JP2007198519A - Insulating roller bearing for preventing electric corrosion - Google Patents

Insulating roller bearing for preventing electric corrosion Download PDF

Info

Publication number
JP2007198519A
JP2007198519A JP2006018631A JP2006018631A JP2007198519A JP 2007198519 A JP2007198519 A JP 2007198519A JP 2006018631 A JP2006018631 A JP 2006018631A JP 2006018631 A JP2006018631 A JP 2006018631A JP 2007198519 A JP2007198519 A JP 2007198519A
Authority
JP
Japan
Prior art keywords
sprayed layer
ceramic
weight
ceramic sprayed
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018631A
Other languages
Japanese (ja)
Inventor
Katsuhiro Konno
勝廣 今野
Takashi Murai
隆司 村井
Kenji Kotaki
賢司 小滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006018631A priority Critical patent/JP2007198519A/en
Priority to CN2006800265383A priority patent/CN101228362B/en
Priority to EP06822403.9A priority patent/EP1950436B1/en
Priority to PCT/JP2006/321434 priority patent/WO2007049727A1/en
Priority to US11/994,284 priority patent/US8425120B2/en
Publication of JP2007198519A publication Critical patent/JP2007198519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve all of an ensured insulating property, ensured durability, and a good appearance at high levels. <P>SOLUTION: A ceramic containing 97% by weight or more of alumina, and 0.5 to 2.5% by weight or more of zirconia is used as a ceramic which constitutes a insulating coating film 6, i.e., a ceramic spraying layer. As this ceramic contains 97% by weight or more of alumina, the insulating property can be ensured. Further, as this ceramic contains 0.5 to 2.5% by weight or more of zirconia, durability can be ensured, and deterioration in appearance after sealing treatment can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、汎用或いは鉄道車両用の電動モータの回転軸、或いは発電機の回転軸の様に、電流が流れる可能性がある回転支持部に組み込む電食防止用絶縁転がり軸受の改良に関する。   The present invention relates to an improvement in an insulating rolling bearing for preventing electric corrosion that is incorporated in a rotation support portion in which a current may flow, such as a rotating shaft of a general-purpose or railway vehicle electric motor or a rotating shaft of a generator.

電動モータや発電機等、各種電気機器等の回転軸を支承する為の転がり軸受の場合、対策を講じないと、転がり軸受自体に、帰路電流、モータ軸電流等の電流が流れてしまう。転がり軸受に電流が流れた場合、電流の通路となる部分の腐食が進む、所謂電食が発生して、転がり軸受の寿命を著しく短縮してしまう。この様な電食の発生を防止する為、転がり軸受を構成する外輪や内輪の表面に絶縁層を形成する事で、転がり軸受に電流が流れない様にする電食防止用絶縁転がり軸受が、例えば特許文献1〜3に記載されている様に、従来から知られている。   In the case of a rolling bearing for supporting rotating shafts of various electric devices such as an electric motor and a generator, currents such as a return current and a motor shaft current flow in the rolling bearing itself unless measures are taken. When an electric current flows through the rolling bearing, so-called electric corrosion occurs, ie, corrosion of a portion serving as a current path progresses, and the life of the rolling bearing is significantly shortened. In order to prevent the occurrence of such electric corrosion, by forming an insulating layer on the surface of the outer ring and the inner ring constituting the rolling bearing, an insulating rolling bearing for preventing electric corrosion that prevents current from flowing through the rolling bearing is provided. For example, as described in Patent Documents 1 to 3, it is conventionally known.

これら各特許文献に記載された絶縁型の転がり軸受は何れも、転がり軸受を構成する軌道輪のうちで、相手部材の嵌合支持する部分に、セラミックス、合成樹脂等の絶縁層を形成して成るもので、例えば図6に示す様に構成されている。転がり軸受は、内輪1の外周面に形成した内輪軌道2と外輪3の内周面に形成した外輪軌道4との間に複数の転動体5を設ける事で、上記内輪1と外輪3との相対的回転を自在としている。そして、この外輪3の外周面及び軸方向両端面に、セラミックス溶射層である絶縁層6を形成している。この様な電食防止用絶縁転がり軸受の場合、上記外輪3を金属製のハウジングに内嵌支持した状態では、上記絶縁層6が、これら外輪3とハウジングとを絶縁する。この結果、これら外輪3とハウジングとの間に電流が流れなくなり、上記転がり軸受の構成各部材1、3、5に、上述した様な電食が発生しなくなる。   Each of the insulating type rolling bearings described in each of these patent documents has an insulating layer made of ceramic, synthetic resin or the like formed on a portion of the bearing ring constituting the rolling bearing that is supported by the mating member. For example, it is configured as shown in FIG. In the rolling bearing, a plurality of rolling elements 5 are provided between an inner ring raceway 2 formed on the outer peripheral surface of the inner ring 1 and an outer ring raceway 4 formed on the inner peripheral surface of the outer ring 3. Relative rotation is free. And the insulating layer 6 which is a ceramic sprayed layer is formed in the outer peripheral surface of this outer ring | wheel 3, and an axial direction both end surface. In the case of such an insulating rolling bearing for preventing electric corrosion, the insulating layer 6 insulates the outer ring 3 from the housing in a state where the outer ring 3 is fitted and supported in a metal housing. As a result, current does not flow between the outer ring 3 and the housing, and the above-described electrolytic corrosion does not occur in the constituent members 1, 3, and 5 of the rolling bearing.

但し、上記特許文献1〜3に記載される等により従来から知られていた電食防止用絶縁転がり軸受の場合、絶縁性能の確保と耐久性の確保と低コスト化とを高次元で並立させる事が難しかった。この理由は、次の通りである。例えば、上記外輪3の表面に、セラミックス溶射層である上記絶縁層6を形成する場合、この外輪3の外周面7に沿って溶射ノズルを移動させる事によりこの外周面7にセラミックス溶射層を形成すると共に、この外輪3の軸方向両端面8、8に沿って溶射ノズルを移動させる事によりこれら軸方向両端面8、8にセラミックス溶射層を形成する。この様にして形成するセラミックス溶射層として従来は、アルミナ(Al23 )を94〜95重量%含むセラミックス材料の溶滴を噴射する事により、0.5mm以上(一般的には0.6〜0.7mm程度)の厚さ寸法を有するものを形成していた。 However, in the case of an insulating rolling bearing for preventing electric corrosion that has been conventionally known, as described in Patent Documents 1 to 3 above, ensuring insulation performance, ensuring durability, and reducing costs are arranged in a high dimension. It was difficult. The reason is as follows. For example, when the insulating layer 6 that is a ceramic sprayed layer is formed on the surface of the outer ring 3, the ceramic sprayed layer is formed on the outer peripheral surface 7 by moving the spray nozzle along the outer peripheral surface 7 of the outer ring 3. At the same time, a ceramic sprayed layer is formed on both axial end surfaces 8 and 8 by moving the thermal spray nozzle along the axial end surfaces 8 and 8 of the outer ring 3. Conventionally, the ceramic sprayed layer formed in this way is 0.5 mm or more (generally 0.6 mm by spraying a droplet of a ceramic material containing 94 to 95% by weight of alumina (Al 2 O 3 ). The one having a thickness dimension of about 0.7 mm was formed.

上述の様にして上記各面7、8にセラミックス溶射層を形成する為、軸方向両端面8、8と外周面7との間に存在する折れ曲がり連続部9、9には、両方のノズルから溶射されたセラミックスが付着する。この為、この折れ曲がり連続部9、9の厚さ寸法が、上記外周面7及び軸方向両端面8、8の厚さ寸法に比べて大きくなる。この結果、これら各面7、8の厚さ寸法を、絶縁性能確保の面から十分な値にすると、上記両折れ曲がり連続部9、9の厚さ寸法が過大になる。セラミックス溶射層は脆く、厚さ寸法が過大になると、割れ、欠け等の損傷を発生し易い。上記折れ曲がり連続部9、9自体は、ハウジング等の他の部分と接触しない為、上記セラミックス溶射層が破損しても、絶縁性確保の面からは問題を生じにくいが、欠落したセラミックスの破片が転がり軸受内部に入り込んだ場合、内輪軌道2及び外輪軌道4や各転動体5の転動面に圧痕等の損傷を発生し易い為、好ましくない。この為従来は、上記セラミックス溶射層のうちで上記折れ曲がり連続部9、9を覆っている部分も、研磨により厚さ寸法を低減していた。これら折れ曲がり連続部9、9の表面部分を研磨する事は、徒にコストが嵩む原因となる。   In order to form the ceramic sprayed layer on each of the surfaces 7 and 8 as described above, the bent continuous portions 9 and 9 existing between the axial end surfaces 8 and 8 and the outer peripheral surface 7 are provided from both nozzles. Thermal sprayed ceramic adheres. For this reason, the thickness dimension of the bent continuous portions 9, 9 becomes larger than the thickness dimension of the outer peripheral surface 7 and both axial end surfaces 8, 8. As a result, when the thickness dimension of each of the surfaces 7 and 8 is set to a sufficient value from the viewpoint of securing the insulation performance, the thickness dimension of the both bent continuous portions 9 and 9 becomes excessive. The ceramic sprayed layer is brittle, and if the thickness dimension is excessive, damage such as cracking and chipping is likely to occur. Since the bent continuous portions 9 and 9 themselves do not come into contact with other parts such as the housing, even if the ceramic sprayed layer is damaged, it is unlikely to cause a problem in terms of ensuring insulation. If it enters the rolling bearing, it is not preferable because damages such as indentations are likely to occur on the inner ring raceway 2, the outer ring raceway 4 and the rolling surfaces of each rolling element 5. For this reason, conventionally, the portion of the ceramic sprayed layer covering the bent continuous portions 9, 9 has also been reduced in thickness by polishing. Polishing the surface portions of these bent continuous portions 9 and 9 causes an increase in cost.

又、セラミックス製の絶縁層の損傷防止を図る為の技術として従来から、特許文献4〜5に記載された発明が知られている。このうちの特許文献4に記載された発明は、セラミックス製の絶縁層中に合成樹脂を含浸させる事により、この絶縁層の靱性を向上させるものである。又、特許文献5に記載された発明は、セラミックス製の絶縁層を金属層で覆う事により、このセラミックス溶射層が欠落する事を防止するものである。但し、この様な特許文献4〜5に記載された発明の場合、何れも、製造作業が面倒で低コスト化を図る事はできない。   Conventionally, the inventions described in Patent Documents 4 to 5 are known as techniques for preventing damage to a ceramic insulating layer. Of these, the invention described in Patent Document 4 improves the toughness of an insulating layer by impregnating a ceramic insulating layer with a synthetic resin. The invention described in Patent Document 5 prevents the ceramic sprayed layer from being lost by covering the ceramic insulating layer with a metal layer. However, in the case of the inventions described in Patent Documents 4 to 5, the manufacturing work is troublesome and the cost cannot be reduced.

一方、特許文献6には、酸化チタン(TiO2 )を1重量%以下含有するグレイアルミナ製の絶縁層を有する電食防止用絶縁転がり軸受に関する発明が記載されている。この特許文献6に記載されている様に、絶縁層としての性能確保(絶縁抵抗値の確保)のみを考慮した場合には、酸化チタンを含まない純アルミナであるホワイトアルミナの方が、酸化チタンを含むグレイアルミナよりも優れている。但し、やはり上記特許文献6に記載されている様に、ホワイトアルミナの場合には、溶射層形成時の材料(アルミナ粒)の歩留が悪く、コストが嵩む。この為、上記特許文献6に記載された発明の場合には、上記組成を有するグレイアルミナを使用する事により、コスト上昇を抑えつつ絶縁性能を確保するとしている。 On the other hand, Patent Document 6 describes an invention related to an electric rolling prevention insulating rolling bearing having an insulating layer made of gray alumina containing titanium oxide (TiO 2 ) in an amount of 1% by weight or less. As described in Patent Document 6, when only ensuring performance (insulation resistance value) as an insulating layer is considered, white alumina, which is pure alumina not containing titanium oxide, is more titanium oxide. It is superior to gray alumina containing. However, as described in Patent Document 6 described above, in the case of white alumina, the yield of the material (alumina grains) at the time of forming the sprayed layer is poor and the cost increases. For this reason, in the case of the invention described in Patent Document 6, the use of gray alumina having the above composition secures insulation performance while suppressing an increase in cost.

但し、本発明の発明者が行なった実験によると、上記特許文献6に記載された組成を有するグレイアルミナでは、必ずしも十分な絶縁性能を確保できない事が分かった。一方、ホワイトアルミナを使用した場合には、溶射するアルミナの粒径を適正に規制すれば、コスト上昇の程度は限られている反面、表面に色むらが発生し、製品としての見ばえが悪くなる事が分かった。即ち、アルミナの溶射層は、そのままでは内部に微細な空隙が存在し、この空隙に水分が入り込んだ場合には絶縁性能が劣化する。この為、アルミナの溶射層を形成した後は、特許文献7に記載されている様に、上記空隙を合成樹脂により塞ぎ、この空隙に水分が入り込まない様にする、封孔処理を行なう必要がある。上記溶射層をホワイトアルミナにより形成した場合には、この封孔処理に伴って、溶射層の表面に色むらが発生する。この様な色むらは、絶縁性能の面からは問題にならないが、製品の外観を悪くする為、好ましくない。   However, according to experiments conducted by the inventors of the present invention, it has been found that the gray alumina having the composition described in Patent Document 6 cannot always ensure sufficient insulation performance. On the other hand, when white alumina is used, if the particle size of the sprayed alumina is properly controlled, the degree of cost increase is limited, but color unevenness occurs on the surface, which makes it look like a product. I found it worse. That is, the alumina sprayed layer has fine voids inside as it is, and the insulation performance deteriorates when moisture enters the voids. For this reason, after forming the sprayed layer of alumina, as described in Patent Document 7, it is necessary to perform a sealing treatment in which the gap is closed with a synthetic resin so that moisture does not enter the gap. is there. When the sprayed layer is formed of white alumina, color unevenness occurs on the surface of the sprayed layer along with the sealing treatment. Such uneven color is not a problem in terms of insulation performance, but is not preferable because it deteriorates the appearance of the product.

特開平1−182621号公報JP-A-1-182621 特開平5−52223号公報JP-A-5-52223 特開平5−312216号公報JP-A-5-31216 実開昭60−85626号公報Japanese Utility Model Publication No. 60-85626 実公平6−2030号公報Japanese Utility Model Publication No. 6-2030 特開2005−133876号公報JP 2005-133876 A 特開2003−183806号公報Japanese Patent Laid-Open No. 2003-183806

本発明は、上述の様な事情に鑑みて、絶縁性能の確保と、耐久性の確保と、低コスト化とを高次元で並立させる事ができ、しかも外観を良好にできる、電食防止用絶縁転がり軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can ensure insulation performance, ensure durability, and reduce costs at the same time, and can improve the appearance, and can prevent electric corrosion. It was invented to realize an insulated rolling bearing.

本発明の対象となる電食防止用絶縁転がり軸受は、何れも、例えば図1に示す様に、互いに同心に配置された、それぞれが金属製である1対の軌道輪(例えば内輪1及び外輪3)と、これら両軌道輪1、3の互いに対向する面に形成された1対の軌道面(例えば内輪軌道2及び外輪軌道4)同士の間に転動自在に設けられた、それぞれが金属製である複数個の転動体(例えば玉)5とを備える。そして、上記両軌道輪1、3のうちの少なくとも一方の軌道輪の表面のうちで軌道面を設けた面以外の面、即ち、ラジアル転がり軸受の場合には、図1の(A)又は(B)に示す様に、何れかの周面及び軸方向両端面を、スラスト転がり軸受の場合には何れかの軸方向片面及び内外両周面を、セラミックス製の絶縁層6により被覆している。   As shown in FIG. 1, for example, as shown in FIG. 1, each of the insulated rolling bearings for preventing electric corrosion that is a subject of the present invention is a pair of raceways (for example, an inner ring 1 and an outer ring) that are made of metal. 3) and a pair of raceway surfaces (for example, the inner ring raceway 2 and the outer ring raceway 4) formed on the surfaces of the two race rings 1, 3 facing each other. A plurality of rolling elements (for example, balls) 5 that are manufactured. In the case of a surface other than the surface provided with the raceway surface among the surfaces of at least one of the raceways 1 and 3, that is, in the case of a radial rolling bearing, (A) or ( As shown in B), one of the circumferential surfaces and both axial end surfaces are covered with a ceramic insulating layer 6 on one axial side surface and both inner and outer circumferential surfaces in the case of a thrust rolling bearing. .

特に、本発明の電食防止用絶縁転がり軸受に於いては、上記絶縁層6を、97重量%以上のアルミナ(Al23 )と、0.5〜2.5重量%のジルコニア(ZrO2 )とを含有するセラミックス溶射層としている。
尚、上記絶縁層6を、上記軌道面以外に形成したセラミックス溶射層の表面を研磨する事により形成する事が好ましい。この場合、このセラミックス溶射層の厚さを、隣り合う面同士の間の折れ曲がり連続部を除いて0.4mm以下とし、このセラミックス溶射層を研磨して得られた上記絶縁層の厚さを、0.25mm以上とする。
又、本発明を実施する場合に好ましくは、上記絶縁層であるセラミックス溶射層の厚さ寸法に関する精度と、このセラミックス溶射層を構成するアルミナの付着効率の向上とを目的として、粒径が10〜50μmで、平均粒径が15〜25μmであるアルミナを使用する。
In particular, in the insulating rolling bearing for preventing electric corrosion of the present invention, the insulating layer 6 is composed of 97% by weight or more of alumina (Al 2 O 3 ) and 0.5 to 2.5% by weight of zirconia (ZrO). 2 ) and a ceramic sprayed layer containing.
The insulating layer 6 is preferably formed by polishing the surface of the ceramic sprayed layer formed other than the raceway surface. In this case, the thickness of the ceramic sprayed layer is 0.4 mm or less excluding the bent continuous part between the adjacent surfaces, and the thickness of the insulating layer obtained by polishing the ceramic sprayed layer, 0.25 mm or more.
In carrying out the present invention, it is preferable that the particle size is 10 for the purpose of improving the accuracy with respect to the thickness of the ceramic sprayed layer as the insulating layer and improving the adhesion efficiency of alumina constituting the ceramic sprayed layer. Alumina having an average particle diameter of 15 to 25 μm is used.

更に、上述の絶縁層の厚さを規制する方法として、例えば、次の様な方法がある。即ち、97重量%以上のアルミナと0.5〜2.5重量%以上のジルコニアとをそれぞれ含有するセラミックス溶射層を、隣り合う面同士の間の折れ曲がり連続部を除いた部分の厚さを0.4mm以下に抑えて、上記軌道面を設けた面以外に形成する。その後、このセラミックス溶射層のうちで上記折れ曲がり部を覆った部分以外の部分を研磨する事により、厚さが0.25mm以上である上記絶縁層とする。   Furthermore, as a method for regulating the thickness of the insulating layer described above, for example, there is the following method. That is, the ceramic sprayed layer containing 97% by weight or more of alumina and 0.5 to 2.5% by weight or more of zirconia, respectively, has a thickness of 0 excluding the bent continuous part between adjacent surfaces. The thickness is limited to 4 mm or less and is formed on a surface other than the surface provided with the raceway surface. Thereafter, the insulating layer having a thickness of 0.25 mm or more is obtained by polishing a portion of the ceramic sprayed layer other than the portion covering the bent portion.

上述の様に構成する本発明の電食防止用絶縁転がり軸受の発明によれば、絶縁性能の確保と、耐久性の確保と、低コスト化と、良好な外観の確保とを、高次元で並立させる事ができる。
即ち、アルミナを主成分とするセラミックス溶射層のうち、ジルコニアを含まないホワイトアルミナの場合には、絶縁性能が優れている反面、封孔処理に伴って外観が悪化する。これに対して、本発明の場合には、0.5重量%以上のジルコニアを含有している為、上記封孔処理に拘らず、外観悪化に結び付く様な色むらは発生しない。即ち、セラミックス溶射層内部に存在する微細な空隙を合成樹脂により塞ぐ為の封孔処理に伴って、この合成樹脂の一部が上記セラミックス溶射層の表面に表れる。表面の色彩が純白に近い、ホワイトアルミナの場合、この様に表面に現れた合成樹脂により、表面に色むらを生じて、製品の外観を悪くする。これに対して、0.5重量%以上のジルコニアを含有したセラミックス材料の場合には、表面の色彩がグレー(灰色)がかっている為、表面に、製品の外観を悪くする程の色むらを生じる事はない。
According to the invention of the insulated rolling bearing for preventing electric corrosion of the present invention configured as described above, the insulation performance, the durability, the cost reduction, and the good appearance can be secured at a high level. Can be juxtaposed.
That is, among the ceramic sprayed layers mainly composed of alumina, white alumina containing no zirconia is excellent in insulation performance but deteriorates in appearance with the sealing treatment. On the other hand, in the case of the present invention, since it contains 0.5% by weight or more of zirconia, color unevenness that causes deterioration in appearance does not occur regardless of the sealing treatment. That is, a part of the synthetic resin appears on the surface of the ceramic sprayed layer in accordance with the sealing treatment for closing the fine voids existing inside the ceramic sprayed layer with the synthetic resin. In the case of white alumina whose surface color is close to pure white, the synthetic resin appearing on the surface in this way causes uneven color on the surface and deteriorates the appearance of the product. On the other hand, in the case of a ceramic material containing 0.5% by weight or more of zirconia, the color of the surface is gray (gray), so that the surface has a color unevenness that deteriorates the appearance of the product. It never happens.

但し、上記ジルコニアを、2.5重量%を越えて含有させると、必要とする絶縁性能を確保する為に要する、上記セラミックス溶射層の厚さが大きくなる。そこで、上記ジルコニアの含有量を、0.5〜2.5重量%の範囲に規制する。
尚、セラミックス溶射層中に於ける、上記ジルコニアの含有量を、2.5重量%以下に抑える事により、溶射層形成時の材料(アルミナ粒)の歩留が多少は悪化する。但し、上述した様に、粒径が10〜50μmで、平均粒径が15〜25μmであるアルミナを使用すれば、上記セラミックス溶射層を構成するアルミナの付着効率を向上させる事と合わせて、上記セラミックス溶射層の厚さ寸法に関する精度を向上させ、コスト上昇を抑えられる。即ち、付着効率の向上による材料費の節約と、寸法精度の向上による仕上加工の容易化(仕上加工時間の短縮化)とにより、電食防止用絶縁転がり軸受の製造コストの低廉化を図れる。
更に、本発明の場合、上記セラミックス溶射層に、高強度、高靱性を有するジルコニアを含有させている為、このセラミックス溶射層の密着力を向上させる事ができる。この為、耐久性を十分確保できる。
However, if the zirconia exceeds 2.5% by weight, the thickness of the ceramic sprayed layer required to ensure the required insulation performance increases. Therefore, the content of the zirconia is restricted to a range of 0.5 to 2.5% by weight.
In addition, by suppressing the content of the zirconia in the ceramic sprayed layer to 2.5% by weight or less, the yield of the material (alumina grains) at the time of forming the sprayed layer is somewhat deteriorated. However, as described above, if alumina having a particle size of 10 to 50 μm and an average particle size of 15 to 25 μm is used, in addition to improving the adhesion efficiency of alumina constituting the ceramic sprayed layer, the above The accuracy related to the thickness dimension of the ceramic sprayed layer can be improved, and the cost increase can be suppressed. That is, it is possible to reduce the manufacturing cost of the anti-corrosion insulated rolling bearing by saving the material cost by improving the adhesion efficiency and facilitating the finishing process by shortening the dimensional accuracy (reducing the finishing time).
Further, in the case of the present invention, since the ceramic sprayed layer contains zirconia having high strength and high toughness, the adhesion of the ceramic sprayed layer can be improved. For this reason, sufficient durability can be secured.

又、上述した様に、絶縁層6を、前記軌道面以外に形成したセラミックス溶射層の表面を研磨する事により形成したものとすると共に、このセラミックス溶射層の厚さを、隣り合う面同士の間の折れ曲がり連続部を除いて0.4mm以下とし、このセラミックス溶射層を研磨して得られた上記絶縁層の厚さを、0.25mm以上とした場合には、絶縁性能の確保と、耐久性の確保と、低コスト化とを高次元で並立させる事ができる。
即ち、上述の構造の場合には、97重量%以上のアルミナと0.5〜2.5重量%以上のジルコニアとをそれぞれ含有するセラミックス溶射層を使用しているが、この様なセラミックス溶射層は、比較的電気抵抗値が大きい(優れた絶縁性を有する)。従って、研磨後の絶縁層の厚さを0.25mm以上確保すれば、用途が、汎用或いは鉄道車両用の電動モータの回転軸、或いは発電機の回転軸の回転支持部である限り、電食防止効果を十分に確保できる。
又、研磨後の絶縁層の厚さを0.25mm以上確保する為には、研磨前のセラミックス溶射層の厚さを0.4mm以下としても、十分に研磨代を確保できる。そして、このセラミックス溶射層の厚さを0.4mm以下に抑えられれば、隣り合う面同士の間の折れ曲がり連続部を覆ったセラミックス溶射層の厚さを0.5mm未満に抑えられる。厚さが0.5mm程度のセラミックス溶射層であれば、厚さ寸法が過大であるとは言えず、そのままであっても(研磨により厚さ寸法を小さくしなくても)、割れ、欠け等の損傷を発生しにくい。従って、上記セラミックス溶射層のうちで上記折れ曲がり連続部を被覆した部分を研磨する手間を省略して、コスト低減を図れる。又、コスト低減は、上記セラミックス溶射層の厚さを小さく(従来は0.5mm以上であったものを0.4mm以下に)抑えられる事によっても図れる。
Further, as described above, the insulating layer 6 is formed by polishing the surface of the ceramic sprayed layer formed other than the raceway surface, and the thickness of the ceramic sprayed layer is set between the adjacent surfaces. When the thickness of the insulating layer obtained by polishing the ceramic sprayed layer is 0.25 mm or more, excluding the continuous bent portion, the insulation performance is ensured and the durability is maintained. It is possible to achieve high performance and low cost at the same time.
That is, in the case of the above-described structure, a ceramic sprayed layer containing 97% by weight or more of alumina and 0.5 to 2.5% by weight or more of zirconia is used. Has a relatively large electric resistance value (having excellent insulating properties). Therefore, as long as the thickness of the insulating layer after polishing is secured to 0.25 mm or more, as long as the application is the rotating shaft of a general-purpose or railway vehicle electric motor or the rotating shaft of a generator, the electrolytic corrosion A sufficient prevention effect can be secured.
Moreover, in order to ensure the thickness of the insulating layer after polishing to be 0.25 mm or more, the polishing allowance can be sufficiently ensured even if the thickness of the ceramic sprayed layer before polishing is 0.4 mm or less. And if the thickness of this ceramic sprayed layer is restrained to 0.4 mm or less, the thickness of the ceramic sprayed layer which covered the bending continuous part between adjacent surfaces can be restrained to less than 0.5 mm. If it is a ceramic sprayed layer with a thickness of about 0.5 mm, it cannot be said that the thickness dimension is excessive, even if it is as it is (even if the thickness dimension is not reduced by polishing), cracks, chips, etc. Hard to cause damage. Therefore, it is possible to reduce the cost by omitting the trouble of polishing the portion of the ceramic sprayed layer covering the bent continuous portion. The cost can also be reduced by reducing the thickness of the ceramic sprayed layer (conventionally 0.5 mm or more to 0.4 mm or less).

図2〜3は、本発明の実施の形態の1例を示している。本例の場合には、単列深溝型のラジアル玉軸受を構成する外輪3の外周面7及び軸方向両端面8、8に、絶縁層6aを形成している。この絶縁層6aは、アルミナを97重量%以上、且つ、ジルコニアを0.5〜2.5重量%含むセラミックスの溶滴を上記外周面7及び軸方向両端面8、8にプラズマ溶射により噴射して成る、セラミックス溶射層である。この様なセラミックス溶射層である、上記絶縁層6aは、上記外周面7及び軸方向両端面8、8の他、この外周面7の軸方向両端縁とこれら軸方向両端面8、8の外周縁とを連続させる、断面四分の一円弧状の折れ曲がり連続部9、9の表面も覆っている。これら各面を覆っている、上記絶縁層6aの厚さ寸法T7 、T8 、T9 (図3参照)のうち、上記外周面7及び軸方向両端面8、8の表面を覆っている部分の厚さ寸法T7 、T8 に関しては、0.4mm以下に抑えている。そして、これら各部分の厚さ寸法T7 、T8 を0.4mm以下に抑える事により、上記両折れ曲がり連続部9、9の表面を覆っている部分の厚さ寸法T9 を、0.5mm未満に抑えている。 2 to 3 show an example of an embodiment of the present invention. In the case of this example, the insulating layer 6a is formed on the outer peripheral surface 7 and both axial end surfaces 8 and 8 of the outer ring 3 constituting the single row deep groove type radial ball bearing. The insulating layer 6a sprays ceramic droplets containing 97% by weight or more of alumina and 0.5 to 2.5% by weight of zirconia on the outer peripheral surface 7 and both axial end surfaces 8 and 8 by plasma spraying. This is a ceramic sprayed layer. The insulating layer 6a, which is such a ceramic sprayed layer, is composed of the outer peripheral surface 7 and both axial end surfaces 8, 8 as well as both axial end edges of the outer peripheral surface 7 and the outer ends 8 and 8 of the axial direction. It also covers the surfaces of the bent continuous portions 9 and 9 having a circular arc shape with a quarter cross section that is continuous with the periphery. Of the thickness dimensions T 7 , T 8 , T 9 (see FIG. 3) of the insulating layer 6a covering these surfaces, the surfaces of the outer peripheral surface 7 and the axial end surfaces 8, 8 are covered. The thickness dimensions T 7 and T 8 of the portion are suppressed to 0.4 mm or less. Then, by suppressing the thickness dimensions T 7 and T 8 of each part to 0.4 mm or less, the thickness dimension T 9 of the part covering the surfaces of the both bent continuous parts 9 and 9 is set to 0.5 mm. Less than.

又、上記絶縁層6aのうち、上記外周面7及び軸方向両端面8、8の表面を覆っている部分を研磨する事により、これら各部分を平滑面とし、これら各面7、8と上記外輪3を内嵌固定するハウジングの内面とが密に当接する様にしている。この様な研磨に伴って、上記各面7、8を覆っている上記絶縁層6aの表面部分(図3の斜格子部分)が、図3に示した研磨取代δ分だけ除去されて、この絶縁層6aの厚さ寸法が、セラミックス溶射層を形成した状態よりも薄くなっている。但し、上記研磨取代δを除去した後の厚さt7 (=T7 −δ)、t8 (=T8 −δ)に関しても、0.25mm以上確保している。これに対して、上記絶縁層6aのうちで上記両折れ曲がり連続部9、9の表面を覆っている部分に関しては、研磨する事なく、そのままの(セラミックスの溶滴を噴射したままの)状態としている。 Further, by polishing the portion of the insulating layer 6a covering the outer peripheral surface 7 and the surfaces of both axial end surfaces 8, 8, these portions are made smooth, and the surfaces 7, 8 and the above The inner surface of the housing to which the outer ring 3 is fitted and fixed is in close contact with the inner ring. With such polishing, the surface portion of the insulating layer 6a covering the surfaces 7 and 8 (the oblique lattice portion in FIG. 3) is removed by the polishing allowance δ shown in FIG. The thickness dimension of the insulating layer 6a is thinner than the state in which the ceramic sprayed layer is formed. However, the thicknesses t 7 (= T 7 −δ) and t 8 (= T 8 −δ) after the removal of the polishing allowance δ are secured to 0.25 mm or more. On the other hand, the portion of the insulating layer 6a that covers the surfaces of the bent portions 9 and 9 is left as it is (without spraying ceramic droplets) without being polished. Yes.

上述の様な電食防止用絶縁転がり軸受は、上記絶縁層6aの絶縁性能の確保と、耐久性の確保と、低コスト化とを、高次元で並立させる事ができる。
先ず、絶縁性能の確保は、上記絶縁層6aを構成するセラミックス溶射層として、アルミナを97重量%以上含有するものを使用する事により図れる。即ち、アルミナを97重量%以上含有するセラミックス溶射層は電気抵抗値が大きい(優れた絶縁性を有する)為、研磨後の(使用状態での)絶縁層の厚さを0.25mm以上確保すれば、用途が、汎用或いは鉄道車両用の電動モータの回転軸、或いは発電機の回転軸の様に、電位差が3000V程度までの回転支持部である限り、電食防止効果を十分に確保できる。例えば、研磨後の絶縁層の厚さ寸法を0.25mmとした場合、1000V印加の条件で、5000MΩ以上の絶縁抵抗値を確保できる。
The insulating rolling bearing for preventing electric corrosion as described above can ensure the insulation performance of the insulating layer 6a, the durability, and the cost reduction in parallel.
First, the insulation performance can be ensured by using a ceramic sprayed layer constituting the insulating layer 6a containing 97% by weight or more of alumina. In other words, a ceramic sprayed layer containing 97% by weight or more of alumina has a large electrical resistance value (having excellent insulating properties), so that the thickness of the insulating layer after polishing (in use) can be secured at 0.25 mm or more. For example, as long as the application is a rotating support portion with a potential difference of up to about 3000 V, such as a rotating shaft of an electric motor for general purpose or railway vehicles, or a rotating shaft of a generator, the effect of preventing electrolytic corrosion can be sufficiently secured. For example, when the thickness dimension of the insulating layer after polishing is 0.25 mm, an insulation resistance value of 5000 MΩ or more can be secured under the condition of 1000 V applied.

又、研磨後の絶縁層6aの厚さを0.25mm以上確保する為には、研磨前のセラミックス溶射層の厚さを0.4mm以下としても、十分に(最大で0.15mm程度の)研磨代を確保できる。即ち、上記絶縁層6aの表面と前記ハウジングの内面とを均一に当接させて、前記外輪3の姿勢を安定させると共に、上記絶縁層6aの一部に過大な力が加わる事を防止する為には、上記外周面7及び軸方向両端面8、8の表面を覆っている部分を研磨する必要がある。この場合でも、必要な研磨代は0.15mm以下であるから、上記研磨前のセラミックス溶射層の厚さを0.4mm以下に抑えても、研磨後の絶縁層6aの厚さを0.25mm以上確保できる。   Further, in order to ensure the thickness of the insulating layer 6a after polishing to be 0.25 mm or more, it is sufficient (less than about 0.15 mm at maximum) even if the thickness of the ceramic sprayed layer before polishing is 0.4 mm or less. Polishing allowance can be secured. That is, the surface of the insulating layer 6a and the inner surface of the housing are uniformly contacted to stabilize the posture of the outer ring 3 and to prevent an excessive force from being applied to a part of the insulating layer 6a. Therefore, it is necessary to polish the portion covering the surfaces of the outer peripheral surface 7 and the axial end surfaces 8 and 8. Even in this case, since the necessary polishing allowance is 0.15 mm or less, even if the thickness of the ceramic sprayed layer before polishing is suppressed to 0.4 mm or less, the thickness of the insulating layer 6a after polishing is 0.25 mm. This can be secured.

そして、上記セラミックス溶射層の厚さを0.4mm以下に抑えられれば、前述した通り、前記両折れ曲がり連続部9、9の表面を覆っている部分の厚さ寸法T9 を、0.5mm未満に抑えられる。即ち、これら両折れ曲がり連続部9、9には、上記外周面7に径方向外方から噴射するセラミックス溶滴、及び、上記軸方向両端面8、8に軸方向外方から噴射するセラミックス溶滴が付着する。この為、上記両折れ曲がり連続部9、9を覆うセラミックス溶射層の厚さ寸法は、上記外周面7及び上記軸方向両端面8、8を覆うセラミックス溶射層の厚さ寸法よりも大きくなる。 Then, as long suppress the thickness of the thermally sprayed ceramic layer to 0.4mm or less, as described above, the thickness T 9 of the portion covering the surface of both bent continuous section 9,9, less than 0.5mm Can be suppressed. That is, in these two bent continuous portions 9, 9, ceramic droplets that are ejected radially outward on the outer peripheral surface 7, and ceramic droplets that are ejected axially outward on the axial end surfaces 8, 8. Adheres. For this reason, the thickness dimension of the ceramic sprayed layer covering the two bent continuous portions 9, 9 is larger than the thickness dimension of the ceramic sprayed layer covering the outer peripheral surface 7 and the axial end surfaces 8, 8.

本例の場合には、上記各面7、8を覆うセラミックス溶射層の厚さ寸法を0.4mm以下に抑えている為、上記両折れ曲がり連続部9、9を覆うセラミックス溶射層の厚さ寸法を0.5mm未満に抑えられる。厚さが0.5mm程度のセラミックス溶射層であれば、厚さ寸法が過大であるとは言えず、そのままであっても(研磨により厚さ寸法を小さくしなくても)、割れ、欠け等の損傷を発生しにくい。従って、上記セラミックス溶射層である前記絶縁層6aのうちで、上記両折れ曲がり連続部9、9を被覆した部分を研磨する手間を省略して、コスト低減を図れる。   In the case of this example, since the thickness dimension of the ceramic sprayed layer covering the surfaces 7 and 8 is suppressed to 0.4 mm or less, the thickness dimension of the ceramic sprayed layer covering the bi-folded continuous portions 9 and 9 is as follows. Can be suppressed to less than 0.5 mm. If it is a ceramic sprayed layer with a thickness of about 0.5 mm, it cannot be said that the thickness dimension is excessive, even if it is as it is (even if the thickness dimension is not reduced by polishing), cracks, chips, etc. Hard to cause damage. Accordingly, it is possible to reduce the cost by omitting the trouble of polishing the portion of the insulating layer 6a that is the ceramic sprayed layer that covers the bent portions 9 and 9.

又、本例の場合には、0.5重量%以上のジルコニアを含有している為、封孔処理に拘らず、外観悪化に結び付く様な色むらは発生しない。即ち、セラミックス溶射層内部に存在する微細な空隙を合成樹脂により塞ぐ為の封孔処理に伴って、この合成樹脂の一部が上記セラミックス溶射層の表面に表れる。0.5重量%以上のジルコニアを含有したセラミックス材料の場合には、表面の色彩がグレー(灰色)がかっている為、上記封孔処理に使用する合成樹脂として、適切な色彩のものを使用すれば、表面に、製品の外観を悪くする程の色むらを生じる事はない。   Further, in the case of this example, since 0.5% by weight or more of zirconia is contained, color unevenness that leads to deterioration in appearance does not occur regardless of the sealing treatment. That is, a part of the synthetic resin appears on the surface of the ceramic sprayed layer in accordance with the sealing treatment for closing the fine voids existing inside the ceramic sprayed layer with the synthetic resin. In the case of a ceramic material containing 0.5% by weight or more of zirconia, the surface color is gray, so use a resin with an appropriate color as the synthetic resin used for the sealing treatment. As a result, there is no uneven color on the surface to the extent that the appearance of the product is deteriorated.

但し、上記ジルコニアを、2.5重量%を越えて含有させると、必要とする絶縁性能を確保する為に要する、上記セラミックス溶射層の厚さが大きくなる。そこで、上記ジルコニアの含有量を、0.5〜2.5重量%の範囲に規制する。
尚、セラミックス溶射層中に於ける、上記ジルコニアの含有量を、2.5重量%以下に抑える事により、溶射層形成時の材料(アルミナ粒)の歩留が多少は悪化する。但し、粒径が10〜50μmで、平均粒径が15〜25μmであるアルミナを使用すれば、上記セラミックス溶射層を構成するアルミナの付着効率を向上させる事と合わせて、上記セラミックス溶射層の厚さ寸法に関する精度を向上させ、コスト上昇を抑えられる。即ち、付着効率の向上による材料費の節約と、寸法精度の向上による仕上加工の容易化(仕上加工時間の短縮化)とにより、電食防止用絶縁転がり軸受の製造コストの低廉化を図れる。
更に、本例の場合、上記セラミックス溶射層に、高強度、高靱性を有するジルコニアを含有させている為、このセラミックス溶射層の密着力を向上させる事ができる。この様に、セラミックス溶射層の密着力が向上すれば、このセラミックス溶射層が剥がれにくくなる為、耐久性を十分確保できる。
However, if the zirconia exceeds 2.5% by weight, the thickness of the ceramic sprayed layer required to ensure the required insulation performance increases. Therefore, the content of the zirconia is restricted to a range of 0.5 to 2.5% by weight.
In addition, by suppressing the content of the zirconia in the ceramic sprayed layer to 2.5% by weight or less, the yield of the material (alumina grains) at the time of forming the sprayed layer is somewhat deteriorated. However, if alumina having a particle size of 10 to 50 μm and an average particle size of 15 to 25 μm is used, it is possible to improve the adhesion efficiency of alumina constituting the ceramic sprayed layer and to increase the thickness of the ceramic sprayed layer. The accuracy with respect to the height can be improved and the increase in cost can be suppressed. That is, it is possible to reduce the manufacturing cost of the anti-corrosion insulated rolling bearing by saving the material cost by improving the adhesion efficiency and facilitating the finishing process by shortening the dimensional accuracy (reducing the finishing time).
Furthermore, in the case of this example, since the ceramic sprayed layer contains zirconia having high strength and high toughness, the adhesion of the ceramic sprayed layer can be improved. As described above, if the adhesion of the ceramic sprayed layer is improved, the ceramic sprayed layer becomes difficult to peel off, and thus sufficient durability can be secured.

本発明の効果を確認する為に行なった実験に就いて説明する。先ず、セラミックス溶射層の密着力(密着強さ)を調べる為に行なった実験に就いて説明する。この実験は、JIS H 8666に記載された密着性試験に基づいて行なった。又、セラミックス溶射層の材料として、ホワイトアルミナ、アルミナに酸化チタンを3.0重量%含有させたグレイアルミナ、同じく酸化チタンを0.04重量%含有させたもの、同じくジルコニアを1.25重量%含有させたものの、4種類用意した。尚、上述の4種類の材料により形成した各セラミックス溶射層の封孔処理に使用する合成樹脂として、エポキシ系、フッ素系等の有機系の合成樹脂を使用した。又、各セラミックス溶射層の膜厚は、0.35mm(350μm)とした。この実験の結果を図4に示す。この図4から明らかな様に、ホワイトアルミナ及び0.04重量%の酸化チタンを含有させたものの密着力が60〜64MPa であったのに対して、1.25重量%のジルコニアを含有させたものの密着力は、69MPa と、高い密着力を有する事が分かった。   An experiment conducted for confirming the effect of the present invention will be described. First, an experiment conducted for examining the adhesion (adhesion strength) of the ceramic sprayed layer will be described. This experiment was performed based on the adhesion test described in JIS H 8666. Moreover, as a material for the ceramic sprayed layer, white alumina, gray alumina containing 3.0% by weight of titanium oxide in alumina, 0.04% by weight of titanium oxide, and 1.25% by weight of zirconia are also used. Four types were prepared. In addition, an organic synthetic resin such as an epoxy resin or a fluorine resin was used as a synthetic resin used for sealing each ceramic sprayed layer formed of the above four types of materials. The film thickness of each ceramic sprayed layer was 0.35 mm (350 μm). The results of this experiment are shown in FIG. As is apparent from FIG. 4, the adhesion strength of white alumina and 0.04% by weight of titanium oxide was 60 to 64 MPa, whereas 1.25% by weight of zirconia was contained. It was found that the adhesive strength of the object was 69 MPa, which was high.

次に、セラミックス溶射層の体積固有抵抗値を調べる為に行なった実験に就いて説明する。この実験では、次の7種類の材料を使用した。
(1)ホワイトアルミナ
(2)アルミナに酸化チタンを0.04重量%含有したもの
(3)同じく酸化チタンを0.4重量%含有したもの
(4)同じく酸化チタンを3.0重量%含有したもの
(5)同じくジルコニアを0.5重量%含有したもの
(6)同じくジルコニアを1.25重量%含有したもの
(7)同じくジルコニアを2.5重量%含有したもの
尚、上述の7種類の材料により形成した各セラミックス溶射層の封孔処理に使用する合成樹脂として、エポキシ系、フッ素系等の有機系の合成樹脂を使用した。
Next, an experiment conducted for examining the volume resistivity value of the ceramic sprayed layer will be described. In this experiment, the following seven types of materials were used.
(1) White alumina (2) Alumina containing 0.04% by weight of titanium oxide (3) Also containing 0.4% by weight of titanium oxide (4) Also containing 3.0% by weight of titanium oxide (5) The same containing 0.5% by weight of zirconia (6) The same containing 1.25% by weight of zirconia (7) The same containing 2.5% by weight of zirconia As a synthetic resin used for sealing treatment of each ceramic sprayed layer formed of a material, an organic synthetic resin such as epoxy or fluorine was used.

上記(1)〜(7)の材料により形成した各セラミックス溶射層に1000Vの電圧を印加した時の、それぞれの体積固有抵抗値を図5に示す。この図5から明らかな様に、アルミナに酸化チタンを3.0重量%含有したもの{(4)}は、体積固有抵抗値が8.6×1012(Ω・cm)と最も低かった。これに対して、ホワイトアルミナ{(1)}が5.0×1014(Ω・cm)と最も高く、次いで、アルミナに酸化チタンを0.04、0.4重量%それぞれ含有したもの{(2)、(3)}と、アルミナにジルコニアを0.5〜2.5重量%それぞれ含有したもの{(5)〜(7)}とが、1.0〜2.5×1014(Ω・cm)で同程度の値を示した。即ち、ジルコニアは、酸化チタンと比べて、含有量の増加に対して体積固有抵抗値が減少する割合が小さい。これにより、アルミナにジルコニアを0.5〜2.5重量%含有したセラミックス溶射層が、高い絶縁性を有する事が分かる。尚、アルミナに酸化チタンを3.0重量%含有したもの{(4)}は、絶縁性を十分に確保する為に0.5mm以上の膜厚とする必要があったが、アルミナにジルコニアを0.5〜2.5重量%含有したものは、膜厚を薄くしても十分な絶縁性を確保できた。この結果、材料費の低減を図れる事が分かる。 FIG. 5 shows the respective volume resistivity values when a voltage of 1000 V is applied to each ceramic sprayed layer formed of the materials (1) to (7). As is apparent from FIG. 5, the volume specific resistance value {(4)} containing 3.0% by weight of titanium oxide in alumina had the lowest volume value of 8.6 × 10 12 (Ω · cm). On the other hand, white alumina {(1)} is the highest at 5.0 × 10 14 (Ω · cm), and then alumina contains 0.04 and 0.4% by weight of titanium oxide {( 2), (3)} and alumina containing 0.5 to 2.5% by weight of zirconia {(5) to (7)} are 1.0 to 2.5 × 10 14 (Ω・ Cm) showed similar values. That is, zirconia has a smaller rate of decrease in volume resistivity with respect to increase in content than titanium oxide. Thereby, it turns out that the ceramic sprayed layer which contained 0.5 to 2.5 weight% of zirconia in the alumina has high insulation. In addition, what contained 3.0% by weight of titanium oxide in alumina {(4)} had to have a film thickness of 0.5 mm or more in order to ensure sufficient insulation, but zirconia was added to alumina. Those containing 0.5 to 2.5% by weight were able to secure sufficient insulation even if the film thickness was reduced. As a result, it can be seen that the material cost can be reduced.

本発明は、図示の様な単列深溝型のラジアル玉軸受に限らず、アンギュラ型、複列等、他の型式のラジアル玉軸受や、円すいころ軸受、円筒ころ軸受、自動調心ころ軸受、スラスト玉軸受或いはスラストころ軸受等、他の型式の転がり軸受で実施する事もできる。スラスト転がり軸受で実施する場合に絶縁層は、内外両周面と軸方向片面とに形成する。   The present invention is not limited to the single row deep groove type radial ball bearing as shown in the figure, but other types of radial ball bearings such as angular type and double row, tapered roller bearings, cylindrical roller bearings, self-aligning roller bearings, Other types of rolling bearings such as thrust ball bearings or thrust roller bearings can also be used. In the case of a thrust rolling bearing, the insulating layer is formed on both the inner and outer peripheral surfaces and one axial surface.

本発明の実施状況の2例を示す断面図。Sectional drawing which shows two examples of the implementation condition of this invention. 本発明の実施の形態の第1例を示す部分断面図。The fragmentary sectional view which shows the 1st example of embodiment of this invention. 図2のA部拡大図。The A section enlarged view of FIG. セラミックス溶射層の密着力を測定した結果を示す棒グラフ。The bar graph which shows the result of having measured the adhesive force of the ceramic sprayed layer. セラミックス溶射層の体積固有抵抗値を測定した結果を示す棒グラフ。The bar graph which shows the result of having measured the volume resistivity value of the ceramic sprayed layer. 従来構造の1例を示す半部断面図。The half part sectional view showing an example of conventional structure.

符号の説明Explanation of symbols

1 内輪
2 内輪軌道
3 外輪
4 外輪軌道
5 転動体
6、6a 絶縁層
7 外周面
8 端面
9 折れ曲がり連続部
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Inner ring track 3 Outer ring 4 Outer ring track 5 Rolling element 6, 6a Insulating layer 7 Outer peripheral surface 8 End surface 9 Bending continuous part

Claims (1)

互いに同心に配置された、それぞれが金属製である1対の軌道輪と、これら両軌道輪の互いに対向する面に形成された1対の軌道面同士の間に転動自在に設けられた、それぞれが金属製である複数個の転動体とを備え、上記両軌道輪のうちの少なくとも一方の軌道輪の表面のうちで軌道面を設けた面以外の面を、セラミックス製の絶縁層により被覆した電食防止用絶縁転がり軸受に於いて、この絶縁層を、97重量%以上のアルミナと、0.5〜2.5重量%のジルコニアとを含有するセラミックス溶射層とした事を特徴とする電食防止用絶縁転がり軸受。
Rollers are provided between a pair of raceways arranged concentrically, each made of metal, and a pair of raceways formed on opposite surfaces of these raceways. A plurality of rolling elements each made of metal, and covering a surface of at least one of the two bearing rings other than the surface provided with the raceway surface with a ceramic insulating layer In the insulated rolling bearing for preventing electric corrosion, the insulating layer is a ceramic sprayed layer containing 97% by weight or more of alumina and 0.5 to 2.5% by weight of zirconia. Insulated rolling bearing for electric corrosion prevention.
JP2006018631A 2005-10-27 2006-01-27 Insulating roller bearing for preventing electric corrosion Pending JP2007198519A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006018631A JP2007198519A (en) 2006-01-27 2006-01-27 Insulating roller bearing for preventing electric corrosion
CN2006800265383A CN101228362B (en) 2005-10-27 2006-10-26 Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
EP06822403.9A EP1950436B1 (en) 2005-10-27 2006-10-26 Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
PCT/JP2006/321434 WO2007049727A1 (en) 2005-10-27 2006-10-26 Insulating rolling bearing for use in prevention of electric corrosion, method for manufacture thereof, and bearing device
US11/994,284 US8425120B2 (en) 2005-10-27 2006-10-26 Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018631A JP2007198519A (en) 2006-01-27 2006-01-27 Insulating roller bearing for preventing electric corrosion

Publications (1)

Publication Number Publication Date
JP2007198519A true JP2007198519A (en) 2007-08-09

Family

ID=38453308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018631A Pending JP2007198519A (en) 2005-10-27 2006-01-27 Insulating roller bearing for preventing electric corrosion

Country Status (1)

Country Link
JP (1) JP2007198519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190508A (en) * 2013-03-28 2014-10-06 Tocalo Co Ltd Roller bearing for preventing electric corrosion
WO2016157572A1 (en) * 2015-04-01 2016-10-06 日本精工株式会社 Roller bearing having insulation for prevention of electrolytic corrosion, and method for manufacturing same
WO2020067012A1 (en) 2018-09-27 2020-04-02 Ntn株式会社 Electrocorrosion-preventing rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190508A (en) * 2013-03-28 2014-10-06 Tocalo Co Ltd Roller bearing for preventing electric corrosion
CN105051390A (en) * 2013-03-28 2015-11-11 东华隆株式会社 Rolling bearing for electric corrosion prevention
WO2016157572A1 (en) * 2015-04-01 2016-10-06 日本精工株式会社 Roller bearing having insulation for prevention of electrolytic corrosion, and method for manufacturing same
WO2020067012A1 (en) 2018-09-27 2020-04-02 Ntn株式会社 Electrocorrosion-preventing rolling bearing
US11525479B2 (en) 2018-09-27 2022-12-13 Ntn Corporation Anti-electrolytic corrosion rolling bearing

Similar Documents

Publication Publication Date Title
JP5025190B2 (en) Insulated rolling bearing for electric corrosion prevention
US8425120B2 (en) Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
US11137030B2 (en) Coating method for bearing ring
JP2005133876A (en) Electrical corrosion prevention rolling bearing
JP2002048145A (en) Anti-electrolytic corrosion rolling bearing
JP2009287658A (en) Electrolytic corrosion preventive insulating rolling bearing
JP2007198519A (en) Insulating roller bearing for preventing electric corrosion
JP4826427B2 (en) Insulated rolling bearing for preventing electrolytic corrosion and method for manufacturing the same
JP2007218368A (en) Ball bearing for direct drive motor
JP2013199954A (en) Insulation rolling bearing for electrolytic corrosion prevention
JP2007292094A (en) Insulated rolling bearing for preventing electric erosion
JP2009210090A (en) Insulated rolling bearing for preventing electrolytic corrosion and its manufacturing method
JP2008169959A (en) Insulated rolling bearing for preventing electric corrosion
JP2007292114A (en) Insulated rolling bearing for preventing electric erosion
JP4002069B2 (en) Manufacturing method of outer ring in electric corrosion prevention type bearing
JP2007170673A (en) Electrolytic corrosion preventive type rolling bearing
JP2006329366A (en) Insulated bearing for preventing electric erosion
JP4795888B2 (en) Method for manufacturing bearing member raceway and method for manufacturing rolling bearing
JPWO2017179634A1 (en) Insulating bearing
JP4513775B2 (en) Rolling device for rolling mill roll neck
JP2010001934A (en) Method of manufacturing raceway ring for electrolytic corrosion preventive insulated rolling bearing
JP2011117607A (en) Electrolytic-corrosion-resistant rolling bearing
JP2006077944A (en) Insulating rolling bearing for preventing electric corrosion
JP2008039032A (en) Insulated rolling bearing for electric-erosion prevention
JP2007107725A (en) Electrolytic corrosion prevention rolling bearing