WO2015162697A1 - 二次電池の製造方法および製造装置 - Google Patents

二次電池の製造方法および製造装置 Download PDF

Info

Publication number
WO2015162697A1
WO2015162697A1 PCT/JP2014/061312 JP2014061312W WO2015162697A1 WO 2015162697 A1 WO2015162697 A1 WO 2015162697A1 JP 2014061312 W JP2014061312 W JP 2014061312W WO 2015162697 A1 WO2015162697 A1 WO 2015162697A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
zigzag folding
electrode plate
secondary battery
zigzag
Prior art date
Application number
PCT/JP2014/061312
Other languages
English (en)
French (fr)
Inventor
坂田 卓也
尋史 佐藤
誠司 山浦
Original Assignee
エリーパワー株式会社
長野オートメーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エリーパワー株式会社, 長野オートメーション株式会社 filed Critical エリーパワー株式会社
Priority to PCT/JP2014/061312 priority Critical patent/WO2015162697A1/ja
Priority to TW104112379A priority patent/TW201611381A/zh
Publication of WO2015162697A1 publication Critical patent/WO2015162697A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a secondary battery, and is particularly useful when applied to the manufacture of a lithium ion secondary battery.
  • Secondary batteries such as lithium ion secondary batteries have a group of electrode plates formed by alternately stacking positive and negative electrode plates so that a separator is interposed between positive and negative electrode plates.
  • this electrode plate group there is a manufacturing apparatus of a zigzag stack system in which a continuous body of separators is zigzag-folded, and a positive electrode plate and a negative electrode plate are inserted into each valley groove and crushed flatly ( For example, see Patent Document 1).
  • a continuous separator is sandwiched between a pair of rollers, and the pair of rollers is reciprocated in a horizontal direction to zigzag the separator.
  • the electrode plates are alternately placed on the separator.
  • Patent Document 2 a manufacturing method and a manufacturing apparatus for a secondary battery capable of improving the positional accuracy of the positive and negative electrodes and the separator have been proposed ( Patent Document 2).
  • This is a zigzag folding of a separator (or a superposed body in which one electrode plate is sandwiched between two separators) by dropping a strip-shaped separator from above and crossing a plurality of guide members horizontally between rows. Then, by inserting a positive electrode plate and a negative electrode plate (in the case of a superposed body, the other electrode plate) into each valley groove formed thereby, the positive electrode plate and the negative electrode plate overlap each other with a separator interposed therebetween. The electrode plate group of the manufactured secondary battery is manufactured.
  • Patent Document 2 an improvement in the positional accuracy of the positive and negative electrodes and the separator can be expected as compared with that described in Patent Document 1, but when the separator is zigzag folded by the movement of the plurality of guide members, May be drawn into the guide member while fluttering.
  • Such a possibility increases due to variations in the width, thickness, and surface condition of the separator, and there is a case where the accuracy of the electrode plate group does not fall within an allowable value. Therefore, it is suitable when using a specific separator whose size such as width and thickness is used, but when using a separator having a different size, the influence of the flutter of the separator must be considered.
  • Patent Document 2 the separator is cut once every zigzag folding process in a state where the upper side and the lower side of the separator suspended between the guide members of the zigzag folding means are accommodated in the accommodation case. Used. For this reason, it is inevitably necessary to secure a margin portion for cutting the separator in the vicinity of the cutting portion.
  • a manufacturing method and a manufacturing apparatus for a secondary battery are disclosed in PCT / JP2012 / 0776826 (hereinafter referred to as a prior application invention) which is the applicant's prior invention.
  • zigzag folding is performed with the separator suspended from the suspension roller.
  • a positive electrode plate and a negative electrode plate are alternately inserted into each valley groove of the separator that is zigzag folded, thereby forming a laminate in which the positive electrode plate and the negative electrode plate are alternately overlapped via the separator.
  • the said laminated body is pressed in the direction where the said positive electrode plate and the said negative electrode plate were laminated
  • the separator is disposed between three support rollers on the upstream side and the downstream side.
  • the separator is suspended between the guide members via a suspension roller.
  • the buffer roller is lowered or raised.
  • the pull-in length of the separator zigzag folded by the rise of the buffer roller arranged so as to be able to move up and down can be supplemented. Therefore, the separator is continuously cut without being cut in advance. Zigzag folding can be performed. As a result, when the separator or the like is pulled by the guide member, the separator moves in the width direction and the phenomenon of fluttering is suppressed, and the separator can be drawn smoothly by the guide member.
  • the separator does not need to be cut to a predetermined length before zigzag folding, and the predetermined zigzag folding can be performed in a continuous state, so that the yield of the separator can be improved.
  • two buffer rollers which are disposed so as to be able to move up and down in the vertical direction by contacting one surface of the separator between the three support rollers, are in contact with the separator while being predetermined.
  • the separator is suspended between the guide members via the suspension roller in the state where the position is raised or lowered, and the buffer roller is lowered or raised when zigzag folding is performed by the movement of the guide member. . That is, in the prior invention, the buffer portion (extra length portion) of the separator when zigzag folding is performed is formed only on the upstream side of the zigzag folding means.
  • the separator on the downstream side of the zigzag folding means is accommodated in the suspended state where the separator is drawn out as it is suspended and pulled out as an extra length part below the zigzag folding means. Since the extra length portion is folded and accommodated in the zigzag folding process from this state, it is drawn into the zigzag folding means, so that the separator on the downstream side is more smoothly drawn into the downstream side of the zigzag folding means. It is desirable to stabilize the system.
  • the present invention provides more stable moldability of a superposed body (hereinafter also referred to as a separator or the like) in which one of a separator and a positive and negative electrode plate is sandwiched between two separators.
  • An object of the present invention is to provide a manufacturing method and a manufacturing apparatus of a secondary battery that can be ensured and can also shorten the tact time.
  • the first aspect of the present invention for achieving the above object is as follows: A step of zigzag folding the separator by zigzag folding means in accordance with the movement of the guide member in a state where the separator is suspended via a suspension roller between a plurality of guide members arranged opposite to each other, and zigzag folding Forming a laminated body in which the positive electrode plate and the negative electrode plate are alternately overlapped with each other through the separator by alternately inserting a positive electrode plate and a negative electrode plate into each valley groove of the separator, And after the guide member is removed from each valley groove of the separator, the laminate is pressed in a direction in which the positive electrode plate and the negative electrode plate are laminated to produce an electrode plate group.
  • the separator is suspended between the guide members via the suspension roller, and prior to the zigzag folding step by the movement of the guide member, the separator having a length that is pulled in the zigzag folding is retained in advance.
  • the staying separator is supplied toward the zigzag folding means when the zigzag folding means is drawn upstream of the zigzag folding means, and the position of the separator is downstream of the zigzag folding means.
  • Manufacturing the secondary battery wherein the separator is guided to convey the separator and a force against the progress of the separator moving toward the zigzag folding means is applied in the zigzag folding step. Is in the way.
  • the separator that is retained when the zigzag folding unit is drawn is supplied to the zigzag folding unit on the upstream side of the zigzag folding unit, and the downstream side of the zigzag folding unit Then, the position of the separator is regulated to guide the conveyance of the separator, and a force against the progress of the separator moving toward the zigzag folding means is applied in the zigzag folding process.
  • the flutter of the separator can be suppressed, and the moldability of the separator can be improved, and the molding speed can be increased accordingly, so that the tact time during molding can be improved.
  • the second aspect of the present invention is: Movement of the guide member in a state in which a superposed body in which one of the positive and negative electrode plates is sandwiched between two separators is suspended via a suspension roller between a plurality of guide members arranged opposite to each other. Accordingly, the step of zigzag folding by the zigzag folding means and inserting the other of the electrode plates into each valley groove of the superposed body zigzag folded, the positive electrode plate and the negative electrode through the superposed body A step of forming a laminated body in which the plates are alternately overlapped, and after removing the guide member from within each valley groove of the superimposed body, the laminated body in a direction in which the positive electrode plate and the negative electrode plate are laminated.
  • the superposed body is suspended between the guide members via the suspension roller, and a separator having a length to be drawn during the zigzag folding is preliminarily retained before the zigzag folding process by the movement of the guide member.
  • the superposed body that is retained when the zigzag folding means is pulled into the zigzag folding means is supplied to the zigzag folding means at the upstream side of the zigzag folding means, and the superposition is performed downstream of the zigzag folding means.
  • the position of the body is regulated to guide the conveyance of the superimposed body, and a force that resists the progress of the superimposed body that moves toward the zigzag folding means in the zigzag folding step is applied. It exists in the manufacturing method of a secondary battery.
  • the third aspect of the present invention is: In the method for manufacturing a secondary battery described in the first or second aspect, In the method of manufacturing a secondary battery, a force against the progression is applied to the separator or the superimposed body by blowing air to the separator or the superimposed body.
  • the fourth aspect of the present invention is: In the secondary battery manufacturing method described in the third aspect, In the method of manufacturing a secondary battery, the air is ejected obliquely downward of the separator or the superimposed body.
  • the separator or the superimposed body conveyance guide In the separator or superimposed body conveyance guide, the separator or the superimposed body is surrounded by means for guiding the conveyance.
  • the separator or the superimposed body is surrounded by the means for guiding the conveyance, the position of the separator or the superimposed body can be stabilized, and the moldability of the separator can be improved. Accordingly, the molding speed can be increased, and the tact time during molding can be improved.
  • the sixth aspect of the present invention is: A plurality of guide members arranged in a zigzag shape in the vertical direction, and separators suspended via a suspension roller between one row of the guide members and the other row, Zigzag folding means for zigzag folding between each other in the horizontal direction, A positive plate transport member for a positive plate on which a predetermined number of positive plates are placed and a negative plate transport member for a negative plate on which a predetermined number of negative plates are placed, respectively, for the positive plate and for the negative plate An electrode plate insertion member that alternately inserts the positive electrode plate and the negative electrode plate into each trough by moving the electrode plate transport member into each trough of the separator; The separator held and pulled out by the separator holding portion is supplied to the zigzag folding means via the suspension roller, and the separator having a length to be pulled in the zigzag folding is retained in advance.
  • the position of the separator is regulated to guide the conveyance of the separator, and against the progress of the separator moving toward the zigzag folding means in the zigzag folding step And a stabilizing means for imparting force to the secondary battery manufacturing apparatus.
  • the separator position is regulated to guide the conveyance of the separator, and in the zigzag folding step, the separator moving toward the zigzag folding unit progresses. Added the ability to resist. As a result, the flutter of the separator can be suppressed, and the moldability of the separator can be improved, and the molding speed can be increased accordingly, so that the tact time during molding can be improved.
  • the seventh aspect of the present invention is One of the positive and negative electrode plates having a plurality of guide members arranged in a zigzag shape in the vertical direction and suspended via a suspension roller between one row of the guide members and the other row Zigzag folding means for zigzag folding the superposed body sandwiched between two separators by crossing the guide members horizontally between rows;
  • An electrode plate conveying member on which the other of the predetermined number of the electrode plates is mounted is provided, and the other electrode plate is placed in each valley groove by moving the electrode plate conveying member into each valley groove of the superimposed body.
  • the superposed body held and pulled out by the superposed body holding part is supplied to the zigzag folding means via the suspension roller, and the superposed body having a length to be drawn in the zigzag folding is retained in advance.
  • superposed body supply means for allowing the accumulated superposed body to be supplied to the zigzag folding means at the time of zigzag folding, When the zigzag folding step is pulled into the zigzag folding means, the position of the superposed body is regulated to guide the conveyance of the superposed body, and the superposed body moves toward the zigzag folding means in the zigzag folding step.
  • a stabilizing means for applying a force that resists the above.
  • the eighth aspect of the present invention is in the secondary battery manufacturing apparatus described in the sixth or seventh aspect,
  • the stabilizing means is in a secondary battery manufacturing apparatus having a function of blowing air to the separator or the superimposed body.
  • the ninth aspect of the present invention provides in the secondary battery manufacturing apparatus described in the eighth aspect,
  • the stabilization means is in a secondary battery manufacturing apparatus, characterized in that the air is ejected obliquely downward of the separator or superposed body.
  • the tenth aspect of the present invention provides in the secondary battery manufacturing apparatus described in any one of the sixth to ninth aspects,
  • the stabilizing means has a movable part, and in the separator or superimposing transport guide, by moving the part, the separator or superimposing body is used as a component of the stabilizing means including the part.
  • the secondary battery manufacturing apparatus is characterized in that the battery is surrounded.
  • the separator or the superimposed body is surrounded by the means for guiding the conveyance, it is possible to stabilize the position of the separator or the superimposed body, and to improve the moldability of the separator and the molding speed. Therefore, it is possible to provide a manufacturing apparatus capable of improving the tact time during molding.
  • the eleventh aspect of the present invention is in the secondary battery manufacturing apparatus described in the tenth aspect,
  • the stabilizing means includes, as the component, a plate-like flat plate portion disposed along the suspension direction on one side of the separator or the superimposed body suspended by the suspension roller; Movement of the separator or superimposed body while projecting to the separator side or the superimposed body side so as to regulate the position of the separator or the superimposed body in the width direction by contacting the end of the separator or the superimposed body with the inner peripheral surface Two guide members extending in the direction; The separator or the superimposed body is disposed on the opposite side of the flat plate portion and is movable toward the flat plate portion, and the separator or the superimposed body passes along with the flat plate portion and the two guide members.
  • the cross-sectional shape of the secondary battery manufacturing apparatus includes a portion that forms a rectangular space.
  • a rectangular space having a cross-sectional shape through which the separator or the superimposed body passes is formed by the flat plate portion, the two guide members, and the lid member, and the guide is provided by inserting the separator or the superimposed body into this space. Combined with the guide function of the member, it is possible to smoothly distribute and convey the separator or the superimposed body.
  • the twelfth aspect of the present invention provides In the secondary battery manufacturing apparatus described in the eleventh aspect,
  • the part has first and second movement modes having different movement amounts when moving toward the flat plate portion, and in the first movement mode, the flat plate portion and the two guide members
  • the cross-sectional shape through which the separator or the superimposed body passes forms a rectangular space, and at the end of the zigzag folding process by the zigzag folding means, further moves to the flat plate portion side in the second movement mode
  • the secondary battery manufacturing apparatus is characterized in that the separator or the superposed body is sandwiched and clamped between the two.
  • the separator since the separator can be clamped and clamped in the second movement mode, the separator does not loosen even if the guide member is removed from the zigzag folded separator at the end of the zigzag folding process. A series of tasks can be performed.
  • the thirteenth aspect of the present invention provides in the secondary battery manufacturing apparatus described in the sixth or seventh aspect,
  • the stabilizing means includes a plate-like flat plate portion disposed along the suspension direction on one side of the separator or the superimposed body suspended by the suspension roller;
  • a flat plate-shaped moving member disposed on the opposite side of the flat plate portion with respect to the separator or the superimposed body and formed to be movable toward the flat plate portion;
  • a base end portion is fixed to the flat plate portion or the moving member, and is formed so as to extend upward along the hanging direction of the separator or the superposed body and the tip end portion can elastically contact the separator or the superposed body.
  • a secondary battery manufacturing apparatus having a pressing member.
  • the fourteenth aspect of the present invention provides in the secondary battery manufacturing apparatus described in the sixth or seventh aspect,
  • the stabilizing means includes A plurality of position restricting rollers disposed on one side of the separator or superimposed body along the direction in which the separator or superimposed body is suspended;
  • a pressure roller disposed between the two position regulating rollers on the other side of the separator or the superimposed body, and formed so as to be able to move toward and contact the surface on the other side of the separator or the superimposed body;
  • a secondary battery manufacturing apparatus comprising:
  • the fifteenth aspect of the present invention provides in the secondary battery manufacturing apparatus described in any one of the sixth to fourteenth aspects,
  • the separator supply unit or the superimposed body supply unit includes at least two support rollers that support the upstream side of the suspension roller with respect to the conveyance direction of the separator or the superimposed body, relative to the upstream side and the downstream side. And at least one upstream buffer roller disposed between the support rollers and disposed in contact with one surface of the separator or the superposed body so as to be vertically movable.
  • the upstream buffer roller is in a state of being occupied at a predetermined ascending position or descending position while being in contact with the separator or the superimposed body.
  • the separator or the superimposed body is suspended between the guide members via the suspension roller, and the upstream buffer roller is lowered or raised when zigzag folding is performed by the movement of the guide member. It exists in the manufacturing apparatus of a secondary battery.
  • the zigzag folding means is provided with the extra length portion using the roller on the upstream side, so that an appropriate extra length can be secured on the upstream side and the downstream side of the separator with the zigzag folding device interposed therebetween.
  • the separator or the superimposed body is suspended between the guide members of the zigzag folding means in a continuous state and zigzag folding is performed by moving the guide member, the separator or the superimposed body is pulled in by the guide member.
  • the separator or the superimposed body can move in the width direction to suppress the phenomenon of fluttering, and the pull-in of the separator or the like by the guide member can be performed smoothly. As a result, even if the width, thickness, and surface state of the separator or the superimposed body are somewhat varied, the accuracy of the electrode plate group can be kept within the allowable range, and the quality can be improved.
  • the separator or the superimposed body does not need to be cut to a predetermined length before zigzag folding, and a predetermined zigzag folding can be performed in a continuous state, so that the yield of the separator or the superimposed body can be increased. Can be improved.
  • the sixteenth aspect of the present invention provides in the secondary battery manufacturing apparatus according to any one of the sixth to fifteenth aspects, A clamp that sandwiches the tip of the separator or superimposing body on the downstream side of the stabilizing means, a downstream buffer roller that contacts the separator or the superimposing body on the downstream side of the stabilizing means, and position restriction
  • a secondary battery comprising: a buffer unit that is combined with a roller and has a separator or a superposed body that is pulled in when zigzag folding is performed on a downstream side of the separator or the superposed body. In the production equipment.
  • the position of the separator is regulated to guide the conveyance of the separator, and the separator moves toward the zigzag folding means in the zigzag folding step. Since it gives a force against the progress, it is possible to improve the moldability by suppressing the flutter of the separator on the downstream side of the zigzag folding means, and the molding speed can be increased accordingly. As a result, the tact time during molding can be improved.
  • FIG. 1 It is a perspective view which shows the outline of the square battery in which the electrode group which concerns on embodiment of this invention was accommodated. It is a perspective view which shows schematic structure of the electrode group shown in FIG. It is a figure which shows the electrode group manufacturing means in the secondary battery manufacturing apparatus which concerns on embodiment of this invention, (a) is the top view, (b) is the front view. It is the schematic which shows the aspect in the middle of the zigzag folding process of the separator using the manufacturing apparatus shown in FIG. It is the schematic which shows the other aspect in the middle of the zigzag folding process of the separator using the manufacturing apparatus shown in FIG.
  • a rectangular battery (secondary battery) 1 that is a lithium ion secondary battery includes a rectangular case 2, and an electrode plate group 3 is accommodated in the rectangular case 2.
  • a positive electrode terminal and a negative electrode terminal are provided at predetermined positions of the rectangular case 2.
  • the square case 2 is filled with an electrolytic solution obtained by blending an organic solvent with a lithium salt.
  • the electrode plate group 3 includes a separator 4 that is zigzag-folded, one electrode plate (for example, the positive electrode plate 5) and the other electrode plate (for example, the negative electrode plate) that are alternately inserted into the valley grooves 4a of the separator 4. 6).
  • the positive electrode plate 5 and the negative electrode plate 6 are alternately overlapped so that the separators 4 are interposed therebetween, and the separators 4 are flatly folded.
  • the positive electrode plate 5 and the negative electrode plate 6 include lead portions 5a and 6a that protrude from the separator 4 to the opposite sides, and the lead portions 5a and 6a of each electrode are bundled. And the lead part 5a of the bundled positive electrode plate 5 is connected to the positive electrode terminal, and the lead part 6a of the bundled negative electrode plate 6 is connected to the negative electrode terminal.
  • the electrode plate group 3 having such a configuration is manufactured by a secondary battery manufacturing apparatus.
  • the electrode plate group manufacturing means I and the zigzag configured to have zigzag folding means and electrode plate insertion means.
  • Separator supply means II for supplying the separator 4 for folding is provided.
  • 3A and 3B are diagrams showing the electrode plate group manufacturing means I, wherein FIG. 3A is a plan view and FIG. 3B is a front view thereof.
  • the zigzag folding means 20 has a plurality of guide rods (guide members) 21 arranged in a zigzag shape in the vertical direction, and will be described in detail later.
  • the separator 4 is disposed between the second row 22B and the guide rod 21 is horizontally intersected between the rows 22A and 22B, and the separator 4 is zigzag folded.
  • the number of guide bars 21 is the same as or more than the number of positive plates 5 and negative plates 6 supplied to the separator 4.
  • the plurality of guide bars 21 are horizontally arranged in two rows 22A and 22B in a vertical direction on a base (not shown).
  • Each guide bar 21 is arranged to be zigzag between the rows 22A and 22B, that is, to be zigzag in the vertical direction.
  • These guide bars 21 are supported in a cantilevered manner by vertical frames 23 and 24 provided for the respective rows 22A and 22B.
  • the zigzag folding means 20 includes a drive unit for zigzag folding the separator 4 by crossing the rows 22A and 22B by moving the guide bar 21 in the horizontal direction.
  • This drive part is comprised by the motor etc. which rotate a ball screw and a ball screw, for example.
  • the drive part comprised by a ball screw, a motor, etc. in this way is a normal feeding means, illustration is abbreviate
  • the electrode plate inserting means 30 includes a pair of electrode plate conveying members 31 (31A, 31B) arranged behind the rows 22A, 22B of the guide rods 21 constituting the zigzag folding means 20.
  • Each electrode plate conveyance member 31 has a plurality of electrode plate conveyance trays 32 on which a predetermined number of positive plates 5 or negative plates 6 are placed.
  • the positive electrode plate 5 is placed on the electrode plate conveyance tray 32 of the electrode plate conveyance member 31 ⁇ / b> A arranged on the left side of the separator 4, and the electrode plate of the electrode plate conveyance member 31 ⁇ / b> B arranged on the right side of the separator 4.
  • a negative electrode plate 6 is placed on the transport tray 32.
  • the electrode plate insertion means 30 moves these electrode plate transport trays 32 into the valley grooves 4a (see FIG. 2) formed in the separator 4 in synchronization with the horizontal movement of the guide rods 21.
  • the positive electrode plates 5 and the negative electrode plates 6 are alternately inserted into the valley grooves 4a.
  • the electrode plate insertion means 30 includes a first electrode plate conveying member (for example, an electrode plate conveying member for a positive electrode plate) 31A that conveys one electrode plate (for example, the positive electrode plate 5), and the other electrode plate. And a second electrode plate conveying member (for example, an electrode plate conveying member for a negative electrode plate) 31B that conveys (for example, the negative electrode plate 6).
  • the first electrode plate conveyance member 31A includes the same number of electrode plate conveyance trays 32 as the number of one electrode plate (for example, the positive electrode plate 5) required for the electrode plate group 3.
  • Each electrode plate conveyance tray 32 of the first electrode plate conveyance member 31A is arranged behind the guide bar 21 constituting one row 22A so that the electrode plate placement surface of the electrode plate conveyance tray 32 is horizontal. The rear end is connected by the support frame 33A.
  • the second electrode plate transport member 31B includes the same number of electrode plate transport trays 32 as the number of other electrode plates (for example, the negative electrode plate 6) necessary for the electrode plate group 3.
  • Each electrode plate transport tray 32 of the second electrode plate transport member 31B is arranged behind the guide bar 21 constituting the other row 22B so that the electrode mounting surface of the electrode plate transport tray 32 is horizontal, The rear end is connected by the support frame 33B.
  • the support frames 33A and 33B are respectively connected to a piston rod 34a of a piston / cylinder device 34 that can expand and contract in the conveying direction of the positive electrode plate 5 as one electrode plate or the negative electrode plate 6 as the other electrode plate.
  • Each piston / cylinder device 34 is installed on a carriage 35 that can reciprocate in the conveying direction of the positive electrode plate 5 or the negative electrode plate 6.
  • Each carriage 35 is configured to be movable in the horizontal direction by a drive unit composed of a ball screw or the like. Specifically, each carriage 35 is connected to a nut 37 that is screwed onto a screw shaft 36 that is a feed screw rotatably installed on a base (not shown). The screw shaft 36 is rotated by a motor (not shown). When the screw shaft 36 rotates, each of the first and second electrode plate transport members 31A and 31B is moved toward the separator 4 or away from the separator 4 in accordance with the rotation direction.
  • the left and right sides of the electrode plate tray 32 of each of the first and second electrode plate members 31A and 31B (in the direction horizontal to the electrode placement surface, in the direction orthogonal to the moving direction of the electrode plate tray 32)
  • a pair of pressing members 38 that are in contact with the edges of the electrode plates placed on the electrode plate transport tray 32 are provided.
  • the pressing member 38 is configured as a pair of vertical bars that come into contact with the edges of the positive electrode plate 5 and the negative electrode plate 6 protruding from the left and right sides of each electrode plate transport tray 32, and is attached to each carriage 35. Yes.
  • the separator 4 is suspended between opposing rows 22A and 22B of the guide rod 21 of the zigzag folding means 20 via a suspension roller 41 of the separator supply means II.
  • FIGS. 4 and 5 are schematic views respectively showing a state in the middle of the zigzag folding process of the separator using the electrode plate group manufacturing means I shown in FIG.
  • the rows 22A and 22B of the guide rods 21 are horizontally directed toward the separator 4 side.
  • the guide bar 21 is crossed between the rows 22A and 22B.
  • the buffer roller of the separator supply means II moves upward and supplies the separator 4 for the length that is pulled into the guide rod 21. Therefore, the pull-in of the separator 4 by the guide rod 21 is smoothly performed while the separator 4 is substantially in a tension-free state.
  • the operation of the separator supply unit II will be described in detail later.
  • the carriage 35 is moved by the rotation of the screw shaft 36 in synchronization with the horizontal movement of the guide bar 21.
  • the first and second electrode plate conveying members 31 ⁇ / b> A and 31 ⁇ / b> B and the pressing member 38 are moved toward the separator 4.
  • the movement of the carriage 35 may be started at the same time as the movement of the guide bar 21, during the movement of the guide bar 21 after the movement of the guide bar 21, simultaneously with the end of the movement of the guide bar 21, or after a predetermined time.
  • it is desirable that the guide bar 21 is moving simultaneously with the start of the movement of the guide bar 21 or after a short time from the start of the movement, and this timing is detected to perform a synchronized movement. It is good.
  • the first and second electrode plate conveying members 31A, 31B move in the horizontal direction so that the guide bar 21 intersects between the rows 22A, 22B and enter the valley grooves 4a formed in the separator 4.
  • the pushing member 38 is moved in the horizontal direction.
  • the positive electrode plate 5 previously mounted on each electrode plate transport tray 32 of the first electrode plate transport member 31A and the negative electrode plate 6 previously mounted on each electrode plate transport tray 32 of the second electrode plate transport member 31B. Are alternately inserted into the valley grooves 4a of the separator 4 which is zigzag folded.
  • a laminated body in which the positive electrode plates 5 and the negative electrode plates 6 are alternately overlapped with each other through the separator 4 is formed.
  • the guide bar 21 is pulled out from each valley groove 4a of the separator 4, and the first and second electrode plate conveying members 31A and 31B are moved away from the separator 4 while leaving the pushing member 38.
  • the positive electrode plate 5 and the positive electrode plate 6 are left in each valley groove 4 a, and a laminate in which the positive electrode plates 5 and the negative electrode plates 6 are alternately stacked via the separator 4 is formed.
  • the laminated body is pressed and integrated by a predetermined pressing means (not shown) in the laminating direction of the positive electrode plate 5 and the negative electrode plate 6 to form the electrode plate group 3.
  • FIG. 6 shows the relationship among the separator supply means, the electrode plate group manufacturing means, and the buffer section manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of the present invention in the state of the first (initial) step of zigzag folding.
  • FIG. 7 is a schematic diagram showing the second step of zigzag folding
  • FIG. 8 is a schematic diagram showing the third step.
  • FIG. 6 shows a state in which a laminate (described in detail later) formed through a predetermined molding process of the separator is cut off and the clamp 50 including the clamp members 50A and 50B is moved to a position where the tip of the separator 4 can be clamped. The state which clamped the front-end
  • Such a state is an initial state of the electrode plate group manufacturing means I which is an upstream buffer preparation means for forming the extra length portion of the separator 4 on the upstream side of the zigzag folding means 20.
  • the separator supply means II rotates the roll member 40 while lowering the upstream buffer rollers 45 and 46 (hereinafter also simply referred to as buffer rollers 45 and 46) that were in the fourth position, which is the highest position.
  • the initial state is obtained by extending 4. More specifically, the separator 4 is rotatably supported on a rotating shaft 48 that is a holding unit that holds the roll member 40 as the roll member 40 wound in a roll shape.
  • the buffer rollers 45, 46 are arranged between the support rollers 42, 43, 44. As shown in FIG. 6, the support rollers 42, 43, 44 and the buffer rollers 45, 46 are alternately arranged in the horizontal direction in the figure. Is arranged. Further, a movable roller 49 that moves toward the suspending roller 41 and sandwiches the separator 4 with the suspending roller 41 is also shown in the figure. The operation and role of the movable roller 49 will be described later.
  • the stabilizing means 100 is disposed on the downstream side of the zigzag folding means 20.
  • the stabilizing means 100 is disposed on the downstream side of the zigzag folding means 20 that is opposite to the zigzag folding means 20 with respect to the suspension roller 41.
  • FIG. 7 shows the state of the pre-process of zigzag folding of the separator.
  • the rows 22A and 22B of the guide bar 21 are separated from each other, and the separator 4 is suspended through the suspension roller 41 therebetween.
  • Such a state is formed by the following operation. As shown in FIG.
  • the clamp 50 holding the tip of the separator 4 with the clamp members 50 ⁇ / b> A and 50 ⁇ / b> B descends in the direction in which the separator 4 is suspended, whereby the separator is pulled out to the downstream side of the stabilizing means 100.
  • the clamp 50 is lowered, the buffer rollers 45 and 46 are raised to the second position (center lower position) shown in FIG.
  • the clamp 4 is lowered to complement the length of the separator 4 drawn out.
  • the clamp 50 lowered to the re-lowering position moves to the near side or the far side in FIG. 7 and rises to prepare for the next process. That is, the clamp 50 moves in the vertical direction between the upper and lower predetermined positions of the zigzag folding means 20 while drawing an elongated track-like endless track.
  • FIG. 8 shows that the rows 22A and 22B of the guide rods 21 of the zigzag folding means 20 are moved in the direction in which they approach each other, and the separator 4 is zigzag folded, and the positive electrode plate 5 and the negative electrode plate are alternately placed between the zigzag folded separators 4 6 shows the inserted state.
  • the buffer rollers 45 and 46 are raised to the third position (uppermost position) shown in FIG. 8 in synchronization with the movement of the rows 22A and 22B of the guide bar 21.
  • an extra length is supplied to the length of the separator 4 from the support roller 44 to the tip via the suspension roller 41.
  • the extra length of the separator 4 held by the support rollers 42, 43, 44 and the buffer rollers 45, 46 when the buffer rollers 45, 46 are lowered to the lowest position guides the zigzag folding of the separator 4. It corresponds to the amount of the separator 4 drawn horizontally by the rod 21.
  • the extra length portion of the separator 4 formed on the upstream side of the zigzag folding means 20 by the electrode group manufacturing means I which is the upstream side buffer manufacturing means is mainly zigzag folding means along with the zigzag folding by the zigzag folding means 20. Absorbed at the top of 20.
  • the extra length of the separator 4 formed by pulling out below the stabilizing means 100 corresponds to the amount of the separator 4 that is drawn horizontally by the guide bar 21 when the separator 4 is zigzag folded.
  • the extra length portion of the separator 4 formed on the downstream side of the zigzag folding means 20 is absorbed mainly by the lower part of the zigzag folding means 20 as the zigzag folding means 20 performs the zigzag folding.
  • the stabilizing means 100 In the operation of sucking the extra length portion of the separator 4 into the zigzag folding means 20, the stabilizing means 100 not only guides the conveyance of the separator 4 by restricting the position of the ascending separator 4, particularly the position in the width direction, A force against the movement of the separator is given to the rising separator.
  • the pull-in operation of the separator 4 is also stabilized by the tension applied by applying this force. Therefore, the flutter of the separator can be suppressed.
  • the stabilization means 100 contributes to the stability of the conveyance of the separator 4 in the process of FIG. A specific configuration of the stabilizing unit 100 will be described. FIGS.
  • FIGS. 9A and 9B are diagrams showing the stabilization means according to the first embodiment of the present invention, where FIG. 9A is a schematic view seen from the front, FIG. 9B is a schematic view seen from the top, and FIG. Arrow view, (d) is a sectional view showing the air discharge port in an enlarged manner, (e) is a schematic view from the top showing the mode of the first movement mode, and (f) is the second movement mode. It is the schematic seen from the upper surface which shows an aspect.
  • the stabilizing means 100 according to the present embodiment includes a flat plate portion 101, guide members 102A and 102B, an air discharge port 103, and a lid member 104 as components.
  • the flat plate portion 101 is a plate-like member arranged along the suspending direction on one side of the separator 4 suspended by a suspending roller (for example, FIG. 6; the same applies hereinafter).
  • the position of the separator 4 in the thickness direction is regulated.
  • the guide members 102 ⁇ / b> A and 102 ⁇ / b> B are two guide members whose base end portions are fixed to the flat plate portion 101 and protrude toward the separator 4 side and extend in the moving direction of the separator 4.
  • the position of the separator 4 in the width direction is regulated and guided by the contact of the end portions.
  • the distance between the left and right guide members 102A and 102B in the width direction of the guide members 102A and 102B is formed to be slightly larger than the width of the separator 4.
  • the flat plate portion 101 and the guide members 102A and 102B may be integrally formed with a single member, but considering that it is easy to adjust the distance between the guide member 102A and the guide member 102B.
  • the flat plate portion 101 and the guide members 102A and 102B are preferably separate members as in this embodiment.
  • the air discharge port 103 is formed so as to penetrate a part of the flat plate portion 101 as shown in FIG. 9D, which is particularly extracted and enlarged, and the opposite side of the flat plate portion 101 to the separator 4. Is inclined to descend toward the separator 4 side.
  • the air supplied from the opposite side of the separator 4 to the flat plate portion 101 is ejected obliquely downward.
  • the rising speed of the separator 4 is suppressed even when the component of the air jetting obliquely downward is directed to the vertically lower part and sucked into the zigzag folding means.
  • molding can be stabilized.
  • the air discharge port 103 can suppress the ascending speed of the separator 4 by supplying air perpendicularly to the surface of the separator 4 toward the separator 4 side.
  • the zigzag folding can be stably performed when a tension of 10 mN or more is applied to the separator during zigzag folding.
  • the tension applied to the separator 4 exceeded 500 mN, the zigzag folding device stopped. It seems that the safety device in the zigzag folding means has been activated due to excessive tension inside. From this, it is preferable to keep the tension applied to the separator 4 to 500 mN or less.
  • the tension applied to the separator can be appropriately set within the above-described range, and can be set by appropriately adjusting the length of the separator, the air flow rate, the flow rate, and the like.
  • the lid member 104 is disposed on the opposite side of the flat plate portion 101 with respect to the separator 4 and is formed to be movable toward the flat plate portion 101.
  • the lid member 104 regulates the position of the separator 4 in the thickness direction on the other side of the separator 4.
  • the lid member 104 is sized so as to enter the space formed by the guide members 102A and 102B, as shown in FIGS. 9 (e) and 9 (f). It is formed to be movable in the direction of the flat plate portion 101 by driving means such as an air cylinder 105.
  • the lid member 104 has the first and second movement modes in which the movement amount when moving toward the flat plate portion 101 is different, and in the first movement mode, the flat plate portion 101, A space in which the cross-sectional shape through which the separator 4 passes together with the two guide members 102A and 102B forms a rectangular space.
  • the plate moves further to the flat plate portion 101 side in the second movement mode, and the separator 4 is sandwiched between the flat plate portion 101 and clamped.
  • the flat plate portion 101, the two guide members 102 ⁇ / b> A and 102 ⁇ / b> B, and the lid member 104 form a rectangular space with a cross-sectional shape through which the separator 4 passes, and the separator 4 is inserted into this space.
  • the separator 4 can be smoothly distributed and conveyed. Furthermore, the resistance of the ascending operation of the separator 4 sucked into the zigzag folding means in the zigzag folding process by ejecting air obliquely downward from the air discharge port 103 that is inclined downward toward the separator 4 side.
  • FIG. 10 is a diagram showing stabilization means according to the second and third embodiments of the present invention, where (a) is a schematic view of the second embodiment viewed from the front, and (b) is the third embodiment. It is the schematic which looked at the example from the front. As shown in FIG.
  • the stabilizing means 110 includes a flat plate portion 111, a moving member 112, and a pressing member 113.
  • the flat plate portion 111 is a plate-like member disposed along the suspending direction on one side of the separator 4 suspended by the suspending roller 41.
  • the moving member 112 is disposed on the opposite side of the flat plate portion 111 with respect to the separator 4 and is formed to be horizontally movable so as to be in contact with and separated from the flat plate portion 111 by a moving means (not shown).
  • the pressing member 113 has a proximal end fixed to the moving member 112, extends upward along the direction in which the separator 4 is suspended, and is formed so that the distal end can elastically contact the separator 4.
  • the tip of the pressing member 113 can be adjusted so as to contact the separator 4 with a desired pressing force. That is, also in this embodiment, by applying a two-stage air cylinder similar to the first embodiment as the moving means of the moving member 112, the pressing force for bringing the pressing member 113 into contact with the separator 4 is divided into two stages. Each of them can be either a stable running mode for suppressing unstable running, such as fluttering when the separator 4 moves, or a clamp mode for completely clamping the movement of the separator 4. As shown in FIG. 10B, the stabilizing means 120 according to the third embodiment includes one pressing roller 121 and two position regulating rollers 122 and 123.
  • a plurality (two in this example) of position regulating rollers 122 and 123 are arranged on one side of the separator 4 along the direction in which the separator 4 is suspended.
  • a pressing roller 121 is disposed between the position regulating rollers 122 and 123.
  • the pressing roller 121 is configured to move toward the other surface of the separator 4 by a motor 124 as driving means. As a result, while moving, the separator 4 is brought into contact with the separator 4, and the separator 4 is pressed against the position regulating rollers 122 and 123 with a predetermined pressure.
  • the stable traveling mode for suppressing unstable traveling and the separator 4 It can be in any of the clamping modes that fully clamp the movement.
  • the desired tension can be accurately applied to the separator 4 by adjusting the amount of pressing of the pressing roller 121.
  • air blowing means 47 that blows air from the lower surface side of the separator 4 to support the separator 4 is disposed between the support roller 44 at the most downstream of the support rollers and the suspension roller 41. It is.
  • FIGS. 11A and 11B are diagrams showing an example of the air blowing means 47, where FIG. 11A is a plan view, FIG. 11B is a cross-sectional view, and FIG. 11C is a detailed view showing an ionizer extracted in detail.
  • the air blowing means 47 extends in the wall portion 69 that regulates the position in the width direction of the separator 4 and the conveying direction of the separator 4 (up and down direction indicated by arrows in FIG.
  • the elongated hole 70E extends, and ion air is ejected through the elongated hole 70E. That is, the ionizer 70 shown in FIG.
  • the charging of the separator 4 can be prevented or removed by the charge removing effect of the ion air, so that the adjacent separator can be prevented from being adsorbed by the electrostatic force in the zigzag folding process.
  • the separator 4 since the position of the separator 4 in the width direction is regulated by the wall portion 69, the separator 4 is favorably transported along a predetermined transport path without causing meandering or flapping.
  • the separator 4 can be in line contact with the rib members 70A to 70D in contact with the rib members 70A to 70D, the contact area can be reduced as much as possible. There is no charge.
  • the air blowing means 47 is not necessarily required, but by adopting such a structure, a physical contact portion with the separator 4 is made as much as possible as in the case where the separator 4 is supported by a roller. It can be reduced.
  • the separator 4 is pulled out from the roll member 40 and conveyed to the electrode plate group manufacturing means I while being in contact with the roller or the like, so that the separator 4 is charged due to the friction accompanying the drawing or the contact with the roller.
  • the separator 4 may not be conveyed in the correct direction due to contact with a guide portion (not shown) for defining the conveying direction when the separator 4 is conveyed, The separator 4 is attracted and cannot be pulled in smoothly by the movement of the guide rod 21.
  • the separator 4 can be prevented from being charged and the charged separator 4 can be discharged.
  • the air blowing from the air blowing means 47 may be performed at all times, blown before and after the separator 4 is conveyed, and blown off as necessary when the separator 4 is not conveyed for a while. You may make it control. If it is made to blow out constantly, since the static elimination can be reliably performed on the entire separator 4 to be conveyed, it can be expected to more surely suppress the adsorption between the adjacent separators 4, and the blowing can be carried out according to the conveyance situation.
  • the vertical position of the support roller 44 in this embodiment is disposed below the vertical position of the suspension roller 41.
  • the air blowing means 47 and 68 have the downstream side 47B, which is the discharge side, higher than the upstream side 47A, which is the supply side of the separator 4, so that the air blowing surface is parallel to the lower surface of the separator 4. It is positioned and inclined so as to rise to the right in the figure.
  • the kinetic energy associated with the travel of the separator 4 conveyed from the support roller 44 toward the suspending roller 41 can be converted into potential energy for braking.
  • the separator 4 can be stopped well at a predetermined position.
  • FIG. 12 is a schematic view showing a method for manufacturing an electrode plate group using the secondary battery manufacturing apparatus according to this embodiment.
  • This figure shows the initial state after the manufacture of the electrode plate group 3 is completed in the previous step.
  • the tip end of the separator 4 cut in the previous process is suspended from the suspension roller 41.
  • the movable roller 49 is moved in the direction of the suspending roller 41, and the separator supply means II is configured so that the buffer roller 45, 46 (see FIG.
  • the roll member 40 rotates and the separator 4 is unrolled with the lowering of 6 (see 6; the same applies hereinafter), and is in the state shown in FIG.
  • the opposing rows 22A and 22B of the electrode plate group manufacturing means I are separated from each other.
  • the movable roller 49 is moved in a direction away from the suspending roller 41, and clamps 50A and 50B are provided on both sides of the separator 4, respectively. 50, the front end of the separator 4 is clamped.
  • the pressing member 51 is used to form the electrode plate group 3 by applying a pressing process to the laminated body of the separators 4 in which the electrode plates are inserted in the valley grooves zigzag-folded with the pressing member 52 of FIG. Is.
  • the clamp 50 (not shown in FIG. 14) is moved downward while the front end of the separator 4 is clamped as shown in FIG.
  • the separator 4 is moved down so as to be disposed between the rows 22A and 22B.
  • the clamped state by the clamp members 50A and 50B is released.
  • the clamp 50 moves to the near side or the far side in FIG. 14 and moves upward to prepare for the next process.
  • the guide bars 21 are moved in the horizontal direction and intersected between the rows 22 ⁇ / b> A and 22 ⁇ / b> B of the guide bars 21.
  • the buffer rollers 45 and 46 of the separator supply means II are moved upward synchronously.
  • the separator 4 having a length twice as large as the added value of the movement amounts of the buffer rollers 45 and 46 can be fed out as an extra length on the upstream side of the zigzag folding means. A considerable amount of separator 4 is supplied. Accordingly, the pull-in and zigzag folding of the separator 4 by the guide rod 21 are performed smoothly.
  • the separator 4 is zigzag folded in a continuous state without being cut from the separator supply means II, and the separator 4 is pulled out below the stabilizing means 100 and the remaining downstream of the zigzag folding means. Since the long portion is secured and the position of the separator 4 pulled out is regulated by the stabilizing means 100, the separator 4 moves in the width direction when the separator 4 is pulled in by the guide rod 21, and the phenomenon of fluttering occurs. It can be suppressed as much as possible. Furthermore, since the stabilization means 100 applies tension to the separator by air or the like, the fluttering of the separator 4 can be effectively suppressed.
  • the positive electrode plates 5 and the negative electrode plates 6 are alternately inserted between the zigzag folded separators 4 in the same manner as described with reference to FIG. A laminate of the positive electrode plate 5 and the negative electrode plate 6 is formed.
  • the pressing member 51 is lowered from above the laminated body and brought into contact with the upper surface of the laminated body to obtain the state shown in FIG.
  • the laminate is sandwiched from above and below by the pressing members 51 and 52. From this state, the guide bar 21 is retracted, and the first and second electrode plate transport members 31A and 31B are retracted. Thereafter, the laminated body is lifted while being sandwiched between the pressing members 51 and 52, the movable roller 49 is moved in the direction of the suspension roller 41, the separator 4 is sandwiched between the suspension roller 41 and the movable roller 49, and the dancer The roller 61 is pressed between the rollers 62 and 63 against one surface (the right surface in the drawing) of the separator 4 to apply a predetermined tension to the separator 4 between the suspension roller 41 and the uppermost portion of the laminate.
  • the end portion of the separator 4 is cut by the cutter 53 at a predetermined upper position as shown in FIG.
  • the separated laminate is molded into the electrode plate group 3 to become a product.
  • tensile_strength with respect to the dancer roller 61 can be suitably generate
  • the air cylinder 81 can apply a predetermined tension using a buffering effect due to the elasticity of air as a compressed fluid, it is optimal as such a tension applying means.
  • the separator 4 on the downstream side of the electrode plate group manufacturing means I may be loosened.
  • the separator 4 is clamped by the clamping function of the stabilizing means 100 to prevent the occurrence of slack at this time.
  • the air cylinder 105 is driven and the lid member 104 is pressed against the separator 4 as the second movement mode so as to be flat. Clamping with the part 101 is performed.
  • the clamp members 50A and 50B move to a position where the leading end of the separator 4 can be clamped, and the electrode plate group manufacturing means I is the same as the case shown in FIG. This is the initial state.
  • FIG. 20 is a schematic view showing an electrode plate group according to another embodiment of the present invention.
  • the electrode plate group 3A in the present embodiment includes a laminated body 100 that is zigzag-folded and a positive electrode plate 5 that is inserted into each trough 100a of the superimposed body 100. Configured as a body.
  • the superimposed body 100 is a stacked body formed by sandwiching the negative electrode plate 6A between two separators 4A. For this reason, the positive electrode plate 5 inserted in each trough 100a of the superimposed body 100 faces the negative electrode plate 6A via the separator 4A.
  • the positive electrode plate 5 and the negative electrode plate 6A have lead portions 5a protruding from the separator 4A in opposite directions. 6a is provided (see FIG. 2).
  • the lead portions 5a and 6a of each pole are bundled and connected to a positive terminal and a negative terminal (not shown) of the rectangular case 2 (see FIG. 1), respectively.
  • a manufacturing apparatus for manufacturing such an electrode plate group 3A has basically the same configuration as that of the above-described embodiment shown in FIG. Is provided and arranged between the rows 22A and 22B of the guide bar 21 of the zigzag folding means 20.
  • each of the first and second electrode plate conveying members 31 ⁇ / b> A and 31 ⁇ / b> B conveys the positive electrode plate 5 into the valley groove 100 a of the superimposed body 100.
  • the valley groove 100a into which only the positive electrode plate 5 is inserted may be formed in the superimposed body 100.
  • the number of valley grooves 100a of the superposed body 100 is half that of the above embodiment. Therefore, the number of the guide bars 21 and the electrode plate transport tray 32 can be reduced to almost half, and the tact time can be further shortened.
  • the superposition body 100 in this embodiment is a laminated body formed by sandwiching the negative electrode plate 6A with two separators 4A, it may be formed by sandwiching the positive electrode plate instead of the negative electrode plate 6A.
  • each of the first and second electrode plate conveying members 31 ⁇ / b> A and 31 ⁇ / b> B conveys the negative electrode plate 6 into the valley groove 100 a of the superimposed body 100.
  • FIG. 21 to 24 are schematic views of a secondary battery manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 21 shows the relationship among the separator supply means, the electrode plate group manufacturing means, and the buffer section manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of the present invention in the state of the first (initial) step of zigzag folding.
  • FIG. 22 is a schematic diagram showing the relationship between the separator supply means, the electrode plate group manufacturing means, and the buffer part manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of the present invention in the state of the second step of zigzag folding. is there.
  • FIG. 21 shows the relationship among the separator supply means, the electrode plate group manufacturing means, and the buffer section manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of the present invention in the state of the first (initial) step of zigzag folding.
  • FIG. 22 is a schematic diagram showing the relationship between the separator supply means, the electrode plate group manufacturing means, and the buffer part manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of
  • FIG. 23 is a schematic diagram showing the relationship among the separator supply means, the electrode plate group manufacturing means, and the buffer section manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of the present invention in a state of the third step of zigzag folding. is there.
  • FIG. 24 is a schematic diagram showing the relationship between the separator supply means, the electrode plate group manufacturing means, and the buffer part manufacturing means in the secondary battery manufacturing apparatus according to the embodiment of the present invention in the state of the fourth step of zigzag folding. is there.
  • downstream buffer preparation means III (hereinafter also simply referred to as downstream buffer preparation means III) provided for retraction during molding of the separator 4 on the downstream side of the zigzag folding means 20 (below the stabilization means 100). Is arranged on an extension line in the suspending direction of the separator 4 suspended by the suspending roller 41.
  • the buffer manufacturing means III includes two rollers 65, 66 disposed on the same line in the vertical direction on the left side of the suspended separator 4, and the right side of the separator 4 between the rollers 65, 66.
  • a downstream buffer roller 64 hereinafter also simply referred to as a buffer roller 64
  • a clamp 67 including clamp members 67A and 67B.
  • FIG. 22 shows the state of the pre-process of zigzag folding of the separator.
  • the rows 22A and 22B of the guide bar 21 are separated from each other, and the separator 4 is suspended through the suspension roller 41 therebetween.
  • Such a state is formed by the following operation.
  • the clamp 50 holding the tip of the separator 4 by the clamp members 50 ⁇ / b> A and 50 ⁇ / b> B descends in the direction in which the separator 4 is suspended and delivers the tip of the separator 4 to the clamp 67.
  • the separator 4 passes between the buffer roller 64 and the two rollers 65 and 66, and the leading end thereof is clamped by the clamp members 67A and 67B.
  • FIG. 23 also shows the state of the previous step of zigzag folding of the separator.
  • the rows 22A and 22B of the guide rod 21 are separated, and the separator 4 is suspended via the suspension roller 41 therebetween.
  • the extra length portion on the downstream side of the separator 4 is produced by the buffer production means III.
  • the separator 4 is pulled out in the horizontal direction by moving the buffer roller 64 in the horizontal direction (left direction in the figure) with the clamp 67 holding the tip of the separator 4. .
  • the buffer rollers 45 and 46 are moved from the second position (lower center position) shown in FIG.
  • FIG. 23 shows that the rows 22A and 22B of the guide rods 21 of the zigzag folding means 20 are moved in the direction in which they approach each other, the separator 4 is zigzag folded, and the positive electrode plate 5 and the negative electrode plate are alternately placed between the zigzag folded separators 4 6 shows the inserted state.
  • the buffer rollers 45 and 46 are synchronized with the movement of the rows 22A and 22B of the guide bar 21 from the third position (upper center position) shown in FIG. 23 to the fourth position (uppermost position) shown in FIG. Is raised to.
  • the buffer rollers 45 and 46 are lifted, an extra length is supplied to the length of the separator 4 from the support roller 44 to the tip via the suspension roller 41.
  • the extra length of the separator 4 held by the support rollers 42, 43, 44 and the buffer rollers 45, 46 when the buffer rollers 45, 46 are lowered to the lowest position guides the zigzag folding of the separator 4. It corresponds to the amount of the separator 4 drawn horizontally by the rod 21.
  • the extra length portion of the separator 4 formed on the upstream side of the zigzag folding means 20 by the electrode group manufacturing means I which is the upstream side buffer manufacturing means is mainly zigzag folding means along with the zigzag folding by the zigzag folding means 20. Absorbed at the top of 20.
  • the buffer roller 64 moves horizontally from the state shown in FIG.
  • the extra length of the separator 4 produced by the movement of the buffer roller 64 corresponds to the amount of the separator 4 that is drawn horizontally by the guide rod 21 when the separator 4 is zigzag folded.
  • the extra length portion of the separator 4 formed on the downstream side of the zigzag folding means 20 by the downstream buffer preparation means III is mainly absorbed by the lower portion of the zigzag folding means 20 as the zigzag folding means 20 performs the zigzag folding. .
  • the stabilizing means 100 In the operation of sucking the extra length portion of the separator 4 into the zigzag folding means 20, the stabilizing means 100 not only guides the conveyance of the separator 4 by restricting the position of the ascending separator 4, particularly the position in the width direction, Since a force against the progress of the separator is applied to the ascending separator, the pull-in operation of the separator 4 is stabilized by this reverse tension. Therefore, the flutter of the separator can be suppressed. Furthermore, since the moldability of the separator can be improved and the molding speed can be increased accordingly, the tact time during molding can also be improved.
  • the air blowing means 68 is also disposed below the separator 4 that moves along the movement path of the buffer roller 64.
  • the structure of the air blowing means 68 is the same as that of the air blowing means 47 shown in FIG.
  • the separator 4 can be supported in a manner that avoids physical contact as much as possible, so that the predetermined transport of the separator 4 can be performed satisfactorily.
  • the air blowing means 68 by making the air blown out from the air blowing means 68 into ion air, it is possible to prevent or remove the charging of the separator due to the charge removing effect by the ion air. Therefore, in the zigzag folding process, the electrostatic force of the adjacent separator Adsorption due to can be prevented in advance.
  • FIG. 25 is a schematic view showing a downstream buffer section manufacturing means in another embodiment of the present invention.
  • a plurality of (two in the figure) buffer rollers 75 and 76 are disposed between the roller 65 and the roller 66.
  • the horizontal dimension of the extra length per piece can be shortened, it is possible to effectively prevent fluttering and the like during suction (movement of the separator 4) in the zigzag folding process by the zigzag folding means 20 of the separator 4. can do. That is, the moldability is further improved. Also, the horizontal dimension of the device can be reduced.
  • FIG. 26 is a schematic diagram showing a downstream buffer section manufacturing means in still another embodiment of the present invention.
  • the buffer roller 80 moves up and down along the separator 4 suspended from above.
  • the tip of the separator 4 is clamped by the clamp 67, and then the clamp 67 is directed to the side where the separator 4 is in contact with the buffer roller 80 (the left side in the figure).
  • a crank portion that is bent by the buffer roller 80 is formed as shown in FIG.
  • FIG. 14 (c) the buffer roller 80 is lowered to produce a surplus portion corresponding to the lowered amount.
  • the buffer roller 80 In the zigzag folding process, when the surplus length part is drawn into the zigzag folding means 20, the buffer roller 80 is raised. In such a buffer part preparation means V, the buffer roller 80 does not move in the horizontal direction but only moves in the vertical direction, and when the predetermined extra length part is formed, the smoothest movement of the separator 4 is ensured and the most molded. It is possible to improve the performance.
  • the present invention is effectively used in an industrial field for manufacturing an emergency power supply system using a secondary battery as an emergency power supply device for an electronic device or an industrial field for manufacturing an electric vehicle using a secondary battery as an energy source. can do.
  • Electrode plate group production means II Separator supply means III Downstream buffer part preparation means 1 Square battery 2 Square case 3 Electrode plate group 4 Separator 4a Valley groove 5 Positive electrode plate 6 Negative electrode plate 5a, 6a Lead part 20 Zigzag folding means 21 Guide rod 23, 24 Vertical frame 30 Electrode plate insertion means 31 Electrode plate conveyance member 32 Electrode plate conveyance tray 33 Support frame 38 Push member 41 Suspension roller 42, 43, 44 Support rollers 45, 46 Upstream buffer roller 47 Air blowing means 47A Upstream 47B Downstream 50 Clamp 53 Cutter 61 Dancer roller 62, 63 Roller 64 Downstream buffer roller 65, 66 Roller 67 Clamp 100, 110, 120 Stabilization means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

 セパレータの成型時の折れ・皺・ズレの発生を未然に防止し、より安定した成型性を確保し得るとともに、タクトタイムの短縮も実現し得るようにしたものである。 セパレータ(4)をジグザグ折りにする工程と、セパレータの各谷溝内に正極板(5)と負極板(6)とを交互に挿入することにより、正極板(5)と負極板(6)とが交互に重なり合う積層体を形成する工程と、各谷溝内からガイド棒(21)を抜去した後、前記積層体で、極板群を製造する工程と、を有し、ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させ、ジグザグ折り工程において、上流側ではジグザグ折り手段に引込まれる際に滞留させてあるセパレータがジグザグ折り手段の方へ供給され、ジグザグ折り手段の下流側ではセパレータの位置を規制してセパレータの搬送をガイドするとともに、ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与するようにした。

Description

二次電池の製造方法および製造装置
 本発明は二次電池の製造方法および製造装置に関し、特にリチウムイオン二次電池の製造に適用して有用なものである。
 リチウムイオン二次電池等の二次電池は、正負の極板間にセパレータが介在するように、正極板と負極板を交互に重ね合わせることによって形成される極板群を有する。この極板群の製造装置の一つとして、セパレータの連続体をジグザグ折りし、その各谷溝内に正極板と負極板とを挿入し、扁平に押し潰すジグザグスタック方式の製造装置がある(例えば、特許文献1参照)。かかるジグザグスタック方式の製造装置では、連続状のセパレータを一対のローラで挟み、この一対のローラを水平方向に往復運動させることによりセパレータをジグザグ折りし、一対のローラが一往復する都度、正負の極板を交互にセパレータ上に載せている。
 特許文献1のジグザグスタック方式の製造装置で更なるタクトタイムの短縮を図るべく、正負の電極およびセパレータの位置精度を向上させることができる二次電池の製造方法および製造装置が提案されている(特許文献2参照)。これは、帯状のセパレータを上方から垂下させ、複数のガイド部材を列同士間で水平方向に交差させることによりセパレータ(または一方の電極板を2枚のセパレータで挟んでなる重畳体)をジグザグ折りし、これにより形成された各谷溝内に正極板及び負極板(重畳体の場合は、他方の電極板)を挿入することにより、正極板および負極板がセパレータを挟んで何層にも重畳された二次電池の極板群を製造するものである。
 上記特許文献2に係る二次電池の製造方法および製造装置では、ジグザグ折り手段におけるジグザグ折りに際し、相対向するガイド部材の間に垂下されたセパレータは、ジグザグ折り手段の上方の収容ケース内にその上部側が収容され、ローラを介して下方に垂下されるとともに、ジグザグ折り手段の下方の収容ケース内にその下部側が収容された状態で、幅方向の位置が何ら規制されない。
 この結果、特許文献2によれば、特許文献1に記載するよりも正負の電極およびセパレータの位置精度の向上は期待できるが、前記複数のガイド部材の移動によりセパレータをジグザグ折りする際に、セパレータがバタツキながらガイド部材に引き込まれる可能性がある。かかる可能性は、セパレータの幅、厚みおよび表面状態のバラツキに起因して高くなり、前記極板群としての精度が許容値内に収まらない場合が生起される。それ故、幅や厚み等のサイズの決められた特定のセパレータを使用する場合に適してはいるが、サイズの異なるセパレータを用いる場合にはセパレータのバタツキによる影響を考慮しなければならない。
 さらに、特許文献2では、ジグザグ折り手段のガイド部材間に垂下されるセパレータの上部側および下部側が収容ケースに収容された状態でジグザグ折り工程の一回分毎にセパレータを一回一回切断して用いている。このため切断部近傍において、必然的にセパレータの切断のためのマージン部分を確保する必要が生じる。
 かかる問題を解決すべく、ジグザグ折りの際のセパレータのガイド部材による引き込みを円滑に行わせることにより、さらに製品精度を向上させることができ、同時にセパレータの歩留まりを可及的に向上させることができる二次電池の製造方法および製造装置が出願人の先願発明であるPCT/JP2012/076826(以下、先願発明)で開示されている。
 先願発明に記載する二次電池の製造方法では、吊下げローラにセパレータを吊下げた状態でジグザグ折りにする。そして、ジグザグ折りにされた前記セパレータの各谷溝内に正極板と負極板とを交互に挿入することにより、前記セパレータを介して前記正極板と前記負極板とが交互に重なり合う積層体を形成し、さらに前記セパレータの各谷溝内から前記ガイド部材を抜去した後、前記積層体を前記正極板と前記負極板とが積層された方向に押圧して極板群を製造している。
 ここで、前記セパレータの搬送方向に関し前記吊下げローラの上流側において、セパレータは、その上流側と下流側とで3個の支持ローラ間に配設される。そして、セパレータの一方の面に当接して垂直方向に昇降可能に配置された2個の上流側バッファローラが、前記セパレータと当接しながら所定の上昇位置あるいは下降位置に占位した状態で、前記吊下げローラを介して前記ガイド部材間に前記セパレータを吊下する。かかる状態で、前記ガイド部材の移動によるジグザグ折り工程においては、前記バッファローラを下降あるいは上昇させている。
 かかる先願発明によれば、昇降可能に配置したバッファローラの上昇によりジグザグ折りされるセパレータの引き込み長さを補完することができるので、セパレータを事前に切断することなく、連続した状態で所定のジグザグ折りを行うことができる。この結果、ガイド部材によるセパレータ等の引き込みの際にセパレータが幅方向に移動してバタツクという現象を抑制してガイド部材によるセパレータの引き込みを円滑に行わせることができる。
 しかも、セパレータは、ジグザグ折りするより前に所定の長さに切断しておく必要がなく、連続した状態で所定のジグザグ折りを行うことができるので、セパレータの歩留まりを向上させることができる。
特開2004-22449号公報 特開2012-226910号公報
 上述の如く、上記先願発明では、3個の支持ローラ間で、セパレータの一方の面に当接して垂直方向に昇降可能に配置された2個のバッファローラを、セパレータと当接させながら所定の上昇位置あるいは下降位置に占位させた状態で、吊下げローラを介してガイド部材間にセパレータを吊下げ、ガイド部材の移動によるジグザグ折りに際しては、バッファローラが下降あるいは上昇するようにしている。
 つまり、先願発明では、ジグザグ折りする場合のセパレータのバッファ部分(余長部分)は、ジグザグ折り手段の上流側にのみ形成している。すなわち、ジグザグ折り手段の下流側のセパレータは、吊下げられたまま繰出されてジグザグ折り手段の下方において、余長部として引き出された分を吊下げ状態で維持、あるいは、配設された収容ケース内に余長部が折り重なって収容され、この状態からジグザグ折り工程においてジグザグ折り手段に引き込まれるので、ジグザグ折り手段の下流側にあるセパレータの引き込みをより円滑にするためには下流側にあるセパレータも安定させるようにした方が望ましい。
 本発明は、上記従来技術に鑑み、成型時のセパレータおよび正負の電極板の一方を2枚のセパレータで挟んだ重畳体(以下、両者を合せてセパレータ等ともいう)のより安定した成型性を確保し得るとともに、タクトタイムの短縮も実現し得る二次電池の製造方法および製造装置を提供することを目的とする。
 上記目的を達成する本発明の第1の態様は、
 セパレータを、相対向して配設された複数列のガイド部材の間に吊下げローラを介して吊下げた状態で前記ガイド部材の移動に伴いジグザグ折り手段によりジグザグ折りにする工程と、ジグザグ折りにされた前記セパレータの各谷溝内に正極板と負極板とを交互に挿入することにより、前記セパレータを介して前記正極板と前記負極板とが交互に重なり合う積層体を形成する工程と、前記セパレータの各谷溝内から前記ガイド部材を抜去した後、前記積層体を、前記正極板と前記負極板とが積層された方向に押圧して極板群を製造する工程と、を有し、
 前記吊下げローラを介して前記ガイド部材間に前記セパレータを吊下げた状態とし、前記ガイド部材の移動によるジグザグ折り工程に先立ち、前記ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させ、
 前記ジグザグ折り工程において、前記ジグザグ折り手段の上流側ではジグザグ折り手段に引き込まれる際に前記滞留させてあるセパレータがジグザグ折り手段の方へ供給され、前記ジグザグ折り手段の下流側では前記セパレータの位置を規制して前記セパレータの搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与するようにしたことを特徴とする二次電池の製造方法にある。
 本態様によれば、ジグザグ折り工程において、前記ジグザグ折り手段の上流側ではジグザグ折り手段に引き込まれる際に前記滞留させてあるセパレータがジグザグ折り手段の方へ供給され、前記ジグザグ折り手段の下流側ではセパレータの位置を規制してセパレータの搬送をガイドするとともに、ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与するようにした。この結果、セパレータのバタツキを抑制でき、さらにセパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので、成型時のタクトタイムの向上も図り得る。
 本発明の第2の態様は、
 正負の電極板の一方を2枚のセパレータで挟んだ重畳体を、相対向して配設された複数列のガイド部材の間に吊下げローラを介して吊下げた状態で前記ガイド部材の移動に伴いジグザグ折り手段によりジグザグ折りにする工程と、ジグザグ折りにされた前記重畳体の各谷溝内に前記電極板の他方を挿入することにより、前記重畳体を介して前記正極板と前記負極板とが交互に重なり合う積層体を形成する工程と、さらに前記重畳体の各谷溝内から前記ガイド部材を抜去した後、前記積層体を、前記正極板と前記負極板とが積層された方向に押圧して極板群を製造する工程と、を有し、
 前記吊下げローラを介して前記ガイド部材間に前記重畳体を吊下げた状態とし、前記ガイド部材の移動によるジグザグ折り工程に先立ち、前記ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させ、
 前記ジグザグ折り工程において、前記ジグザグ折り手段の上流側ではジグザグ折り手段に引き込まれる際に前記滞留させてある前記重畳体がジグザグ折り手段の方へ供給され、前記ジグザグ折り手段の下流側では前記重畳体の位置を規制して前記重畳体の搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動する重畳体の進行に抗する力を付与するようにしたことを特徴とする二次電池の製造方法にある。
 本態様によれば、第1の態様と同様の作用・効果に加え、重畳体に一方の電極板のみを挿入すれば良いので、第1および第2の態様と同じ性能の極板群を製造する場合、重畳体の谷溝の数が半分になり、ガイド部材等の個数も略半数に減らすことができ、装置の簡略化や歩留りの向上が期待できる。 
 本発明の第3の態様は、
 第1または第2の態様に記載する二次電池の製造方法において、
 前記セパレータまたは重畳体にエアーを吹き付けることで前記セパレータまたは重畳体へその進行に抗する力が付与されることを特徴とする二次電池の製造方法にある。
 本態様によれば、セパレータまたは重畳体にエアーを吹き付けてセパレータまたは重畳体の進行に抗する力を付与するようにしたので、さらにセパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので成型時のタクトタイムの向上も図り得る。
 本発明の第4の態様は、
 第3の態様に記載する二次電池の製造方法において、
 前記エアーは前記セパレータまたは重畳体の斜め下方に向けて噴出されることを特徴とする二次電池の製造方法にある。
 本態様によれば、エアーをセパレータまたは重畳体の斜め下方に向けて噴出するようにしたので、ジグザグ折りにともなって移動するセパレータまたは重畳体の移動方向とは逆向きの力をかけることができるので、セパレータまたは重畳体の状態を安定化させることができ、セパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので成型時のタクトタイムの向上も図り得る。
 本発明の第5の態様は、
 第1~4の態様の何れか1つに記載する二次電池の製造方法において、
 前記セパレータまたは重畳体の搬送のガイドでは、搬送をガイドする手段により前記セパレータまたは重畳体を取り囲むようにすることを特徴とする二次電池の製造方法にある。
 本態様によれば、搬送をガイドする手段によりセパレータまたは重畳体を取り囲むようにしたので、セパレータまたは重畳体の位置を安定化させることができ、セパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので成型時のタクトタイムの向上も図り得る。
 本発明の第6の態様は、
 鉛直方向にジグザグ状に配列された複数のガイド部材を有し、前記ガイド部材の一方の列と他方の列との間に吊下げローラを介して吊下げられたセパレータを、前記ガイド部材を列同士間で水平方向に交差させてジグザグ折りするジグザグ折り手段と、
 所定枚数の正極板が載置される正極板用の極板搬送部材と所定枚数の負極板が載置される負極板用の極板搬送部材をそれぞれ備え、前記正極板用と前記負極板用の極板搬送部材とを前記セパレータの各谷溝内に移動させることで各谷溝内に前記正極板と前記負極板とを交互に挿入する極板挿入手段と、
 セパレータ保持部に保持され、引き出された前記セパレータを前記吊下げローラを介して前記ジグザグ折り手段に供給するものであって、前記ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させておき、前記滞留させたセパレータが前記ジグザグ折りの際に前記ジグザグ折り手段の方へ供給されるようにするセパレータ供給手段と、
 前記ジグザグ折り工程においてジグザグ折り手段に引き込まれる際に前記セパレータの位置を規制して前記セパレータの搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与する安定化手段とを有することを特徴とする二次電池の製造装置にある。
 本態様によれば、ジグザグ折り工程においてジグザグ折り手段に引き込まれる際にセパレータの位置を規制してセパレータの搬送をガイドするとともに、ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与するようにした。この結果、セパレータのバタツキを抑制でき、さらにセパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので、成型時のタクトタイムの向上も図り得る。
 本発明の第7の態様は、
 鉛直方向にジグザグ状に配列された複数のガイド部材を有し、前記ガイド部材の一方の列と他方の列との間に吊下げローラを介して吊下げられた、正負の電極板の一方を2枚のセパレータで挟んだ重畳体を、前記ガイド部材を列同士間で水平方向に交差させてジグザグ折りするジグザグ折り手段と、
 所定枚数の前記電極板の他方が載置される極板搬送部材を備え、前記極板搬送部材を前記重畳体の各谷溝内に移動させることで各谷溝内に前記他方の電極板を挿入する極板挿入手段と、
 重畳体保持部に保持され、引き出された前記重畳体を前記吊下げローラを介して前記ジグザグ折り手段に供給するものであって、前記ジグザグ折りの際に引き込まれる長さの重畳体を予め滞留させておき、前記滞留させた重畳体が前記ジグザグ折りの際に前記ジグザグ折り手段の方へ供給されるようにする重畳体供給手段と、
 前記ジグザグ折り工程においてジグザグ折り手段に引き込まれる際に前記重畳体の位置を規制して前記重畳体の搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動する重畳体の進行に抗する力を付与する安定化手段とを有することを特徴とする二次電池の製造装置にある。
 本態様によれば、第6の態様と同様の作用・効果に加え、重畳体に一方の電極板のみを挿入すれば良いので、第1および第2の態様と同じ性能の極板群を製造する場合、重畳体の谷溝の数が半分になり、ガイド部材等の個数も略半数に減らすことができ、装置の簡略化や歩留りの向上が期待できる。 
 本発明の第8の態様は、
 第6または第7の態様に記載する二次電池の製造装置において、
 前記安定化手段は、前記セパレータまたは重畳体にエアーを吹き付ける機能を有することを特徴とする二次電池の製造装置にある。
 本態様によれば、セパレータまたは重畳体にエアーを吹き付けてセパレータまたは重畳体の進行に抗する力を付与することが容易に実現できる製造装置を提供することができる。
 本発明の第9の態様は、
 第8の態様に記載する二次電池の製造装置において、
 前記安定化手段は、前記エアーを前記セパレータまたは重畳体の斜め下方に向けて噴出することを特徴とする二次電池の製造装置にある。
 本態様によれば、エアーをセパレータまたは重畳体の斜め下方に向けて噴出することでセパレータまたは重畳体の進行に抗する力をより確実に付与することができる装置を提供することができる。
 本発明の第10の態様は、
 第6~第9の態様の何れか1つに記載する二次電池の製造装置において、
 前記安定化手段は移動可能な部位を有し、前記セパレータまたは重畳体の搬送のガイドでは、前記部位を移動させることにより前記セパレータまたは重畳体を、前記部位を含む前記安定化手段の構成要素にて取り囲むようにすることを特徴とする二次電池の製造装置にある。
 本態様によれば、搬送をガイドする手段によりセパレータまたは重畳体を取り囲むようにしたので、セパレータまたは重畳体の位置を安定化させることができ、セパレータの成型性の向上を図ることや成型速度を上げることができるので成型時のタクトタイムの向上も図り得る製造装置を提供することができる。
 本発明の第11の態様は、
 第10の態様に記載する二次電池の製造装置において、
前記安定化手段は、前記構成要素として、前記吊下げローラに吊下げられた前記セパレータまたは重畳体の一方側で前記吊下げ方向に沿って配設された板状の平板部と、
 内周面に前記セパレータまたは重畳体の端部が当接することにより前記セパレータまたは重畳体の幅方向の位置を規制するように、前記セパレータ側または重畳体側に突出するとともに前記セパレータまたは重畳体の移動方向に伸びる2本のガイド部材と、
 前記セパレータまたは重畳体に対して前記平板部の反対側に配設されるとともに前記平板部に向けて移動可能に形成され、前記平板部、前記2本のガイド部材とともに前記セパレータまたは重畳体が通過する横断面形状が矩形の空間を形成する前記部位とを有することを特徴とする二次電池の製造装置にある。
 本態様によれば、平板部、2本のガイド部材および蓋部材でセパレータまたは重畳体が通過する横断面形状で矩形の空間が形成され、この空間にセパレータまたは重畳体を挿通させることで、ガイド部材のガイド機能と相俟って、セパレータまたは重畳体の流通・搬送を円滑に行わせることができる。
 本発明の第12の態様は、
 第11の態様に記載する二次電池の製造装置において、
 前記部位は、前記平板部に向けて移動する際の移動量が異なる第1および第2の移動モードを有するとともに、前記第1の移動モードでは、前記平板部、前記2本のガイド部材とともに前記セパレータまたは重畳体が通過する横断面形状が矩形の空間を形成するとともに、前記ジグザグ折り手段による前記ジグザグ折り工程の終了時には前記第2の移動モードでさらに平板部側に移動し、前記平板部との間に前記セパレータまたは重畳体を挟持してクランプすることを特徴とする二次電池の製造装置にある。
 本態様によれば、第2の移動モードでセパレータを挟持してクランプすることができるので、ジグザグ折り工程の最後でジグザグ折りしたセパレータからガイド部材を抜き取ってもセパレータの弛みを生起することなく良好に一連の作業を遂行することができる。
 本発明の第13の態様は、
 第6または第7の態様に記載する二次電池の製造装置において、
 前記安定化手段は、前記吊下げローラに吊下げられた前記セパレータまたは重畳体の一方側で前記吊下げ方向に沿って配設された板状の平板部と、
 前記セパレータまたは重畳体に対して前記平板部の反対側に配設されるとともに前記平板部に向けて移動可能に形成されている平板状の移動部材と、
 前記平板部または前記移動部材に基端部が固定され、前記セパレータまたは重畳体の吊下げ方向に沿い上方に伸びるとともに先端部が前記セパレータまたは重畳体に弾性的に当接し得るように形成された押圧部材とを有することを特徴とする二次電池の製造装置にある。
 本態様によれば、第12の実施の態様と同様の作用効果を、簡単な構造で実現できる。
 本発明の第14の態様は、
 第6または第7の態様に記載する二次電池の製造装置において、
 前記安定化手段は、
 前記セパレータまたは重畳体の吊下げ方向に沿い前記セパレータまたは重畳体の一方側で複数配設された位置規制ローラと、
 前記セパレータまたは重畳体の他方側で2個の前記位置規制ローラの間に配設され、前記セパレータまたは重畳体の他方側の面に向かって移動して当接し得るように形成した押圧ローラと、を有することを特徴とする二次電池の製造装置にある。
 本態様によれば、押圧ローラの押し込み量を調整することで、正確に所望のテンションをセパレータに付与することができる。
 本発明の第15の態様は、
 第6~第14の態様の何れか1つに記載する二次電池の製造装置において、
 前記セパレータ供給手段または重畳体供給手段は、前記セパレータまたは重畳体の搬送方向に関し前記吊下げローラの上流側の途中を、相対的な上流側と下流側とで支持する少なくとも2個の支持ローラと、該支持ローラの間に配設されるとともに前記セパレータまたは重畳体の一方の面に当接させて垂直方向に昇降可能に配置された少なくとも1個の上流側バッファローラとを備え、前記吊下げローラを介して前記ジグザグ折り手段側に前記セパレータまたは重畳体を供給するとともに、前記ジグザグ折りの際に引き込まれるセパレータまたは重畳体の余長部を、前記吊下げローラの上流側で作製し、さらに前記上流側バッファローラは、前記セパレータまたは重畳体と当接しながら所定の上昇位置あるいは下降位置に占位させた状態のとき、前記吊下げローラを介して前記ガイド部材間に前記セパレータまたは重畳体が吊下げられるとともに、前記ガイド部材の移動によるジグザグ折りに際しては、前記上流側バッファローラが下降あるいは上昇することを特徴とする二次電池の製造装置にある。
 本態様によれば、ジグザグ折り手段に上流側に、ローラを用いた余長部を設けるようにしたので、ジグザグ折り装置を挟んでセパレータの上流側と下流側で適度な余長を確保できるとともに、ジグザグ折り動作を妨げない程度でセパレータの姿勢を安定化させた状態を保つことができる製造装置を提供することができる。また、セパレータまたは重畳体を連続した状態でジグザグ折り手段のガイド部材間に吊下げられ、ガイド部材が移動することによりジグザグ折り成型が行われるので、ガイド部材によるセパレータまたは重畳体の引き込みの際にセパレータまたは重畳体が幅方向に移動してバタツクという現象を抑制してガイド部材によるセパレータ等の引き込みを円滑に行わせることができる。この結果、セパレータまたは重畳体の幅、厚み、表面状態が多少ばらついても、極板群の精度を充分許容値の範囲内に収めることができ、品質の向上に資することができる。また、セパレータまたは重畳体は、ジグザグ折りする前に所定の長さに切断しておく必要がなく、連続した状態で所定のジグザグ折りを行うことができるので、セパレータまたは重畳体の歩留まりを可及的に向上させることができる。
 本発明の第16の態様は、
 第6~第15の態様の何れか一つに記載する二次電池の製造装置において、
 前記安定化手段の下流側で、前記セパレータまたは重畳体の先端部を挟持するクランプと、前記安定化手段の下流側で、前記セパレータまたは前記重畳体が当接される下流側バッファローラおよび位置規制ローラとを組み合わせてなり、前記ジグザグ折りの際に引き込まれるセパレータまたは重畳体の余長部を、前記セパレータまたは重畳体の下流側で作製するバッファ部作製手段を有することを特徴とする二次電池の製造装置にある。
 本態様によれば、安定化手段の下流側で、ジグザグ折りの際に引き込まれるセパレータまたは重畳体の下流側における余長部を形成することができるので、さらにセパレータまたは重畳体の成型性の向上を図ることができ、これに伴い成型速度を上げることができるので成型時のタクトタイムの向上も図り得る。
 本発明によれば、ジグザグ折り工程においてジグザグ折り手段に引き込まれる際にセパレータの位置を規制してセパレータの搬送をガイドするとともに、ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータに対してはその進行に抗する力を付与するようにしたので、ジグザグ折り手段の下流側におけるセパレータのバタツキ等を抑制してその成型性の向上を図ることができ、これに伴い成型速度を上げることができるので、成型時のタクトタイムの向上も図り得る。
本発明の実施の形態に係る極板群が収納された角形電池の概略を示す斜視図である。 図1に示す極板群の概略構成を示す斜視図である。 本発明の実施の形態に係る二次電池製造装置における極板群製造手段を示す図で、(a)はその平面図、(b)はその正面図である。 図3に示す製造装置を用いたセパレータのジグザグ折工程の途中の態様を示す概略図である。 図3に示す製造装置を用いたセパレータのジグザグ折工程の途中の他の態様を示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるジグザグ折りの第1(初期)工程である状態で示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるジグザグ折りの第2工程である状態で示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるジグザグ折りの第3工程である状態で示す概略図である。 本発明の第1の実施例に係る安定化手段を示す図で、(a)は正面から見た概略図、(b)は上面から見た概略図、(c)はA線矢視図、(d)はエアー吐出口を抽出拡大して示す断面図、(e)は第1の移動モードの態様を示す上面から見た概略図、(f)は第2の移動モードの態様を示す上面から見た概略図である。 本発明の第2および第3の実施例に係る安定化手段を示す図で、(a)は第2の実施例を正面から見た概略図、(b)は第3の実施例を正面から見た概略図である。 本発明の実施の形態におけるエアー吹出手段の一例を示す図で、(a)は平面図、(b)は横断面図、(c)はイオナイザを抽出して詳細に示す詳細図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の実施の形態に係る製造装置を用いた二次電池の製造方法を示す概略図である。 本発明の他の実施の形態に係る製造装置で製造される他の極板群を示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第1(初期)工程である状態で示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第2工程である状態で示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第3工程である状態で示す概略図である。 本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第4工程である状態で示す概略図である。 本発明の他の実施の形態における下流側バッファ部作製手段を示す概略図である。 本発明の、さらに他の実施の形態における下流側バッファ部作製手段を示す概略図である。
 以下、本発明の実施の形態を図面に基づき詳細に説明する。
 図1および図2に示すように、リチウムイオン二次電池である角形電池(二次電池)1は、角形ケース2を備え、この角形ケース2内には極板群3が収納されている。角形ケース2の所定箇所には、図示しない正極端子と負極端子が設けられている。また角形ケース2内には、有機溶媒にリチウム塩を配合してなる電解液が充填されている。
 極板群3は、ジグザグ折りされたセパレータ4と、このセパレータ4の各谷溝4a内に交互に挿入された一方の極板(例えば、正極板5)と他方の極板(例えば、負極板6)とを具備する。正極板5と負極板6とは、各々の間にセパレータ4が介在するように交互に重ね合わせられ、セパレータ4が扁平に畳まれた状態になっている。正極板5と負極板6とはセパレータ4から互いに反対側に突出するリード部5a,6aを備え、各極のリード部5a,6aはそれぞれ束ねられる。そして束ねられた正極板5のリード部5aは上記正極端子に接続され、束ねられた負極板6のリード部6aは上記負極端子に接続される。
 このような構成の極板群3は、二次電池の製造装置で製造される。本実施の形態に係る製造装置は、セパレータ4をジグザグ折りして極板群3を製造するため、ジグザグ折り手段と極板挿入手段とを有して構成される極板群製造手段Iとジグザグ折りするためのセパレータ4を供給するセパレータ供給手段IIを有している。図3は、極板群製造手段Iを示す図で、(a)はその平面図、(b)はその正面図である。同図に示すように、ジグザグ折り手段20は、鉛直方向にジグザグ状に配列された複数のガイド棒(ガイド部材)21を有し、詳しくは後述するが、このガイド棒21の一方の列22Aと他方の列22Bとの間にセパレータ4を配置して、ガイド棒21を列22A,22B同士間で水平方向に交差させて、セパレータ4をジグザグ折りする。
 ガイド棒21は、セパレータ4に対して供給される正極板5および負極板6の枚数と同じ本数か、またはそれ以上の本数設けられている。これら複数本のガイド棒21は、図示しない基台上に垂直方向に二列22A,22Bで各々水平に配列される。また各ガイド棒21は、列22A,22B間でジグザクになるように、すなわち鉛直方向においてジグザグになるように配列される。これらのガイド棒21は、列22A,22Bごとに設けられた縦フレーム23,24にそれぞれ片持ち状に支持されている。
 また、ジグザグ折り手段20は、ガイド棒21を水平方向に移動することにより、列22A,22B間で交差させてセパレータ4をジグザグ折りするための駆動部を備える。この駆動部は、例えば、ボールネジとボールネジを回転させるモータ等により構成される。なお、このようにボールネジ、モータ等で構成される駆動部は通常の送り手段であるから図示は省略する。
 極板挿入手段30は、ジグザグ折り手段20を構成するガイド棒21の各列22A,22Bの後方に配される一対の極板搬送部材31(31A,31B)を備える。各極板搬送部材31は、所定枚数の正極板5又は負極板6が載置される複数の極板搬送トレー32を有する。図3においては、セパレータ4より左側に配置された極板搬送部材31Aの極板搬送トレー32には正極板5が載置され、セパレータ4より右側に配置された極板搬送部材31Bの極板搬送トレー32には負極板6が載置されている。そして極板挿入手段30は、これらの極板搬送トレー32を、ガイド棒21の水平方向への移動に同期させてセパレータ4に形成される谷溝4a(図2参照)内に移動させることで、各谷溝4a内に正極板5と負極板6とを交互に挿入する。
 本形態では、極板挿入手段30は、一方の極板(例えば、正極板5)を搬送する第1の極板搬送部材(例えば、正極板用極板搬送部材)31Aと、他方の極板(例えば、負極板6)を搬送する第2の極板搬送部材(例えば、負極板用極板搬送部材)31Bと、を備えている。第1の極板搬送部材31Aは、極板群3に必要な一方の極板(例えば、正極板5)の枚数と同数個の極板搬送トレー32を備えている。第1の極板搬送部材31Aの各極板搬送トレー32は、一方の列22Aを構成するガイド棒21の後方に、極板搬送トレー32の電極板載置面が水平になるように配置され、その後端が支持フレーム33Aによって連結されている。同様に、第2の極板搬送部材31Bも極板群3に必要な他方の極板(例えば、負極板6)の枚数と同数個の極板搬送トレー32を備える。第2の極板搬送部材31Bの各極板搬送トレー32は、他方の列22Bを構成するガイド棒21の後方に、極板搬送トレー32の電極載置面が水平になるように配置され、その後端が支持フレーム33Bによって連結されている。
 各支持フレーム33A,33Bは、一方の極板としての正極板5または他方の極板としての負極板6の搬送方向に伸縮可能なピストン・シリンダ装置34のピストンロッド34aにそれぞれ連結されている。また各ピストン・シリンダ装置34は、正極板5または負極板6の搬送方向に往復移動可能な往復台35にそれぞれ設置されている。
 各往復台35は、ボールネジ等からなる駆動部により水平方向に移動可能に構成されている。具体的には、各往復台35は、図示しない基台上に回転可能に設置された送りネジであるネジ軸36に螺合するナット37に連結されている。ネジ軸36は図示しないモータによって回転するようになっている。ネジ軸36が回転すると、回転方向に応じて、第1および第2の極板搬送部材31A,31Bのそれぞれがセパレータ4に向かって、あるいはセパレータ4から離れる方向に移動される。
 なお、第1および第2の極板搬送部材31A,31Bそれぞれの極板搬送トレー32の左右両側(電極載置面と水平な方向において、極板搬送トレー32の移動方向とは直交する方向における両側)には、極板搬送トレー32上に載置される極板の縁部に当接される一対の押し部材38が設けられている。押し部材38は、具体的には各極板搬送トレー32の左右両側から突出した正極板5および負極板6の縁部に当接する一対の縦棒として構成され、各往復台35に取り付けられている。
 セパレータ4はジグザグ折り手段20のガイド棒21の相対向する列22A,22B間に、セパレータ供給手段IIの吊下げローラ41を介して吊下されている。
 ここで、上述の如き極板群製造手段Iを用いて極板群3を製造する際の態様を説明する。図4および図5は、図3に示す極板群製造手段Iを用いたセパレータのジグザグ折り工程の途中の態様をそれぞれ示す概略図である。図4に示すように、ジグザグ状に配列されたガイド棒21の列22A,22B間にセパレータ4が吊下げられた状態で、ガイド棒21の列22A,22Bをセパレータ4側に向かってそれぞれ水平に移動させ、図5に示すように、ガイド棒21を列22A,22B間で交差させる。このとき、図示はしないが、同期してセパレータ供給手段IIのバッファローラが上方に移動し、ガイド棒21に引き込まれる長さ分のセパレータ4を供給する。したがって、かかるセパレータ4のガイド棒21による引き込みは、セパレータ4が実質的にテンションフリーの状態で円滑に行われる。なお、かかるセパレータ供給手段IIの動作に関しては後に詳述する。
 ガイド棒21の水平方向への移動に同期してネジ軸36の回転により往復台35が移動する。これにより、第1および第2の極板搬送部材31A,31B、ならびに押し部材38をセパレータ4に向かって移動させる。往復台35の移動の開始はガイド棒21の移動開始と同時、ガイド棒21の移動開始後におけるガイド棒21の移動中、あるいはガイド棒21の移動終了と同時あるいは所定時間後のいずれでもよい。タクトタイムを考慮すると、ガイド棒21の移動開始と同時あるいは移動開始から短い時間おいた後でガイド棒21の移動中である方が望ましく、このタイミングを検知して同期した移動を行うようにするのがよい。この結果、ガイド棒21を列22A,22B間で交差するように水平方向に移動してセパレータ4に形成される谷溝4a内に向かって第1および第2の極板搬送部材31A,31B、ならびに押し部材38を水平方向に移動する。かくして、第1の極板搬送部材31Aの各極板搬送トレー32に予め搭載された正極板5、および第2の極板搬送部材31Bの各極板搬送トレー32に予め搭載された負極板6が、ジグザグ折りされたセパレータ4の各谷溝4a内に交互に挿入される。この結果、セパレータ4を介して正極板5と負極板6とが交互に重なり合う積層体が形成される。その後、セパレータ4の各谷溝4a内からガイド棒21が抜き取られ、押し部材38を残して第1および第2の極板搬送部材31A,31Bがセパレータ4から離れる方向に移動されることでセパレータ4の各谷溝4a内に正極板5と正極板6が残され、セパレータ4を介して正極板5と負極板6とが交互に積層された積層体が形成される。かかる積層体は正極板5と負極板6の積層方向で所定のプレス手段(図示せず)によって押圧(プレス)して一体化され、極板群3が形成される。
 図6は、本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第1(初期)工程である状態で示す概略図である。以下同様に、図7は、ジグザグ折りの第2工程である状態で示す概略図、図8は、第3工程である状態で示す概略図である。
 図6は、セパレータの所定の成型工程を経て形成した積層体(後に詳述する)を切り離して、クランプ部材50A、50Bからなるクランプ50がセパレータ4の先端部を挟持可能な位置に移動した後、この移動位置でセパレータ4の先端部をクランプした状態を示している。かかる状態が、ジグザグ折り手段20の上流側でのセパレータ4の余長部を形成する上流側バッファ作製手段である極板群製造手段Iの初期状態となる。一方、セパレータ供給手段IIは、最上昇位置である第4ポジションにあった上流側バッファローラ45,46(以下、単にバッファローラ45,46ともいう)を下降させつつロール部材40を回転してセパレータ4を繰り出すことにより初期状態となる。さらに詳言すると、セパレータ4は、ロール状に巻回されたロール部材40としてロール部材40を保持する保持部である回転軸48に回転可能に支持してある。ロール部材40と吊下げローラ41との間には支持ローラ42,43,44および中心軸の位置が上下方向に移動可能に形成されたバッファローラ45,46を有している。バッファローラ45,46は支持ローラ42,43,44の間に配置されており、図6に示されるように、図の水平方向において、支持ローラ42,43,44とバッファローラ45,46が交互に配置されている。また、吊下げローラ41側に移動して吊下げローラ41とでセパレータ4を挟持する可動ローラ49も図に示している。可動ローラ49の動作、役割は後ほど述べる。また、ローラ41の下流側にはセパレータ4の吊下げ方向に沿ってその左側に上流側から順に2個のローラ62,63が配設してあり、さらにローラ62,63の間でセパレータ4の右側にダンサーローラ61が配設してある。これらダンサーローラ61およびローラ62,63に関しても後に詳述する。
 さらに、本形態においては、ジグザグ折り手段20の下流側に、安定化手段100が配設されている。この安定化手段100は、吊下げローラ41に対してジグザグ折り手段20の反対側であるジグザグ折り手段20の下流側に配設されている。これは、ジグザグ折り工程においてジグザグ折り手段20に引き込まれる際にセパレータ4の位置を規制してセパレータ4の搬送をガイドするとともに、ジグザグ折りの工程においてジグザグ折り手段20の方へ移動するセパレータ4の進行に抗する力を付与する。かくして成型時のセパレータ4のバタツキ等を可及的に低減している。安定化手段100については、その具体的な構造とともに、後に詳述する。
 図7はセパレータのジグザグ折りの前工程の状態を示している。かかる前工程では、ガイド棒21の列22A,22Bが離間されており、その間にセパレータ4が吊下げローラ41を介して吊下げられている。かかる状態は、次の動作により形成される。図6に示すようにクランプ部材50A,50Bでセパレータ4の先端を挟持したクランプ50がセパレータ4の吊下方向に下降することで、セパレータが安定化手段100の下流側まで引き出される。
 かかる前工程では、クランプ50の下降に伴い、バッファローラ45,46が、図7に示す第2のポジション(中央下位置)まで上昇する。この上昇によりクランプ50か下降することにより引出された長さ分のセパレータ4が補完される。ここで、再下降位置まで下降したクランプ50は、図7における手前側あるいは奥側に移動して上昇し、次の処理に備える。すなわち、クランプ50はジグザグ折り手段20の上方と下方の所定位置との間を細長いトラック状の無限軌道状の軌跡を描きながら上下方向に移動する。
 図8は、ジグザグ折り手段20のガイド棒21の列22A,22Bが相寄る方向に移動されてセパレータ4がジグザグ折りされるとともに、ジグザグ折りされたセパレータ4間に交互に正極板5および負極板6が挿入された状態を示している。このとき、バッファローラ45,46は、ガイド棒21の列22A,22Bの移動と同期して図8に示す第3のポジション(最上位置)まで上昇される。かかるバッファローラ45,46の上昇により支持ローラ44から吊下げローラ41を介して先端に至るセパレータ4の長さに余長分が供給される。つまり、バッファローラ45,46を最下降位置へ下降した際の支持ローラ42,43,44とバッファローラ45,46とにより保持されたセパレータ4の余長分が、セパレータ4のジグザグ折りに際し、ガイド棒21により水平に引き込まれるセパレータ4の量に相当するようにしている。かくして上流側バッファ作製手段である極板群製造手段Iによりジグザグ折り手段20の上流側で形成されたセパレータ4の余長部は、ジグザグ折り手段20によるジグザグ折り成型に伴い、主にジグザグ折り手段20の上部に吸収される。
 一方、安定化手段100の下方まで引き出すことで形成されたセパレータ4の余長分が、セパレータ4のジグザグ折りに際し、ガイド棒21により水平に引き込まれるセパレータ4の量に相当するようにしている。かくしてジグザグ折り手段20の下流側で形成されたセパレータ4の余長部は、ジグザグ折り手段20によるジグザグ折り成型に伴い、主にジグザグ折り手段20の下部に吸収される。かかるセパレータ4の余長部のジグザグ折り手段20への吸込み動作に際し、安定化手段100は、上昇するセパレータ4の位置、特に幅方向位置を規制してセパレータ4の搬送をガイドするばかりでなく、上昇するセパレータに対してはセパレータの移動に対してその進行に抗する力を付与するようにしている。この力を付与されることで与えられるテンションによってもセパレータ4の引込み動作が安定する。よって、セパレータのバタツキが抑制できる。さらにセパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので、成型時のタクトタイムの向上も図り得る。
 このように安定化手段100は、図8の工程においてセパレータ4の搬送の安定に資するものとなっている。かかる安定化手段100の具体的な構成に関して説明する。
 図9は、本発明の第1の実施例に係る安定化手段を示す図で、(a)は正面から見た概略図、(b)は上面から見た概略図、(c)はA線矢視図、(d)はエアー吐出口を抽出拡大して示す断面図、(e)は第1の移動モードの態様を示す上面から見た概略図、(f)は第2の移動モードの態様を示す上面から見た概略図である。これらの図に示すように、本実施例に係る安定化手段100は、構成要素として、平板部101、ガイド部材102A,102B、エアー吐出口103および蓋部材104を有する。平板部101は、吊下げローラ(例えば、図6;以下同じ)に吊下げられたセパレータ4の一方側で吊下げ方向に沿って配設された板状の部材で、セパレータ4の一方側でセパレータ4の厚さ方向の位置を規制する。ガイド部材102A,102Bは、平板部101に基端部が固着されてセパレータ4側に突出するとともにセパレータ4の移動方向に伸びる2本のガイド部材で、各ガイド部材の内周面にセパレータ4の端部が当接することによりセパレータ4の幅方向の位置を規制してガイドする。したがって、ガイド部材102A、102Bセパレータ4の幅方向における左右のガイド部材102A,102B間の間隔はセパレータ4の幅よりも若干大きく形成してある。なお、平板部101とガイド部材102A,102Bとは1つの部材で一体成型されたものであってもよいが、ガイド部材102Aとガイド部材102Bとの間の間隔を調整し易くすることを考慮すると、平板部101とガイド部材102A,102Bは本実施形態のように別部材としておく方がよい。エアー吐出口103は、特に図9(d)にこの部分を抽出・拡大して示すように、平板部101の一部を貫通して形成してあり、しかも平板部101のセパレータ4の反対側からセパレータ4側に向かって傾斜して下降するように形成してある。かくして、平板部101にそのセパレータ4の反対側から供給されたエアーを斜め下方に向けて噴出する。この結果、斜め下方に噴出するエアーの垂直下方に向く成分が、ジグザグ折り手段に吸込まれて上昇する場合でもセパレータ4の上昇速度を抑制する。この結果、成型の安定化を図ることができる。ここで、セパレータ4に向けて噴出するエアーをイオンエアーとすることは勿論可能であり、イオンエアーを吐出させた場合にはセパレータ4の除電も同時に行なうことができる。エアー吐出口103は、セパレータ4側に向かって、セパレータ4の表面に垂直にエアーを供給することでもセパレータ4の上昇速度を抑制することができるが、エアーの供給角度の調整の困難性等を考慮すると上述のようにセパレータ4側に向かって下方に傾斜させてエアーを当てる方がよい。
 セパレータ4にかかるテンションは、小さすぎるとセパレータ4のバタツキを抑制できず、大きすぎるとジグザグ折り成型時にジグザグ折り手段が止まってしまう原因となる。
ジグザグ折り成型を行う際にセパレータにどの程度のテンションをかけると良いのか確認実験を行った。実験はテンションを下側のセパレータに付与してジグザグ折り成型を行い、できた極板群のジグザグ折りセパレータの間に挟まっている電極の活物質部分がセパレータで完全に覆われているかどうかを目視で検査し、電極の活物質部分が少しでもはみ出ているものをセパレータがずれたと判断した。各張力に対して30個ずつジグザグ折り成型を行って、極板群を作製した。
結果は、表のようになった。
Figure JPOXMLDOC01-appb-T000001
 ここから、ジグザグ折り成型時のセパレータについて、10mN以上のテンションをかけると安定してジグザグ折り成型が行えることが分かる。
 また、セパレータ4にかかるテンションが500mNを越えるとジグザグ折り成型装置が止まってしまった。内部に過度な張力が働いたため、ジグザグ折り手段での安全装置が作動したものと思われる。ここから、セパレータ4にかかるテンションは500mN以下に抑えることが好ましい。
 セパレータにかかるテンションは、上記したような範囲内で適宜設定可能であり、セパレータの長さやエアーの流速、流量等を適宜調整することで設定することができる。
 さらに、安定化手段100における移動可能な部位として、蓋部材104は、セパレータ4に対して平板部101の反対側に配設されるとともに平板部101に向けて移動可能に形成されている。かくして平板部101、2本のガイド部材棒102A、102Bとともにセパレータ4が通過する横断面形状が矩形の空間が形成される。この蓋部材104は、セパレータ4の他方側でセパレータ4の厚さ方向の位置を規制する。ここで、蓋部材104はガイド部材102A、102Bが形成する空間に入り込むような大きさとしてあり、図9(e)、(f)に示すように。エアシリンダ105等の駆動手段により平板部101の方向へ移動可能に形成してある。ここで、本実施例に係る蓋部材104は、平板部101に向けて移動する際の移動量が異なる第1および第2の移動モードを有するとともに、第1の移動モードでは、平板部101、2本のガイド部材102A,102Bとともにセパレータ4が通過する横断面形状が矩形の空間を形成する。かくして、ジグザグ折り手段によるジグザグ折り工程の終了時には第2の移動モードでさらに平板部101側に移動し、平板部101との間にセパレータ4を挟持してクランプするようになっている。
 本実施例によれば、平板部101、2本のガイド部材102A,102Bおよび蓋部材104でセパレータ4が通過する横断面形状で矩形の空間が形成され、この空間にセパレータ4を挿通させることで、ガイド部材102A,102Bのガイド機能と相俟って、セパレータ4の流通・搬送を円滑に行わせることができる。さらに、セパレータ4側に向かって傾斜して下降しているエアー吐出口103からエアーを斜め下方に向けて噴出することにより、ジグザグ折り工程においてジグザグ折り手段に吸込まれるセパレータ4の上昇動作の抵抗となるので、このことによってもセパレータ4の吸込み動作を適度に遅延させて走行の安定性を担保し、同時に良好な成型性も担保し得る。
 さらに、第2の移動モードではセパレータ4を挟持してクランプすることができるので、ジグザグ折り工程の最後でジグザグ折りしたセパレータ4からガイド棒21(例えば図8参照)を抜き取ってもセパレータ4の弛みを生起することなく良好に一連の作業を遂行することができる。
 図10は、本発明の第2および第3の実施例に係る安定化手段を示す図で、(a)は第2の実施例を正面から見た概略図、(b)は第3の実施例を正面から見た概略図である。図10(a)に示すように、本実施例に係る安定化手段110は、平板部111,移動部材112および押圧部材113からなる。ここで、平板部111は、吊下げローラ41に吊下げられたセパレータ4の一方側で吊下げ方向に沿って配設された板状の部材である。また、移動部材112は、セパレータ4に対して平板部111の反対側に配設されるとともに、図示しない移動手段により平板部111に対して接離するよう水平移動可能に形成されている。押圧部材113は、移動部材112に基端部が固定され、セパレータ4の吊下げ方向に沿い上方に伸びるとともに先端部がセパレータ4に弾性的に当接し得るように形成されている。かくして、移動部材112の移動により平板部111との間の距離を調整することにより押圧部材113の先端が所望の押圧力でセパレータ4に接触するように調整することができる。すなわち、本実施例においても移動部材112の移動手段として第1の実施例と同様の、2段式のエアシリンダを適用することにより、セパレータ4に押圧部材113を接触させる押圧力を2段階に変えることができ、それぞれをセパレータ4の移動時のバタツキ等、不安定走行を抑制するための安定走行モードおよびセパレータ4の移動を完全にクランプするクランプモードのいずれかとすることができる。
 図10(b)に示すように、第3の実施例に係る安定化手段120は、1個の押圧ローラ121および2個の位置規制ローラ122、123からなる。位置規制ローラ122、123は、セパレータ4の吊下げ方向に沿いセパレータ4の一方側で複数(本例では2個)配設されている。一方、セパレータ4の他方側には、位置規制ローラ122,123の間に押圧ローラ121が配設されている。押圧ローラ121は駆動手段であるモータ124でセパレータ4の他方側の面に向かって移動するように構成してある。この結果、移動によりセパレータ4に当接するとともに、所定の圧力でセパレータ4を位置規制ローラ122,123に押圧する。したがって、モータ124の駆動による押圧ローラ121の押圧機能における押圧力を適宜調整することにより、第1および第2の実施例と同様に、不安定走行を抑制するための安定走行モードおよびセパレータ4の移動を完全にクランプするクランプモードのいずれかとすることができる。かくして、本実施例によれば、押圧ローラ121の押し込み量を調整することで、正確に所望のテンションをセパレータ4に付与することができる。
 さらに、本形態においては、セパレータ4の下面側からエアーを吹付けてセパレータ4を支持するエアー吹出手段47が、支持ローラのうち最下流の支持ローラ44と吊下げローラ41との間に配設してある。エアー吹出手段47を設けることにより、物理的な接触を可及的に回避した態様で、セパレータ4を支持することができるので、セパレータ4の所定の搬送を良好に行うことができる。ここで、エアー吹出手段47から吹出されるエアーをイオンエアーとすることにより、イオンエアーによる除電効果によりセパレータの帯電も防止もしくは除去することができるので、ジグザグ折り工程において、隣接するセパレータの静電力による吸着を未然に防止することができる。
 図11はエアー吹出手段47の一例を示す図で、(a)は平面図、(b)は横断面図、(c)はイオナイザーを抽出して詳細に示す詳細図である。
 図11に示すように、エアー吹出手段47は、セパレータ4の幅方向の位置を規制する壁部69と、セパレータ4の搬送方向(図(a)に矢印で示す上下方向;以下同じ)に伸びてその頂部にセパレータ4の下面が当接するよう幅方向に分散させてリブ部材70A,70B,70C,70Dを配設した平板部70と、平板部70の中央部に形成された前記搬送方向に伸びる長孔70Eを有し、長孔70Eを介してイオンエアーを噴出するものである。すなわち、図10(c)に示すイオナイザー70はその頂部のノズル71Aを介して長孔70Eからイオン化したエアーを噴出する。
 かくして、イオンエアーによる除電効果によりセパレータ4の帯電も防止あるいは除去することができるので、ジグザグ折り工程において隣接するセパレータの静電力による吸着を未然に防止することができる。ここで、セパレータ4は壁部69で幅方向の位置を規制されるので蛇行や、バタツキ等を生起することなく所定の搬送路に沿って良好に搬送される。しかもセパレータ4はリブ部材70A~70Dと接触するようにして接触面積を可及的に小さくした線接触とすることができるので、イオンエアーによる除電後にリブ部材70A~70Dとの間の摩擦により再度帯電するということもない。
 かかるエアー吹出手段47は必ずしも必要なものではないが、このような構造を採用することにより、ローラでセパレータ4を支持する場合等のようにセパレータ4との物理的な接触部分を可及的に低減し得る。ちなみに、セパレータ4が、ロール部材40から引き出され、ローラ等に接触しつつ極板群製造手段Iに搬送されることで、引き出しやローラとの接触に伴う摩擦によりセパレータ4が帯電してしまう。このように、帯電したままでは静電気により、セパレータ4の搬送時に搬送方向を規定するためのガイド部(図示せず)に接触して正しい方向に搬送されなくなってしまったり、隣接するセパレータ4同士が吸着されてしまい、ガイド棒21の移動によるセパレータ4の引き込みを円滑に行わせることができない。このため、吹付ける気体として、イオンエアーのような帯電を防止し、除電を行う気体を吹き付けることでセパレータ4が帯電することを防止するとともに帯電しているセパレータ4を除電することができる。エアー吹出手段47からのエアーの吹出しは常時行うものとしてもよいし、セパレータ4が搬送されるときとその前後に吹出し、しばらく搬送しないようなときには吹出しを止めるようにするなど必要に応じて吹出しを制御するようにしてもよい。常時吹出すようにすれば、搬送されるセパレータ4全体に対しての除電を確実に行えるため、隣接するセパレータ4同士の吸着をより確実に抑制することが期待でき、搬送状況に応じて吹出しを制御するようにすれば、無用なイオンエアーの吹出し動作を減らすことができ、同一箇所に対して長時間イオンエアーを吹出し続けてしまうことによるセパレータ4の変形等の不具合を生ずる可能性も抑えることができる。
 さらに、本形態における支持ローラ44は、その垂直方向の位置が、吊下げローラ41の垂直方向の位置よりも下方に配設されている。これに合わせて、エアー吹出手段47,68は、そのエアー吹出面がセパレータ4の下面と平行になるよう、セパレータ4の供給側である上流側47Aよりも排出側である下流側47Bを上方に位置させて図中右上がりに傾斜させて配設してある。このことにより、支持ローラ44から吊下げローラ41に向けて搬送されるセパレータ4の走行に伴う運動エネルギーを位置エネルギーに変換して制動することができる。この結果、ジグザグ折り工程においてセパレータ4が急激に引き込まれても所定の位置で良好に停止させることができる。
 ここで、図12~図19に基づき本形態に係る二次電池の製造装置を用いた二次電池の製造方法を説明する。図12は本形態に係る二次電池の製造装置を用いた極板群の製造方法を示す概略図である。同図は、前工程で極板群3の製造が完了した後の初期状態を示している。かかる初期状態では前工程で切断されたセパレータ4の先端部が吊下げローラ41から吊下げられている。このとき、可動ローラ49は吊下げローラ41の方向に移動させてあり、吊下げローラ41と可動ローラ49とでセパレータ4が挟持された状態でセパレータ供給手段IIは、バッファローラ45,46(図6参照;以下同じ)の下降とともにロール部材40が回転してセパレータ4が繰り出され、図6(a)に示す状態となっている。また、このとき極板群製造手段Iの相対向する列22A,22Bは離間されている。
 かかる状態から図13に示すように、可動ローラ49を吊下げローラ41から離間する方向に移動させて、セパレータ4を挟んでその両面側にそれぞれ配設されているクランプ部材50A、50Bからなるクランプ50でセパレータ4の先端部を挟持する。押圧部材51は図16の押圧部材52とでジグザグ折りされた谷溝部に電極板が挿入されたセパレータ4の積層体に対して押圧処理を施すことにより極板群3を形成することに用いられるものである。
 その後、図7の状態でロール部材40が回転してセパレータ4を繰り出しつつ、図14に示すように、セパレータ4の先端部をクランプしたままクランプ50(図14には図示せず)を下方に移動させてセパレータ4が列22A,22B間に配置されるように引き下げる。この後、クランプ部材50A,50Bによるクランプ状態は解放する。なお、図示していないが、この後、クランプ50は、図14における手前側あるいは奥側に移動して上昇し、次の処理に備えるように動作する。
 この状態から、図15に示すように、各ガイド棒21を水平方向に移動させ、ガイド棒21の列22A,22B同士間で交差させる。このとき、同期してセパレータ供給手段IIのバッファローラ45,46を上方に移動させる。この移動により、バッファローラ45,46それぞれの移動量の加算値の2倍の長さのセパレータ4をジグザグ折り手段の上流側の余長分として繰り出すことができるので、ガイド棒21に引き込まれる長さ相当分のセパレータ4が供給される。したがって、かかるセパレータ4のガイド棒21による引き込み、およびジグザグ折りは円滑に行われる。特に、本形態ではセパレータ4がセパレータ供給手段IIから切断されることなく、連続した状態でジグザグ折り成形が行われ、セパレータ4を安定化手段100より下方まで引き出してジグザグ折り手段の下流側の余長部が確保され、この引き出されたセパレータ4に対して安定化手段100により位置規制されるので、ガイド棒21によるセパレータ4の引き込みの際にセパレータ4が幅方向に移動してバタツクという現象を可及的に抑制することができる。さらに、安定化手段100によりセパレータにエアー等によりテンションを与えるようにするので、さらにセパレータ4のバタツキを効果的に抑えることができる。
 セパレータ4のジグザグ折り成形が完了した後、図5に基づく説明と同様の態様で、ジグザグ折りされたセパレータ4の間に正極板5と負極板6とを交互に挿入してセパレータ4を挟んだ正極板5と負極板6との積層体を形成する。同時に積層体の上方から押圧部材51を下降させ、積層体の上面に当接させることにより図16に示す状態とする。
 図16に示す状態において、同様の押圧部材52を下方から上昇させて積層体の下面に当接させる。
 かくして、図17に示すように、積層体を押圧部材51,52で上下から挟持する。かかる状態から、ガイド棒21を退避させるとともに、第1および第2の極板搬送部材31A,31Bを退避させる。その後、積層体を押圧部材51,52で挟持した状態で上昇させ、可動ローラ49を吊下げローラ41の方向に移動して吊下げローラ41と可動ローラ49とでセパレータ4を挟持するとともに、ダンサーローラ61をローラ62,63の間でセパレータ4の一方の面(図では右面)に押圧して吊下げローラ41と積層体の最上部との間のセパレータ4に所定の張力を付与する。かくしてセパレータ4の弛みを除去した状態で、図18に示すように、上方の所定位置でカッタ53によりセパレータ4の終端部を切り離す。切り離した積層体は極板群3に成形されて製品となる。なお、ダンサーローラ61に対する張力は、エアシリンダ81でダンサーローラ61を図中左側に引くことにより好適に発生しさせることができる。エアシリンダ81は圧縮流体である空気の弾性による緩衝効果を利用して所定の張力を付与することができるので、かかる張力付与手段としては最適である。
 一方、図17に示すように、ガイド棒21を退避させた場合には、極板群製造手段Iの下流側のセパレータ4が弛む虞がある。これに対し、本形態では、安定化手段100のクランプ機能によりセパレータ4をクランプしてこのときの弛みの発生を未然に防止している。具体的には、例えば図9に示す安定化手段100において、同図(f)に示すように、エアシリンダ105を駆動して第2の移動モードとして蓋部材104をセパレータ4に押圧して平板部101との間で挟持する。
 積層体の切り離しの結果、図19に示すように、クランプ部材50A、50Bがセパレータ4の先端部を挟持可能な位置に移動していき、極板群製造手段Iは図12に示す場合と同様の初期状態となる。
 図20は本発明の他の実施の形態における極板群を示す概略図である。同図に示すように、本形態における極板群3Aは、ジグザグ折りされた連続状の重畳体100と、この重畳体100の各谷溝100a内に挿入された正極板5とを具備する積層体として構成される。重畳体100は2枚のセパレータ4Aで負極板6Aを挟んで形成した積層体である。このため、重畳体100の各谷溝100a内に挿入された正極板5はセパレータ4Aを介して負極板6Aと対峙することになる。
 かかる本形態の構成においても、図3~図22に基づき説明した前記実施の形態の場合と同様に、正極板5と負極板6Aとには互いに逆向きにセパレータ4Aから突出するリード部5a,6aが設けられる(図2参照)。そして、各極のリード部5a,6aはそれぞれ束ねられて角形ケース2(図1参照)の図示しない正極端子及び負極端子にそれぞれ接続される。
 このような極板群3Aを製造する製造装置は、基本的に、図3に示す前記実施の形態と同様の構成となっているが、セパレータ供給手段IIからはセパレータ4の代わりに重畳体100が供給されて、ジグザグ折り手段20のガイド棒21の列22A,22B間に配置される。また、同時に、第1および第2の極板搬送部材31A,31Bのそれぞれが、正極板5を重畳体100の谷溝100a内に搬送する。
 かかる本形態によれば重畳体100に正極板5のみを挿入する谷溝100aを形成すればよい。このため、前記実施の形態の極板群3と同様な性能の極板群3Aを製造する場合、重畳体100の谷溝100aの数は前記実施の形態の場合に比べ半数で足りる。したがってガイド棒21や極板搬送トレー32の個数も略半数に減らすことができ、ひいてはタクトタイムをさらに短縮することができるという効果を奏する。
 なお、本形態における重畳体100は2枚のセパレータ4Aで負極板6Aを挟んで形成した積層体であるが、負極板6Aの代わりに正極板を挟んで形成したものであっても構わない。この場合には、第1および第2の極板搬送部材31A,31Bのそれぞれが、負極板6を重畳体100の谷溝100a内に搬送する。
 図21~24は本発明の他の実施の形態における二次電池製造装置の概略図である。図21は、本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第1(初期)工程である状態で示す概略図である。図22は、本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第2工程である状態で示す概略図である。図23は、本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第3工程である状態で示す概略図である。図24は、本発明の実施の形態に係る二次電池製造装置におけるセパレータ供給手段、極板群製造手段およびバッファ部作製手段の関係を、ジグザグ折りの第4工程である状態で示す概略図である。
 図21に示すように、本形態においては図6の構成に対して、さらに、ジグザグ折り手段20の上流側でセパレータ4の成型時の引込みに備える上流側バッファ作製手段である極板群製造手段Iに対して、ジグザグ折り手段20の下流側(安定化手段100より下側)でセパレータ4の成型時の引込みに備える下流側バッファ作製手段III(以下、単に下流側バッファ作製手段IIIともいう)が、吊下げローラ41に吊下されるセパレータ4の吊下げ方向の延長線上に配設されている。さらに詳言すると、バッファ作製手段IIIは、吊下されるセパレータ4の左側に上下方向で同一線上に配設された2個のローラ65,66と、ローラ65,66の間でセパレータ4の右側に配設される下流側バッファローラ64(以下、単にバッファローラ64ともいう)と、クランプ部材67A,67Bからなるクランプ67とを有している。
 図22はセパレータのジグザグ折りの前工程の状態を示している。かかる前工程では、ガイド棒21の列22A,22Bが離間されており、その間にセパレータ4が吊下げローラ41を介して吊下げられている。かかる状態は、次の動作により形成される。図21に示すようにクランプ部材50A,50Bでセパレータ4の先端を挟持したクランプ50がセパレータ4の吊下方向に下降してクランプ67にセパレータ4の先端部を受け渡す。この結果、セパレータ4はバッファローラ64と、2個のローラ65,66との間を通過してクランプ部材67A,67Bでその先端部をクランプされる。
かかる前工程では、クランプ50の下降に伴い、バッファローラ45,46が、図22に示す第2のポジション(中央下位置)まで上昇する。この上昇によりクランプ50か下降することにより引出された長さ分のセパレータ4が補完される。ここで、再下降位置まで下降したクランプ50は、クランプ67にセパレータ4の先端部を受け渡した後、図22における手前側あるいは奥側に移動して上昇し、次の処理に備える。すなわち、クランプ50はジグザグ折り手段20の上方と下方の所定位置との間を細長いトラック状の無限軌道状の軌跡を描きながら上下方向に移動する。
 図23もセパレータのジグザグ折りの前工程の状態を示している。かかる前工程でも、図22に示す場合と同様に、ガイド棒21の列22A,22Bが離間されており、その間にセパレータ4が吊下げローラ41を介して吊下げられている。
 本工程では、ジグザグ折り手段20によるセパレータ4のジグザク折り工程に先立ち、バッファ作製手段IIIによりセパレータ4の下流側での余長部を作製する。具体的には、図22に示すように、クランプ67でセパレータ4の先端部を挟持した状態でバッファローラ64を水平方向(図中左方向)に移動させることにより、セパレータ4を水平方向に引出す。これに伴い水平方向に引出された長さのセパレータ4を補完すべくバッファローラ45,46が図22に示す第2のポジション(中央下位置)から図23に示す第3のポジション(中央上位置)まで上昇する。かかる上昇により吊下げローラ41に吊下げられたセパレータ4に余長が発生するが、この余長分は、バッファローラ64が図中左方向に移動することにより吸収され、ジグザグ工程におけるジグザグ折りの際の余長分として確保される。ここで、バッファローラ64の水平方向移動に伴い、吊下げローラ41からはセパレータ41が繰出されるが、この繰り出しに伴うセパレータ4の搬送は、安定化手段100のガイド機能によりバタツキ等を生起することなく良好に行なわれる。
 図23は、ジグザグ折り手段20のガイド棒21の列22A,22Bが相寄る方向に移動されてセパレータ4がジグザグ折りされるとともに、ジグザグ折りされたセパレータ4間に交互に正極板5および負極板6が挿入された状態を示している。このとき、バッファローラ45,46は、ガイド棒21の列22A,22Bの移動と同期して図23に示す第3のポジション(中央上位置)から図24に示す第4のポジション(最上位置)まで上昇される。かかるバッファローラ45,46の上昇により支持ローラ44から吊下げローラ41を介して先端に至るセパレータ4の長さに余長分が供給される。つまり、バッファローラ45,46を最下降位置へ下降した際の支持ローラ42,43,44とバッファローラ45,46とにより保持されたセパレータ4の余長分が、セパレータ4のジグザグ折りに際し、ガイド棒21により水平に引き込まれるセパレータ4の量に相当するようにしている。かくして上流側バッファ作製手段である極板群製造手段Iによりジグザグ折り手段20の上流側で形成されたセパレータ4の余長部は、ジグザグ折り手段20によるジグザグ折り成型に伴い、主にジグザグ折り手段20の上部に吸収される。
 一方、バッファローラ64は、ガイド棒21の列22A,22Bの移動と同期して図23に示す状態から水平に、図23に示す場合とは反対方向(図中の右方向)に移動し、バッファローラ64の移動により作製したセパレータ4の余長分が、セパレータ4のジグザグ折りに際し、ガイド棒21により水平に引き込まれるセパレータ4の量に相当するようにしている。かくして下流側バッファ作製手段IIIによりジグザグ折り手段20の下流側で形成されたセパレータ4の余長部は、ジグザグ折り手段20によるジグザグ折り成型に伴い、主にジグザグ折り手段20の下部に吸収される。かかるセパレータ4の余長部のジグザグ折り手段20への吸込み動作に際し、安定化手段100は、上昇するセパレータ4の位置、特に幅方向位置を規制してセパレータ4の搬送をガイドするばかりでなく、上昇するセパレータに対してはセパレータの進行に抗する力を付与するので、この逆方向のテンションによってもセパレータ4の引込み動作が安定する。よって、セパレータのバタツキが抑制できる。さらにセパレータの成型性の向上を図ることができ、これに伴い成型速度を上げることができるので、成型時のタクトタイムの向上も図り得る。
 また、図21~24に示すように、エアー吹出手段68が、バッファローラ64の移動経路に沿い移動するセパレータ4の下方にも配設してある。エアー吹出手段68の構成は、図11に示すエアー吹出手段47と同様である。エアー吹出手段68を設けることにより、物理的な接触を可及的に回避した態様で、セパレータ4を支持することができるので、セパレータ4の所定の搬送を良好に行うことができる。ここで、エアー吹出手段68から吹出されるエアーをイオンエアーとすることにより、イオンエアーによる除電効果によりセパレータの帯電も防止もしくは除去することができるので、ジグザグ折り工程において、隣接するセパレータの静電力による吸着を未然に防止することができる。
 図25は、本発明の他の実施の形態における下流側バッファ部作製手段を示す概略図である。同図に示すように、バッファ部作製手段IVでは、ローラ65およびローラ66の間に複数本(図では2本)のバッファローラ75,76を配設している。このように、バッファローラ75,76を複数本設けることにより、バッファローラ75,76の一本あたりで作製するセパレータ4の余長部を短縮できる。すなわち、一本当たりの余長部の水平方向の寸法を短縮することができるので、セパレータ4のジグザグ折り手段20によるジグザグ折り工程における吸い込み(セパレータ4の移動)の際のバタツキ等を有効に防止することができる。すなわち、成型性がより向上する。また、装置の水平方向寸法を縮小することもできる。
 図26は、本発明の、さらに他の実施の形態における下流側バッファ部作製手段を示す概略図である。同図に示すように、バッファ部作製手段Vでは、上方から吊下されたセパレータ4に沿ってバッファローラ80が昇降するようになっている。かくして、図14(a)に示すように、クランプ67でセパレータ4の先端をクランプし、その後クランプ67をセパレータ4がバッファローラ80が当接している側(図に示す場合は左側)に向けて移動させることにより、図14(b)に示すように、バッファローラ80で折れ曲がるクランク部を形成する。その後、図14(c)に示すように、バッファローラ80を下降させることにより、その下降量に応じた余長部を作製する。ジグザグ折り工程において余長部がジグザグ折り手段20に引き込まれる場合には、バッファローラ80が上昇する。
 かかるバッファ部作製手段Vでは、バッファローラ80が水平方向に移動することはなく垂直方向の移動のみで、所定の余長部を形成する際、最も円滑なセパレータ4の移動が担保され、もっとも成型性の向上を図ることができる。
 本発明は二次電池を電子機器等の非常用電源装置として利用する非常用電源システムを製造する産業分野や、二次電池をエネルギー源として利用する電気自動車の製造を行う産業分野において有効に利用することができる。
 I            極板群製造手段
 II            セパレータ供給手段
 III            下流側バッファ部作製手段
 1            角形電池
 2            角形ケース
 3            極板群
 4            セパレータ
 4a           谷溝
 5            正極板
 6            負極板
 5a,6a        リード部
 20           ジグザグ折り手段
 21           ガイド棒
 23,24        縦フレーム
 30           極板挿入手段
 31           極板搬送部材
 32           極板搬送トレー
 33           支持フレーム
 38           押し部材
 41           吊下げローラ 
 42,43,44     支持ローラ
 45、46        上流側バッファローラ
 47           エアー吹出手段
 47A          上流側
 47B          下流側
 50           クランプ
 53           カッタ
 61           ダンサーローラ
 62,63        ローラ
 64           下流側バッファローラ
 65,66        ローラ
 67           クランプ
 100、110,120  安定化手段

Claims (16)

  1.  セパレータを、相対向して配設された複数列のガイド部材の間に吊下げローラを介して吊下げた状態で前記ガイド部材の移動に伴いジグザグ折り手段によりジグザグ折りにする工程と、ジグザグ折りにされた前記セパレータの各谷溝内に正極板と負極板とを交互に挿入することにより、前記セパレータを介して前記正極板と前記負極板とが交互に重なり合う積層体を形成する工程と、前記セパレータの各谷溝内から前記ガイド部材を抜去した後、前記積層体を、前記正極板と前記負極板とが積層された方向に押圧して極板群を製造する工程と、を有し、
     前記吊下げローラを介して前記ガイド部材間に前記セパレータを吊下げた状態とし、前記ガイド部材の移動によるジグザグ折り工程に先立ち、前記ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させ、
     前記ジグザグ折り工程において、前記ジグザグ折り手段の上流側ではジグザグ折り手段に引き込まれる際に前記滞留させてあるセパレータがジグザグ折り手段の方へ供給され、前記ジグザグ折り手段の下流側では前記セパレータの位置を規制して前記セパレータの搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与するようにしたことを特徴とする二次電池の製造方法。
  2.  正負の電極板の一方を2枚のセパレータで挟んだ重畳体を、相対向して配設された複数列のガイド部材の間に吊下げローラを介して吊下げた状態で前記ガイド部材の移動に伴いジグザグ折り手段によりジグザグ折りにする工程と、ジグザグ折りにされた前記重畳体の各谷溝内に前記電極板の他方を挿入することにより、前記重畳体を介して前記正極板と前記負極板とが交互に重なり合う積層体を形成する工程と、さらに前記重畳体の各谷溝内から前記ガイド部材を抜去した後、前記積層体を、前記正極板と前記負極板とが積層された方向に押圧して極板群を製造する工程と、を有し、
     前記吊下げローラを介して前記ガイド部材間に前記重畳体を吊下げた状態とし、前記ガイド部材の移動によるジグザグ折り工程に先立ち、前記ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させ、
     前記ジグザグ折り工程において、前記ジグザグ折り手段の上流側ではジグザグ折り手段に引き込まれる際に前記滞留させてある前記重畳体がジグザグ折り手段の方へ供給され、前記ジグザグ折り手段の下流側では前記重畳体の位置を規制して前記重畳体の搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動する重畳体の進行に抗する力を付与するようにしたことを特徴とする二次電池の製造方法。
  3.  請求項1または請求項2に記載する二次電池の製造方法において、
     前記セパレータまたは重畳体にエアーを吹き付けることで前記セパレータまたは重畳体へその進行に抗する力が付与されることを特徴とする二次電池の製造方法。
  4.  請求項3に記載する二次電池の製造方法において、
     前記エアーは前記セパレータまたは重畳体の斜め下方に向けて噴出されることを特徴とする二次電池の製造方法。
  5.  請求項1~請求項4の何れか1つに記載する二次電池の製造方法において、
     前記セパレータまたは重畳体の搬送のガイドでは、搬送をガイドする手段により前記セパレータまたは重畳体を取り囲むようにすることを特徴とする二次電池の製造方法。
  6.  鉛直方向にジグザグ状に配列された複数のガイド部材を有し、前記ガイド部材の一方の列と他方の列との間に吊下げローラを介して吊下げられたセパレータを、前記ガイド部材を列同士間で水平方向に交差させてジグザグ折りするジグザグ折り手段と、
     所定枚数の正極板が載置される正極板用の極板搬送部材と所定枚数の負極板が載置される負極板用の極板搬送部材をそれぞれ備え、前記正極板用と前記負極板用の極板搬送部材とを前記セパレータの各谷溝内に移動させることで各谷溝内に前記正極板と前記負極板とを交互に挿入する極板挿入手段と、
     セパレータ保持部に保持され、引き出された前記セパレータを前記吊下げローラを介して前記ジグザグ折り手段に供給するものであって、前記ジグザグ折りの際に引き込まれる長さのセパレータを予め滞留させておき、前記滞留させたセパレータが前記ジグザグ折りの際に前記ジグザグ折り手段の方へ供給されるようにするセパレータ供給手段と、
     前記ジグザグ折り工程においてジグザグ折り手段に引き込まれる際に前記セパレータの位置を規制して前記セパレータの搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動するセパレータの進行に抗する力を付与する安定化手段とを有することを特徴とする二次電池の製造装置。
  7.  鉛直方向にジグザグ状に配列された複数のガイド部材を有し、前記ガイド部材の一方の列と他方の列との間に吊下げローラを介して吊下げられた、正負の電極板の一方を2枚のセパレータで挟んだ重畳体を、前記ガイド部材を列同士間で水平方向に交差させてジグザグ折りするジグザグ折り手段と、
     所定枚数の前記電極板の他方が載置される極板搬送部材を備え、前記極板搬送部材を前記重畳体の各谷溝内に移動させることで各谷溝内に前記他方の電極板を挿入する極板挿入手段と、
     重畳体保持部に保持され、引き出された前記重畳体を前記吊下げローラを介して前記ジグザグ折り手段に供給するものであって、前記ジグザグ折りの際に引き込まれる長さの重畳体を予め滞留させておき、前記滞留させた重畳体が前記ジグザグ折りの際に前記ジグザグ折り手段の方へ供給されるようにする重畳体供給手段と、
     前記ジグザグ折り工程においてジグザグ折り手段に引き込まれる際に前記重畳体の位置を規制して前記重畳体の搬送をガイドするとともに、前記ジグザグ折りの工程においてジグザグ折り手段の方へ移動する重畳体の進行に抗する力を付与する安定化手段とを有することを特徴とする二次電池の製造装置。
  8.  請求項6または請求項7に記載する二次電池の製造装置において、
     前記安定化手段は、前記セパレータまたは重畳体にエアーを吹き付ける機能を有することを特徴とする二次電池の製造装置。
  9.  請求項8に記載する二次電池の製造装置において、
     前記安定化手段は、前記エアーを前記セパレータまたは重畳体の斜め下方に向けて噴出することを特徴とする二次電池の製造装置。
  10.  請求項6~請求項9の何れか1つに記載する二次電池の製造装置において、
     前記安定化手段は移動可能な部位を有し、前記セパレータまたは重畳体の搬送のガイドでは、前記部位を移動させることにより前記セパレータまたは重畳体を、前記部位を含む前記安定化手段の構成要素にて取り囲むようにすることを特徴とする二次電池の製造装置。
  11.  請求項10に記載する二次電池の製造装置において、
     前記安定化手段は、前記構成要素として、前記吊下げローラに吊下げられた前記セパレータまたは重畳体の一方側で前記吊下げ方向に沿って配設された板状の平板部と、内周面に前記セパレータまたは重畳体の端部が当接することにより前記セパレータまたは重畳体の幅方向の位置を規制するように、前記セパレータ側または重畳体側に突出するとともに前記セパレータまたは重畳体の移動方向に伸びる2本のガイド部材と、
     前記セパレータまたは重畳体に対して前記平板部の反対側に配設されるとともに前記平板部に向けて移動可能に形成され、前記平板部、前記2本のガイド部材とともに前記セパレータまたは重畳体が通過する横断面形状が矩形の空間を形成する前記部位とを有することを特徴とする二次電池の製造装置。
  12.  請求項11に記載する二次電池の製造装置において、
     前記部位は、前記平板部に向けて移動する際の移動量が異なる第1および第2の移動モードを有するとともに、前記第1の移動モードでは、前記平板部、前記2本のガイド部材とともに前記セパレータまたは重畳体が通過する横断面形状が矩形の空間を形成するとともに、前記ジグザグ折り手段による前記ジグザグ折り工程の終了時には前記第2の移動モードでさらに平板部側に移動し、前記平板部との間に前記セパレータまたは重畳体を挟持してクランプすることを特徴とする二次電池の製造装置。
  13.  請求項6または請求項7に記載する二次電池の製造装置において、
     前記安定化手段は、前記吊下げローラに吊下げられた前記セパレータまたは重畳体の一方側で前記吊下げ方向に沿って配設された板状の平板部と、
     前記セパレータまたは重畳体に対して前記平板部の反対側に配設されるとともに前記平板部に向けて移動可能に形成されている平板状の移動部材と、
     前記平板部または前記移動部材に基端部が固定され、前記セパレータまたは重畳体の吊下げ方向に沿い上方に伸びるとともに先端部が前記セパレータまたは重畳体に弾性的に当接し得るように形成された押圧部材とを有することを特徴とする二次電池の製造装置。
  14.  請求項6または請求項7に記載する二次電池の製造装置において、
     前記安定化手段は、
     前記セパレータまたは重畳体の吊下げ方向に沿い前記セパレータまたは重畳体の一方側で複数配設された位置規制ローラと、
     前記セパレータまたは重畳体の他方側で2個の前記位置規制ローラの間に配設され、前記セパレータまたは重畳体の他方側の面に向かって移動して当接し得るように形成した押圧ローラと、を有することを特徴とする二次電池の製造装置。
  15.  請求項6~請求項14の何れか1つに記載する二次電池の製造装置において、
     前記セパレータ供給手段または重畳体供給手段は、前記セパレータまたは重畳体の搬送方向に関し前記吊下げローラの上流側の途中を、相対的な上流側と下流側とで支持する少なくとも2個の支持ローラと、該支持ローラの間に配設されるとともに前記セパレータまたは重畳体の一方の面に当接させて垂直方向に昇降可能に配置された少なくとも1個の上流側バッファローラとを備え、前記吊下げローラを介して前記ジグザグ折り手段側に前記セパレータまたは重畳体を供給するとともに、前記ジグザグ折りの際に引き込まれるセパレータまたは重畳体の余長部を、前記吊下げローラの上流側で作製し、さらに前記上流側バッファローラは、前記セパレータまたは重畳体と当接しながら所定の上昇位置あるいは下降位置に占位させた状態のとき、前記吊下げローラを介して前記ガイド部材間に前記セパレータまたは重畳体が吊下げられるとともに、前記ガイド部材の移動によるジグザグ折りに際しては、前記上流側バッファローラが下降あるいは上昇することを特徴とする二次電池の製造装置。
  16.  請求項6~請求項15の何れか一つに記載する二次電池の製造装置において、
     前記安定化手段の下流側で、前記セパレータまたは重畳体の先端部を挟持するクランプと、前記安定化手段の下流側で、前記セパレータまたは前記重畳体が当接される下流側バッファローラおよび位置規制ローラとを組み合わせてなり、前記ジグザグ折りの際に引き込まれるセパレータまたは重畳体の余長部を、前記セパレータまたは重畳体の下流側で作製するバッファ部作製手段を有することを特徴とする二次電池の製造装置。
PCT/JP2014/061312 2014-04-22 2014-04-22 二次電池の製造方法および製造装置 WO2015162697A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/061312 WO2015162697A1 (ja) 2014-04-22 2014-04-22 二次電池の製造方法および製造装置
TW104112379A TW201611381A (zh) 2014-04-22 2015-04-17 二次電池的製造方法及製造裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061312 WO2015162697A1 (ja) 2014-04-22 2014-04-22 二次電池の製造方法および製造装置

Publications (1)

Publication Number Publication Date
WO2015162697A1 true WO2015162697A1 (ja) 2015-10-29

Family

ID=54331890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061312 WO2015162697A1 (ja) 2014-04-22 2014-04-22 二次電池の製造方法および製造装置

Country Status (2)

Country Link
TW (1) TW201611381A (ja)
WO (1) WO2015162697A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139106A1 (ja) * 2017-01-26 2018-08-02 Necエナジーデバイス株式会社 積層型電池の製造方法
CN109962278A (zh) * 2017-12-22 2019-07-02 广东精毅科技股份有限公司 一种高速叠片装置及其使用方法
CN112635809A (zh) * 2020-12-30 2021-04-09 蜂巢能源科技有限公司 一种电池极片叠片设备及电芯叠片方法
CN114824501A (zh) * 2022-06-29 2022-07-29 江苏福瑞士电池科技有限公司 一种锂电池用叠片机
JP2022552536A (ja) * 2020-05-11 2022-12-16 エルジー エナジー ソリューション リミテッド 二次電池および二次電池の製造方法
CN116072821A (zh) * 2022-11-21 2023-05-05 佛山市天劲新能源科技有限公司 一种锂电池极片辊压方法及极片辊压装置
CN118287345A (zh) * 2024-06-04 2024-07-05 新乡华锐锂电新能源股份有限公司 钠离子电池生产用隔膜涂覆装置及其涂覆方法
CN118545541A (zh) * 2024-07-26 2024-08-27 深圳市汇鼎智能制造技术有限公司 一种软包电芯制造用自切断式贴胶机及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033275A (ja) * 2010-07-28 2012-02-16 Aisin Seiki Co Ltd 電池積層体の製造方法、電池積層体の製造装置および電池積層体
WO2012144008A1 (ja) * 2011-04-18 2012-10-26 エリーパワー株式会社 二次電池の製造方法及び製造装置
WO2012144007A1 (ja) * 2011-04-18 2012-10-26 エリーパワー株式会社 二次電池の製造方法及び製造装置
JP2013157121A (ja) * 2012-01-27 2013-08-15 Nagano Automation Kk 二次電池用の電極組立体を組み立てるシステムおよび方法
WO2014061119A1 (ja) * 2012-10-17 2014-04-24 エリーパワー株式会社 二次電池の製造方法および製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033275A (ja) * 2010-07-28 2012-02-16 Aisin Seiki Co Ltd 電池積層体の製造方法、電池積層体の製造装置および電池積層体
WO2012144008A1 (ja) * 2011-04-18 2012-10-26 エリーパワー株式会社 二次電池の製造方法及び製造装置
WO2012144007A1 (ja) * 2011-04-18 2012-10-26 エリーパワー株式会社 二次電池の製造方法及び製造装置
JP2013157121A (ja) * 2012-01-27 2013-08-15 Nagano Automation Kk 二次電池用の電極組立体を組み立てるシステムおよび方法
WO2014061119A1 (ja) * 2012-10-17 2014-04-24 エリーパワー株式会社 二次電池の製造方法および製造装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139106A1 (ja) * 2017-01-26 2018-08-02 Necエナジーデバイス株式会社 積層型電池の製造方法
CN109962278A (zh) * 2017-12-22 2019-07-02 广东精毅科技股份有限公司 一种高速叠片装置及其使用方法
JP2022552536A (ja) * 2020-05-11 2022-12-16 エルジー エナジー ソリューション リミテッド 二次電池および二次電池の製造方法
JP7434689B2 (ja) 2020-05-11 2024-02-21 エルジー エナジー ソリューション リミテッド 二次電池および二次電池の製造方法
CN112635809A (zh) * 2020-12-30 2021-04-09 蜂巢能源科技有限公司 一种电池极片叠片设备及电芯叠片方法
CN114824501A (zh) * 2022-06-29 2022-07-29 江苏福瑞士电池科技有限公司 一种锂电池用叠片机
CN116072821A (zh) * 2022-11-21 2023-05-05 佛山市天劲新能源科技有限公司 一种锂电池极片辊压方法及极片辊压装置
CN116072821B (zh) * 2022-11-21 2023-10-03 佛山市天劲新能源科技有限公司 一种锂电池极片辊压方法及极片辊压装置
CN118287345A (zh) * 2024-06-04 2024-07-05 新乡华锐锂电新能源股份有限公司 钠离子电池生产用隔膜涂覆装置及其涂覆方法
CN118545541A (zh) * 2024-07-26 2024-08-27 深圳市汇鼎智能制造技术有限公司 一种软包电芯制造用自切断式贴胶机及其制造方法

Also Published As

Publication number Publication date
TW201611381A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2015162697A1 (ja) 二次電池の製造方法および製造装置
JP6007397B2 (ja) 二次電池の製造方法および製造装置
TWI555256B (zh) Apparatus and method for manufacturing an electrode body
JP5754023B2 (ja) 二次電池の製造方法及び製造装置
US10581108B2 (en) Electrode stacking device and electrode stacking method
KR101479723B1 (ko) 2차 전지용 전극 생산 시스템 및 피딩장치
US8882858B2 (en) Apparatus and method for the production of electric energy storage devices
WO2014053112A1 (de) Vorrichtung zur herstellung von elektrodenstapeln
US9853329B2 (en) Method for producing and apparatus for producing secondary battery
US11884429B2 (en) Method and machine for packaging products in wrapping sheets
WO2015162698A1 (ja) 二次電池の製造方法および製造装置
JP5720035B2 (ja) 二次電池の製造方法及び製造装置
CN114142104A (zh) 立式叠片机及电芯制造设备
CN114024017A (zh) 连续往复移动叠片机构及叠片方法
CN216597698U (zh) 立式叠片机及电芯制造设备
CN111873551B (zh) 一种穿绳机
KR20220169702A (ko) 라미네이팅 및 제트 폴딩 스택 시스템 및 라미네이팅 및 제트 폴딩 스택 방법
CN118083668A (zh) 一种硅钢片高速横剪系统出料装置及方法
CN204607242U (zh) 高速折纸机
JP2012214297A (ja) 積層体形成装置
CN217134466U (zh) 一种极板连片叠片装置
CN213167127U (zh) 一种穿绳机
JP2022524154A (ja) セルを組み立てるための方法および装置
JP6605351B2 (ja) 電極製造装置
US20090195631A1 (en) Method and apparatus for discharging electrostatic charge in multi-leaf printed products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP