WO2015159642A1 - Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition - Google Patents

Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition Download PDF

Info

Publication number
WO2015159642A1
WO2015159642A1 PCT/JP2015/058238 JP2015058238W WO2015159642A1 WO 2015159642 A1 WO2015159642 A1 WO 2015159642A1 JP 2015058238 W JP2015058238 W JP 2015058238W WO 2015159642 A1 WO2015159642 A1 WO 2015159642A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake piston
metal member
thermosetting resin
brake
resin composition
Prior art date
Application number
PCT/JP2015/058238
Other languages
French (fr)
Japanese (ja)
Inventor
山本 晋也
吉広 瀧花
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2015159642A1 publication Critical patent/WO2015159642A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a brake piston, a disc brake, a method for manufacturing a brake piston, and a thermosetting resin composition.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-939166 discloses a resin piston used for a disc brake, in which a metal reinforcing member is formed at least at a corner portion on the pressure receiving surface side of the brake fluid pressure of the resin piston. A resin-made piston is described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-148158
  • a metal cap that covers the outer peripheral surface, the inner peripheral surface, and the open end surface of the open end is integrated with the open end of the cup-shaped synthetic resin piston main body. The piston to be joined is described.
  • the present invention has been made in view of the above circumstances, and provides a brake piston excellent in performance balance between light weight and reliability.
  • a brake piston used for a disc brake A piston body having an opening and made of a resin member; A metal member provided so as to cover the side end surface of the opening of the piston main body, The side end face of the opening in the piston main body and the metal member are joined, The metal member has a roughened layer composed of fine irregularities on at least a joint surface to be joined to the piston main body part, The brake piston in which the side end face of the opening in the piston main body and the metal member are joined by the presence of a part of the resin member inside the concave portion constituting the concave and convex portions of the roughened layer.
  • a disc brake comprising the above brake piston is provided.
  • a manufacturing method for manufacturing the brake piston Preparing a metal member and a mold; Disposing the metal member in the molding space of the mold; and Filling the molding space with a thermosetting resin composition containing a thermosetting resin; The resin member comprising the thermosetting resin composition and the metal member by curing the thermosetting resin composition in a state where at least a part of the thermosetting resin composition is in contact with the metal member.
  • a method for manufacturing a brake piston is provided.
  • thermosetting resin composition used for forming the resin member constituting the brake piston A thermosetting resin composition including a thermosetting resin and a filler is provided.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a brake piston 100 according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an example of the cross-sectional shape of the concave portion constituting the roughened layer on the surface of the metal member 102 according to the embodiment of the present invention.
  • the brake piston 100 is used for a disc brake, and includes a piston main body 110 made of a resin member 101 and a metal member 102.
  • the piston main body 110 has an opening 120.
  • the metal member 102 is provided so as to cover the side end face 125 of the opening 120 of the piston main body 110. Further, the side end surface 125 of the opening 120 in the piston main body 110 and the metal member 102 are joined, and the metal member 102 has a roughened layer made of fine irregularities on at least the joint surface 103 joined to the piston main body 110. Have.
  • the brake piston 100 according to the present embodiment is used for, for example, the disc brake 300 shown in FIG.
  • FIG. 3 is a cross-sectional view showing an example of the structure of the disc brake 300 according to the embodiment of the present invention.
  • the disc brake 300 according to this embodiment includes a disc rotor 301, a brake pad 302, a hydraulic cylinder device 303, a caliper 304, a brake piston 100, and a seal 305.
  • the disc brake 300 is mounted on a vehicle, for example.
  • the disk rotor 301 is connected to a rotating shaft (not shown).
  • Brake pads 302 are provided on both sides of the disc rotor 301 to apply a frictional force to the disc rotor 301 by acting from both sides of the disc rotor 301 to act and react.
  • the caliper 304 has a structure in which a hydraulic cylinder device 303 for pressing and driving the brake pad 302 is incorporated.
  • the hydraulic cylinder device 303 incorporates the brake piston 100 according to the present embodiment.
  • a seal 305 is provided between the brake piston 100 and the hydraulic cylinder device 303.
  • the operation of the disc brake 300 will be described.
  • the brake fluid pressure in the hydraulic cylinder device 303 is increased, and thereby the brake piston 100 presses the brake pad 302.
  • the brake pad 302 presses the disc rotor 301 to brake the rotating shaft.
  • the shape of the brake piston 100 according to the present embodiment is usually cylindrical or columnar.
  • the metal member 102 is provided at a position facing the brake pad 302. That is, in the brake piston 100 according to the present embodiment, the metal member 102 is provided on a surface that presses the brake pad 302. Thereby, it can be suppressed that the surface of the piston main body 110 made of the resin member 101 is oxidized and deteriorated due to heat damage from the brake pad 302 side, and the mechanical strength is gradually lowered.
  • the brake piston 100 has a linear expansion coefficient ⁇ R in the range from 25 ° C. of the resin member 101 to the glass transition temperature, and a linear expansion coefficient ⁇ M in the range from 25 ° C. of the metal member 102 to the glass transition temperature of the resin member 101.
  • the absolute value of the difference ( ⁇ R ⁇ M ) is preferably 10 ppm / ° C. or less, more preferably 5 ppm / ° C. or less. If the difference in the linear expansion coefficient is not more than the above upper limit value, the thermal stress due to the difference in linear expansion that occurs when the brake piston 100 is exposed to a high temperature can be further suppressed.
  • the linear expansion coefficient has anisotropy
  • an average value thereof is represented.
  • the resin member 101 is in the form of a sheet
  • the linear expansion coefficient in the flow direction (MD) is different from the linear expansion coefficient in the vertical direction (TD)
  • the average value thereof is the linear expansion coefficient ⁇ of the resin member 101.
  • the brake piston 100 is not particularly limited, but it is preferable that the side end face 125 of the opening 120 in the piston main body 110 and the metal member 102 are joined without an adhesive.
  • the resin member 101 and the metal member 102 have excellent bonding strength even without an adhesive. Therefore, the manufacturing process of the brake piston 100 can be simplified.
  • the filler (B) to be described later is present inside the concave portion 201 that constitutes the concave and convex portions of the roughened layer.
  • the average major axis by image analysis of the electron micrograph of the filler (B) present in the recess 201 is preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 4.0 ⁇ m or less. .
  • the average aspect ratio of the filler (B) existing inside the recess 201 is preferably 1 or more and 50 or less, more preferably 1 or more and 40 or less.
  • the average major axis and average aspect ratio of the filler (B) present in the recess 201 can be measured from the SEM photograph as follows. First, a cross section of the roughened layer is photographed with a scanning electron microscope. From the observation image, 50 fillers (B) existing inside the recess 201 are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, and major axis in the planar direction in the case of plate-like fillers). Dimension) and a short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) are measured. The average major axis is obtained by integrating all major axes and dividing by the number. Similarly, the average minor axis is obtained by integrating all minor axes and dividing by the number. The average major axis with respect to the average minor axis is defined as the average aspect ratio.
  • the filler (B) present in the recess 201 is a group consisting of wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber. It is preferable that it is 1 type, or 2 or more types chosen from.
  • the brake piston 100 according to the present embodiment is provided with a metal member 102 at a position facing the brake pad 302. Thereby, it can be suppressed that the surface of the piston main body 110 made of the resin member 101 is oxidized and deteriorated due to heat damage from the brake pad 302 side, and the mechanical strength is gradually lowered. Furthermore, the brake piston 100 according to the present embodiment has a side end face 125 of the opening 120 in the piston main body 110 due to the presence of a part of the resin member 101 inside the recess 201 that forms the unevenness of the roughened layer. And the metal member 102 are joined.
  • piston main-body part 110 and metal member 102 can be maintained.
  • the piston main body part 110 consists of the resin member 101
  • the brake piston 100 which concerns on this embodiment can be reduced in weight compared with the brake piston which consists only of the same kind of metal, maintaining required intensity
  • an energy-saving vehicle can be realized when mounted on a vehicle. From the above, according to this embodiment, it is possible to provide the brake piston 100 that is excellent in the performance balance between lightness and reliability.
  • the resin member 101 is formed, for example, by curing a thermosetting resin composition (P) including a thermosetting resin (A) and a filler (B).
  • P thermosetting resin composition
  • A thermosetting resin
  • B filler
  • thermosetting resin (A) examples include phenol resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, melamine resin, oxetane resin, maleimide resin, urea (urea) resin, polyurethane resin, silicone resin, and benzoxazine.
  • a resin having a ring, a cyanate ester resin, or the like is used. These may be used alone or in combination of two or more.
  • phenol resins that are excellent in heat resistance, workability, mechanical properties, electrical properties, adhesion, and wear resistance are preferably used.
  • the content of the thermosetting resin (A) is preferably 5% by mass or more and 40% by mass or less, more preferably 10% by mass or more and 30% by mass or less, when the entire resin member 101 is 100% by mass. is there.
  • phenol resin examples include novolak phenol resins such as phenol novolak resin, cresol novolak resin, and bisphenol A type novolak resin; Examples thereof include resol type phenol resins such as oil-melted resol phenol resin; aryl alkylene type phenol resins and the like. These may be used alone or in combination of two or more. Among these, a novolak type phenol resin is preferable because it is easily available, inexpensive, and has good workability by roll kneading.
  • hexamethylenetetramine is usually used as a curing agent.
  • hexamethylenetetramine is not particularly limited, it is preferably used in an amount of 10 to 25 parts by weight, more preferably 13 to 20 parts by weight, based on 100 parts by weight of the novolac type phenol resin.
  • the amount of hexamethylenetetramine used is not less than the above lower limit, the curing time during molding can be shortened.
  • the external appearance of the brake piston 100 obtained can be improved as the usage-amount of hexamethylenetetramine is below the said upper limit.
  • the thermosetting resin composition (P) preferably contains a filler (B).
  • the elastomer (D) described later is excluded from the filler (B).
  • the content of the filler (B) is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 80% by mass or less when the entire resin member 101 is 100% by mass.
  • Examples of the filler (B) include a fibrous filler, a granular filler, and a plate-like filler.
  • the fibrous filler is a filler whose shape is fibrous.
  • the plate-like filler is a filler whose shape is plate-like.
  • the granular filler is a filler having a shape other than a fiber or plate including an indefinite shape.
  • fibrous filler examples include glass fiber, carbon fiber, asbestos fiber, metal fiber, wollastonite, attapulgite, sepiolite, rock wool, aluminum borate whisker, potassium titanate fiber, calcium carbonate whisker, and titanium oxide whisker.
  • fibrous inorganic fillers such as ceramic fibers; and fibrous organic fillers such as aramid fibers, polyimide fibers, and polyparaphenylene benzobisoxazole fibers. These may be used alone or in combination of two or more.
  • Examples of the plate-like filler and granular filler include talc, kaolin clay, calcium carbonate, zinc oxide, calcium silicate hydrate, mica, glass flakes, glass powder, magnesium carbonate, silica, titanium oxide, Alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, aluminum nitride, boron nitride, silicon nitride, the above fibers
  • a pulverized product of a filler may be used alone or in combination of two or more.
  • the filler (B) is 1 filler (B1) having an average particle diameter of more than 5 ⁇ m in the weight-based particle size distribution measured by the laser diffraction / scattering particle size distribution measurement method when the total amount of the filler (B) is 100% by mass. It is preferable that the content is from 100% by mass to 100% by mass, and more preferably from 2% by mass to 98% by mass. Thereby, the mechanical strength of the resin member 101 obtained can be further improved while improving the workability of the thermosetting resin composition (P).
  • the upper limit of the average particle diameter of a filler (B1) is not specifically limited, For example, it is 100 micrometers or less.
  • the filler (B1) includes a fibrous filler or a plate-like filler having an average major axis of 5 ⁇ m to 50 mm and an average aspect ratio of 1 to 1000.
  • the average major axis and average aspect ratio of the filler (B1) can be measured from an SEM photograph as follows, for example. First, a plurality of fibrous fillers or plate-like fillers are photographed with a scanning electron microscope.
  • fibrous fillers or plate-like fillers are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, planar major dimension in the case of plate-like fillers) and The short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) is measured.
  • the average major axis is obtained by integrating all major axes and dividing by the number.
  • the average minor axis is obtained by integrating all minor axes and dividing by the number.
  • the average major axis with respect to the average minor axis is defined as the average aspect ratio.
  • the filler (B1) is preferably one or more selected from wollastonite, glass fiber, carbon fiber, glass bead, calcium carbonate and the like. When such a filler (B1) is used, the mechanical strength of the resin member 101 can be particularly improved.
  • the filler (B) has an average particle size of 0.1 ⁇ m or more and 5 ⁇ m or less in a weight-based particle size distribution measured by a laser diffraction / scattering particle size distribution measurement method when the total amount of the filler (B) is 100% by mass.
  • the filler (B2) is preferably contained in an amount of 0% by mass to 99% by mass, and more preferably 2% by mass to 98% by mass. Thereby, the filler (B) can be sufficiently present inside the recess 201. As a result, the mechanical strength of the region where the resin member 101 and the metal member 102 have entered each other can be further improved.
  • the average major axis is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.2 ⁇ m or more and 50 ⁇ m or less, and the average aspect ratio is preferably 1 or more and 50 or less, more preferably 1 or more and 40 or less. It is more preferable to include a fibrous filler or a plate-like filler.
  • the average major axis and average aspect ratio of the filler (B2) can be measured from an SEM photograph as follows, for example. First, a plurality of fibrous fillers or plate-like fillers are photographed with a scanning electron microscope.
  • fibrous fillers or plate-like fillers are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, planar major dimension in the case of plate-like fillers) and The short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) is measured.
  • the average major axis is obtained by integrating all major axes and dividing by the number.
  • the average minor axis is obtained by integrating all minor axes and dividing by the number.
  • the average major axis with respect to the average minor axis is defined as the average aspect ratio.
  • a filler (B2) one type selected from wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber or Two or more are preferred.
  • the filler (B) may be subjected to a surface treatment with a coupling agent such as a silane coupling agent (C) described later.
  • a coupling agent such as a silane coupling agent (C) described later.
  • the thermosetting resin composition (P) may further contain a silane coupling agent (C).
  • a silane coupling agent (C) By including the silane coupling agent (C), the adhesion between the resin member 101 and the metal member 102 can be improved. Further, by including the silane coupling agent (C), the affinity between the thermosetting resin (A) and the filler (B) is improved, and as a result, the mechanical strength of the resin member 101 is further improved. be able to.
  • the content of the silane coupling agent (C) is not particularly limited because it depends on the specific surface area of the filler (B), but is preferably 0.01 parts by mass or more and 4 parts by mass with respect to 100 parts by mass of the filler (B). 0.0 part by mass or less, and more preferably 0.1 part by mass or more and 1.0 part by mass or less. When the content of the silane coupling agent (C) is within the above range, the mechanical strength of the resin member 101 can be further improved while sufficiently covering the filler (B).
  • silane coupling agent (C) examples include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • alkoxysilane compounds mercapto group-containing alkoxysilane compounds such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane; ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ - (2- Ureido group-containing alkoxysilane compounds such as ureidoethyl) aminopropyltrimethoxysilane; ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxy Isocyanato group-containing alkoxysilane compounds such as silane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldime
  • thermosetting resin composition (P) is not specifically limited, Generally, it can manufacture by a well-known method. For example, the following method is mentioned. First, thermosetting resin (A), if necessary, filler (B), silane coupling agent (C), elastomer (D), curing agent, curing aid, release agent, pigment, flame retardant, weather resistance An agent, an antioxidant, a plasticizer, a lubricant, a sliding agent, a foaming agent and the like are blended and mixed uniformly.
  • thermosetting resin composition (P) is obtained by granulating or pulverizing the obtained mixture.
  • the linear expansion coefficient ⁇ R in the range from 25 ° C. to the glass transition temperature of the resin member 101 is preferably 10 ppm / ° C. or more and 35 ppm / ° C. or less, more preferably 10 ppm / ° C. or more and 25 ppm / ° C. or less.
  • the reliability of the brake piston 100 can be further improved.
  • the metal member 102 has a roughened layer made of fine irregularities on the bonding surface 103 of the metal member 102 with the piston main body 110.
  • the roughened layer refers to a region having a plurality of recesses 201 provided on the surface of the metal member 102.
  • the thickness of the roughened layer is preferably 3 ⁇ m or more and 40 ⁇ m or less, more preferably 4 ⁇ m or more and 32 ⁇ m or less, and particularly preferably 4 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the roughened layer represents the depth D3 of the largest depth among the plurality of recesses 201, and can be calculated from an electron microscope (SEM) photograph.
  • the cross section of the recess 201 has a shape having a cross section width D2 larger than the cross section width D1 of the opening 203 in at least a part between the opening 203 and the bottom 205 of the recess 201.
  • the cross-sectional shape of the recess 201 is not particularly limited as long as D2 is larger than D1, and can take various shapes.
  • the cross-sectional shape of the recess 201 can be observed with, for example, an electron microscope (SEM).
  • the reason why the brake piston 100 with better bonding strength can be obtained is not necessarily clear, but the surface of the bonding surface 103 is between the resin member 101 and the metal member 102. This is thought to be because the anchor effect is even stronger.
  • the cross-sectional shape of the concave portion 201 is the above shape, the resin member 101 is caught between the opening 203 and the bottom portion 205 of the concave portion 201, so that the anchor effect works effectively. Therefore, it is considered that the bonding strength between the piston main body 110 and the metal member 102 is improved.
  • the average depth of the recess 201 is preferably 0.5 ⁇ m or more and 40 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the thermosetting resin composition (P) can sufficiently enter the depth of the recess 201, so that the resin member 101 and the metal member 102 enter each other.
  • the mechanical strength of the region thus obtained can be further improved. Since the ratio of the filler (B) existing inside the recess 201 can be increased when the average depth of the recess 201 is equal to or more than the above lower limit value, the region where the resin member 101 and the metal member 102 have entered each other The mechanical strength of can be improved.
  • the average depth of the recess 201 can be measured from a scanning electron microscope (SEM) photograph as follows, for example. First, a cross section of the roughened layer is photographed with a scanning electron microscope. From the observation image, 50 concave portions 201 are arbitrarily selected and their depths are measured. The average depth is obtained by integrating all the depths of the recesses 201 and dividing the sum by the number.
  • SEM scanning electron microscope
  • the average cross-sectional width of the opening 203 of the recess 201 is preferably 2 ⁇ m or more and 60 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less, and further preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the average cross-sectional width of the opening 203 is not more than the above upper limit value, the anchor effect between the resin member 101 and the metal member 102 can be expressed more strongly.
  • the average cross-sectional width of the opening 203 is equal to or greater than the above lower limit value, the ratio of the filler (B) present in the recess 201 can be increased, so that the joint surface between the piston main body 110 and the metal member 102 can be increased.
  • the strength of the resin member 101 can be improved.
  • the average cross-sectional width of the opening 203 can be measured from an SEM photograph as follows, for example. First, a cross section of the roughened layer is photographed with a scanning electron microscope. From the observation image, 50 concave portions 201 are arbitrarily selected, and their cross-sectional widths D1 are measured. The average cross-sectional width is obtained by integrating all the cross-sectional widths D1 of the openings 203 and dividing the sum by the number.
  • the surface roughness Ra of the bonding surface 103 of the metal member 102 is preferably 0.5 ⁇ m or more and 40.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 20.0 ⁇ m or less, and particularly preferably 1.0 ⁇ m or more and 10. 0 ⁇ m or less.
  • the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
  • the maximum height Rz of the joint surface 103 of the metal member 102 is preferably 1.0 ⁇ m or more and 40.0 ⁇ m or less, and more preferably 3.0 ⁇ m or more and 30.0 ⁇ m or less. When the maximum height Rz is within the above range, the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
  • Ra and Rz can be measured according to JIS-B0601.
  • the ratio of the actual surface area by the nitrogen adsorption BET method to the apparent surface area of the joining surface 103 at least joined to the piston main body 110 is preferably 100 or more. Is 150 or more.
  • the specific surface area is preferably 400 or less, more preferably 380 or less, and particularly preferably 300 or less.
  • the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
  • the apparent surface area in the present embodiment means a surface area when it is assumed that the surface of the metal member 102 is smooth without unevenness.
  • the surface shape is a rectangle, it is represented by vertical length ⁇ horizontal length.
  • the actual surface area by the nitrogen adsorption BET method in the present embodiment means the BET surface area obtained from the adsorption amount of nitrogen gas.
  • BELSORPmini II a specific surface area / pore distribution measurement device for a vacuum dried sample to be measured
  • the nitrogen adsorption / desorption amount at liquid nitrogen temperature is measured, and based on the nitrogen adsorption / desorption amount Can be calculated.
  • the specific surface area is within the above range, it is not always clear why the brake piston 100 having further excellent bonding strength can be obtained.
  • the surface of the bonding surface 103 with the piston main body 110 is formed between the resin member 101 and the metal. This is considered to be because the anchor effect with the member 102 can be expressed more strongly.
  • the specific surface area is equal to or greater than the lower limit, the contact area between the resin member 101 and the metal member 102 is increased, and the region where the resin member 101 and the metal member 102 enter each other increases. As a result, it is considered that the area where the anchor effect works increases and the bonding strength between the piston main body 110 and the metal member 102 is further improved.
  • the specific surface area is too large, the proportion of the metal member 102 in the region where the resin member 101 and the metal member 102 have entered each other decreases, and the mechanical strength of this region is reduced. Therefore, when the specific surface area is equal to or less than the upper limit value, the mechanical strength of the region where the resin member 101 and the metal member 102 enter each other is further improved. As a result, the piston main body 110 and the metal member 102 It is considered that the bonding strength of the steel can be further improved. From the above, when the specific surface area is within the above range, the surface of the joint surface 103 with the resin member 101 can exhibit the anchor effect between the resin member 101 and the metal member 102 even more strongly. It is inferred that
  • the metal member 102 is not particularly limited, but at least the glossiness of the joint surface 103 joined to the piston main body 110 is preferably 0.1 or more, more preferably 0.5 or more, and further preferably 1 or more. It is. When the glossiness is equal to or higher than the lower limit, the bonding strength between the piston main body 110 and the metal member 102 can be further improved. Further, the glossiness is preferably 30 or less, more preferably 20 or less. When the glossiness is less than or equal to the upper limit value, the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
  • the glossiness in the present embodiment indicates a value at a measurement angle of 60 ° measured in accordance with ASTM-D523.
  • the glossiness can be measured using, for example, a digital glossiness meter (20 °, 60 °) (GM-26 type, manufactured by Murakami Color Research Laboratory).
  • a digital glossiness meter (20 °, 60 °) (GM-26 type, manufactured by Murakami Color Research Laboratory).
  • the metal material constituting the metal member 102 is not particularly limited, and examples thereof include iron, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, and copper alloy from the viewpoint of availability and price. These may be used alone or in combination of two or more. Among these, stainless steel is preferable from the viewpoint of corrosion resistance and high strength.
  • the roughened layer can be formed, for example, by chemically treating the surface of the metal member 102 using a surface treatment agent.
  • the chemical treatment of the surface of the metal member 102 using the surface treatment agent itself has been performed in the prior art.
  • the present inventors consider factors such as (1) the combination of the metal member and the surface treatment agent, (2) the temperature and time of the chemical treatment, and (3) the post-treatment of the surface of the metal member after the chemical treatment. It has been found that a roughened layer capable of further improving the bonding strength between the piston main body 110 and the metal member 102 can be obtained by performing a high degree of control.
  • a combination of a metal member and a surface treatment agent is selected.
  • a metal member composed of iron or stainless steel it is preferable to select an aqueous solution in which an inorganic acid, a chlorine ion source, a cupric ion source, and a thiol compound are combined as necessary as a surface treatment agent.
  • a metal member composed of aluminum or an aluminum alloy it is preferable to select an aqueous solution in which an alkali source, an amphoteric metal ion source, a nitrate ion source, and a thio compound are combined as necessary as a surface treatment agent.
  • an alkali source is used as the surface treatment agent, and it is particularly preferable to select an aqueous solution of sodium hydroxide.
  • an inorganic acid such as nitric acid or sulfuric acid, an organic acid such as an unsaturated carboxylic acid, a persulfate, hydrogen peroxide, an imidazole, or a derivative thereof, Tetrazole and its derivatives, aminotetrazole and its derivatives, azoles such as aminotriazole and its derivatives, pyridine derivatives, triazine, triazine derivatives, alkanolamines, alkylamine derivatives, polyalkylene glycol, sugar alcohol, cupric ion source, chlorine It is preferable to select an aqueous solution using at least one selected from an ion source, a phosphonic acid chelating agent, an oxidizing agent, and N,
  • the metal member is immersed in a surface treatment agent, and the surface of the metal member is chemically treated.
  • the processing temperature is, for example, 30 ° C.
  • the treatment time is appropriately determined depending on the material and surface state of the metal member to be selected, the type and concentration of the surface treatment agent, the treatment temperature, etc., and is, for example, 30 to 300 seconds.
  • the etching amount of the metal member in the depth direction is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the etching amount in the depth direction of the metal member can be evaluated by calculating from the weight, specific gravity and surface area of the dissolved metal member.
  • the etching amount in the depth direction can be adjusted by the type and concentration of the surface treatment agent, the treatment temperature, the treatment time, and the like. In this embodiment, by adjusting the etching amount in the depth direction, the thickness of the roughened layer, the average depth of the recesses 201, the specific surface area, the glossiness, Ra, Rz, and the like can be adjusted.
  • the manufacturing method of the brake piston 100 according to the present embodiment includes, for example, the following steps.
  • a metal member 102 and a mold are prepared.
  • the metal member 102 it is preferable to prepare the metal member 102 in which at least a portion to be joined to the piston main body 110 is roughened from the viewpoint of improving adhesion and durability.
  • the metal member 102 is placed in the molding space of the mold.
  • the inside of the molding space is filled with the fluidized thermosetting resin composition (P) using, for example, an injection molding machine.
  • the thermosetting resin composition (P) can be cured.
  • the resin member 101 and the metal member 102 are joined. From the above, the brake piston 100 is obtained.
  • thermosetting resin composition (P) preferably has high fluidity in order to perform molding well. Therefore, the thermosetting resin composition (P) has a melt viscosity at 175 ° C. of preferably 10 Pa ⁇ s to 3000 Pa ⁇ s, and more preferably 30 Pa ⁇ s to 2000 Pa ⁇ s.
  • the melt viscosity at 175 ° C. can be measured by, for example, a thermal fluidity evaluation apparatus (flow tester) manufactured by Shimadzu Corporation.
  • thermosetting resin composition (P) having such a viscosity behavior, for example, the type and amount of the thermosetting resin (A) described above, the type and amount of the filler (B), an elastomer, What is necessary is just to adjust the kind and quantity of (D) suitably.
  • the metal member in the step of filling the molding space with the fluidized thermosetting resin composition (P), the metal member is caused by the flow pressure of the thermosetting resin composition (P). It is preferable to fill the molding space with the thermosetting resin composition (P) while pressing 102 against the molding surface of the mold. By doing so, it is possible to obtain a brake piston 100 of good quality that suppresses the generation of burrs and has excellent adhesion between the metal member 102 and the piston main body 110.
  • the molding conditions of the brake piston 100 are not particularly limited because they vary depending on the molding method employed, but generally known molding conditions in the employed molding method can be employed.
  • a compression molding method for example, molding conditions of a temperature of 150 to 180 ° C., a pressure of 5 to 30 MPa, and a curing time of 30 seconds to 5 minutes can be mentioned.
  • a stainless steel sheet A (80 mm ⁇ 10 mm, thickness 1.0 mm, density 7.93 g / cm 3 , thermal conductivity 16.7 W / (m ⁇ K), SUS304) not subjected to surface treatment was prepared. Further, an aqueous solution of sulfuric acid (50% by mass), cupric sulfate pentahydrate (3% by mass), potassium chloride (3% by mass), and thiosalicylic acid (0.0001% by mass) was prepared. And in the obtained aqueous solution (30 degreeC), the stainless steel sheet A was immersed and rock
  • the sample to be measured was vacuum-dried at 120 ° C. for 6 hours, and then the nitrogen adsorption / desorption amount at the liquid nitrogen temperature was measured using an automatic specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.).
  • BELSORPmini II automatic specific surface area / pore distribution measuring device
  • the actual surface area by the nitrogen adsorption BET method was calculated from the BET plot.
  • the specific surface area was calculated by dividing the actual surface area measured by the nitrogen adsorption BET method by the apparent surface area.
  • the specific surface area of the stainless steel sheet 1 was 250.
  • the glossiness of the surface of the metal member is measured at 60 ° in accordance with ASTM-D523 using a digital gloss meter (20 °, 60 °) (GM-26, manufactured by Murakami Color Research Laboratory Co., Ltd.). It was measured. The glossiness of the stainless steel sheet 1 was 10.
  • the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion in at least a part from the opening portion to the bottom portion of the concave portion.
  • thermosetting resin composition (P1) thermosetting resin composition (P1)
  • the stainless steel sheet 1 having a thickness of 1 mm was placed in the mold without being fixed.
  • the thermosetting resin composition (P1) was heated so that the thickness after curing was 3 mm, and a predetermined amount was injected into the mold. At this time, the stainless steel sheet 1 was pressed against the inner wall of the mold by the fluid pressure of the thermosetting resin composition (P1).
  • thermosetting resin composition (P1) was cured by compression molding to obtain a metal resin composite 1 that was a two-layer sheet of a resin member sheet having a thickness of 3 mm and a stainless sheet 1 having a thickness of 1 mm.
  • This metal resin composite 1 was used as a test piece 1.
  • the compression molding conditions were an effective pressure of 20 MPa, a mold temperature of 175 ° C., and a curing time of 3 minutes.
  • the obtained test piece 1 was stored in a 350 ° C. atmosphere for 100 hours. At this time, the stainless steel sheet 1 was placed on the upper side and stored. The bending strength of the test pieces before and after storage was measured in an atmosphere of 25 ° C. according to JIS K 6911, and the bending strength retention rate was calculated. At this time, the test was performed with the stainless steel sheet 1 placed on the lower side.
  • a brake piston shown in FIG. 1 was produced under the same conditions as those for producing the test piece 1.
  • the obtained brake piston was housed in a caliper, and stored for 100 hours while the metal member was in contact with the hot plate at 350 ° C. Thereafter, the presence or absence of peeling of the metal member was examined.
  • the evaluation criteria are as follows. ⁇ : No separation was observed between the piston main body and the metal member. ⁇ : Partial separation was observed between the piston main body and the metal member, or bulge was observed on the surface of the piston main body.
  • Example 2 A metal resin composite 2 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P2) was used instead of the thermosetting resin composition (P1). This metal resin composite 2 was used as a test piece 2, and the same evaluation as in Example 1 was performed.
  • Example 3 A metal resin composite 3 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P3) was used instead of the thermosetting resin composition (P1). This metal resin composite 3 was used as a test piece 3 and evaluated in the same manner as in Example 1. 20.0% by mass of novolak-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 3.0% by mass of hexamethylenetetramine, glass fiber A (CS3E479, manufactured by Nittobo Co., Ltd., average particle size: 11 ⁇ m, average major axis) : 3 mm, average aspect ratio: 270) 4.5% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 ⁇ m, average major axis: 50 ⁇ m) 55.0% by mass, calcined clay (Imelice) 14.5% by mass, Pole Star 501, average particle size: 0.6 ⁇ m), 1.0% by mass of magnesium
  • the average value of the linear expansion coefficient ⁇ R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P3) was 16 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient ( ⁇ R ⁇ M ) was 1 ppm / ° C.
  • Example 4 A metal resin composite 4 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P4) was used instead of the thermosetting resin composition (P1). This metal resin composite 4 was used as a test piece 4 and evaluated in the same manner as in Example 1.
  • Resol type phenol resin (Sumitomo Bakelite Co., Ltd., PR-513723) 20.0% by mass, glass fiber A (CS3E479, Nittobo Co., Ltd., average particle size: 11 ⁇ m, average major axis: 3 mm, average aspect ratio: 270) 20.0% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 ⁇ m, average major axis: 50 ⁇ m), 40.0% by mass, calcined clay (Imeris, Polestar 501, average particle size) : 0.6 ⁇ m) is 15.0% by mass, magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) is 2.0%
  • thermosetting resin composition (P4) The mixture was melt-kneaded with a heating roll at 0 ° C., cooled into a sheet, and pulverized to obtain a granular thermosetting resin composition (P4).
  • the average value of the linear expansion coefficient ⁇ R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P4) was 13 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient ( ⁇ R ⁇ M ) was 4 ppm / ° C.
  • Example 5 A metal resin composite 5 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P5) was used instead of the thermosetting resin composition (P1). The metal resin composite 5 was used as a test piece 5 and the same evaluation as in Example 1 was performed.
  • Resol type phenol resin (Sumitomo Bakelite Co., Ltd., PR-513723) 20.0% by mass, glass fiber A (CS3E479, Nittobo Co., Ltd., average particle size: 11 ⁇ m, average major axis: 3 mm, average aspect ratio: 270) 10.0% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 ⁇ m, average major axis: 50 ⁇ m), 40.0% by mass, calcined clay (manufactured by Imeris, Polestar 501, average particle size) : 0.6 ⁇ m) is 25.0% by mass, magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) is 2.0% by mass, and other components such as a lubricant are 3.0% by mass, each of which is dry-mixed.
  • thermosetting resin composition (P5) The mixture was melt-kneaded with a heating roll at 0 ° C., cooled into a sheet, and pulverized to obtain a granular thermosetting resin composition (P5).
  • the average value of the linear expansion coefficient ⁇ R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P5) was 12 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient ( ⁇ R ⁇ M ) was 5 ppm / ° C.
  • Example 6 A metal resin composite 6 was prepared in the same manner as in Example 1 except that the following stainless steel sheet 2 was used instead of the stainless steel sheet 1. This metal resin composite 6 was used as a test piece 6 and evaluated in the same manner as in Example 1. An aqueous solution of sulfuric acid (50 mass%), cupric sulfate pentahydrate (3 mass%), potassium chloride (3 mass%), and thiosalicylic acid (0.0001 mass%) was prepared. And in the obtained aqueous solution (30 degreeC), the stainless steel sheet A was immersed and rock
  • aqueous solution 30 degreeC
  • the characteristics of the stainless steel sheet 2 were as follows. Ra: 2.8 ⁇ m Rz: 28.0 ⁇ m Specific surface area: 280 Glossiness: 8 Roughening layer thickness: 30 ⁇ m Average depth of recess: 28 ⁇ m Average cross-sectional width of the opening: 5 ⁇ m Linear expansion coefficient ⁇ M : 17 ppm / ° C.
  • the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
  • Example 7 A metal resin composite 7 was prepared in the same manner as in Example 1 except that the following stainless steel sheet 3 was used instead of the stainless steel sheet 1. The metal resin composite 7 was used as a test piece 7, and the same evaluation as in Example 1 was performed. An aqueous solution of sulfuric acid (50 mass%), cupric sulfate pentahydrate (3 mass%), potassium chloride (3 mass%), and thiosalicylic acid (0.0001 mass%) was prepared. And in the obtained aqueous solution (30 degreeC), the stainless steel sheet A was immersed and rock
  • the characteristics of the stainless steel sheet 3 were as follows. Ra: 1.1 ⁇ m Rz: 4.0 ⁇ m Specific surface area: 165 Glossiness: 13 Roughening layer thickness: 4 ⁇ m Average depth of recess: 4 ⁇ m Average cross-sectional width of the opening: 3 ⁇ m Linear expansion coefficient ⁇ M : 17 ppm / ° C.
  • the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
  • Example 8 A metal resin composite 8 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P6) was used instead of the thermosetting resin composition (P1). This metal resin composite 8 was used as a test piece 8, and the same evaluation as in Example 1 was performed.
  • thermosetting resin composition of granulated (P6) was obtained.
  • the average value of the linear expansion coefficient ⁇ R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P6) was 14 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient ( ⁇ R ⁇ M ) was 3 ppm / ° C.
  • Example 9 A metal resin composite 9 was prepared in the same manner as in Example 1 except that the following thermosetting resin composition (P7) was used instead of the thermosetting resin composition (P1). This metal resin composite 9 was used as a test piece 9, and the same evaluation as in Example 1 was performed.
  • thermosetting resin composition (P7) The product was pulverized to obtain a granular thermosetting resin composition (P7).
  • the average value of the linear expansion coefficient ⁇ R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P7) was 15 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient ( ⁇ R ⁇ M ) was 2 ppm / ° C.
  • a metal resin composite 10 was produced in the same manner as in the eighth example except that the stainless steel sheet A that was not subjected to the surface treatment used in the first example was used.
  • This metal resin composite 10 was used as a test piece 10 and evaluated in the same manner as in Example 1.
  • the characteristics of the stainless steel sheet A were as follows. Ra: 0.5 ⁇ m Rz: 0.7 ⁇ m Specific surface area: 50 Glossiness: 260 Linear expansion coefficient ⁇ M : 17 ppm / ° C.
  • the cross section of the concave portion was not in a shape having a cross sectional width larger than the cross sectional width of the opening portion in at least a part between the opening portion and the bottom portion of the concave portion.
  • Example 2 A resin member 11 was produced in the same manner as in Example 8 except that the stainless steel sheet 1 was not used. This resin member 11 was used as a test piece 11 and the same evaluation as in Example 1 was performed.
  • Table 1 and Table 2 show the above blending ratios and evaluation results.
  • Table 1 and Table 2 show the above blending ratios and evaluation results.
  • the same evaluation result as the test piece 1 is obtained. It is understood.
  • the shape of the test piece cut out from the brake piston is different from the shape of the test piece 1, it is understood that the same evaluation result can be obtained by converting as necessary. The same applies to Examples 2 to 9 and Comparative Examples 1 and 2.
  • the metal resin composites 1 to 9 obtained in Examples 1 to 9 were excellent in bending strength retention. Even if the brake piston manufactured under the same conditions as those of the metal resin composites 1 to 9 is stored for 100 hours while the metal member is kept in contact with the hot plate at 350 ° C., both the piston main body and the metal member No peeling was observed during the period. Further, since the brake pistons of Examples 1 to 9 were made of a metal resin composite, they were lighter than brake pistons made of only the same kind of metal. From the above, the brake pistons of Examples 1 to 9 were excellent in performance balance between light weight and reliability. On the other hand, the metal resin composite 10 obtained in Comparative Example 1 and the resin member 11 obtained in Comparative Example 2 were both inferior in bending strength retention.

Abstract

This brake piston (100) is used in a disc brake and is provided with: a piston body (110) comprising a resin member (101); and metallic members (102). The piston body (110) has an opening (120). The metallic members (102) are provided so as to cover side end surfaces (125) of the opening (120) in the piston body (110). The side end surfaces (125) of the opening (120) in the piston body (110) and the metallic members (102) are joined, and the metallic members (102) have roughened layers comprising fine protrusions and recesses and provided on the joining surfaces (103) of the metallic members (102), the joining surfaces (103) being joined to at least the piston body (110). The side end surfaces (125) of the opening (120) in the piston body (110) and the metallic members (102) are joined because portions of the resin member (101) are present within the recesses which constitute the protrusions and recesses of the roughed layers.

Description

ブレーキピストン、ディスクブレーキ、ブレーキピストンの製造方法および熱硬化性樹脂組成物Brake piston, disc brake, method for producing brake piston, and thermosetting resin composition
 本発明は、ブレーキピストン、ディスクブレーキ、ブレーキピストンの製造方法および熱硬化性樹脂組成物に関する。 The present invention relates to a brake piston, a disc brake, a method for manufacturing a brake piston, and a thermosetting resin composition.
 ディスクブレーキ用のブレーキピストンにおいては、軽量化を目的として、樹脂製ブレーキピストンが検討されている。 In the case of brake pistons for disc brakes, resin-made brake pistons are being studied for the purpose of weight reduction.
 樹脂製ブレーキピストンに関する従来技術として、例えば、以下のものがある。
 特許文献1(特開平8-93916号公報)には、ディスクブレーキに用いられる樹脂製ピストンであって、少なくとも上記樹脂製ピストンのブレーキ液圧の受圧面側の角部に金属補強部材を形成することを特徴とする樹脂製ピストンが記載されている。
For example, there are the following as conventional techniques related to a resin brake piston.
Patent Document 1 (Japanese Patent Laid-Open No. 8-93916) discloses a resin piston used for a disc brake, in which a metal reinforcing member is formed at least at a corner portion on the pressure receiving surface side of the brake fluid pressure of the resin piston. A resin-made piston is described.
 特許文献2(特開2011-148158号公報)には、カップ状の合成樹脂製ピストン本体の開口端部に、該開口端部の外周面、内周面及び開口端面を覆う金属キャップが一体に結合されるピストンが記載されている。 In Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-148158), a metal cap that covers the outer peripheral surface, the inner peripheral surface, and the open end surface of the open end is integrated with the open end of the cup-shaped synthetic resin piston main body. The piston to be joined is described.
特開平8-93916号公報JP-A-8-93916 特開2011-148158号公報JP 2011-148158 A
 しかし、本発明者の検討によれば、従来の樹脂製ブレーキピストンは、熱害によりピストン表面が酸化劣化し、機械的強度が徐々に低下してしまうことが明らかになった。従来の樹脂製ブレーキピストンは軽量である点で優れていたが、信頼性の点でまだまだ改善の余地があった。 However, according to the study of the present inventor, it has been clarified that the conventional resin brake piston has a oxidative deterioration of the piston surface due to heat damage, and the mechanical strength gradually decreases. Conventional resin brake pistons are excellent in terms of light weight, but there is still room for improvement in terms of reliability.
 本発明は上記事情に鑑みてなされたものであり、軽量性と信頼性との性能バランスに優れるブレーキピストンを提供するものである。 The present invention has been made in view of the above circumstances, and provides a brake piston excellent in performance balance between light weight and reliability.
 本発明によれば、
 ディスクブレーキに用いられるブレーキピストンであって、
 開口部を有し、かつ、樹脂部材からなるピストン本体部と、
 上記ピストン本体部の上記開口部の側端面を覆うように設けられた金属部材と、を備え、
 上記ピストン本体部における上記開口部の側端面と上記金属部材とが接合されており、
 上記金属部材は少なくとも上記ピストン本体部と接合する接合面に微細な凹凸からなる粗化層を有しており、
 上記粗化層の上記凹凸を構成する凹部の内部に上記樹脂部材の一部が存在することにより、上記ピストン本体部における上記開口部の側端面と上記金属部材とが接合されているブレーキピストンが提供される。
According to the present invention,
A brake piston used for a disc brake,
A piston body having an opening and made of a resin member;
A metal member provided so as to cover the side end surface of the opening of the piston main body,
The side end face of the opening in the piston main body and the metal member are joined,
The metal member has a roughened layer composed of fine irregularities on at least a joint surface to be joined to the piston main body part,
The brake piston in which the side end face of the opening in the piston main body and the metal member are joined by the presence of a part of the resin member inside the concave portion constituting the concave and convex portions of the roughened layer. Provided.
 さらに、本発明によれば、
 上記ブレーキピストンを備えるディスクブレーキが提供される。
Furthermore, according to the present invention,
A disc brake comprising the above brake piston is provided.
 さらに、本発明によれば、
 上記ブレーキピストンを製造するための製造方法であって、
 金属部材および金型を準備する工程と、
 上記金型の成形空間内に上記金属部材を配置する工程と、
 熱硬化性樹脂を含む熱硬化性樹脂組成物で上記成形空間内を充填する工程と、
 上記熱硬化性樹脂組成物の少なくとも一部が上記金属部材に接触した状態で上記熱硬化性樹脂組成物を硬化することにより、上記熱硬化性樹脂組成物からなる上記樹脂部材と上記金属部材とを接合させてブレーキピストンを得る工程と、
を含む、ブレーキピストンの製造方法が提供される。
Furthermore, according to the present invention,
A manufacturing method for manufacturing the brake piston,
Preparing a metal member and a mold;
Disposing the metal member in the molding space of the mold; and
Filling the molding space with a thermosetting resin composition containing a thermosetting resin;
The resin member comprising the thermosetting resin composition and the metal member by curing the thermosetting resin composition in a state where at least a part of the thermosetting resin composition is in contact with the metal member. To obtain a brake piston,
A method for manufacturing a brake piston is provided.
 さらに、本発明によれば、
 上記ブレーキピストンを構成する上記樹脂部材を形成するために用いられる熱硬化性樹脂組成物であって、
 熱硬化性樹脂と、充填材とを含む熱硬化性樹脂組成物が提供される。
Furthermore, according to the present invention,
A thermosetting resin composition used for forming the resin member constituting the brake piston,
A thermosetting resin composition including a thermosetting resin and a filler is provided.
 本発明によれば、軽量性と信頼性との性能バランスに優れるブレーキピストンを提供できる。 According to the present invention, it is possible to provide a brake piston having an excellent performance balance between lightness and reliability.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明に係る実施形態のブレーキピストンの構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the brake piston of embodiment which concerns on this invention. 本発明に係る実施形態の金属部材表面の粗化層を構成する凹部の断面形状の例を説明するための模式図である。It is a schematic diagram for demonstrating the example of the cross-sectional shape of the recessed part which comprises the roughening layer of the metal member surface of embodiment which concerns on this invention. 本発明に係る実施形態のディスクブレーキの構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the disc brake of embodiment which concerns on this invention.
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。なお、数値範囲の「~」は特に断りがなければ、以上から以下を表す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar constituent elements are denoted by common reference numerals, and description thereof is omitted as appropriate. Unless otherwise specified, the numerical range “˜” represents the following from the above.
[ブレーキピストン]
 はじめに、本実施形態に係るブレーキピストンについて説明する。
 図1は、本発明に係る実施形態のブレーキピストン100の構造の一例を示す断面図である。図2は、本発明に係る実施形態の金属部材102表面の粗化層を構成する凹部の断面形状の例を説明するための模式図である。
[Brake piston]
First, the brake piston according to the present embodiment will be described.
FIG. 1 is a cross-sectional view showing an example of the structure of a brake piston 100 according to an embodiment of the present invention. FIG. 2 is a schematic diagram for explaining an example of the cross-sectional shape of the concave portion constituting the roughened layer on the surface of the metal member 102 according to the embodiment of the present invention.
 本実施形態に係るブレーキピストン100はディスクブレーキに用いられるものであり、樹脂部材101からなるピストン本体部110と、金属部材102と、を備える。ピストン本体部110は開口部120を有している。金属部材102は、ピストン本体部110の開口部120の側端面125を覆うように設けられている。また、ピストン本体部110における開口部120の側端面125と金属部材102とが接合されており、金属部材102は少なくともピストン本体部110と接合する接合面103に微細な凹凸からなる粗化層を有している。そして、粗化層の上記凹凸を構成する凹部201の内部に樹脂部材101の一部が存在することにより、ピストン本体部110における開口部120の側端面125と金属部材102とが接合されている。 The brake piston 100 according to the present embodiment is used for a disc brake, and includes a piston main body 110 made of a resin member 101 and a metal member 102. The piston main body 110 has an opening 120. The metal member 102 is provided so as to cover the side end face 125 of the opening 120 of the piston main body 110. Further, the side end surface 125 of the opening 120 in the piston main body 110 and the metal member 102 are joined, and the metal member 102 has a roughened layer made of fine irregularities on at least the joint surface 103 joined to the piston main body 110. Have. And the side end surface 125 of the opening part 120 in the piston main-body part 110 and the metal member 102 are joined because some resin members 101 exist in the inside of the recessed part 201 which comprises the said unevenness | corrugation of a roughening layer. .
 本実施形態に係るブレーキピストン100は、例えば、図3に示すディスクブレーキ300に用いられるものである。図3は、本発明に係る実施形態のディスクブレーキ300の構造の一例を示す断面図である。
 本実施形態に係るディスクブレーキ300は、ディスクロータ301と、ブレーキパッド302と、油圧シリンダ装置303と、キャリパー304と、ブレーキピストン100と、シール305とを備える。ディスクブレーキ300は、例えば、車両に搭載されるものである。
 ディスクロータ301は回転軸(図示しない)に連結している。ディスクロータ301の両側には、ディスクロータ301の両側から挟んで作用反作用の働きをさせて、ディスクロータ301に摩擦力を及ぼすためのブレーキパッド302が設けられている。
 また、キャリパー304はブレーキパッド302を押圧駆動するための油圧シリンダ装置303を組み込んだ構造を有している。油圧シリンダ装置303には、本実施形態に係るブレーキピストン100が組み込まれている。
 なお、ブレーキピストン100と油圧シリンダ装置303との間にはシール305が設けられている。
The brake piston 100 according to the present embodiment is used for, for example, the disc brake 300 shown in FIG. FIG. 3 is a cross-sectional view showing an example of the structure of the disc brake 300 according to the embodiment of the present invention.
The disc brake 300 according to this embodiment includes a disc rotor 301, a brake pad 302, a hydraulic cylinder device 303, a caliper 304, a brake piston 100, and a seal 305. The disc brake 300 is mounted on a vehicle, for example.
The disk rotor 301 is connected to a rotating shaft (not shown). Brake pads 302 are provided on both sides of the disc rotor 301 to apply a frictional force to the disc rotor 301 by acting from both sides of the disc rotor 301 to act and react.
Further, the caliper 304 has a structure in which a hydraulic cylinder device 303 for pressing and driving the brake pad 302 is incorporated. The hydraulic cylinder device 303 incorporates the brake piston 100 according to the present embodiment.
A seal 305 is provided between the brake piston 100 and the hydraulic cylinder device 303.
 次に、ディスクブレーキ300の作動について説明する。油圧シリンダ装置303にブレーキ液が導入されると、油圧シリンダ装置303内のブレーキ液圧が高くなり、これによってブレーキピストン100はブレーキパッド302を押圧する。これにより、ブレーキパッド302がディスクロータ301を押圧して回転軸を制動するようになっている。 Next, the operation of the disc brake 300 will be described. When the brake fluid is introduced into the hydraulic cylinder device 303, the brake fluid pressure in the hydraulic cylinder device 303 is increased, and thereby the brake piston 100 presses the brake pad 302. As a result, the brake pad 302 presses the disc rotor 301 to brake the rotating shaft.
 本実施形態に係るブレーキピストン100の形状は、通常、円筒状又は円柱状である。
 また、本実施形態に係るブレーキピストン100において、金属部材102がブレーキパッド302に対向する位置に設けられている。すなわち、本実施形態に係るブレーキピストン100において、金属部材102はブレーキパッド302を押圧する面に設けられている。これにより、ブレーキパッド302側からの熱害により、樹脂部材101からなるピストン本体部110の表面が酸化劣化し、機械的強度が徐々に低下してしまうことを抑制することができる。
The shape of the brake piston 100 according to the present embodiment is usually cylindrical or columnar.
In the brake piston 100 according to the present embodiment, the metal member 102 is provided at a position facing the brake pad 302. That is, in the brake piston 100 according to the present embodiment, the metal member 102 is provided on a surface that presses the brake pad 302. Thereby, it can be suppressed that the surface of the piston main body 110 made of the resin member 101 is oxidized and deteriorated due to heat damage from the brake pad 302 side, and the mechanical strength is gradually lowered.
 ブレーキピストン100は、樹脂部材101の25℃からガラス転移温度までの範囲における線膨張係数αと、金属部材102の25℃から樹脂部材101の上記ガラス転移温度までの範囲における線膨張係数αとの差(α-α)の絶対値が、好ましくは10ppm/℃以下であり、より好ましくは5ppm/℃以下である。上記線膨張係数の差が上記上限値以下であれば、ブレーキピストン100が高温下に晒された際に発生する、線膨張の差による熱応力をより一層抑制することができる。すなわち、上記線膨張係数の差が上記上限値以下であれば、ブレーキピストン100の高温での寸法安定性をより一層向上させることができる。
 なお、本実施形態において、線膨張係数に異方性がある場合は、それらの平均値を表す。例えば、樹脂部材101がシート状の場合、流動方向(MD)の線膨張係数と、それと垂直方向(TD)の線膨張係数とが異なる場合、それらの平均値が樹脂部材101の線膨張係数αとなる。
The brake piston 100 has a linear expansion coefficient α R in the range from 25 ° C. of the resin member 101 to the glass transition temperature, and a linear expansion coefficient α M in the range from 25 ° C. of the metal member 102 to the glass transition temperature of the resin member 101. The absolute value of the difference (α R −α M ) is preferably 10 ppm / ° C. or less, more preferably 5 ppm / ° C. or less. If the difference in the linear expansion coefficient is not more than the above upper limit value, the thermal stress due to the difference in linear expansion that occurs when the brake piston 100 is exposed to a high temperature can be further suppressed. That is, if the difference in the linear expansion coefficient is not more than the upper limit value, the dimensional stability of the brake piston 100 at a high temperature can be further improved.
In the present embodiment, when the linear expansion coefficient has anisotropy, an average value thereof is represented. For example, when the resin member 101 is in the form of a sheet, when the linear expansion coefficient in the flow direction (MD) is different from the linear expansion coefficient in the vertical direction (TD), the average value thereof is the linear expansion coefficient α of the resin member 101. R.
 ブレーキピストン100は、特に限定されないが、ピストン本体部110における開口部120の側端面125と金属部材102とが接着剤を介在することなく接合されていることが好ましい。樹脂部材101と金属部材102とは、接着剤を介在しなくても優れた接合強度を有する。そのため、ブレーキピストン100の製造工程を簡略化することができる。 The brake piston 100 is not particularly limited, but it is preferable that the side end face 125 of the opening 120 in the piston main body 110 and the metal member 102 are joined without an adhesive. The resin member 101 and the metal member 102 have excellent bonding strength even without an adhesive. Therefore, the manufacturing process of the brake piston 100 can be simplified.
 ブレーキピストン100は、粗化層の上記凹凸を構成する凹部201の内部に、後述する充填材(B)の一部が存在していることが好ましい。これにより、樹脂部材101と金属部材102とが相互に侵入した領域の機械的強度をより一層向上させることができる。 In the brake piston 100, it is preferable that a part of the filler (B) to be described later is present inside the concave portion 201 that constitutes the concave and convex portions of the roughened layer. Thereby, the mechanical strength of the area | region where the resin member 101 and the metal member 102 penetrate | invaded mutually can be improved further.
 凹部201の内部に存在する充填材(B)の電子顕微鏡写真の画像解析による平均長径が、好ましくは0.1μm以上5.0μm以下であり、より好ましくは0.2μm以上4.0μm以下である。これにより、樹脂部材101と金属部材102とが相互に侵入した領域の機械的強度をより一層向上させることができる。 The average major axis by image analysis of the electron micrograph of the filler (B) present in the recess 201 is preferably 0.1 μm or more and 5.0 μm or less, more preferably 0.2 μm or more and 4.0 μm or less. . Thereby, the mechanical strength of the area | region where the resin member 101 and the metal member 102 penetrate | invaded mutually can be improved further.
 また、凹部201の内部に存在する充填材(B)の平均アスペクト比が、好ましくは1以上50以下であり、より好ましくは1以上40以下である。 Further, the average aspect ratio of the filler (B) existing inside the recess 201 is preferably 1 or more and 50 or less, more preferably 1 or more and 40 or less.
 凹部201の内部に存在する充填材(B)の平均長径および平均アスペクト比は、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、粗化層の断面を撮影する。その観察像から、凹部201の内部に存在する充填材(B)を任意に50個選択し、それらの長径(繊維状充填材の場合は繊維長、板状充填材の場合は平面方向の長径寸法)および短径(繊維状充填材の場合は繊維径、板状充填材の場合は厚み方向の寸法)をそれぞれ測定する。長径の全てを積算して個数で除したものを平均長径とする。同様に、短径の全てを積算して個数で除したものを平均短径とする。そして、平均短径に対する平均長径を平均アスペクト比とする。 The average major axis and average aspect ratio of the filler (B) present in the recess 201 can be measured from the SEM photograph as follows. First, a cross section of the roughened layer is photographed with a scanning electron microscope. From the observation image, 50 fillers (B) existing inside the recess 201 are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, and major axis in the planar direction in the case of plate-like fillers). Dimension) and a short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) are measured. The average major axis is obtained by integrating all major axes and dividing by the number. Similarly, the average minor axis is obtained by integrating all minor axes and dividing by the number. The average major axis with respect to the average minor axis is defined as the average aspect ratio.
 また、凹部201の内部に存在する充填材(B)はワラストナイト、カオリンクレー、タルク、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、ホウ酸アルミニウムウイスカー、およびチタン酸カリウム繊維からなる群から選ばれる一種または二種以上であることが好ましい。 The filler (B) present in the recess 201 is a group consisting of wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber. It is preferable that it is 1 type, or 2 or more types chosen from.
 次に、本実施形態の作用および効果について説明する。本実施形態に係るブレーキピストン100は、ブレーキパッド302と対向する位置に金属部材102が設けられている。これにより、ブレーキパッド302側からの熱害により、樹脂部材101からなるピストン本体部110の表面が酸化劣化し、機械的強度が徐々に低下してしまうことを抑制することができる。
 さらに、本実施形態に係るブレーキピストン100は、粗化層の上記凹凸を構成する凹部201の内部に樹脂部材101の一部が存在することにより、ピストン本体部110における開口部120の側端面125と金属部材102とが接合されている。これにより、高温下に長時間曝されても、ピストン本体部110と金属部材102との接合強度を維持することができる。その結果、ブレーキパッド302側からの熱害により、樹脂部材101からなるピストン本体部110の表面が酸化劣化し、機械的強度が徐々に低下してしまうことをより一層抑制することができる。
 また、本実施形態に係るブレーキピストン100は、ピストン本体部110が樹脂部材101からなるため、必要な強度を保ちつつも、同種の金属のみからなるブレーキピストンに比べて軽量にできる。よって、例えば、車両に搭載したとき省エネルギーの車両を実現できる。 
 以上から、本実施形態によれば、軽量性と信頼性との性能バランスに優れるブレーキピストン100を提供することができる。
Next, the operation and effect of this embodiment will be described. The brake piston 100 according to the present embodiment is provided with a metal member 102 at a position facing the brake pad 302. Thereby, it can be suppressed that the surface of the piston main body 110 made of the resin member 101 is oxidized and deteriorated due to heat damage from the brake pad 302 side, and the mechanical strength is gradually lowered.
Furthermore, the brake piston 100 according to the present embodiment has a side end face 125 of the opening 120 in the piston main body 110 due to the presence of a part of the resin member 101 inside the recess 201 that forms the unevenness of the roughened layer. And the metal member 102 are joined. Thereby, even if it exposes to high temperature for a long time, the joining strength of piston main-body part 110 and metal member 102 can be maintained. As a result, it is possible to further suppress the deterioration of the mechanical strength due to the oxidative deterioration of the surface of the piston main body 110 made of the resin member 101 due to the heat damage from the brake pad 302 side.
Moreover, since the piston main body part 110 consists of the resin member 101, the brake piston 100 which concerns on this embodiment can be reduced in weight compared with the brake piston which consists only of the same kind of metal, maintaining required intensity | strength. Thus, for example, an energy-saving vehicle can be realized when mounted on a vehicle.
From the above, according to this embodiment, it is possible to provide the brake piston 100 that is excellent in the performance balance between lightness and reliability.
<樹脂部材>
 以下、本実施形態に係る樹脂部材101について説明する。
 樹脂部材101は、例えば、熱硬化性樹脂(A)と充填材(B)とを含む熱硬化性樹脂組成物(P)を硬化してなる。
<Resin member>
Hereinafter, the resin member 101 according to the present embodiment will be described.
The resin member 101 is formed, for example, by curing a thermosetting resin composition (P) including a thermosetting resin (A) and a filler (B).
 熱硬化性樹脂(A)としては、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、メラミン樹脂、オキセタン樹脂、マレイミド樹脂、ユリア(尿素)樹脂、ポリウレタン樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂などが用いられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 これらの中でも、耐熱性、加工性、機械的特性、電気特性、接着性および耐摩耗性に優れるフェノール樹脂が好適に用いられる。
 熱硬化性樹脂(A)の含有量は、樹脂部材101の全体を100質量%としたとき、好ましくは5質量%以上40質量%以下であり、より好ましくは10質量%以上30質量%以下である。
Examples of the thermosetting resin (A) include phenol resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, melamine resin, oxetane resin, maleimide resin, urea (urea) resin, polyurethane resin, silicone resin, and benzoxazine. A resin having a ring, a cyanate ester resin, or the like is used. These may be used alone or in combination of two or more.
Among these, phenol resins that are excellent in heat resistance, workability, mechanical properties, electrical properties, adhesion, and wear resistance are preferably used.
The content of the thermosetting resin (A) is preferably 5% by mass or more and 40% by mass or less, more preferably 10% by mass or more and 30% by mass or less, when the entire resin member 101 is 100% by mass. is there.
 フェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂などのノボラック型フェノール樹脂;メチロール型レゾール樹脂、ジメチレンエーテル型レゾール樹脂、桐油、アマニ油、クルミ油などで溶融した油溶融レゾールフェノール樹脂などのレゾール型フェノール樹脂;アリールアルキレン型フェノール樹脂などが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
 これらの中でも入手容易性、安価およびロール混練による作業性が良好などの理由からノボラック型フェノール樹脂が好ましい。
Examples of the phenol resin include novolak phenol resins such as phenol novolak resin, cresol novolak resin, and bisphenol A type novolak resin; Examples thereof include resol type phenol resins such as oil-melted resol phenol resin; aryl alkylene type phenol resins and the like. These may be used alone or in combination of two or more.
Among these, a novolak type phenol resin is preferable because it is easily available, inexpensive, and has good workability by roll kneading.
 上記フェノール樹脂において、ノボラック型フェノール樹脂を用いる場合は、通常、硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンは、特に限定されないが、ノボラック型フェノール樹脂100質量部に対して、10~25質量部使用することが好ましく、13~20重量部使用することがより好ましい。ヘキサメチレンテトラミンの使用量が上記下限値以上であると、成形時の硬化時間を短縮することができる。また、ヘキサメチレンテトラミンの使用量が上記上限値以下であると、得られるブレーキピストン100の外観を向上させることができる。 In the above phenol resin, when a novolac type phenol resin is used, hexamethylenetetramine is usually used as a curing agent. Although hexamethylenetetramine is not particularly limited, it is preferably used in an amount of 10 to 25 parts by weight, more preferably 13 to 20 parts by weight, based on 100 parts by weight of the novolac type phenol resin. When the amount of hexamethylenetetramine used is not less than the above lower limit, the curing time during molding can be shortened. Moreover, the external appearance of the brake piston 100 obtained can be improved as the usage-amount of hexamethylenetetramine is below the said upper limit.
 熱硬化性樹脂組成物(P)は、樹脂部材101の機械的強度を向上させる観点から、充填材(B)を含むことが好ましい。ただし、本実施形態では、充填材(B)から後述するエラストマー(D)は除かれる。
 充填材(B)の含有量は、樹脂部材101の全体を100質量%としたとき、好ましくは50質量%以上90質量%以下であり、より好ましくは60質量%以上80質量%以下である。充填材(B)の含有量を上記範囲内とすることにより、熱硬化性樹脂組成物(P)の作業性を向上させつつ、得られる樹脂部材101の機械的強度をより一層向上させることができる。これにより、樹脂部材101と金属部材102との接合強度により一層優れたブレーキピストン100を得ることができる。また、充填材(B)の種類や含有量を調整することにより、得られる樹脂部材101の線膨張係数αの値等を調整することができる。
From the viewpoint of improving the mechanical strength of the resin member 101, the thermosetting resin composition (P) preferably contains a filler (B). However, in this embodiment, the elastomer (D) described later is excluded from the filler (B).
The content of the filler (B) is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 80% by mass or less when the entire resin member 101 is 100% by mass. By making the content of the filler (B) within the above range, it is possible to further improve the mechanical strength of the obtained resin member 101 while improving the workability of the thermosetting resin composition (P). it can. Thereby, it is possible to obtain a brake piston 100 that is more excellent in the bonding strength between the resin member 101 and the metal member 102. Further, by adjusting the type and content of the filler (B), it is possible to adjust the value or the like of the linear expansion coefficient alpha R of the resin member 101 to be obtained.
 充填材(B)としては、例えば、繊維状充填材、粒状充填材、板状充填材などが挙げられる。ここで、繊維状充填材はその形状が繊維状である充填材である。板状充填材はその形状が板状である充填材である。粒状充填材は、不定形状を含む繊維状・板状以外の形状の充填材である。 Examples of the filler (B) include a fibrous filler, a granular filler, and a plate-like filler. Here, the fibrous filler is a filler whose shape is fibrous. The plate-like filler is a filler whose shape is plate-like. The granular filler is a filler having a shape other than a fiber or plate including an indefinite shape.
 上記繊維状充填材としては、例えば、ガラス繊維、炭素繊維、アスベスト繊維、金属繊維、ワラストナイト、アタパルジャイト、セピオライト、ロックウール、ホウ酸アルミニウムウイスカー、チタン酸カリウム繊維、炭酸カルシウムウィスカー、酸化チタンウィスカー、セラミック繊維などの繊維状無機充填材;アラミド繊維、ポリイミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維などの繊維状有機充填材;が挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。 Examples of the fibrous filler include glass fiber, carbon fiber, asbestos fiber, metal fiber, wollastonite, attapulgite, sepiolite, rock wool, aluminum borate whisker, potassium titanate fiber, calcium carbonate whisker, and titanium oxide whisker. And fibrous inorganic fillers such as ceramic fibers; and fibrous organic fillers such as aramid fibers, polyimide fibers, and polyparaphenylene benzobisoxazole fibers. These may be used alone or in combination of two or more.
 また、上記板状充填材、粒状充填材としては、例えば、タルク、カオリンクレー、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、マイカ、ガラスフレーク、ガラス粉、炭酸マグネシウム、シリカ、酸化チタン、アルミナ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、上記繊維状充填材の粉砕物などが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。 Examples of the plate-like filler and granular filler include talc, kaolin clay, calcium carbonate, zinc oxide, calcium silicate hydrate, mica, glass flakes, glass powder, magnesium carbonate, silica, titanium oxide, Alumina, aluminum hydroxide, magnesium hydroxide, barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, aluminum nitride, boron nitride, silicon nitride, the above fibers For example, a pulverized product of a filler. These may be used alone or in combination of two or more.
 充填材(B)は、充填材(B)の全体を100質量%としたとき、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径が5μmを超える充填材(B1)を1質量%以上100質量%以下含むことが好ましく、2質量%以上98質量%以下含むことがより好ましい。これにより、熱硬化性樹脂組成物(P)の作業性を向上させつつ、得られる樹脂部材101の機械的強度をより一層向上させることができる。充填材(B1)の平均粒子径の上限は特に限定されないが、例えば、100μm以下である。
 充填材(B1)としては、平均長径が5μm以上50mm以下で、平均アスペクト比が1以上1000以下である繊維状充填材または板状充填材を含むことがより好ましい。
 充填材(B1)の平均長径および平均アスペクト比は、例えば、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、複数の繊維状充填材または板状充填材を撮影する。その観察像から、繊維状充填材または板状充填材を任意に50個選択し、それらの長径(繊維状充填材の場合は繊維長、板状充填材の場合は平面方向の長径寸法)および短径(繊維状充填材の場合は繊維径、板状充填材の場合は厚み方向の寸法)をそれぞれ測定する。長径の全てを積算して個数で除したものを平均長径とする。同様に、短径の全てを積算して個数で除したものを平均短径とする。そして、平均短径に対する平均長径を平均アスペクト比とする。
The filler (B) is 1 filler (B1) having an average particle diameter of more than 5 μm in the weight-based particle size distribution measured by the laser diffraction / scattering particle size distribution measurement method when the total amount of the filler (B) is 100% by mass. It is preferable that the content is from 100% by mass to 100% by mass, and more preferably from 2% by mass to 98% by mass. Thereby, the mechanical strength of the resin member 101 obtained can be further improved while improving the workability of the thermosetting resin composition (P). Although the upper limit of the average particle diameter of a filler (B1) is not specifically limited, For example, it is 100 micrometers or less.
More preferably, the filler (B1) includes a fibrous filler or a plate-like filler having an average major axis of 5 μm to 50 mm and an average aspect ratio of 1 to 1000.
The average major axis and average aspect ratio of the filler (B1) can be measured from an SEM photograph as follows, for example. First, a plurality of fibrous fillers or plate-like fillers are photographed with a scanning electron microscope. From the observation image, 50 fibrous fillers or plate-like fillers are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, planar major dimension in the case of plate-like fillers) and The short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) is measured. The average major axis is obtained by integrating all major axes and dividing by the number. Similarly, the average minor axis is obtained by integrating all minor axes and dividing by the number. The average major axis with respect to the average minor axis is defined as the average aspect ratio.
 充填材(B1)としてはワラストナイト、ガラス繊維、炭素繊維、ガラスビーズ、炭酸カルシウムなどから選択される1種または2種以上が好ましい。このような充填材(B1)を用いると、樹脂部材101の機械的強度を特に向上させることができる。 The filler (B1) is preferably one or more selected from wollastonite, glass fiber, carbon fiber, glass bead, calcium carbonate and the like. When such a filler (B1) is used, the mechanical strength of the resin member 101 can be particularly improved.
 また、充填材(B)は、充填材(B)の全体を100質量%としたとき、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径が0.1μm以上5μm以下である充填材(B2)を0質量%以上99質量%以下含むことが好ましく、2質量%以上98質量%以下含むことがより好ましい。これにより、凹部201の内部に充填材(B)を十分に存在させることができる。その結果、樹脂部材101と金属部材102とが相互に侵入した領域の機械的強度をより一層向上させることができる。
 充填材(B2)としては、平均長径が好ましくは0.1μm以上100μm以下、より好ましくは0.2μm以上50μm以下であり、平均アスペクト比が好ましくは1以上50以下、より好ましくは1以上40以下である繊維状充填材または板状充填材を含むことがより好ましい。
 充填材(B2)の平均長径および平均アスペクト比は、例えば、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、複数の繊維状充填材または板状充填材を撮影する。その観察像から、繊維状充填材または板状充填材を任意に50個選択し、それらの長径(繊維状充填材の場合は繊維長、板状充填材の場合は平面方向の長径寸法)および短径(繊維状充填材の場合は繊維径、板状充填材の場合は厚み方向の寸法)をそれぞれ測定する。長径の全てを積算して個数で除したものを平均長径とする。同様に、短径の全てを積算して個数で除したものを平均短径とする。そして、平均短径に対する平均長径を平均アスペクト比とする。
In addition, the filler (B) has an average particle size of 0.1 μm or more and 5 μm or less in a weight-based particle size distribution measured by a laser diffraction / scattering particle size distribution measurement method when the total amount of the filler (B) is 100% by mass. The filler (B2) is preferably contained in an amount of 0% by mass to 99% by mass, and more preferably 2% by mass to 98% by mass. Thereby, the filler (B) can be sufficiently present inside the recess 201. As a result, the mechanical strength of the region where the resin member 101 and the metal member 102 have entered each other can be further improved.
As the filler (B2), the average major axis is preferably 0.1 μm or more and 100 μm or less, more preferably 0.2 μm or more and 50 μm or less, and the average aspect ratio is preferably 1 or more and 50 or less, more preferably 1 or more and 40 or less. It is more preferable to include a fibrous filler or a plate-like filler.
The average major axis and average aspect ratio of the filler (B2) can be measured from an SEM photograph as follows, for example. First, a plurality of fibrous fillers or plate-like fillers are photographed with a scanning electron microscope. From the observation image, 50 fibrous fillers or plate-like fillers are arbitrarily selected, and their major diameters (fiber length in the case of fibrous fillers, planar major dimension in the case of plate-like fillers) and The short diameter (in the case of a fibrous filler, the fiber diameter, in the case of a plate-like filler, the dimension in the thickness direction) is measured. The average major axis is obtained by integrating all major axes and dividing by the number. Similarly, the average minor axis is obtained by integrating all minor axes and dividing by the number. The average major axis with respect to the average minor axis is defined as the average aspect ratio.
 このような充填材(B2)としては、ワラストナイト、カオリンクレー、タルク、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、ホウ酸アルミニウムウイスカー、およびチタン酸カリウム繊維から選択される1種または2種以上が好ましい。 As such a filler (B2), one type selected from wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber or Two or more are preferred.
 また、充填材(B)は、後述するシランカップリング剤(C)などのカップリング剤による表面処理が行われていてもよい。 Further, the filler (B) may be subjected to a surface treatment with a coupling agent such as a silane coupling agent (C) described later.
 熱硬化性樹脂組成物(P)は、シランカップリング剤(C)をさらに含んでもよい。シランカップリング剤(C)を含むことにより、樹脂部材101と金属部材102との密着性を向上させることができる。また、シランカップリング剤(C)を含むことにより、熱硬化性樹脂(A)と充填材(B)との親和性が向上し、その結果、樹脂部材101の機械的強度をより一層向上させることができる。 The thermosetting resin composition (P) may further contain a silane coupling agent (C). By including the silane coupling agent (C), the adhesion between the resin member 101 and the metal member 102 can be improved. Further, by including the silane coupling agent (C), the affinity between the thermosetting resin (A) and the filler (B) is improved, and as a result, the mechanical strength of the resin member 101 is further improved. be able to.
 シランカップリング剤(C)の含有量は、充填材(B)の比表面積に依存するので特に限定されないが、充填材(B)100質量部に対して、好ましくは0.01質量部以上4.0質量部以下であり、より好ましくは0.1質量部以上1.0質量部以下である。シランカップリング剤(C)の含有量が上記範囲内であると、充填材(B)を十分に被覆しつつ、樹脂部材101の機械的強度をより一層向上させることができる。 The content of the silane coupling agent (C) is not particularly limited because it depends on the specific surface area of the filler (B), but is preferably 0.01 parts by mass or more and 4 parts by mass with respect to 100 parts by mass of the filler (B). 0.0 part by mass or less, and more preferably 0.1 part by mass or more and 1.0 part by mass or less. When the content of the silane coupling agent (C) is within the above range, the mechanical strength of the resin member 101 can be further improved while sufficiently covering the filler (B).
 シランカップリング剤(C)としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物;γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物;γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物;γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられる。
 これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。
Examples of the silane coupling agent (C) include epoxy groups such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. -Containing alkoxysilane compounds; mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane; γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ- (2- Ureido group-containing alkoxysilane compounds such as ureidoethyl) aminopropyltrimethoxysilane; γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropylmethyldimethoxy Isocyanato group-containing alkoxysilane compounds such as silane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane; γ-amino Amino group-containing alkoxysilane compounds such as propyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane; And hydroxyl group-containing alkoxysilane compounds such as -hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane.
These may be used alone or in combination of two or more.
 熱硬化性樹脂組成物(P)の製造方法は特に限定されず、一般的に公知の方法により製造することができる。例えば、以下の方法が挙げられる。まず、熱硬化性樹脂(A)、必要に応じて充填材(B)、シランカップリング剤(C)、エラストマー(D)、硬化剤、硬化助剤、離型剤、顔料、難燃剤、耐候剤、酸化防止剤、可塑剤、潤滑剤、摺動剤、発泡剤などを配合して均一に混合する。次いで、得られた混合物をロール、コニーダ、二軸押出し機などの混練装置単独で、またはロールと他の混練装置との組合せで加熱溶融混練する。最後に、得られた混合物を造粒または粉砕することにより、熱硬化性樹脂組成物(P)が得られる。 The manufacturing method of a thermosetting resin composition (P) is not specifically limited, Generally, it can manufacture by a well-known method. For example, the following method is mentioned. First, thermosetting resin (A), if necessary, filler (B), silane coupling agent (C), elastomer (D), curing agent, curing aid, release agent, pigment, flame retardant, weather resistance An agent, an antioxidant, a plasticizer, a lubricant, a sliding agent, a foaming agent and the like are blended and mixed uniformly. Next, the obtained mixture is heated and melt-kneaded by a kneading apparatus such as a roll, a kneader, a twin-screw extruder alone, or a combination of a roll and another kneading apparatus. Finally, the thermosetting resin composition (P) is obtained by granulating or pulverizing the obtained mixture.
 樹脂部材101の25℃からガラス転移温度までの範囲における線膨張係数αは、好ましくは10ppm/℃以上35ppm/℃以下であり、より好ましくは10ppm/℃以上25ppm/℃以下である。線膨張係数αが上記範囲内であると、ブレーキピストン100の信頼性をより一層向上させることができる。 The linear expansion coefficient α R in the range from 25 ° C. to the glass transition temperature of the resin member 101 is preferably 10 ppm / ° C. or more and 35 ppm / ° C. or less, more preferably 10 ppm / ° C. or more and 25 ppm / ° C. or less. When the linear expansion coefficient α R is within the above range, the reliability of the brake piston 100 can be further improved.
<金属部材>
 以下、金属部材102について説明する。
<Metal member>
Hereinafter, the metal member 102 will be described.
 金属部材102は、ピストン本体部110と金属部材102との接合強度を向上させる観点から、金属部材102のピストン本体部110との接合面103に微細な凹凸からなる粗化層を有している。ここで、粗化層とは、金属部材102の表面に設けられた複数の凹部201を有する領域をいう。 From the viewpoint of improving the bonding strength between the piston main body 110 and the metal member 102, the metal member 102 has a roughened layer made of fine irregularities on the bonding surface 103 of the metal member 102 with the piston main body 110. . Here, the roughened layer refers to a region having a plurality of recesses 201 provided on the surface of the metal member 102.
 粗化層の厚みは、好ましくは3μm以上40μm以下であり、より好ましくは4μm以上32μm以下であり、特に好ましくは4μm以上30μm以下である。粗化層の厚みが上記範囲内であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。ここで、本実施形態において、粗化層の厚みは、複数の凹部201の中で、最も深さが大きいものの深さD3を表し、電子顕微鏡(SEM)写真から算出することができる。 The thickness of the roughened layer is preferably 3 μm or more and 40 μm or less, more preferably 4 μm or more and 32 μm or less, and particularly preferably 4 μm or more and 30 μm or less. When the thickness of the roughened layer is within the above range, the bonding strength between the piston main body 110 and the metal member 102 can be further improved. Here, in this embodiment, the thickness of the roughened layer represents the depth D3 of the largest depth among the plurality of recesses 201, and can be calculated from an electron microscope (SEM) photograph.
 凹部201の断面は、凹部201の開口部203から底部205までの間の少なくとも一部に開口部203の断面幅D1よりも大きい断面幅D2を有する形状となっていることが好ましい。
 図2に示すように、凹部201の断面形状は、D2がD1よりも大きければ特に限定されず、様々な形状を取り得る。凹部201の断面形状は、例えば、電子顕微鏡(SEM)により観察することができる。
It is preferable that the cross section of the recess 201 has a shape having a cross section width D2 larger than the cross section width D1 of the opening 203 in at least a part between the opening 203 and the bottom 205 of the recess 201.
As shown in FIG. 2, the cross-sectional shape of the recess 201 is not particularly limited as long as D2 is larger than D1, and can take various shapes. The cross-sectional shape of the recess 201 can be observed with, for example, an electron microscope (SEM).
 凹部201の断面形状が上記形状であると、接合強度により一層優れたブレーキピストン100が得られる理由は必ずしも明らかではないが、接合面103の表面が、樹脂部材101と金属部材102との間のアンカー効果がより一層強く発現できる構造となっているからだと考えられる。
 凹部201の断面形状が上記形状であると、樹脂部材101が凹部201の開口部203から底部205までの間で引っかかるため、アンカー効果が効果的に働く。そのため、ピストン本体部110と金属部材102との接合強度が向上すると考えられる。
If the cross-sectional shape of the recess 201 is the above-mentioned shape, the reason why the brake piston 100 with better bonding strength can be obtained is not necessarily clear, but the surface of the bonding surface 103 is between the resin member 101 and the metal member 102. This is thought to be because the anchor effect is even stronger.
When the cross-sectional shape of the concave portion 201 is the above shape, the resin member 101 is caught between the opening 203 and the bottom portion 205 of the concave portion 201, so that the anchor effect works effectively. Therefore, it is considered that the bonding strength between the piston main body 110 and the metal member 102 is improved.
 凹部201の平均深さは、好ましくは0.5μm以上40μm以下であり、より好ましくは1μm以上30μm以下である。凹部201の平均深さが上記上限値以下であると、熱硬化性樹脂組成物(P)が凹部201の奥まで十分に入り込むことができるため、樹脂部材101と金属部材102とが相互に侵入した領域の機械的強度をより一層向上させることができる。凹部201の平均深さが上記下限値以上であると、凹部201の内部に存在する充填材(B)の割合を増やすことができるため、樹脂部材101と金属部材102とが相互に侵入した領域の機械的強度を向上させることができる。したがって、凹部201の平均深さが上記範囲内であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。
 凹部201の平均深さは、例えば、以下のように走査型電子顕微鏡(SEM)写真から測定することができる。まず、走査型電子顕微鏡により、粗化層の断面を撮影する。その観察像から、凹部201を任意に50個選択し、それらの深さをそれぞれ測定する。凹部201の深さの全てを積算して個数で除したものを平均深さとする。
The average depth of the recess 201 is preferably 0.5 μm or more and 40 μm or less, and more preferably 1 μm or more and 30 μm or less. When the average depth of the recess 201 is equal to or less than the above upper limit value, the thermosetting resin composition (P) can sufficiently enter the depth of the recess 201, so that the resin member 101 and the metal member 102 enter each other. The mechanical strength of the region thus obtained can be further improved. Since the ratio of the filler (B) existing inside the recess 201 can be increased when the average depth of the recess 201 is equal to or more than the above lower limit value, the region where the resin member 101 and the metal member 102 have entered each other The mechanical strength of can be improved. Therefore, when the average depth of the recess 201 is within the above range, the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
The average depth of the recess 201 can be measured from a scanning electron microscope (SEM) photograph as follows, for example. First, a cross section of the roughened layer is photographed with a scanning electron microscope. From the observation image, 50 concave portions 201 are arbitrarily selected and their depths are measured. The average depth is obtained by integrating all the depths of the recesses 201 and dividing the sum by the number.
 凹部201の開口部203の平均断面幅は、好ましくは2μm以上60μm以下であり、より好ましくは3μm以上50μm以下であり、さらに好ましくは3μm以上30μm以下である。開口部203の平均断面幅が上記上限値以下であると、樹脂部材101と金属部材102との間のアンカー効果をより一層強く発現できる。開口部203の平均断面幅が上記下限値以上であると、凹部201の内部に存在する充填材(B)の割合を増やすことができるため、ピストン本体部110と金属部材102との接合面における樹脂部材101の強度を向上させることができる。したがって、開口部203の平均断面幅が上記範囲内であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。
 開口部203の平均断面幅は、例えば、以下のようにSEM写真から測定することができる。まず、走査型電子顕微鏡により、粗化層の断面を撮影する。その観察像から、凹部201を任意に50個選択し、それらの断面幅D1をそれぞれ測定する。開口部203の断面幅D1の全てを積算して個数で除したものを平均断面幅とする。
The average cross-sectional width of the opening 203 of the recess 201 is preferably 2 μm or more and 60 μm or less, more preferably 3 μm or more and 50 μm or less, and further preferably 3 μm or more and 30 μm or less. When the average cross-sectional width of the opening 203 is not more than the above upper limit value, the anchor effect between the resin member 101 and the metal member 102 can be expressed more strongly. When the average cross-sectional width of the opening 203 is equal to or greater than the above lower limit value, the ratio of the filler (B) present in the recess 201 can be increased, so that the joint surface between the piston main body 110 and the metal member 102 can be increased. The strength of the resin member 101 can be improved. Therefore, when the average cross-sectional width of the opening 203 is within the above range, the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
The average cross-sectional width of the opening 203 can be measured from an SEM photograph as follows, for example. First, a cross section of the roughened layer is photographed with a scanning electron microscope. From the observation image, 50 concave portions 201 are arbitrarily selected, and their cross-sectional widths D1 are measured. The average cross-sectional width is obtained by integrating all the cross-sectional widths D1 of the openings 203 and dividing the sum by the number.
 金属部材102の接合面103の表面粗さRaは、好ましくは0.5μm以上40.0μm以下であり、より好ましくは1.0μm以上20.0μm以下であり、特に好ましくは1.0μm以上10.0μm以下である。上記表面粗さRaが上記範囲内であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。
 また、金属部材102の接合面103の最大高さRzは、好ましくは1.0μm以上40.0μm以下であり、より好ましくは3.0μm以上30.0μm以下である。上記最大高さRzが上記範囲内であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。なお、RaおよびRzは、JIS-B0601に準拠して測定することができる。
The surface roughness Ra of the bonding surface 103 of the metal member 102 is preferably 0.5 μm or more and 40.0 μm or less, more preferably 1.0 μm or more and 20.0 μm or less, and particularly preferably 1.0 μm or more and 10. 0 μm or less. When the surface roughness Ra is within the above range, the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
Further, the maximum height Rz of the joint surface 103 of the metal member 102 is preferably 1.0 μm or more and 40.0 μm or less, and more preferably 3.0 μm or more and 30.0 μm or less. When the maximum height Rz is within the above range, the bonding strength between the piston main body 110 and the metal member 102 can be further improved. Ra and Rz can be measured according to JIS-B0601.
 金属部材102は、少なくともピストン本体部110と接合する接合面103の見掛け表面積に対する窒素吸着BET法による実表面積の比(以下、単に比表面積とも呼ぶ。)が、好ましくは100以上であり、より好ましくは150以上である。上記比表面積が上記下限値以上であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。また、上記比表面積が、好ましくは400以下であり、より好ましくは380以下であり、特に好ましくは300以下である。上記比表面積が上記上限値以下であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。 The ratio of the actual surface area by the nitrogen adsorption BET method to the apparent surface area of the joining surface 103 at least joined to the piston main body 110 (hereinafter also simply referred to as a specific surface area) is preferably 100 or more. Is 150 or more. When the specific surface area is equal to or greater than the lower limit, the bonding strength between the piston main body 110 and the metal member 102 can be further improved. The specific surface area is preferably 400 or less, more preferably 380 or less, and particularly preferably 300 or less. When the specific surface area is less than or equal to the upper limit, the bonding strength between the piston main body 110 and the metal member 102 can be further improved.
 ここで、本実施形態における見掛け表面積は、金属部材102の表面が凹凸のない平滑状であると仮定した場合の表面積を意味する。例えば、その表面形状が長方形の場合には、縦の長さ×横の長さで表される。一方、本実施形態における窒素吸着BET法による実表面積は、窒素ガスの吸着量により求めたBET表面積を意味する。例えば、真空乾燥した測定対象試料について、自動比表面積/細孔分布測定装置(BELSORPminiII、日本ベル社製)を用いて、液体窒素温度における窒素吸脱着量を測定し、その窒素吸脱着量に基づいて算出することができる。
 上記比表面積が上記範囲内であると、より一層接合強度に優れたブレーキピストン100が得られる理由は必ずしも明らかではないが、ピストン本体部110との接合面103の表面が、樹脂部材101と金属部材102との間のアンカー効果がより一層強く発現できる構造となっているからだと考えられる。
 上記比表面積が上記下限値以上であると、樹脂部材101と金属部材102の接触面積が大きくなり、樹脂部材101と金属部材102とが相互に侵入する領域が増える。その結果、アンカー効果が働く領域が増え、ピストン本体部110と金属部材102との接合強度がより一層向上すると考えられる。
 一方、上記比表面積が大きすぎると、樹脂部材101と金属部材102とが相互に侵入した領域の金属部材102の割合が減るため、この領域の機械的強度が低下してしまう。そのため、上記比表面積が上記上限値以下であると、樹脂部材101と金属部材102とが相互に侵入した領域の機械的強度がより一層向上し、その結果、ピストン本体部110と金属部材102との接合強度をより一層向上させることができると考えられる。
 以上から、上記比表面積が上記範囲内であると、樹脂部材101との接合面103の表面が、樹脂部材101と金属部材102との間のアンカー効果がより一層強く発現できる、バランスの良い構造になっていると推察される。
Here, the apparent surface area in the present embodiment means a surface area when it is assumed that the surface of the metal member 102 is smooth without unevenness. For example, when the surface shape is a rectangle, it is represented by vertical length × horizontal length. On the other hand, the actual surface area by the nitrogen adsorption BET method in the present embodiment means the BET surface area obtained from the adsorption amount of nitrogen gas. For example, using a specific surface area / pore distribution measurement device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.) for a vacuum dried sample to be measured, the nitrogen adsorption / desorption amount at liquid nitrogen temperature is measured, and based on the nitrogen adsorption / desorption amount Can be calculated.
When the specific surface area is within the above range, it is not always clear why the brake piston 100 having further excellent bonding strength can be obtained. However, the surface of the bonding surface 103 with the piston main body 110 is formed between the resin member 101 and the metal. This is considered to be because the anchor effect with the member 102 can be expressed more strongly.
When the specific surface area is equal to or greater than the lower limit, the contact area between the resin member 101 and the metal member 102 is increased, and the region where the resin member 101 and the metal member 102 enter each other increases. As a result, it is considered that the area where the anchor effect works increases and the bonding strength between the piston main body 110 and the metal member 102 is further improved.
On the other hand, if the specific surface area is too large, the proportion of the metal member 102 in the region where the resin member 101 and the metal member 102 have entered each other decreases, and the mechanical strength of this region is reduced. Therefore, when the specific surface area is equal to or less than the upper limit value, the mechanical strength of the region where the resin member 101 and the metal member 102 enter each other is further improved. As a result, the piston main body 110 and the metal member 102 It is considered that the bonding strength of the steel can be further improved.
From the above, when the specific surface area is within the above range, the surface of the joint surface 103 with the resin member 101 can exhibit the anchor effect between the resin member 101 and the metal member 102 even more strongly. It is inferred that
 金属部材102は、特に限定されないが、少なくともピストン本体部110と接合する接合面103の光沢度が、好ましくは0.1以上であり、より好ましくは0.5以上であり、さらに好ましくは1以上である。上記光沢度が上記下限値以上であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。また、上記光沢度が、好ましくは30以下であり、より好ましくは20以下である。上記光沢度が上記上限値以下であると、ピストン本体部110と金属部材102との接合強度をより一層向上させることができる。ここで、本実施形態における光沢度は、ASTM-D523に準拠して測定した測定角度60°の値を示す。光沢度は、例えば、ディジタル光沢度計(20°、60°)(GM-26型、村上色彩技術研究所社製)を用いて測定することができる。
 上記光沢度が上記範囲内であると、接合強度により一層優れたブレーキピストン100が得られる理由は必ずしも明らかではないが、ピストン本体部110との接合面103の表面がより一層乱雑な構造となり、樹脂部材101と金属部材102との間のアンカー効果がより一層強く発現できる構造となっているからだと考えられる。
The metal member 102 is not particularly limited, but at least the glossiness of the joint surface 103 joined to the piston main body 110 is preferably 0.1 or more, more preferably 0.5 or more, and further preferably 1 or more. It is. When the glossiness is equal to or higher than the lower limit, the bonding strength between the piston main body 110 and the metal member 102 can be further improved. Further, the glossiness is preferably 30 or less, more preferably 20 or less. When the glossiness is less than or equal to the upper limit value, the bonding strength between the piston main body 110 and the metal member 102 can be further improved. Here, the glossiness in the present embodiment indicates a value at a measurement angle of 60 ° measured in accordance with ASTM-D523. The glossiness can be measured using, for example, a digital glossiness meter (20 °, 60 °) (GM-26 type, manufactured by Murakami Color Research Laboratory).
When the glossiness is within the above range, the reason why the brake piston 100 that is more excellent in the bonding strength is not necessarily clear, but the surface of the bonding surface 103 with the piston main body 110 has a more messy structure, This is probably because the anchor effect between the resin member 101 and the metal member 102 can be expressed more strongly.
 金属部材102を構成する金属材料は特に限定されないが、入手の容易さや価格の観点から、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅および銅合金などを挙げることができる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。これらの中でも、耐食性かつ高強度の点から、ステンレスが好ましい。  The metal material constituting the metal member 102 is not particularly limited, and examples thereof include iron, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, and copper alloy from the viewpoint of availability and price. These may be used alone or in combination of two or more. Among these, stainless steel is preferable from the viewpoint of corrosion resistance and high strength.
 次に、金属部材102の表面に粗化層を形成する方法について説明する。
 粗化層は、例えば、表面処理剤を用いて、金属部材102の表面を化学的処理することにより形成することができる。
 ここで、表面処理剤を用いて金属部材102の表面を化学的処理すること自体は従来技術においても行われてきた。しかし、本発明者らは、(1)金属部材と表面処理剤の組み合わせ、(2)化学的処理の温度および時間、(3)化学的処理後の金属部材表面の後処理、などの因子を高度に制御することにより、ピストン本体部110と金属部材102との接合強度をより一層向上できる粗化層が得られることを見出した。ピストン本体部110と金属部材102との接合強度をより一層向上できる粗化層を得るためには、これらの因子を高度に制御することが特に重要となる。
 以下、金属部材102の表面上に粗化層を形成する方法の一例を示す。ただし、本実施形態に係る粗化層の形成方法は、以下の例に限定されない。
Next, a method for forming a roughened layer on the surface of the metal member 102 will be described.
The roughened layer can be formed, for example, by chemically treating the surface of the metal member 102 using a surface treatment agent.
Here, the chemical treatment of the surface of the metal member 102 using the surface treatment agent itself has been performed in the prior art. However, the present inventors consider factors such as (1) the combination of the metal member and the surface treatment agent, (2) the temperature and time of the chemical treatment, and (3) the post-treatment of the surface of the metal member after the chemical treatment. It has been found that a roughened layer capable of further improving the bonding strength between the piston main body 110 and the metal member 102 can be obtained by performing a high degree of control. In order to obtain a roughened layer that can further improve the bonding strength between the piston main body 110 and the metal member 102, it is particularly important to control these factors to a high degree.
Hereinafter, an example of a method for forming a roughened layer on the surface of the metal member 102 will be described. However, the formation method of the roughening layer which concerns on this embodiment is not limited to the following examples.
 はじめに、(1)金属部材と表面処理剤の組み合わせを選択する。
 鉄やステンレスから構成される金属部材を用いる場合は、表面処理剤として、無機酸、塩素イオン源、第二銅イオン源、チオール系化合物を必要に応じて組合せた水溶液を選択するのが好ましい。
 アルミニウムやアルミニウム合金から構成される金属部材を用いる場合は、表面処理剤として、アルカリ源、両性金属イオン源、硝酸イオン源、チオ化合物を必要に応じて組合せた水溶液を選択するのが好ましい。
 マグネシウムやマグネシウム合金から構成される金属部材を用いる場合は、表面処理剤として、アルカリ源が用いられ、特に水酸化ナトリウムの水溶液を選択するのが好ましい。
 銅や銅合金から構成される金属部材を用いる場合は、表面処理剤として、硝酸、硫酸などの無機酸、不飽和カルボン酸などの有機酸、過硫酸塩、過酸化水素、イミダゾールおよびその誘導体、テトラゾールおよびその誘導体、アミノテトラゾールおよびその誘導体、アミノトリアゾールおよびその誘導体などのアゾール類、ピリジン誘導体、トリアジン、トリアジン誘導体、アルカノールアミン、アルキルアミン誘導体、ポリアルキレングリコール、糖アルコール、第二銅イオン源、塩素イオン源、ホスホン酸系キレート剤酸化剤、N,N-ビス(2-ヒドロキシエチル)-N-シクロヘキシルアミンから選ばれる少なくとも1種を用いた水溶液を選択するのが好ましい。
First, (1) a combination of a metal member and a surface treatment agent is selected.
When a metal member composed of iron or stainless steel is used, it is preferable to select an aqueous solution in which an inorganic acid, a chlorine ion source, a cupric ion source, and a thiol compound are combined as necessary as a surface treatment agent.
When a metal member composed of aluminum or an aluminum alloy is used, it is preferable to select an aqueous solution in which an alkali source, an amphoteric metal ion source, a nitrate ion source, and a thio compound are combined as necessary as a surface treatment agent.
When a metal member composed of magnesium or a magnesium alloy is used, an alkali source is used as the surface treatment agent, and it is particularly preferable to select an aqueous solution of sodium hydroxide.
When using a metal member composed of copper or a copper alloy, as a surface treatment agent, an inorganic acid such as nitric acid or sulfuric acid, an organic acid such as an unsaturated carboxylic acid, a persulfate, hydrogen peroxide, an imidazole, or a derivative thereof, Tetrazole and its derivatives, aminotetrazole and its derivatives, azoles such as aminotriazole and its derivatives, pyridine derivatives, triazine, triazine derivatives, alkanolamines, alkylamine derivatives, polyalkylene glycol, sugar alcohol, cupric ion source, chlorine It is preferable to select an aqueous solution using at least one selected from an ion source, a phosphonic acid chelating agent, an oxidizing agent, and N, N-bis (2-hydroxyethyl) -N-cyclohexylamine.
 つぎに、(2)金属部材を表面処理剤に浸漬させ、金属部材表面に化学的処理をおこなう。このとき、処理温度は、例えば、30℃である。また、処理時間は選定する金属部材の材質や表面状態、表面処理剤の種類や濃度、処理温度などにより適宜決定されるが、例えば、30~300秒である。このとき、金属部材の深さ方向のエッチング量を、好ましくは3μm以上、より好ましくは5μm以上にすることが重要である。金属部材の深さ方向のエッチング量は、溶解した金属部材の重量、比重および表面積から算出して、評価することができる。この深さ方向のエッチング量は、表面処理剤の種類や濃度、処理温度、処理時間などにより調整することができる。
 本実施形態では、深さ方向のエッチング量を調整することにより、前述した粗化層の厚み、凹部201の平均深さ、比表面積、光沢度、Ra、Rz等を調整することができる。
Next, (2) the metal member is immersed in a surface treatment agent, and the surface of the metal member is chemically treated. At this time, the processing temperature is, for example, 30 ° C. The treatment time is appropriately determined depending on the material and surface state of the metal member to be selected, the type and concentration of the surface treatment agent, the treatment temperature, etc., and is, for example, 30 to 300 seconds. At this time, it is important that the etching amount of the metal member in the depth direction is preferably 3 μm or more, more preferably 5 μm or more. The etching amount in the depth direction of the metal member can be evaluated by calculating from the weight, specific gravity and surface area of the dissolved metal member. The etching amount in the depth direction can be adjusted by the type and concentration of the surface treatment agent, the treatment temperature, the treatment time, and the like.
In this embodiment, by adjusting the etching amount in the depth direction, the thickness of the roughened layer, the average depth of the recesses 201, the specific surface area, the glossiness, Ra, Rz, and the like can be adjusted.
 最後に、(3)化学的処理後の金属部材表面に後処理をおこなう。まず、金属部材表面を水洗、乾燥する。次いで、化学的処理をおこなった金属部材表面を硝酸水溶液などで処理する。
 以上の手順により、本実施形態に係る粗化層を有する金属部材102を得ることができる。
Finally, (3) post-treatment is performed on the surface of the metal member after chemical treatment. First, the metal member surface is washed with water and dried. Next, the chemically treated metal member surface is treated with an aqueous nitric acid solution or the like.
Through the above procedure, the metal member 102 having the roughened layer according to the present embodiment can be obtained.
[ブレーキピストンの製造方法]
 つづいて、ブレーキピストン100の製造方法について説明する。ブレーキピストン100の製造方法としては特に限定されないが、例えば、射出成形法、移送成形法、圧縮成形法、射出圧縮成形法などが挙げられる。これらの中でも、射出成形法、圧縮成形法が特に適している。
[Brake piston manufacturing method]
Next, a method for manufacturing the brake piston 100 will be described. Although it does not specifically limit as a manufacturing method of the brake piston 100, For example, the injection molding method, the transfer molding method, the compression molding method, the injection compression molding method etc. are mentioned. Among these, the injection molding method and the compression molding method are particularly suitable.
 本実施形態に係るブレーキピストン100の製造方法は、例えば、以下の工程を含んでいる。 The manufacturing method of the brake piston 100 according to the present embodiment includes, for example, the following steps.
 はじめに、金属部材102および金型を準備する。金属部材102は、密着性、耐久性向上等の観点から、少なくともピストン本体部110と接合させる部分が粗化処理された金属部材102を準備することが好ましい。 First, a metal member 102 and a mold are prepared. As the metal member 102, it is preferable to prepare the metal member 102 in which at least a portion to be joined to the piston main body 110 is roughened from the viewpoint of improving adhesion and durability.
 次いで、金型の成形空間内に金属部材102を配置する。
 次いで、例えば、射出成形機を用いて、流動化した熱硬化性樹脂組成物(P)で成形空間内を充填する。つづいて、熱硬化性樹脂組成物(P)の少なくとも一部が金属部材102に接触した状態で熱硬化性樹脂組成物(P)を硬化することにより、熱硬化性樹脂組成物(P)からなる樹脂部材101と金属部材102とを接合させる。以上より、ブレーキピストン100が得られる。
Next, the metal member 102 is placed in the molding space of the mold.
Next, the inside of the molding space is filled with the fluidized thermosetting resin composition (P) using, for example, an injection molding machine. Subsequently, by curing the thermosetting resin composition (P) in a state where at least a part of the thermosetting resin composition (P) is in contact with the metal member 102, the thermosetting resin composition (P) can be cured. The resin member 101 and the metal member 102 are joined. From the above, the brake piston 100 is obtained.
 熱硬化性樹脂組成物(P)は、成形を良好におこなうために流動性が高いことが好ましい。そのため、熱硬化性樹脂組成物(P)は、175℃での溶融粘度が、好ましくは10Pa・s以上3000Pa・s以下であり、より好ましくは30Pa・s以上2000Pa・s以下である。175℃での溶融粘度は、例えば、島津製作所社製の熱流動評価装置(フローテスタ)により測定することができる。 The thermosetting resin composition (P) preferably has high fluidity in order to perform molding well. Therefore, the thermosetting resin composition (P) has a melt viscosity at 175 ° C. of preferably 10 Pa · s to 3000 Pa · s, and more preferably 30 Pa · s to 2000 Pa · s. The melt viscosity at 175 ° C. can be measured by, for example, a thermal fluidity evaluation apparatus (flow tester) manufactured by Shimadzu Corporation.
 このような粘度挙動を有する熱硬化性樹脂組成物(P)を実現するためには、例えば、前述した熱硬化性樹脂(A)の種類や量、充填材(B)の種類や量、エラストマー(D)の種類や量を適宜調整すればよい。 In order to realize the thermosetting resin composition (P) having such a viscosity behavior, for example, the type and amount of the thermosetting resin (A) described above, the type and amount of the filler (B), an elastomer, What is necessary is just to adjust the kind and quantity of (D) suitably.
 本実施形態に係るブレーキピストン100の製造方法では、流動化した熱硬化性樹脂組成物(P)で成形空間内を充填する工程において、熱硬化性樹脂組成物(P)の流動圧力により金属部材102を金型の成形面に押しつけながら成形空間を熱硬化性樹脂組成物(P)で充填することが好ましい。このようにすることで、バリの発生を抑制し、かつ金属部材102とピストン本体部110との密着性に優れる良好な品質のブレーキピストン100を得ることができる。 In the method of manufacturing the brake piston 100 according to the present embodiment, in the step of filling the molding space with the fluidized thermosetting resin composition (P), the metal member is caused by the flow pressure of the thermosetting resin composition (P). It is preferable to fill the molding space with the thermosetting resin composition (P) while pressing 102 against the molding surface of the mold. By doing so, it is possible to obtain a brake piston 100 of good quality that suppresses the generation of burrs and has excellent adhesion between the metal member 102 and the piston main body 110.
 本実施形態において、ブレーキピストン100の成形条件は、採用する成形方法により異なるため特に限定されないが、採用する成形方法における一般的に公知の成形条件を採用することができる。成形方法として圧縮成形法を用いる場合、例えば、温度が150~180℃、圧力5~30MPa、硬化時間30秒間から5分間の成形条件を挙げることができる。 In the present embodiment, the molding conditions of the brake piston 100 are not particularly limited because they vary depending on the molding method employed, but generally known molding conditions in the employed molding method can be employed. When a compression molding method is used as the molding method, for example, molding conditions of a temperature of 150 to 180 ° C., a pressure of 5 to 30 MPa, and a curing time of 30 seconds to 5 minutes can be mentioned.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted.
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present embodiment will be described in detail with reference to examples and comparative examples. In addition, this embodiment is not limited to description of these Examples at all.
(実施例1)
<熱硬化性樹脂組成物(P1)の調製>
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を20.0質量%、ヘキサメチレンテトラミンを3.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を3.0質量%、ワラストナイトA(NYCO Minerals社製、NYAD325、平均粒子径:10μm、平均長径:50μm)を55.0質量%、焼成クレー(イメリス社製、ポールスター501、平均粒子径:0.6μm)を16.0質量%、酸化マグネシウム(神島化学工業社製)を1.0質量%、潤滑剤等のその他の成分を2.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P1)を得た。
Example 1
<Preparation of thermosetting resin composition (P1)>
20.0% by mass of novolak-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 3.0% by mass of hexamethylenetetramine, glass fiber A (CS3E479, manufactured by Nittobo Co., Ltd., average particle size: 11 μm, average major axis) : 3 mm, average aspect ratio: 270) 3.0% by mass, Wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 μm, average major axis: 50 μm) 55.0% by mass, calcined clay (Imelice) 16.0% by mass, Pole Star 501, average particle size: 0.6 μm), 1.0% by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.), and 2.0% by mass of other components such as a lubricant %, Each is dry-mixed, melted and kneaded with a heating roll at 90 ° C., crushed and cooled to a granular thermosetting resin It was obtained Narubutsu (P1).
<金属部材の表面処理>
 まず、表面処理がされていないステンレスシートA(80mm×10mm、厚さ1.0mm、密度7.93g/cm、熱伝導率16.7W/(m・K)、SUS304)を準備した。また、硫酸(50質量%)、硫酸第二銅5水和物(3質量%)、塩化カリウム(3質量%)、チオサリチル酸(0.0001質量%)の水溶液を調製した。そして、得られた水溶液(30℃)中に、ステンレスシートAを浸漬して揺動させ、深さ方向に15μm(ステンレスの減少した重量から算出)溶解させた。次いで、水洗、乾燥し、ステンレスシート1を得た。
<Surface treatment of metal members>
First, a stainless steel sheet A (80 mm × 10 mm, thickness 1.0 mm, density 7.93 g / cm 3 , thermal conductivity 16.7 W / (m · K), SUS304) not subjected to surface treatment was prepared. Further, an aqueous solution of sulfuric acid (50% by mass), cupric sulfate pentahydrate (3% by mass), potassium chloride (3% by mass), and thiosalicylic acid (0.0001% by mass) was prepared. And in the obtained aqueous solution (30 degreeC), the stainless steel sheet A was immersed and rock | fluctuated, and 15 micrometers (calculated from the weight which stainless steel decreased) was dissolved in the depth direction. Subsequently, it washed with water and dried and the stainless steel sheet 1 was obtained.
<金属部材の評価方法>
(金属部材の表面粗さの測定)
 超深度形状測定顕微鏡(キーエンス社製VK9700)を用いて、倍率20倍における金属部材の樹脂部材との接合面の表面形状を測定した。表面粗さはRaおよびRzを測定した。RaおよびRzは、JIS-B0601に準拠して測定した。
 ステンレスシート1のRaは2.5μm、Rzは15.3μmであった。
<Evaluation method of metal member>
(Measurement of surface roughness of metal parts)
The surface shape of the joint surface between the metal member and the resin member at a magnification of 20 was measured using an ultra-deep shape measuring microscope (VK9700 manufactured by Keyence Corporation). As for the surface roughness, Ra and Rz were measured. Ra and Rz were measured according to JIS-B0601.
The stainless sheet 1 had an Ra of 2.5 μm and an Rz of 15.3 μm.
(比表面積の測定)
 測定対象試料を120℃で、6時間真空乾燥した後、自動比表面積/細孔分布測定装置(BELSORPminiII、日本ベル社製)を用いて、液体窒素温度における窒素吸脱着量を測定した。窒素吸着BET法による実表面積はBETプロットから算出した。測定した窒素吸着BET法による実表面積を、見掛け表面積で割ることにより比表面積を算出した。
 ステンレスシート1の比表面積は250であった。
(Measurement of specific surface area)
The sample to be measured was vacuum-dried at 120 ° C. for 6 hours, and then the nitrogen adsorption / desorption amount at the liquid nitrogen temperature was measured using an automatic specific surface area / pore distribution measuring device (BELSORPmini II, manufactured by Nippon Bell Co., Ltd.). The actual surface area by the nitrogen adsorption BET method was calculated from the BET plot. The specific surface area was calculated by dividing the actual surface area measured by the nitrogen adsorption BET method by the apparent surface area.
The specific surface area of the stainless steel sheet 1 was 250.
(金属部材の表面の光沢度の測定)
 金属部材の表面の光沢度は、ディジタル光沢度計(20°、60°)(GM-26型、村上色彩技術研究所社製)を用いて、ASTM-D523に準拠して測定角度60°で測定した。
 ステンレスシート1の光沢度は10であった。
(Measurement of surface gloss of metal parts)
The glossiness of the surface of the metal member is measured at 60 ° in accordance with ASTM-D523 using a digital gloss meter (20 °, 60 °) (GM-26, manufactured by Murakami Color Research Laboratory Co., Ltd.). It was measured.
The glossiness of the stainless steel sheet 1 was 10.
(金属部材の表面の観察)
 金属部材の表面を電子顕微鏡(SEM)で撮影し、金属部材の表面に存在する粗化層の構造を観察した。この観察像から、粗化層の厚み、凹部の断面形状、凹部の平均深さ、開口部の平均断面幅をそれぞれ求めた。
 ステンレスシート1の粗化層の厚みは15μm、凹部の平均深さは13μm、開口部の平均断面幅は14μmであった。また、図2に示すように、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていた。
(Observation of the surface of metal members)
The surface of the metal member was photographed with an electron microscope (SEM), and the structure of the roughened layer existing on the surface of the metal member was observed. From this observed image, the thickness of the roughened layer, the cross-sectional shape of the recess, the average depth of the recess, and the average cross-sectional width of the opening were determined.
The thickness of the roughened layer of the stainless steel sheet 1 was 15 μm, the average depth of the recesses was 13 μm, and the average cross-sectional width of the openings was 14 μm. Further, as shown in FIG. 2, the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion in at least a part from the opening portion to the bottom portion of the concave portion.
(線膨張係数αの測定)
 熱機械分析装置TMA(TAインスツルメント社製、EXSTAR6000)を用いて5℃/分の圧縮条件で、25 ℃から樹脂部材のガラス転移温度までの範囲における線膨張係数αを測定した。ステンレスシート1の線膨張係数αは17ppm/℃であった。
(Measurement of linear expansion coefficient α M )
The linear expansion coefficient α M in the range from 25 ° C. to the glass transition temperature of the resin member was measured under a compression condition of 5 ° C./min using a thermomechanical analyzer TMA (manufactured by TA Instruments, EXSTAR6000). The linear expansion coefficient α M of the stainless steel sheet 1 was 17 ppm / ° C.
<金属樹脂複合体の作製>
 得られた熱硬化性樹脂組成物(P1)およびステンレスシート1を用いて、金属樹脂複合体1を作製した。具体的には、以下の手順により作製した。
 はじめに、金型内に厚み1mmのステンレスシート1を固定せずに配置した。次いで、硬化後の厚みが3mmとなるように、熱硬化性樹脂組成物(P1)を加熱し、上記金型内に所定量注入した。このとき、熱硬化性樹脂組成物(P1)の流体圧力により、ステンレスシート1を金型の内壁に押しつけるようにした。最後に、圧縮成形により熱硬化性樹脂組成物(P1)を硬化することにより、厚み3mmの樹脂部材シートと厚み1mmのステンレスシート1の2層シートである金属樹脂複合体1を得た。この金属樹脂複合体1を試験片1とした。なお、圧縮成形条件は、実効圧力20MPa、金型温度175℃、硬化時間3分間とした。
<Production of metal resin composite>
A metal resin composite 1 was produced using the obtained thermosetting resin composition (P1) and the stainless steel sheet 1. Specifically, it was produced by the following procedure.
First, the stainless steel sheet 1 having a thickness of 1 mm was placed in the mold without being fixed. Next, the thermosetting resin composition (P1) was heated so that the thickness after curing was 3 mm, and a predetermined amount was injected into the mold. At this time, the stainless steel sheet 1 was pressed against the inner wall of the mold by the fluid pressure of the thermosetting resin composition (P1). Finally, the thermosetting resin composition (P1) was cured by compression molding to obtain a metal resin composite 1 that was a two-layer sheet of a resin member sheet having a thickness of 3 mm and a stainless sheet 1 having a thickness of 1 mm. This metal resin composite 1 was used as a test piece 1. The compression molding conditions were an effective pressure of 20 MPa, a mold temperature of 175 ° C., and a curing time of 3 minutes.
(金属樹脂複合体の接合面の観察)
 金属樹脂複合体1の接合面の断面を電子顕微鏡(SEM)で撮影し、接合面の断面の構造を観察した。この観察像から、凹部の内部の充填材の有無を求めた。なお、凹部の内部の充填材の有無はエネルギー分散型蛍光X線分析からも確認した。
(Observation of joint surface of metal resin composite)
The cross section of the joint surface of the metal resin composite 1 was photographed with an electron microscope (SEM), and the structure of the cross section of the joint surface was observed. From this observed image, the presence or absence of a filler inside the recess was determined. The presence or absence of a filler inside the recess was also confirmed from energy dispersive X-ray fluorescence analysis.
(線膨張係数αの測定)
 熱機械分析装置TMA(TAインスツルメント社製、EXSTAR6000)を用いて5℃/分の圧縮条件で、樹脂部材シートの25℃からガラス転移温度までの範囲における線膨張係数αを測定した。熱硬化性樹脂組成物(P1)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は15ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は2ppm/℃であった。
(Measurement of linear expansion coefficient α R )
Using a thermomechanical analyzer TMA (manufactured by TA Instruments, EXSTAR6000), the linear expansion coefficient α R in the range from 25 ° C. to the glass transition temperature of the resin member sheet was measured under compression conditions of 5 ° C./min. The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P1) was 15 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 2 ppm / ° C.
(曲げ強度保持率)
 得られた試験片1を350℃雰囲気中に100時間保管した。このとき、ステンレスシート1を上側に配置して保管した。
 保管前後の試験片の曲げ強度をJIS K 6911に準じて、25℃雰囲気下でそれぞれ測定し、曲げ強度保持率を算出した。このとき、ステンレスシート1を下側に配置して試験を行った。
(Bending strength retention)
The obtained test piece 1 was stored in a 350 ° C. atmosphere for 100 hours. At this time, the stainless steel sheet 1 was placed on the upper side and stored.
The bending strength of the test pieces before and after storage was measured in an atmosphere of 25 ° C. according to JIS K 6911, and the bending strength retention rate was calculated. At this time, the test was performed with the stainless steel sheet 1 placed on the lower side.
(ブレーキピストンの信頼性評価)
 まず、試験片1を作製するのと同様の条件で、図1に示すブレーキピストンを作製した。次いで、得られたブレーキピストンをキャリパーに収容し、350℃の熱板に金属部材を接触させたまま100時間保管した。その後、金属部材の剥離の有無を調べた。
 評価基準は以下の通りである。
〇:ピストン本体部と金属部材との間に剥離が見られなかった
×:ピストン本体部と金属部材との間に一部剥離が見られた、またはピストン本体部表面にフクレが見られた
(Reliability evaluation of brake piston)
First, a brake piston shown in FIG. 1 was produced under the same conditions as those for producing the test piece 1. Next, the obtained brake piston was housed in a caliper, and stored for 100 hours while the metal member was in contact with the hot plate at 350 ° C. Thereafter, the presence or absence of peeling of the metal member was examined.
The evaluation criteria are as follows.
◯: No separation was observed between the piston main body and the metal member. ×: Partial separation was observed between the piston main body and the metal member, or bulge was observed on the surface of the piston main body.
(実施例2)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P2)を使用した以外は実施例1と同様の方法により金属樹脂複合体2を作製した。この金属樹脂複合体2を試験片2とし、実施例1と同様の評価をおこなった。
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を20.0質量%、ヘキサメチレンテトラミンを3.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を1.5質量%、ワラストナイトA(NYCO Minerals社製、NYAD325、平均粒子径:10μm、平均長径:50μm)を55.0質量%、焼成クレー(イメリス社製、ポールスター501、平均粒子径:0.6μm)を17.5質量%、酸化マグネシウム(神島化学工業社製)を1.0質量%、潤滑剤等のその他の成分を2.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P2)を得た。
 熱硬化性樹脂組成物(P2)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は15ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は2ppm/℃であった。
(Example 2)
A metal resin composite 2 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P2) was used instead of the thermosetting resin composition (P1). This metal resin composite 2 was used as a test piece 2, and the same evaluation as in Example 1 was performed.
20.0% by mass of novolak-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 3.0% by mass of hexamethylenetetramine, glass fiber A (CS3E479, manufactured by Nittobo Co., Ltd., average particle size: 11 μm, average major axis) : 3 mm, average aspect ratio: 270) 1.5% by mass, Wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 μm, average major axis: 50 μm) 55.0% by mass, calcined clay (Imelice) 17.5% by mass, Pole Star 501, average particle diameter: 0.6 μm), 1.0% by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.), and 2.0% by mass of other components such as a lubricant. %, Each is dry-mixed, melted and kneaded with a heating roll at 90 ° C., crushed and cooled to a granular thermosetting resin It was obtained Narubutsu (P2).
The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P2) was 15 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 2 ppm / ° C.
(実施例3)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P3)を使用した以外は実施例1と同様の方法により金属樹脂複合体3を作製した。この金属樹脂複合体3を試験片3とし、実施例1と同様の評価をおこなった。
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を20.0質量%、ヘキサメチレンテトラミンを3.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を4.5質量%、ワラストナイトA(NYCO Minerals社製、NYAD325、平均粒子径:10μm、平均長径:50μm)を55.0質量%、焼成クレー(イメリス社製、ポールスター501、平均粒子径:0.6μm)を14.5質量%、酸化マグネシウム(神島化学工業社製)を1.0質量%、潤滑剤等のその他の成分を2.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P3)を得た。
 熱硬化性樹脂組成物(P3)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は16ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は1ppm/℃であった。
Example 3
A metal resin composite 3 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P3) was used instead of the thermosetting resin composition (P1). This metal resin composite 3 was used as a test piece 3 and evaluated in the same manner as in Example 1.
20.0% by mass of novolak-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 3.0% by mass of hexamethylenetetramine, glass fiber A (CS3E479, manufactured by Nittobo Co., Ltd., average particle size: 11 μm, average major axis) : 3 mm, average aspect ratio: 270) 4.5% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 μm, average major axis: 50 μm) 55.0% by mass, calcined clay (Imelice) 14.5% by mass, Pole Star 501, average particle size: 0.6 μm), 1.0% by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.), and 2.0% by mass of other components such as a lubricant %, Each is dry-mixed, melted and kneaded with a heating roll at 90 ° C., crushed and cooled to a granular thermosetting resin It was obtained Narubutsu (P3).
The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P3) was 16 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 1 ppm / ° C.
(実施例4)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P4)を使用した以外は実施例1と同様の方法により金属樹脂複合体4を作製した。この金属樹脂複合体4を試験片4とし、実施例1と同様の評価をおこなった。
 レゾール型フェノール樹脂(住友ベークライト社製、PR-513723)を20.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を20.0質量%、ワラストナイトA(NYCO Minerals社製、NYAD325、平均粒子径:10μm、平均長径:50μm)を40.0質量%、焼成クレー(イメリス社製、ポールスター501、平均粒子径:0.6μm)を15.0質量%、酸化マグネシウム(神島化学工業社製)を2.0質量%、潤滑剤等のその他の成分を3.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P4)を得た。
 熱硬化性樹脂組成物(P4)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は13ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は4ppm/℃であった。
Example 4
A metal resin composite 4 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P4) was used instead of the thermosetting resin composition (P1). This metal resin composite 4 was used as a test piece 4 and evaluated in the same manner as in Example 1.
Resol type phenol resin (Sumitomo Bakelite Co., Ltd., PR-513723) 20.0% by mass, glass fiber A (CS3E479, Nittobo Co., Ltd., average particle size: 11 μm, average major axis: 3 mm, average aspect ratio: 270) 20.0% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 μm, average major axis: 50 μm), 40.0% by mass, calcined clay (Imeris, Polestar 501, average particle size) : 0.6 μm) is 15.0% by mass, magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) is 2.0% by mass, and other components such as a lubricant are 3.0% by mass, each of which is dry-mixed. The mixture was melt-kneaded with a heating roll at 0 ° C., cooled into a sheet, and pulverized to obtain a granular thermosetting resin composition (P4).
The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P4) was 13 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 4 ppm / ° C.
(実施例5)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P5)を使用した以外は実施例1と同様の方法により金属樹脂複合体5を作製した。この金属樹脂複合体5を試験片5とし、実施例1と同様の評価をおこなった。
 レゾール型フェノール樹脂(住友ベークライト社製、PR-513723)を20.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を10.0質量%、ワラストナイトA(NYCO Minerals社製、NYAD325、平均粒子径:10μm、平均長径:50μm)を40.0質量%、焼成クレー(イメリス社製、ポールスター501、平均粒子径:0.6μm)を25.0質量%、酸化マグネシウム(神島化学工業社製)を2.0質量%、潤滑剤等のその他の成分を3.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P5)を得た。
 熱硬化性樹脂組成物(P5)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は12ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は5ppm/℃であった。
(Example 5)
A metal resin composite 5 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P5) was used instead of the thermosetting resin composition (P1). The metal resin composite 5 was used as a test piece 5 and the same evaluation as in Example 1 was performed.
Resol type phenol resin (Sumitomo Bakelite Co., Ltd., PR-513723) 20.0% by mass, glass fiber A (CS3E479, Nittobo Co., Ltd., average particle size: 11 μm, average major axis: 3 mm, average aspect ratio: 270) 10.0% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 μm, average major axis: 50 μm), 40.0% by mass, calcined clay (manufactured by Imeris, Polestar 501, average particle size) : 0.6 μm) is 25.0% by mass, magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.) is 2.0% by mass, and other components such as a lubricant are 3.0% by mass, each of which is dry-mixed. The mixture was melt-kneaded with a heating roll at 0 ° C., cooled into a sheet, and pulverized to obtain a granular thermosetting resin composition (P5).
The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P5) was 12 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 5 ppm / ° C.
(実施例6)
 ステンレスシート1の代わりに、以下のステンレスシート2を使用した以外は実施例1と同様の方法により金属樹脂複合体6を作製した。この金属樹脂複合体6を試験片6とし、実施例1と同様の評価をおこなった。
 硫酸(50質量%)、硫酸第二銅5水和物(3質量%)、塩化カリウム(3質量%)、チオサリチル酸(0.0001質量%)の水溶液を調製した。そして、得られた水溶液(30℃)中に、ステンレスシートAを浸漬して揺動させ、深さ方向に30μm(ステンレスの減少した重量から算出)溶解させた。次いで、水洗、乾燥し、ステンレスシート2を得た。
 ステンレスシート2の特性は以下のとおりであった。
 Ra:2.8μm
 Rz:28.0μm
 比表面積:280
 光沢度:8
 粗化層の厚み:30μm
 凹部の平均深さ:28μm
 開口部の平均断面幅:5μm
 線膨張係数α:17ppm/℃
 また、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていた。
(Example 6)
A metal resin composite 6 was prepared in the same manner as in Example 1 except that the following stainless steel sheet 2 was used instead of the stainless steel sheet 1. This metal resin composite 6 was used as a test piece 6 and evaluated in the same manner as in Example 1.
An aqueous solution of sulfuric acid (50 mass%), cupric sulfate pentahydrate (3 mass%), potassium chloride (3 mass%), and thiosalicylic acid (0.0001 mass%) was prepared. And in the obtained aqueous solution (30 degreeC), the stainless steel sheet A was immersed and rock | fluctuated, and 30 micrometers (calculated from the weight which stainless steel decreased) was dissolved in the depth direction. Subsequently, it washed with water and dried and the stainless steel sheet 2 was obtained.
The characteristics of the stainless steel sheet 2 were as follows.
Ra: 2.8 μm
Rz: 28.0 μm
Specific surface area: 280
Glossiness: 8
Roughening layer thickness: 30 μm
Average depth of recess: 28 μm
Average cross-sectional width of the opening: 5 μm
Linear expansion coefficient α M : 17 ppm / ° C.
In addition, the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
(実施例7)
 ステンレスシート1の代わりに、以下のステンレスシート3を使用した以外は実施例1と同様の方法により金属樹脂複合体7を作製した。この金属樹脂複合体7を試験片7とし、実施例1と同様の評価をおこなった。
 硫酸(50質量%)、硫酸第二銅5水和物(3質量%)、塩化カリウム(3質量%)、チオサリチル酸(0.0001質量%)の水溶液を調製した。そして、得られた水溶液(30℃)中に、ステンレスシートAを浸漬して揺動させ、深さ方向に4μm(ステンレスの減少した重量から算出)溶解させた。次いで、水洗、乾燥し、ステンレスシート3を得た。
 ステンレスシート3の特性は以下のとおりであった。
 Ra:1.1μm
 Rz:4.0μm
 比表面積:165
 光沢度:13
 粗化層の厚み:4μm
 凹部の平均深さ:4μm
 開口部の平均断面幅:3μm
 線膨張係数α:17ppm/℃
 また、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていた。
(Example 7)
A metal resin composite 7 was prepared in the same manner as in Example 1 except that the following stainless steel sheet 3 was used instead of the stainless steel sheet 1. The metal resin composite 7 was used as a test piece 7, and the same evaluation as in Example 1 was performed.
An aqueous solution of sulfuric acid (50 mass%), cupric sulfate pentahydrate (3 mass%), potassium chloride (3 mass%), and thiosalicylic acid (0.0001 mass%) was prepared. And in the obtained aqueous solution (30 degreeC), the stainless steel sheet A was immersed and rock | fluctuated, and was dissolved 4 micrometers (calculated from the weight which stainless steel decreased) in the depth direction. Subsequently, it washed with water and dried and the stainless steel sheet 3 was obtained.
The characteristics of the stainless steel sheet 3 were as follows.
Ra: 1.1 μm
Rz: 4.0 μm
Specific surface area: 165
Glossiness: 13
Roughening layer thickness: 4 μm
Average depth of recess: 4 μm
Average cross-sectional width of the opening: 3 μm
Linear expansion coefficient α M : 17 ppm / ° C.
In addition, the cross section of the concave portion has a shape having a cross sectional width larger than the cross sectional width of the opening portion at least at a part between the opening portion and the bottom portion of the concave portion.
(実施例8)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P6)を使用した以外は実施例1と同様の方法により金属樹脂複合体8を作製した。この金属樹脂複合体8を試験片8とし、実施例1と同様の評価をおこなった。
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を20.0質量%、ヘキサメチレンテトラミンを3.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を3.0質量%、ワラストナイトB(NYCO Minerals社製、NYAD5000、平均粒子径:3μm、平均長径:9μm、平均アスペクト比:3)を55.0質量%、焼成クレー(イメリス社製、ポールスター501、平均粒子径:0.6μm)を16.0質量%、酸化マグネシウム(神島化学工業社製)を1.0質量%、潤滑剤等のその他の成分を2.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P6)を得た。
 熱硬化性樹脂組成物(P6)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は14ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は3ppm/℃であった。
(Example 8)
A metal resin composite 8 was produced in the same manner as in Example 1 except that the following thermosetting resin composition (P6) was used instead of the thermosetting resin composition (P1). This metal resin composite 8 was used as a test piece 8, and the same evaluation as in Example 1 was performed.
20.0% by mass of novolak-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 3.0% by mass of hexamethylenetetramine, glass fiber A (CS3E479, manufactured by Nittobo Co., Ltd., average particle size: 11 μm, average major axis) : 3 mm, average aspect ratio: 270) 3.0% by mass, Wollastonite B (manufactured by NYCO Minerals, NYAD5000, average particle size: 3 μm, average major axis: 9 μm, average aspect ratio: 3) 55.0 mass %, 16.0% by mass of calcined clay (Imeris, Polestar 501, average particle size: 0.6 μm), 1.0% by mass of magnesium oxide (manufactured by Kamishima Chemical Co., Ltd.), other lubricants, etc. 2.0% by mass of the components were each dry-mixed, melted and kneaded with a heating roll at 90 ° C., cooled into a sheet, and pulverized The thermosetting resin composition of granulated (P6) was obtained.
The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P6) was 14 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 3 ppm / ° C.
(実施例9)
 熱硬化性樹脂組成物(P1)の代わりに、以下の熱硬化性樹脂組成物(P7)を使用した以外は実施例1と同様の方法により金属樹脂複合体9を作製した。この金属樹脂複合体9を試験片9とし、実施例1と同様の評価をおこなった。
 ノボラック型フェノール樹脂(PR-51305、住友ベークライト社製)を20.0質量%、ヘキサメチレンテトラミンを3.0質量%、ガラス繊維A(CS3E479、日東紡社製、平均粒子径:11μm、平均長径:3mm、平均アスペクト比:270)を3.0質量%、ワラストナイトA(NYCO Minerals社製、NYAD325、平均粒子径:10μm、平均長径:50μm)を71.0質量%、酸化マグネシウム(神島化学工業社製)を1.0質量%、潤滑剤等のその他の成分を2.0質量%、それぞれ乾式混合し、これを90℃の加熱ロールで溶融混練して、シート状にして冷却したものを粉砕して顆粒状の熱硬化性樹脂組成物(P7)を得た。
 熱硬化性樹脂組成物(P7)からなる厚み3mmの樹脂部材シートの線膨張係数αの平均値は15ppm/℃であった。よって、線膨張係数の差(α-α)の絶対値は2ppm/℃であった。
Example 9
A metal resin composite 9 was prepared in the same manner as in Example 1 except that the following thermosetting resin composition (P7) was used instead of the thermosetting resin composition (P1). This metal resin composite 9 was used as a test piece 9, and the same evaluation as in Example 1 was performed.
20.0% by mass of novolak-type phenolic resin (PR-51305, manufactured by Sumitomo Bakelite Co., Ltd.), 3.0% by mass of hexamethylenetetramine, glass fiber A (CS3E479, manufactured by Nittobo Co., Ltd., average particle size: 11 μm, average major axis) : 3 mm, average aspect ratio: 270) 3.0% by mass, wollastonite A (manufactured by NYCO Minerals, NYAD325, average particle size: 10 μm, average major axis: 50 μm) 71.0% by mass, magnesium oxide (Kanjima) (Chemical Industry Co., Ltd.) 1.0% by mass and other components such as a lubricant 2.0% by mass, respectively, were dry-mixed, melted and kneaded with a heating roll at 90 ° C., and cooled into a sheet. The product was pulverized to obtain a granular thermosetting resin composition (P7).
The average value of the linear expansion coefficient α R of the resin member sheet having a thickness of 3 mm made of the thermosetting resin composition (P7) was 15 ppm / ° C. Therefore, the absolute value of the difference in linear expansion coefficient (α R −α M ) was 2 ppm / ° C.
(比較例1)
 ステンレスシート1の代わりに、実施例1で使用した表面処理がされていないステンレスシートAを使用した以外は実施例8と同様の方法により金属樹脂複合体10を作製した。この金属樹脂複合体10を試験片10とし、実施例1と同様の評価をおこなった。
 ステンレスシートAの特性は以下のとおりであった。
 Ra:0.5μm
 Rz:0.7μm
 比表面積:50
 光沢度:260
 線膨張係数α:17ppm/℃
 また、凹部の断面は、凹部の開口部から底部までの間の少なくとも一部に開口部の断面幅よりも大きい断面幅を有する形状になっていなかった。
(Comparative Example 1)
Instead of the stainless steel sheet 1, a metal resin composite 10 was produced in the same manner as in the eighth example except that the stainless steel sheet A that was not subjected to the surface treatment used in the first example was used. This metal resin composite 10 was used as a test piece 10 and evaluated in the same manner as in Example 1.
The characteristics of the stainless steel sheet A were as follows.
Ra: 0.5 μm
Rz: 0.7 μm
Specific surface area: 50
Glossiness: 260
Linear expansion coefficient α M : 17 ppm / ° C.
Further, the cross section of the concave portion was not in a shape having a cross sectional width larger than the cross sectional width of the opening portion in at least a part between the opening portion and the bottom portion of the concave portion.
 (比較例2)
 ステンレスシート1を使用しない以外は実施例8と同様の方法により樹脂部材11を作製した。この樹脂部材11を試験片11とし、実施例1と同様の評価をおこなった。
(Comparative Example 2)
A resin member 11 was produced in the same manner as in Example 8 except that the stainless steel sheet 1 was not used. This resin member 11 was used as a test piece 11 and the same evaluation as in Example 1 was performed.
 以上の配合比率および評価結果を表1および表2に示す。なお、実施例1で作製したブレーキピストンから切り出した試験片を用いて、樹脂部材、金属部材および金属樹脂複合体に関する上述の各評価を行っても、試験片1と同様の評価結果が得られることは理解される。また、ブレーキピストンから切り出した試験片の形状が、試験片1とは異なる形状であっても、必要に応じ換算して、同様の評価結果が得られることは理解される。実施例2~9および比較例1~2においても同様である。 Table 1 and Table 2 show the above blending ratios and evaluation results. In addition, even if it performs each above-mentioned evaluation regarding a resin member, a metal member, and a metal resin composite using the test piece cut out from the brake piston produced in Example 1, the same evaluation result as the test piece 1 is obtained. It is understood. Moreover, even if the shape of the test piece cut out from the brake piston is different from the shape of the test piece 1, it is understood that the same evaluation result can be obtained by converting as necessary. The same applies to Examples 2 to 9 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~9で得られた金属樹脂複合体1~9は、曲げ強度保持率に優れていた。このような金属樹脂複合体1~9と同条件で作製したブレーキピストンは、その金属部材を350℃の熱板に接触させたまま100時間保管しても、いずれもピストン本体部と金属部材との間に剥離が見られなかった。
 また、実施例1~9のブレーキピストンは、金属樹脂複合体からなるため、同種の金属のみからなるブレーキピストンに比べて軽量であった。
 以上から、実施例1~9のブレーキピストンは、軽量性と信頼性との性能バランスに優れていた。
 これに対し、比較例1で得られた金属樹脂複合体10、比較例2で得られた樹脂部材11は、いずれも曲げ強度保持率に劣っていた。金属樹脂複合体10と同条件で作製したブレーキピストンは、その金属部材を350℃の熱板に接触させたまま100時間保管すると、ピストン本体部と金属部材との間に剥離が見られた。また、樹脂部材11と同条件で作製したブレーキピストンは350℃の熱板に接触させたまま100時間保管すると、表面にフクレが発生した。すなわち、比較例1~2のブレーキピストンは、軽量性と信頼性との性能バランスに劣っていた。
The metal resin composites 1 to 9 obtained in Examples 1 to 9 were excellent in bending strength retention. Even if the brake piston manufactured under the same conditions as those of the metal resin composites 1 to 9 is stored for 100 hours while the metal member is kept in contact with the hot plate at 350 ° C., both the piston main body and the metal member No peeling was observed during the period.
Further, since the brake pistons of Examples 1 to 9 were made of a metal resin composite, they were lighter than brake pistons made of only the same kind of metal.
From the above, the brake pistons of Examples 1 to 9 were excellent in performance balance between light weight and reliability.
On the other hand, the metal resin composite 10 obtained in Comparative Example 1 and the resin member 11 obtained in Comparative Example 2 were both inferior in bending strength retention. When the brake piston produced under the same conditions as the metal resin composite 10 was stored for 100 hours while the metal member was kept in contact with the hot plate at 350 ° C., peeling was observed between the piston body and the metal member. Further, when the brake piston manufactured under the same condition as the resin member 11 was stored for 100 hours while being in contact with a hot plate at 350 ° C., blisters were generated on the surface. That is, the brake pistons of Comparative Examples 1 and 2 were inferior in the performance balance between lightness and reliability.
 この出願は、2014年4月16日に出願された日本出願特願2014-084268号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-084268 filed on April 16, 2014, the entire disclosure of which is incorporated herein.

Claims (17)

  1.  ディスクブレーキに用いられるブレーキピストンであって、
     開口部を有し、かつ、樹脂部材からなるピストン本体部と、
     前記ピストン本体部の前記開口部の側端面を覆うように設けられた金属部材と、を備え、
     前記ピストン本体部における前記開口部の側端面と前記金属部材とが接合されており、
     前記金属部材は少なくとも前記ピストン本体部と接合する接合面に微細な凹凸からなる粗化層を有しており、
     前記粗化層の前記凹凸を構成する凹部の内部に前記樹脂部材の一部が存在することにより、前記ピストン本体部における前記開口部の側端面と前記金属部材とが接合されているブレーキピストン。
    A brake piston used for a disc brake,
    A piston body having an opening and made of a resin member;
    A metal member provided so as to cover a side end surface of the opening of the piston main body,
    The side end surface of the opening in the piston main body and the metal member are joined,
    The metal member has a roughened layer composed of fine irregularities on at least a joint surface to be joined to the piston main body part,
    The brake piston in which the side end face of the opening in the piston main body and the metal member are joined by the presence of a part of the resin member inside the concave portion constituting the irregularity of the roughened layer.
  2.  請求項1に記載のブレーキピストンにおいて、
     前記凹部の断面形状は、前記凹部の開口部から底部までの間の少なくとも一部に前記開口部の断面幅よりも大きい断面幅を有する形状となっているブレーキピストン。
    The brake piston according to claim 1,
    The brake piston has a cross-sectional shape in which the cross-sectional shape of the concave portion has a cross-sectional width larger than the cross-sectional width of the opening portion in at least a part between the opening portion and the bottom portion of the concave portion.
  3.  請求項1または2に記載のブレーキピストンにおいて、
     前記粗化層の厚みが3μm以上40μm以下の範囲内であるブレーキピストン。
    The brake piston according to claim 1 or 2,
    The brake piston, wherein the roughened layer has a thickness in the range of 3 µm to 40 µm.
  4.  請求項1乃至3いずれか一項に記載のブレーキピストンにおいて、
     前記金属部材の前記ピストン本体部と接合する前記接合面のASTM-D523に準拠して測定した測定角度60°の光沢度が0.1以上30以下であるブレーキピストン。
    The brake piston according to any one of claims 1 to 3,
    A brake piston having a gloss of 0.1 to 30 at a measurement angle of 60 ° measured in accordance with ASTM-D523 of the joint surface of the metal member joined to the piston main body.
  5.  請求項1乃至4いずれか一項に記載のブレーキピストンにおいて、
     前記金属部材の前記ピストン本体部と接合する前記接合面の見掛け表面積に対する窒素吸着BET法による実表面積の比が100以上400以下であるブレーキピストン。
    The brake piston according to any one of claims 1 to 4,
    A brake piston, wherein a ratio of an actual surface area according to a nitrogen adsorption BET method to an apparent surface area of the joint surface joined to the piston main body portion of the metal member is 100 or more and 400 or less.
  6.  請求項1乃至5いずれか一項に記載のブレーキピストンにおいて、
     前記樹脂部材は熱硬化性樹脂と充填材とを含む熱硬化性樹脂組成物からなるブレーキピストン。
    The brake piston according to any one of claims 1 to 5,
    The brake member is a brake piston made of a thermosetting resin composition including a thermosetting resin and a filler.
  7.  請求項6に記載のブレーキピストンにおいて、
     前記粗化層の前記凹凸を構成する凹部の内部に前記充填材の一部が存在しているブレーキピストン。
    The brake piston according to claim 6,
    A brake piston in which a part of the filler is present inside a recess that constitutes the unevenness of the roughened layer.
  8.  請求項7に記載のブレーキピストンにおいて、
     前記凹部の内部に存在する前記充填材がワラストナイト、カオリンクレー、タルク、炭酸カルシウム、酸化亜鉛、ケイ酸カルシウム水和物、ホウ酸アルミニウムウイスカー、およびチタン酸カリウム繊維からなる群から選ばれる一種または二種以上であるブレーキピストン。
    The brake piston according to claim 7,
    The filler present inside the recess is a kind selected from the group consisting of wollastonite, kaolin clay, talc, calcium carbonate, zinc oxide, calcium silicate hydrate, aluminum borate whisker, and potassium titanate fiber Or two or more brake pistons.
  9.  請求項6乃至8いずれか一項に記載のブレーキピストンにおいて、
     前記熱硬化性樹脂はフェノール樹脂であるブレーキピストン。
    The brake piston according to any one of claims 6 to 8,
    The brake piston, wherein the thermosetting resin is a phenol resin.
  10.  請求項1乃至9いずれか一項に記載のブレーキピストンにおいて、
     前記ピストン本体部における前記開口部の前記側端面と前記金属部材とが、接着剤を介在することなく接合されているブレーキピストン。
    The brake piston according to any one of claims 1 to 9,
    A brake piston in which the side end face of the opening in the piston main body and the metal member are joined without an adhesive.
  11.  請求項1乃至10いずれか一項に記載のブレーキピストンにおいて、
     前記金属部材は、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅および銅合金からなる群から選ばれる一種または二種以上の金属材料により形成されたものであるブレーキピストン。
    The brake piston according to any one of claims 1 to 10,
    The metal member is a brake piston formed of one or more metal materials selected from the group consisting of iron, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper and copper alloy.
  12.  請求項1乃至11いずれか一項に記載のブレーキピストンを備えるディスクブレーキ。 A disc brake comprising the brake piston according to any one of claims 1 to 11.
  13.  請求項1乃至11いずれか一項に記載のブレーキピストンを製造するための製造方法であって、
     金属部材および金型を準備する工程と、
     前記金型の成形空間内に前記金属部材を配置する工程と、
     熱硬化性樹脂を含む熱硬化性樹脂組成物で前記成形空間内を充填する工程と、
     前記熱硬化性樹脂組成物の少なくとも一部が前記金属部材に接触した状態で前記熱硬化性樹脂組成物を硬化することにより、前記熱硬化性樹脂組成物からなる前記樹脂部材と前記金属部材とを接合させてブレーキピストンを得る工程と、
    を含む、ブレーキピストンの製造方法。
    A manufacturing method for manufacturing the brake piston according to any one of claims 1 to 11,
    Preparing a metal member and a mold;
    Disposing the metal member in a molding space of the mold; and
    Filling the molding space with a thermosetting resin composition containing a thermosetting resin;
    The resin member made of the thermosetting resin composition and the metal member by curing the thermosetting resin composition in a state where at least a part of the thermosetting resin composition is in contact with the metal member. To obtain a brake piston,
    A method for manufacturing a brake piston.
  14.  請求項13に記載のブレーキピストンの製造方法において、
     前記金属部材および金型を準備する工程では、
     前記金属部材の表面のうち、少なくとも前記樹脂部材と接合させる部分が粗化処理された前記金属部材を準備する、ブレーキピストンの製造方法。
    The method of manufacturing a brake piston according to claim 13,
    In the step of preparing the metal member and the mold,
    A method for manufacturing a brake piston, comprising preparing the metal member having a roughened surface of at least a portion to be joined to the resin member of the surface of the metal member.
  15.  請求項13または14に記載のブレーキピストンの製造方法において、
     前記充填する工程において、前記熱硬化性樹脂組成物の流動圧力により、前記金属部材を前記金型の成形面に押しつけながら前記成形空間を前記熱硬化性樹脂組成物で充填する、ブレーキピストンの製造方法。
    In the manufacturing method of the brake piston according to claim 13 or 14,
    In the filling step, the brake piston is manufactured by filling the molding space with the thermosetting resin composition while pressing the metal member against the molding surface of the mold by the flow pressure of the thermosetting resin composition. Method.
  16.  請求項1乃至11いずれか一項に記載のブレーキピストンを構成する前記樹脂部材を形成するために用いられる熱硬化性樹脂組成物であって、
     熱硬化性樹脂と、充填材とを含む熱硬化性樹脂組成物。
    A thermosetting resin composition used for forming the resin member constituting the brake piston according to any one of claims 1 to 11,
    A thermosetting resin composition comprising a thermosetting resin and a filler.
  17.  請求項16に記載の熱硬化性樹脂組成物において、
     前記熱硬化性樹脂はフェノール樹脂である、熱硬化性樹脂組成物。
    In the thermosetting resin composition according to claim 16,
    The thermosetting resin composition, wherein the thermosetting resin is a phenol resin.
PCT/JP2015/058238 2014-04-16 2015-03-19 Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition WO2015159642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084268A JP2015203473A (en) 2014-04-16 2014-04-16 Brake piston, disc brake, method of manufacturing brake piston, and thermosetting resin composition
JP2014-084268 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159642A1 true WO2015159642A1 (en) 2015-10-22

Family

ID=54323856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058238 WO2015159642A1 (en) 2014-04-16 2015-03-19 Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition

Country Status (3)

Country Link
JP (1) JP2015203473A (en)
TW (1) TW201600757A (en)
WO (1) WO2015159642A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862473B2 (en) 2016-12-13 2021-04-21 大塚化学株式会社 Manufacturing method of potassium titanate powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401596B1 (en) * 2000-09-01 2002-06-11 Court Holdings Limited Metallic cap for molded plastic disc brake pistons
JP2010100740A (en) * 2008-10-24 2010-05-06 Sumitomo Bakelite Co Ltd Phenolic resin-molding material and brake piston
JP2011121306A (en) * 2009-12-11 2011-06-23 Nippon Light Metal Co Ltd Aluminum and resin composite article excellent in weatherability, and method for manufacturing same
JP2012255513A (en) * 2011-06-10 2012-12-27 Fts:Kk Structure for joining metal member to synthetic resin
JP2013071312A (en) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd Composite molding body of metal member and molded resin member, and surface processing method of metal member
WO2013077277A1 (en) * 2011-11-21 2013-05-30 株式会社ダイセル Composite molding manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401596B1 (en) * 2000-09-01 2002-06-11 Court Holdings Limited Metallic cap for molded plastic disc brake pistons
JP2010100740A (en) * 2008-10-24 2010-05-06 Sumitomo Bakelite Co Ltd Phenolic resin-molding material and brake piston
JP2011121306A (en) * 2009-12-11 2011-06-23 Nippon Light Metal Co Ltd Aluminum and resin composite article excellent in weatherability, and method for manufacturing same
JP2012255513A (en) * 2011-06-10 2012-12-27 Fts:Kk Structure for joining metal member to synthetic resin
JP2013071312A (en) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd Composite molding body of metal member and molded resin member, and surface processing method of metal member
WO2013077277A1 (en) * 2011-11-21 2013-05-30 株式会社ダイセル Composite molding manufacturing method

Also Published As

Publication number Publication date
TW201600757A (en) 2016-01-01
JP2015203473A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
JP6512105B2 (en) Metal resin composite
JP5874841B2 (en) Metal resin composite and method for producing metal resin composite
JP6651853B2 (en) Thermosetting resin composition and metal resin composite
EP2910372B1 (en) Metal-resin composite, and method for producing same
JP6627270B2 (en) Commutator
JP6398280B2 (en) gear
JP6468197B2 (en) Thermosetting resin composition and metal resin composite
WO2015159713A1 (en) Compressor, compressor chassis, compressor chassis manufacturing method
WO2015087722A1 (en) Metal-resin composite body
TW201607408A (en) Power converter casing, thermosetting resin composition, and power converter
WO2015159642A1 (en) Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition
WO2015159715A1 (en) Pump and resin composition
EP3351819B1 (en) Friction material
JP2017005870A (en) Motor housing and manufacturing method therefor
JP2017003000A (en) Rotor for brake
JP2015214595A (en) Phenolic resin composition and metal-resin integrated molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780089

Country of ref document: EP

Kind code of ref document: A1