WO2015159715A1 - Pump and resin composition - Google Patents

Pump and resin composition Download PDF

Info

Publication number
WO2015159715A1
WO2015159715A1 PCT/JP2015/060337 JP2015060337W WO2015159715A1 WO 2015159715 A1 WO2015159715 A1 WO 2015159715A1 JP 2015060337 W JP2015060337 W JP 2015060337W WO 2015159715 A1 WO2015159715 A1 WO 2015159715A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
pump
resin member
housing
metal
Prior art date
Application number
PCT/JP2015/060337
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 小泉
周 岡坂
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2015159715A1 publication Critical patent/WO2015159715A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a pump and a resin composition.
  • Patent Documents 1 and 2 are techniques related to a vane type vacuum pump.
  • Patent Document 1 there is an oil groove extending in a substantially tangential direction with respect to the outer periphery of the rotor in the vicinity of the contact portion of the thrust sliding contact surface that contacts the outer peripheral edge portion of the rotor by tilting the rotor when the rotor rotates.
  • a vane vacuum pump is described which is formed.
  • the housing and the rotor are both formed of the same kind of non-ferrous metal, and a hard surface treatment film is formed on at least one of the contact surfaces of the non-ferrous metal housing and the rotor.
  • a vane vacuum pump is described.
  • the pump is required to be lighter.
  • the resin metal composite formed by joining the resin member and metal member which are formed using a thermosetting resin composition, and at least one part of an inner wall surface is comprised by the said resin member.
  • the resin metal composite formed by joining a resin member and a metal member, and at least one part of the inner wall surface is comprised by the said resin member, and is accommodated in the said housing
  • a resin composition used for forming the resin member of a pump comprising a sliding contact member that is in sliding contact with a portion constituted by the resin member of the inner wall surface
  • a resin composition comprising a thermosetting resin is provided.
  • the weight of the pump can be reduced.
  • FIG. 1 is a plan view illustrating an example of a pump 100 according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the pump 100 shown in FIG.
  • the pump 100 according to the present embodiment includes a housing 10 and a sliding contact member.
  • the housing 10 is constituted by a resin-metal composite 20 formed by joining a resin member 22 formed using a thermosetting resin composition and a metal member 24.
  • the housing 10 includes at least a part of the inner wall surface 12 made of a resin member 22.
  • the slidable contact member is accommodated in the casing 10 and slidably contacts a portion of the inner wall surface 12 of the casing 10 constituted by the resin member 22.
  • the casing 10 constituting the pump 100 is constituted by the resin-metal composite 20 formed by joining the resin member 22 and the metal member 24. For this reason, the weight of the housing
  • the pump 100 will be described.
  • Examples of the pump 100 include a vacuum pump and an oil pump.
  • the pump 100 is a vane type vacuum pump is illustrated.
  • the pump 100 includes a vane 32 that is housed in the housing 10 and is a sliding member that is in sliding contact with the inner wall surface 12 of the housing 10.
  • the application of the pump 100 is not particularly limited, and examples thereof include an in-vehicle vacuum pump mounted on a vehicle.
  • a brake booster negative pressure generator can be exemplified.
  • the pump 100 includes a housing 10, a rotor 30, and a vane 32 that is a sliding member.
  • the housing 10 has, for example, a cylindrical shape in which one end side is opened and the other end side is closed.
  • the inner wall surface 12 of the cylindrical casing 10 includes an inner surface 122 and a closing surface 124 that closes the other end side.
  • the closing surface 124 is provided with a bearing portion 16 for supporting the rotor shaft 36, for example.
  • the one end side is obstruct
  • the housing 10 is provided with an intake port 40 for sucking air and an exhaust port 42 for discharging air, which are connected to different spaces.
  • the space surrounded by the housing 10 has, for example, an elliptical shape or a pseudo-elliptical shape in plan view.
  • the housing 10 is constituted by a resin metal composite 20 formed by joining a resin member 22 and a metal member 24. In this way, by configuring a part of the housing 10 with the resin member 22, it is possible to reduce the weight of the pump 100 as compared with a case where the housing 10 is configured with only a metal material. On the other hand, by using a part of the housing 10 as the metal member 24, the strength and rigidity, gas barrier properties, airtightness, thermal conductivity, and the like of the housing 10 can be improved.
  • the housing 10 includes at least a part of the inner wall surface 12 made of a resin member 22.
  • the vane 32 which is a slidable contact member can be slidably contacted with the resin member 22. For this reason, it becomes possible to improve the slidability etc. of the vane 32 and to improve the pump performance.
  • FIG. 1 and FIG. 2 the case where the whole inner wall surface 12 of the housing
  • the inner surface 122 and the closing surface 124 of the housing 10 are constituted by the resin member 22.
  • the configuration of the housing 10 is not limited to this.
  • only the inner surface 122 of the inner wall surface 12 of the housing 10 may be configured by the resin member 22, and the closing surface 124 may be configured by the metal member 24. .
  • the outer wall surface of the housing 10 is made of a metal member 24, for example.
  • a metal member 24 for example.
  • the resin metal composite 20 constituting the housing 10 has a thermal conductivity in the stacking direction of the resin member 22 and the metal member 24 measured by the laser flash method. It is preferably 0.5 W / (m ⁇ K) or more. Thereby, the heat dissipation of the housing
  • the resin member 22 and the metal member are set so that the thickness of the resin member 22 and the metal member 24 is 1: 1 with respect to the test piece in which the resin member 22 cut out from the housing 10 and the metal member 24 are joined.
  • What made 24 thin film can be made into a measurement sample.
  • the said heat conductivity can be obtained by measuring the heat conductivity in the lamination direction of the resin member 22 and the metal member 24 by the laser flash method.
  • the thermal conductivity of the resin-metal composite 20 is appropriately determined by, for example, the types and blending ratios of the components of the thermosetting resin composition, the method for producing the metal member 24, and the method for producing the housing 10 including the resin member 22 It is possible to control to the above numerical range by selecting In addition, as a method for manufacturing the housing 10, for example, adopting a manufacturing method illustrated in FIG. 4 to be described later is considered important from the viewpoint of controlling each characteristic of the resin member 22. The reason for this is not clear, but when the fibrous filler is included in the resin member 22, it is estimated as one of the factors that the orientation of the fibrous filler can be controlled.
  • the rotor 30 is accommodated in the housing 10 and is rotatably disposed at a position eccentric with respect to the housing 10.
  • FIG. 2 a case where the rotor shaft 36 of the rotor 30 is rotatably supported by the bearing portion 16 provided in the housing 10 is illustrated.
  • the rotor 30 is provided with a vane groove 34 that is a groove for slidably fitting the vane 32.
  • the vane groove 34 can be provided, for example, so as to pass through the center of the rotor 30 and penetrate the rotor 30 in the radial direction.
  • the configuration of the vane groove 34 is not limited to this, and for example, a plurality of vane grooves 34 may be provided in the rotor 30 radially.
  • the vane 32 is provided so as to be in sliding contact with a portion of the inner wall surface 12 of the housing 10 constituted by the resin member 22.
  • FIG. 1 the case where both ends of the vane 32 are in sliding contact with the inner side surface 122 constituted by the resin member 22 is illustrated.
  • the vane 32 is slidably fitted in the vane groove 34 of the rotor 30. As a result, the rotor 30 rotates and both ends of the vane 32 can be slid on the inner side surface 122 of the housing 10.
  • the vane 32 may have an end portion that contacts the inner surface 122 made of a material different from a portion other than the end portion.
  • the end of the vane 32 that is in contact with at least the inner surface 122 is formed by, for example, aluminum die casting. Thereby, the slidability with respect to the inner surface 122 can be improved.
  • the pump 100 has a plurality of pump chambers 14 partitioned by the rotor 30 and the vanes 32 in the housing 10, for example.
  • two pump chambers 14 are formed in the housing 10.
  • the air supplied from the intake port 40 to the one pump chamber 14 is compressed as the rotor 30 rotates.
  • the compressed air is discharged
  • the metal member 24 constituting the housing 10 will be described.
  • the metal material which comprises the metal member 24 is not specifically limited, For example, 1 type, or 2 or more types selected from iron, stainless steel, aluminum, an aluminum alloy, magnesium, magnesium alloy, copper, and a copper alloy can be included.
  • the metal member 24 is made of a metal material containing Al from the viewpoint of reducing the weight of the housing 10 and improving the strength and heat dissipation.
  • the metal material containing Al include aluminum and aluminum alloys.
  • the aluminum alloy can contain one or more metals other than Al.
  • the metal member 24 can have a shape corresponding to the housing 10 by processing the above-described metal material by a known processing method, for example.
  • the metal member 24 preferably has a glossiness of 0.1 or more and 30 or less, for example, at least on the joint surface with the resin member 22.
  • the glossiness of the metal member 24 indicates a value at a measurement angle of 60 ° measured in accordance with ASTM-D523.
  • the glossiness is more preferably 0.5 or more and 25 or less, and particularly preferably 1 or more and 20 or less.
  • the glossiness of the metal member 24 can be measured using, for example, a digital glossiness meter (20 °, 60 °) (GM-26, manufactured by Murakami Color Research Laboratory).
  • the glossiness at the joint surface of the metal member 24 may not be within the above numerical range.
  • FIG. 3 is a cross-sectional view showing a part of the metal member 24 of the pump 100 shown in FIG.
  • the case where the metal member 24 has the several recessed part 201 in the joining surface with the resin member 22 at least is illustrated.
  • at least a part of the cross-sectional shape of the plurality of recesses 201 is such that at least a part between the opening 203 and the bottom 205 of the recess 201 is larger than the cross-sectional width D1 of the opening 203.
  • the shape has a large cross-sectional width D2.
  • the resin member 22 is caught between the opening 203 and the bottom 205 of the recess 201, so that the anchor effect is effective. Thereby, the joining strength of the metal member 24 and the resin member 22 can be improved more effectively, and it becomes possible to contribute to the improvement of the thermal conductivity and temperature cycle resistance of the housing 10.
  • a recess 201 having a shape in which at least a part between the opening 203 and the bottom 205 has a cross-sectional width D2 larger than the cross-sectional width D1 of the opening 203 is formed. It does not have to be provided.
  • the metal member 24 preferably has a surface roughness Ra of 1.0 ⁇ m or more and 40.0 ⁇ m or less at the joint surface with the resin member 22.
  • the surface roughness Ra of the bonding surface of the metal member 24 is more preferably 1.0 ⁇ m or more and 20.0 ⁇ m or less, and preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less. Particularly preferred.
  • the metal member 24 preferably has a 10-point average roughness Rz of, for example, 1.0 ⁇ m or more and 40.0 ⁇ m or less on the joint surface with the resin member 22.
  • Rz the 10-point average roughness Rz of the bonded surface is more preferably 5.0 ⁇ m or more and 30.0 ⁇ m or less.
  • Ra and Rz in the said joint surface of the metal member 24 do not need to be in the said numerical range. Ra and Rz can be measured according to JIS-B0601.
  • the ratio of the actual surface area by the nitrogen adsorption BET method to the apparent surface area (hereinafter also simply referred to as the specific surface area) of the metal member 24 at least on the joint surface with the resin member 22 is preferably 100 or more, more preferably. 150 or more.
  • the specific surface area is equal to or greater than the lower limit, the bonding strength between the resin member 22 and the metal member 24 can be further improved. The reason for this is not clear, but the contact area between the resin member 22 and the metal member 24 increases, and as a result, the region where the resin member 22 and the metal member 24 enter each other increases, resulting in an increase in the region where the anchor effect works. it is conceivable that.
  • the specific surface area is preferably 400 or less, more preferably 380 or less, and particularly preferably 300 or less.
  • the bonding strength between the resin member 22 and the metal member 24 can be further improved.
  • the reason for this is not clear, but the following reasons can be considered as one factor. That is, by setting the specific surface area to be equal to or less than the upper limit value, the ratio of the metal member 24 in the region where the resin member 22 and the metal member 24 have entered each other is suppressed, and the mechanical strength in the region is reduced. Can be improved. As a result, it is considered that the bonding strength between the resin member 22 and the metal member 24 is further improved.
  • the apparent surface area means a surface area when it is assumed that the surface of the metal member 22 is smooth without unevenness.
  • the surface shape is rectangular, it can be expressed by vertical length ⁇ horizontal length.
  • the actual surface area by the nitrogen adsorption BET method means the BET surface area obtained from the adsorption amount of nitrogen gas. For example, using a specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.) for a vacuum dried sample to be measured, the nitrogen adsorption / desorption amount at liquid nitrogen temperature is measured, and based on the nitrogen adsorption / desorption amount The BET surface area can be calculated.
  • the metal member 24 can be subjected to chemical treatment on its surface using, for example, a surface treatment agent.
  • factors such as (1) combination of metal member and chemical treatment agent, (2) temperature and time of chemical treatment, and (3) post-treatment of the surface of the metal member after chemical treatment are advanced.
  • the metal member 24 exhibiting particularly excellent characteristics as a member used for the casing 10 of the pump 100 can be realized.
  • a surface treatment in which these factors are highly controlled for example, the glossiness, Ra, Rz, and specific surface area at the joint surface of the metal member 24 with the resin member 22 are in the numerical ranges as described above, and the cross section of the recess It becomes possible to make the shape as described above.
  • the surface treatment for the metal member 24 can be performed, for example, as follows. First, (1) a combination of the metal member 24 and the surface treatment agent is selected. When using the metal member 24 composed of iron or stainless steel, it is preferable to select an aqueous solution in which an inorganic acid, a chlorine ion source, a cupric ion source, and a thiol compound are combined as necessary. When using the metal member 24 composed of aluminum or an aluminum alloy, it is preferable to select an aqueous solution in which an alkali source, an amphoteric metal ion source, a nitrate ion source, and a thiol compound are combined as necessary.
  • an alkali source is used, and it is particularly preferable to select an aqueous solution of sodium hydroxide.
  • inorganic acids such as nitric acid and sulfuric acid
  • organic acids such as unsaturated carboxylic acids, persulfates, hydrogen peroxide, imidazole and derivatives thereof, tetrazole and derivatives thereof Azoles such as aminotetrazole and derivatives thereof, aminotriazole and derivatives thereof, pyridine derivatives, triazines, triazine derivatives, alkanolamines, alkylamine derivatives, polyalkylene glycols, sugar alcohols, cupric ion sources, chloride ion sources, phosphones It is preferable to select an aqueous solution using at least one selected from an acid chelating agent, an oxidizing agent, and N, N-bis (2-hydroxyethyl) -N
  • the metal member 24 is immersed in a surface treatment agent, and the surface of the metal member 24 is chemically treated.
  • the processing temperature is, for example, 30 ° C.
  • the treatment time is appropriately determined depending on the material and surface state of the metal member 24 to be selected, the type and concentration of the surface treatment agent, the treatment temperature, etc., and is, for example, 30 seconds to 300 seconds.
  • the etching amount of the metal member 24 in the depth direction is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the etching amount in the depth direction of the metal member 24 can be evaluated by calculating from the weight, specific gravity and surface area of the dissolved metal member 24.
  • the etching amount in the depth direction can be adjusted by the type and concentration of the surface treatment agent, the treatment temperature, the treatment time, and the like.
  • (3) post-treatment is performed on the surface of the metal member 24 after chemical treatment.
  • the metal member surface is washed with water and dried.
  • the chemically treated metal member surface is treated with an aqueous nitric acid solution or the like.
  • the metal member 24 subjected to the surface treatment with the chemical solution can be obtained.
  • the resin member 22 is formed using a thermosetting resin composition.
  • the resin member 22 is formed by curing a thermosetting resin composition described later.
  • the resin member 22 for example, one having a specific gravity smaller than that of Al can be used.
  • the specific gravity of the resin member 22 is not particularly limited, but is preferably 2.6 g / cm 3 or less, for example, and preferably 2.0 g / cm 3 or less. Thereby, weight reduction of the pump 100 can be achieved.
  • the specific gravity of the resin member 22 can be measured in accordance with, for example, JIS K6911.
  • the specific gravity of the resin member 22 matches the specific gravity of the cured product of the thermosetting resin composition used to form the resin member 22.
  • the average value of the friction coefficient measured under the conditions of a pressure of 2 MPa, a test speed of 0.1 m / s, and a test time of 60 minutes using the JIS K7218 A method is 0. 55 or less.
  • the slidability with respect to the resin member 22 of the vane 32 can be improved more effectively. Therefore, it is possible to realize the pump 100 that is excellent in pump performance, driving efficiency, long-term durability, and the like.
  • the average value of the friction coefficients is more preferably 0.52 or less, and particularly preferably 0.50 or less.
  • the measurement of the friction coefficient is performed on the measurement sample by, for example, producing a measurement sample using the surface constituting the inner wall surface 12 of the housing 10 from the resin member 22 peeled off from the pump 100.
  • cylindrical S45C can be used as a counterpart material for measurement.
  • the resin member 22 has an average value of 200 ° C. from the measurement start 30 minutes to 60 minutes of the sample temperature measured using, for example, JIS K7218 A method under a pressure of 2 MPa, a test speed of 0.1 m / s, and a test time of 60 minutes. It is as follows. Thereby, the heat resistance of the pump 100 can be improved. Moreover, the slidability with respect to the resin member 22 of the vane 32 can be improved more effectively. For this reason, the pump 100 excellent in pump performance, drive efficiency, long-term durability, etc. can be realized. From the viewpoint of improving the pump performance, the average value of the sample temperature is more preferably 150 ° C. or less, and particularly preferably 120 ° C. or less.
  • the sample temperature is measured by, for example, preparing a measurement sample using the surface constituting the inner wall surface 12 of the housing 10 as a measurement surface from the resin member 22 peeled off from the pump 100, and performing this measurement on the measurement sample.
  • cylindrical S45C can be used as a counterpart material for measurement.
  • Resin member 22 has, for example, a thermal conductivity of 0.3 W / (m ⁇ K) or more. Thereby, the heat dissipation of the resin member 22 can be improved. For this reason, for example, heat such as friction heat generated inside can be easily radiated to the outside. From the viewpoint of improving heat dissipation, the thermal conductivity is more preferably 0.35 W / (m ⁇ K) or more.
  • the thermal conductivity is measured by, for example, preparing a measurement sample having a thickness of 2 mm from the resin member 22 peeled off from the pump 100, and measuring the thermal conductivity in the thickness direction of the measurement sample using a laser flash method. This can be done by measuring.
  • the friction coefficient, the sample temperature, and the thermal conductivity of the resin member 22 are the same as the types and blending ratios of the components of the thermosetting resin composition, and the method for manufacturing the housing 10 including the resin member 22. It is possible to control to the above numerical range by appropriately selecting.
  • As a manufacturing method of the housing 10, for example, adopting a manufacturing method illustrated in FIG. 4 described later is considered to be important from the viewpoint of controlling each characteristic of the resin member 22. The reason for this is not clear, but when the fibrous filler is included in the resin member 22, it is estimated as one of the factors that the orientation of the fibrous filler can be controlled.
  • thermosetting resin composition that forms the resin member 22 includes a thermosetting resin (A).
  • the thermosetting resin composition is, for example, in the form of powder or tablet.
  • the term “powdered” refers to a powdered form, a granular form, and a case containing both a powdery form and a granular form.
  • thermosetting resin (A) includes, for example, phenol resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, melamine resin, oxetane resin, maleimide resin, urea (urea) resin, polyurethane resin, silicone resin, benzoxazine ring. 1 type or 2 types or more selected from resin to have, cyanate ester resin, etc. can be included.
  • the aspect containing the phenol resin which is excellent in heat resistance, workability, mechanical characteristics, electrical characteristics, adhesiveness, and wear resistance can be suitably employed.
  • the phenol resin is, for example, a novolak type phenolic resin such as a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin; One or two or more types selected from a resol type phenol resin such as a resol phenol resin; an aryl alkylene type phenol resin and the like can be included.
  • a novolak type phenolic resin such as a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin
  • a resol type phenol resin such as a resol phenol resin
  • an aryl alkylene type phenol resin and the like can be included.
  • the novolac type phenol It is more preferable to include at least one of a resin and a resol type phenol resin, and it is particularly preferable to include a novolac type phenol resin. Further, for example, an embodiment including both a novolac type phenol resin and a resol type phenol resin can also be adopted as one of preferable embodiments from the viewpoint of eliminating the curing agent described later.
  • hexamethylenetetramine can be used as a curing agent.
  • the content of hexamethylenetetramine is not particularly limited, for example, it is preferably 10 parts by mass or more and 25 parts by mass or less, and 13 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the novolac type phenol resin. More preferred.
  • the curing time at the time of molding can be shortened.
  • the external appearance of a molded article can be improved by making content of hexamethylenetetramine below the said upper limit.
  • the content of the thermosetting resin (A) is, for example, preferably 15% by mass or more, and more preferably 25% by mass or more with respect to the entire thermosetting resin composition. Thereby, the fluidity
  • the content of the thermosetting resin (A) is preferably 60% by mass or less, and more preferably 50% by mass or less, for example, with respect to the entire thermosetting resin composition. Thereby, the heat resistance and moisture resistance of the housing
  • a thermosetting resin composition can contain a filler (B), for example.
  • Filler (B) is, for example, graphite, fluorine resin such as polytetrafluoroethylene, clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, mica, glass flake, glass powder, magnesium carbonate, silica, oxidation Titanium, alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, aluminum nitride, boron nitride, silicon nitride, And one or more selected from fibrous fillers.
  • the resin member 22 is selected from graphite, polytetrafluoroethylene, glass fiber, carbon fiber, and clay. It is more preferable to include one or two or more, and it is particularly preferable to include two or more of these.
  • the filler (B) functioning as a solid lubricant in the thermosetting resin composition from the viewpoint of improving slidability.
  • the filler (B) that functions as a solid lubricant include graphite, carbon fiber, and fluororesin such as polytetrafluoroethylene.
  • the content of the filler (B) is, for example, preferably 30% by mass or more, and more preferably 40% by mass or more with respect to the entire thermosetting resin composition. Thereby, the mechanical strength, heat resistance, moisture resistance, and slidability of the resin member 22 obtained using the thermosetting resin composition can be improved more effectively.
  • the content of the filler (B) is, for example, preferably 80% by mass or less, and more preferably 70% by mass or less, with respect to the entire thermosetting resin composition. Thereby, the fluidity
  • thermosetting resin composition can contain a coupling agent (C), for example.
  • a coupling agent (C) for example.
  • the adhesiveness of the resin member 22 and the metal member 24 can be improved.
  • the dispersibility of a filler (B) can be improved and it can contribute to the improvement of the mechanical strength of the resin member 22, etc.
  • the coupling agent (C) can include, for example, a silane coupling agent.
  • the silane coupling agent include epoxy group-containing alkoxysilane compounds such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane; Mercapto group-containing alkoxysilane compounds such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane; ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ - (2-ureidoethyl) aminopropyl Ureido group-containing alkoxysilane compounds such as trimethoxysilane; ⁇ -isocyanatopropyltriethoxys
  • the content of the coupling agent (C) is, for example, preferably 0.01% by mass or more and 4% by mass or less, and more preferably 0.1% by mass or more and 1% by mass or less with respect to the entire thermosetting resin composition. It is more preferable. Thereby, it becomes possible to improve the adhesiveness of the resin member 22 and the metal member 24, and the mechanical strength of the resin member 22 more effectively.
  • the thermosetting resin composition can further contain a curing aid such as slaked lime or magnesium oxide.
  • a curing aid such as slaked lime or magnesium oxide.
  • the thermosetting resin composition is selected from, for example, elastomers, curing agents, release agents, pigments, flame retardants, weathering agents, antioxidants, plasticizers, lubricants, and foaming agents.
  • One or more additives may be further included.
  • the thermosetting resin composition can be obtained by mixing a mixture obtained by, for example, mixing the components uniformly, with a kneading apparatus alone such as a roll, a kneader, or a twin screw extruder, or with a roll and another kneading apparatus. After being melted and kneaded in a combination of the above, it can be cooled, granulated or pulverized, and further classified if necessary.
  • thermosetting resin composition for example, a cured film obtained by heating at 175 ° C. for 3 minutes has a thermal conductivity of 0.3 W / m ⁇ K or more. Thereby, it becomes easy to control the heat conductivity of the resin member 22 to a desired value, and it can contribute to the improvement of the heat dissipation of the resin member 22. From the viewpoint of improving the heat dissipation of the resin member 22, the thermal conductivity is more preferably 0.35 W / (m ⁇ K) or more.
  • a test piece having a thickness of 2 mm produced by molding a thermosetting resin composition under the conditions of an effective pressure of 20 MPa, a mold temperature of 175 ° C., and a curing time of 3 minutes using a compression molding machine
  • the thermal conductivity in the thickness direction measured using the laser flash method can be set as the thermal conductivity.
  • the thermal conductivity can be controlled, for example, by appropriately adjusting the type and blending ratio of each component of the thermosetting resin composition.
  • the housing 10 is manufactured.
  • the housing 10 is obtained by forming a resin member 22 by molding a thermosetting resin composition on a metal member 24 obtained by processing a metal material, for example.
  • Molding of the thermosetting resin composition is not particularly limited, and can be performed using, for example, an injection molding method, a transfer molding method, a compression molding method, an injection compression molding method, or the like.
  • FIG. 4 is a cross-sectional view illustrating an example of a method for manufacturing the pump 100 according to the present embodiment.
  • the housing 10 constituted by the resin-metal composite 20 can be formed, for example, by the manufacturing method shown in FIG. Thereby, as will be described later, each characteristic of the resin member 22 and the resin-metal composite 20 can be improved.
  • 4 schematically shows the structure of each member, and the structure of each member is not limited to that shown in FIG.
  • the manufacturing method shown in FIG. 4 is performed as follows, for example.
  • the metal member 24 is produced.
  • the metal member 24 can be produced by the method exemplified above.
  • a plurality of metal members 24 that are combined with each other to form one housing 10 are manufactured.
  • the plurality of metal members 24 and the resin member 22 are joined and integrated to form the housing 10. .
  • the molding die 3 shown in FIG. 4 (a) is prepared.
  • the molding die 3 according to this embodiment includes a second mold part 2 (upper mold) and a first mold part 1 (lower mold).
  • a molding space 66 in which the metal member 100 is arranged in a subsequent process is formed.
  • the second mold part 2 is inserted into the pot 60 for charging the thermosetting resin composition 68 before molding, and then inserted into the pot 60 to melt the thermosetting resin composition 68 under pressure.
  • a plunger 64 provided with an auxiliary ram and a sprue 62 for feeding the molten thermosetting resin composition 68 into the molding space 66 are provided.
  • the molding die 3 according to the present embodiment is a pot type transfer molding machine that does not include an auxiliary ram, even if it is applied to a plunger type transfer molding machine that includes an auxiliary ram as shown in FIG. It may be applied (not shown).
  • a plurality of metal members 24 are arranged in the molding space 66 of the molding die 3. Specifically, the first mold part 1 is lowered, and the plurality of metal members 24 are arranged without being fixed to a part corresponding to the molding space 66 in a state where the molding die 3 is opened. Thereby, when the molten thermosetting resin composition 68 is introduced into the molding space 66, the metal member 24 is moved to either the second mold part 2 or the first mold part 1 by the flow pressure of the introduced resin. Can be pressed against the wall surface (molding surface) of the mold member. In the present embodiment, each metal member 24 is pressed against the wall surface of the first mold part 1. For this reason, generation
  • the molding space 66 is filled with the thermosetting resin composition 68 as follows. First, the first mold part 1 is raised, the first mold part 1 and the second mold part 2 are clamped, and the molding die 3 is closed. The resin composition 68 is charged. Although the property of the thermosetting resin composition 68 before molding is not particularly limited, it may remain in a granular form, may be molded into a tablet shape, or is preheated by a preheater or the like in advance. It may be in a semi-molten state. Next, in order to melt the thermosetting resin composition 68 charged in the pot 60, a pressure is applied to the thermosetting resin composition 68 by inserting a plunger 64 having an auxiliary ram into the pot 60.
  • thermosetting resin composition 68 is introduced into the molding space 66 through the sprue 62.
  • the thermosetting resin composition 68 introduced into the molding space 66 flows in the direction indicated by the dotted line shown in FIG.
  • the metal member 24 is pressed against the first mold part 1 by the flow pressure of the thermosetting resin composition 68, and the metal member 24 is apparently fixed to the wall surface of the first mold part 1.
  • Can do. The melting of the thermosetting resin composition 68 in the pot 60 and the introduction and filling of the molten thermosetting resin composition 68 into the molding space 66 are performed simultaneously.
  • thermosetting resin composition 68 filled in the molding space 66 is cured by heating and pressing.
  • cured material of the thermosetting resin composition 68 will be formed.
  • the resin member 22 is formed, and the resin member 22 and the metal member 24 are joined to each other to form the resin-metal composite 20, thereby forming the housing 10.
  • the thermosetting resin composition 68 introduced into the molding space 66 proceeds in one direction without flowing back. As a result, the slidability, thermal conductivity, strength, and durability of the resin member 22 and the thermal conductivity, strength, and durability of the resin metal composite 20 can be improved.
  • thermosetting resin composition 68 when a fibrous filler is contained in the thermosetting resin composition 68, the thermosetting resin composition 68 is allowed to proceed in one direction without backflow. It is estimated that one of the factors is that the orientation of the fibrous filler in the cured resin member 22 can be controlled uniformly.
  • thermosetting resin composition 68 it is more preferable to introduce the molten thermosetting resin composition 68 into the molding space 66 after degassing the molding space 66. preferable. Thereby, possibility that a void will arise in the resin member 22 can be reduced. For this reason, the resin metal composite 20 which is further excellent in thermal conductivity and mechanical strength can be obtained.
  • thermosetting resin composition 68 is cured, the molding die 3 is opened to obtain a resin-metal composite 20 having a good quality in which the generation of burrs can be suppressed.
  • the cured product (cal) of the thermosetting resin composition 68 remaining in the pot 60 and the cured product in the sprue 62 are pulled up by the plunger 64 before opening the molding die 3, thereby forming the resin-metal composite 20.
  • the housing 10 constituted by the resin-metal composite 20 can be formed in this manner.
  • the rotor 30 having the vane grooves 34 and the vanes 32 disposed in the vane grooves 34 are accommodated in the housing 10.
  • the vane 32 is disposed so that the vane 32 is in sliding contact with the portion of the inner wall surface 12 of the housing 10 formed by the resin member 22.
  • the cover 50 is attached to the housing 10.
  • the pump 100 is manufactured in this manner.
  • thermosetting resin composition 34.3% by mass of novolac-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 6.0% by mass of hexamethylenetetramine, glass fiber (manufactured by Nitto Boseki Co., Ltd., average particle size: 11 ⁇ m, average) Major axis: 3 mm, average aspect ratio: 270) 57.1% by mass, magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) 0.5% by mass, ⁇ -aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) ) 0.2% by mass and 1.8% by mass of other components such as a lubricant are each dry-mixed, melted and kneaded with a heating roll at 90 ° C., cooled into a sheet, and pulverized Thus, a granular thermosetting resin composition 34.3% by mass of novolac
  • the aluminum alloy member was immersed and swung in the obtained aqueous solution (30 ° C.), and dissolved in the depth direction by 15 ⁇ m (calculated from the reduced weight of aluminum). Subsequently, it was washed with water, immersed in a 35% by mass nitric acid aqueous solution (30 ° C.) and rocked for 20 seconds. Then, it washed with water and dried and obtained the two metal members for cases which consist of the said aluminum alloy member.
  • casing comprised by the resin metal composite was produced using the obtained said thermosetting resin composition and the said metal member for housing
  • thermosetting resin composition was molded under conditions of an injection pressure of 6.9 MPa, a mold temperature of 175 ° C., and a curing time of 120 seconds.
  • casing was obtained.
  • the inner side including an inner wall face was comprised by the resin member (thickness 3mm), and the outer side containing an outer wall surface was comprised by the metal member for cases (thickness 3mm).
  • the obtained casing is hollow inside, one end side is opened, and a through hole serving as a bearing portion for fixing the rotor shaft is provided on the other end side. It was a substantially elliptical column shape.
  • a rotor having a vane as a sliding contact member was rotatably arranged in the casing obtained above.
  • the vane and the rotor were arranged so that the vane was in sliding contact with the portion of the inner wall surface of the housing that was formed by the resin member.
  • casing among vanes was comprised by the aluminum die-casting.
  • the cover was fixed to one end side of the substantially elliptical columnar casing. As a result, a pump was obtained.
  • casing was image
  • the said joint surface was roughened and it had several recessed part in the said joint surface.
  • the cross-sectional shape of some of the recesses has a shape in which at least a part from the opening to the bottom of the recess has a cross-sectional width larger than the cross-sectional width of the opening.
  • Glossiness of the surface of the metal member for the case is measured using a digital gloss meter (20 °, 60 °) (GM-26, manufactured by Murakami Color Research Laboratory) in accordance with ASTM-D523. Measurements were made at 60 ° (incident angle 60 °, reflection angle 60 °). The glossiness of the casing metal member was 10.
  • the metal member for housing was vacuum-dried at 120 ° C. for 6 hours, and then the nitrogen adsorption / desorption amount at the liquid nitrogen temperature was measured using an automatic specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.).
  • BELSORPmini II automatic specific surface area / pore distribution measuring device
  • the actual surface area by the nitrogen adsorption BET method was calculated from the BET plot.
  • the specific surface area was calculated by dividing the actual surface area measured by the nitrogen adsorption BET method by the apparent surface area.
  • the specific surface area of the casing metal member was 270.
  • thermosetting resin composition 35.1% by mass of novolac type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 4.9% by mass of hexamethylenetetramine, 57.9% by mass of graphite (manufactured by Nishimura Graphite Co., Ltd.), oxidized 0.4% by mass of magnesium (manufactured by Kamishima Chemical Co., Ltd.), 0.7% by mass of slaked lime (manufactured by Chichibu Lime Industry Co., Ltd.), and 1.1% by mass of other components such as a lubricant, respectively.
  • the mixture was dry-mixed, melted and kneaded with a heating roll at 90 ° C., cooled into a sheet, and pulverized to obtain a granular thermosetting resin composition.
  • thermosetting resin composition 10.7% by mass of novolac type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 25.3% by mass of resol type phenolic resin, and 1.8% by mass of slaked lime (manufactured by Chichibu Lime Industry Co., Ltd.) , 53.5% by mass of glass fiber (manufactured by Nittobo Co., Ltd., average particle size: 11 ⁇ m, average major axis: 3 mm, average aspect ratio: 270), 4.9% by mass of clay (manufactured by Engel Heart), 0.5% by mass of ⁇ -aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and 3.3% by mass of other components such as a lubricant were each dry-mixed and heated at 90 ° C. The mixture was melt-kneaded and crushed and cooled to obtain
  • a molar ratio (F / P) 1.7 of phenol (P) and formaldehyde (F) in a reaction kettle equipped with a reflux condenser agitator, a heating device, and a vacuum dehydration device. Then, 0.5 parts by weight of zinc acetate is added to 100 parts by weight of phenol, the pH of the reaction system is adjusted to 5.5, and the refluxing reaction is performed for 3 hours. Thereafter, the degree of vacuum is 100 Torr, the temperature Steam-distilled at 100 ° C. for 2 hours to remove unreacted phenol, and further reacted at a vacuum of 100 Torr and a temperature of 115 ° C. for 1 hour, and having a number average molecular weight of 800 dimethylene ether type (solid ) Was used as the main component.
  • thermosetting resin composition 34.0% by mass of novolac type phenol resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 6.0% by mass of hexamethylenetetramine, 21.0% by mass of graphite (manufactured by Nishimura Graphite Co., Ltd.), carbon 30.0% by mass of fiber (manufactured by Zoltech), 1.5% by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.), and 7.5% by mass of other components such as lubricants were dry mixed. These were melt-kneaded with a heating roll at 90 ° C., crushed and cooled to obtain a granular thermosetting resin composition.
  • the portion of the vane that is in sliding contact with the inner wall surface of the casing is constituted by aluminum die casting.
  • the cover was fixed to one end side of the substantially elliptical columnar casing. As a result, a pump was obtained.
  • the thermal conductivity (W / (m * K)) of the obtained resin member was measured as follows. First, the resin member was peeled off from the pump obtained above, and a measurement sample (10 mm ⁇ 10 mm ⁇ 2 mm thick square plate test piece) was produced from this resin member. Subsequently, the thermal conductivity of the thickness direction was measured about the obtained measurement sample using the laser flash method, and this was made into the thermal conductivity of the resin member.
  • the performance evaluation of the pump was performed as follows, respectively. First, the pump obtained above was driven for 1000 hours. Next, the temperature of the pump after driving for 1000 hours was measured. Here, the temperature rise value is calculated by driving for 1000 hours, the temperature rise value is 100 ° C. or less as ⁇ , the one exceeding 100 ° C. and 150 ° C. or less as ⁇ , and the one exceeding 150 ° C. as x. Evaluation was performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A pump comprises a resin-metal composite (20) formed by joining a metal member (24) and a resin member (22) which is formed using a thermosetting resin composition. The pump is provided with a housing (10) having an inner wall surface (12), at least a part of which comprises the resin member (22); and a sliding contact member received within the housing (10) and in sliding contact with the portion of the inner wall surface (12), which comprises the resin member (22).

Description

ポンプ、および樹脂組成物Pump and resin composition
 本発明は、ポンプ、および樹脂組成物に関する。 The present invention relates to a pump and a resin composition.
 ポンプに関する技術は、様々に検討がなされており、たとえば特許文献1および2に記載のものが挙げられる。 The technology related to the pump has been studied in various ways, for example, those described in Patent Documents 1 and 2.
 特許文献1および2は、いずれもベーン式バキュームポンプに関する技術である。特許文献1には、ロータの回転時にロータが傾斜することにより、ロータの外周エッジ部と接触するスラスト方向摺接面の接触部位近傍に、ロータの外周に対して略接線方向に延びるオイル溝が形成されているベーン式バキュームポンプが記載されている。特許文献2には、ハウジングおよびロータを、共に同種の非鉄金属により形成し、かつこれらの非鉄金属製のハウジングとロータとの互いの接触面の少なくともいずれか一方に、硬質の表面処理膜を形成したベーン式バキュームポンプが記載されている。 Patent Documents 1 and 2 are techniques related to a vane type vacuum pump. In Patent Document 1, there is an oil groove extending in a substantially tangential direction with respect to the outer periphery of the rotor in the vicinity of the contact portion of the thrust sliding contact surface that contacts the outer peripheral edge portion of the rotor by tilting the rotor when the rotor rotates. A vane vacuum pump is described which is formed. In Patent Document 2, the housing and the rotor are both formed of the same kind of non-ferrous metal, and a hard surface treatment film is formed on at least one of the contact surfaces of the non-ferrous metal housing and the rotor. A vane vacuum pump is described.
特開2004-263690号公報JP 2004-263690 A 特開2010-112332号公報JP 2010-112332 A
 ポンプについては、その軽量化が求められている。 The pump is required to be lighter.
 本発明によれば、
 熱硬化性樹脂組成物を用いて形成される樹脂部材と金属部材を接合してなる樹脂金属複合体により構成されており、かつ内壁面のうちの少なくとも一部が前記樹脂部材により構成されている筐体と、
 前記筐体内に収容されており、かつ前記内壁面のうちの前記樹脂部材により構成される部分に摺接する摺接部材と、
 を備えるポンプが提供される。
According to the present invention,
It is comprised by the resin metal composite formed by joining the resin member and metal member which are formed using a thermosetting resin composition, and at least one part of an inner wall surface is comprised by the said resin member. A housing,
A sliding contact member that is accommodated in the housing and that is in sliding contact with a portion of the inner wall surface that is configured by the resin member;
A pump is provided.
 本発明によれば、
 樹脂部材と金属部材を接合してなる樹脂金属複合体により構成されており、かつ内壁面のうちの少なくとも一部が前記樹脂部材により構成されている筐体と、前記筐体内に収容されており、かつ前記内壁面のうちの前記樹脂部材により構成される部分に摺接する摺接部材と、を備えるポンプの、前記樹脂部材を形成するために用いられる樹脂組成物であって、
 熱硬化性樹脂を含む樹脂組成物が提供される。
According to the present invention,
It is comprised by the resin metal composite formed by joining a resin member and a metal member, and at least one part of the inner wall surface is comprised by the said resin member, and is accommodated in the said housing | casing And a resin composition used for forming the resin member of a pump comprising a sliding contact member that is in sliding contact with a portion constituted by the resin member of the inner wall surface,
A resin composition comprising a thermosetting resin is provided.
 本発明によれば、ポンプの軽量化を図ることができる。 According to the present invention, the weight of the pump can be reduced.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係るポンプの一例を示す平面図である。It is a top view which shows an example of the pump which concerns on this embodiment. 図1に示すポンプを示す断面図である。It is sectional drawing which shows the pump shown in FIG. 図1に示すポンプの金属部材の一部を示す断面図である。It is sectional drawing which shows a part of metal member of the pump shown in FIG. 本実施形態に係るポンプの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the pump which concerns on this embodiment.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、本実施形態に係るポンプ100の一例を示す平面図である。図2は、図1に示すポンプ100を示す断面図である。なお、図1および図2においては、各部材の構造が模式的に示されており、各部材の構造は図1および図2に示すものに限定されない。
 本実施形態に係るポンプ100は、筐体10と、摺接部材と、を備えている。筐体10は、熱硬化性樹脂組成物を用いて形成される樹脂部材22と金属部材24を接合してなる樹脂金属複合体20により構成されている。また、筐体10は、内壁面12のうちの少なくとも一部が樹脂部材22により構成されている。摺接部材は、筐体10内に収容されており、かつ筐体10の内壁面12のうちの樹脂部材22により構成される部分に摺接する。
FIG. 1 is a plan view illustrating an example of a pump 100 according to the present embodiment. FIG. 2 is a cross-sectional view showing the pump 100 shown in FIG. In FIGS. 1 and 2, the structure of each member is schematically shown, and the structure of each member is not limited to that shown in FIGS.
The pump 100 according to the present embodiment includes a housing 10 and a sliding contact member. The housing 10 is constituted by a resin-metal composite 20 formed by joining a resin member 22 formed using a thermosetting resin composition and a metal member 24. In addition, the housing 10 includes at least a part of the inner wall surface 12 made of a resin member 22. The slidable contact member is accommodated in the casing 10 and slidably contacts a portion of the inner wall surface 12 of the casing 10 constituted by the resin member 22.
 本実施形態によれば、ポンプ100を構成する筐体10は、樹脂部材22と金属部材24を接合してなる樹脂金属複合体20により構成される。このため、筐体10を金属材料のみにより形成する場合と比較して、筐体10の重量を低減することができる。したがって、ポンプ100の軽量化を図ることが可能となる。 According to the present embodiment, the casing 10 constituting the pump 100 is constituted by the resin-metal composite 20 formed by joining the resin member 22 and the metal member 24. For this reason, the weight of the housing | casing 10 can be reduced compared with the case where the housing | casing 10 is formed only with a metal material. Therefore, it is possible to reduce the weight of the pump 100.
 以下、ポンプ100、およびポンプ100を構成する各部材について詳細に説明する。 Hereinafter, the pump 100 and each member constituting the pump 100 will be described in detail.
<ポンプ>
 まず、ポンプ100について説明する。
 ポンプ100としては、たとえば真空ポンプやオイルポンプが挙げられる。本実施形態においては、ポンプ100がベーン式真空ポンプである場合が例示される。この場合、ポンプ100は、筐体10内に収容され、かつ筐体10の内壁面12に摺接する摺接部材であるベーン32を備えることとなる。ポンプ100の用途としては、とくに限定されないが、たとえば車両に搭載される車載用真空ポンプが挙げられる。車載用真空ポンプとしては、ブレーキブースタ用負圧発生装置を例示することができる。
<Pump>
First, the pump 100 will be described.
Examples of the pump 100 include a vacuum pump and an oil pump. In this embodiment, the case where the pump 100 is a vane type vacuum pump is illustrated. In this case, the pump 100 includes a vane 32 that is housed in the housing 10 and is a sliding member that is in sliding contact with the inner wall surface 12 of the housing 10. The application of the pump 100 is not particularly limited, and examples thereof include an in-vehicle vacuum pump mounted on a vehicle. As a vehicle-mounted vacuum pump, a brake booster negative pressure generator can be exemplified.
 図1および図2に示す例において、ポンプ100は、筐体10と、ロータ30と、摺接部材であるベーン32と、を備えている。筐体10は、たとえば一端側が開放され、他端側が閉塞された筒状である。この場合、筒状である筐体10の内壁面12は、内側面122と、他端側を閉塞する閉塞面124と、を有する。閉塞面124には、たとえばロータ軸36を支持するための軸受部16が設けられる。また、一端側は、たとえばカバー50により閉塞される。筐体10には、空気を吸入する吸気口40と、空気を排出する排気口42と、がそれぞれ互いに異なる空間に接続されるように設けられている。筐体10に囲まれた空間は、平面視において、たとえば楕円形状あるいは擬楕円形状を有する。 1 and 2, the pump 100 includes a housing 10, a rotor 30, and a vane 32 that is a sliding member. The housing 10 has, for example, a cylindrical shape in which one end side is opened and the other end side is closed. In this case, the inner wall surface 12 of the cylindrical casing 10 includes an inner surface 122 and a closing surface 124 that closes the other end side. The closing surface 124 is provided with a bearing portion 16 for supporting the rotor shaft 36, for example. Moreover, the one end side is obstruct | occluded by the cover 50, for example. The housing 10 is provided with an intake port 40 for sucking air and an exhaust port 42 for discharging air, which are connected to different spaces. The space surrounded by the housing 10 has, for example, an elliptical shape or a pseudo-elliptical shape in plan view.
 筐体10は、樹脂部材22と金属部材24を接合してなる樹脂金属複合体20により構成される。このように、筐体10の一部を樹脂部材22により構成することにより、金属材料のみにより構成する場合と比較して、ポンプ100の軽量化を図ることができる。一方で、筐体10の一部を金属部材24とすることにより、筐体10の強度や剛性、ガスバリア性、気密性、熱伝導性等を向上させることができる。 The housing 10 is constituted by a resin metal composite 20 formed by joining a resin member 22 and a metal member 24. In this way, by configuring a part of the housing 10 with the resin member 22, it is possible to reduce the weight of the pump 100 as compared with a case where the housing 10 is configured with only a metal material. On the other hand, by using a part of the housing 10 as the metal member 24, the strength and rigidity, gas barrier properties, airtightness, thermal conductivity, and the like of the housing 10 can be improved.
 筐体10は、内壁面12のうちの少なくとも一部が樹脂部材22により構成されている。これにより、摺接部材であるベーン32を、樹脂部材22に摺接させることができる。このため、ベーン32の摺動性等を向上させ、ポンプ性能の向上を図ることが可能となる。図1および図2においては、筐体10の内壁面12全体が樹脂部材22により構成される場合が例示されている。この場合、筐体10のうちの内側面122および閉塞面124が樹脂部材22により構成されることとなる。筐体10の構成は、これに限定されず、たとえば筐体10の内壁面12のうちの内側面122のみが樹脂部材22により構成され、閉塞面124が金属部材24により構成されていてもよい。 The housing 10 includes at least a part of the inner wall surface 12 made of a resin member 22. Thereby, the vane 32 which is a slidable contact member can be slidably contacted with the resin member 22. For this reason, it becomes possible to improve the slidability etc. of the vane 32 and to improve the pump performance. In FIG. 1 and FIG. 2, the case where the whole inner wall surface 12 of the housing | casing 10 is comprised with the resin member 22 is illustrated. In this case, the inner surface 122 and the closing surface 124 of the housing 10 are constituted by the resin member 22. The configuration of the housing 10 is not limited to this. For example, only the inner surface 122 of the inner wall surface 12 of the housing 10 may be configured by the resin member 22, and the closing surface 124 may be configured by the metal member 24. .
 筐体10の外壁面は、たとえば金属部材24により構成される。このように、筐体10の外壁面を金属部材24により構成することによって、筐体10の耐攻撃性を効果的に向上させることが可能となる。図1および図2においては、筐体10の外壁面全体が金属部材24により構成される場合が例示されているが、これに限定されない。 The outer wall surface of the housing 10 is made of a metal member 24, for example. Thus, by configuring the outer wall surface of the casing 10 with the metal member 24, it is possible to effectively improve the attack resistance of the casing 10. In FIG. 1 and FIG. 2, the case where the whole outer wall surface of the housing | casing 10 is comprised with the metal member 24 is illustrated, However, It is not limited to this.
 筐体10を構成する樹脂金属複合体20は、たとえば樹脂部材22と金属部材24の厚さが等しい場合において、レーザーフラッシュ法により測定した樹脂部材22と金属部材24の積層方向における熱伝導率が0.5W/(m・K)以上であることが好ましい。これにより、筐体10の放熱性を向上させることができる。筐体10の放熱性を向上させる観点からは、上記熱伝導率が0.6W/(m・K)以上であることがより好ましく、0.7W/(m・K)以上であることがとくに好ましい。
 ここでは、たとえば筐体10から切り出した樹脂部材22と金属部材24が接合された試験片に対して樹脂部材22と金属部材24の厚さが1:1となるように樹脂部材22および金属部材24の薄膜化を行ったものを測定サンプルとすることができる。この測定サンプルについて、樹脂部材22と金属部材24の積層方向における熱伝導率をレーザーフラッシュ法により測定することにより、上記熱伝導率を得ることができる。
For example, when the resin member 22 and the metal member 24 are equal in thickness, the resin metal composite 20 constituting the housing 10 has a thermal conductivity in the stacking direction of the resin member 22 and the metal member 24 measured by the laser flash method. It is preferably 0.5 W / (m · K) or more. Thereby, the heat dissipation of the housing | casing 10 can be improved. From the viewpoint of improving the heat dissipation of the housing 10, the thermal conductivity is more preferably 0.6 W / (m · K) or more, and particularly preferably 0.7 W / (m · K) or more. preferable.
Here, for example, the resin member 22 and the metal member are set so that the thickness of the resin member 22 and the metal member 24 is 1: 1 with respect to the test piece in which the resin member 22 cut out from the housing 10 and the metal member 24 are joined. What made 24 thin film can be made into a measurement sample. About this measurement sample, the said heat conductivity can be obtained by measuring the heat conductivity in the lamination direction of the resin member 22 and the metal member 24 by the laser flash method.
 なお、樹脂金属複合体20の熱伝導率は、たとえば熱硬化性樹脂組成物の各成分の種類や配合割合、金属部材24の作製方法、および樹脂部材22を含む筐体10の作製方法を適切に選択することにより上記数値範囲に制御することが可能である。また、筐体10の作製方法としては、たとえば後述する図4において例示する製造方法を採用すること等が、樹脂部材22の各特性を制御する観点から重要であるものと考えられる。この理由は、明らかではないが、樹脂部材22中に繊維状充填剤を含む場合には、この繊維状充填剤の配向を制御できること等がその要因の一つとして推定される。 The thermal conductivity of the resin-metal composite 20 is appropriately determined by, for example, the types and blending ratios of the components of the thermosetting resin composition, the method for producing the metal member 24, and the method for producing the housing 10 including the resin member 22 It is possible to control to the above numerical range by selecting In addition, as a method for manufacturing the housing 10, for example, adopting a manufacturing method illustrated in FIG. 4 to be described later is considered important from the viewpoint of controlling each characteristic of the resin member 22. The reason for this is not clear, but when the fibrous filler is included in the resin member 22, it is estimated as one of the factors that the orientation of the fibrous filler can be controlled.
 ロータ30は、筐体10内に収容され、筐体10に対して偏心した位置に回転自在に配置されている。図2においては、筐体10に設けられた軸受部16において、ロータ30のロータ軸36が回転自在に支持される場合が例示されている。また、ロータ30には、ベーン32を摺動可能に嵌合するための溝部であるベーン溝34が設けられている。ベーン溝34は、たとえばロータ30の中心を通り、かつロータ30を径方向に貫通するように設けることができる。なお、ベーン溝34の構成は、これに限定されず、たとえば複数のベーン溝34が放射状にロータ30に設けられていてもよい。 The rotor 30 is accommodated in the housing 10 and is rotatably disposed at a position eccentric with respect to the housing 10. In FIG. 2, a case where the rotor shaft 36 of the rotor 30 is rotatably supported by the bearing portion 16 provided in the housing 10 is illustrated. In addition, the rotor 30 is provided with a vane groove 34 that is a groove for slidably fitting the vane 32. The vane groove 34 can be provided, for example, so as to pass through the center of the rotor 30 and penetrate the rotor 30 in the radial direction. The configuration of the vane groove 34 is not limited to this, and for example, a plurality of vane grooves 34 may be provided in the rotor 30 radially.
 ベーン32は、筐体10の内壁面12のうちの樹脂部材22により構成される部分に摺接するように設けられている。図1においては、ベーン32の両端が、樹脂部材22により構成される内側面122に摺接する場合が例示されている。ベーン32は、ロータ30のベーン溝34に摺動可能に嵌合されている。これにより、ロータ30が回転するとともに、ベーン32の両端を筐体10の内側面122上に摺動させることができる。ベーン32は、内側面122に接する端部が、当該端部以外の部分と異なる材料により構成されていてもよい。 The vane 32 is provided so as to be in sliding contact with a portion of the inner wall surface 12 of the housing 10 constituted by the resin member 22. In FIG. 1, the case where both ends of the vane 32 are in sliding contact with the inner side surface 122 constituted by the resin member 22 is illustrated. The vane 32 is slidably fitted in the vane groove 34 of the rotor 30. As a result, the rotor 30 rotates and both ends of the vane 32 can be slid on the inner side surface 122 of the housing 10. The vane 32 may have an end portion that contacts the inner surface 122 made of a material different from a portion other than the end portion.
 ベーン32のうち少なくとも内側面122に接する端部は、たとえばアルミダイキャストにより構成される。これにより、内側面122に対する摺動性を向上させることができる。 The end of the vane 32 that is in contact with at least the inner surface 122 is formed by, for example, aluminum die casting. Thereby, the slidability with respect to the inner surface 122 can be improved.
 ポンプ100は、たとえば筐体10内に、ロータ30およびベーン32によって区画された複数のポンプ室14を有している。図1および図2に示す例においては、たとえば二つのポンプ室14が筐体10内に形成される。この場合、吸気口40から一方のポンプ室14に供給された空気は、ロータ30の回転とともに圧縮される。そして、圧縮された空気は、排気口42から外部へ排出される。これを繰り返すことにより、吸気口40につながる空間が減圧されることとなる。 The pump 100 has a plurality of pump chambers 14 partitioned by the rotor 30 and the vanes 32 in the housing 10, for example. In the example shown in FIGS. 1 and 2, for example, two pump chambers 14 are formed in the housing 10. In this case, the air supplied from the intake port 40 to the one pump chamber 14 is compressed as the rotor 30 rotates. And the compressed air is discharged | emitted from the exhaust port 42 outside. By repeating this, the space connected to the intake port 40 is decompressed.
<金属部材>
 次に、筐体10を構成する金属部材24について説明する。
 金属部材24を構成する金属材料は、とくに限定されないが、たとえば鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、および銅合金から選択される一種または二種以上を含むことができる。これらの中でも、筐体10の軽量化や、強度および放熱性の向上を図る観点から、Alを含む金属材料により金属部材24を構成することがより好ましい。Alを含む金属材料としては、たとえばアルミニウムおよびアルミニウム合金が挙げられる。アルミニウム合金は、Al以外の他の金属を一種または二種以上含むことができる。他の金属としては、とくに限定されないが、たとえばCu、Si、Fe、Cr、Mg、Zn、Mn、Ni、Sn、Pb、Ti等が挙げられる。
 金属部材24は、たとえば上述した金属材料を公知の加工法により加工することによって、筐体10に対応した形状を有するものとすることができる。
<Metal member>
Next, the metal member 24 constituting the housing 10 will be described.
Although the metal material which comprises the metal member 24 is not specifically limited, For example, 1 type, or 2 or more types selected from iron, stainless steel, aluminum, an aluminum alloy, magnesium, magnesium alloy, copper, and a copper alloy can be included. Among these, it is more preferable that the metal member 24 is made of a metal material containing Al from the viewpoint of reducing the weight of the housing 10 and improving the strength and heat dissipation. Examples of the metal material containing Al include aluminum and aluminum alloys. The aluminum alloy can contain one or more metals other than Al. Although it does not specifically limit as another metal, For example, Cu, Si, Fe, Cr, Mg, Zn, Mn, Ni, Sn, Pb, Ti etc. are mentioned.
The metal member 24 can have a shape corresponding to the housing 10 by processing the above-described metal material by a known processing method, for example.
 金属部材24は、たとえば少なくとも樹脂部材22との接合面における光沢度が0.1以上30以下であることが好ましい。ここで、金属部材24の光沢度とは、ASTM-D523に準拠して測定した測定角度60°の値を示す。これにより、金属部材24と樹脂部材22との接合強度を向上させ、筐体10の熱伝導性や耐温度サイクル性の向上に寄与することが可能となる。光沢度を上記範囲内とすることによって金属部材24と樹脂部材22の接合強度が向上する理由は明らかではないが、金属部材24の上記接合面が、樹脂部材22との間のアンカー効果が強く発現できる構造となっているからであると考えられる。なお、接合強度を向上させる観点からは、上記光沢度が0.5以上25以下であることがより好ましく、1以上20以下であることがとくに好ましい。なお、金属部材24の光沢度は、たとえばディジタル光沢度計(20°、60°)(GM-26型、村上色彩技術研究所社製)を用いて測定することができる。一方で、金属部材24の上記接合面における光沢度は、上記数値範囲内でなくともよい。 The metal member 24 preferably has a glossiness of 0.1 or more and 30 or less, for example, at least on the joint surface with the resin member 22. Here, the glossiness of the metal member 24 indicates a value at a measurement angle of 60 ° measured in accordance with ASTM-D523. Thereby, it is possible to improve the bonding strength between the metal member 24 and the resin member 22 and contribute to the improvement of the thermal conductivity and temperature cycle resistance of the housing 10. The reason why the bonding strength between the metal member 24 and the resin member 22 is improved by setting the gloss level within the above range is not clear, but the bonding surface of the metal member 24 has a strong anchor effect with the resin member 22. This is probably because the structure can be expressed. From the viewpoint of improving the bonding strength, the glossiness is more preferably 0.5 or more and 25 or less, and particularly preferably 1 or more and 20 or less. The glossiness of the metal member 24 can be measured using, for example, a digital glossiness meter (20 °, 60 °) (GM-26, manufactured by Murakami Color Research Laboratory). On the other hand, the glossiness at the joint surface of the metal member 24 may not be within the above numerical range.
 図3は、図1に示すポンプ100の金属部材24の一部を示す断面図である。
 図3においては、金属部材24が、少なくとも樹脂部材22との接合面において複数の凹部201を有している場合が例示されている。また、図3に示す例において、複数の凹部201のうちの少なくとも一部の断面形状は、凹部201の開口部203から底部205までの間の少なくとも一部が開口部203の断面幅D1よりも大きい断面幅D2を有する形状となっている。凹部201の断面形状がこのような形状であると、樹脂部材22が凹部201の開口部203から底部205までの間で引っかかるため、アンカー効果が効果的に働く。これにより、金属部材24と樹脂部材22の接合強度をより効果的に向上させることができ、筐体10の熱伝導性や耐温度サイクル性の向上に寄与することが可能となる。一方で、金属部材24の上記接合面には、開口部203から底部205までの間の少なくとも一部が開口部203の断面幅D1よりも大きい断面幅D2を有する形状となっている凹部201が設けられていなくともよい。
FIG. 3 is a cross-sectional view showing a part of the metal member 24 of the pump 100 shown in FIG.
In FIG. 3, the case where the metal member 24 has the several recessed part 201 in the joining surface with the resin member 22 at least is illustrated. In the example shown in FIG. 3, at least a part of the cross-sectional shape of the plurality of recesses 201 is such that at least a part between the opening 203 and the bottom 205 of the recess 201 is larger than the cross-sectional width D1 of the opening 203. The shape has a large cross-sectional width D2. When the cross-sectional shape of the recess 201 is such a shape, the resin member 22 is caught between the opening 203 and the bottom 205 of the recess 201, so that the anchor effect is effective. Thereby, the joining strength of the metal member 24 and the resin member 22 can be improved more effectively, and it becomes possible to contribute to the improvement of the thermal conductivity and temperature cycle resistance of the housing 10. On the other hand, on the joint surface of the metal member 24, a recess 201 having a shape in which at least a part between the opening 203 and the bottom 205 has a cross-sectional width D2 larger than the cross-sectional width D1 of the opening 203 is formed. It does not have to be provided.
 金属部材24は、たとえば樹脂部材22との接合面における表面粗さRaが1.0μm以上40.0μm以下であることが好ましい。これにより、樹脂部材22と金属部材24の接合強度をより効果的に向上させ、筐体10の熱伝導性や耐温度サイクル性の向上に寄与することが可能となる。接合強度を向上させる観点からは、金属部材24の上記接合面の表面粗さRaが、1.0μm以上20.0μm以下であることがより好ましく、1.0μm以上10.0μm以下であることがとくに好ましい。
 また、金属部材24は、たとえば樹脂部材22との接合面における10点平均粗さRzが1.0μm以上40.0μm以下であることが好ましい。これにより、樹脂部材22と金属部材24の接合強度をより効果的に向上させ、筐体10の熱伝導性や耐温度サイクル性の向上に寄与することが可能となる。金属部材24の上記接合強度を向上させる観点からは、上記接合面の10点平均粗さRzが5.0μm以上30.0μm以下であることがより好ましい。
 なお、金属部材24の上記接合面におけるRaおよびRzは、上記数値範囲内でなくともよい。RaおよびRzは、JIS-B0601に準拠して測定することができる。
For example, the metal member 24 preferably has a surface roughness Ra of 1.0 μm or more and 40.0 μm or less at the joint surface with the resin member 22. Thereby, it becomes possible to improve the bonding strength between the resin member 22 and the metal member 24 more effectively and contribute to the improvement of the thermal conductivity and the temperature cycle resistance of the housing 10. From the viewpoint of improving the bonding strength, the surface roughness Ra of the bonding surface of the metal member 24 is more preferably 1.0 μm or more and 20.0 μm or less, and preferably 1.0 μm or more and 10.0 μm or less. Particularly preferred.
In addition, the metal member 24 preferably has a 10-point average roughness Rz of, for example, 1.0 μm or more and 40.0 μm or less on the joint surface with the resin member 22. Thereby, it becomes possible to improve the bonding strength between the resin member 22 and the metal member 24 more effectively and contribute to the improvement of the thermal conductivity and the temperature cycle resistance of the housing 10. From the viewpoint of improving the bonding strength of the metal member 24, the 10-point average roughness Rz of the bonded surface is more preferably 5.0 μm or more and 30.0 μm or less.
In addition, Ra and Rz in the said joint surface of the metal member 24 do not need to be in the said numerical range. Ra and Rz can be measured according to JIS-B0601.
 金属部材24は、たとえば少なくとも樹脂部材22との接合面における、見掛け表面積に対する窒素吸着BET法による実表面積の比(以下、単に比表面積とも呼ぶ。)が、好ましくは100以上であり、より好ましくは150以上である。上記比表面積が上記下限値以上であると、樹脂部材22と金属部材24との接合強度をより一層向上させることができる。この理由は明らかではないが、樹脂部材22と金属部材24の接触面積が大きくなり、樹脂部材22と金属部材24とが相互に侵入する領域が増える結果、アンカー効果が働く領域が増えるためであると考えられる。
 一方で、上記比表面積は、好ましくは400以下であり、より好ましくは380以下であり、特に好ましくは300以下である。上記比表面積が上記上限値以下であると、樹脂部材22と金属部材24との接合強度をより一層向上させることができる。この理由は明らかではないが、次のような理由が一つの要因として考えられる。すなわち、上記比表面積を上記上限値以下とすることにより、樹脂部材22と金属部材24とが相互に侵入した領域における金属部材24の割合が少なくなることを抑制し、当該領域における機械的強度を向上させることができる。その結果、樹脂部材22と金属部材24との接合強度がより一層向上するものと考えられる。
 このように、金属部材24と樹脂部材22の接合強度を向上させることにより、筐体10の熱伝導性や耐温度サイクル性の向上に寄与することが可能となる。
For example, the ratio of the actual surface area by the nitrogen adsorption BET method to the apparent surface area (hereinafter also simply referred to as the specific surface area) of the metal member 24 at least on the joint surface with the resin member 22 is preferably 100 or more, more preferably. 150 or more. When the specific surface area is equal to or greater than the lower limit, the bonding strength between the resin member 22 and the metal member 24 can be further improved. The reason for this is not clear, but the contact area between the resin member 22 and the metal member 24 increases, and as a result, the region where the resin member 22 and the metal member 24 enter each other increases, resulting in an increase in the region where the anchor effect works. it is conceivable that.
On the other hand, the specific surface area is preferably 400 or less, more preferably 380 or less, and particularly preferably 300 or less. When the specific surface area is not more than the upper limit, the bonding strength between the resin member 22 and the metal member 24 can be further improved. The reason for this is not clear, but the following reasons can be considered as one factor. That is, by setting the specific surface area to be equal to or less than the upper limit value, the ratio of the metal member 24 in the region where the resin member 22 and the metal member 24 have entered each other is suppressed, and the mechanical strength in the region is reduced. Can be improved. As a result, it is considered that the bonding strength between the resin member 22 and the metal member 24 is further improved.
Thus, by improving the bonding strength between the metal member 24 and the resin member 22, it is possible to contribute to the improvement of the thermal conductivity and the temperature cycle resistance of the housing 10.
 ここで、見掛け表面積とは、金属部材22の表面が凹凸のない平滑状であると仮定した場合の表面積を意味する。その表面形状が長方形の場合には、縦の長さ×横の長さで表すことができる。一方で、窒素吸着BET法による実表面積とは、窒素ガスの吸着量により求めたBET表面積を意味する。例えば、真空乾燥した測定対象試料について、自動比表面積/細孔分布測定装置(BELSORPminiII、日本ベル社製)を用いて、液体窒素温度における窒素吸脱着量を測定し、その窒素吸脱着量に基づいてBET表面積を算出することができる。 Here, the apparent surface area means a surface area when it is assumed that the surface of the metal member 22 is smooth without unevenness. When the surface shape is rectangular, it can be expressed by vertical length × horizontal length. On the other hand, the actual surface area by the nitrogen adsorption BET method means the BET surface area obtained from the adsorption amount of nitrogen gas. For example, using a specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.) for a vacuum dried sample to be measured, the nitrogen adsorption / desorption amount at liquid nitrogen temperature is measured, and based on the nitrogen adsorption / desorption amount The BET surface area can be calculated.
 金属部材24に対しては、たとえば表面処理剤を用いてその表面に化学的処理を施すことができる。本実施形態においては、(1)金属部材と化学的処理剤の組み合わせ、(2)化学的処理の温度および時間、(3)化学的処理後の金属部材表面の後処理、などの因子を高度に制御することにより、ポンプ100の筐体10に用いる部材としてとくに優れた特性を示す金属部材24を実現することができる。これらの因子を高度に制御した表面処理を施すことにより、たとえば金属部材24の樹脂部材22との接合面における光沢度、Ra、Rz、および比表面積を上述のような数値範囲とし、凹部の断面形状を上述のような形状とすることが可能となる。 The metal member 24 can be subjected to chemical treatment on its surface using, for example, a surface treatment agent. In this embodiment, factors such as (1) combination of metal member and chemical treatment agent, (2) temperature and time of chemical treatment, and (3) post-treatment of the surface of the metal member after chemical treatment are advanced. By controlling so, the metal member 24 exhibiting particularly excellent characteristics as a member used for the casing 10 of the pump 100 can be realized. By performing a surface treatment in which these factors are highly controlled, for example, the glossiness, Ra, Rz, and specific surface area at the joint surface of the metal member 24 with the resin member 22 are in the numerical ranges as described above, and the cross section of the recess It becomes possible to make the shape as described above.
 金属部材24に対する表面処理は、たとえば次のように行うことができる。
 はじめに、(1)金属部材24と表面処理剤の組み合わせを選択する。
 鉄やステンレスから構成される金属部材24を用いる場合は、無機酸、塩素イオン源、第二銅イオン源、チオール系化合物を必要に応じて組合せた水溶液を選択するのが好ましい。
 アルミニウムやアルミニウム合金から構成される金属部材24を用いる場合は、アルカリ源、両性金属イオン源、硝酸イオン源、チオール化合物を必要に応じて組合せた水溶液を選択するのが好ましい。
 マグネシウムやマグネシウム合金から構成される金属部材24を用いる場合は、アルカリ源が用いられ、特に水酸化ナトリウムの水溶液を選択するのが好ましい。
 銅や銅合金から構成される金属部材24を用いる場合は、硝酸、硫酸などの無機酸、不飽和カルボン酸などの有機酸、過硫酸塩、過酸化水素、イミダゾールおよびその誘導体、テトラゾールおよびその誘導体、アミノテトラゾールおよびその誘導体、アミノトリアゾールおよびその誘導体などのアゾール類、ピリジン誘導体、トリアジン、トリアジン誘導体、アルカノールアミン、アルキルアミン誘導体、ポリアルキレングリコール、糖アルコール、第二銅イオン源、塩素イオン源、ホスホン酸系キレート剤酸化剤、N,N-ビス(2-ヒドロキシエチル)-N-シクロヘキシルアミンから選ばれる少なくとも1種を用いた水溶液を選択するのが好ましい。
The surface treatment for the metal member 24 can be performed, for example, as follows.
First, (1) a combination of the metal member 24 and the surface treatment agent is selected.
When using the metal member 24 composed of iron or stainless steel, it is preferable to select an aqueous solution in which an inorganic acid, a chlorine ion source, a cupric ion source, and a thiol compound are combined as necessary.
When using the metal member 24 composed of aluminum or an aluminum alloy, it is preferable to select an aqueous solution in which an alkali source, an amphoteric metal ion source, a nitrate ion source, and a thiol compound are combined as necessary.
When the metal member 24 composed of magnesium or a magnesium alloy is used, an alkali source is used, and it is particularly preferable to select an aqueous solution of sodium hydroxide.
In the case of using a metal member 24 composed of copper or a copper alloy, inorganic acids such as nitric acid and sulfuric acid, organic acids such as unsaturated carboxylic acids, persulfates, hydrogen peroxide, imidazole and derivatives thereof, tetrazole and derivatives thereof Azoles such as aminotetrazole and derivatives thereof, aminotriazole and derivatives thereof, pyridine derivatives, triazines, triazine derivatives, alkanolamines, alkylamine derivatives, polyalkylene glycols, sugar alcohols, cupric ion sources, chloride ion sources, phosphones It is preferable to select an aqueous solution using at least one selected from an acid chelating agent, an oxidizing agent, and N, N-bis (2-hydroxyethyl) -N-cyclohexylamine.
 次に、(2)金属部材24を表面処理剤に浸漬させ、金属部材24表面に化学的処理をおこなう。このとき、処理温度は、例えば、30℃である。また、処理時間は選定する金属部材24の材質や表面状態、表面処理剤の種類や濃度、処理温度などにより適宜決定されるが、例えば、30秒~300秒である。このとき、金属部材24の深さ方向のエッチング量を、好ましくは3μm以上、より好ましくは5μm以上にすることが重要である。金属部材24の深さ方向のエッチング量は、溶解した金属部材24の重量、比重および表面積から算出して、評価することができる。この深さ方向のエッチング量は、表面処理剤の種類や濃度、処理温度、処理時間などにより調整することができる。 Next, (2) the metal member 24 is immersed in a surface treatment agent, and the surface of the metal member 24 is chemically treated. At this time, the processing temperature is, for example, 30 ° C. The treatment time is appropriately determined depending on the material and surface state of the metal member 24 to be selected, the type and concentration of the surface treatment agent, the treatment temperature, etc., and is, for example, 30 seconds to 300 seconds. At this time, it is important that the etching amount of the metal member 24 in the depth direction is preferably 3 μm or more, more preferably 5 μm or more. The etching amount in the depth direction of the metal member 24 can be evaluated by calculating from the weight, specific gravity and surface area of the dissolved metal member 24. The etching amount in the depth direction can be adjusted by the type and concentration of the surface treatment agent, the treatment temperature, the treatment time, and the like.
 次に、(3)化学的処理後の金属部材24表面に後処理をおこなう。まず、金属部材表面を水洗、乾燥する。次いで、化学的処理をおこなった金属部材表面を硝酸水溶液などで処理する。本実施形態においては、たとえばこのようにして薬液による表面処理が施された金属部材24を得ることができる。 Next, (3) post-treatment is performed on the surface of the metal member 24 after chemical treatment. First, the metal member surface is washed with water and dried. Next, the chemically treated metal member surface is treated with an aqueous nitric acid solution or the like. In the present embodiment, for example, the metal member 24 subjected to the surface treatment with the chemical solution can be obtained.
<樹脂部材>
 次に、筐体10を構成する樹脂部材22について説明する。
 樹脂部材22は、熱硬化性樹脂組成物を用いて形成される。本実施形態においては、たとえば後述する熱硬化性樹脂組成物を硬化することにより樹脂部材22が形成される。
<Resin member>
Next, the resin member 22 constituting the housing 10 will be described.
The resin member 22 is formed using a thermosetting resin composition. In the present embodiment, for example, the resin member 22 is formed by curing a thermosetting resin composition described later.
 樹脂部材22は、たとえばAlよりも比重が小さいものを用いることができる。樹脂部材22の比重は、とくに限定されないが、たとえば2.6g/cm以下であることが好ましく、2.0g/cm以下であることが好ましい。これにより、ポンプ100の軽量化を図ることができる。なお、樹脂部材22の比重は、たとえばJIS K6911に準拠して測定することができる。また、樹脂部材22の比重は、樹脂部材22を形成するために用いられる熱硬化性樹脂組成物の硬化物の比重に一致する。 As the resin member 22, for example, one having a specific gravity smaller than that of Al can be used. The specific gravity of the resin member 22 is not particularly limited, but is preferably 2.6 g / cm 3 or less, for example, and preferably 2.0 g / cm 3 or less. Thereby, weight reduction of the pump 100 can be achieved. The specific gravity of the resin member 22 can be measured in accordance with, for example, JIS K6911. The specific gravity of the resin member 22 matches the specific gravity of the cured product of the thermosetting resin composition used to form the resin member 22.
 樹脂部材22は、たとえばJIS K7218 A法を用いて圧力2MPa、試験速度0.1m/s、試験時間60分の条件により測定した摩擦係数の、測定開始30分から60分までの平均値が0.55以下である。これにより、ベーン32の樹脂部材22に対する摺動性をより効果的に向上させることができる。このため、ポンプ性能や、駆動効率、長期耐久性等に優れたポンプ100を実現することが可能となる。なお、ポンプ性能を向上させる観点からは、上記摩擦係数の平均値が0.52以下であることがより好ましく、0.50以下であることがとくに好ましい。なお、摩擦係数の測定は、たとえばポンプ100から剥がした樹脂部材22から、筐体10の内壁面12を構成していた面を測定面とした測定サンプルを作製し、この測定サンプルに対して行うことができる。測定の相手材としては、たとえば円筒状のS45Cを用いることができる。 For the resin member 22, for example, the average value of the friction coefficient measured under the conditions of a pressure of 2 MPa, a test speed of 0.1 m / s, and a test time of 60 minutes using the JIS K7218 A method is 0. 55 or less. Thereby, the slidability with respect to the resin member 22 of the vane 32 can be improved more effectively. Therefore, it is possible to realize the pump 100 that is excellent in pump performance, driving efficiency, long-term durability, and the like. From the viewpoint of improving the pump performance, the average value of the friction coefficients is more preferably 0.52 or less, and particularly preferably 0.50 or less. The measurement of the friction coefficient is performed on the measurement sample by, for example, producing a measurement sample using the surface constituting the inner wall surface 12 of the housing 10 from the resin member 22 peeled off from the pump 100. be able to. For example, cylindrical S45C can be used as a counterpart material for measurement.
 樹脂部材22は、たとえばJIS K7218 A法を用いて圧力2MPa、試験速度0.1m/s、試験時間60分の条件により測定した試料温度の、測定開始30分から60分までの平均値が200℃以下である。これにより、ポンプ100の耐熱性を向上させることができる。また、ベーン32の樹脂部材22に対する摺動性をより効果的に向上させることができる。このため、ポンプ性能や、駆動効率、長期耐久性等に優れたポンプ100を実現することも可能となる。なお、ポンプ性能を向上させる観点からは、上記試料温度の平均値が、150℃以下であることがより好ましく、120℃以下であることがとくに好ましい。なお、試料温度の測定は、たとえばポンプ100から剥がした樹脂部材22から、筐体10の内壁面12を構成していた面を測定面とした測定サンプルを作製し、この測定サンプルに対して行うことができる。測定の相手材としては、たとえば円筒状のS45Cを用いることができる。 The resin member 22 has an average value of 200 ° C. from the measurement start 30 minutes to 60 minutes of the sample temperature measured using, for example, JIS K7218 A method under a pressure of 2 MPa, a test speed of 0.1 m / s, and a test time of 60 minutes. It is as follows. Thereby, the heat resistance of the pump 100 can be improved. Moreover, the slidability with respect to the resin member 22 of the vane 32 can be improved more effectively. For this reason, the pump 100 excellent in pump performance, drive efficiency, long-term durability, etc. can be realized. From the viewpoint of improving the pump performance, the average value of the sample temperature is more preferably 150 ° C. or less, and particularly preferably 120 ° C. or less. The sample temperature is measured by, for example, preparing a measurement sample using the surface constituting the inner wall surface 12 of the housing 10 as a measurement surface from the resin member 22 peeled off from the pump 100, and performing this measurement on the measurement sample. be able to. For example, cylindrical S45C can be used as a counterpart material for measurement.
 樹脂部材22は、たとえば熱伝導率が0.3W/(m・K)以上である。これにより、樹脂部材22の放熱性を向上させることができる。このため、たとえば内部に発生する摩擦熱等の熱を外部へ放熱すること等が容易となる。放熱性を向上させる観点からは、上記熱伝導率が0.35W/(m・K)以上であることがより好ましい。なお、熱伝導率の測定は、たとえばポンプ100から剥がした樹脂部材22から厚さ2mmの測定サンプルを作製し、この測定サンプルに対して厚さ方向の熱伝導率を、レーザーフラッシュ法を用いて測定することにより行うことができる。 Resin member 22 has, for example, a thermal conductivity of 0.3 W / (m · K) or more. Thereby, the heat dissipation of the resin member 22 can be improved. For this reason, for example, heat such as friction heat generated inside can be easily radiated to the outside. From the viewpoint of improving heat dissipation, the thermal conductivity is more preferably 0.35 W / (m · K) or more. The thermal conductivity is measured by, for example, preparing a measurement sample having a thickness of 2 mm from the resin member 22 peeled off from the pump 100, and measuring the thermal conductivity in the thickness direction of the measurement sample using a laser flash method. This can be done by measuring.
 なお、樹脂部材22の上記摩擦係数、上記試料温度、および上記熱伝導率は、たとえ熱硬化性樹脂組成物の各成分の種類や配合割合、および樹脂部材22を含む筐体10の作製方法を適切に選択することにより上記数値範囲に制御することが可能である。筐体10の作製方法としては、たとえば後述する図4において例示する製造方法を採用すること等が、樹脂部材22の各特性を制御する観点から重要であるものと考えられる。この理由は、明らかではないが、樹脂部材22中に繊維状充填剤を含む場合には、この繊維状充填剤の配向を制御できること等がその要因の一つとして推定される。 The friction coefficient, the sample temperature, and the thermal conductivity of the resin member 22 are the same as the types and blending ratios of the components of the thermosetting resin composition, and the method for manufacturing the housing 10 including the resin member 22. It is possible to control to the above numerical range by appropriately selecting. As a manufacturing method of the housing 10, for example, adopting a manufacturing method illustrated in FIG. 4 described later is considered to be important from the viewpoint of controlling each characteristic of the resin member 22. The reason for this is not clear, but when the fibrous filler is included in the resin member 22, it is estimated as one of the factors that the orientation of the fibrous filler can be controlled.
 樹脂部材22を形成する熱硬化性樹脂組成物は、熱硬化性樹脂(A)を含む。
 熱硬化性樹脂組成物は、たとえば粉粒状またはタブレット状である。粉粒状であるとは、粉末状である場合、顆粒状である場合、および粉末状と顆粒状の双方を含む場合を指す。
The thermosetting resin composition that forms the resin member 22 includes a thermosetting resin (A).
The thermosetting resin composition is, for example, in the form of powder or tablet. The term “powdered” refers to a powdered form, a granular form, and a case containing both a powdery form and a granular form.
(熱硬化性樹脂(A))
 熱硬化性樹脂(A)は、たとえばフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、メラミン樹脂、オキセタン樹脂、マレイミド樹脂、ユリア(尿素)樹脂、ポリウレタン樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、およびシアネートエステル樹脂等から選択される一種または二種以上を含むことができる。これらの中でも、耐熱性、加工性、機械的特性、電気特性、接着性および耐摩耗性に優れるフェノール樹脂を含む態様が好適に採用され得る。
(Thermosetting resin (A))
The thermosetting resin (A) includes, for example, phenol resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, melamine resin, oxetane resin, maleimide resin, urea (urea) resin, polyurethane resin, silicone resin, benzoxazine ring. 1 type or 2 types or more selected from resin to have, cyanate ester resin, etc. can be included. Among these, the aspect containing the phenol resin which is excellent in heat resistance, workability, mechanical characteristics, electrical characteristics, adhesiveness, and wear resistance can be suitably employed.
 フェノール樹脂は、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂などのノボラック型フェノール樹脂;メチロール型レゾール樹脂、ジメチレンエーテル型レゾール樹脂、桐油、アマニ油、クルミ油などで溶融した油溶融レゾールフェノール樹脂などのレゾール型フェノール樹脂;アリールアルキレン型フェノール樹脂等から選択される一種または二種以上を含むことができる。これらの中でも、摺動性や熱伝導性を向上させてポンプの性能向上に寄与する観点や、入手容易性の向上、低コスト化、ロール混練による作業性の向上を図る観点から、ノボラック型フェノール樹脂およびレゾール型フェノール樹脂のうちの少なくとも一方を含むことがより好ましく、ノボラック型フェノール樹脂を含むことがとくに好ましい。また、たとえばノボラック型フェノール樹脂とレゾール型フェノール樹脂をともに含む態様も、後述の硬化剤を不要とする観点から好ましい態様の一つとして採用し得る。 The phenol resin is, for example, a novolak type phenolic resin such as a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin; One or two or more types selected from a resol type phenol resin such as a resol phenol resin; an aryl alkylene type phenol resin and the like can be included. Among these, from the viewpoint of improving the slidability and thermal conductivity and contributing to the improvement of the performance of the pump, improving the availability, reducing the cost, and improving the workability by roll kneading, the novolac type phenol It is more preferable to include at least one of a resin and a resol type phenol resin, and it is particularly preferable to include a novolac type phenol resin. Further, for example, an embodiment including both a novolac type phenol resin and a resol type phenol resin can also be adopted as one of preferable embodiments from the viewpoint of eliminating the curing agent described later.
 上記フェノール樹脂がノボラック型フェノール樹脂を含む場合は、たとえば硬化剤としてヘキサメチレンテトラミンを使用することができる。ヘキサメチレンテトラミンの含有量は、特に限定されないが、たとえばノボラック型フェノール樹脂100質量部に対して10質量部以上25質量部以下であることが好ましく、13質量部以上20質量部以下であることがより好ましい。ヘキサメチレンテトラミンの含有量を上記下限値以上とすることにより、成形時の硬化時間を短縮することができる。また、ヘキサメチレンテトラミンの含有量を上記上限値以下とすることにより、成形品の外観を向上させることができる。 When the phenol resin contains a novolac type phenol resin, for example, hexamethylenetetramine can be used as a curing agent. Although the content of hexamethylenetetramine is not particularly limited, for example, it is preferably 10 parts by mass or more and 25 parts by mass or less, and 13 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the novolac type phenol resin. More preferred. By setting the content of hexamethylenetetramine to the above lower limit value or more, the curing time at the time of molding can be shortened. Moreover, the external appearance of a molded article can be improved by making content of hexamethylenetetramine below the said upper limit.
 熱硬化性樹脂(A)の含有量は、たとえば熱硬化性樹脂組成物全体に対して15質量%以上であることが好ましく、25質量%以上であることがより好ましい。これにより、熱硬化性樹脂組成物を成形する際における流動性の向上を図ることができる。一方で、熱硬化性樹脂(A)の含有量は、たとえば熱硬化性樹脂組成物全体に対して60質量%以下であることが好ましく、50質量%以下であることがより好ましい。これにより、筐体10の耐熱性や耐湿性をより効果的に向上させることができる。 The content of the thermosetting resin (A) is, for example, preferably 15% by mass or more, and more preferably 25% by mass or more with respect to the entire thermosetting resin composition. Thereby, the fluidity | liquidity at the time of shape | molding a thermosetting resin composition can be aimed at. On the other hand, the content of the thermosetting resin (A) is preferably 60% by mass or less, and more preferably 50% by mass or less, for example, with respect to the entire thermosetting resin composition. Thereby, the heat resistance and moisture resistance of the housing | casing 10 can be improved more effectively.
(充填剤(B))
 熱硬化性樹脂組成物は、たとえば充填剤(B)を含むことができる。これにより、樹脂部材22の機械的強度や耐熱性、耐湿性、摺動性等の向上を図ることができる。
 充填剤(B)は、たとえば黒鉛、ポリテトラフルオロエチレン等のフッ素樹脂、クレー、タルク、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、マイカ、ガラスフレーク、ガラス粉、炭酸マグネシウム、シリカ、酸化チタン、アルミナ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、および繊維状充填剤から選択される一種または二種以上を含むことができる。繊維状充填剤としては、ガラス繊維、炭素繊維、アスベスト繊維、金属繊維、ワラストナイト、アタパルジャイト、セピオライト、ロックウール、ホウ酸アルミニウムウイスカー、チタン酸カリウム繊維、炭酸カルシウムウィスカー、酸化チタンウィスカー、セラミック繊維などの繊維状無機充填材;アラミド繊維、ポリイミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維などの繊維状有機充填材が挙げられる。これらの中でも、樹脂部材22の機械的強度、耐熱性、耐湿性、および摺動性のバランスを向上させる観点からは、黒鉛、ポリテトラフルオロエチレン、ガラス繊維、炭素繊維、およびクレーから選択される一種または二種以上を含むことがより好ましく、これらのうちの二種以上を含むことがとくに好ましい。
(Filler (B))
A thermosetting resin composition can contain a filler (B), for example. Thereby, the mechanical strength, heat resistance, moisture resistance, slidability, etc. of the resin member 22 can be improved.
Filler (B) is, for example, graphite, fluorine resin such as polytetrafluoroethylene, clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, mica, glass flake, glass powder, magnesium carbonate, silica, oxidation Titanium, alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, aluminum nitride, boron nitride, silicon nitride, And one or more selected from fibrous fillers. As fibrous fillers, glass fiber, carbon fiber, asbestos fiber, metal fiber, wollastonite, attapulgite, sepiolite, rock wool, aluminum borate whisker, potassium titanate fiber, calcium carbonate whisker, titanium oxide whisker, ceramic fiber And fibrous inorganic fillers such as aramid fibers, polyimide fibers, and polyparaphenylene benzobisoxazole fibers. Among these, from the viewpoint of improving the balance of mechanical strength, heat resistance, moisture resistance, and slidability of the resin member 22, the resin member 22 is selected from graphite, polytetrafluoroethylene, glass fiber, carbon fiber, and clay. It is more preferable to include one or two or more, and it is particularly preferable to include two or more of these.
 本実施形態においては、とくに固体潤滑剤として機能する充填剤(B)を熱硬化性樹脂組成物中に含むことが、摺動性を向上させる観点から好ましい。このような固体潤滑剤として機能する充填剤(B)としては、たとえば黒鉛、炭素繊維、およびポリテトラフルオロエチレン等のフッ素樹脂が挙げられる。 In the present embodiment, it is particularly preferable to include the filler (B) functioning as a solid lubricant in the thermosetting resin composition from the viewpoint of improving slidability. Examples of the filler (B) that functions as a solid lubricant include graphite, carbon fiber, and fluororesin such as polytetrafluoroethylene.
 充填剤(B)の含有量は、たとえば熱硬化性樹脂組成物全体に対して30質量%以上であることが好ましく、40質量%以上であることがより好ましい。これにより、熱硬化性樹脂組成物を用いて得られる樹脂部材22の機械的強度や耐熱性、耐湿性、摺動性をより効果的に向上させることが可能となる。一方で、充填剤(B)の含有量は、たとえば熱硬化性樹脂組成物全体に対して80質量%以下であることが好ましく、70質量%以下であることがより好ましい。これにより、熱硬化性樹脂組成物の流動性を向上させ、成形性に優れた熱硬化性樹脂組成物を実現することができる。 The content of the filler (B) is, for example, preferably 30% by mass or more, and more preferably 40% by mass or more with respect to the entire thermosetting resin composition. Thereby, the mechanical strength, heat resistance, moisture resistance, and slidability of the resin member 22 obtained using the thermosetting resin composition can be improved more effectively. On the other hand, the content of the filler (B) is, for example, preferably 80% by mass or less, and more preferably 70% by mass or less, with respect to the entire thermosetting resin composition. Thereby, the fluidity | liquidity of a thermosetting resin composition can be improved and the thermosetting resin composition excellent in the moldability is realizable.
(カップリング剤(C))
 熱硬化性樹脂組成物は、たとえばカップリング剤(C)を含むことができる。これにより、樹脂部材22と金属部材24との密着性を向上させることができる。また、充填剤(B)の分散性を向上させて、樹脂部材22の機械的強度の向上等に寄与することもできる。
(Coupling agent (C))
A thermosetting resin composition can contain a coupling agent (C), for example. Thereby, the adhesiveness of the resin member 22 and the metal member 24 can be improved. Moreover, the dispersibility of a filler (B) can be improved and it can contribute to the improvement of the mechanical strength of the resin member 22, etc.
 カップリング剤(C)は、たとえばシランカップリング剤を含むことができる。シランカップリング剤は、たとえばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物;γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物;γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物;γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などから選択される一種または二種以上を含むことが可能である。 The coupling agent (C) can include, for example, a silane coupling agent. Examples of the silane coupling agent include epoxy group-containing alkoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; Mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane; γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ- (2-ureidoethyl) aminopropyl Ureido group-containing alkoxysilane compounds such as trimethoxysilane; γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ Isocyanato group-containing alkoxysilane compounds such as isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane; γ-aminopropyltriethoxysilane Amino group-containing alkoxysilane compounds such as γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane; One or more selected from hydroxyl group-containing alkoxysilane compounds such as methoxysilane and γ-hydroxypropyltriethoxysilane can be included.
 カップリング剤(C)の含有量は、たとえば熱硬化性樹脂組成物全体に対して0.01質量%以上4質量%以下であることが好ましく、0.1質量%以上1質量%以下であることがより好ましい。これにより、樹脂部材22と金属部材24の密着性や、樹脂部材22の機械的強度を、より効果的に向上させることが可能となる。 The content of the coupling agent (C) is, for example, preferably 0.01% by mass or more and 4% by mass or less, and more preferably 0.1% by mass or more and 1% by mass or less with respect to the entire thermosetting resin composition. It is more preferable. Thereby, it becomes possible to improve the adhesiveness of the resin member 22 and the metal member 24, and the mechanical strength of the resin member 22 more effectively.
 熱硬化性樹脂組成物は、さらに消石灰や酸化マグネシウム等の硬化助剤をさらに含むことができる。また、熱硬化性樹脂組成物は、上記成分の他、たとえばエラストマー、硬化剤、離型剤、顔料、難燃剤、耐候剤、酸化防止剤、可塑剤、潤滑剤、および発泡剤等から選択される一種または二種以上の添加剤をさらに含むことができる。なお、熱硬化性樹脂組成物は、たとえば各成分を配合して均一に混合して得られた混合物をロール、コニーダ、二軸押出し機などの混練装置単独で、またはロールと他の混練装置との組合せで加熱溶融混練した後、これを冷却し、造粒または粉砕し、さらに必要に応じて分級することにより得ることができる。 The thermosetting resin composition can further contain a curing aid such as slaked lime or magnesium oxide. In addition to the above components, the thermosetting resin composition is selected from, for example, elastomers, curing agents, release agents, pigments, flame retardants, weathering agents, antioxidants, plasticizers, lubricants, and foaming agents. One or more additives may be further included. The thermosetting resin composition can be obtained by mixing a mixture obtained by, for example, mixing the components uniformly, with a kneading apparatus alone such as a roll, a kneader, or a twin screw extruder, or with a roll and another kneading apparatus. After being melted and kneaded in a combination of the above, it can be cooled, granulated or pulverized, and further classified if necessary.
 熱硬化性樹脂組成物は、たとえば175℃、3分の条件で加熱して得られる硬化膜の熱伝導率が0.3W/m・K以上である。これにより、樹脂部材22の熱伝導率を所望の値に制御することが容易となり、樹脂部材22の放熱性の向上に寄与することができる。樹脂部材22の放熱性を向上させる観点からは、上記熱伝導率が0.35W/(m・K)以上であることがより好ましい。本実施形態においては、たとえば圧縮成形機を用いて実効圧力20MPa、金型温度175℃、硬化時間3分間の条件により熱硬化性樹脂組成物を成形して作製した厚さ2mmの試験片について、レーザーフラッシュ法を用いて測定される厚み方向の熱伝導率を上記熱伝導率とすることができる。上記熱伝導率は、たとえば熱硬化性樹脂組成物の各成分の種類や配合割合を適切に調整することにより制御できる。 In the thermosetting resin composition, for example, a cured film obtained by heating at 175 ° C. for 3 minutes has a thermal conductivity of 0.3 W / m · K or more. Thereby, it becomes easy to control the heat conductivity of the resin member 22 to a desired value, and it can contribute to the improvement of the heat dissipation of the resin member 22. From the viewpoint of improving the heat dissipation of the resin member 22, the thermal conductivity is more preferably 0.35 W / (m · K) or more. In this embodiment, for example, a test piece having a thickness of 2 mm produced by molding a thermosetting resin composition under the conditions of an effective pressure of 20 MPa, a mold temperature of 175 ° C., and a curing time of 3 minutes using a compression molding machine, The thermal conductivity in the thickness direction measured using the laser flash method can be set as the thermal conductivity. The thermal conductivity can be controlled, for example, by appropriately adjusting the type and blending ratio of each component of the thermosetting resin composition.
<ポンプの製造方法>
 次に、ポンプ100の製造方法について説明する。
 まず、筐体10を作製する。筐体10は、たとえば金属材料を加工して得られた金属部材24上に、熱硬化性樹脂組成物を成形して樹脂部材22を形成することにより得られる。熱硬化性樹脂組成物の成形は、とくに限定されないが、たとえば射出成形法や、移送成形法、圧縮成形法、射出圧縮成形法等を用いて行うことができる。
<Pump manufacturing method>
Next, a method for manufacturing the pump 100 will be described.
First, the housing 10 is manufactured. The housing 10 is obtained by forming a resin member 22 by molding a thermosetting resin composition on a metal member 24 obtained by processing a metal material, for example. Molding of the thermosetting resin composition is not particularly limited, and can be performed using, for example, an injection molding method, a transfer molding method, a compression molding method, an injection compression molding method, or the like.
 図4は、本実施形態に係るポンプ100の製造方法の一例を示す断面図である。
 本実施形態においては、たとえば図4に示す製造方法により、樹脂金属複合体20により構成される筐体10を形成することができる。これにより、後述するように、樹脂部材22や樹脂金属複合体20の各特性を向上させることが可能となる。なお、図4では、各部材の構造を模式的に示しており、各部材の構造は図4に示すものに限定されない。
 図4に示す製造方法は、たとえば以下のようにして行われる。
FIG. 4 is a cross-sectional view illustrating an example of a method for manufacturing the pump 100 according to the present embodiment.
In the present embodiment, the housing 10 constituted by the resin-metal composite 20 can be formed, for example, by the manufacturing method shown in FIG. Thereby, as will be described later, each characteristic of the resin member 22 and the resin-metal composite 20 can be improved. 4 schematically shows the structure of each member, and the structure of each member is not limited to that shown in FIG.
The manufacturing method shown in FIG. 4 is performed as follows, for example.
 まず、金属部材24を作製する。金属部材24の作製は、上記において例示した方法により行うことができる。図4に示す例においては、互いに組み合わされて一の筐体10を構成する複数の金属部材24が作製される。この場合、後述する熱硬化性樹脂組成物を成形する工程において、複数の金属部材24と、樹脂部材22と、が互いに接合されて一体化されることにより筐体10が構成されることとなる。 First, the metal member 24 is produced. The metal member 24 can be produced by the method exemplified above. In the example shown in FIG. 4, a plurality of metal members 24 that are combined with each other to form one housing 10 are manufactured. In this case, in the step of molding a thermosetting resin composition to be described later, the plurality of metal members 24 and the resin member 22 are joined and integrated to form the housing 10. .
 次に、図4(a)に示す成形金型3を準備する。本実施形態に係る成形金型3は、第2金型部2(上金型)と第1金型部1(下金型)とを備えている。この第2金型部2と第1金型部1を組み合わせることにより、後工程において金属部材100を配置する成形空間66が形成される。また、第2金型部2には、成形前の熱硬化性樹脂組成物68を仕込むポット60と、その後、圧力をかけて熱硬化性樹脂組成物68を溶融させるためにポット60に挿入する補助ラムを備えたプランジャ64と、溶融させた熱硬化性樹脂組成物68を成形空間66内に送り込むスプルー62とが設けられている。なお、本実施形態に係る成形金型3は、図4に示すような、補助ラムを備えたプランジャ式トランスファー成形機に適用するものであっても、補助ラムを備えないポット式トランスファー成形機に適用するものであってもよい(図示せず)。 Next, a molding die 3 shown in FIG. 4 (a) is prepared. The molding die 3 according to this embodiment includes a second mold part 2 (upper mold) and a first mold part 1 (lower mold). By combining the second mold part 2 and the first mold part 1, a molding space 66 in which the metal member 100 is arranged in a subsequent process is formed. In addition, the second mold part 2 is inserted into the pot 60 for charging the thermosetting resin composition 68 before molding, and then inserted into the pot 60 to melt the thermosetting resin composition 68 under pressure. A plunger 64 provided with an auxiliary ram and a sprue 62 for feeding the molten thermosetting resin composition 68 into the molding space 66 are provided. Note that the molding die 3 according to the present embodiment is a pot type transfer molding machine that does not include an auxiliary ram, even if it is applied to a plunger type transfer molding machine that includes an auxiliary ram as shown in FIG. It may be applied (not shown).
 次に、図4(b)に示すように、成形金型3の成形空間66内に複数の金属部材24を配置する。具体的には、第1金型部1を下げて、成形金型3を開いた状態で成形空間66に相当する部分に複数の金属部材24を固定することなく配置する。これにより、溶融した熱硬化性樹脂組成物68を成形空間66内に導入した時に、導入した樹脂の流動圧力によって金属部材24を第2金型部2または第1金型部1のいずれか一方の金型部材の壁面(成形面)に押しつけることができる。本実施形態では、各金属部材24が第1金型部1の壁面に押しつけられる。このため、挿入しろや金属部材24と金型壁面との間の隙間から樹脂が入り込むことによるバリの発生を防止することもできる。 Next, as shown in FIG. 4B, a plurality of metal members 24 are arranged in the molding space 66 of the molding die 3. Specifically, the first mold part 1 is lowered, and the plurality of metal members 24 are arranged without being fixed to a part corresponding to the molding space 66 in a state where the molding die 3 is opened. Thereby, when the molten thermosetting resin composition 68 is introduced into the molding space 66, the metal member 24 is moved to either the second mold part 2 or the first mold part 1 by the flow pressure of the introduced resin. Can be pressed against the wall surface (molding surface) of the mold member. In the present embodiment, each metal member 24 is pressed against the wall surface of the first mold part 1. For this reason, generation | occurrence | production of the burr | flash by resin entering from the clearance gap between the metal margin 24 and a metal mold | die wall surface can also be prevented.
 次に、図4(c)に示すように、成形空間66内に熱硬化性樹脂組成物68を次のようにして充填する。まず、第1金型部1を上げて、第1金型部1と第2金型部2を型締めして成形金型3を閉じた状態で、ポット60内に成形前の熱硬化性樹脂組成物68を仕込む。成形前の熱硬化性樹脂組成物68の性状は、とくに限定されないが、粉粒状のままであってもよいし、タブレット状に成形したものであってもよいし、予めプレヒーター等によって予熱することにより半溶融の状態にされていてもよい。次いで、ポット60内に仕込んだ熱硬化性樹脂組成物68を溶融させるために、熱硬化性樹脂組成物68に対して、補助ラムを備えたプランジャ64をポット60に挿入して圧力をかける。次いで、溶融した熱硬化性樹脂組成物68を、スプルー62を介して成形空間66内に導入する。成形空間66内に導入された熱硬化性樹脂組成物68は、図4(c)に記載されている点線で示す方向に流動する。このとき、熱硬化性樹脂組成物68の流動圧力によって金属部材24を第1金型部1に押しつけて、見かけ上、第1金型部1の壁面に金属部材24を固定した状態とすることができる。なお、ポット60内での熱硬化性樹脂組成物68の溶融、成形空間66内への溶融した熱硬化性樹脂組成物68の導入および充填は、同時に行われる。 Next, as shown in FIG. 4C, the molding space 66 is filled with the thermosetting resin composition 68 as follows. First, the first mold part 1 is raised, the first mold part 1 and the second mold part 2 are clamped, and the molding die 3 is closed. The resin composition 68 is charged. Although the property of the thermosetting resin composition 68 before molding is not particularly limited, it may remain in a granular form, may be molded into a tablet shape, or is preheated by a preheater or the like in advance. It may be in a semi-molten state. Next, in order to melt the thermosetting resin composition 68 charged in the pot 60, a pressure is applied to the thermosetting resin composition 68 by inserting a plunger 64 having an auxiliary ram into the pot 60. Next, the molten thermosetting resin composition 68 is introduced into the molding space 66 through the sprue 62. The thermosetting resin composition 68 introduced into the molding space 66 flows in the direction indicated by the dotted line shown in FIG. At this time, the metal member 24 is pressed against the first mold part 1 by the flow pressure of the thermosetting resin composition 68, and the metal member 24 is apparently fixed to the wall surface of the first mold part 1. Can do. The melting of the thermosetting resin composition 68 in the pot 60 and the introduction and filling of the molten thermosetting resin composition 68 into the molding space 66 are performed simultaneously.
 次に、図4(d)に示すように、成形空間66内に充填された熱硬化性樹脂組成物68を加熱加圧することにより硬化する。これにより、熱硬化性樹脂組成物68の硬化物により構成される樹脂部材22が形成されることとなる。また、樹脂部材22が形成されるとともに樹脂部材22と金属部材24が互いに接合されて樹脂金属複合体20が形成され、これにより筐体10が形成されることとなる。
 この工程において、成形空間66内に導入された熱硬化性樹脂組成物68は、逆流することなく一方向に進行する。これにより、樹脂部材22の摺動性や、熱伝導性、強度、耐久性、および樹脂金属複合体20の熱伝導性や強度、耐久性を向上させることが可能となる。この理由は定かではないが、たとえば熱硬化性樹脂組成物68中に繊維状充填剤を含有させている場合には、熱硬化性樹脂組成物68を逆流することなく一方向に進行させることにより、硬化後の樹脂部材22中における繊維状充填剤の配向を均一に制御することができることが要因の一つであると推測される。
Next, as shown in FIG. 4D, the thermosetting resin composition 68 filled in the molding space 66 is cured by heating and pressing. Thereby, the resin member 22 comprised with the hardened | cured material of the thermosetting resin composition 68 will be formed. In addition, the resin member 22 is formed, and the resin member 22 and the metal member 24 are joined to each other to form the resin-metal composite 20, thereby forming the housing 10.
In this step, the thermosetting resin composition 68 introduced into the molding space 66 proceeds in one direction without flowing back. As a result, the slidability, thermal conductivity, strength, and durability of the resin member 22 and the thermal conductivity, strength, and durability of the resin metal composite 20 can be improved. The reason for this is not clear, but for example, when a fibrous filler is contained in the thermosetting resin composition 68, the thermosetting resin composition 68 is allowed to proceed in one direction without backflow. It is estimated that one of the factors is that the orientation of the fibrous filler in the cured resin member 22 can be controlled uniformly.
 成形空間66内に熱硬化性樹脂組成物68を充填する上記工程においては、成形空間66内を脱気してから溶融した熱硬化性樹脂組成物68を成形空間66内に導入することがより好ましい。これにより、樹脂部材22中にボイドが生じる可能性を低減できる。このため、より一層熱伝導性や機械的強度に優れた樹脂金属複合体20を得ることができる。 In the above-described step of filling the molding space 66 with the thermosetting resin composition 68, it is more preferable to introduce the molten thermosetting resin composition 68 into the molding space 66 after degassing the molding space 66. preferable. Thereby, possibility that a void will arise in the resin member 22 can be reduced. For this reason, the resin metal composite 20 which is further excellent in thermal conductivity and mechanical strength can be obtained.
 次に、熱硬化性樹脂組成物68の硬化後、成形金型3を開くことにより、バリの発生を抑制できた良好な品質の樹脂金属複合体20を得ることができる。なお、ポット60内に残った熱硬化性樹脂組成物68の硬化物(カル)とスプルー62内の硬化物は、成形金型3を開く前にプランジャ64を引き上げることにより、樹脂金属複合体20と分離される。本実施形態においては、たとえばこのようにして、樹脂金属複合体20により構成される筐体10を形成することができる。 Next, after the thermosetting resin composition 68 is cured, the molding die 3 is opened to obtain a resin-metal composite 20 having a good quality in which the generation of burrs can be suppressed. Note that the cured product (cal) of the thermosetting resin composition 68 remaining in the pot 60 and the cured product in the sprue 62 are pulled up by the plunger 64 before opening the molding die 3, thereby forming the resin-metal composite 20. Separated. In the present embodiment, for example, the housing 10 constituted by the resin-metal composite 20 can be formed in this manner.
 筐体10を作製した後、筐体10内に、ベーン溝34を有するロータ30と、ベーン溝34に配設されたベーン32と、を収容する。この際、筐体10の内壁面12のうちの樹脂部材22により構成された部分にベーン32が摺接するようにベーン32が配設される。次いで、筐体10にカバー50を取り付ける。
 本実施形態においては、たとえばこのようにして、ポンプ100が製造される。
After producing the housing 10, the rotor 30 having the vane grooves 34 and the vanes 32 disposed in the vane grooves 34 are accommodated in the housing 10. At this time, the vane 32 is disposed so that the vane 32 is in sliding contact with the portion of the inner wall surface 12 of the housing 10 formed by the resin member 22. Next, the cover 50 is attached to the housing 10.
In the present embodiment, for example, the pump 100 is manufactured in this manner.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope that can achieve the object of the present invention are included in the present invention.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
<実施例1>
(熱硬化性樹脂組成物の調製)
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト(株)製)を34.3質量%、ヘキサメチレンテトラミンを6.0質量%、ガラス繊維(日東紡績(株)製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を57.1質量%、酸化マグネシウム(神島化学工業(株)製)を0.5質量%、γ-アミノプロピルトリエトキシシラン(信越化学工業(株)製)を0.2質量%、潤滑剤等のその他の成分を1.8質量%、をそれぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物を得た。
<Example 1>
(Preparation of thermosetting resin composition)
34.3% by mass of novolac-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 6.0% by mass of hexamethylenetetramine, glass fiber (manufactured by Nitto Boseki Co., Ltd., average particle size: 11 μm, average) Major axis: 3 mm, average aspect ratio: 270) 57.1% by mass, magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) 0.5% by mass, γ-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) ) 0.2% by mass and 1.8% by mass of other components such as a lubricant are each dry-mixed, melted and kneaded with a heating roll at 90 ° C., cooled into a sheet, and pulverized Thus, a granular thermosetting resin composition was obtained.
(筐体用金属部材の作製)
 まず、後述するポンプの筐体をロータの回転軸と平行な一面で二分割して得られる一方と他方の形状にそれぞれ加工され、かつA5052(比重2.68g/cm)である二つのアルミニウム合金部材を用意した。次いで、これらのアルミニウム合金部材の表面を、#4000の研磨紙で十分研磨した。次いで、水酸化カリウム(16質量%)、塩化亜鉛(5質量%)、硝酸ナトリウム(5質量%)、チオ硫酸ナトリウム(13質量%)の水溶液を調製した。得られた水溶液(30℃)中に、上記アルミニウム合金部材を浸漬して揺動させ、深さ方向に15μm(アルミニウムの減少した重量から算出)溶解させた。次いで、水洗を行い、35質量%の硝酸水溶液(30℃)中に浸漬して、20秒間揺動させた。その後、水洗、乾燥して、上記アルミニウム合金部材からなる二つの筐体用金属部材を得た。
(Manufacture of metal members for housing)
First, two aluminums each processed into one and the other shapes obtained by dividing a casing of a pump, which will be described later, on one surface parallel to the rotation axis of the rotor, and having A5052 (specific gravity 2.68 g / cm 3 ). An alloy member was prepared. Next, the surfaces of these aluminum alloy members were sufficiently polished with # 4000 polishing paper. Next, an aqueous solution of potassium hydroxide (16 mass%), zinc chloride (5 mass%), sodium nitrate (5 mass%), and sodium thiosulfate (13 mass%) was prepared. The aluminum alloy member was immersed and swung in the obtained aqueous solution (30 ° C.), and dissolved in the depth direction by 15 μm (calculated from the reduced weight of aluminum). Subsequently, it was washed with water, immersed in a 35% by mass nitric acid aqueous solution (30 ° C.) and rocked for 20 seconds. Then, it washed with water and dried and obtained the two metal members for cases which consist of the said aluminum alloy member.
(ポンプの作製)
 まず、得られた上記熱硬化性樹脂組成物と上記筐体用金属部材を用いて、樹脂金属複合体により構成される筐体を作製した。具体的には、図4に示す成型金型を用いて、以下の手順により作製した。まず、下金型内に、上記で得られた二つの筐体用金属部材を、固定せずに配置した。ここでは、後述する成型空間となる位置に、下金型の側面に接するように各筐体用金属部材を配置した。次いで、上金型と下金型を型締めして、上金型と下金型との間に筐体用金属部材が配置された成型空間を形成した。次いで、ポット内において溶融させた熱硬化性樹脂組成物を、スプルーを介して成型空間内に注入し、熱硬化性樹脂組成物の成型を行った。なお、ポット内での熱硬化性樹脂組成物の溶融、成型空間内への熱硬化性樹脂組成物の導入は同時に行った。また、熱硬化性樹脂組成物の成型は、注入圧力6.9MPa、金型温度175℃、硬化時間120秒の条件で行った。これにより、熱硬化性樹脂組成物により構成される樹脂部材と、筐体用金属部材と、を接合してなる樹脂金属複合体により構成される筐体を得た。なお、得られた筐体は、内壁面を含む内側が樹脂部材(厚さ3mm)により構成され、外壁面を含む外側が筐体用金属部材(厚さ3mm)により構成されていた。また、得られた筐体は、図1および図2に示すように、内部が空洞であって、一端側が開放され、かつ他端側にロータの軸を固定する軸受部となる貫通孔が設けられている略楕円柱状であった。
(Production of pump)
First, the housing | casing comprised by the resin metal composite was produced using the obtained said thermosetting resin composition and the said metal member for housing | casing. Specifically, it was produced by the following procedure using the molding die shown in FIG. First, the two casing metal members obtained above were placed in the lower mold without being fixed. Here, each housing metal member is disposed at a position to be a molding space to be described later so as to be in contact with the side surface of the lower mold. Next, the upper mold and the lower mold were clamped to form a molding space in which the casing metal member was disposed between the upper mold and the lower mold. Next, the thermosetting resin composition melted in the pot was injected into the molding space through a sprue to mold the thermosetting resin composition. In addition, melting of the thermosetting resin composition in the pot and introduction of the thermosetting resin composition into the molding space were simultaneously performed. The thermosetting resin composition was molded under conditions of an injection pressure of 6.9 MPa, a mold temperature of 175 ° C., and a curing time of 120 seconds. Thereby, the housing | casing comprised by the resin metal composite formed by joining the resin member comprised by the thermosetting resin composition and the metal member for housing | casing was obtained. In addition, as for the obtained housing | casing, the inner side including an inner wall face was comprised by the resin member (thickness 3mm), and the outer side containing an outer wall surface was comprised by the metal member for cases (thickness 3mm). Further, as shown in FIG. 1 and FIG. 2, the obtained casing is hollow inside, one end side is opened, and a through hole serving as a bearing portion for fixing the rotor shaft is provided on the other end side. It was a substantially elliptical column shape.
 次いで、上記で得られた筐体中に、摺接部材であるベーンを有するロータを回転自在に配設した。このとき、ベーンが筐体の内壁面のうちの樹脂部材により構成される部分に摺接するように、ベーンおよびロータを配設した。また、ベーンのうちの筐体の内壁面に摺接する端部は、アルミダイキャストにより構成されていた。次いで、略楕円柱状である筐体の一端側にカバーを止着した。これにより、ポンプを得た。 Next, a rotor having a vane as a sliding contact member was rotatably arranged in the casing obtained above. At this time, the vane and the rotor were arranged so that the vane was in sliding contact with the portion of the inner wall surface of the housing that was formed by the resin member. Moreover, the edge part which slidably contacts the inner wall surface of the housing | casing among vanes was comprised by the aluminum die-casting. Next, the cover was fixed to one end side of the substantially elliptical columnar casing. As a result, a pump was obtained.
(表面観察)
 筐体用金属部材の表面を電子顕微鏡(SEM)で撮影し、筐体用金属部材の樹脂部材との接合面を観察した。筐体用金属部材は、上記接合面が粗化されており、上記接合面において複数の凹部を有していた。また、一部の凹部の断面形状は、凹部の開口部から底部までの少なくとも一部が上記開口部の断面幅よりも大きい断面幅を有する形状となっていた。
(Surface observation)
The surface of the metal member for housing | casing was image | photographed with the electron microscope (SEM), and the joint surface with the resin member of the metal member for housing | casing was observed. As for the metal member for housing | casing, the said joint surface was roughened and it had several recessed part in the said joint surface. Further, the cross-sectional shape of some of the recesses has a shape in which at least a part from the opening to the bottom of the recess has a cross-sectional width larger than the cross-sectional width of the opening.
(光沢度)
 筐体用金属部材の表面の光沢度を、ディジタル光沢度計(20°、60°)(GM-26型、村上色彩技術研究所社製)を用いて、ASTM-D523に準拠して測定角度60°(入射角60°、反射角60°)で測定した。筐体用金属部材の光沢度は10であった。
(Glossiness)
Glossiness of the surface of the metal member for the case is measured using a digital gloss meter (20 °, 60 °) (GM-26, manufactured by Murakami Color Research Laboratory) in accordance with ASTM-D523. Measurements were made at 60 ° (incident angle 60 °, reflection angle 60 °). The glossiness of the casing metal member was 10.
(比表面積)
 筐体用金属部材を120℃で、6時間真空乾燥した後、自動比表面積/細孔分布測定装置(BELSORPminiII、日本ベル社製)を用いて、液体窒素温度における窒素吸脱着量を測定した。窒素吸着BET法による実表面積はBETプロットから算出した。測定した窒素吸着BET法による実表面積を、見掛け表面積で割ることにより比表面積を算出した。筐体用金属部材の比表面積は270であった。
(Specific surface area)
The metal member for housing was vacuum-dried at 120 ° C. for 6 hours, and then the nitrogen adsorption / desorption amount at the liquid nitrogen temperature was measured using an automatic specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.). The actual surface area by the nitrogen adsorption BET method was calculated from the BET plot. The specific surface area was calculated by dividing the actual surface area measured by the nitrogen adsorption BET method by the apparent surface area. The specific surface area of the casing metal member was 270.
(筐体用金属部材の表面粗さ)
 超深度形状測定顕微鏡(キーエンス社製VK9700)を用いて、倍率20倍における筐体用金属部材の樹脂部材との接合面の表面形状を測定した。表面粗さはRaおよびRzを測定した。RaおよびRzは、JIS-B0601に準拠して測定した。筐体用金属部材の上記接合面において、Raは4.0μmであり、Rzは15.5μmであった。
(Surface roughness of metal members for housing)
The surface shape of the joint surface with the resin member of the metal member for housing at a magnification of 20 was measured using an ultra-deep shape measuring microscope (VK9700 manufactured by Keyence Corporation). As for the surface roughness, Ra and Rz were measured. Ra and Rz were measured according to JIS-B0601. In the joint surface of the housing metal member, Ra was 4.0 μm and Rz was 15.5 μm.
<実施例2>
(熱硬化性樹脂組成物の調製)
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト(株)製)を35.1質量%、ヘキサメチレンテトラミンを4.9質量%、黒鉛(西村黒鉛(株)製)を57.9質量%、酸化マグネシウム(神島化学工業(株)製)を0.4質量%、消石灰(秩父石灰工業(株)製)を0.7質量%、潤滑剤等のその他の成分を1.1質量%、をそれぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物を得た。
<Example 2>
(Preparation of thermosetting resin composition)
35.1% by mass of novolac type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 4.9% by mass of hexamethylenetetramine, 57.9% by mass of graphite (manufactured by Nishimura Graphite Co., Ltd.), oxidized 0.4% by mass of magnesium (manufactured by Kamishima Chemical Co., Ltd.), 0.7% by mass of slaked lime (manufactured by Chichibu Lime Industry Co., Ltd.), and 1.1% by mass of other components such as a lubricant, respectively. The mixture was dry-mixed, melted and kneaded with a heating roll at 90 ° C., cooled into a sheet, and pulverized to obtain a granular thermosetting resin composition.
(筐体用金属部材の作製)
 実施例1と同様の方法により、筐体用金属部材を得た。
(Manufacture of metal members for housing)
A casing metal member was obtained in the same manner as in Example 1.
(ポンプの作製)
 実施例1と同様の方法により、ポンプを得た。
(Production of pump)
A pump was obtained in the same manner as in Example 1.
<実施例3>
(熱硬化性樹脂組成物の調製)
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト(株)製)を10.7質量%、レゾール型フェノール樹脂を25.3質量%、消石灰(秩父石灰工業(株)製)を1.8質量%、ガラス繊維(日東紡績(株)製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を53.5質量%、クレー(エンゲル・ハート社製)を4.9質量%、γ-アミノプロピルトリエトキシシラン(信越化学工業(株)製)を0.5質量%、潤滑剤等のその他の成分を3.3質量%、をそれぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物を得た。
<Example 3>
(Preparation of thermosetting resin composition)
10.7% by mass of novolac type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 25.3% by mass of resol type phenolic resin, and 1.8% by mass of slaked lime (manufactured by Chichibu Lime Industry Co., Ltd.) , 53.5% by mass of glass fiber (manufactured by Nittobo Co., Ltd., average particle size: 11 μm, average major axis: 3 mm, average aspect ratio: 270), 4.9% by mass of clay (manufactured by Engel Heart), 0.5% by mass of γ-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and 3.3% by mass of other components such as a lubricant were each dry-mixed and heated at 90 ° C. The mixture was melt-kneaded and crushed and cooled to obtain a granular thermosetting resin composition.
 なお、レゾール型フェノール樹脂としては、還流コンデンサー撹拌機、加熱装置、真空脱水装置を備えた反応釜内に、フェノール(P)とホルムアルデヒド(F)とをモル比(F/P)=1.7で仕込み、これに酢酸亜鉛をフェノール100重量部に対して0.5重量部添加し、この反応系のpHを5.5に調整し、還流反応を3時間行い、その後、真空度100Torr、温度100℃で2時間水蒸気蒸留を行って未反応フェノールを除去し、さらに、真空度100Torr、温度115℃で1時間反応させることにより得られた、数平均分子量800のジメチレンエーテル型のもの(固形)を主成分として用いた。 In addition, as a resol type phenol resin, a molar ratio (F / P) = 1.7 of phenol (P) and formaldehyde (F) in a reaction kettle equipped with a reflux condenser agitator, a heating device, and a vacuum dehydration device. Then, 0.5 parts by weight of zinc acetate is added to 100 parts by weight of phenol, the pH of the reaction system is adjusted to 5.5, and the refluxing reaction is performed for 3 hours. Thereafter, the degree of vacuum is 100 Torr, the temperature Steam-distilled at 100 ° C. for 2 hours to remove unreacted phenol, and further reacted at a vacuum of 100 Torr and a temperature of 115 ° C. for 1 hour, and having a number average molecular weight of 800 dimethylene ether type (solid ) Was used as the main component.
(筐体用金属部材の作製)
 実施例1と同様の方法により、筐体用金属部材を得た。
(Manufacture of metal members for housing)
A casing metal member was obtained in the same manner as in Example 1.
(ポンプの作製)
 実施例1と同様の方法により、ポンプを得た。
(Production of pump)
A pump was obtained in the same manner as in Example 1.
<実施例4>
(熱硬化性樹脂組成物の調製)
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト(株)製)を34.0質量%、ヘキサメチレンテトラミンを6.0質量%、黒鉛(西村黒鉛(株)製)を21.0質量%、炭素繊維(ゾルテック社製)を30.0質量%、酸化マグネシウム(神島化学工業(株)製)を1.5質量%、潤滑剤等のその他の成分を7.5質量%、をそれぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物を得た。
<Example 4>
(Preparation of thermosetting resin composition)
34.0% by mass of novolac type phenol resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 6.0% by mass of hexamethylenetetramine, 21.0% by mass of graphite (manufactured by Nishimura Graphite Co., Ltd.), carbon 30.0% by mass of fiber (manufactured by Zoltech), 1.5% by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.), and 7.5% by mass of other components such as lubricants were dry mixed. These were melt-kneaded with a heating roll at 90 ° C., crushed and cooled to obtain a granular thermosetting resin composition.
(筐体用金属部材の作製)
 実施例1と同様の方法により、筐体用金属部材を得た。
(Manufacture of metal members for housing)
A casing metal member was obtained in the same manner as in Example 1.
(ポンプの作製)
 実施例1と同様の方法により、ポンプを得た。
(Production of pump)
A pump was obtained in the same manner as in Example 1.
<比較例1>
(ポンプの作製)
 表面が#4000の研磨紙で十分研磨され、かつ全体がA5052(比重2.68g/cm)のアルミニウム合金により構成された筐体を用意した。この筐体は、図1および図2に示すように、内部が空洞であって、一端側が開放され、かつ他端側にロータの軸を固定する軸受部となる貫通孔が設けられている略楕円筒状であった。次いで、筐体中に摺接部材であるベーンを有するロータを固定した。このとき、ベーンが、アルミニウム合金により構成される筐体の内壁面に摺接するように、ロータを配置した。また、ベーンのうちの筐体の内壁面に摺接する部分は、アルミダイキャストにより構成されていた。次いで、略楕円柱状である筐体の一端側にカバーを止着した。これにより、ポンプを得た。
<Comparative Example 1>
(Production of pump)
A case was prepared in which the surface was sufficiently polished with # 4000 polishing paper and the entire body was made of an A5052 (specific gravity 2.68 g / cm 3 ) aluminum alloy. As shown in FIGS. 1 and 2, the casing is hollow inside, is open at one end side, and is provided with a through hole serving as a bearing portion for fixing the rotor shaft at the other end side. It was oval cylindrical. Subsequently, the rotor which has the vane which is a sliding contact member in the housing | casing was fixed. At this time, the rotor was disposed so that the vane slidably contacts the inner wall surface of the casing made of the aluminum alloy. Further, the portion of the vane that is in sliding contact with the inner wall surface of the casing is constituted by aluminum die casting. Next, the cover was fixed to one end side of the substantially elliptical columnar casing. As a result, a pump was obtained.
<評価>
(熱硬化性樹脂組成物の硬化物の比重)
 各実施例について、得られた熱硬化性樹脂組成物の硬化物の比重(g/cm)を測定した。比重の測定は、トランスファ成形(金型温度180℃、時間3分間)にて成型した試験片に対し、JIS K6911に準拠して行った。結果を表1に示す。
<Evaluation>
(Specific gravity of cured product of thermosetting resin composition)
About each Example, specific gravity (g / cm < 3 >) of the hardened | cured material of the obtained thermosetting resin composition was measured. The specific gravity was measured according to JIS K6911 for a test piece molded by transfer molding (mold temperature: 180 ° C., time: 3 minutes). The results are shown in Table 1.
(摩擦試験)
 各実施例について、それぞれ次のように摩擦試験を行った。まず、上記で得られたポンプから樹脂部材を剥がし、この樹脂部材から、筐体の内壁面を構成していた面を測定面とした測定サンプル(30mm×50mm×2mmの角板試験片)を作製した。次いで、JIS K7218 A法に従って摩擦試験を行った。相手材としては、円筒状のS45Cを用いた。また、測定条件は、圧力2MPa、試験速度0.1m/s、試験時間60分であった。得られた測定結果から、測定開始30分から60分までの摩擦係数の平均値と、測定開始30分から60分までの試料温度の平均値と、を算出し、これらを摩擦係数および試料温度(℃)とした。結果を表1に示す。
(Friction test)
About each Example, the friction test was done as follows, respectively. First, the resin member is peeled off from the pump obtained above, and a measurement sample (30 mm × 50 mm × 2 mm square plate test piece) with the surface constituting the inner wall surface of the housing as the measurement surface is removed from the resin member. Produced. Next, a friction test was performed according to JIS K7218 A method. Cylindrical S45C was used as a counterpart material. The measurement conditions were a pressure of 2 MPa, a test speed of 0.1 m / s, and a test time of 60 minutes. From the obtained measurement results, the average value of the friction coefficient from 30 minutes to 60 minutes from the start of measurement and the average value of the sample temperature from 30 minutes to 60 minutes from the start of measurement are calculated. ). The results are shown in Table 1.
(筐体の熱伝導率)
 各実施例について、得られた筐体の、樹脂部材と筐体用金属部材の積層方向における熱伝導率(W/(m・K))を次のように測定した。まず、上記において作製されたポンプの筐体から、樹脂部材と筐体用金属部材が接合された試験片を切り出した。次いで、樹脂部材と筐体用金属部材の厚さが1:1となるように、試験片の樹脂部材および筐体用金属部材をそれぞれ薄膜化した。ここでは、樹脂部材の厚さを1mm、筐体用金属部材の厚さを1mmとした。次いで、レーザーフラッシュ法を用いて樹脂部材と筐体用金属部材の積層方向における熱伝導率を測定した。結果を表1に示す。
(Case thermal conductivity)
About each Example, the heat conductivity (W / (m * K)) in the lamination direction of the resin member and the metal member for housing | casing of the obtained housing | casing was measured as follows. First, a test piece in which a resin member and a casing metal member were joined was cut out from the casing of the pump produced above. Next, the resin member of the test piece and the metal member for housing were each thinned so that the thickness of the resin member and the metal member for housing was 1: 1. Here, the thickness of the resin member was 1 mm, and the thickness of the metal member for housing was 1 mm. Next, the thermal conductivity in the laminating direction of the resin member and the casing metal member was measured using a laser flash method. The results are shown in Table 1.
(樹脂部材の熱伝導率)
 各実施例について、次のようにして、得られた樹脂部材の熱伝導率(W/(m・K))の測定を行った。まず、上記で得られたポンプから樹脂部材を剥がし、この樹脂部材から測定サンプル(10mm×10mm×厚み2mmの角板試験片)を作製した。次いで、得られた測定サンプルについてレーザーフラッシュ法を用いて厚み方向の熱伝導率を測定し、これを樹脂部材の熱伝導率とした。
(Thermal conductivity of resin members)
About each Example, the thermal conductivity (W / (m * K)) of the obtained resin member was measured as follows. First, the resin member was peeled off from the pump obtained above, and a measurement sample (10 mm × 10 mm × 2 mm thick square plate test piece) was produced from this resin member. Subsequently, the thermal conductivity of the thickness direction was measured about the obtained measurement sample using the laser flash method, and this was made into the thermal conductivity of the resin member.
(ポンプの性能評価)
 各実施例および比較例について、それぞれ次のようにポンプの性能評価を行った。まず、上記で得られたポンプを、1000時間駆動させた。次いで、1000時間駆動後のポンプの温度を測定した。ここでは、1000時間駆動による温度上昇値を算出し、温度上昇値が100℃以下のものを◎とし、100℃超過150℃以下のものを○とし、150℃超過のものを×としてポンプの性能評価を行った。
(Pump performance evaluation)
About each Example and the comparative example, the performance evaluation of the pump was performed as follows, respectively. First, the pump obtained above was driven for 1000 hours. Next, the temperature of the pump after driving for 1000 hours was measured. Here, the temperature rise value is calculated by driving for 1000 hours, the temperature rise value is 100 ° C. or less as ◎, the one exceeding 100 ° C. and 150 ° C. or less as ○, and the one exceeding 150 ° C. as x. Evaluation was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2014年4月16日に出願された日本出願特願2014-084267号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-084267 filed on Apr. 16, 2014, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  熱硬化性樹脂組成物を用いて形成される樹脂部材と金属部材を接合してなる樹脂金属複合体により構成されており、かつ内壁面のうちの少なくとも一部が前記樹脂部材により構成されている筐体と、
     前記筐体内に収容されており、かつ前記内壁面のうちの前記樹脂部材により構成される部分に摺接する摺接部材と、
     を備えるポンプ。
    It is comprised by the resin metal composite formed by joining the resin member and metal member which are formed using a thermosetting resin composition, and at least one part of an inner wall surface is comprised by the said resin member. A housing,
    A sliding contact member that is accommodated in the housing and that is in sliding contact with a portion of the inner wall surface that is configured by the resin member;
    With pump.
  2.  請求項1に記載のポンプにおいて、
     前記樹脂部材は、JIS K7218 A法を用いて圧力2MPa、試験速度0.1m/s、試験時間60分の条件により測定した摩擦係数の、測定開始30分から60分までの平均値が0.55以下であるポンプ。
    The pump according to claim 1, wherein
    The resin member has a friction coefficient measured using JIS K7218 A method under a pressure of 2 MPa, a test speed of 0.1 m / s, and a test time of 60 minutes, with an average value of 0.55 from 30 minutes to 60 minutes from the start of measurement. The pump that is below.
  3.  請求項1または2に記載のポンプにおいて、
     前記樹脂部材は、JIS K7218 A法を用いて圧力2MPa、試験速度0.1m/s、試験時間60分の条件により測定した試料温度の、測定開始30分から60分までの平均値が200℃以下であるポンプ。
    The pump according to claim 1 or 2,
    The resin member has an average value of 200 ° C. or less from 30 minutes to 60 minutes from the start of measurement of the sample temperature measured using JIS K7218 A method under the conditions of pressure 2 MPa, test speed 0.1 m / s, test time 60 minutes. Is a pump.
  4.  請求項1~3いずれか一項に記載のポンプにおいて、
     前記樹脂部材と前記金属部材の厚さが互いに等しい前記樹脂金属複合体の、レーザーフラッシュ法にて測定した前記樹脂部材と前記金属部材の積層方向における熱伝導率が0.5W/(m・K)以上であるポンプ。
    The pump according to any one of claims 1 to 3,
    The resin metal composite having the same thickness of the resin member and the metal member has a thermal conductivity of 0.5 W / (m · K) in the lamination direction of the resin member and the metal member measured by a laser flash method. ) The pump that is above.
  5.  請求項1~4いずれか一項に記載のポンプにおいて、
     前記樹脂部材の熱伝導率は、0.3W/(m・K)以上であるポンプ。
    The pump according to any one of claims 1 to 4,
    The resin member has a thermal conductivity of 0.3 W / (m · K) or more.
  6.  請求項1~5いずれか一項に記載のポンプにおいて、
     前記熱硬化性樹脂組成物は、フェノール樹脂を含むポンプ。
    The pump according to any one of claims 1 to 5,
    The said thermosetting resin composition is a pump containing a phenol resin.
  7.  請求項1~6いずれか一項に記載のポンプにおいて、
     前記金属部材は、Alを含むポンプ。
    The pump according to any one of claims 1 to 6,
    The metal member is a pump containing Al.
  8.  請求項1~7いずれか一項に記載のポンプにおいて、
     前記樹脂部材は、充填剤を含むポンプ。
    The pump according to any one of claims 1 to 7,
    The resin member is a pump including a filler.
  9.  請求項1~8いずれか一項に記載のポンプにおいて、
     前記金属部材は、前記樹脂部材との接合面のASTM-D523に準拠して測定した測定角度60℃の光沢度が0.1以上30以下であるポンプ。
    The pump according to any one of claims 1 to 8,
    The metal member is a pump whose glossiness at a measurement angle of 60 ° C. measured in accordance with ASTM-D523 of the joint surface with the resin member is 0.1 or more and 30 or less.
  10.  請求項1~9いずれか一項に記載のポンプにおいて、
     前記金属部材は、前記樹脂部材との接合面において複数の凹部を有しており、
     前記複数の凹部のうちの少なくとも一部の断面形状は、前記凹部の開口部から底部までの間の少なくとも一部が前記開口部の断面幅よりも大きい断面幅を有する形状となっているポンプ。
    The pump according to any one of claims 1 to 9,
    The metal member has a plurality of recesses in the joint surface with the resin member,
    The cross-sectional shape of at least a part of the plurality of recesses is a pump in which at least a part from the opening to the bottom of the recess has a cross-sectional width larger than the cross-sectional width of the opening.
  11.  請求項1~10いずれか一項に記載のポンプにおいて、
     前記金属部材は、前記樹脂部材との接合面の見掛け表面積に対する窒素吸着BET法による実表面積の比が100以上400以下であるポンプ。
    The pump according to any one of claims 1 to 10,
    The said metal member is a pump whose ratio of the actual surface area by the nitrogen adsorption BET method with respect to the apparent surface area of the joint surface with the said resin member is 100-400.
  12.  樹脂部材と金属部材を接合してなる樹脂金属複合体により構成されており、かつ内壁面のうちの少なくとも一部が前記樹脂部材により構成されている筐体と、前記筐体内に収容されており、かつ前記内壁面のうちの前記樹脂部材により構成される部分に摺接する摺接部材と、を備えるポンプの、前記樹脂部材を形成するために用いられる樹脂組成物であって、
     熱硬化性樹脂を含む樹脂組成物。
    It is comprised by the resin metal composite formed by joining a resin member and a metal member, and at least one part of the inner wall surface is comprised by the said resin member, and is accommodated in the said housing | casing And a resin composition used for forming the resin member of a pump comprising a sliding contact member that is in sliding contact with a portion constituted by the resin member of the inner wall surface,
    A resin composition containing a thermosetting resin.
PCT/JP2015/060337 2014-04-16 2015-04-01 Pump and resin composition WO2015159715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084267A JP6413312B2 (en) 2014-04-16 2014-04-16 Pump and resin composition
JP2014-084267 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159715A1 true WO2015159715A1 (en) 2015-10-22

Family

ID=54323926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060337 WO2015159715A1 (en) 2014-04-16 2015-04-01 Pump and resin composition

Country Status (3)

Country Link
JP (1) JP6413312B2 (en)
TW (1) TW201602465A (en)
WO (1) WO2015159715A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737062A (en) * 2019-01-21 2019-05-10 中北大学 A kind of four cylinder slide valve pump of parallel connection using automatic balancing rotor group
US10337510B2 (en) 2017-02-03 2019-07-02 Ford Global Technologies, Llc Wear-resistant coating for oil pump cavity
WO2022185601A1 (en) * 2021-03-05 2022-09-09 住友ベークライト株式会社 Thermosetting resin composition for sliding member, cured product formed from said composition and use of same
US20220403841A1 (en) * 2019-12-24 2022-12-22 Sumitomo Electric Sintered Alloy, Ltd. Rotary pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973010U (en) * 1972-10-06 1974-06-25
JPH03215027A (en) * 1990-01-19 1991-09-20 Matsushita Electric Ind Co Ltd Coated matter and method for preparing surface of coating ground
US5638600A (en) * 1994-10-07 1997-06-17 Ford Motor Company Method of making an efficiency enhanced fluid pump or compressor
JP2005307902A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Rotary vane vacuum-pump
JP2012062763A (en) * 2010-09-14 2012-03-29 Taiho Kogyo Co Ltd Rotary type compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788823B2 (en) * 1985-06-21 1995-09-27 株式会社日立製作所 Scroll compressor
JP2000145661A (en) * 1998-11-05 2000-05-26 Koyo Seiko Co Ltd Gear pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973010U (en) * 1972-10-06 1974-06-25
JPH03215027A (en) * 1990-01-19 1991-09-20 Matsushita Electric Ind Co Ltd Coated matter and method for preparing surface of coating ground
US5638600A (en) * 1994-10-07 1997-06-17 Ford Motor Company Method of making an efficiency enhanced fluid pump or compressor
JP2005307902A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Rotary vane vacuum-pump
JP2012062763A (en) * 2010-09-14 2012-03-29 Taiho Kogyo Co Ltd Rotary type compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10337510B2 (en) 2017-02-03 2019-07-02 Ford Global Technologies, Llc Wear-resistant coating for oil pump cavity
CN109737062A (en) * 2019-01-21 2019-05-10 中北大学 A kind of four cylinder slide valve pump of parallel connection using automatic balancing rotor group
CN109737062B (en) * 2019-01-21 2024-04-16 中北大学 Parallel four-cylinder slide valve pump adopting automatic balancing rotor set
US20220403841A1 (en) * 2019-12-24 2022-12-22 Sumitomo Electric Sintered Alloy, Ltd. Rotary pump
WO2022185601A1 (en) * 2021-03-05 2022-09-09 住友ベークライト株式会社 Thermosetting resin composition for sliding member, cured product formed from said composition and use of same
JP7168128B1 (en) * 2021-03-05 2022-11-09 住友ベークライト株式会社 Thermosetting resin composition for sliding member, cured product made from said composition, and use thereof

Also Published As

Publication number Publication date
JP6413312B2 (en) 2018-10-31
TW201602465A (en) 2016-01-16
JP2015203389A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
WO2015159715A1 (en) Pump and resin composition
WO2015087720A1 (en) Metal-resin composite body
JP5874841B2 (en) Metal resin composite and method for producing metal resin composite
JP2017005906A (en) Commutator
CN1174858C (en) Laminated board
WO2014061520A1 (en) Metal-resin composite, and method for producing same
JP6398280B2 (en) gear
WO2015159713A1 (en) Compressor, compressor chassis, compressor chassis manufacturing method
CN105829452B (en) Hot curing resin composition and metal-resin composite
WO2014156925A1 (en) Resin sheet for electronic device sealing and production method for electronic device package
WO2015159644A1 (en) Chassis of power conversion device, thermosetting resin composition and power conversion device
WO2018139034A1 (en) Metal/resin composite structure and method for manufacturing same
WO2019198610A1 (en) Composite structure and manufacturing method therefor
WO2015087722A1 (en) Metal-resin composite body
JP2012121991A (en) Method for manufacturing friction material
WO2020225877A1 (en) Scroll component, manufacturing method thereof, and scroll compressor
WO2015159642A1 (en) Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition
WO2016063694A1 (en) Metal-foil-clad substrate, circuit board, and substrate with heat-generating body mounted thereon
CN105734325A (en) Ceramic metal matrix composite and preparing method thereof
JP2015214595A (en) Phenolic resin composition and metal-resin integrated molding
WO2021131804A1 (en) Composite structure and manufacturing method therefor
JP2009102595A (en) Phenolic resin molding material and its molded article
JP7205156B2 (en) Sealing resin composition and in-vehicle electronic control device using the same
JP2017003000A (en) Rotor for brake
JP2007056208A (en) Melamine resin composition for commutator and the resultant commutator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780363

Country of ref document: EP

Kind code of ref document: A1