。このため、窒化ケイ素を主成分とするセラミック製ころ43は、円筒ころとして優れた性能を示し、長期にわたって安定した軸受を提供できる。 By the way, the cylindrical rollers 43 of the free side bearing 22 are made of ceramic rollers mainly composed of silicon nitride, so that the cylindrical rollers 43 of the free side bearing 22 have excellent high-temperature mechanical strength, thermal shock resistance, wear resistance, and corrosion resistance. , showing excellent properties such as electrical insulation and high toughness. Therefore, the ceramic rollers 43 containing silicon nitride as a main component exhibit excellent performance as cylindrical rollers, and can provide stable bearings over a long period of time.
 また、クラウニング部50を有する軌道輪と円筒ころ43との間に、軸方向相対動きが生じたとしても、ストレート部51ところ転動面端の接触を有効に防止でき、軌道面ストレート部51ところ転動面端との接触によるエッジ応力を抑制することができるため、電動機、特に、鉄道車両用主電動機に最適な軸受装置となる。すなわち、電気機関車主軸電動機における軸受装置では、自由側軸受が、歯車荷重を主に支持する歯車側に配置されることが多く、特に、電気機関車主軸電動機における軸受装置に本軸受装置を用いることで、高品質の電気機関車主軸電動機を提供できる。 In addition, even if axial relative movement occurs between the bearing ring having the crowning portion 50 and the cylindrical roller 43, contact between the straight portion 51 and roller rolling surface ends can be effectively prevented, Since edge stress due to contact with rolling surface ends can be suppressed, the bearing device is optimal for electric motors, particularly traction motors for railway vehicles. That is, in the bearing device in the electric locomotive main shaft motor, the free side bearing is often arranged on the gear side that mainly supports the gear load. This makes it possible to provide high-quality electric locomotive main shaft motors.
 内輪41や外輪42の軌道面41a,42aにカットクラウニングを施す際、最大面圧の抑制ところの挙動の安定化の観点では軌道面のストレート部51を長く確保するのが望ましい。電動機のロータは、電動機の使用中に固定側のNH側形円筒ころ軸受21の軸方向すきま分だけ、軸方向に動く可能性がある。さらに、自由側のNU形円筒ころ軸受22の円筒ころ43は外輪42の鍔42bと円筒ころ43とのすきま分だけ軸方向に移動可能である。したがって、自由側のNU形円筒ころ軸受22の内輪41ところ43には、これらの和に等しい軸方向相対動きが発生し得る(図4参照)。 When applying cut crowning to the raceway surfaces 41a and 42a of the inner ring 41 and the outer ring 42, it is desirable to secure a long straight portion 51 of the raceway surface from the viewpoint of suppressing the maximum surface pressure and stabilizing the behavior. The rotor of the electric motor may move axially by the axial clearance of the NH side cylindrical roller bearing 21 on the stationary side during use of the electric motor. Further, the cylindrical rollers 43 of the NU-type cylindrical roller bearing 22 on the free side are axially movable by the clearance between the flange 42b of the outer ring 42 and the cylindrical rollers 43. As shown in FIG. Therefore, the inner ring 41 and the rollers 43 of the NU-type cylindrical roller bearing 22 on the free side can undergo relative axial movement equal to the sum of these (see FIG. 4).
 自由側のNU形円筒ころ軸受22の内輪41にカットクラウニングを施す際に、この軸方向相対動きによって、内輪41の軌道面ストレート部51ところ転動面端が接触してしまうと、エッジ応力を生じる(図4参照)。これによって、軸受の性能劣化が進行する。しかしながら、本軸受装置では、内輪41の軌道面ストレート部51ところ転動面端の接触を有効に防止でき、エッジ応力による軸受劣化の進行を抑制できる。 When cut crowning is applied to the inner ring 41 of the NU-type cylindrical roller bearing 22 on the free side, if the straight portion 51 of the raceway surface of the inner ring 41 contacts the roller rolling surface end due to this axial relative movement, edge stress is generated. (see Figure 4). As a result, performance deterioration of the bearing progresses. However, in this bearing device, contact between the straight portion 51 of the raceway surface of the inner ring 41 and the end of the roller rolling surface can be effectively prevented, and progress of bearing deterioration due to edge stress can be suppressed.
 なお、自由側軸受のころ転動面のみにクラウニングを施す場合には、内輪軌道面の軸方向長さは、ころ転動面のストレート部長さに比べて十分に長いから前記した課題は生じない。また、固定側軸受に、NH形円筒ころ軸受の内輪や外輪の軌道面にカットクラウニングを施す場合には、各軌道輪ところとの軸方向相対動き量は、各軌道輪の鍔ところの軸方向すきまによってのみ決まる。このため、同軸上で使用する他方の軸受である固定側軸受の軸方向すきまを、内輪軌道面のクラウニング寸法の決定に際して考慮する必要があるのは、例示した軸受配置においては、自由側軸受にNU形円筒ころ軸受に特有のものである。 If only the roller rolling surface of the free-side bearing is crowned, the axial length of the inner ring raceway surface is sufficiently longer than the straight length of the roller rolling surface, so the above problem does not arise. . When cut crowning is applied to the raceway surfaces of the inner and outer rings of an NH-type cylindrical roller bearing for the fixed side bearing, the amount of relative axial movement between each bearing ring and roller is Determined only by clearance. For this reason, the axial clearance of the fixed side bearing, which is the other bearing used on the same axis, must be considered when determining the crowning dimension of the inner ring raceway surface. It is unique to NU cylindrical roller bearings.
 ところで、前記実施形態では、自由側軸受22にNU形円筒ころ軸受を使用したが、図7に示すようなN形円筒ころ軸受を用いてもよい、N形とは、内輪の両側に鍔をもつ円筒ころ軸受である。この場合のN形円筒ころ軸受は、内輪61の軌道面61aに軸方向両端部に鍔61b、61bが設けられ、外輪62の内輪対向面(内面)を、軸方向両端部のクラウニング部70,70とこのクラウニング部70,70との間のストレート部71とで形成している。 By the way, in the above embodiment, an NU-type cylindrical roller bearing is used as the free-side bearing 22, but an N-type cylindrical roller bearing as shown in FIG. 7 may be used. It is a cylindrical roller bearing with In this case, the N-type cylindrical roller bearing has flanges 61b, 61b provided at both ends in the axial direction of the raceway surface 61a of the inner ring 61, and crowning portions 70 at both ends in the axial direction. 70 and a straight portion 71 between the crowning portions 70 , 70 .
 また、内輪61の軌道面61aと外輪62の軌道面62aとの間に介在される保持器60におけるポケット60aに、転動体としての円筒ころ73が保持されている。内輪61の軌道面61aの軸方向両端部にぬすみ部69、69が設けられている。 Cylindrical rollers 73 as rolling elements are held in pockets 60 a of the retainer 60 interposed between the raceway surface 61 a of the inner ring 61 and the raceway surface 62 a of the outer ring 62 . A raceway surface 61 a of the inner ring 61 is provided with relief portions 69 , 69 at both ends in the axial direction.
 この場合も、自由側軸受22のころ全長をLRとし、自由側軸受22のころ面取り軸方向長さをLCHとし、自由側軸受の軌道面ストレート部長さをLSTとし、自由側軸受の軌道輪ところの軸方向すきまをδFLAとし、固定側軸受のアキシアルすきまをδFXAとし、上記の数2の関係となるように設定している。 Also in this case, the total length of the rollers of the free side bearing 22 is L R , the axial length of the chamfered rollers of the free side bearing 22 is L CH , the straight length of the raceway surface of the free side bearing is L ST , and the length of the straight portion of the free side bearing is L ST. The axial clearance of the bearing rings and rollers is δFLA , the axial clearance of the fixed-side bearing is δFXA , and the relationship of Equation 2 above is established.
 このため、自由側軸受22に、図7に示すN形円筒ころ軸受であっても、外輪62側のクラウニング部70の寸法の決定に、固定側軸受21の軸方向すきま(アキシアルすきま)を考慮することができ、NU形円筒ころ軸受を用いた場合と同様の作用効果を奏する。  Therefore, even if the free-side bearing 22 is an N-type cylindrical roller bearing shown in FIG. It is possible to achieve the same effects as in the case of using the NU-type cylindrical roller bearing. 
 すなわち、自由側にN型を使用した場合には、外輪62のクラウニング寸法の決定に、固定側軸受22の軸方向すきまを考慮することで同様の効果が得られる。 That is, when the N type is used on the free side, the same effect can be obtained by considering the axial clearance of the fixed side bearing 22 when determining the crowning dimension of the outer ring 62.
 この場合、外輪62と円筒ころ73との間に、軸方向相対動きが生じたとしても、外輪62の軌道面ストレート部71とところ転動面端の接触を有効に防止でき、軌道面ストレート部71ところ転動面端との接触によるエッジ応力を抑制することができる。 In this case, even if relative axial movement occurs between the outer ring 62 and the cylindrical rollers 73, contact between the raceway surface straight portion 71 of the outer ring 62 and the roller rolling surface end can be effectively prevented. 71 It is possible to suppress the edge stress due to the contact with the roller rolling surface end.
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、前記実施形態では、固定側軸受21に、NH形円筒ころ軸受を用いたが、N形円筒ころ軸受、NUP形円筒ころ軸受であっても、さらには、玉軸受(深溝玉軸受)等であってもよい。なお、NUP形円筒ころ軸受は、内輪の片側に鍔をもち、外輪の両側に鍔をもち、内輪側に鍔輪を組み合わせた円筒ころ軸受である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible. Although used, N-type cylindrical roller bearings, NUP-type cylindrical roller bearings, ball bearings (deep groove ball bearings), and the like may also be used. The NUP type cylindrical roller bearing is a cylindrical roller bearing in which an inner ring has a flange on one side, an outer ring has flanges on both sides, and a flange ring is combined with the inner ring side.
 また、クラウニング部50(70)の形状として、直線状(テーパ面)、単一の円弧、または、複数の円弧を組み合わせたものであってもよい。軸受装置の用途として、電動機鉄道車両用主電動機)に限るものではなく、一般機械、電気機械及び輸送用機械等の種々の装置や構造物等に用いることができる。 Also, the shape of the crowning portion 50 (70) may be linear (tapered surface), a single arc, or a combination of a plurality of arcs. Applications of the bearing device are not limited to traction motors for electric motors and railway vehicles, but can be used for various devices and structures such as general machinery, electric machinery, and transportation machinery.
 内輪及び外輪に、軌道面にストレート部とクラウニング部とを有するものであってもよい。すなわち、内輪の外径面にストレート部とクラウニング部とを有するとともに、外輪の内径面にストレート部とクラウニング部とを有するものとできる。また、内輪や外輪に形成されるクラウニング部のドロップ量は、軸受装置として、上述の数2の式を満たす限り、任意に設定できる。 The inner ring and outer ring may have a straight portion and a crowning portion on the raceway surface. That is, the outer diameter surface of the inner ring has the straight portion and the crowning portion, and the inner diameter surface of the outer ring has the straight portion and the crowning portion. Further, the drop amount of the crowning portions formed on the inner ring and the outer ring can be arbitrarily set as long as the above-described formula (2) is satisfied for the bearing device.
 本発明の軸受装置は、鉄道車両用主電動機などの電動機に使用することができる。電動機は、例えば、回転子と、固定子と、回転子の回転を外部に伝える回転軸とを備える。 The bearing device of the present invention can be used for electric motors such as traction motors for railway vehicles. An electric motor, for example, includes a rotor, a stator, and a rotating shaft that transmits the rotation of the rotor to the outside.
10   主電動機
12   固定子
13   回転子
15   主軸(回転軸)
21   固定側軸受
22   自由側軸受
41   内輪
41a 軌道面
42   外輪
42a 軌道面
43   円筒ころ(セラミック製ころ)
43a 転動面
50   クラウニング部
51   ストレート部
61   内輪
61a 軌道面
62   外輪
62b 軌道面
70   クラウニング部
71   ストレート部
M1   固定側軸受構造
M2   自由側軸受構造
10 main motor 12 stator 13 rotor 15 main shaft (rotating shaft)
21 fixed side bearing 22 free side bearing 41 inner ring 41a raceway surface 42 outer ring 42a raceway surface 43 cylindrical roller (ceramic roller)
43a rolling surface 50 crowning portion 51 straight portion 61 inner ring 61a raceway surface 62 outer ring 62b raceway surface 70 crowning portion 71 straight portion M1 fixed side bearing structure M2 free side bearing structure

Claims (5)

  1.  固定側軸受を有する固定側軸受構造と自由側軸受を有する自由側軸受構造とを備えた軸受装置であって、
     前記自由側軸受は、一対の軌道輪と、この一対の軌道輪の軌道面間に介装される複数の転動体とを備えた転がり軸受であり、前記転動体は、転動面にクラウニング部を有さないセラミック製ころからなり、少なくともいずれか一方の軌道輪における他方の軌道輪対向面を、軸方向両端部のクラウニング部とこのクラウニング部との間のストレート部とで形成し、自由側軸受のころ全長をLRとし、自由側軸受のころ面取り軸方向長さをLCHとし、自由側軸受の軌道面ストレート部長さをLSTとし、固定側軸受のアキシアルすきまをδXAとし、自由側軸受の軌道輪ところの軸方向すきまをδFLAとしたときに、次の数1の関係となるように設定したことを特徴とする軸受装置。
    Figure JPOXMLDOC01-appb-M000001
    A bearing device comprising a fixed-side bearing structure having a fixed-side bearing and a free-side bearing structure having a free-side bearing,
    The free-side bearing is a rolling bearing including a pair of bearing rings and a plurality of rolling elements interposed between the raceway surfaces of the pair of bearing rings. At least one of the bearing rings has a bearing ring facing surface of the other bearing ring formed by a crowning portion at both ends in the axial direction and a straight portion between the crowning portions, and the free side L R is the total roller length of the bearing, L CH is the roller chamfer axial length of the free side bearing, L ST is the length of the raceway surface straight part of the free side bearing, δXA is the axial clearance of the fixed side bearing, and δ XA is the free side bearing. A bearing device characterized by being set so as to satisfy the following equation (1), where δFLA is the axial clearance between the bearing rings and rollers of the side bearing.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記自由側軸受を、内輪を構成する一方の軌道輪に鍔がなく、外輪を構成する他方の軌道輪に軸方向両側に鍔を有する単列円筒ころ軸受とし、かつ、少なくとも、前記内輪を構成する一方の軌道輪の外径面を、軸方向両端部のクラウニング部とこのクラウニング部との間のストレート部とで形成したことを特徴とする請求項1に記載の軸受装置。 The free-side bearing is a single-row cylindrical roller bearing in which one bearing ring constituting the inner ring has no flange and the other bearing ring constituting the outer ring has flanges on both sides in the axial direction, and at least constitutes the inner ring. 2. The bearing device according to claim 1, wherein the outer diameter surface of one of the bearing rings is formed by crowning portions at both ends in the axial direction and a straight portion between the crowning portions.
  3.  前記自由側軸受を、外輪を構成する他方の軌道輪に鍔がなく、内輪を構成する一方の軌道輪に軸方向両側に鍔を有する単列円筒ころ軸受とし、かつ、少なくとも、外輪を構成する他方の軌道輪の内径面を、軸方向両端部のクラウニング部とこのクラウニング部との間のストレート部とで形成したことを特徴とする請求項1に記載の軸受装置。 The free side bearing is a single-row cylindrical roller bearing in which the other bearing ring constituting the outer ring has no flange and one bearing ring constituting the inner ring has flanges on both sides in the axial direction, and constitutes at least the outer ring. 2. A bearing device according to claim 1, wherein the inner diameter surface of the other bearing ring is formed by crowning portions at both ends in the axial direction and a straight portion between the crowning portions.
  4.  セラミック製ころが窒化ケイ素を主成分とする請求項1~請求項3のいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 1 to 3, wherein the ceramic rollers are mainly composed of silicon nitride.
  5.  少なくとも、回転子と、固定子と、回転子の回転を外部に伝える回転軸とを備えた電動機であって、
     前記請求項1~請求項4のいずれか1項に記載の軸受装置で前記回転軸を回転自在に支持することを特徴とする電動機。
    An electric motor comprising at least a rotor, a stator, and a rotating shaft for transmitting the rotation of the rotor to the outside,
    An electric motor, wherein the rotating shaft is rotatably supported by the bearing device according to any one of claims 1 to 4.
PCT/JP2022/022950 2021-06-22 2022-06-07 Bearing device and electric motor WO2022270295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280041877.8A CN117480327A (en) 2021-06-22 2022-06-07 Bearing device and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-103348 2021-06-22
JP2021103348A JP2023002235A (en) 2021-06-22 2021-06-22 Bearing gear and electric motor

Publications (1)

Publication Number Publication Date
WO2022270295A1 true WO2022270295A1 (en) 2022-12-29

Family

ID=84543907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022950 WO2022270295A1 (en) 2021-06-22 2022-06-07 Bearing device and electric motor

Country Status (3)

Country Link
JP (1) JP2023002235A (en)
CN (1) CN117480327A (en)
WO (1) WO2022270295A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495654U (en) * 1977-12-16 1979-07-06
JP2006077814A (en) * 2004-09-07 2006-03-23 Nsk Ltd Spindle rotation support device for machine tool
JP2006112568A (en) * 2004-10-15 2006-04-27 Nsk Ltd Cylindrical roller bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495654U (en) * 1977-12-16 1979-07-06
JP2006077814A (en) * 2004-09-07 2006-03-23 Nsk Ltd Spindle rotation support device for machine tool
JP2006112568A (en) * 2004-10-15 2006-04-27 Nsk Ltd Cylindrical roller bearing

Also Published As

Publication number Publication date
CN117480327A (en) 2024-01-30
JP2023002235A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP3035818B2 (en) Ball bearing
US10047796B2 (en) Rolling Bearing
JPH0814284B2 (en) Ceramic bearing
WO2014013754A1 (en) Angular contact ball bearing and duplex bearing
JP5304524B2 (en) Inner and outer rings and ball bearings
WO2022270295A1 (en) Bearing device and electric motor
JP2013174283A (en) Solid-type needle roller bearing
JP2007218368A (en) Ball bearing for direct drive motor
JP2006071022A (en) Rolling bearing
JP2007292094A (en) Insulated rolling bearing for preventing electric erosion
JP2007292114A (en) Insulated rolling bearing for preventing electric erosion
CN205622382U (en) Motor bearing preloading device and motor
JP2006046380A (en) Ball bearing
JP5900485B2 (en) Rolling bearing
JP2006329265A (en) Rolling bearing
WO2023026978A1 (en) Bearing device
JP2006214456A (en) Roller bearing
JP2007198519A (en) Insulating roller bearing for preventing electric corrosion
WO2019146768A1 (en) Angular ball bearing
JP6790535B2 (en) Rolling bearing
JP2006214456A5 (en)
WO2020054858A1 (en) Spindle device
WO2024262144A1 (en) Insulating bearing
JP2010025183A (en) Self-aligning roller bearing
JP2024164503A (en) Rolling bearings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041877.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828212

Country of ref document: EP

Kind code of ref document: A1