WO2015162675A1 - 発電システムおよび電力変換装置 - Google Patents

発電システムおよび電力変換装置 Download PDF

Info

Publication number
WO2015162675A1
WO2015162675A1 PCT/JP2014/061204 JP2014061204W WO2015162675A1 WO 2015162675 A1 WO2015162675 A1 WO 2015162675A1 JP 2014061204 W JP2014061204 W JP 2014061204W WO 2015162675 A1 WO2015162675 A1 WO 2015162675A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
power conversion
voltage
output
Prior art date
Application number
PCT/JP2014/061204
Other languages
English (en)
French (fr)
Inventor
藤井 順二
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/061204 priority Critical patent/WO2015162675A1/ja
Publication of WO2015162675A1 publication Critical patent/WO2015162675A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the disclosed embodiment relates to a power generation system and a power conversion device.
  • a power generation system that supplies energy obtained from, for example, wind power or sunlight.
  • a power generation system includes a power conversion device that converts electric power generated by a power generation device such as a wind power generation device or a solar battery into predetermined AC power and outputs the AC power to a load (for example, a power system).
  • Such a power converter includes heat generating components such as a switching element, a capacitor, a reactor, and a wiring member, for example, a mechanism for radiating the heat generating components is provided.
  • heat generating components such as a switching element, a capacitor, a reactor, and a wiring member
  • a mechanism for radiating the heat generating components is provided.
  • a power conversion device that performs heat dissipation of a heat-generating component by a blower is known (see, for example, Patent Document 1).
  • the power conversion device provided in the conventional power generation system requires power for driving a cooling device such as a blower, there is a problem in terms of energy efficiency, for example.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a power generation system and a power conversion device that can achieve high efficiency.
  • a power generation system includes a power generation device and a power conversion device connected to the power generation device.
  • the power conversion device includes a power conversion unit, a cooling device, a snubber circuit, and an output unit.
  • the power conversion unit converts power generated by the power generation device into predetermined power.
  • the cooling device cools the power conversion unit.
  • the snubber circuit absorbs a surge voltage generated during operation of the power conversion unit.
  • the output unit outputs the electric power stored in the snubber circuit to the cooling device.
  • FIG. 1 is a diagram illustrating a configuration of a power generation system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the power conversion device according to the embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the single-phase power conversion cell unit illustrated in FIG. 2.
  • FIG. 4 is a diagram illustrating a configuration example of the output control unit illustrated in FIG. 3.
  • FIG. 5 is a flowchart illustrating an example of control processing by the output control unit illustrated in FIG. 3.
  • FIG. 6A is a schematic diagram illustrating an internal configuration of the power conversion device. 6B is a schematic cross-sectional view taken along line AA shown in FIG. 6A.
  • FIG. 7 is a schematic exploded perspective view of the single-phase power conversion cell unit shown in FIG.
  • FIG. 8 is a diagram illustrating a configuration example of the power module illustrated in FIG. 7.
  • FIG. 9 is a diagram illustrating a configuration example of an output unit according to another embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a power generation system according to an embodiment.
  • the power generation system according to the embodiment includes a power generation device 1 and a power conversion device 2 and supplies power to the power system 3.
  • the power generator 1 is, for example, a solar battery that converts sunlight into electric energy, or a wind power generator that converts wind power into electric energy.
  • the power generation device 1 is a wind power generation device
  • the power generation device 1 includes, for example, a rotor having a plurality of blades attached thereto and a rotating electric machine attached to the rotor via a shaft. Such a rotating electrical machine generates electric power according to the rotational force of the rotor and the shaft.
  • the power conversion device 2 converts the power generated by the power generation device 1 into power corresponding to the voltage of the power system 3, and outputs the converted power to the power system 3.
  • the power conversion device 2 includes a power conversion unit 10, a control unit 20, a snubber circuit 30, an output unit 40, and a cooling device 50.
  • the power conversion unit 10 is, for example, an inverter that converts DC power to AC power when the power generation device 1 outputs DC power.
  • the power conversion unit 10 is, for example, a combination of a converter that converts an AC voltage into a DC voltage and an inverter that converts a DC voltage into an AC voltage, or a matrix converter when the power generation device 1 outputs AC power. is there.
  • the control unit 20 controls the power conversion unit 10 to cause the power conversion unit 10 to convert the generated power of the power generation device 1 into power corresponding to the voltage of the power system 3.
  • the snubber circuit 30 absorbs a surge voltage generated during the operation of the power conversion unit 10.
  • the output unit 40 outputs the electric power accumulated in the snubber circuit 30 due to the surge voltage to the cooling device 50.
  • the cooling device 50 cools the inside of the power converter 2 (for example, the power converter 10 and the snubber circuit 30).
  • the power conversion device 2 absorbs and accumulates the surge voltage generated during the operation of the power conversion unit 10 by the snubber circuit 30, and outputs the accumulated power to the cooling device 50. Therefore, in the power conversion device 2, it is not necessary to separately acquire power for driving the cooling device 50 from the power generation device 1 or the power system 3, and the power generation system and the power conversion device 2 can be highly efficient.
  • the configuration of the power conversion device 2 will be described in more detail.
  • FIG. 2 is a diagram illustrating a configuration example of the power conversion device 2 according to the embodiment.
  • the power conversion device 2 shown in FIG. 2 includes terminals T R , T S , T T , terminals T U , T V , TW , a transformer 11, single-phase power conversion cell unit groups 14a to 14c, a control Part 20.
  • the power generation device 1 includes the rotating electrical machine 5.
  • Terminals T R , T S , and T T are respectively connected to the R phase, S phase, and T phase of the power system 3, and the three-phase AC voltage of the power system 3 is connected via the terminals T R , T S , and T T. It is input to the transformer 11 of the power conversion device 2. Terminals T U , T V , and T W are connected to the U phase, V phase, and W phase of the power generator 1, respectively, and the output voltage of the power conversion unit 10 generates power via the terminals T U , T V , and T W. Input to the device 1.
  • the transformer 11 is a three-phase transformer and includes a primary winding 12 and nine secondary windings 13a to 13i (hereinafter may be collectively referred to as a secondary winding 13).
  • the transformer 11 is a three-phase transformer that transforms and outputs a three-phase AC voltage input from the power system 3 to the primary winding 12 via the terminals T R , T S , and T T to the secondary winding 13. It is a vessel.
  • the transformer 11 has a core (for example, a three-legged iron core), and the primary winding 12 and the secondary winding 13 are wound around the core.
  • the phases of the secondary winding 13 corresponding to the R phase, the S phase, and the T phase are r phase, s phase, and t phase, respectively, and the r phase, s phase, and t phase voltages are input phase voltage Vr. , Vs, Vt.
  • Single-phase power conversion cell unit groups 14a to 14c (hereinafter may be collectively referred to as single-phase power conversion cell unit group 14) have one end connected to neutral point N and the other end U-phase of power generator 1. , V phase and W phase.
  • Each single-phase power conversion cell unit group 14 has three single-phase power conversion cells that convert a three-phase AC voltage into a single-phase AC voltage, and adds the output voltages of these three single-phase power conversion cells to generate power. Output to device 1.
  • the single-phase power conversion cell unit group 14a includes single-phase power conversion cell units 15a to 15c whose outputs are connected in series, and the single-phase power conversion cell unit group 14b is a single-phase power whose outputs are connected in series. Conversion cell units 15d to 15f are provided.
  • the single-phase power conversion cell unit group 14c includes single-phase power conversion cell units 15g to 15i whose outputs are connected in series.
  • the single-phase power conversion cell units 15a to 15i may be collectively referred to as the single-phase power conversion cell unit 15.
  • Each single-phase power conversion cell unit 15 has a terminal T1 (terminals Tr, Ts, Tt to be described later) and terminals T2, T3, and a three-phase AC voltage input to the terminal T1 via the secondary winding 13. Is converted into a single-phase AC voltage and output from terminals T2 and T3. *
  • the single-phase power conversion cell unit group 14a outputs a voltage obtained by adding the output voltages of the single-phase power conversion cell units 15a to 15c to the U phase of the power generator 1.
  • the single-phase power conversion cell unit group 14b outputs a voltage obtained by adding the output voltages of the single-phase power conversion cell units 15d to 15f to the V-phase of the power generator 1.
  • the single-phase power conversion cell unit group 14c outputs a voltage obtained by adding the output voltages of the single-phase power conversion cell units 15g to 15i to the W phase of the power generator 1.
  • Control unit 20 outputs a control signal to each single-phase power conversion cell unit 15.
  • the control unit 20 generates a torque command corresponding to the rotation speed Nc of the rotating electrical machine 5 included in the power generation device 1.
  • the power generator 1 includes a speed detector 6 (for example, a rotary encoder) that detects the rotational speed Nc of the rotating electrical machine 5, and the control unit 20 controls the rotating electrical machine 5 from the speed detector 6 of the power generating apparatus 1. Information on the rotational speed Nc is acquired.
  • the electric power generating apparatus 1 is a wind power generator, an anemometer is provided separately and the control part 20 can also generate
  • the control unit 20 generates a voltage command corresponding to the torque command, and generates a control signal that causes each single-phase power conversion cell unit 15 to perform power conversion based on the voltage command, the voltage phase of the power system 3, and the like. .
  • the control unit 20 outputs the generated control signal to each single-phase power conversion cell unit 15. Thereby, in each single phase power conversion cell unit 15, power conversion operation based on a control signal is performed.
  • control unit 20 outputs information related to the power generation device 1 (hereinafter referred to as power generation information) to each single-phase power conversion cell unit 15.
  • the power generation information is information indicating, for example, the rotation speed Nc of the rotating electrical machine 5 and the power generation amount Pc of the power generation device 1.
  • control unit 20 calculates a value obtained by multiplying the torque command and the rotation speed Nc of the rotating electrical machine 5 as the power generation amount Pc of the power generation device 1.
  • FIG. 3 is a diagram illustrating a configuration example of the single-phase power conversion cell unit 15.
  • the single-phase power conversion cell unit 15 includes a single-phase power conversion cell 16, a snubber circuit 31, and an output unit 41.
  • the cooling device 51 is provided for each single-phase power conversion cell unit 15.
  • the single-phase power conversion cell 16 is a component of the power converter 10 (see FIG. 1), and the snubber circuit 31 is a component of the snubber circuit 30 (see FIG. 1).
  • the output unit 41 is a component of the output unit 40 (see FIG. 1), and the cooling device 51 is a component of the cooling device 50 (see FIG. 1).
  • the single-phase power conversion cell 16 includes a switching unit 17, a filter 18, and a cell controller 19.
  • the switching unit 17 includes bidirectional switches Sw1 to Sw6 (hereinafter may be collectively referred to as bidirectional switches Sw).
  • the bidirectional switches Sw1 to Sw6 are connected through the filter 18 between the terminals Tr, Ts, Tt and the terminals T2, T3, respectively.
  • the bidirectional switch Sw has a configuration in which reverse blocking type switching elements are connected in parallel in the reverse direction.
  • the bidirectional switch Sw has a configuration in which two parallel circuits in which switching elements and diodes are connected in antiparallel are connected in series in opposite directions, or two series circuits in which switching elements and diodes are connected in series are in reverse directions. It may be configured to be connected in parallel.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • next-generation semiconductor switching element SiC or GaN are, for example, IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or next-generation semiconductor switching element SiC or GaN.
  • the filter 18 is provided between the switching unit 17 and the terminals Tr, Ts, Tt, and suppresses the influence of the high frequency component (PWM component) generated by the switching unit 17 on the power system 3.
  • the filter 18 includes three reactors L1a, L1b, and L1c and three capacitors C1a, C1b, and C1c. *
  • the cell controller 19 controls the bidirectional switches Sw1 to Sw6 of the switching unit 17 based on a control signal from the control unit 20. Accordingly, the switching unit 17 converts the three-phase AC voltage input from the terminal T1 into a single-phase AC voltage, and outputs the single-phase AC voltage from the terminals T2 and T3.
  • the snubber circuit 31 includes a rectifier 32, a rectifier 33, capacitors C2, C3, and C4, and a discharge circuit 34.
  • the rectifier 32 rectifies the surge voltage generated at the terminals T2 and T3 and stores the rectified surge voltage in the capacitors C2, C3, and C4 by switching of the bidirectional switch Sw constituting the switching unit 17.
  • the rectifier 33 rectifies the surge voltage generated at the terminals Tr, Ts, and Tt by the switching of the bidirectional switch Sw constituting the switching unit 17 and stores it in the capacitors C2, C3, and C4.
  • the discharge circuit 34 includes a resistor R1 and a switching element Sw7. When the switching element Sw7 is turned ON, the electric power (charge) accumulated in the capacitors C2 to C4 is discharged.
  • the discharge circuit 34 is controlled by the output unit 41, for example. For example, when the voltage between the terminals of the capacitor C2 becomes equal to or higher than the threshold voltage V2, the output unit 41 outputs a signal for turning on the switching element Sw7. As a result, the electric power stored in the capacitors C2 to C4 is discharged.
  • the snubber circuit 31 is not limited to the configuration shown in FIG. 3 and may have other configurations as long as it can absorb and accumulate surge.
  • three capacitors C2, C3, and C4 are connected in series.
  • four or more capacitors may be connected in series, or capacitors may be connected in parallel. Good.
  • the output unit 41 includes a voltage conversion unit 42, a voltage detection unit 43, a temperature sensor 44, and an output control unit 45.
  • the voltage conversion unit 42 is, for example, a DC-DC converter, and includes a transformer 46, a switching element 47, diodes D1 and D2, a resistor R2, and capacitors C5 and C6.
  • the voltage conversion unit 42 steps down or boosts the voltage across the capacitor C ⁇ b> 2 and outputs it to the cooling device 51 by turning on / off the switching element 47 by the PWM signal output from the output control unit 45.
  • the output unit 41 is not limited to the configuration shown in FIG.
  • the voltage conversion unit 42 may be a chopper circuit that steps down or boosts the voltage across the capacitor C2 and outputs it to the cooling device 51.
  • the output unit 41 may be configured to step down or step up the voltage between terminals of the series circuit of the capacitors C2 to C4, for example.
  • the voltage detection unit 43 detects the capacitor voltage Vc of the snubber circuit 31. In the example shown in FIG. 3, the voltage detection unit 43 detects the voltage across the capacitor C2 as the capacitor voltage Vc, but the voltage detection unit 43 uses, for example, the voltage across the series circuit of the capacitors C2 to C4 as the capacitor voltage Vc. Can also be detected.
  • the temperature sensor 44 detects the ambient temperature in the single-phase power conversion cell unit 15 and outputs it to the output unit 41.
  • the temperature detected by the temperature sensor 44 is not limited to the ambient temperature, and may be, for example, the casing temperature of the single-phase power conversion cell unit 15 or the temperature of another component.
  • the temperature in the single-phase power conversion cell unit 15 detected by the temperature sensor 44 is referred to as a cell temperature Tc.
  • the output control unit 45 operates the voltage conversion unit 42 when the capacitor voltage Vc detected by the voltage detection unit 43 is equal to or higher than the threshold voltage V1, and outputs the power accumulated in the capacitor C2 to the cooling device 51.
  • the threshold voltage V1 is, for example, from the capacitor voltage Vc detected by the voltage detection unit 43 when the input phase voltages Vr, Vs, Vt are applied to the terminals Tr, Ts, Tt and the switching unit 17 is not driven. Is also set to a high value.
  • the output control unit 45 acquires, for example, information on the cell temperature Tc detected by the temperature sensor 44 and power generation information notified from the control unit 20, and based on these information, the cooling device from the voltage conversion unit 42 The electric energy output to 51 is controlled.
  • the power generation information includes, for example, information indicating the rotation speed Nc of the rotating electrical machine 5 and information indicating the power generation amount Pc of the power generation device 1.
  • the output control unit 45 controls the output voltage from the voltage conversion unit 42 to the cooling device 51 based on the above-described information. Thereby, cooling in the single phase power conversion cell unit 15 according to cell temperature Tc and a power generation state can be performed.
  • a configuration example of the output control unit 45 will be described in detail.
  • FIG. 4 is a diagram illustrating a configuration example of the output control unit 45.
  • the output control unit 45 includes an activation control unit 60, a cell temperature input unit 61, a rotation speed input unit 62, a power generation amount input unit 63, a switching unit 64, and a voltage command generation unit 65. And a PWM signal generation unit 66.
  • the start control unit 60 operates the voltage command generation unit 65 when the capacitor voltage Vc detected by the voltage detection unit 43 is equal to or higher than the threshold voltage V1.
  • the threshold voltage V1 is, for example, a value higher than the capacitor voltage Vc when the input phase voltages Vr, Vs, Vt are applied to the terminals Tr, Ts, Tt and the switching unit 17 is not driven.
  • the cell temperature input unit 61 inputs information indicating the cell temperature Tc
  • the rotation speed input unit 62 inputs information indicating the rotation speed Nc
  • the power generation amount input unit 63 inputs information indicating the power generation amount Pc.
  • the output control unit 45 acquires information indicating the rotation speed Nc and the power generation amount Pc from the control unit 20 via the cell controller 19.
  • the switching unit 64 selects and outputs any of the information input to the cell temperature input unit 61, the rotation speed input unit 62, and the power generation amount input unit 63. Whether to select the cell temperature Tc, the rotation speed Nc, or the power generation amount Pc is performed based on, for example, a parameter set in the switching unit 64. Such parameters are input from an input unit (not shown) of the power conversion device 2 and set in the switching unit 64.
  • the voltage command generator 65 generates a voltage command V * based on information output from the switching unit 64. For example, when the cell temperature Tc is selected by the switching unit 64, the voltage command generation unit 65 generates a voltage command V * corresponding to the cell temperature Tc.
  • the voltage command generation unit 65 has information on a table or an arithmetic expression that defines the relationship between the cell temperature Tc and the voltage command V *, and determines the voltage command V * based on the table or the arithmetic expression.
  • generation part 65 produces
  • the voltage command generation unit 65 has information on a table or an arithmetic expression that defines the relationship between the rotation speed Nc and the voltage command V *, and determines the voltage command V * based on the table or the arithmetic expression.
  • the voltage command generation unit 65 when the power generation amount Pc is selected by the switching unit 64, the voltage command generation unit 65 generates a voltage command V * corresponding to the power generation amount Pc.
  • the voltage command generation unit 65 has information on a table or an arithmetic expression that defines the relationship between the power generation amount Pc and the voltage command V *, and determines the voltage command V * based on the table or the arithmetic expression.
  • the PWM signal generation unit 66 outputs a PWM (Pulse Width Modulation) signal S1 having a pulse width corresponding to the voltage command V * to the voltage conversion unit 42. Thereby, a voltage corresponding to the voltage command V * is supplied from the output unit 41 to the cooling device 51.
  • PWM Pulse Width Modulation
  • the output unit 41 increases the voltage output from the voltage conversion unit 42 to the cooling device 51 as the cell temperature Tc increases. Thereby, cooling by the cooling device 51 can be performed appropriately.
  • the output unit 41 outputs the voltage conversion unit 42 to the cooling device 51 as the rotation speed Nc or the power generation amount Pc increases. Increase the voltage to be applied. Thereby, when the energy loss in the single phase power conversion cell unit 15 becomes higher as the rotation speed Nc or the power generation amount Pc is higher, the cooling by the cooling device 51 can be appropriately performed.
  • the voltage command generation unit 65 is, for example, The voltage command V * can be generated based on two or more pieces of information among the cell temperature Tc, the rotation speed Nc, and the power generation amount Pc.
  • the voltage command generation unit 65 generates a voltage command V * based on the cell temperature Tc, the rotation speed Nc, and the power generation amount Pc. For example, the voltage command generation unit 65 determines the voltage command V * corresponding to the cell temperature Tc, the rotation speed Nc, and the power generation amount Pc, and outputs the voltage command V * having the highest voltage to the PWM signal generation unit 66.
  • voltage command generation unit 65 cell temperature Tc
  • cell temperature Tc may also be output to the PWM signal generating unit 66, respectively on the rotation speed Nc and the power generation amount Pc value obtained by averaging the corresponding voltage command V * as the voltage command V *.
  • the switching unit 64 is not necessary.
  • the power conversion device 2 illustrated in FIG. 3 includes the snubber circuit 31, the output unit 41, and the cooling device 51 corresponding to the single-phase power conversion cell 16 for each single-phase power conversion cell unit 15. And each output part 41 adjusts the output amount of the electric power from the output part 41 individually with respect to the cooling device 51 provided in the corresponding single phase power conversion cell 16, respectively. Therefore, it can cool appropriately for every single phase power conversion cell unit 15.
  • the output unit 41 may include an inverter circuit instead of the DC-DC converter. In this case, the output unit 41 can output an AC voltage from the inverter circuit to the cooling device 51.
  • the cooling device 51 is, for example, an AC blower (for example, an AC fan)
  • the output unit 41 generates a frequency command based on one or more pieces of information of the cell temperature Tc, the rotation speed Nc, and the power generation amount Pc. For example, the output unit 41 generates a frequency command that increases in frequency as the cell temperature Tc increases, and outputs an AC voltage having a frequency corresponding to the frequency command to the cooling device 51.
  • the cell controller 19 and the output control unit 45 operate based on the electric power stored in the snubber circuit 31, for example.
  • the power stored in the snubber circuit 31 for example, the power stored in one of the capacitors C3 and C4 can be used.
  • the cell controller 19 and the output control unit 45 obtain power from the power system 3 via the rectifier 33 when the switching unit 17 is not operating. On the other hand, after the operation of the switching unit 17 is started, the cell controller 19 and the output control unit 45 operate with electric power based on the surge voltage generated by the switching of the switching unit 17. Therefore, high efficiency of the power generation system and the power conversion device 2 can be achieved.
  • the cell controller 19 can activate the output control unit 45 after the switching unit 17 starts switching. Thereby, the power consumed by the output control unit 45 before the operation of the switching unit 17 can be reduced.
  • FIG. 5 is a flowchart illustrating an example of a control process performed by the output control unit 45. This control process is repeatedly executed at a predetermined cycle, for example. As shown in FIG. 5, the output control unit 45 detects the capacitor voltage Vc (step S11), and determines whether the capacitor voltage Vc is equal to or higher than the threshold voltage V1 (step S12).
  • the output control part 45 When it determines with the capacitor voltage Vc being more than the threshold voltage V1 (step S12; Yes), the output control part 45 starts the electric power supply to the cooling device 51 (step S13). Moreover, the output control part 45 adjusts the electric energy supplied to the cooling device 51 based on the cell temperature Tc, the rotational speed Nc, or the electric power generation amount Pc (step S14).
  • the output control unit 45 determines whether or not the capacitor voltage Vc is equal to or higher than the threshold voltage V2 (> V1) (step S15). When it is determined that the capacitor voltage Vc is equal to or higher than the threshold voltage V2 (step S15; Yes), the output control unit 45 discharges the capacitor voltage Vc to the resistor R1 (step S16). The output control unit 45 discharges the capacitor voltage Vc until, for example, the capacitor voltage Vc reaches a predetermined voltage V3 (> V1).
  • step S15 when it is determined that the capacitor voltage Vc is not equal to or higher than the threshold voltage V2 (step S15; No), or when the process of step S16 ends, the output control unit 45 causes the capacitor voltage Vc to be less than the threshold voltage V1. It is determined whether or not (step S17). If it determines with the capacitor voltage Vc not being less than the threshold voltage V1 (step S17; No), the output control part 45 will transfer a process to step S14.
  • step S12 When it is determined in step S12 that the capacitor voltage Vc is not equal to or higher than the threshold voltage V1 (step S12; No), or when it is determined in step S17 that the capacitor voltage Vc is less than the threshold voltage V1 (step S17). ; Yes), the process is terminated.
  • step S15 When it is determined in step S15 that the capacitor voltage Vc is the threshold voltage V2 (step S15; Yes), the output control unit 45 supplies power to the cooling device 51 instead of or in addition to discharging the resistor R1. The amount can also be increased. For example, the output control unit 45 increases the amount of power supplied to the cooling device 51 until the capacitor voltage Vc drops to the predetermined voltage V3.
  • the output control unit 45 adjusts the amount of power supplied to the cooling device 51 based on the cell temperature Tc, the rotation speed Nc, or the power generation amount Pc, but the capacitor voltage Vc is a predetermined value V4 (V1 ⁇ V4 ⁇ V2). It is also possible to adjust the amount of power supplied to the cooling device 51 so that
  • the above-described output control unit 45 includes, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output port, and various circuits.
  • the CPU of such a microcomputer realizes the above-described processing of the output control unit 45 by reading and executing a program stored in the ROM.
  • a part or all of the output control unit 45 may be configured by hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • FIG. 6A is a schematic diagram showing the internal configuration of the power conversion device 2, and shows a state in which the front panel 71 (see FIG. 6B) is removed.
  • the power conversion device 2 includes single-phase power conversion cell units 15a to 15i and a control unit 20 in a housing 70.
  • the housing 70 includes a storage area AR1 for storing the single-phase power conversion cell units 15a to 15i, a storage area AR2 for storing the control unit 20, an area AR3 for storing wiring, a cooling area AR4 in which the radiator 53 is disposed, and the like. It is divided into.
  • the transformer 11 is disposed outside the housing 70, for example, but may be disposed inside the housing 70.
  • the storage area AR1 is divided into unit storage areas of three rows and three stages, and the single-phase power conversion cell unit 15 is arranged in each unit storage area.
  • single-phase power conversion cell units 15a to 15c are arranged in the upper stage
  • single-phase power conversion cell units 15d to 15f are arranged in the middle stage
  • single-phase power conversion cell units 15g to 15i are arranged in the lower stage. Is done.
  • blowers 52a to 52c are arranged above the single-phase power conversion cell units 15a to 15c, respectively.
  • the blowers 52a to 52c are, for example, DC fans, and operate by voltages output from the output units 41 of the single-phase power conversion cell units 15a to 15c, respectively.
  • a blower is disposed as the cooling device 51, and the cooling device 51 also outputs from the output unit 41 of the single-phase power conversion cell units 15a to 15i, respectively. It operates by the voltage that is applied.
  • FIG. 6B is a schematic sectional view taken along line AA shown in FIG. 6A.
  • a duct area AR5 is provided on the back surface of the storage area AR1, and the cooling devices 51 are arranged in the duct areas AR5 on the back surface side of the single-phase power conversion cell units 15a to 15i.
  • the cooling device 51 blows air from the duct area AR5 to the single-phase power conversion cell units 15a to 15i through the air holes formed on the back surface of the storage area AR1. As a result, the single-phase power conversion cell units 15a to 15i are cooled.
  • the air that has passed through the single-phase power conversion cell units 15a to 15i is cooled in the cooling area AR4 in which the radiator 53 is disposed, and flows into the duct area AR5.
  • the cooling device 51 may be disposed in the single-phase power conversion cell unit 15.
  • the power conversion device 2 since the power conversion device 2 circulates air in the housing 70 and cools the single-phase power conversion cell units 15a to 15i, for example, the inside of the housing 70 can be sealed. Therefore, for example, the dust-proofing and waterproofing of the power conversion device 2 can be enhanced.
  • FIG. 7 is a schematic exploded perspective view of the single-phase power conversion cell unit 15.
  • the single-phase power conversion cell unit 15 has a housing 80.
  • the casing 80 houses a power module 85, a diode module 86, capacitors C2 to C4, a filter 18, a cell controller 19, an output unit 41, and the like. Further, the housing 80 accommodates wiring members such as bus bars that connect members such as the power module 85, the diode module 86, the capacitors C2 to C4, and the filter 18.
  • a lid 81 is provided on the upper part of the single-phase power conversion cell unit 15, and a vent is formed in the lid 81.
  • a slit 87 is provided on the back surface of the housing 80. The air cooled by the radiator 53 through the slit 87 flows into the single-phase power conversion cell unit 15, passes through the inside of the single-phase power conversion cell unit 15, and is discharged from the front surface or the upper surface of the housing 80. . Thereby, for example, the diode module 86, the capacitors C2 to C4, the filter 18, and the heating member such as the wiring member are cooled.
  • the diode module 86 includes diodes that constitute the rectifiers 32 and 33 of the snubber circuit 31. Rectifiers 32 and 33 are constituted by a plurality of diode modules 86 shown in FIG.
  • the power module 85 includes a bidirectional switch Sw, and the bidirectional switch Sw is cooled by water cooling.
  • FIG. 8 is a diagram illustrating a configuration example of the power module 85. As shown in FIG. 8, the power module 85 has a water cooling jacket 90, and the bidirectional switch Sw is disposed on the water cooling jacket 90.
  • the water cooling jacket 90 has a refrigerant inlet 91 and a discharge outlet 92, and the bidirectional switch Sw is cooled via the water cooling jacket 90 by the circulation of the refrigerant.
  • the bidirectional switch Sw is cooled by water cooling, and for example, the filter 18, the cell controller 19, the snubber circuit 31, and the wiring member are cooled by air cooling using the surge voltage. .
  • the upper part of the bidirectional switch Sw is cooled by air cooling using a surge voltage.
  • the cooling device 51 may be a water-cooled cooling device, for example.
  • the power conversion unit 10 can be configured from one three-phase power conversion cell.
  • the three-phase power conversion cell has, for example, nine bidirectional switches Sw, and performs direct conversion between three-phase AC and three-phase AC.
  • the power conversion unit 10 may have a configuration in which two or more three-phase power conversion cells are connected in parallel, for example.
  • the cooling device 51 similarly to the single-phase power conversion cell 16, by providing the snubber circuit 31, the output unit 41, and the cooling device 51 for each three-phase power conversion cell, the cooling device 51 is provided for each three-phase power conversion cell.
  • the output amount of electric power accumulated in the snubber circuit 31 can be individually adjusted.
  • the rectifier 32 of the snubber circuit 31 has the same configuration as the rectifier 33, for example.
  • FIG. 9 is a diagram illustrating a configuration example of an output unit according to another embodiment.
  • an output unit 41A includes a voltage detection unit 43, an output control unit 45A, a silicon dropper 48, and a switch 49.
  • the output control unit 45A turns on the switch 49 when the capacitor voltage Vc detected by the voltage detection unit 43 is equal to or higher than the threshold voltage V1. As a result, electric power is supplied from the snubber circuit 31 to the cooling device 51 via the silicon dropper 48.
  • the power supplied to the cooling device 51 depends on the magnitude of the capacitor voltage Vc.
  • the capacitor voltage Vc increases as the rotational speed Nc or the power generation amount Pc increases, cooling according to the heat generation amount of the single-phase power conversion cell 16 can be appropriately performed.
  • the silicon dropper 48 for example, a series connection circuit of one or more diodes and resistors can be provided.
  • the cooling device 51 can also be controlled by the control part 20.
  • the control unit 20 supplies power to each cooling device 51 from each output unit 41 based on the temperature in the power conversion device 2 detected by one or more temperature sensors disposed in the power conversion device 2. Is calculated.
  • the control unit 20 notifies the output unit 41 via the cell controller 19 of a control signal that specifies the calculated electric energy.
  • the output unit 41 supplies the designated amount of power to the cooling device 51.
  • control unit 20 can calculate the amount of power supplied from each output unit 41 to each cooling device 51 so that there is no variation in cooling of each single-phase power conversion cell unit 15. For example, when the power conversion device 2 has the internal structure shown in FIG. 6A and FIG. 6B, in the power conversion device 2, the cooling disposed in the lower stage with reference to the amount of power supplied to the cooling device 51 disposed in the middle stage. The amount of power supplied to the device 51 is increased, and the amount of power supplied to the cooling device 51 arranged in the upper stage is decreased.
  • each output unit 41 can detect the position of the corresponding single-phase power conversion cell unit 15 or is set as a parameter, the output amount of power to the corresponding cooling device 51 is set according to the position. It can also be adjusted. For example, each output unit 41 adjusts the amount of power supplied to the corresponding cooling device 51 depending on whether the position of the corresponding single-phase power conversion cell unit 15 is an upper stage, a middle stage, a lower stage, or the like.
  • cooling device 51 is provided for each output unit 41 of the above-described embodiment, one cooling device 51 can be provided for the plurality of output units 41.
  • a coupling unit that couples the output of the voltage conversion unit 42 is provided, and power is supplied from the coupling unit to the cooling device 51.
  • the coupling unit is configured, for example, by connecting the anode of a diode to the output of each voltage conversion unit 42 and connecting the cathodes of the diode.
  • the air circulating in the power converter 2 is cooled by the radiator 53, but the air circulating in the power converter 2 may be cooled by an air conditioner or the like.
  • capacitors C2, C3 and C4 (hereinafter referred to as snubber capacitors) are charged by the surge voltage absorbed by the rectifiers 32 and 33, but the snubber capacitors are connected to the rectifiers 32 and 33. You may provide corresponding to each. In this case, the output unit 41 may be provided for each of the rectifiers 32 and 33.

Abstract

実施形態に係る発電システムは、発電装置(1)と、発電装置(1)に接続された電力変換装置(2)と、を備える。電力変換装置(2)は、電力変換部(10)と、冷却機器(50)と、スナバ回路(30)と、出力部(40)とを備える。電力変換部(10)は、発電装置(1)の発電電力を所定の電力へ変換する。冷却機器(50)は、電力変換部(10)を冷却する。スナバ回路(30)は、電力変換部(10)の動作時に生じるサージ電圧を吸収する。出力部(40)は、スナバ回路(30)に蓄積された電力を冷却機器(50)へ出力する。

Description

発電システムおよび電力変換装置
 開示の実施形態は、発電システムおよび電力変換装置に関する。
 従来、例えば風力や太陽光などから得られるエネルギーを供給する発電システムが知られている。かかる発電システムは、風力発電装置や太陽電池などの発電装置により発電された電力を所定の交流電力へ変換して負荷(例えば、電力系統)へ出力する電力変換装置を備える。
 かかる電力変換装置は、例えば、スイッチング素子、コンデンサ、リアクトルおよび配線部材などの発熱部品を含むことから、かかる発熱部品を放熱させる機構が設けられる。例えば、発熱部品の放熱を送風機により行う電力変換装置が知られている(例えば、特許文献1参照)。
特開2008-236956号公報
 しかしながら、従来の発電システムに設けられる電力変換装置は、送風機などの冷却機器を駆動するための電力が必要となることから、例えば、エネルギー効率などの点で課題がある。このことは、発電システム以外の用途の電力変換装置においても同様である。
 実施形態の一態様は、上記に鑑みてなされたものであって、高効率化を図ることができる発電システムおよび電力変換装置を提供することを目的とする。
 実施形態の一態様に係る発電システムは、発電装置と、前記発電装置に接続された電力変換装置と、を備える。前記電力変換装置は、電力変換部と、冷却機器と、スナバ回路と、出力部とを備える。前記電力変換部は、前記発電装置の発電電力を所定の電力へ変換する。前記冷却機器は、前記電力変換部を冷却する。前記スナバ回路は、前記電力変換部の動作時に生じるサージ電圧を吸収する。前記出力部は、前記スナバ回路に蓄積された電力を前記冷却機器へ出力する。
 実施形態の一態様によれば、高効率化を図ることができる発電システムおよび電力変換装置を提供することができる。
図1は、実施形態に係る発電システムの構成を示す図である。 図2は、実施形態に係る電力変換装置の構成例を示す図である。 図3は、図2に示す単相電力変換セルユニットの構成例を示す図である。 図4は、図3に示す出力制御部の構成例を示す図である。 図5は、図3に示す出力制御部による制御処理の一例を示すフローチャートである。 図6Aは、電力変換装置の内部構成を示す模式図である。 図6Bは、図6Aに示すA-A線の断面模式図である。 図7は、図2に示す単相電力変換セルユニットの模式的な分解斜視図である。 図8は、図7に示すパワーモジュールの構成例を示す図である。 図9は、他の実施形態に係る出力部の構成例を示す図である。
 以下、添付図面を参照して、本願の開示する発電システムおよび電力変換装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
[1.発電システム]
 まず、図1を参照して実施形態に係る発電システムの構成例を説明する。図1は、実施形態に係る発電システムの構成例を示す図である。図1に示すように、実施形態に係る発電システムは、発電装置1と電力変換装置2とを備え、電力系統3へ電力を供給する。
 発電装置1は、例えば、太陽光を電気エネルギーに変換する太陽電池や、風力を電気エネルギーに変換する風力発電装置である。発電装置1が風力発電装置である場合、発電装置1は、例えば、複数のブレードが取り付けられたロータと、ロータにシャフトを介して取り付けられた回転電機とを備える。かかる回転電機は、ロータおよびシャフトの回転力に応じた電力を発生する。
 電力変換装置2は、発電装置1の発電電力を電力系統3の電圧に応じた電力へ変換し、変換後の電力を電力系統3へ出力する。かかる電力変換装置2は、電力変換部10と、制御部20と、スナバ回路30と、出力部40と、冷却機器50とを備える。
 電力変換部10は、例えば、発電装置1が直流電力を出力する場合、直流電力を交流電力へ変換するインバータである。また、電力変換部10は、例えば、発電装置1が交流電力を出力する場合、交流電圧を直流電圧へ変換するコンバータと、直流電圧を交流電圧へ変換するインバータとの組み合わせ、または、マトリクスコンバータである。
 制御部20は、電力変換部10を制御して、電力変換部10に発電装置1の発電電力を電力系統3の電圧に応じた電力へ変換させる。スナバ回路30は、電力変換部10の動作時に生じるサージ電圧を吸収する。出力部40は、サージ電圧によりスナバ回路30に蓄積された電力を冷却機器50へ出力する。これにより、冷却機器50は、電力変換装置2内(例えば、電力変換部10やスナバ回路30)を冷却する。
 このように、実施形態に係る電力変換装置2は、電力変換部10の動作時に生じるサージ電圧をスナバ回路30によって吸収して蓄積し、蓄積した電力を冷却機器50へ出力する。したがって、電力変換装置2において、冷却機器50を駆動するための電力を発電装置1や電力系統3から別途取得する必要がなく、発電システムおよび電力変換装置2の高効率化を図ることができる。以下、電力変換装置2の構成についてさらに詳細に説明する。
[2.電力変換装置2]
 図2は、実施形態に係る電力変換装置2の構成例を示す図である。図2に示す電力変換装置2は、端子T、T、Tと、端子T、T、Tと、変圧器11と、単相電力変換セルユニット群14a~14cと、制御部20とを備える。なお、以下においては、発電装置1が回転電機5を備えるものとして説明する。
 端子T、T、Tは、電力系統3のR相、S相およびT相にそれぞれ接続され、かかる端子T、T、Tを介して電力系統3の3相交流電圧が電力変換装置2の変圧器11へ入力される。端子T、T、Tは、発電装置1のU相、V相およびW相にそれぞれ接続され、かかる端子T、T、Tを介して電力変換部10の出力電圧が発電装置1へ入力される。
 変圧器11は、3相変圧器であり、1次巻線12と、9つの2次巻線13a~13i(以下、2次巻線13と総称する場合がある)とを備える。かかる変圧器11は、電力系統3から端子T、T、Tを介して1次巻線12へ入力される3相交流電圧を2次巻線13に変圧して出力する3相変圧器である。
 なお、図示しないが、変圧器11は、コア(例えば、3脚鉄心)を有し、かかるコアに1次巻線12および2次巻線13が巻装される。また、ここでは、R相、S相およびT相にそれぞれ対応する2次巻線13の相をr相、s相およびt相とし、r相、s相およびt相の電圧を入力相電圧Vr、Vs、Vtとする。
 単相電力変換セルユニット群14a~14c(以下、単相電力変換セルユニット群14と総称する場合がある)は、一端が互いに中性点Nに接続され、他端が発電装置1のU相、V相およびW相に接続される。
 各単相電力変換セルユニット群14は、3相交流電圧を単相交流電圧に変換する3つの単相電力変換セルを有し、これら3つの単相電力変換セルの出力電圧を加算して発電装置1へ出力する。
 単相電力変換セルユニット群14aは、出力が直列に接続された単相電力変換セルユニット15a~15cを有し、単相電力変換セルユニット群14bは、出力が直列に接続された単相電力変換セルユニット15d~15fを有する。また、単相電力変換セルユニット群14cは、出力が直列に接続された単相電力変換セルユニット15g~15iを有する。なお、以下において、単相電力変換セルユニット15a~15iを単相電力変換セルユニット15と総称する場合がある。
 各単相電力変換セルユニット15は、端子T1(後述する端子Tr、Ts、Tt)と端子T2、T3とを有し、2次巻線13を介して端子T1に入力される3相交流電圧を単相交流電圧へ変換して端子T2、T3から出力する。 
 例えば、単相電力変換セルユニット群14aは、単相電力変換セルユニット15a~15cの出力電圧を加算した電圧を発電装置1のU相へ出力する。また、単相電力変換セルユニット群14bは、単相電力変換セルユニット15d~15fの出力電圧を加算した電圧を発電装置1のV相へ出力する。また、単相電力変換セルユニット群14cは、単相電力変換セルユニット15g~15iの出力電圧を加算した電圧を発電装置1のW相へ出力する。
 制御部20は、各単相電力変換セルユニット15に対して、制御信号を出力する。例えば、制御部20は、発電装置1が備える回転電機5の回転速度Ncに応じたトルク指令を生成する。例えば、発電装置1は、回転電機5の回転速度Ncを検出する速度検出器6(例えば、ロータリエンコーダ)を備えており、制御部20は、発電装置1の速度検出器6から回転電機5の回転速度Ncの情報を取得する。なお、発電装置1が風力発電装置の場合、風速計を別途設け、制御部20は、かかる風速計の計測結果に基づいてトルク指令を生成することもできる。
 制御部20は、トルク指令に応じた電圧指令を生成し、かかる電圧指令や電力系統3の電圧位相などに基づいて、各単相電力変換セルユニット15に電力変換を行わせる制御信号を生成する。制御部20は、生成した制御信号を各単相電力変換セルユニット15へ出力する。これにより、各単相電力変換セルユニット15において、制御信号に基づいた電力変換動作が行われる。
 また、制御部20は、各単相電力変換セルユニット15に対して、発電装置1に関する情報(以下、発電情報と記載する)を出力する。発電情報は、例えば、回転電機5の回転速度Ncや発電装置1の発電量Pcを示す情報である。制御部20は、例えば、トルク指令と回転電機5の回転速度Ncとを乗算した値を発電装置1の発電量Pcとして演算する。
[3.単相電力変換セルユニット15]
 図3は、単相電力変換セルユニット15の構成例を示す図である。図3に示すように、単相電力変換セルユニット15は、単相電力変換セル16と、スナバ回路31と、出力部41とを備える。また、冷却機器51は、単相電力変換セルユニット15毎に設けられる。
 単相電力変換セル16は、電力変換部10(図1参照)の構成要素であり、スナバ回路31は、スナバ回路30(図1参照)の構成要素である。また、出力部41は、出力部40(図1参照)の構成要素であり、冷却機器51は、冷却機器50(図1参照)の構成要素である。
[3.1.単相電力変換セル16]
 図3に示すように、単相電力変換セル16は、スイッチング部17と、フィルタ18と、セルコントローラ19とを備える。スイッチング部17は、双方向スイッチSw1~Sw6(以下、双方向スイッチSwと総称する場合がある)を備える。かかる双方向スイッチSw1~Sw6は、フィルタ18を介して各端子Tr、Ts、Ttと各端子T2、T3との間にそれぞれ接続される。
 双方向スイッチSwは、逆阻止型のスイッチング素子を逆方向に並列接続した構成である。なお、双方向スイッチSwは、スイッチング素子とダイオードとを逆並列接続した2つの並列回路を互いに逆方向に直列接続した構成や、スイッチング素子とダイオードとを直列接続した2つの直列回路を互いに逆方向に並列接続した構成であってもよい。
 双方向スイッチSwを構成するスイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、または、次世代半導体スイッチング素子のSiC、GaNである。 
 フィルタ18は、スイッチング部17と端子Tr、Ts、Ttとの間に設けられ、スイッチング部17によって発生する高周波成分(PWM成分)の電力系統3への影響を抑制する。かかるフィルタ18は、3つのリアクトルL1a、L1b、L1cと、3つのコンデンサC1a、C1b、C1cによって構成される。 
 セルコントローラ19は、制御部20からの制御信号に基づいて、スイッチング部17の双方向スイッチSw1~Sw6を制御する。これにより、スイッチング部17は、端子T1から入力される3相交流電圧を単相交流電圧に変換し、かかる単相交流電圧を端子T2、T3から出力する。
[3.2.スナバ回路31]
 図3に示すように、スナバ回路31は、整流器32と、整流器33と、コンデンサC2、C3、C4と、放電回路34とを備える。整流器32は、スイッチング部17を構成する双方向スイッチSwのスイッチングにより、端子T2、T3に生じるサージ電圧を整流してコンデンサC2、C3、C4に蓄積する。
 また、整流器33は、スイッチング部17を構成する双方向スイッチSwのスイッチングにより、端子Tr、Ts、Ttに生じるサージ電圧を整流してコンデンサC2、C3、C4に蓄積する。
 放電回路34は、抵抗R1とスイッチング素子Sw7とを備え、スイッチング素子Sw7がONになることで、コンデンサC2~C4に蓄積された電力(電荷)を放電する。かかる放電回路34は、例えば、出力部41によって制御される。出力部41は、例えば、コンデンサC2の端子間電圧が閾値電圧V2以上の電圧となった場合、スイッチング素子Sw7をONにする信号を出力する。これにより、コンデンサC2~C4に蓄積された電力が放電される。
 なお、スナバ回路31は、図3に示す構成に限定されず、サージを吸収して蓄積することができれば、その他の構成であってもよい。例えば、図3に示す例では、3つのコンデンサC2、C3、C4を直列接続しているが、例えば、4つ以上のコンデンサを直列接続してもよく、また、コンデンサを並列に接続してもよい。
[3.3.出力部41]
 図3に示すように、出力部41は、電圧変換部42と、電圧検出部43と、温度センサ44と、出力制御部45とを備える。
 電圧変換部42は、例えば、DC-DCコンバータであり、変圧器46と、スイッチング素子47と、ダイオードD1、D2と、抵抗R2と、コンデンサC5、C6とを備える。かかる電圧変換部42は、出力制御部45から出力されるPWM信号によるスイッチング素子47のON/OFFによって、コンデンサC2の両端電圧を降圧または昇圧して冷却機器51へ出力する。
 なお、出力部41は、図3に示す構成に限定されるものではない。例えば、電圧変換部42は、コンデンサC2の両端電圧を降圧または昇圧して冷却機器51へ出力するチョッパ回路でもよい。また、出力部41は、例えば、コンデンサC2~C4の直列回路の端子間電圧を降圧または昇圧する構成であってもよい。
 電圧検出部43は、スナバ回路31のコンデンサ電圧Vcを検出する。図3に示す例では、電圧検出部43は、コンデンサC2の両端電圧をコンデンサ電圧Vcとして検出するが、電圧検出部43は、例えば、コンデンサC2~C4の直列回路の端子間電圧をコンデンサ電Vcとして検出することもできる。
 温度センサ44は、単相電力変換セルユニット15内の雰囲気温度を検出し、出力部41へ出力する。なお、温度センサ44が検出する温度は、雰囲気温度に限定されず、例えば、単相電力変換セルユニット15の筐体温度や他の部品の温度であってもよい。以下、温度センサ44によって検出された単相電力変換セルユニット15内の温度をセル温度Tcと記載する。
 出力制御部45は、電圧検出部43によって検出されたコンデンサ電圧Vcが閾値電圧V1以上である場合に、電圧変換部42を動作させ、コンデンサC2に蓄積された電力の冷却機器51への出力を開始する。閾値電圧V1は、例えば、端子Tr、Ts、Ttに入力相電圧Vr、Vs、Vtが印加され、かつ、スイッチング部17が駆動されていない場合に電圧検出部43によって検出されるコンデンサ電圧Vcよりも高い値に設定される。
 これにより、入力相電圧Vr、Vs、Vtによって冷却機器51が駆動されることを抑制でき、エネルギー効率の低下を抑制できる。また、スイッチング部17が駆動されていない場合に、冷却機器51が駆動し続けることを抑制できることから、冷却機器51の寿命低下を適切に抑制できる。
 また、出力制御部45は、例えば、温度センサ44によって検出されたセル温度Tcの情報、制御部20から通知される発電情報を取得し、これらの情報に基づいて、電圧変換部42から冷却機器51へ出力する電力量を制御する。発電情報には、例えば、回転電機5の回転速度Ncを示す情報や発電装置1の発電量Pcを示す情報などが含まれる。
 出力制御部45は、例えば、冷却機器51が直流送風機(例えば、DCファン)である場合、上述した情報に基づいて、電圧変換部42から冷却機器51への出力電圧を制御する。これにより、セル温度Tcや発電状態に応じた単相電力変換セルユニット15内の冷却を行うことができる。以下、出力制御部45の構成例について詳細に説明する。
[3.4.出力制御部45]
 図4は、出力制御部45の構成例を示す図である。図4に示すように、出力制御部45は、起動制御部60と、セル温度入力部61と、回転速度入力部62と、発電量入力部63と、切替部64と、電圧指令生成部65と、PWM信号生成部66とを備える。
 起動制御部60は、電圧検出部43によって検出されたコンデンサ電圧Vcが閾値電圧V1以上である場合に、電圧指令生成部65を動作させる。閾値電圧V1は、上述したように、例えば、端子Tr、Ts、Ttに入力相電圧Vr、Vs、Vtが印加され、かつ、スイッチング部17が駆動されていない場合のコンデンサ電圧Vcよりも高い値に設定される。
 セル温度入力部61は、セル温度Tcを示す情報を入力し、回転速度入力部62は、回転速度Ncを示す情報を入力し、発電量入力部63は、発電量Pcを示す情報を入力する。なお、出力制御部45は、制御部20からセルコントローラ19を介して、回転速度Ncや発電量Pcを示す情報を取得する。
 切替部64は、セル温度入力部61、回転速度入力部62および発電量入力部63へ入力された情報のうちいずれかを選択して出力する。セル温度Tc、回転速度Ncおよび発電量Pcのいずれを選択するかは、例えば、切替部64に設定されるパラメータに基づいて行われる。かかるパラメータは、電力変換装置2の入力部(図示せず)から入力され、切替部64に設定される。
 電圧指令生成部65は、切替部64から出力される情報に基づいて電圧指令V*を生成する。例えば、電圧指令生成部65は、切替部64によってセル温度Tcが選択された場合、セル温度Tcに応じた電圧指令V*を生成する。電圧指令生成部65は、セル温度Tcと電圧指令V*との関係を定義するテーブルまたは演算式の情報を有しており、かかるテーブルまたは演算式に基づいて電圧指令V*を決定する。
 また、電圧指令生成部65は、切替部64によって回転速度Ncが選択された場合、回転速度Ncに応じた電圧指令V*を生成する。電圧指令生成部65は、回転速度Ncと電圧指令V*との関係を定義するテーブルまたは演算式の情報を有しており、かかるテーブルまたは演算式に基づいて電圧指令V*を決定する。
 また、電圧指令生成部65は、切替部64によって発電量Pcが選択された場合、発電量Pcに応じた電圧指令V*を生成する。電圧指令生成部65は、発電量Pcと電圧指令V*との関係を定義するテーブルまたは演算式の情報を有しており、かかるテーブルまたは演算式に基づいて電圧指令V*を決定する。
 PWM信号生成部66は、電圧指令V*に応じたパルス幅のPWM(Pulse Width Modulation)信号S1を電圧変換部42へ出力する。これにより、電圧指令V*に応じた電圧が出力部41から冷却機器51へ供給される。
 例えば、セル温度Tcに応じて電圧指令V*が生成された場合、出力部41は、セル温度Tcが高くなるほど電圧変換部42から冷却機器51へ出力する電圧を高くする。これにより、冷却機器51による冷却を適切に行うことができる。
 また、例えば、回転速度Ncまたは発電量Pcに応じて電圧指令V*が生成された場合、出力部41は、回転速度Ncまたは発電量Pcが高いほど、電圧変換部42から冷却機器51へ出力する電圧を高くする。これにより、回転速度Ncまたは発電量Pcが高いほど単相電力変換セルユニット15内のエネルギー損失が高くなる場合、冷却機器51による冷却を適切に行うことができる。
 なお、図4に示す電圧指令生成部65は、セル温度Tc、回転速度Ncおよび発電量Pcのいずれか1つに基づいて、電圧指令V*を生成するが、電圧指令生成部65は、例えば、セル温度Tc、回転速度Ncおよび発電量Pcのうち2つ以上の情報に基づいて電圧指令V*を生成することもできる。
 例えば、電圧指令生成部65は、セル温度Tc、回転速度Ncおよび発電量Pcに基づいて電圧指令V*を生成する。例えば、電圧指令生成部65は、セル温度Tc、回転速度Ncおよび発電量Pcにそれぞれ対応する電圧指令V*を判定し、最も電圧が高い電圧指令V*をPWM信号生成部66へ出力する。
 また、電圧指令生成部65は、セル温度Tc、回転速度Ncおよび発電量Pcにそれぞれ対応する電圧指令V*を平均した値を電圧指令V*としてPWM信号生成部66へ出力することもできる。なお、セル温度Tc、回転速度Ncおよび発電量Pcのすべてを用いる場合には、切替部64は不要である。
 以上のように、図3に示す電力変換装置2は、単相電力変換セルユニット15毎に単相電力変換セル16に対応してスナバ回路31、出力部41および冷却機器51を有する。そして、各出力部41は、それぞれ対応する単相電力変換セル16に設けられた冷却機器51に対して出力部41からの電力の出力量を個別に調整する。そのため、単相電力変換セルユニット15毎に適切に冷却を行うことができる。
 なお、出力部41は、DC-DCコンバータに代えて、インバータ回路を備えるようにしてもよい。この場合、出力部41は、インバータ回路から冷却機器51へ交流電圧を出力することができる。冷却機器51が例えば、交流送風機(例えば、ACファン)である場合、出力部41は、セル温度Tc、回転速度Ncおよび発電量Pcの1つ以上の情報に基づいて、周波数指令を生成する。例えば、出力部41は、セル温度Tcが高くなるほど周波数が高くなる周波数指令を生成し、かかる周波数指令に応じた周波数の交流電圧を冷却機器51へ出力する。
 また、セルコントローラ19および出力制御部45は、例えば、スナバ回路31に蓄積された電力に基づいて動作する。スナバ回路31に蓄積された電力として、例えば、コンデンサC3、C4のいずれかに蓄積された電力を用いることができる。
 セルコントローラ19および出力制御部45は、スイッチング部17が動作していない場合、整流器33を介して電力系統3から電力を取得する。一方、スイッチング部17の動作が開始された後は、セルコントローラ19および出力制御部45は、スイッチング部17のスイッチングによって発生するサージ電圧に基づく電力で動作する。そのため、発電システムおよび電力変換装置2の高効率化を図ることができる。
 なお、セルコントローラ19は、スイッチング部17のスイッチングが開始された後に、出力制御部45を起動させることができる。これにより、スイッチング部17の動作前において出力制御部45によって消費される電力を低減できる。
[3.5.出力制御部45の処理フロー]
 図5は、出力制御部45による制御処理の一例を示すフローチャートであり、かかる制御処理は、例えば、所定周期で繰り返し実行される。図5に示すように、出力制御部45は、コンデンサ電圧Vcを検出し(ステップS11)、かかるコンデンサ電圧Vcが閾値電圧V1以上であるか否かを判定する(ステップS12)。
 コンデンサ電圧Vcが閾値電圧V1以上であると判定した場合(ステップS12;Yes)、出力制御部45は、冷却機器51への電力供給を開始する(ステップS13)。また、出力制御部45は、セル温度Tc、回転速度Ncまたは発電量Pcに基づいて、冷却機器51へ供給する電力量を調整する(ステップS14)。
 ステップS14の処理が終了すると、出力制御部45は、コンデンサ電圧Vcが閾値電圧V2(>V1)以上であるか否かを判定する(ステップS15)。コンデンサ電圧Vcが閾値電圧V2以上であると判定した場合(ステップS15;Yes)、出力制御部45は、コンデンサ電圧Vcを抵抗R1に放電する(ステップS16)。出力制御部45は、コンデンサ電圧Vcの放電を、例えば、コンデンサ電圧Vcが所定電圧V3(>V1)になるまで行う。
 ステップS15において、コンデンサ電圧Vcが閾値電圧V2以上ではないと判定した場合(ステップS15;No)、または、ステップS16の処理が終了した場合、出力制御部45は、コンデンサ電圧Vcが閾値電圧V1未満になったか否かを判定する(ステップS17)。コンデンサ電圧Vcが閾値電圧V1未満になっていないと判定すると(ステップS17;No)、出力制御部45は、処理をステップS14へ移行する。
 ステップS12において、コンデンサ電圧Vcが閾値電圧V1以上ではないと判定した場合(ステップS12;No)、または、ステップS17において、コンデンサ電圧Vcが閾値電圧V1未満になっていると判定した場合(ステップS17;Yes)、処理を終了する。
 なお、ステップS15において、コンデンサ電圧Vcが閾値電圧V2であると判定した場合(ステップS15;Yes)、出力制御部45は、抵抗R1の放電に代えてまたは加えて、冷却機器51への電力供給量を増加させることもできる。例えば、出力制御部45は、コンデンサ電圧Vcが所定電圧V3に低下するまで、冷却機器51への電力供給量を増加させる。
 また、出力制御部45は、セル温度Tc、回転速度Ncまたは発電量Pcに基づいて、冷却機器51へ供給する電力量を調整したが、コンデンサ電圧Vcが所定値V4(V1<V4<V2)になるように冷却機器51へ供給する電力量を調整することもできる。
 上述した出力制御部45は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。かかるマイクロコンピュータのCPUは、ROMに記憶されているプログラムを読み出して実行することにより、出力制御部45の上述した処理を実現する。なお、出力制御部45の一部または全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。
[4.電力変換装置2の構造]
 次に、図2に示す電力変換装置2の構造の一例について説明する。図6Aは、電力変換装置2の内部構成を示す模式図であり、前面パネル71(図6B参照)を取り外した状態である。
 図6Aに示すように、電力変換装置2は、筐体70内に、単相電力変換セルユニット15a~15iと制御部20とを備える。筐体70は、単相電力変換セルユニット15a~15iを収納する収納領域AR1、制御部20を収納する収納領域AR2、配線を収納する領域AR3、および、ラジエター53が配置される冷却領域AR4などに分割される。なお、変圧器11は、例えば、筐体70外に配置されるが、筐体70内に配置してもよい。
 収納領域AR1は、3列3段のユニット収納領域に区分され、各ユニット収納領域に単相電力変換セルユニット15が配置される。図6Aに示す例では、上段に単相電力変換セルユニット15a~15cが配置され、中段に単相電力変換セルユニット15d~15fが配置され、下段に単相電力変換セルユニット15g~15iが配置される。
 収納領域AR1において、単相電力変換セルユニット15a~15cの上方にはそれぞれ送風機52a~52cが配置される。かかる送風機52a~52cは、例えば、DCファンであり、単相電力変換セルユニット15a~15cの出力部41からそれぞれ出力される電圧により動作する。
 また、単相電力変換セルユニット15a~15iの背面側には、それぞれ冷却機器51として送風機が配置されており、かかる冷却機器51も単相電力変換セルユニット15a~15iの出力部41からそれぞれ出力される電圧により動作する。
 図6Bは、図6Aに示すA-A線の断面模式図である。図6Bに示すように、収納領域AR1の背面には、ダクト領域AR5が設けられており、単相電力変換セルユニット15a~15iの背面側のダクト領域AR5にそれぞれ冷却機器51が配置される。
 かかる冷却機器51により、収納領域AR1の背面に形成された通気孔を介してダクト領域AR5から単相電力変換セルユニット15a~15iへの送風が行われる。これにより、単相電力変換セルユニット15a~15iが冷却される。
 単相電力変換セルユニット15a~15iを通過した空気は、ラジエター53が配置される冷却領域AR4において冷却され、ダクト領域AR5へ流入する。なお、冷却機器51は、単相電力変換セルユニット15内に配置してもよい。
 このように、電力変換装置2は、筐体70内で空気を循環させて単相電力変換セルユニット15a~15iを冷却することから、例えば、筐体70内部を密閉することができる。そのため、例えば、電力変換装置2の防塵や防水を強化することができる。
 図7は、単相電力変換セルユニット15の模式的な分解斜視図である。図7に示すように、単相電力変換セルユニット15は、筐体80を有する。筐体80には、パワーモジュール85、ダイオードモジュール86、コンデンサC2~C4、フィルタ18、セルコントローラ19および出力部41などが収納される。また、筐体80には、パワーモジュール85、ダイオードモジュール86、コンデンサC2~C4、フィルタ18などの部材間を接続するブスバーなどの配線部材が収納される。
 単相電力変換セルユニット15の上部には、蓋体81が設けられ、かかる蓋体81には通気孔が形成される。また、筐体80の背面には、スリット87が設けられる。かかるスリット87を介してラジエター53で冷却された空気が単相電力変換セルユニット15内に流入し、単相電力変換セルユニット15の内部を通過して筐体80の前面や上面から排出される。これにより、例えば、ダイオードモジュール86、コンデンサC2~C4、フィルタ18および配線部材などの発熱部材が冷却される。
 なお、図7に示す例は、単相電力変換セルユニット15内の部材配置の一例であり、適切に発熱部材を冷却できる配置であればその他の配置であってもよい。また、ダイオードモジュール86は、スナバ回路31の各整流器32、33を構成するダイオードを備える。図7に示す複数のダイオードモジュール86によって整流器32、33が構成される。
 パワーモジュール85は、双方向スイッチSwを含み、かかる双方向スイッチSwが水冷により冷却される。図8は、パワーモジュール85の構成例を示す図である。図8に示すように、パワーモジュール85は、水冷ジャケット90を有し、水冷ジャケット90上に双方向スイッチSwが配置される。水冷ジャケット90は、冷媒の流入口91と排出口92とを有し、冷媒の循環により水冷ジャケット90を介して双方向スイッチSwが冷却される。
 このように、単相電力変換セルユニット15では、双方向スイッチSwが水冷により冷却され、サージ電圧を利用して例えばフィルタ18、セルコントローラ19、スナバ回路31および配線部材などが空冷により冷却される。また、双方向スイッチSwの上部は、サージ電圧を利用した空冷により冷却される。なお、冷却機器51として送風機を一例に挙げて説明したが、冷却機器51は例えば水冷式の冷却装置であってもよい。
[5.他の実施形態]
 上述の実施形態では、電力変換部10の一例として9つの単相電力変換セル16を直列したものを出力相毎に設けた構成を説明したが、電力変換部10はかかる構成に限定されない。例えば、電力変換部10は、1つの3相電力変換セルから構成することができる。3相電力変換セルは、例えば、9つの双方向スイッチSwを有し、3相交流-3相交流の直接変換を行う。
 また、電力変換部10は、例えば、2つ以上の3相電力変換セルを並列に接続した構成であってもよい。この場合、単相電力変換セル16と同様に、3相電力変換セル毎に、スナバ回路31、出力部41および冷却機器51を設けることで、3相電力変換セル毎に冷却機器51に対してスナバ回路31に蓄積された電力の出力量を個別に調整することができる。なお、この場合、スナバ回路31の整流器32は、例えば、整流器33と同じ構成である。
 また、上述の実施形態では、DC-DCコンバータやインバータ回路を用いて冷却機器51へ供給する電力量を調整するものであるが、かかる構成に限定されるものではない。図9は、他の実施形態に係る出力部の構成例を示す図である。
 図9に示すように、他の実施形態に係る出力部41Aは、電圧検出部43と、出力制御部45Aと、シリコンドロッパ48と、スイッチ49とを備える。出力制御部45Aは、電圧検出部43によって検出されたコンデンサ電圧Vcが閾値電圧V1以上である場合に、スイッチ49をONにする。これにより、シリコンドロッパ48を介してスナバ回路31から冷却機器51へ電力が供給される。
 この場合、冷却機器51へ供給される電力は、コンデンサ電圧Vcの大きさに依存する。例えば、回転速度Ncや発電量Pcが大きくなるほどコンデンサ電圧Vcが大きくなる場合、単相電力変換セル16の発熱量に応じた冷却を適切に行うことができる。なお、シリコンドロッパ48に代えて、例えば、1以上のダイオードと抵抗との直列接続回路を設けることもできる。
 また、上述の実施形態に係る電力変換装置2は、各冷却機器51を各出力部41によって個別に制御するものであるが、冷却機器51は制御部20によって制御することもできる。例えば、制御部20は、電力変換装置2内に配置された1以上の温度センサによって検出された電力変換装置2内の温度に基づいて、各出力部41から各冷却機器51へ供給する電力量を算出する。制御部20は、例えば、算出した電力量を指定する制御信号をセルコントローラ19経由で出力部41へ通知する。出力部41は、指定された電力量を冷却機器51へ供給する。
 例えば、制御部20は、各単相電力変換セルユニット15の冷却にばらつきがでないように、各出力部41から各冷却機器51へ供給する電力量を算出することができる。例えば、電力変換装置2が図6Aおよび図6Bに示す内部構造を有する場合、電力変換装置2において、中段に配置された冷却機器51への電力の供給量を基準として、下段に配置された冷却機器51への電力の供給量を大きくし、上段に配置された冷却機器51への電力の供給量を小さくする。
 また、各出力部41は、対応する単相電力変換セルユニット15の位置が検出できる場合やパラメータとして設定されている場合、かかる位置に応じて、対応する冷却機器51への電力の供給量を調整することもできる。例えば、各出力部41は、対応する単相電力変換セルユニット15の位置が、上段か、中段か、下段かなどによって、対応する冷却機器51への電力の供給量を調整する。
 また、上述した実施形態の出力部41毎に冷却機器51を設けたが、複数の出力部41に対して一つの冷却機器51を設けることもできる。この場合、例えば、電圧変換部42の出力を結合する結合部が設けられ、かかる結合部から冷却機器51へ電力を供給する。結合部は、例えば、各電圧変換部42の出力に、ダイオードのアノードを接続し、かかるダイオードのカソード同士を接続することによって構成する。
 また、図6Aおよび図6Bに示す例では、ラジエター53によって電力変換装置2内を循環する空気を冷却したが、エアーコンディショナーなどによって電力変換装置2内を循環する空気を冷却してもよい。
 また、図3に示す例では、整流器32、33によって吸収されたサージ電圧によりコンデンサC2、C3、C4(以下、スナバコンデンサと記載する)が充電されるが、スナバコンデンサは、整流器32、33のそれぞれに対応して設けてもよい。この場合、出力部41は、整流器32、33毎に設けてもよい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1 発電装置
 2 電力変換装置
 3 電力系統
 5 回転電機
 6 速度検出器
 10 電力変換部
 11 変圧器
 14、14a~14c 単相電力変換セルユニット群
 15、15a~15i 単相電力変換セルユニット
 16 単相電力変換セル
 17 スイッチング部
 18 フィルタ
 19 セルコントローラ
 20 制御部
 30、31 スナバ回路
 32、33 整流器
 34 放電回路
 40、41、41A 出力部
 42 電圧変換部
 43 電圧検出部
 44 温度センサ
 45、45A 出力制御部
 50、51 冷却機器
 52a~52c 送風機
 53 ラジエター
 C2~C4 コンデンサ

Claims (7)

  1.  発電装置と、
     前記発電装置に接続された電力変換装置と、を備え、
     前記電力変換装置は、
     前記発電装置の発電電力を所定の電力へ変換する電力変換部と、
     前記電力変換部を冷却する冷却機器と、
     前記電力変換部の動作時に生じるサージ電圧を吸収するスナバ回路と、
     前記スナバ回路に蓄積された電力を前記冷却機器へ出力する出力部と、
     を備えることを特徴とする発電システム。
  2.  前記冷却機器は、送風機である
     ことを特徴とする請求項1に記載の発電システム。
  3.  前記スナバ回路は、
     前記サージ電圧が入力される整流器と、前記整流器から出力される電力を蓄積するコンデンサとを含み、
     前記出力部は、
     前記コンデンサの電圧に基づいて、前記コンデンサに蓄積された電力の前記冷却機器への出力を開始する
     ことを特徴とする請求項1に記載の発電システム。
  4.  前記出力部は、
     前記電力変換装置内の温度、前記発電装置の回転速度および前記発電装置の発電量のうち少なくともいずれか一つに基づいて前記蓄積された電力の前記冷却機器への出力量を調整する
     ことを特徴とする請求項3に記載の発電システム。
  5.  前記電力変換部は、直列または並列に接続された複数の電力変換セルを備え、
     前記スナバ回路、前記出力部および前記冷却機器は、前記電力変換セル毎に設けられる
     ことを特徴とする請求項1~4のいずれか1つに記載の発電システム。
  6.  前記各出力部は、それぞれ対応する前記電力変換セルに設けられた前記冷却機器への前記蓄積された電力の出力量を個別に調整する
     ことを特徴とする請求項5に記載の発電システム。
  7.  発電装置の発電電力を所定の電力へ変換する電力変換部と、
     前記電力変換部を冷却する冷却機器と、
     前記電力変換部の動作時に生じるサージ電圧を吸収するスナバ回路と、
     前記スナバ回路に蓄積された電力を前記冷却機器へ出力する出力部と、
     を備えることを特徴とする電力変換装置。
PCT/JP2014/061204 2014-04-21 2014-04-21 発電システムおよび電力変換装置 WO2015162675A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061204 WO2015162675A1 (ja) 2014-04-21 2014-04-21 発電システムおよび電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061204 WO2015162675A1 (ja) 2014-04-21 2014-04-21 発電システムおよび電力変換装置

Publications (1)

Publication Number Publication Date
WO2015162675A1 true WO2015162675A1 (ja) 2015-10-29

Family

ID=54331870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061204 WO2015162675A1 (ja) 2014-04-21 2014-04-21 発電システムおよび電力変換装置

Country Status (1)

Country Link
WO (1) WO2015162675A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230247A (zh) * 2016-09-28 2016-12-14 东莞铭普光磁股份有限公司 一种用于开关电源的自适应吸收系统及开关电源
CN111181413A (zh) * 2018-11-13 2020-05-19 罗克韦尔自动化技术公司 电力转换系统以及用于该电力转换系统的滤波器
JP2022543920A (ja) * 2019-10-15 2022-10-14 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト スナバ構成要素を有するスイッチング回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084680A (ja) * 2000-09-08 2002-03-22 Nipron Co Ltd 無停電性二重化電源装置及び無停電性二重化電源装置におけるユニットの抜き差し構造
JP2005210891A (ja) * 2004-01-23 2005-08-04 Hewlett-Packard Development Co Lp スイッチング装置
JP2011229259A (ja) * 2010-04-19 2011-11-10 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2012231599A (ja) * 2011-04-26 2012-11-22 Yaskawa Electric Corp 直列多重電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084680A (ja) * 2000-09-08 2002-03-22 Nipron Co Ltd 無停電性二重化電源装置及び無停電性二重化電源装置におけるユニットの抜き差し構造
JP2005210891A (ja) * 2004-01-23 2005-08-04 Hewlett-Packard Development Co Lp スイッチング装置
JP2011229259A (ja) * 2010-04-19 2011-11-10 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2012231599A (ja) * 2011-04-26 2012-11-22 Yaskawa Electric Corp 直列多重電力変換装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230247A (zh) * 2016-09-28 2016-12-14 东莞铭普光磁股份有限公司 一种用于开关电源的自适应吸收系统及开关电源
CN111181413A (zh) * 2018-11-13 2020-05-19 罗克韦尔自动化技术公司 电力转换系统以及用于该电力转换系统的滤波器
EP3654511A1 (en) * 2018-11-13 2020-05-20 Rockwell Automation Technologies, Inc. Power conversion system and filter therefor
CN111181413B (zh) * 2018-11-13 2023-11-24 罗克韦尔自动化技术公司 电力转换系统以及用于该电力转换系统的滤波器
JP2022543920A (ja) * 2019-10-15 2022-10-14 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト スナバ構成要素を有するスイッチング回路
JP7230280B2 (ja) 2019-10-15 2023-02-28 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト スナバ構成要素を有するスイッチング回路
US11646653B2 (en) 2019-10-15 2023-05-09 Hitachi Energy Switzerland Ag Switching circuit with snubber components

Similar Documents

Publication Publication Date Title
EP2915231B1 (en) System and method for over-current protection
EP2463996B1 (en) AC-to-AC converter and method for converting a first frequency AC-voltage to a second frequency AC-voltage
JP5109528B2 (ja) 電力変換ユニット
US9571022B2 (en) Electrical generator with integrated hybrid rectification system comprising active and passive rectifiers connected in series
EP2849332B1 (en) Multilevel inverter
JP2009033859A (ja) 電圧変換装置
US9762138B2 (en) Power conversion device
WO2015162675A1 (ja) 発電システムおよび電力変換装置
JP2014187783A (ja) 電気自動車用の電力変換装置
WO2011138827A1 (ja) 電源制御システム
JP2009278794A (ja) 電力変換装置
JP6940370B2 (ja) 電力変換装置及びランキンサイクルシステム
KR101449513B1 (ko) 전력 반환 기능을 갖는 모터 구동장치 및 그의 구동방법
JP6501942B2 (ja) 電力変換装置、設備機器、及び設備機器システム
JP6146316B2 (ja) 空気調和機
JP2011188672A (ja) インバータの冷却装置
Buchert et al. Comparison of three phase rectifier topologies in small wind turbines
JP2009207251A (ja) 負荷駆動システム
CN110771031B (zh) 晶闸管起动装置
US20200403484A1 (en) Power supply apparatus for submodule controller of mmc
JP6921727B2 (ja) 電力変換装置及びランキンサイクルシステム
JP2019146374A (ja) 電力変換装置
KR20150007707A (ko) 모터 구동 장치 및 그 제어 방법
JP5348484B2 (ja) 負荷駆動システム
PT2343796E (pt) Motor ec

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP