WO2015160194A1 - 수분산성 및 안정성이 우수한 전이금속 입자가 로딩된 고분자 캡슐 및 이의 제조방법 - Google Patents

수분산성 및 안정성이 우수한 전이금속 입자가 로딩된 고분자 캡슐 및 이의 제조방법 Download PDF

Info

Publication number
WO2015160194A1
WO2015160194A1 PCT/KR2015/003821 KR2015003821W WO2015160194A1 WO 2015160194 A1 WO2015160194 A1 WO 2015160194A1 KR 2015003821 W KR2015003821 W KR 2015003821W WO 2015160194 A1 WO2015160194 A1 WO 2015160194A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
polymer capsule
loaded
formula
metal particles
Prior art date
Application number
PCT/KR2015/003821
Other languages
English (en)
French (fr)
Inventor
김기문
윤경원
자히드 하산
이지영
김지홍
김남훈
백강균
황일하
Original Assignee
기초과학연구원
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150053065A external-priority patent/KR101749732B1/ko
Application filed by 기초과학연구원, 포항공과대학교 산학협력단 filed Critical 기초과학연구원
Priority to US15/303,710 priority Critical patent/US9707548B2/en
Publication of WO2015160194A1 publication Critical patent/WO2015160194A1/ko
Priority to US15/586,068 priority patent/US10543477B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification

Definitions

  • the present invention relates to a polymer capsule loaded with transition metal particles and a method for manufacturing the same.
  • a simple two-step process provides extremely fine transition metal particles to be uniformly and homogeneously loaded in a chemically bonded polymer. It is about the capsule and its manufacturing method.
  • the properties of these metal nanoparticles are greatly influenced by their size, surface, and support.
  • As the support on which the metal nanoparticles are loaded polymers, dendrimers, silica, and metal oxides are used.
  • metal nanoparticles are loaded on the support.
  • the problems of low surface activity, low stability, low dispersibility, and continuous deactivation / leaching of catalysts are a major problem.
  • metal catalysts loaded on mesoporous silica are very stable and rapidly react with catalysts.
  • the present invention provides a polymer capsule loaded with transition metal particles loaded with extremely fine crystalline transition metal nanoparticles homogeneously, with excellent stability and excellent water dispersibility.
  • a polymer capsule loaded with transition metal particles according to an embodiment of the present invention is obtained by co-polymerizing a compound of Formula 1 and a compound of Formula 2 below, and the surface is modified to provide a positive zeta potential in water dispersion.
  • the manufacturing method comprises the steps of: a) preparing a polymer capsule by co-polymerizing the compound of Formula 1 and the compound of Formula 2; b) surface modifying the polymer capsule to produce a surface-modified polymer capsule having a positive zeta potential in water dispersion; and c) water-soluble transfer to the aqueous dispersion of the surface-modified polymer capsule obtained in step b). And sequentially introducing the metal precursor and the reducing agent.
  • X is - ⁇ , -S or NH
  • A, and A 2 are each independently -OR.
  • a (C2-C20) alkynyl group, B, and B 2 are each independently substituted or unsubstituted
  • (C1-C10) is an alkylene group, and ⁇ is an integer of 4 to 20.
  • is a substituted or unsubstituted (C1-C20) alkylene group, j and k are each independently an integer of 1 to 3.
  • It can be dispersible and can have high catalytic activity and recyclability when used as a catalyst in water.
  • FIG. 1 shows particle size distribution of surface modified polymer capsules (FIG. 1 (a)), scanning electron microscopy (FIG. 1 (b) and (c)), and transmission electron microscopes (FIG. 1 (d) and (e) ) Is a view showing observation pictures,
  • FIG. 2 shows particle distribution using a surface scattering polymer capsule (2 in FIG. 2) and a dynamic scattering device (DLS-7000, Otsuka electronics) loaded with Pd nanoparticles (3 in FIG. 2). It is a city limit drawing,
  • FIG. 3 is a scanning electron microscope (Fig. 3 observe a Pd-loaded polymeric nanoparticles capsule (a) and (d)), uranyl acetate stained transmission electron microscope (Figs. 3 (b) and (e)) and high magnification transmission electron microscope (Figs. 3 (c) and (f)).
  • FIG. 4 shows X-ray photoelectron spectroscopy of surface modified polymer capsules (FIGS. 4 (a) to (c)) and polymer capsules loaded with Pd nanoparticles (FIGS. 4 (d) to (f)). Is a diagram showing the measurement results.
  • FIG. 5 shows STEM (scanning TEM) images of polymer capsules loaded with Pd nanoparticles.
  • FIG. 7 is a diagram showing high magnification electron micrographs of Pd nanoparticles loaded with polymer capsules and diameter measurements of loaded Pd nanoparticles.
  • FIG 8 shows polymer capsules loaded with manufactured Au nanoparticles (FIGS. 8A and 8C) and Pt.
  • Figure 2 is a diagram showing the measurement of the diameter of the high-transmittance electron micrograph and loaded transition metal nanoparticles of the nanoparticle-loaded polymer capsule (Fig. 8 (d) and (d)),
  • FIG. 9 is a diagram showing a measurement of conversion rate according to reaction time of aryl iodide by using a Pd-loaded polymer capsule prepared as a catalyst.
  • a polymer capsule loaded with transition metal particles according to an embodiment of the present invention is obtained by co-polymerizing a compound of Formula 1 and a compound of Formula 2 below, and having a positive zeta potential in a surface-dispersed state of water dispersion.
  • the polymer capsule loaded with such transition metal particles can have excellent stability in the water dispersion state, and have high catalytic activity and recyclability when used as a catalyst in water.
  • the compound of Formula 1 according to one embodiment of the present invention has the structure It may be a Cucurbituril derivative.
  • X is -0, -S or -NH
  • X may be _ 0
  • a and A 2 are each
  • X is a substituted or unsubstituted (C1-C20) alkylene group
  • j and k are each independently 1 to 3 integers.
  • Z is a substituted or unsubstituted (C6-C20) alkylene group
  • j and k are each independently 1 to 3 integers.
  • the compound of Chemical Formula 2 is a specific example, 1,6-hexanedithiol (1,6-hexanedithiol), 1,8-octandithiol (1,8-octanedithiol),
  • Compounds such as trimethylolpropane tris (3-mercaptopropionate) may be used, but are not limited to these.
  • the encapsulation surface can be modified to have a positive zeta potential in the water dispersion state.
  • the surface modified polymer capsule in the water dispersion state, ie, the medium can have a zeta potential of 60 to 90 mV.
  • This amount of potential, preferably 60 to 90 mV, of zeta potential improves the dispersion stability of polymer capsules when nucleation and growth of the transition metal nanoparticles occurs on the surface of the polymer capsule, resulting in a uniform transition metal on the surface of the polymer capsule. Nanoparticles can be formed.
  • the surface-modified polymer capsule may be formed with a sulfonium group having a positive charge.
  • Sulfur of the sulfonium group may be spontaneously and strongly combined with a transition metal, that is, a polymer capsule with a sulfonium group formed on the surface thereof.
  • the silver sulfonium group can provide a nucleus growth source for transition metals, allowing extremely fine transition metal particles having an average diameter of 1.5 to 3.5 nm to be uniformly loaded into homogeneous polymer capsules.
  • the transition metal chemically combines with the sulfur of the sulfonium group, the transition metal particles can be strongly and stably attached to the polymer capsule.
  • the polymer capsule loaded with transition metal particles may be loaded with 0.1 to 12 parts by weight of the particle transition metal with respect to 100 parts by weight of the polymer capsule, and more preferably 1 to 10 parts by weight of the particle transition metal.
  • extremely fine transition metal particles are loaded at the above ratios on the surface of the polymer capsule, they can have high catalytic activity and recyclability when used as a catalyst in water.
  • the transition metal particles are not particularly limited, but may be one or more selected from Au, Ag, Pd, and Pt.
  • Such a method for preparing a polymer capsule loaded with transition metal particles includes the steps of: a) preparing a polymer capsule by co-polymerizing a compound of Formula 1 and a compound of Formula 2; b) surface modifying the polymer capsule to produce a polymer capsule having a positive zeta potential in the water dispersion state; and c) a water-soluble transition metal precursor and a water-soluble transition metal precursor in the water dispersion of the surface-modified polymer capsule obtained in step b). Sequentially introducing a reducing agent.
  • the compound of Chemical Formula 1 may be a Cucurbituril derivative having a structure as follows.
  • X is -0, -S or -NH
  • X is _ 0 days, ⁇ , ⁇ and 2, respectively
  • a substance which forms a polymer capsule by co-polymerization may be an aliphatic compound having two or more thiol groups.
  • X is a substituted or unsubstituted (C1-C20) alkylene group
  • j and k are each independently 1 to 3 integers.
  • Z is a substituted or unsubstituted (C6-C20) alkylene group and J and k are each independently 1 to 3 integers.
  • the compound of Formula 2 is a specific example, 1,6-hexanedithiol (1,6-hexanedithiol), 1,8-octanedithiol (1,8-octanedvicol),
  • Trimethylolpropane tris (3-mercaptopropionate) Compounds may be used, but are not limited to these.
  • one species selected from the group consisting of oxygen (0), sulfur (S), nitrogen (N), halogen (F, CI, Br or I), hydroxyl group, ketone group and ester group It can mean that it is replaced by the above substituent.
  • step a) comprises the steps of dissolving the compound of Formula 1 and the compound of Formula 2 in an organic solvent; copolymerizing the compound of Formula 1 and the compound of Formula 2 by irradiation with light to produce a high molecular capsule; And removing the residue using dialysisol.
  • the organic solvent used in step a) may be used as long as the compound of Formula 1 and the compound of Formula 2 are dissolved. Specific examples thereof include chloroform, methyl alcohol, ethyl alcohol, dimethyl sulfoxide,
  • the light irradiation can be ultraviolet, and specifically, the compound of formula 1 and compound 2 can be co-polymerized by applying ultraviolet rays in the range of 256 to 300 nm for 5 to 8 hours.
  • a radical initiator can be added to the dissolved solution of the compound of Formula 1 and the compound of Formula 2 before the ultraviolet ray is applied, and the radical initiator can be further promoted by the radical initiator.
  • Lada cal initiator from the photopolymerization reaction.
  • at least one selected from the group consisting of A1BN, K 2 S 2 0 8 , (NH 4 ) 2 S 2 0 8 and benzoyl peroxide can be selected. It is not limited.
  • the compound of Chemical Formula 2 may be in excess compared to the compound of Chemical Formula 1.
  • the molar ratio of the compound of Chemical Formula 1: compound of Chemical Formula 2 may be 1:40 to 60, but Compounds of formula 1 and compounds of formula 2 are polymerized by thiol-encopolymerization reaction as described above to produce polymer capsules, and the compound of formula 1 is based on 40 to 60 moles.
  • the compound of Formula 1 and the compound of Formula 2 are dissolved in an organic solvent, and one mole of the compound of Formula 1 is 40 to 40. After dissolving in an organic solvent to 60 moles, light can be irradiated.
  • the compound of Formula 1 By injecting a very large amount of the compound of Formula 1 to the compound of Formula 1, it is possible to form protrusions of disulfide loops on the surface of the co-encapsulation capsule, and such disulfide loops strongly form transition metal nanoparticles. It can act as a source of bindable dithiols. Preferably, it can be irradiated with an organic solvent such that 45 to 55 moles of the compound of Formula 2 is used based on 1 mole of the compound of Formula 1, and the range of light may be irradiated. It is a range that prevents the enzymatic polymerization reaction from occurring and at the same time, the activity of transition metals or nanoparticles is reduced by excessive disulfide loops.
  • a) the total amount of polymer capsules produced by the polymerization of a compound according to Chemical Formula 1 and a compound according to Chemical Formula 2 is used as a raw material for surface modification, and the total amount of surface modified polymer capsules is reduced. It can be dispersed and made into surface modified polymer capsules and water dispersions.
  • the polymer capsule formed by co-polymerization of the compound of Formula 1 and the compound of Formula 2 may be used as a carrier on which transition metal nanoparticles are loaded.
  • step b) the positive zeta potential is increased in the state of water dispersion, i.e.
  • Surface modification can be carried out using a surface modifier that allows the surface of the polymer capsule to be produced to have a positive charge.
  • the polymer capsule can be carried out with a zeta potential of 60 to 90 mV while the medium is in water.
  • This amount of potential preferably 60 to 90mV zeta potential, is
  • transition metal nanoparticles nucleate and grow on the surface of the polymer capsule
  • the dispersion stability of the polymer capsule can be improved, so that the transition metal nanoparticles can be uniformly formed on the surface of the polymer capsule.
  • the positive potential, preferably 60 to 90i, of the zeta potential not only improves the dispersion stability described above, but also provides stable and uniform material supply to the nucleation and growth of molecular metals by reducing agents (transition metal sources)
  • Alkali metal-transition metal halides are preferred, which is water soluble.
  • transition metal precursors can be dissociated from the water phase into alkali metal cations and anions of transition metal halides.
  • transition metals introduced into polymer capsule water dispersions may exist as anions of transition metal halides before being reduced by reducing agents. If the surface of the polymer capsule is modified to have a positive potential, preferably 60 to 90 mV, the electrostatic force between the polymer capsule with positive charge and the transition metal halide with negative charge, The transition metal halide anion can be uniformly wrapped in the form of a membrane and a stable supply of transition metals from the water phase to the capsule surface can be achieved while the nucleation and growth of the transition metal occurs on the polymer capsule surface by the reducing agent.
  • alkyl halides i.e., to modify the co-encapsulated capsules obtained in step a) with alkyl halides as surface modifiers.
  • Alkyl halides are thioethers present in the copolymerization capsules obtained in step a).
  • the sulfonium group can form positively charged sulfonium groups on the surface of the co-capsules, and the sulfur of the sulfonium group can be spontaneously and strongly combined with transition metals.
  • Copolymer capsules surface-modified to form phonium groups can provide nucleation sites for transition metals by sulfonium groups, allowing extremely fine transition metal particles with an average diameter of 1.5 to 3.5 nm to be uniformly loaded into the copolymer capsules with uniform size.
  • the transition metal of the transition metal particles chemically combines with the sulfur of the sulfonium group, the transition metal particles may be strongly and stably attached to the copolymerization capsule.
  • Alkyl halides may be, for example, alkyl halides of C1 to C6.
  • the thioether unit can be optionally alkylated and have a positive charge on the surface of the polymer capsule.
  • the alkyl halide is alkyl iodide, so that it can improve its water resistance and its ability to bind with transition metals.
  • Alkyl haloalkyl is also preferably C1 to C6, preferably C1 to C4, better C1 to C2, Can be methyl, because the longer the alkyl is, the less affinity for the water is, the risk is that the modified polymer capsules will lose their water dispersibility and stability.
  • step b) is a step in which the polymer capsules obtained in step a) and b) are injected with a surface modifier and dispersed in an alcohol dispersion; b2) the number of surface-modified polymer capsules is purified through a tablet using a dialysis alcohol.
  • Obtaining a dispersion may comprise, for example, lower alcohols of C1 to C4, and politics may be carried out for 0.5 to 2 days.
  • the surface modifier may be introduced in a very excess amount based on the total moles of the compound according to formula 1, ie based on the total moles of the compound according to formula 1 used in step a), specifically 400
  • C1 to C6 halogenated alkyl preferably C1 to C6 alkyl iodide, 'most preferably methyl iodide (CHjI) as a surface modifier
  • the thioether unit on the surface of the polymer capsule can be selectively and partially alkylated.
  • a water-soluble transition metal precursor and a reducing agent are sequentially introduced into the aqueous dispersion of the surface-modified polymer capsule obtained in step b), thereby preparing a polymer capsule loaded with transition metal nanoparticles.
  • the water-soluble transition metal precursor injected into the aqueous dispersion of the surface-modified polymer capsule is preferably a precursor containing a transition metal allium, an anion and a transition of silver and anion, which are produced by dissociating the transition metal precursor into water. Not only can a smooth supply of material be achieved, but also the transition metal nanocapsule can selectively form nanoparticles of transition metals.
  • the water-soluble transition metal precursor is preferably an alkali metal-transition metal halide.
  • Alkali metals of alkali metal-transition metal halides may be selected from one or more of sodium, potassium and lithium.
  • Alkali metal-transition metal halides may be selected from chlorides, iodides, bromide and fluorides.
  • the transition metal of the alkali metal-transition metal halide may be the transition metal to be loaded into the co-polymerization capsule, and in particular, may be one or more selected from Au, Ag, Pd and Pt.
  • the average amount of transition metal nanoparticles loaded and bonded to the polymer capsule can be controlled by the dose of the water-soluble transition metal precursor introduced into the water dispersion of the surface-modified polymer capsule, wherein the excessively water-soluble transition metal precursor is aqueous dispersion.
  • the water-soluble transition metal precursors introduced into the water dispersion of the surface modified polymer capsules may be formed. Is preferably 1 to 4 times the molar amount based on the total moles of the compound according to Formula 1 in step a).
  • alkyl halides preferably alkyl iodides
  • the surface of the polymer capsule is modified to have a positive zeta potential, and sulfonium groups are formed on the surface to provide nucleophilic growth of the transition metal, and at the same time, water-soluble to meet the molar ratios described above.
  • the reducing agent introduced into the aqueous dispersion of the surface-modified polymer capsule is a powerful reducing agent capable of rapidly reducing the water-soluble transition metal precursor without affecting the polymer capsule. If the reducing power is strong, sulfonium groups are used as nucleus growth sources. It is recommended that the reducing agent be NaB3 ⁇ 4, NaOH or a combination of these, in order to provide a strong reduction force without damaging the polymer capsule, since extremely fine transition metal particles can be formed homogeneously.
  • the reducing agent is sufficient to sufficiently reduce the introduced water-soluble transition metal precursor. Specific examples thereof include 1 to 1 mole based on 1 mole of the water-soluble transition metal precursor. 20 moles of reducing agent, preferably 1 to 20 moles of NaB3 ⁇ 4, NaOH or a combination thereof can be added.
  • the reducing agent is a water-soluble transition metal precursor, preferably
  • a water-soluble transition metal precursor which is an alkali metal-transition metal halide, is soluble and preferably introduced after an ion layer of transition metal halide anion is formed in the surface area of the polymer capsule which attracts positive charges, which is a non-limiting and specific example.
  • the reducing agent can be introduced at a time of 1 to 8 hours. After the reducing agent is added, the phase can be incubated for 3 to 8 hours, and then the polymer capsules loaded with metal particles by dialysis are used. Protocols can be made.
  • Allyloxy cucurbit [6] uril (compound of formula 3) was added to and dissolved in 10.4 mg (5.0 [miol) methanol (10) and dissolved. 10 After nitrogen purging, After 256 nm and 300 nm of ultraviolet rays were applied for a period of time, residues were removed through dialysis (Thermo snakeskin pleated dialysis tubeing, MWCO: 10,000) to prepare methanol-dispersed polymer capsules.
  • zeta potential Zetasizer Nano ZS instrument, Malvern
  • HM aqueous dispersion
  • the Zetasizer Nano ZS instrument (Malvern) was measured and found to have a zeta potential of 72.9 sul lO.OmV.
  • the thioether on the surface of the polymer capsule was converted to sulfonium groups by CHjI through elemental analysis and zeta potential. You can see that.
  • 1 is a particle size distribution of a surface-modified polymer capsule, a scanning electron microscope and
  • 1 (a) shows a polymer capsule synthesized by photopolymerization (1 in FIG. 1 (a)) and a surface-modified polymer capsule (2 in FIG. 1 (a)).
  • the particle distribution is measured using a dynamic scattering device (DLS-7000, Otsuka electronics), and it can be seen that the surface-modified polymer capsules have a stable dispersion characteristic even after one month.
  • FIGS. 1 (b) and (c) are scanning electron micrographs of surface-modified polymer capsules
  • FIGS. 1 (d) and 1 (e) are transmission electron micrographs of surface-modified polymer capsules.
  • the aqueous solution of K 2 PdC was added to the aqueous dispersion, and the zeta potential of the water-dispersed polymer capsule was measured before adding the reducing agent.
  • KAuC of 0.25 ⁇ 1 is added to (Allyloxy cooker bit 6-mol mole number 0.25 ⁇ ⁇ ⁇ 1) KAuC aqueous solution was added thereto, and the mixture was allowed to stand for 3 hours at room temperature. Then, an aqueous solution of NaOH was added to the aqueous dispersion so that 4 ⁇ of NaOH was added thereto, and the mixture was placed for 5 hours at room temperature, and then dialyzed to obtain Au nanoparticle loaded polymer Capsules were prepared.
  • Aqueous solution of K 2 PtCl 4 was added to 0.5 (Allyloxy Cooker Bit 6 0.25 mole number 0.25 (xmol)) to inject 0.5 ⁇ of K 2 PtCl 4 , followed by standing for 3 hours at room temperature. It was added to the aqueous dispersion, and again settled for 5 hours at room temperature, and dialyzed to prepare a polymer capsulol loaded with Pt nanoparticles.
  • FIG. 2 shows particle distribution using surface modified polymer capsules (2 in FIG. 2) and dynamic scattering apparatus (DLS-7000, Otsuka electronics) loaded with Pd nanoparticles (3 in FIG. 2). As shown, it can be seen that a polymer capsule having an average diameter of 130 nm is formed after loading of Pd nanoparticles.
  • DLS-7000 dynamic scattering apparatus
  • FIG. 3 is a scanning electron microscope (Figs. 3 (a) and (d)) observed with a polymer capsulol loaded with Pd nanoparticles, uranil acetate dye transmission electron microscope (Fig. 3 (b) and (e) And high magnification transmission electron microscope (FIG. 3 (c) and (f)).
  • the polymer capsule loaded with the transition metal nanoparticles maintains the spherical capsule shape, and that the extremely fine and uniform Pd nanoparticles are loaded on the surface of the polymer capsule uniformly and uniformly.
  • the size of Pd nanoparticles was extremely uniform size of 1.9 ⁇ 0.2nra, and the result of inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis, and the injected K 2 PdCl It was confirmed that 81% of Pd was loaded into Pd nanoparticles.
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • FIG. 4 shows a surface modified polymer capsule (FIG. 4 (a) to (c)) and Pd nanoparticles loaded therein.
  • X-ray photoelectron spectroscopy (XPS) measurement results of the polymer capsules (Figs. 4 (d) to (f)) are shown.
  • the XPS results of Fig. 4 show that the Pd nanoparticles were loaded into the polymer capsule. Furthermore, in the case of polymer capsules loaded with Pd nanoparticles, oxygen (Is) peaks shift most wavelengths, and new sulfur (2p) peaks of 162.8 eV can be seen. It acts, and it can be seen that Pd-S bond is formed.
  • FIG. 5 illustrates polymer capsules loaded with Pd nanoparticles, scanning TEM (STEM) images, and FFT (fast Fourier transform) patterns of Pd nanoparticles.
  • STEM scanning TEM
  • FFT fast Fourier transform
  • FIG. 7 is a diagram showing the measurement of high-permeability electron micrographs and diameters of Pd nanoparticles loaded with polymer capsules loaded with Pd nanoparticles, in which diameters of 200 Pd nanoparticles are measured.
  • 7 (a) and 7 (d) show, in the embodiment, 0.5
  • Pd nanoparticles had a size range of 1.9 ⁇ 02 TM when K 2 PdCl 4 of 0.75 ⁇ was injected. It was confirmed that P 2 nanoparticles had a size range of 3.1 ⁇ 0.3 nm when K 2 PdCl 4 of ⁇ . ⁇ was introduced. However, when K 2 PdCl 4 of 2.0 ⁇ 1 or more is injected, Pd nanoparticles It was confirmed that the polymer capsules were packed together to form entangled pools.
  • Pd is loaded by the amount of water-soluble transition metal precursor.
  • the size of the nanoparticles can be controlled and, based on the total moles of the compound according to Formula 1 used in the manufacture of the polymer capsule, when 1 to 4 times the water-soluble transition metal precursor is introduced, they are separated from each other. It can be seen that individual polymer capsules loaded with Pd nanoparticles can be prepared.
  • FIG 8 shows polymer capsules loaded with manufactured Au nanoparticles (FIGS. 8 (a) and (c)) and Pt.
  • the conversion rate of iodide was GC-MS.
  • Table 1 in Table 1 indicates the results of using the prepared Pd loaded polymer capsulol catalyst, Pd C is a Pd / C catalyst purchased from Aldrich, Pd / C loaded with 10% by weight Pd carbon It is a catalyst.
  • Figure 9 shows the preparation of aryl iodide by the catalyst prepared Pd loaded polymer capsules
  • the conversion rate is about 100% in about 90 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

본 발명은 우수한 수분산성 및 안정성을 갖는 전이금속 입자가 로딩된 고분자 캡슐 및 이의 제조방법에 관한 것으로, 상세하게, 본 발명에 따른 전이금속 입자가 로딩된 고분자 캡슐은 표면 개질되어 수분산 상태에서 양의 제타 전위를 갖는 표면 개질된 고분자 캡슐; 및 표면 개질된 고분자 캡슐의 표면에 로딩된 전이금속 입자;를 포함한다. 또한,본 발명에 따른 제조방법은 a) 고분자 캡슐을 제조하는 단계; b)고분자 캡슐을 표면 개질하여, 수분산 상태에서 양의 제타 전위를 갖는 고분자 캡슐을 제조하는 단계;및 c) b)단계에서 수득되는 표면 개질된 고분자 캡슐의 수분산액에 수용성 전이금속 전구체 및 환원제를 순차적으로 투입하는 단계;를 포함한다.

Description

명세서
발명의명칭:수분산성및안정성이우수한전이금속입자가 로딩된고분자캠술및이의제조방법 기술분야
[1] 본발명은전이금속입자가로딩된고분자캡슐및이의제조방법에관한 것으로,상세하게 , 2단계의간단한공정올통해 ,극히미세한전이금속입자가 균일하고균질하게로딩되어화학결합된고분자캡슐및이의제조방법에관한 것이다.
배경기술
[2] 금속나노입자는부피대비매우넓은표면적,양자구속효과,표면플라즈몬 효과등의특징적성질에의해다양한분야에서매우많은주목을.받고있다.
[3] 이러한금속나노입자의성질은그크기와표면,지지체에의해큰영향을받게 되는데,금속나노입자가로딩되는지지체로추로,폴리머나덴드리머,실리카, 금속산화물들이사용되고있다.
[4] 특히,금속나노입자가지지체에로딩된구조는촉매분야에서매우활발히 연구되고있는데,촉매의낮은표면활성,낮은안정성 ,낮은분산성,지속적인 비활성화 /침출등이큰문제로대두되고있다.일예로,메조포러스실리카에 로딩된금속촉매의경우,매우블안정하며촉매반웅시급격히
비활성화 /침출되는것으로알려져있다 (R. B. Bedford, U. G. Singh, R. I. Walton, R. T. Williams, S. A. Davis, Chem. Mater. 2005).
[5] 또한,물과같은환경친화적인용매에서촉매활성을가지면서안정한금속 나노입자의연구는녹색화학분야에서환경적,경제적,안전적이유로인해서 아주중요하게고려되고있다.하지만,나노입자가지지체에로딩된구조체를 이용한물에서의촉매반웅연구는아직까지거의이루어지지않았다 (M. L. Kantam, S. Roy, M. Roy, B. Sreed ar, B. M. Choudary, Adv. Synth. Catal. 2005). 발명의상세한설명
기술적과제
[6] 본발명은극히미세한결정질의전이금속나노입자가균질하게로딩되고, 안정성이우수하며우수한수분산성을갖는전이금속입자가로딩된고분자 캡슐을제공하는것이다.
[7] 또한,전이금속입자가로딩된고분자캡슐을제조하는방법을제공하는
것이다.
과제해결수단
[8] 본발명의일실시예에따른전이금속입자가로딩된고분자캡슐은,하기 화학식 1의화합물및하기화학식 2의화합물을공중합하여수득되며,표면 개질되어수분산상태에서양의제타전위를갖는표면개질된고분자캡술;및 상기표면개질된고분자캡슐의표면에로딩된전이금속입자;를포함할수 있다.
[9] 또한,본발명의일실시예에따른전이금속입자가로딩된고분자캡슐의
제조방법은 a)하기화학식 1의화합물및하기화학식 2의화합물을공중합하여 고분자캡슐을제조하는단계; b)상기고분자캡술을표면개질하여,수분산 상태에서양의제타전위를갖는표면개질된고분자캡슐을제조하는단계;및 c) b)단계에서수득되는표면개질된고분자캡슐의수분산액에수용성 전이금속전구체및환원제를순차적으로투입하는단계;를포함할수있다.
[10] [화학식 1]
Figure imgf000004_0001
[12] (상기화학식 1에서, X는 -Ο, -S또는 NH이며 , Α,및 A2는각각독립적으로 -OR
-SR2, -NHR3또는 -0C(=0)R4이며,이때, 내지 는각각독립적으로치환 또는비치환된 (C2-C20)알케닐기,또는치환또는비치환된
(C2-C20)알키닐기이며 , B,및 B2는각각독립적으로치환또는비치환된
(C1-C10)알킬렌기이며 , η은 4내지 20의정수이다.)
[13] [화학식 2]
[14] (HS)rZ-(SH
[15] (상기화학식 2에서 , Ζ는치환또는비치환된 (C1-C20)알킬렌기이며, j및 k는 각각독립적으로 1내지 3의정수이다.)
발명의효과
[16] 본발명에따른전이금속입자가로딩된고분자캡슐은극히안정적인수
분산성을갖질수있으며,물에서촉매로사용할시에높은촉매활성및 재순환성을가질수있다.
[17] 또한,본발명에따른제조방법은극히미세한크기를가진단결정체의
전이금속나노입자가화학적으로결합한전이금속-고분자캡슐이제조되는 장점이있다.
도면의간단한설명
[18] 도 1은표면개질된고분자캡슐의입도분포 (도 1(a)),주사전자현미경 (도 1(b) 및 (c))및투과전자현미경 (도 1(d)및 (e))관찰사진을도시한도면이며,
[19] 도 2는표면개질된고분자캡슐 (도 2의 2)및 Pd나노입자가로딩된고분자 캡슐 (도 2의 3)의동적산란장치 (DLS-7000, Otsuka electronics)를이용한입자 분포를측정도시한도면이며,
[2이 도 3은 Pd나노입자가로딩된고분자캡술을관찰한주사전자현미경 (도 3(a)및 (d)),우라닐아세테이트염색후투과전자현미경 (도 3(b)및 (e))및고배율 투과전자현미경 (도 3(c)및 (f))관찰사진이며,
[21] 도 4는표면개질된고분자캡슐 (도 4(a)내지 (c))및 Pd나노입자가로딩된 고분자캡슐 (도 4(d)내지 (f))의 XPS(X-ray photoelectron spectroscopy)측정 결과를도시한도면이며,
[22] 도 5는 Pd나노입자가로딩된고분자캡슐의 STEM(scanning TEM)이미지및
Pd나노입자의 FFT(fast Fourier transform)패턴을도시한도면이며,
[23] 도 6은 FT-IR을이용하여,표면개질된고분자캡슐 (도 6의검은색)과 Pd 나노입자가로딩된고분자캡슐 (도 6의붉은색)의 C=0스트레칭바이브레이션 픽을관찰한결과를도시한도면이며,
[24] 도 7은 Pd나노입자가로딩된고분자캡슐의고배율투과전자현미경사진및 로딩된 Pd나노입자의직경올측정도시한도면이며,
[25] 도 8은제조된 Au나노입자가로딩된고분자캡슐 (도 8(a)및 (c))및 Pt
나노입자가로딩된고분자캡슐 (도 8(d)및 (d))의고배율투과전자현미경사진 및로딩된전이금속나노입자의직경을측정도시한도면이며,
[26] 도 9는제조된 Pd로딩된고분자캡술을촉매에의한아릴아이오다이드의 반웅시간에따른변환율을측정도시한도면이다.
[27]
발명의실시를위한형태
[28] 이하첨부한도면들올참조하여본발명의제조방법을상세히설명한다. 다음에소개되는도면들은당업자에게본발명의사상이층분히전달될수 있도록하기위해예로서제공되는것이다.따라서,본발명은이하제시되는 도면들에한정되지않고다른형태로구체화될수도있으며 ,이하제시되는 도면들은본발명의사상을명확히하기위해과장되어도시될수있다.이때, 사용되는기술용어및과학용어에있어서다른정의가없다면,이발명이 속하는기술분야에서통상의지식을가진자가통상적으로이해하고있는 의미를가지며,하기의설명및첨부도면에서본발명의요지를불필요하게 흐릴수있는공지기능및구성에대한설명은생략한다.
[29]
[3이 본발명의일실시예에따른전이금속입자가로딩된고분자캡슐은하기 화학식 1의화합물및하기화학식 2의화합물을공중합하여수득되며,표면 개질되어수분산상태에서양의제타전위를갖는표면개질된고분자캡슐;및 표면개질된고분자캡슐의표면에로딩된전이금속입자;를포함할수있다.
[31] 이와같은전이금속입자가로딩된고분자캡슐은수분산상태에서우수한 안정성을가질수있으며,물에서촉매로사용할시에높은촉매활성및 재순환성 (rccyclability)을가질수있다.
[32] 본발명의일예에따른화학식 1의화합물은하기와같은구조를가진 쿠커비투릴 (Cucurbituril)유도체일수있다.
[33] [화학식 1]
Figure imgf000006_0001
[35] 화학식 1에서, X는 -0, -S또는 -NH이며, A,및 ^는각각독립적으로 -OR,, -SR2 , -NHR3또는 -0C(=0)R4이며 ,이때, R,내지 R4는각각독립적으로치환또는 비치환된 (C2-C20)알케닐기,또는치환또는비치환된 (C2-C20)알키닐기이며, B, 및 는각각독립적으로치환또는비치환된 (C1-C10)알킬렌기이며 , n은 4내지 20의정수아다.
[36] 바람직하게는,화학식 1에서 X는 -0일수있으며, A,및 A2는각각독립적으로 -OR,또는 -0C(=0)R4일수있으며 ,이때, R,및 R4는각각독립적으로치환또는 비치환된 (C2-C10)알케닐기,또는치환또는비치환된 (C2-C10)알키닐기이며, B, 및 는각각독립적으로치환또는비치환된 (C1-C10)알킬렌기일수있으며, n은 4내지 12의정수일수있다.
[37] 보다바람직하게는,화학식 i에서 X는 _0일수있으며 , A,및 A2는각각
독립적으로 -OR,일수있으며 , R,은에테닐기 (-CH=CH2), 2-프로펜일기 (-CH2 CH=CH2), 3-부테닐기 (-CH2CH2CH=CH2), 4-펜텐일기 (-CH2CH2CH2CH=CH2), 에티닐기 (-C≡CH),프로피닐기 (-CH2C≡CH)또는펜티닐기 (-C¾C¾CH2C≡CH) 둥일수있으며 , B,및 B2는메틸렌기 (-CH2-)또는에틸렌기 (-CH2CHr)일수 있으며 , n은 4내지 12의정수일수있다.
[38] 본발명의일예에따른화학식 2의화합물은화학식 1의화합물과함께
공중합에의해고분자캡술을형성하는물질로, 2개이상의티을기를갖는 지방족화합물일수있다.
[39] [화학식 2]
[40] (HS)rZ-(SH)k
[41] 화학식 2에서 , Ζ는치환또는비치환된 (C1-C20)알킬렌기이며, j및 k는각각 독립적으로 1내지 3의정수이다.
[42] 바람직하게는,화학식 2에서 , Z는치환또는비치환된 (C6-C20)알킬렌기이며, j 및 k는각각독립적으로 1내지 3의정수이다.
[43] 상기화학식 2의화합물은구체적인일예로, 1,6-핵산디티올 (1,6-hexanedithiol), 1,8-옥탄디티올 (1,8-octanedithiol),
3,6-디옥사 -1,8-옥탄디티올 (3,6— dioxa-l,8-octanedithiol),
1,4-디머갑토부탄 -2,3-디올 (l,4-dimercaptobutane-2,3-diol),
펜타에리쓰리를테트라키스 (3-머갑토프로피오네이트) [pentaerythritol tetrakis(3-mercaptopropionate)],
트리메틸올프로판트리스 (3-머캅토프로피오네이트) [trimethylolpropane tris(3-mercaptopropionate)]등의화합물이사용될수있으나,이에한정되는것은 아니다.
[44] 이때,화학식 1및화학식 2에서, "치환"내지 "치환된"이란,본명세서에서 특별한언급이없는한,산소 (0),황 (S),질소 (N),할로겐 (F, CI, Br또는 I), 하이드록시기,케톤기및에스테르기등으로이루어진군에서선택되는 1종 이상의치환기로치환된것올의미할수있다.
[45] 화학식 1의화합물과화학식 2의화합물을공중합하여수득되는고분자캡슐은 화학식 1의 O0, C=S또는 C=NH작용기에의해음의제타전위를가지게되며, 음의제타전위를가진고분자캡슐올표면개질하여수분산상태에서양의제타 전위를가지도록할수있다.수분산상태,즉매질이물인상태에서표면개질된 고분자캡슐은 60내지 90mV의제타전위를가질수있다.
[46] 이러한양의전위,좋게는 60내지 90mV의제타전위는전이금속나노입자가 고분자캡슬표면에핵생성및성장할때,고분자캡슐의분산안정성을 향상시켜,고분자캡슐전표면에균일하게전이금속나노입자가형성될수 있도록할수있다.
[47] 구체적으로,표면개질된고분자캡슐은양의전하를갖는설포늄기가형성된 것일수있다.설포늄기의황은전이금속과자발적으로강력하게결합할수 있다.즉,표면에설포늄기가형성된고분자캡슐은설포늄기에의해전이금속의 핵생성장소가제공될수있어,평균직경이 1.5내지 3.5nm인극히미세한 전이금속입자가균일한크기로,균질하게고분자캡슐에로딩될수있다.뿐만 아니라,전이금속입자의전이금속이설포늄기의황과화학적으로결합함에 따라,전이금속입자가고분자캡슐에강하고안정적으로부착될수있다.
[48] 이와같이 ,전이금속입자가로딩된고분자캡슐은고분자캡슐 100중량부에 대하여, 0.1내지 12중량부의입자상의전이금속이로딩된것일수있으며,보다 좋게는 1내지 10증량부의입자상의전이금속이로딩될수있다.고분자캡술의 표면에극히미세한전이금속입자가상기비율로로딩됨에따라물에서촉매로 사용할시에높은촉매활성및재순환성 (recyclability)을가질수있다.
[49] 이때,일예에따른전이금속입자는특별히한정하진않으나, Au, Ag, Pd및 Pt에서하나이상선택된것일수있다.
[50]
[51] 이와같은전이금속입자가로딩된고분자캡슐의제조방법은, a)화학식 1의 화합물및화학식 2의화합물올공증합하여고분자캡술을제조하는단계; b) 상기고분자캡슐을표면개질하여,수분산상태에서양의제타전위를갖는 고분자캡슐을제조하는단계;및 c) b)단계에서수득되는표면개질된고분자 캡슐의수분산액에수용성전이금속전구체및환원제를순차적으로투입하는 단계;를포함할수있다. [52] 본발명의일예에따른화학식 1의화합물은하기와같은구조를가진 쿠커비투릴 (Cucurbituril)유도체일수있다.
[53] [화학식 1]
Figure imgf000008_0001
[55] 화학식 1에서, X는 -0, -S또는 -NH이며 , A,및ᅀ2는각각독립적으로 -OR,, -SR2 , -NHR3또는 -OC(=0)R4이며 ,이때, R,내지 R4는각각독립적으로치환또는 비치환된 (C2-C20)알케닐기,또는치환또는비치환된 (C2-C20)알키닐기이며, 및 B2는각각독립적으로치환또는비치환된 (CI— C10V 렌기이며, n은 4내지 20의정수이다.
[56] 바람직하게는,화학식 1에서 X는 -0일수있으며 , A,및 A2는각각독립적으로 -OR,또는 -0C(=0)R4일수있으며,이때, R,및 Rt는각각독립적으로치환또는 비치환된 (C2-C10)알케닐기,또는치환또는비치환된 (C2-C10)알키닐기이며, B, 및 ¾는각각독립적으로치환또는비치환된 (C1-C10)알킬렌기일수있으며', η은 4내지 12의정수일수있다.
[57] 보다바람직하게는,화학식 1에서 X는 _0일수있으며 , Α,및 Α2는각각
독립적으로 -OR,일수있으며, R,은에테닐기 (-CH=CH2), 2-프로펜일기 (-CH2 CH=CH2), 3-부테닐기 (-CH2CH2CH=C¾), 4-펜텐일기 (-CH2CH2CH2CH=C¾), 에티닐기 (-C≡CH),프로피닐기 (-CH2C≡CH)또는펜티닐기 (-CH2CH2C C≡CH) 등일수있으며 , B,및 B2는메틸렌기 (-CH2-)또는에틸렌기 (-C¾CHr)일수 있으며 , η은 4내지 12의정수일수있다.
[58] 본발명의일예에따른화학식 2의화합물은화학식 1의화합물과함께
공증합에의해고분자캡슐을형성하는물질로, 2개이상의티올기를갖는 지방족화합물일수있다.
[59] [화학식 2]
[6이 (HS)rZ-(SH\
[61] 화학식 2에서 , Ζ는치환또는비치환된 (C1-C20)알킬렌기이며, j및 k는각각 독립적으로 1내지 3의정수이다.
[62] 바람직하게는,화학식 2에서, Z는치환또는비치환된 (C6-C20)알킬렌기이며 J 및 k는각각독립적으로 1내지 3의정수이다. 、
[63] 상기화학식 2의화합물은구체적인일예로, 1,6-핵산디티올 (1,6-hexanedithiol), 1,8-옥탄디티올 (1,8-octanedkhiol),
3,6-디옥사 -1,8-옥탄디티을 (3,6-dioxa-l,8-octanedithiol),
1,4-디머캅토부탄 -2,3-디올 (l,4-dimercaptobutane-2,3-diol), 펜타에리쓰리를테트라키스 (3-머캅토프로피오네이트) [pentaerythritol
tetrakis (3 -mercaptopropionate)],
트리메틸올프로판트리스 (3-머캅토프로피오네이트) [trimethylolpropane tris(3-mercaptopropionate)]둥의화합물이사용될수있으나,이에한정되는것은 아니다.
[64] 이때 ,화학식 1및화학식 2에서 , "치환"내지 "치환된"이란,본명세서에서
특별한언급이없는한,산소 (0),황 (S),질소 (N),할로겐 (F, CI, Br또는 I), 하이드록시기,케톤기및에스테르기등으로이루어진군에서선택되는 1종 이상의치환기로치환된것을의미할수있다.
[65] 화학식 1에따른화합물과화학식 2에따른화합물간의공증합,상세하게 , 3개 내지는 20개의에테닐기 (-CH=CH2)또는에티닐기 (-C≡CH)를갖는화학식 1의 화합물이 2개이상의티올기를갖는화학식 2의화합물과의광중합반웅으로 고분자캡술을제조할수있으며,이는티올-엔광중합반웅 (thiol-ene
photopolymerization)으로알려져있는공지된반웅이다 (Macromolecules, 2002, 35, 5361; Macromolecules, 2003, 36, 4631).
[66] 구체적으로, a)단계는화학식 1의화합물및화학식 2의화합물을유기용매에 용해시키는단계 ;광을조사하여화학식 1의화합물및화학식 2의화합물을 공중합시켜고분자캡슐올제조하는단계;및투석올이용하여잔여물을 제거하는단계;를포함할수있다. a)단계에서사용되는유기용매는화학식 1의 화합물과화학식 2의화합물이용해되는용매라면어떤것이든사용가능하며, 구체적일일예로,클로로포름,메틸알콜,에틸알콜,디메틸설폭시드,
디클로로메탄,디메틸포름아미드,테트라하이드로퓨란,아세톤및
아세토니트릴에서하나이상선택된용매를들수있다.광조사는자외선일수 있으며,구체적으로 256내지 300nm파장범위의자외선을 5내지 8시간동안 가함으로써화학식 1의화합물과화학식 2의화합물을공중합시킬수있다. 공중합반웅시,화학식 1의화합물과화학식 2의화합물이용해된용액에 자외선을가하기전,라디칼개시제를가할수있으며,이러한라디칼개시제에 의해공증합반웅이더욱촉진될수있다.라이칼개시제는티올-엔
광중합반웅에서공지된라다칼개시제이면사용가능하며,구체적인일예로, A1BN, K2S208, (NH4)2S208및벤조일퍼옥시드로이루어진군에서하나이상 선택될수있으나,이에한정되는것은아니다.
[67] 상기 a)단계에서화학식 2의화합물은화학식 1의화합물에비해과량으로될 수있다.예를들어,화학식 1의화합물:화학식 2의화합물의몰비는 1: 40내지 60일수있으나,이에한정되는것은아니다.화학식 1의화합물과화학식 2의 화합물은상술한바와같이티올-엔광중합반웅에의해중합되어고분자캡술로 제조되는데,화학식 1의화합물 1몰기준화학식 2의화합물이 40내지 60몰을 갖도록투입될수있다.즉,화학식 1의화합물및화학식 2의화합물을유기 용매에용해시키되,화학식 1의화합물 1몰기 화학식 2의화합물이 40내지 60몰이되도록유기용매에용해시킨후,광이조사될수있다.
[68] 화학식 1의화합물기준화학식 2의화합물을매우과량으로투입함으로써, 공증합캡슐표면에디술피드루프 (disulfide loop)의돌출부들을형성할수 있으며,이러한디술피드루프는전이금속나노입자와강력하게결합할수있는 디티올 (dithiols)소스로작용할수있다.좋게는화학식 1의화합물 1몰기준 화학식 2의화합물이 45내지 55몰이되도록유기용매에용해시킨후,광이 조사될수있는데,이러한범위는티올-엔광중합반웅이원활히발생함과 동시에,너무과도한디술피드루프에의해전이금속나노입자의활성이 저하되는것을방지할수있는범위이디-.
[69] 이하,특별한언급이없는한, a)화학식 1에따른화합물과화학식 2에따른 화합물의중합에의해제조되는고분자캡슐전량이표면개질의원료로 사용되며,표면개질된고분자캡슐전량이수분산되어표면개질고분자 캡슐와수분산액으로제조될수있다.
[7이 상기화학식 1의화합물및화학식 2의화합물의공증합에의해형성되는 고분자캡슐은전이금속나노입자가로딩되는담체로사용될수있다.
[71] a)단계에서화학식 1의화합물과화학식 2의화합물이티올-엔광중합반웅을 통해고분자캡슐로제조될때,고분자캡슬은화학식 1의 C=0, C=S또는 C=NH 작용기에의해음의제타전위를가지게된다.
[72] b)단계를통해,수분산상태,즉매질이물인상태에서양의제타전위를
갖도록고분자캡술을표면개질하는단계가수행될수있다.
[73] 표면개질은제조되는고분자캡슐의표면이양의전하를갖도록하는표면 개질제를사용하여수행될수있는데,매질이물인상태에서고분자캡슐이 60 내지 90mV의제타전위를갖도록수행될수있다.
[74] 이러한양의전위,좋게는 60내지 90mV의제타전위는 c)단계를통해,
전이금속나노입자가고분자캡슐표면에핵생성및성장할때,고분자캡슐의 분산안정성을향상시켜,고분자캡슐전표면에균일하게전이금속나노입자가 형성될수있도록할수있다.
[75] 나아가,양의전위,좋게는 60내지 90i 의제타전위는상술한분산안정성 향상뿐만아니라,환원제에의한전이금속의핵생성및성장시고분자캡슐로 안정적이고균일한물질공급 (전이금속소스의공급)공급을가능하게할수 있다.상세하게,후술하는바와같이,수용성전이금속전구체는
알칼리금속-전이금속할로겐화물인것이좋은데,이는수용성
전이금속전구체가수상에서알칼리금속양이온과전이금속할로겐화물의 음이온으로해리될수있기때문이다.이에따라,환원제에의해환원되기전, 고분자캡슐수분산액에투입된전이금속은전이금속할로겐화물의음이온으로 존재할수있다.고분자캡슐의표면이양의전위,좋게는 60내지 90mV의전위를 갖도록표면개질되는경우,양의전하를띤고분자캡슐과음의전하를갖는 전이금속할로겐화물간의정전기력에의해,고분자캡슐주변올 전이금속할로겐화물음이온이막형상으로균일하게감쌀수있으며,환원제에 의해고분자캡슐표면에전이금속의핵생성및성장이일어나는중에도, 수상에서캡슐표면으로안정적인전이금속의물질공급이이루어질수있다.
[76] 본발명의일실시예에따른제조방법에있어 ,상술한표면개질은
할로겐화알킬 (alkyl halide)을이용하여수행되는것이좋다.즉,할로겐화알킬을 표면개질제로 a)단계에서수득되는공증합캡슐을표면개질하는것이좋다.
[77] 할로겐화알킬은 a)단계에서수득된공중합캡슐에존재하는티오에테르
유닛 (thioether unit)올부분적으로알킬화함으로써,티오에테르유닛올
설포늄 (sulfonium)기로변화시킬수있다.이에따라,공중합캡슐표면에는양의 전하를갖는설포늄기가형성될수있는데,설포늄기의황은전이금속과 자발적으로강력하게결합할수있다.즉,할로겐화알킬에의해설포늄기가 형성되도록표면개질된공중합캡슐은설포늄기에의해전이금속의핵생성 장소가제공될수있어,평균직경이 1.5내지 3.5nm인극히미세한전이금속 입자가균일한크기로균질하게공중합캡슐에로딩될수있을뿐만아니라, 전이금속입자의전이금속이설포늄기의황과화학적으로결합함에따라, 전이금속입자가공중합캡슐에강하고안정적으로부착될수있다.
[78] 할로겐화알킬은예를들어, C1내지 C6의할로겐화알킬일수있으니이에
한정되는것은아니다.보다구체적으로, C1내지 C6알킬의염화물,요오드화물, 브롬화물및폴루오르화물에서하나이상선택될수있다.티오에테르유닛을 선택적으로알킬화시킬수있으며,고분자캡슐의표면에양전하를가지게하여 수분상성및전이금속과결합하는능력올향상시킬수있도록,할로겐화알킬은 요오드화알킬인것이좋다.또한,할로겐화알킬의알킬은 C1내지 C6,좋게는 C1 내지 C4,보다좋게는 C1내지 C2,가장좋게는메틸일수있는데,알킬의길이가 길어질수록물에대한친화도가떨어져,개질된고분자캡슐의수분산성과 - 안정성을떨어뜨릴위험이있기때문이다.
[79] 상세하게 , b)단계는 bl) a)단계에서수득되는고분자캡슐이알코올에분산된 분산액에표면개질제를투입하고정치하는단계; b2)투석올이용한정제를통해 표면개질된고분자캡슐수분산액을수득하는단계;를포함할수있다.이때, 알코올은예를들어, C1내지 C4의저급알코올일수있으며,정치는 0.5내지 2일 동안수행될수있다.
[80] 표면개질제는화학식 1에따른화합물의총몰수를기준으로,즉, a)단계에서 사용된화학식 1에따른화합물의총몰수를기준으로매우과량으로투입될수 있으며,구체적으로예를들면 400내지 600배가투입될수있다.나아가,상술한 바와같이, C1내지 C6의할로겐화알킬,좋게는 C1내지 C6의요오드화알킬, ' 가장좋게는요오드화메틸 (CHjI)을표면개질제로사용함으로써,상은에서
장시간동안표면개질제와고분자캡슐을액상매질올통해접촉시키는 방법으로,고분자캡슐의표면의티오에테르유닛을선택적으로및부분적으로, 알킬화시킬수있다. [81] 이후, b)단계에서수득되는표면개질고분자캡슐의수분산액에수용성 전이금속전구체및환원제를순차적으로투입함으로써,전이금속나노입자가 로딩된고분자캡술을제조할수있다.
[82] 표면개질고분자캡슐의수분산액에투입되는수용성전이금속전구체는, 전이금속전구체가물에해리되어생성되는양이은과음이은중,음이온이 전이금속올함유하는.전구체인것이좋다.이를통해상술한바와같이원활한 물질공급이이루어질수있을뿐만아니라,표면개질된고분자캡술에 전이금속의나노입자가선택적으로형성될수있다.구체적으로,수용성 전이금속전구체는알칼리금속-전이금속할로겐화물인것이좋다.
알칼리금속-전이금속할로겐화물의알칼리금속은나트륨,칼륨및리튬에서 하나이상선택될수있다.알칼리금속-전이금속할로겐화물은염화물, 요오드화물,브롬화물및플루오르화물에서하나이상선택될수있다.
알칼리금속-전이금속할로겐화물의전이금속은공중합캡술에로딩하고자하는 전이금속일수있으며,구체적인일예로, Au, Ag, Pd및 Pt에서하나이상선택될 수있다.
[83] 표면개질고분자캡슐의수분산액에투입되는수용성전이금속전구체의 투입량을통해,고분자캡슐에로딩및결합되는전이금속나노입자의평균 크기가조절될수있다.이때,과도한수용성전이금속전구체가수분산액에 투입되는경우,환원된전이금속에의해고분자캡슐들이서로뭉쳐지거나,서로 독립된입자상이아닌코팅층으로전이금속이형성될위험이있다.이에따라, 표면개질고분자캡술의수분산액에투입되는수용성전이금속전구체는 a) 단계에서의화학식 1에따른화합물의총몰수를기준으로, 1배내지 4배의 몰수가투입되는것이좋다.
[84] 상술한바와같이,할로겐화알킬,좋게는요오드화알킬,가장좋게는
요오드화메틸을표면개질제로사용하여고분자캡슐의표면을양의제타 전위를갖도록개질하고,표면에설포늄 (sulfonimn)기를형성하여전이금속의 핵생성장소를제공함과동시에,상술한몰비를만족하도록수용성전이금속 전구체를투입하고,환원제를순차적으로투입함으로써,극히균일한크기를 가지며매우미세한단결정체의전이금속입자를고분자캡슐에결합시킬수 있다.
[85] 표면개질고분자캡슐의수분산액에투입되는환원제는고분자캡슐에는 영향을미치지않으면서도수용성전이금속전구체를빠르게환원시킬수있는 강력한환원제인것이좋은데,환원력이강한경우,설포늄기를핵생성장소로 극히미세한전이금속입자가균질하게형성될수있기때문이다ᅳ고분자캡슐을 손상시키지않으면서강한환원력을제공하는측면에서,환원제는 NaB¾, NaOH 또는이들의흔합물인것이좋다.
[86] 환원제는투입되는수용성전이금속전구체를층분히환원시킬수있는양이면 족한데,구체적인일예로,수용성전이금속전구체 1몰을기준으로, 1내지 20몰의환원제,좋게는 1내지 20몰의 NaB¾, NaOH또는이들의흔합물이 투입될수있다.환원제는수용성전이금속전구체,좋게는
알칼리금속-전이금속할로겐화물인수용성전이금속전구체가용해되어양의 전하를띄는고분자캡슐표면영역에전이금속할로겐화물음이온의이온층이 형성된후투입되는것이좋은데,비한정적이며구체적인일예로,수용성 전이금속전구체가용해된후, 1내지 8시간흐른시점에서환원제가투입될수 있다.환원제를투입한후, 3내지 8시간동안상은정치 (incubating)할수있으며, 이후,투석을이용하여금속입자가로딩된고분자캡술의정제가이루어질수 있다.
[87]
[88] [실시예] '
[89] 고분자 ¾습의체조
[90] [화학식 3] - -
Figure imgf000013_0001
[92] 3,6-디옥사 -1,8-옥탄디티을 (3,6-dioxa-l,8-octanedithiol) 43.7mg (240μιηο1)을
알릴옥시쿠커비투 6릴 (allyloxy cucurbit[6]uril,상기화학식 3의화합물) 10.4 mg(5.0[miol)이메탄올 (10 )에용해된용액에첨가하고용해시켰다.질소퍼징을 수행한후, 10시간동안 256nm와 300nm의자외선을가한후,투석 (Thermo snakeskin pleated dialysis tubeing, MWCO: 10,000)을통해잔류물을제거하여 메탄올분산된고분자캡슐을제조하였으며,메탄올을휘발제거하며총
19.8mg의고분자캡슐을제조하였다.
[93] 메탄올분산된고분자캡슐을평면의기판에한방을떨어뜨려건조한후
투과전자현미경으로생성물올관찰한결과,캡슐형상을가짐을확인하였으며, 제조된고분자캡슐의직경을동적산란장치 (DLS-7000, Otsuka electronics)를 이용하여측정한결과,평균직경이 lOOnm인고분자캡슐이제조됨을
확인하였다.
[94] 건조된고분자캡슐 19.8 mg을 10 m의물에분산시킨후제타전위 (Zetasizer Nano ZS instrument, Malvern)를측정한결과 -13.8土 8.7mV의제타전위를가짐올 확인하였다.
[95] 원소분석기를이용한고분자캡슐의원소분석결과:계산치 [(C72H96N24024)(C6 HI202S2)9.8(CH40)3(H20)5]„: C 44.22, H 6.53, N 9.25, S 17.28;실측치 C 43.88, H 6.02, N 9.19, S 17.16.
[96] [97] 며기ᅵ ¾i되고분자 습의체조
[98] 합성된총 19.8mg의고분자캡술을 10m의메탄을에재분산시킨후,
표면개질제인 CHjI를 2.4mmol투입하였다.상은에서하루동안정치한후, 투석을통해정제하여,표면개질된고분자캡슐 (총 22.1mg)의수분산액 (HM)을 수득하였다.
[99] 원소분석기를이용한표면개질고분자캡슐의원소분석결과:계산치 [(C72H% Ν24024)( ΗΙ202 )9.3(α Ι)620)55]η: C 37.34, H 5.54, N 7.80, S 13.89;실측치 C 37.58, H 5.38, N 7.58, S 13.51.
[100] 표면개질된고분자캡슐 19.8 mg을 10 ^의물에분산시킨후제타
전위 (Zetasizer Nano ZS instrument, Malvern)를측정한결과 72.9士 lO.OmV의제타 전위를가짐을확인하였다.원소분석과제타전위를통해고분자캡슐의표면에 존재하는티오에테르가 CHjI에의해설포늄기로변환됨을알수있다.
[101] 도 1은표면개질된고분자캡술의입도분포,주사전자현미경및
투과전자현미경관찰사진을도시한도면이다.상세하게도 1(a)는광중합에 의해합성된고분자캡슐 (도 1(a)의 1)과표면개질된고분자캡슐 (도 1(a)의 2)의 동적산란장치 (DLS-7000, Otsuka electronics)를이용한입자분포를측정도시한 것으로,표면개질된고분자캡슐의경우한달이지난후에도안정적으로 수분산특성이유지됨을알수있다.
[102] 도 1(b)와 (c)는표면개질된고분자캡슐의주사전자현미경관찰사진이고,도 1(d)와 1(e)는표면개질된고분자캡슐의투과전자현미경관찰사진이다.
투과전자현미경관찰은우라닐아세테이트 (uranyl acetate)염색후측정된 것이다.도 1(b)내지도 1(e)에서알수있듯이,표면개질후에도그형상이나 크기가합성된상태그대로유지되는것을확인할수있다.
[103]
[104] Pd나노 자가로 되고분자 습의제조
[105] l.lmg의표면개질된고분자캡슐이물에분산된수분산액
0.5 (알릴옥시쿠커비투 6릴몰수 α25μπιο1)에 0.75μπ이의 K2PdCl4가투입되도록 K2PdC 수용액을투입하고,상온에서 3시간동안정치하였다.이후, 12μηι이의 NaB¾가투입되도록 NaB¾수용액을수분산액에투입하고,다시상은에서 5시간동안정치한후,투석하여 Pd나노입자가로딩된고분자캡슐을
제조하였다.
[106] 이때, K2PdC 수용액을수분산액에투입하고,환원제를투입하기전,수분산된 고분자캡슐의제타전위를측정한결과, 48.4± 7.0raV로감소하는것을
확인하였다.
[107]
[108] An나노 ¾자가로¾되고분자캡습의체조
[109] l.lmg의표면개질된고분자캡슐이물에분산된수분산액
(알릴옥시쿠커비투 6릴몰수 0.25μηιο1)에 0.25μπ )1의 KAuC 가투입되도록 KAuC 수용액올투입하고,상온에서 3시간동안정치하였다.이후, 4μπι이의 NaOH가투입되도록 NaOH수용액을수분산액에투입하고,다시상온에서 5시간동안정치한후,투석하여 Au나노입자가로딩된고분자캡슐을 제조하였다.
[110]
[111] Pt나노0 J자가로 되고분자 슴의체조
[112] l.lmg의표면개질된고분자캡슐이물에분산된수분산액
0.5 (알릴옥시쿠커비투 6릴몰수 0.25(xmol)에 0.5μπι이의 K2PtCl4가투입되도록 K 2PtCl4수용액을투입하고,상온에서 3시간동안정치하였다.이후, 8μπ이의 NaBH 4가투입되도록 NaB¾수용액을수분산액에투입하고,다시상온에서 5시간 동안정치한후,투석하여 Pt나노입자가로딩된고분자캡술올제조하였다.
[113]
[114] 도 2는표면개질된고분자캡슐 (도 2의 2)및 Pd나노입자가로딩된고분자 캡술 (도 2의 3)의동적산란장치 (DLS-7000, Otsuka electronics)를이용한입자 분포를측정도시한것으로, Pd나노입자의로딩후에평균직경이 130nm인 고분자캡슐이형성되는것을알수있다.
[115] 도 3은 Pd나노입자가로딩된고분자캡술올관찰한주사전자현미경 (도 3(a)및 (d)),우라닐아세테이트염색후투과전자현미경 (도 3(b)및 (e))및고배율 투과전자현미경 (도 3(c)및 (f))관찰사진이다.
[116] 도 3에서알수있듯이,전이금속나노입자가로딩된고분자캡슐이구형캡슐 형상을유지함을알수있으며,극히미세하고균일한 Pd나노입자가균일하고 균질하게고분자캡슐표면에로딩되어있음을알수있다.투과전자현미경을 통해관찰한결과, Pd나노입자의크기가 1.9± 0.2nra로극히균일한크기를 가짐을확인하였으며 , ICP-AES(inductively coupled plasma atomic emission spectroscopy)분석결과,투입된 K2PdCl4중 Pd의 81%가 Pd나노입자로로딩됨을 확인하였다.
[117] 또한,제조된전이금속나노입자가로딩된고분자캡슐이,제조시점을기준 6개월이흐른뒤에도그수분산성이저하되지않음올확인하였다.
[118] 도 4는표면개질된고분자캡슐 (도 4(a)내지 (c))및 Pd나노입자가로딩된
고분자캡술 (도 4(d)내지 (f))의 XPS(X-ray photoelectron spectroscopy)측정 결과를도시한것이다.도 4의 XPS결과로도,고분자캡슐에 Pd나노입자가 로딩된것을알수있으며,나아가, Pd나노입자가로딩된고분자캡슐의경우, 산소 (Is)피크가장파장이동하고, 162.8eV의새로운황 (2p)피크가나타남올알 수있다.이를통해,카르보닐산소가 Pd나노입자와상호작용을하며, Pd-S 결합이형성된것을알수있다.
[119] 도 5는 Pd나노입자가로딩된고분자캡슐와 STEM(scanning TEM)이미지및 Pd나노입자의 FFT(fast Fourier transform)패턴올도시한것으로,관찰결과, 고분자캡술에로딩된모든 Pd나노입자가 FCC구조의 (111)면를갖는단결정 입자임을확인하였다.
[120] FT-IR을이용하여,표면개질된고분자캡슐 (도 6의검은색)과 Pd나노입자가 로딩된고분자캡슐 (도 6의붉은색)의 C=0스트레칭바이브레이션픽을관찰한 결과,도 6에도시한바와같이,유의미한이동은발생하지않았음을확인하였다.
[121] 도 7은 Pd나노입자가로딩된고분자캡슐의고배율투과전자현미경사진및 로딩된 Pd나노입자의직경을측정도시한도면으로, 200개의 Pd나노입자의 직경을측정도시한것이다.이때,도 7(a)및도 7(d)는실시예에서 , 0.5
m£(0.50[ mol)의 K2PdCl4가투입되어제조된샘플이며,도 7(b)및도 7(e)는 실시예에서, 0.5 η^(0.75μπιο1)의 K2PdCl4가투입되어제조된샘플이며,도 7(c)및 도 7(f)는실시예에서, 0.5 πώ(ΐ.θμηιοΐ)의 K2PdCl4가투입되어제조된샘플이다. 0.50μπι이의 K2PdC!4가투입된경우 Pd나노입자는 1.7 ± 0.2nm의크기범위를 가짐을확인하였으며, 0.75μηι이의 K2PdCl4가투입된경우 Pd나노입자는 1.9土 02™의크기범위를가짐을, Ι.Ομηι이의 K2PdCl4가투입된경우 Pd나노입자는 3.1 ± 0.3nm의크기범위를가짐을확인하였다.그러나 , 2.0μπιο1이상의 K2PdCl4가 투입되는경우, Pd나노입자와함께고분자캡슐들이서로웅집되어엉킨 웅집체가제조됨을확인하였다.
[122] 도 7에서알수있듯이,수용성전이금속전구체의양에의해,로딩되는 Pd
나노입자의크기가조절될수있음올알수있으며,고분자캡슐제조시사용된 화학식 1에따른화합물의총몰수를기준으로, 1배내지 4배의수용성전이금속 전구체가투입될때,서로이격분산된상태로 Pd나노입자가로딩된개별 고분자캡슐이제조될수있음을알수있다.
[123] 도 8은제조된 Au나노입자가로딩된고분자캡슐 (도 8(a)및 (c))및 Pt
나노입자가로딩된고분자캡술 (도 8(d)및 (d))의고배율투과전자현미경사진 및로딩된전이금속나노입자의직경을측정도시한도면이다.로딩된 Au 나노입자의크기는 2.1 ± 0.4nm의범위를가지며,로딩된 Pt나노입자의크기는 1.8 ± 0.3nm의범위를가져, Pt와마찬가지로,극히균일한크기의전이금속 나노입자가로딩되는것을확인할수있다.
[124] 제조된고분자캡슐에로딩된전이금속나노입자의물에서의안정성과이종 촉매능력을살피기위해,물에서 Suzuki-Miyaura반웅을,물과
테트라하이드로퓨란 (THF)흔합용액에서 Buchwald-Hartwig amination반웅을 시도하였다.제조된 Pd로딩된고분자캡슐올촉매로, CfiHsI와 4-(ΜεΟ) ¾ Β(ΟΗ)2또는 H5I와 4-(MeO)C6 NH2를이용하여반웅물질인아릴
아이오다이드 ( ftl)의 100%변환올각각확인하였다. Suzuki-Miyaura반웅 I와 4-(MeO)C6H4B(OH)2)의경우,상은에서 1내지 2시간동안수상반옹에의한 변환율을측정하였으며,그결과를하기표 1에정리도시하였다.아릴
아이오다이드의변환율은 GC-MS를이용하였다.
[125] 표 1 [Table 1]
Figure imgf000017_0001
[126]
[127] 표 1에서 3은제조된 Pd로딩된고분자캡술올촉매로이용한결과를의미하며, Pd C는알드리치에서구매한 Pd/C촉매로, 10중량 %의 Pd가탄소에로딩된 Pd/C 촉매이다.
[128] 도 9는제조된 Pd로딩된고분자캡슐을촉매에의한아릴아이오다이드의
반웅시간에따른변환율올측정도시한도면으로,도 9에서알수있듯이,약 90분정도에 100%의변환율에다다름을알수있다.
[129] 이상과같이본발명에서는특정된사항들과한정된실시예및도면에의해 설명되었으나이는본발명의보다전반적인이해를돕기위해서제공된것일 뿐,본발명은상기의실시예에한정되는것은아니며,본발명이속하는 분야에서통상의지식을가진자라면이러한기재로부터다양한수정및변형이 가능하다.
[13이 따라서,본발명의사상은설명된실시예에국한되어정해져서는아니되며, 후술하는특허청구범위뿐아니라이특허청구범위와균둥하거나둥가적변형이 있는모든것들은본발명사상의범주에속한다고할것이다.

Claims

청구범위
[청구항 1] 하기화학식 1의화합물및하기화학식 2의화합물을공중합하여 수득되며,표면개질되어수분산상태에서양의제타전위를갖는 표면개질된고분자캡슐;및
상기표면개질된고분자캡슬의표면에로딩된전이금속입자; 를포함하는전이금속입자가로딩된고분자캡슐.
Figure imgf000018_0001
(상기화학식 1에서, X는 -0, -S또는 -ΝΗ이며, Α,및 Α2는각각 독립적으로 -OR,, -SR2, -NHR3또는 -OC(=0)R4이며 ,이때, R,내지 R4는각각독립적으로치환또는비치환된 (C2-C20)알케닐기 , 또는치환또는비치환된 (C2-C20)알키닐기이며, B,및 B2는각각 독립적으로치환또는비치환된 (C1-C10)알킬렌기이며, n은 4 내지 20의정수이다.)
[화학식 2]
(HS)j-Z-(SH)k
(상기화학식 2에서, Z는치환또는비치환된
(C1-C20)알킬렌기이며, j및 k는각각독립적으로 1내지 3의 정수이다.)
[청구항 2] 제 1항에있어서,
상기표면개질된고분자캡슐은 60내지 90mV의제타전위를갖는 전이금속입자가로딩된고분자캡슐.
[청구항 3] 제 1항에있어서,
상기표면개질된고분자캡슐은표면에설포늄기가형성된 전이금속입자가로딩된고분자캡슐.
[청구항 4] 제 1항에있어서,
상기전이금속입자의평균직경은 1.5내지 3.5nm인전이금속 입자가로딩된고분자캡슐.
[청구항 5] 제 1항에있어서,
상기전이금속입자가로딩된고분자캡슐은고분자캡술 100 중량부에대하여, 0.1내지 12중량부의입자상의전이금속이 로딩된것인전이금속입자가로딩된고분자캡슐.
[청구항 6] a)하기화학식 1의화합물및하기화학식 2의화합물올 공중합하여고분자캡술을제조하는단계;
b)상기고분자캡슐을표면개질하여,수분산상태에서양의제타 전위를갖는표면개질된고분자캡슐을제조하는단계;및 c) b)단계에서수득되는표면개질된고분자캡슐의수분산액에 수용성,전이금속전구체및환원제를순차적으로투입하는단계; 를포함하는전이금속입자가로딩된고분자캡슐의제조방법 .
Figure imgf000019_0001
(상기화학식 1에서, X는 -0, -S또는 -NH이며, A,및 A2는각각 독립적으로 -OR,, -SR2, -NHR3또는 -OC(=0)R4이며 ,이때, R,내지 R4는각각독립적으로치환또는비치환된 (C2-C20)알케닐기 , 또는치환또는비치환된 (C2-C20)알키닐기이며 , B,및 B2는각각 독립적으로치환또는비치환된 (C1-C10)알킬렌기이며, n은 4 내지 20의정수이다.)
[화학식 2]
(HS)rZ-(SH)k
(상기화학식 2에서 , Ζ는치환또는비치환된
(C1-C20)알킬렌기이며, j및 k는각각독립적으로 1내지 3의 정수이다.) '
[청구항 7] 제 6항에있어서,
상기표면개질된고분자캡슬은 60내지 90mV의제타전위를갖는 전이금속입자가로딩된고분자캡술의제조방법.
[청구항 8] 제 6항에있어서,
상기수용성전이금속전구체는알칼리금속-전이금속
할로겐화물인전이금속입자가로딩된고분자캡슐의제조방법.
[청구항 9] 제 8항에있어서,
상기수용성전이금속전구체는상기 a)단계에서의화학식 1에 따른화합물의총몰수를기준으로, 1배내지 4배가투입되는 전이금속입자가로딩된고분자캡슐의제조방법.
[청구항 1이 제 6항에있어서,
상기 a)단계에서화학식 1의화합물:화학식 2의화합물의몰비는 1 : 40내지 60인전이금속입자가로딩된고분자캡슬의제조방법 .
[청구항 11] 제 6항에있어서, 상기 b)단계는,
bl)알코을에고분자캡슐이분산된분산액에할로겐화알킬인 표면개질제를투입하고정치하는단계;및
b2)투석을이용한정제를통해표면개질된고분자캡슐 수분산액을수득하는단계;
를포함하는전이금속입자가로딩된고분자캡슐의제조방법..
[청구항 12] 제 11항에있어서,
상기표면개질제는 a)단계에서의화학식 1에따른화합물의총 몰수를기준으로, 400내지 600배가투입되는전이금속입자가 로딩된고분자캡슐의제조방법.
[청구항 13] 제 6항에있어서,
상기 b)단계의표면개질은할로겐화알킬에의해이루어지는 전이금속입자가로딩된고분자캡슐의제조방법.
[청구항 14] 제 13항에있어서,
상기표면개질에의해상기고분자캡슐표면에는
설포늄 (sulfonium)기가형성되는전이금속입자가로딩된고분자 캡슐의제조방법.
[청구항 15] 제 6항에있어서,
상기 c)단계에서고분자캡슐표면에형성된전이금속나노입자의 평균직경은 1.5내지 3.5nm인전이금속입자가로딩된고분자 캡슐의제조방법.
PCT/KR2015/003821 2014-04-16 2015-04-16 수분산성 및 안정성이 우수한 전이금속 입자가 로딩된 고분자 캡슐 및 이의 제조방법 WO2015160194A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/303,710 US9707548B2 (en) 2014-04-16 2015-04-16 Polymer capsule having loaded thereon transition metal particles having excellent water dispersibility and stability, and method for preparing same
US15/586,068 US10543477B2 (en) 2014-04-16 2017-05-03 Polymer capsule having loaded thereon transition metal particles having excellent water dispersibility and stability, and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0045394 2014-04-16
KR20140045394 2014-04-16
KR1020150053065A KR101749732B1 (ko) 2014-04-16 2015-04-15 수분산성 및 안정성이 우수한 전이금속 입자가 로딩된 고분자 캡슐 및 이의 제조방법
KR10-2015-0053065 2015-04-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/303,710 A-371-Of-International US9707548B2 (en) 2014-04-16 2015-04-16 Polymer capsule having loaded thereon transition metal particles having excellent water dispersibility and stability, and method for preparing same
US15/586,068 Division US10543477B2 (en) 2014-04-16 2017-05-03 Polymer capsule having loaded thereon transition metal particles having excellent water dispersibility and stability, and method for preparing same

Publications (1)

Publication Number Publication Date
WO2015160194A1 true WO2015160194A1 (ko) 2015-10-22

Family

ID=54324314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003821 WO2015160194A1 (ko) 2014-04-16 2015-04-16 수분산성 및 안정성이 우수한 전이금속 입자가 로딩된 고분자 캡슐 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2015160194A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034085A (ko) * 2000-06-05 2003-05-01 신젠타 리미티드 신규한 마이크로캡슐
KR100638516B1 (ko) * 2005-04-21 2006-11-06 학교법인 포항공과대학교 고분자 캡슐 및 그 제조방법
KR100988321B1 (ko) * 2003-07-26 2010-10-18 포항공과대학교 산학협력단 쿠커비투릴을 포함하는 고분자, 이를 이용한 정지상 및 컬럼
US20110311639A1 (en) * 2010-06-21 2011-12-22 Old Dominion University Research Foundation Facile Route to the Synthesis of Resorcinarene Nanocapsules
KR101118588B1 (ko) * 2011-08-03 2012-06-12 포항공과대학교 산학협력단 감응성 고분자 캡슐 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034085A (ko) * 2000-06-05 2003-05-01 신젠타 리미티드 신규한 마이크로캡슐
KR100988321B1 (ko) * 2003-07-26 2010-10-18 포항공과대학교 산학협력단 쿠커비투릴을 포함하는 고분자, 이를 이용한 정지상 및 컬럼
KR100638516B1 (ko) * 2005-04-21 2006-11-06 학교법인 포항공과대학교 고분자 캡슐 및 그 제조방법
US20110311639A1 (en) * 2010-06-21 2011-12-22 Old Dominion University Research Foundation Facile Route to the Synthesis of Resorcinarene Nanocapsules
KR101118588B1 (ko) * 2011-08-03 2012-06-12 포항공과대학교 산학협력단 감응성 고분자 캡슐 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, DONGWOO ET AL.: "Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface", ANGEWANDTE CHEMIE, vol. 119, no. 19, 15 January 2007 (2007-01-15), pages 3541 - 3544, XP002550558 *

Similar Documents

Publication Publication Date Title
Du et al. Cage-like silsesquioxanes-based hybrid materials
Zhu et al. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties
Li et al. A General and Efficient Route to Fabricate Carbon Nanotube‐Metal Nanoparticles and Carbon Nanotube‐Inorganic Oxides Hybrids
Hu et al. Core‐template‐free strategy for preparing hollow nanospheres
Zhang et al. Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers
KR101952023B1 (ko) 다중 가지를 갖는 금 나노입자 코어-코발트 기반 금속/유기 복합 다공체 쉘 혼성 구조체 및 그 합성방법
McHale et al. Synthesis of Prussian blue coordination polymer nanocubes via confinement of the polymerization field using miniemulsion periphery polymerization (MEPP)
Sanyal et al. Synthesis and assembly of gold nanoparticles in quasi‐linear Lysine–Keggin‐ion colloidal particles
JP2013194290A (ja) 銅ナノワイヤーの製造方法
Li et al. Hairy hybrid nanorattles of platinum nanoclusters with dual-responsive polymer shells for confined nanocatalysis
McHale et al. Dual lanthanide role in the designed synthesis of hollow metal coordination (Prussian Blue analogue) nanocages with large internal cavity and mesoporous cage
Ibrahimova et al. Facile synthesis of cross-linked patchy fluorescent conjugated polymer nanoparticles by click reactions
Tan et al. Facile synthesis of gold/polymer nanocomposite particles using polymeric amine-based particles as dual reductants and templates
WO2013074822A1 (en) Templated synthesis of metal nanorods in silica nanotubes
CN107828032B (zh) 一种超支化星状聚离子液体及其制备方法和应用
Javanbakht et al. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition
Wang et al. Hollow polyphosphazene microspheres with cross-linked chemical structure: synthesis, formation mechanism and applications
Rapakousiou et al. Liquid/liquid interfacial synthesis of a click nanosheet
Chomette et al. Templated growth of gold satellites on dimpled silica cores
EP3546424B1 (en) Method for manufacturing hollow structure
Wei et al. Polymer N-Heterocyclic Carbene (NHC) Ligands for Silver Nanoparticles
CN107900376B (zh) 一种水溶性银纳米颗粒的制备方法
US10543477B2 (en) Polymer capsule having loaded thereon transition metal particles having excellent water dispersibility and stability, and method for preparing same
Sanwaria et al. Multifunctional core–shell polymer–inorganic hybrid nanofibers prepared via block copolymer self-assembly
Koh et al. Au/CdS hybrid nanoparticles in block copolymer micellar shells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779677

Country of ref document: EP

Kind code of ref document: A1