WO2013077277A1 - Composite molding manufacturing method - Google Patents

Composite molding manufacturing method Download PDF

Info

Publication number
WO2013077277A1
WO2013077277A1 PCT/JP2012/079883 JP2012079883W WO2013077277A1 WO 2013077277 A1 WO2013077277 A1 WO 2013077277A1 JP 2012079883 W JP2012079883 W JP 2012079883W WO 2013077277 A1 WO2013077277 A1 WO 2013077277A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
laser
metal
producing
resin
Prior art date
Application number
PCT/JP2012/079883
Other languages
French (fr)
Japanese (ja)
Inventor
奥村有道
朝見芳弘
北川友紀
Original Assignee
株式会社ダイセル
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, ダイセルポリマー株式会社 filed Critical 株式会社ダイセル
Priority to CN201280057291.7A priority Critical patent/CN103946005A/en
Priority to KR1020147014049A priority patent/KR20140095514A/en
Publication of WO2013077277A1 publication Critical patent/WO2013077277A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • B29C2045/14327Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles anchoring by forcing the material to pass through a hole in the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts

Definitions

  • the present invention relates to a method for producing a composite molded body comprising a metal molded body and a resin molded body.
  • Japanese Patent No. 4020957 discloses a metal surface for bonding with a dissimilar material (resin) including a step of laser scanning in one scanning direction and a step of laser scanning in a scanning direction crossing the metal surface. The invention of the laser processing method is described.
  • Japanese Patent Application Laid-Open No. 2010-167475 discloses an invention of a laser processing method in which laser scanning is performed in a superposed manner a plurality of times in the invention of Japanese Patent No. 4020957.
  • Japanese Patent No. 4020957 and Japanese Patent Application Laid-Open No. 2010-167475 need to be laser-scanned in two crossing directions, so there is room for improvement in that the processing time is too long. . Furthermore, since sufficient surface roughening treatment can be performed by laser scanning in the cross direction, it is considered that the bonding strength can be increased, but the surface roughness state is not uniform, and the directionality of the strength of the bonded portion between the metal and the resin There is a problem that may not be stable.
  • the joint surface has a complicated shape or a shape including a narrow portion (for example, a star shape, a triangle, or a dumbbell type)
  • the surface is partially roughened by the laser scanning method in the cross direction. As a result of non-uniformity, it may be considered that sufficient bonding strength cannot be obtained.
  • Japanese Patent Application Laid-Open No. 10-294024 describes a method of manufacturing an electrical / electronic component in which a metal surface is irradiated with a laser beam to form irregularities, and a resin, rubber, or the like is injection-molded on the irregularity formation site.
  • a metal surface is irradiated with a laser beam to form irregularities
  • a resin, rubber, or the like is injection-molded on the irregularity formation site.
  • the surface of a long metal coil is irradiated with a laser to form irregularities.
  • the surface of the long metal coil is roughened in a striped or satin shape.
  • paragraph No. 19 the surface of the long metal coil is roughened in a stripe, dotted, wavy, knurled, or satin. It is described.
  • the purpose of laser irradiation is to form fine irregular irregularities on the metal surface, thereby enhancing the anchor effect.
  • the object to be processed is a long metal coil, it is considered that any irregularities are inevitably formed into fine irregular irregularities. Therefore, the invention of Japanese Patent Laid-Open No. 10-294024 is the same technology as the invention of forming fine irregularities on the surface by laser irradiation in the cross direction as in the inventions of Japanese Patent Nos. 4020957 and 2010-167475. Disclosing the ideal idea. Summary of the Invention
  • the present invention provides a composite molded body that can increase the bonding strength between a metal molded body and a resin molded body while reducing the laser irradiation area on the bonding surface of the metal molded body and suppressing the degree of surface roughening. It is an object to provide a manufacturing method.
  • the present invention A step of irradiating a laser so as to form a plurality of independent dots in the shape of a joint on the metal molded body,
  • a method for producing a composite molded body comprising a step of placing a portion including a joining surface of a metal molded body in which a plurality of independent dots are formed in a mold, and insert molding a resin to be the resin molded body.
  • the ratio (dep / D) of the opening diameter (D) of the hole to the depth (dep) of the hole is in the range of 1.0 to 10.
  • a method for producing a composite molded body is provided.
  • the present invention provides other means for solving the problems, A step of irradiating a laser so that a groove composed of a plurality of holes is formed on the joint surface of the metal molded body, A method for producing a composite molded body comprising a step of placing a portion including a joining surface of a metal molded body in which the groove is formed in a mold, and insert molding a resin to be the resin molded body, When forming the groove in the laser irradiation process, a ratio (dep / W) of the groove width (W) to the groove depth (dep) is in the range of 1.0 to 10. A method for producing a molded body is provided.
  • the present invention provides a further solution to the problem, A step of irradiating a laser so as to form a plurality of independent protrusions on the joint surface of the metal molded body, A method for producing a composite molded body comprising a step of placing a portion including a joint surface of a metal molded body in which the plurality of convex portions are formed in a mold, and insert molding a resin to be the resin molded body, When forming independent protrusions in the laser irradiation process, the ratio (h / Dis) between the distance (Dis) between adjacent protrusions and the height (h) of the protrusions is in the range of 1.0 to 10. Provided is a method for producing a composite molded body.
  • FIG. 1 is a plan view for explaining a method of forming independent dots in the laser irradiation step of the present invention.
  • FIG. 2 is a cross-sectional view in the thickness direction of a metal molded body including dot-like independent holes in the laser irradiation step of the present invention.
  • FIG. 3A is a plan view for explaining the groove forming method in the laser irradiation step of the present invention, and FIG. 3B is a groove forming method having a laser irradiation pitch different from that in FIG. It is a top view for demonstrating.
  • FIG. 4A is a plan view of a groove in the laser irradiation step of the present invention, and FIG.
  • FIG. 4B is a cross-sectional view in the thickness direction of a metal molded body including the groove of FIG. 5 is a plan view for explaining a method of forming a convex portion in the laser irradiation step of the present invention.
  • 6A is a cross-sectional view in the width direction of the convex portion formed in FIG. 5, and FIG. 6B is a cross-sectional view in the width direction of another embodiment.
  • FIG. 7 is an explanatory diagram of a method of irradiating a metal molded body with a laser in the example.
  • FIG. 8 is an explanatory diagram of a laser irradiation method for the metal molded body shown in FIG. FIG.
  • FIG. 10 is a view showing a micrograph (450 ⁇ ) of the surface of the metal molded body after laser scanning in Example 4.
  • FIG. 11 is a view showing a scanning electron micrograph (50 ⁇ ) of a cross section of a metal molded body after laser scanning in Example 4.
  • 10 is a metal molded body
  • 11 is a hole
  • 21-28 is a hole
  • 30 is a groove
  • 41 is a convex part.
  • the method for producing the composite molded body of the present invention is based on the difference in the laser irradiation process on the surface of the metal molded body,
  • the laser irradiation step in the first manufacturing method is a step of performing laser irradiation so as to form a large number of dot-like independent holes on the surface of the metal molded body 10 to be a joint surface with the resin molded body.
  • a large number of independent holes 11 (11a, 11b, 11c, etc.) are formed as shown in FIG.
  • a large number of dot-like independent holes 11 are formed at a predetermined interval (pitch) as shown in FIG.
  • the pitches P1, P2,... Between the numerous dot-like independent holes 11 (11a, 11b, 11c...) are preferably 30 to 300 ⁇ m in order to increase the bonding strength with the resin molding, It is preferable that it is 150 micrometers.
  • the distance between the pitches P1 and P2 is the distance between the center points of the adjacent holes 11a and 11b and the holes 11b and 11c.
  • the distances between the pitches P1 and P2 are preferably set to be the same, but can be partially different. For example, when laser scanning is performed on a square surface, a uniform pitch is used when forming dot-shaped holes along each side, and a narrow pitch is used when laser irradiation is performed along corners. be able to.
  • a large number of dot-like independent holes 11 have a cross-sectional shape as shown in FIGS. 2 (a) to 2 (d), for example.
  • One hole 11 has a ratio (dep / D) of a hole opening diameter (D) to a hole depth (dep) in the range of 1.0 to 10, preferably 1.2 to 8. 0.0, more preferably in the range of 1.5 to 5.0.
  • the opening diameter (D) of the hole 11 is preferably 30 to 200 ⁇ m, more preferably 50 to 150 ⁇ m.
  • the depth (dep) of the hole 11 is preferably adjusted to be within 50% of the thickness of the metal molded body 10 in order to maintain the strength of the metal molded body 10.
  • one hole 11 (11a to 11c) as shown in FIGS. 1 and 2 is formed in the laser irradiation step
  • 1 to 400 shots of pulsed laser may be irradiated to form one independent hole 11. It is preferable to irradiate 1 to 200 shots of a pulse laser.
  • the opening part diameter (D) of the hole 11 can also be expanded by irradiating, shifting a laser irradiation position.
  • the beam diameter of the laser to be irradiated may be the same, or for each shot or multiple times It may be different for each shot.
  • irradiation is performed with the same laser beam diameter.
  • the laser beam diameter is gradually reduced for irradiation.
  • it can be obtained by changing the irradiation angle of the laser beam.
  • irradiation is first performed with a beam having the same diameter, and then irradiation with a beam having a smaller diameter.
  • laser irradiation is performed so as to form a large number of dot-shaped independent holes on the joint surface of the metal molded body.
  • a straight line dotted line
  • a curved line curved line
  • Marking can be performed by forming a figure or the like consisting of a curve.
  • laser irradiation is applied to the end face of a round bar with a circular cross section (joint surface of a metal molded body)
  • laser irradiation is performed to form a plurality of concentric circles having different diameters, or laser irradiation is performed to form a spiral. It is possible to irradiate a laser beam in the shape of many polka dots.
  • laser irradiation can be performed in the same manner as in the circular shape described above, depending on the shape (triangle, square, hexagon, ellipse, indeterminate shape, etc.) of the joint surface of the metal molded body.
  • the metal molded body to which the laser irradiation step is applied is not particularly limited, and a molded body made of a known metal can be appropriately selected according to the application.
  • the molded object chosen from iron, various stainless steel, aluminum or its alloy, copper, magnesium, and an alloy containing them can be mentioned.
  • a known laser can be used in the laser irradiation step of the first production method, for example, YAG laser, semiconductor laser, glass laser, ruby laser, He—Ne laser, nitrogen laser, chelate laser, and dye laser are used. be able to.
  • the insert molding method is not particularly limited, and a method of injecting a molten thermoplastic resin, thermoplastic elastomer or thermosetting resin (prepolymer) into a mold, and heating and pressing a metal molded body and a resin molded body. It is possible to apply a method or the like. When a thermosetting resin (prepolymer) is used, post-curing treatment is performed.
  • the thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application.
  • polyamide-based resins aliphatic polyamides such as PA6 and PA66, aromatic polyamides
  • copolymers containing styrene units such as polystyrene, ABS resin, AS resin, polyethylene, copolymers containing ethylene units, polypropylene, propylene
  • thermosetting resin can be appropriately selected from known thermosetting resins depending on the application.
  • urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned.
  • thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers according to the application. Examples thereof include styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers.
  • thermoplastic resins, thermosetting resins, and thermoplastic elastomers can be blended with known fibrous fillers.
  • known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers. Carbon fibers are well known, and PAN-based, pitch-based, rayon-based, etc. can be used, but PAN-based and pitch-based ones are preferred.
  • the inorganic fiber include glass fiber, basalt fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, and silicon nitride fiber, and glass fiber is preferable.
  • the metal fiber include fibers made of stainless steel, aluminum, copper, and the like, and stainless steel fibers are preferable.
  • Organic fibers include polyamide fibers (fully aromatic polyamide fibers, semi-aromatic polyamide fibers in which either diamine or dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyimide fiber, liquid crystal polyester fiber, polyphenylene sulfide fiber, cellulose fiber, and regenerated cellulose fiber can be used. More preferred are wholly aromatic polyamide fibers (aramid fibers), cellulose fibers, and regenerated cellulose fibers.
  • these fibrous fillers those having a fiber diameter in the range of 3 to 60 ⁇ m can be used.
  • the holes of the marking pattern 5 formed on the joint surface 1a of the metal molded body 1 are used. It is preferable to use a fiber having a smaller fiber diameter than the opening diameter (D).
  • a fibrous filler having a fiber diameter smaller than the opening diameter (D) of the hole of the marking pattern 5 is used, a part of the fibrous filler has entered the hole of the marking pattern 5 of the metal molded body. This is preferable because a composite molded body in a state is obtained and the bonding strength between the metal molded body and the resin molded body is increased.
  • the blending amount of the fibrous filler with respect to 100 parts by mass of the thermoplastic resin, thermosetting resin, and thermoplastic elastomer is preferably 5 to 250 parts by mass.
  • the laser irradiation step in the second manufacturing method is a step of performing laser irradiation (laser scanning) so that a groove composed of a plurality of holes is formed on the surface of the metal molded body 10 which is a bonding surface with the resin molded body. It is.
  • laser scanning process as shown in FIGS. 3A and 3B, a large number of holes 21 to 28 and the like are formed so as to overlap each other, so that the groove 30 as a whole is formed as shown in FIG. Is a step of forming.
  • 3 (a) and 3 (b) are examples in which the interval (pitch) between the holes is different, and the pitch in FIG. 3 (b) is larger.
  • the pitch is the same as P1 and P2 shown in FIG. 1, and is the distance between the centers of adjacent holes.
  • the groove 30 has a cross-sectional shape as shown in FIG.
  • the groove 30 has a ratio (dep / W) of the groove width (W) to the groove depth (dep) in the range of 1.0 to 10, preferably 1.2 to 8.0.
  • the range of 1.5 to 5.0 is preferable.
  • the width of the groove 30 is preferably 30 to 200 ⁇ m, more preferably 50 to 150 ⁇ m.
  • the depth of the holes 11 is preferably adjusted to be within 50% of the thickness of the metal molded body 10.
  • the laser scanning speed can be selected according to the laser output, and can generally be selected within the range of 0.1 to 20000 mm / sec, preferably 1 to 12000 mm / sec, more preferably 5 to 2000 mm / sec, 10 More preferably, it is ⁇ 1000 mm / sec.
  • the distance between adjacent grooves is preferably 30 to 300 ⁇ m, and more preferably 40 to 150 ⁇ m.
  • laser irradiation is performed so as to form a groove on the joint surface of the metal molded body.
  • marking may be performed so as to form a straight line, a curved line, a straight line and / or a figure composed of a curved line as a whole. it can.
  • laser irradiation is applied to the end face of a round bar with a circular cross section (joint surface of a metal molded body)
  • laser irradiation is performed to form a plurality of concentric circles having different diameters, or laser irradiation is performed to form a spiral. It is possible to irradiate a laser beam in the shape of many polka dots.
  • laser irradiation can be performed in the same manner as in the circular shape described above, depending on the shape (triangle, square, hexagon, ellipse, indeterminate shape, etc.) of the joint surface of the metal molded body.
  • the metal molded body to which the laser scanning process in the second production method is applied is not particularly limited, and a molded body made of a known metal can be appropriately selected according to the application.
  • a molded body made of a known metal can be appropriately selected according to the application.
  • the molded object chosen from iron, various stainless steel, aluminum or its alloy, copper, magnesium, and an alloy containing them can be mentioned.
  • a known laser can be used in the laser scanning step of the second production method, for example, a YAG laser, a semiconductor laser, a glass laser, a ruby laser, a He—Ne laser, a nitrogen laser, a chelate laser, or a dye laser is used. be able to.
  • the same method as the first manufacturing method can be applied to the insert molding step of the second manufacturing method.
  • a fibrous filler is used as the molding material for the resin molding, one having a fiber diameter in the range of 3 to 60 ⁇ m can be used.
  • a fibrous filler having a fiber diameter smaller than the width (W) of the groove of the marking pattern 5 is used, a part of the fibrous filler enters the groove of the marking pattern 5 of the metal molded body.
  • a composite molded body is obtained, which is preferable because the bonding strength between the metal molded body and the resin molded body can be increased.
  • the laser irradiation step in the third manufacturing method is a step of performing laser irradiation (laser scanning) so as to form a plurality of independent convex portions on the joint surface of the metal molded body.
  • laser scanning step laser irradiation is performed so that a plurality of independent convex portions 41 as shown in FIG. 5 are formed on the surface of the metal molded body 10 which is a joint surface with the resin molded body.
  • the metal removal surface 42 including the concave portions (grooves) is formed by laser scanning the surface of the metal molded body 10 on which the convex portions 41 are not formed.
  • the convex portion 41 (and the metal removal surface 42) having such a predetermined height
  • a method of performing laser scanning a plurality of times on the joint surface of the metal molded body 10 can be applied.
  • the height (h) of the convex portion is relatively high, and when the number of scans is decreased, the height of the convex portion (h) is relatively low.
  • the plurality of independent convex portions 41 are formed with a predetermined interval between adjacent convex portions 41 as shown in FIG.
  • the distance (Dis) between the adjacent convex portions 41 is preferably 40 to 250 ⁇ m, more preferably 80 to 200 ⁇ m.
  • the distance (Dis) between the adjacent convex portions 41 is preferably set to be the same, but can be partially different. For example, when laser scanning is performed on a square surface, a uniform pitch is used when forming dot-shaped holes along each side, and a narrow pitch is used when laser irradiation is performed along corners. be able to.
  • the interval (W) between adjacent convex portions 41 is preferably 30 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m.
  • the width (length of one side) is preferably 30 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m.
  • the independent convex part 41 has a cross-sectional shape as shown in FIGS. 6 (a) and 6 (b), for example.
  • the height (h) of the convex portion 41 is preferably adjusted to be within 50% of the thickness of the metal molded body 10 in order to maintain the strength of the metal molded body 10.
  • the plurality of independent convex portions 41 have a ratio (h / Dis) between the distance (Dis) between the adjacent convex portions 41 and the height (h) of the convex portions 41 in the range of 1.0 to 10. And preferably in the range of 1.2 to 8, more preferably 1.5 to 5.
  • laser irradiation is performed so as to form a large number of independent protrusions on the joint surface of the metal molded body 10, but the entire protrusion is a straight line (dotted line), a curve (curved line), a straight line. And / or marking can be performed so as to form a figure made of a curve.
  • laser irradiation is applied to the end face of a round bar having a circular cross section (joint surface of a metal molded body)
  • laser irradiation is performed so as to form a plurality of concentric circles having different diameters as the entire convex portion, or spirals are formed as the entire convex portion.
  • Laser irradiation can be performed so as to form, or laser irradiation can be performed in the form of a number of polka dots as the entire convex portion.
  • laser irradiation can be performed in the same manner as in the circular shape described above, depending on the shape (triangle, square, hexagon, ellipse, indeterminate shape, etc.) of the joint surface of the metal molded body.
  • the metal molded body to which the laser scanning step in the third production method is applied is not particularly limited, and a molded body made of a known metal can be appropriately selected according to the application.
  • a molded body made of a known metal can be appropriately selected according to the application.
  • the molded object chosen from iron, various stainless steel, aluminum or its alloy, copper, magnesium, and an alloy containing them can be mentioned.
  • a known laser can be used in the laser scanning step of the third manufacturing method, for example, a YAG laser, a semiconductor laser, a glass laser, a ruby laser, a He—Ne laser, a nitrogen laser, a chelate laser, or a dye laser is used. be able to.
  • the same method as the first manufacturing method can be applied to the insert molding step of the third manufacturing method.
  • a fibrous filler is used as the molding material for the resin molding, one having a fiber diameter in the range of 3 to 60 ⁇ m can be used. Among these, for example, it is preferable to use a fiber having a smaller fiber diameter than the interval (W) between the protrusions formed on the joint surface of the metal molded body 10.
  • a fibrous filler having a fiber diameter smaller than the interval (W) between the convex portions of the marking pattern 5 is used, a part of the fibrous filler is present between the convex portions of the marking pattern 5 of the metal molded body. A composite molded body in an intruded state is obtained, which is preferable because the bonding strength between the metal molded body and the resin molded body is increased.
  • ⁇ Measurement method> Hole diameter (D), groove width (W), and distance between protrusions (Dis) An image was taken from above the metal joint surface processed by laser irradiation using a CCD (Keyence's digital microscope VHX, lens VH-Z450) in a state where the top surface of the uneven surface is in focus at a lens magnification of 450 times. . With respect to the hole diameter (D), the dimension of D in the portion in focus on the image was measured at 15 points, and the average value was obtained. For the groove width (W), the W dimension was similarly measured at 15 points, and the average value was obtained. Similarly, for the distance (Dis) between the convex portions, 15 points of the Dis interval were measured, and the average value was obtained. An example of a photomicrograph used for the measurement is shown in FIG.
  • a line 1 passing through two or more points on the bottom surface (concave part) of the convex part is drawn with a visual field of 2 mm or more, and the vertex of the convex part passes through two or more points and is parallel to line 1 2 was subtracted.
  • the distance between the lines 1 and 2 was measured, and the one with the largest distance was defined as the hole depth (Dep), the groove depth (Dep), and the height of the convex part (h).
  • An example (Example 4) of the micrograph used for the measurement is shown in FIG.
  • Examples 1 and 2 (first manufacturing method) A composite molded body made of a metal plate (SUS304) or aluminum plate (AL A5052) and polyamide 66 was produced.
  • YAG laser for laser irradiation area (bonding surface) 15 (40 mm 2 [4 mm ⁇ 10 mm]) indicated by metal plate (SUS304 or AL (A5052)) (width 15 mm, length 60 mm, thickness 1 mm) shown in FIG. was used, and laser irradiation was performed at an angle of 90 degrees with respect to the bonding surface 15 of the metal plate 10 (from directly above).
  • the laser irradiation conditions are as shown in Table 1.
  • a marking pattern made up of a large number of holes is shown in FIG.
  • FIG. 9 shows a state in which the spacer 40 for the tensile test (the spacer 40 is not included in the composite molded body obtained by the method of the present invention) is attached.
  • Example 3 (second manufacturing method), Comparative Examples 1 and 2
  • laser scanning was performed under the laser irradiation conditions shown in Table 2.
  • insert molding was performed in the same manner as in Example 1 to form a composite molded body 30 (with a tensile test spacer 40) shown in FIG. 9, and a tensile test was further performed in the same manner as in Example 1.
  • the results are shown in Table 2.
  • Comparative Examples 1 and 2 could not be measured because they were easily peeled off. From the comparison of the tensile strength between Example 3 and Comparative Examples 1 and 2, it was confirmed that the bonding strength between the metal molded body and the resin molded body can be increased by controlling the dep / W ratio. This fact indicates that if the scanning range is the same, the bonding strength can be increased by performing the manufacturing method (laser scanning step) of the present invention.
  • Examples 4 to 7 (third manufacturing method)
  • the YVO4 laser (vanadium) is applied to the laser irradiation area (bonding surface) 15 (40 mm 2 [4 mm ⁇ 10 mm]) indicated by the metal plate (AL (A5052)) (width 15 mm, length 60 mm, thickness 1 mm) shown in FIG.
  • the laser was scanned at an angle of 90 degrees with respect to the bonding surface 15 of the metal plate 10 (from directly above).
  • the laser scanning conditions are as shown in Table 3.
  • a marking pattern composed of a large number of convex portions is shown in FIG.
  • the convex portion was a quadrangular prism whose lower surface was a square with a side of 70 ⁇ m, and conditions were set so that W was 70 ⁇ m.

Abstract

Provided is a manufacturing method with which composite moldings of increased joint strength between the metal molding and the resin molding are obtained. A composite molding manufacturing method comprising a laser irradiation process of forming multiple independent holes in a dot pattern on the junction surface of the metal molding, and a process of disposing the portion, which comprises the metal molding junction surface in which the multiple independent holes have been formed in a dot pattern, in a metal mold and insert-molding the resin that is to become the resin molding. The composite molding manufacturing method controls the ratio (dep/D) of the diameter (D) of the hole opening to the depth (dep) of the hole when a single hole is being formed in the laser irradiation process so as to be in the range of 1.0 - 10.

Description

複合成形体の製造方法Method for producing composite molded body
 本発明は、金属成形体と樹脂成形体からなる複合成形体の製造方法に関する。
背景技術
The present invention relates to a method for producing a composite molded body comprising a metal molded body and a resin molded body.
Background art
 各種部品の軽量化の観点から、金属代替品として樹脂成形体が使用されているが、全ての金属部品を樹脂で代替することは難しい場合も多い。そのような場合には、金属成形体と樹脂成形体を接合一体化することで新たな複合部品を製造することが考えられる。
 しかしながら、金属成形体と樹脂成形体を工業的に有利な方法で、かつ高い接合強度で接合一体化できる技術は実用化されていない。
From the viewpoint of reducing the weight of various parts, resin molded bodies are used as metal substitutes, but it is often difficult to substitute all metal parts with resin. In such a case, it is conceivable to manufacture a new composite part by joining and integrating the metal molded body and the resin molded body.
However, a technique capable of joining and integrating a metal molded body and a resin molded body with an industrially advantageous method with high bonding strength has not been put into practical use.
 特許第4020957号公報には、金属表面に対して、一つの走査方向にレーザースキャニングする工程と、それにクロスする走査方向にレーザースキャニングする工程を含む、異種材料(樹脂)と接合するための金属表面のレーザー加工方法の発明が記載されている。
 特開2010-167475号公報には、特許第4020957号公報の発明において、さらに複数回重畳的にレーザースキャニングするレーザー加工方法の発明が開示されている。
Japanese Patent No. 4020957 discloses a metal surface for bonding with a dissimilar material (resin) including a step of laser scanning in one scanning direction and a step of laser scanning in a scanning direction crossing the metal surface. The invention of the laser processing method is described.
Japanese Patent Application Laid-Open No. 2010-167475 discloses an invention of a laser processing method in which laser scanning is performed in a superposed manner a plurality of times in the invention of Japanese Patent No. 4020957.
 しかしながら、特許第4020957号公報、特開2010-167475号公報の発明は、必ずクロスする2つの方向に対してレーザースキャンする必要があるため、加工時間が長く掛かりすぎるという点で改善の余地がある。
 さらにクロス方向へのレーザースキャンにより十分な表面粗し処理ができることから、接合強度は高くできることが考えられるが、表面粗さ状態が均一にならず、金属と樹脂との接合部分の強度の方向性が安定しないおそれがあるという問題がある。
However, the inventions of Japanese Patent No. 4020957 and Japanese Patent Application Laid-Open No. 2010-167475 need to be laser-scanned in two crossing directions, so there is room for improvement in that the processing time is too long. .
Furthermore, since sufficient surface roughening treatment can be performed by laser scanning in the cross direction, it is considered that the bonding strength can be increased, but the surface roughness state is not uniform, and the directionality of the strength of the bonded portion between the metal and the resin There is a problem that may not be stable.
 また接合面が複雑な形状や幅の細い部分を含む形状のものである場合(例えば星形、三角形、ダンベル型)には、クロス方向にレーザースキャンする方法では、部分的に表面粗し処理が不均一になる結果、充分な接合強度が得られないことも考えられる。 In addition, when the joint surface has a complicated shape or a shape including a narrow portion (for example, a star shape, a triangle, or a dumbbell type), the surface is partially roughened by the laser scanning method in the cross direction. As a result of non-uniformity, it may be considered that sufficient bonding strength cannot be obtained.
 特開平10-294024号公報には、金属表面にレーザー光を照射して凹凸を形成し、凹凸形成部位に樹脂、ゴム等を射出成形する電気電子部品の製造方法が記載されている。
 実施形態1~3では、金属長尺コイル表面にレーザー照射して凹凸を形成することが記載されている。そして、段落番号10では、金属長尺コイル表面をストライプ状や梨地状に荒らすこと、段落番号19では、金属長尺コイル表面をストライプ状、点線状、波線状、ローレット状、梨地状に荒らすることが記載されている。
Japanese Patent Application Laid-Open No. 10-294024 describes a method of manufacturing an electrical / electronic component in which a metal surface is irradiated with a laser beam to form irregularities, and a resin, rubber, or the like is injection-molded on the irregularity formation site.
In Embodiments 1 to 3, it is described that the surface of a long metal coil is irradiated with a laser to form irregularities. In paragraph No. 10, the surface of the long metal coil is roughened in a striped or satin shape. In paragraph No. 19, the surface of the long metal coil is roughened in a stripe, dotted, wavy, knurled, or satin. It is described.
 しかし、段落番号21、22の発明の効果に記載されているとおり、レーザー照射をする目的は、金属表面に微細で不規則な凹凸を形成し、それによりアンカー効果を高めるためである。特に処理対象が金属長尺コイルであることから、どのような凹凸を形成した場合でも、必然的に微細で不規則な凹凸になるものと考えられる。
 よって、特開平10-294024号公報の発明は、特許第4020957号公報、特開2010-167475号公報の発明のようにクロス方向にレーザー照射して表面に微細な凹凸を形成する発明と同じ技術的思想を開示しているものである。
発明の概要
However, as described in the effects of the inventions in paragraphs 21 and 22, the purpose of laser irradiation is to form fine irregular irregularities on the metal surface, thereby enhancing the anchor effect. In particular, since the object to be processed is a long metal coil, it is considered that any irregularities are inevitably formed into fine irregular irregularities.
Therefore, the invention of Japanese Patent Laid-Open No. 10-294024 is the same technology as the invention of forming fine irregularities on the surface by laser irradiation in the cross direction as in the inventions of Japanese Patent Nos. 4020957 and 2010-167475. Disclosing the ideal idea.
Summary of the Invention
 本発明は、金属成形体の接合面に対するレーザー照射面積を小さくし、表面粗し加工の程度を抑制した上で、金属成形体と樹脂成形体の接合強度を高めることができる、複合成形体の製造方法を提供することを課題とする。 The present invention provides a composite molded body that can increase the bonding strength between a metal molded body and a resin molded body while reducing the laser irradiation area on the bonding surface of the metal molded body and suppressing the degree of surface roughening. It is an object to provide a manufacturing method.
 本発明は、課題の解決手段として、
 金属成形体の接合面に対して、ドット状の独立した複数の孔を形成するようにレーザー照射する工程と、
 ドット状の独立した複数の孔を形成した金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程を有する複合成形体の製造方法であって、
 レーザー照射工程において1つの孔を形成するとき、前記孔の開口部径(D)と前記孔の深さ(dep)との比(dep/D)が1.0~10の範囲になるようにする、複合成形体の製造方法を提供する。
As a means for solving the problems, the present invention
A step of irradiating a laser so as to form a plurality of independent dots in the shape of a joint on the metal molded body,
A method for producing a composite molded body comprising a step of placing a portion including a joining surface of a metal molded body in which a plurality of independent dots are formed in a mold, and insert molding a resin to be the resin molded body. There,
When forming one hole in the laser irradiation step, the ratio (dep / D) of the opening diameter (D) of the hole to the depth (dep) of the hole is in the range of 1.0 to 10. A method for producing a composite molded body is provided.
 本発明は、課題の他の解決手段として、
 金属成形体の接合面に対して、複数の孔からなる溝が形成されるようにレーザー照射する工程と、
 前記溝が形成された金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程を有する複合成形体の製造方法であって、
 レーザー照射工程において前記溝を形成するとき、前記溝の幅(W)と前記溝の深さ(dep)との比(dep/W)が1.0~10の範囲になるようにする、複合成形体の製造方法を提供する。
The present invention provides other means for solving the problems,
A step of irradiating a laser so that a groove composed of a plurality of holes is formed on the joint surface of the metal molded body,
A method for producing a composite molded body comprising a step of placing a portion including a joining surface of a metal molded body in which the groove is formed in a mold, and insert molding a resin to be the resin molded body,
When forming the groove in the laser irradiation process, a ratio (dep / W) of the groove width (W) to the groove depth (dep) is in the range of 1.0 to 10. A method for producing a molded body is provided.
 本発明は、課題のさらに他の解決手段として、
 金属成形体の接合面に対して、複数の独立した凸部を形成するようにレーザー照射する工程と、
 前記複数の凸部を形成した金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程を有する複合成形体の製造方法であって、
 レーザース照射工程において独立した凸部を形成するとき、隣接する凸部同士の距離(Dis)と凸部の高さ(h)との比(h/Dis)が1.0~10の範囲になるようにする、複合成形体の製造方法を提供する。
The present invention provides a further solution to the problem,
A step of irradiating a laser so as to form a plurality of independent protrusions on the joint surface of the metal molded body,
A method for producing a composite molded body comprising a step of placing a portion including a joint surface of a metal molded body in which the plurality of convex portions are formed in a mold, and insert molding a resin to be the resin molded body,
When forming independent protrusions in the laser irradiation process, the ratio (h / Dis) between the distance (Dis) between adjacent protrusions and the height (h) of the protrusions is in the range of 1.0 to 10. Provided is a method for producing a composite molded body.
 本発明の製造方法によれば、
 レーザー照射工程において形成された1つの孔の開口部径(D)と深さ(d)との比(d/D)、
 レーザー照射工程において形成された溝の幅(W)と深さ(d)との比(d/W)又は
 レーザー照射工程において形成された複数の凸部の隣接する凸部同士の距離(Dis)と凸部の高さ(h)との(h/Dis)、
を所定範囲に調整することによって、レーザー照射(レーザースキャン)範囲を従来よりも狭くした場合であっても(即ち、金属成形体の表面粗し加工の程度を抑制した場合であっても)、金属成形体と樹脂成形体との接合強度を高めることができる。
According to the production method of the present invention,
The ratio (d / D) of the opening diameter (D) and depth (d) of one hole formed in the laser irradiation step;
Ratio (d / W) of width (W) and depth (d) of groove formed in laser irradiation process or distance between adjacent protrusions of multiple protrusions formed in laser irradiation process (Dis) And (h / Dis) between the height of the convex portion (h),
Even when the laser irradiation (laser scan) range is narrower than before by adjusting to a predetermined range (that is, even when the degree of surface roughening of the metal molded body is suppressed), Bonding strength between the metal molded body and the resin molded body can be increased.
図1は本発明のレーザー照射工程におけるドット状の独立した孔の形成方法を説明するための平面図である。FIG. 1 is a plan view for explaining a method of forming independent dots in the laser irradiation step of the present invention. 図2は本発明のレーザー照射工程におけるドット状の独立した孔を含む金属成形体の厚み方への断面図である。FIG. 2 is a cross-sectional view in the thickness direction of a metal molded body including dot-like independent holes in the laser irradiation step of the present invention. 図3(a)は、本発明のレーザー照射工程における溝の形成方法を説明するための平面図であり、図3(b)は(a)とはレーザー照射のピッチが異なる溝の形成方法を説明するための平面図である。FIG. 3A is a plan view for explaining the groove forming method in the laser irradiation step of the present invention, and FIG. 3B is a groove forming method having a laser irradiation pitch different from that in FIG. It is a top view for demonstrating. 図4(a)は、本発明のレーザー照射工程における溝の平面図、図4(b)は、(a)の溝を含む金属成形体の厚み方向への断面図である。FIG. 4A is a plan view of a groove in the laser irradiation step of the present invention, and FIG. 4B is a cross-sectional view in the thickness direction of a metal molded body including the groove of FIG. 図5本発明のレーザー照射工程における凸部の形成方法を説明するための平面図である。5 is a plan view for explaining a method of forming a convex portion in the laser irradiation step of the present invention. 図6(a)は図5で形成した凸部の幅方向断面図であり、図6(b)は別実施形態の幅方向断面図である。6A is a cross-sectional view in the width direction of the convex portion formed in FIG. 5, and FIG. 6B is a cross-sectional view in the width direction of another embodiment. 図7は実施例における金属成形体へのレーザー照射方法の説明図である。FIG. 7 is an explanatory diagram of a method of irradiating a metal molded body with a laser in the example. 図8は図7に示す金属成形体へのレーザー照射方法の説明図である。FIG. 8 is an explanatory diagram of a laser irradiation method for the metal molded body shown in FIG. 図9は複合成形体に対する引張試験方法を説明するための図である。FIG. 9 is a diagram for explaining a tensile test method for the composite molded body. 図10は実施例4においてレーザースキャン後の金属成形体表面の顕微鏡写真(450倍)を示す図である。FIG. 10 is a view showing a micrograph (450 ×) of the surface of the metal molded body after laser scanning in Example 4. 図11は実施例4においてレーザースキャン後の金属成形体断面の走査型電子顕微鏡写真(50倍)を示す図である。   図中、10は金属成形体、11は孔、21-28は孔、30は溝、41は凸部をそれぞれ示す。 発明を実施するための形態FIG. 11 is a view showing a scanning electron micrograph (50 ×) of a cross section of a metal molded body after laser scanning in Example 4. In the figure, 10 is a metal molded body, 11 is a hole, 21-28 is a hole, 30 is a groove, and 41 is a convex part. Form for carrying out the invention
 本発明の複合成形体の製造方法は、金属成形体表面へのレーザー照射工程の違いによって、
 ドット状の独立した孔を形成するようにレーザー照射する工程を有する製造方法(第1の製造方法)と、
 複数の孔からなる溝が形成されるようにレーザー照射する(即ち、レーザースキャンする)工程を有する製造方法(第2の製造方法)と、
 複数の独立した凸部が形成されるようにレーザー照射する(即ち、レーザースキャンする)工程を有する製造方法(第3の製造方法)に分けることができる。
The method for producing the composite molded body of the present invention is based on the difference in the laser irradiation process on the surface of the metal molded body,
A manufacturing method (first manufacturing method) including a step of laser irradiation so as to form dot-shaped independent holes;
A manufacturing method (second manufacturing method) including a step of irradiating a laser so that a groove including a plurality of holes is formed (that is, laser scanning);
It can be divided into a manufacturing method (third manufacturing method) having a step of laser irradiation (that is, laser scanning) so that a plurality of independent convex portions are formed.
 (1)第1の製造方法
 <レーザー照射工程>
 第1の製造方法におけるレーザー照射工程は、樹脂成形体との接合面となる金属成形体10の表面に対して、ドット状の独立した多数の孔を形成するようにレーザー照射する工程である。
 このレーザー照射工程では、図1に示すように独立した多数の孔11(11a、11b、11c等)を形成する。
(1) 1st manufacturing method <Laser irradiation process>
The laser irradiation step in the first manufacturing method is a step of performing laser irradiation so as to form a large number of dot-like independent holes on the surface of the metal molded body 10 to be a joint surface with the resin molded body.
In this laser irradiation step, a large number of independent holes 11 (11a, 11b, 11c, etc.) are formed as shown in FIG.
 ドット状の独立した多数の孔11は、図1のように所定間隔(ピッチ)をおいて形成する。
 ドット状の独立した多数の孔11(11a、11b、11c……)同士のピッチP1、P2……は、樹脂成形体との接合強度を高めるため、30~300μmであることが好ましく、50~150μmであることが好ましい。ピッチP1、P2の距離は、隣接する孔11aと孔11b、孔11bと孔11c同士の中心点間の距離である。
 ピッチP1、P2の距離は同一に設定することが好ましいが、部分的に異ならせることができる。例えば、正方形の面にレーザースキャンするときは、各辺に沿ってドット状の孔を直線状に形成するときは等間隔のピッチとし、角部に沿ってレーザー照射するときは、ピッチを狭くすることができる。
A large number of dot-like independent holes 11 are formed at a predetermined interval (pitch) as shown in FIG.
The pitches P1, P2,... Between the numerous dot-like independent holes 11 (11a, 11b, 11c...) Are preferably 30 to 300 μm in order to increase the bonding strength with the resin molding, It is preferable that it is 150 micrometers. The distance between the pitches P1 and P2 is the distance between the center points of the adjacent holes 11a and 11b and the holes 11b and 11c.
The distances between the pitches P1 and P2 are preferably set to be the same, but can be partially different. For example, when laser scanning is performed on a square surface, a uniform pitch is used when forming dot-shaped holes along each side, and a narrow pitch is used when laser irradiation is performed along corners. be able to.
 ドット状の独立した多数の孔11は、例えば、図2(a)~(d)に示すような断面形状を有するものである。
 1つの孔11は、孔の開口部径(D)と孔の深さ(dep)との比(dep/D)が1.0~10の範囲のものであり、好ましくは1.2~8.0、より好ましくは1.5~5.0の範囲のものである。
 (dep/D)を前記範囲に調整することで、レーザー照射範囲を従来よりも狭くした場合であっても、金属成形体と樹脂成形体との接合強度を高めることができるようになる。
A large number of dot-like independent holes 11 have a cross-sectional shape as shown in FIGS. 2 (a) to 2 (d), for example.
One hole 11 has a ratio (dep / D) of a hole opening diameter (D) to a hole depth (dep) in the range of 1.0 to 10, preferably 1.2 to 8. 0.0, more preferably in the range of 1.5 to 5.0.
By adjusting (dep / D) to the above range, the bonding strength between the metal molded body and the resin molded body can be increased even when the laser irradiation range is narrower than before.
 孔11の開口部径(D)は30~200μmが好ましく、50~150μmが好ましい。孔11の深さ(dep)は、金属成形体10の強度を維持するため、金属成形体10の厚さの50%以内になるように調整することが好ましい。 The opening diameter (D) of the hole 11 is preferably 30 to 200 μm, more preferably 50 to 150 μm. The depth (dep) of the hole 11 is preferably adjusted to be within 50% of the thickness of the metal molded body 10 in order to maintain the strength of the metal molded body 10.
 レーザー照射工程において図1、図2に示すような1つの孔11(11a~11c)を形成するとき、1つの独立した孔11を形成するために1~400ショットのパルスレーザーを照射することが好ましく、1~200ショットのパルスレーザーを照射することがより好ましい。
 またレーザー照射位置をずらしながら照射することで、孔11の開口部径(D)を広げることもできる。
When one hole 11 (11a to 11c) as shown in FIGS. 1 and 2 is formed in the laser irradiation step, 1 to 400 shots of pulsed laser may be irradiated to form one independent hole 11. It is preferable to irradiate 1 to 200 shots of a pulse laser.
Moreover, the opening part diameter (D) of the hole 11 can also be expanded by irradiating, shifting a laser irradiation position.
 レーザー照射工程において図1、図2に示すような1つの孔11(11a~11c)を形成するとき、照射するレーザーのビーム径を同一にしてもよいし、1回のショットごと又は複数回のショットごとに異ならせても良い。
 図1(a)の孔11の場合には、レーザーのビーム径を同一にして照射する。
 図1(b)の孔11の場合には、レーザーのビーム径を少しずつ小さくして照射する。
 図1(c)の孔11の場合には、レーザーのビームの照射角度を変更して照射することにより、得ることができる。
 図1(d)の孔11の場合には、最初は同一径のビームで照射した後、小さな径のビームで照射する。
When forming one hole 11 (11a to 11c) as shown in FIGS. 1 and 2 in the laser irradiation step, the beam diameter of the laser to be irradiated may be the same, or for each shot or multiple times It may be different for each shot.
In the case of the hole 11 in FIG. 1A, irradiation is performed with the same laser beam diameter.
In the case of the hole 11 in FIG. 1B, the laser beam diameter is gradually reduced for irradiation.
In the case of the hole 11 in FIG. 1C, it can be obtained by changing the irradiation angle of the laser beam.
In the case of the hole 11 shown in FIG. 1D, irradiation is first performed with a beam having the same diameter, and then irradiation with a beam having a smaller diameter.
 レーザー照射する工程では、金属成形体の接合面に対してドット状の独立した多数の孔を形成するようにレーザー照射するが、全体として直線(点線)、曲線(点線からなる曲線)、直線及び/又は曲線からなる図形等を形成するようにしてマーキングすることができる。
 例えば、断面が円形の丸棒の端面(金属成形体の接合面)にレーザー照射するとき、直径の異なる複数の同心円を形成するようにレーザー照射したり、渦巻きを形成するようにレーザー照射したり、多数の水玉模様状にレーザー照射したりすることができる。
 その他、金属成形体の接合面の形状(三角形、四角形、六角形、楕円形、不定形等)に応じて、上記した円形のものと同様にしてレーザー照射することができる。
In the laser irradiation step, laser irradiation is performed so as to form a large number of dot-shaped independent holes on the joint surface of the metal molded body. As a whole, a straight line (dotted line), a curved line (curved line), Marking can be performed by forming a figure or the like consisting of a curve.
For example, when laser irradiation is applied to the end face of a round bar with a circular cross section (joint surface of a metal molded body), laser irradiation is performed to form a plurality of concentric circles having different diameters, or laser irradiation is performed to form a spiral. It is possible to irradiate a laser beam in the shape of many polka dots.
In addition, laser irradiation can be performed in the same manner as in the circular shape described above, depending on the shape (triangle, square, hexagon, ellipse, indeterminate shape, etc.) of the joint surface of the metal molded body.
 第1の製造方法において、レーザー照射工程を適用する金属成形体は特に制限されるものではなく、用途に応じて公知の金属からなる成形体を適宜選択することができる。例えば、鉄、各種ステンレス、アルミニウム又はその合金、銅、マグネシウム及びそれらを含む合金から選ばれる成形体を挙げることができる。 In the first production method, the metal molded body to which the laser irradiation step is applied is not particularly limited, and a molded body made of a known metal can be appropriately selected according to the application. For example, the molded object chosen from iron, various stainless steel, aluminum or its alloy, copper, magnesium, and an alloy containing them can be mentioned.
 第1の製造方法のレーザー照射工程では公知のレーザーを使用することができ、例えば、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。 A known laser can be used in the laser irradiation step of the first production method, for example, YAG laser, semiconductor laser, glass laser, ruby laser, He—Ne laser, nitrogen laser, chelate laser, and dye laser are used. be able to.
 <インサート成形工程>
 第1の製造方法におけるインサート成形工程は、多数のドット状の独立した孔を形成した金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程である。
<Insert molding process>
In the insert molding step in the first manufacturing method, a portion including a joining surface of a metal molded body in which a large number of dot-like independent holes are formed is placed in a mold, and the resin to be the resin molded body is insert molded. It is a process to do.
 インサート成形方法は特に制限されるものではなく、金型内に溶融状態の熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂(プレポリマー)を射出する方法、金属成形体と樹脂成形体を加熱プレスする方法等を適用することができる。なお、熱硬化性樹脂(プレポリマー)を使用したときには後硬化処理をする。 The insert molding method is not particularly limited, and a method of injecting a molten thermoplastic resin, thermoplastic elastomer or thermosetting resin (prepolymer) into a mold, and heating and pressing a metal molded body and a resin molded body. It is possible to apply a method or the like. When a thermosetting resin (prepolymer) is used, post-curing treatment is performed.
 熱可塑性樹脂は、用途に応じて公知の熱可塑性樹脂から適宜選択することができる。例えば、ポリアミド系樹脂(PA6、PA66等の脂肪族ポリアミド、芳香族ポリアミド)、ポリスチレン、ABS樹脂、AS樹脂等のスチレン単位を含む共重合体、ポリエチレン、エチレン単位を含む共重合体、ポリプロピレン、プロピレン単位を含む共重合体、その他のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂を挙げることができる。 The thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application. For example, polyamide-based resins (aliphatic polyamides such as PA6 and PA66, aromatic polyamides), copolymers containing styrene units such as polystyrene, ABS resin, AS resin, polyethylene, copolymers containing ethylene units, polypropylene, propylene Examples thereof include copolymers containing units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins.
 熱硬化性樹脂は、用途に応じて公知の熱硬化性樹脂から適宜選択することができる。例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、ビニルウレタンを挙げることができる。 The thermosetting resin can be appropriately selected from known thermosetting resins depending on the application. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned.
 熱可塑性エラストマーは、用途に応じて公知の熱可塑性エラストマーから適宜選択することができる。例えば、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ポリアミド系エラストマーを挙げることができる。 The thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers according to the application. Examples thereof include styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers.
 これらの熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマーには、公知の繊維状充填材を配合することができる。
 公知の繊維状充填材としては、炭素繊維、無機繊維、金属繊維、有機繊維等を挙げることができる。
 炭素繊維は周知のものであり、PAN系、ピッチ系、レーヨン系等のものを用いることができるが、PAN系、ピッチ系のものが好ましい。
 無機繊維としては、ガラス繊維、玄武岩繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維等を挙げることができるが、ガラス繊維が好ましい。
 金属繊維としては、ステンレス、アルミニウム、銅等からなる繊維を挙げることができるが、ステンレス繊維が好ましい。
 有機繊維としては、ポリアミド繊維(全芳香族ポリアミド繊維、ジアミンとジカルボン酸のいずれか一方が芳香族化合物である半芳香族ポリアミド繊維、脂肪族ポリアミド繊)、ポリビニルアルコール繊維、アクリル繊維、ポリオレフィン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリエステル繊維(全芳香族ポリエステル繊維を含む)、ポリイミド繊維、液晶ポリエステル繊維、ポリフェニレンスルフィド繊維、セルロース繊維、再生セルロース繊維を用いることができるが、これらの中でも全芳香族ポリアミド繊維(アラミド繊維)やセルロース繊維、再生セルロース繊維がより好ましい。
These thermoplastic resins, thermosetting resins, and thermoplastic elastomers can be blended with known fibrous fillers.
Examples of known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers.
Carbon fibers are well known, and PAN-based, pitch-based, rayon-based, etc. can be used, but PAN-based and pitch-based ones are preferred.
Examples of the inorganic fiber include glass fiber, basalt fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, and silicon nitride fiber, and glass fiber is preferable.
Examples of the metal fiber include fibers made of stainless steel, aluminum, copper, and the like, and stainless steel fibers are preferable.
Organic fibers include polyamide fibers (fully aromatic polyamide fibers, semi-aromatic polyamide fibers in which either diamine or dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including wholly aromatic polyester fiber), polyimide fiber, liquid crystal polyester fiber, polyphenylene sulfide fiber, cellulose fiber, and regenerated cellulose fiber can be used. More preferred are wholly aromatic polyamide fibers (aramid fibers), cellulose fibers, and regenerated cellulose fibers.
 これらの繊維状充填材は、繊維径が3~60μmの範囲のものを使用することができるが、これらの中でも、例えば金属成形体1の接合面1aに対して形成されるマーキングパターン5の孔の開口部径(D)より小さな繊維径のものを使用することが好ましい。
 このようなマーキングパターン5の孔の開口部径(D)より小さな繊維径の繊維状充填材を使用したときには、金属成形体のマーキングパターン5の孔内部に繊維状充填材の一部が入り込んだ状態の複合成形体が得られ、金属成形体と樹脂成形体の接合強度が高められるので好ましい。
 熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー100質量部に対する繊維状充填材の配合量は5~250質量部が好ましい。
As these fibrous fillers, those having a fiber diameter in the range of 3 to 60 μm can be used. Among these, for example, the holes of the marking pattern 5 formed on the joint surface 1a of the metal molded body 1 are used. It is preferable to use a fiber having a smaller fiber diameter than the opening diameter (D).
When a fibrous filler having a fiber diameter smaller than the opening diameter (D) of the hole of the marking pattern 5 is used, a part of the fibrous filler has entered the hole of the marking pattern 5 of the metal molded body. This is preferable because a composite molded body in a state is obtained and the bonding strength between the metal molded body and the resin molded body is increased.
The blending amount of the fibrous filler with respect to 100 parts by mass of the thermoplastic resin, thermosetting resin, and thermoplastic elastomer is preferably 5 to 250 parts by mass.
 <第2の製造方法>
 第2の製造方法におけるレーザー照射工程は、樹脂成形体との接合面となる金属成形体10の表面に対して、複数の孔からなる溝が形成されるようにレーザー照射(レーザースキャン)する工程である。
 このレーザースキャン工程では、図3(a)、(b)に示すように多数の孔21~28等が互いに重複するように形成することで、図4(a)に示すように全体として溝30を形成する工程である。図3(a)と図3(b)は、孔同士の間隔(ピッチ)が異なる例であり、図3(b)の方のピッチが大きくなっている。ここでピッチは図1に示すP1、P2と同じで、隣接する孔同士の中心間の距離である。
<Second production method>
The laser irradiation step in the second manufacturing method is a step of performing laser irradiation (laser scanning) so that a groove composed of a plurality of holes is formed on the surface of the metal molded body 10 which is a bonding surface with the resin molded body. It is.
In this laser scanning process, as shown in FIGS. 3A and 3B, a large number of holes 21 to 28 and the like are formed so as to overlap each other, so that the groove 30 as a whole is formed as shown in FIG. Is a step of forming. 3 (a) and 3 (b) are examples in which the interval (pitch) between the holes is different, and the pitch in FIG. 3 (b) is larger. Here, the pitch is the same as P1 and P2 shown in FIG. 1, and is the distance between the centers of adjacent holes.
 溝30は、例えば、図4(b)に示すような断面形状を有するものである。
 溝30は、溝の幅(W)と溝の深さ(dep)との比(dep/W)が1.0~10の範囲のものであり、好ましくは1.2~8.0、より好ましくは1.5~5.0の範囲のものである。
 (W/dep)を前記範囲に調整することで、レーザー照射範囲を従来よりも狭くした場合であっても、金属成形体と樹脂成形体との接合強度を高めることができるようになる。
For example, the groove 30 has a cross-sectional shape as shown in FIG.
The groove 30 has a ratio (dep / W) of the groove width (W) to the groove depth (dep) in the range of 1.0 to 10, preferably 1.2 to 8.0. The range of 1.5 to 5.0 is preferable.
By adjusting (W / dep) to the above range, the bonding strength between the metal molded body and the resin molded body can be increased even when the laser irradiation range is narrower than before.
 溝30の幅は30~200μmが好ましく、50~150μmが好ましい。孔11の深さは、金属成形体10の強度を維持するため、金属成形体10の厚さの50%以内になるように調整することが好ましい。 The width of the groove 30 is preferably 30 to 200 μm, more preferably 50 to 150 μm. In order to maintain the strength of the metal molded body 10, the depth of the holes 11 is preferably adjusted to be within 50% of the thickness of the metal molded body 10.
 レーザースキャン速度はレーザー出力に応じて選択することができ、一般的には0.1~20000mm/secの範囲で選択可能であり、1~12000mm/secが好ましく、5~2000mm/secがより好ましく、10~1000mm/secがさらに好ましい。
 隣接する溝同士の距離(隣接する溝の幅中間点同士の距離)は30~300μmが好ましく、40~150μmがより好ましい。
The laser scanning speed can be selected according to the laser output, and can generally be selected within the range of 0.1 to 20000 mm / sec, preferably 1 to 12000 mm / sec, more preferably 5 to 2000 mm / sec, 10 More preferably, it is ˜1000 mm / sec.
The distance between adjacent grooves (distance between the width intermediate points of adjacent grooves) is preferably 30 to 300 μm, and more preferably 40 to 150 μm.
 レーザースキャン工程では、金属成形体の接合面に対して溝を形成するようにレーザー照射するが、全体として直線、曲線、直線及び/又は曲線からなる図形等を形成するようにしてマーキングすることができる。
 例えば、断面が円形の丸棒の端面(金属成形体の接合面)にレーザー照射するとき、直径の異なる複数の同心円を形成するようにレーザー照射したり、渦巻きを形成するようにレーザー照射したり、多数の水玉模様状にレーザー照射したりすることができる。
 その他、金属成形体の接合面の形状(三角形、四角形、六角形、楕円形、不定形等)に応じて、上記した円形のものと同様にしてレーザー照射することができる。
In the laser scanning process, laser irradiation is performed so as to form a groove on the joint surface of the metal molded body. However, marking may be performed so as to form a straight line, a curved line, a straight line and / or a figure composed of a curved line as a whole. it can.
For example, when laser irradiation is applied to the end face of a round bar with a circular cross section (joint surface of a metal molded body), laser irradiation is performed to form a plurality of concentric circles having different diameters, or laser irradiation is performed to form a spiral. It is possible to irradiate a laser beam in the shape of many polka dots.
In addition, laser irradiation can be performed in the same manner as in the circular shape described above, depending on the shape (triangle, square, hexagon, ellipse, indeterminate shape, etc.) of the joint surface of the metal molded body.
 第2の製造方法におけるレーザースキャン工程を適用する金属成形体は特に制限されるものではなく、用途に応じて公知の金属からなる成形体を適宜選択することができる。例えば、鉄、各種ステンレス、アルミニウム又はその合金、銅、マグネシウム及びそれらを含む合金から選ばれる成形体を挙げることができる。 The metal molded body to which the laser scanning process in the second production method is applied is not particularly limited, and a molded body made of a known metal can be appropriately selected according to the application. For example, the molded object chosen from iron, various stainless steel, aluminum or its alloy, copper, magnesium, and an alloy containing them can be mentioned.
 第2の製造方法のレーザースキャン工程では公知のレーザーを使用することができ、例えば、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。 A known laser can be used in the laser scanning step of the second production method, for example, a YAG laser, a semiconductor laser, a glass laser, a ruby laser, a He—Ne laser, a nitrogen laser, a chelate laser, or a dye laser is used. be able to.
 第2の製造方法のインサート成形工程は、第1の製造方法と同じ方法を適用することができる。
 樹脂成形体の成形材料として繊維状充填剤を使用したときは、繊維径が3~60μmの範囲のものを使用することができる。これらの中でも、例えば金属成形体1の接合面1aに対して形成されるマーキングパターン5の溝の幅(W)より小さな繊維径のものを使用することが好ましい。
 このようなマーキングパターン5の溝の幅(W)より小さな繊維径の繊維状充填材を使用したときには、金属成形体のマーキングパターン5の溝内部に繊維状充填材の一部が入り込んだ状態の複合成形体が得られ、金属成形体と樹脂成形体の接合強度が高められるので好ましい。
The same method as the first manufacturing method can be applied to the insert molding step of the second manufacturing method.
When a fibrous filler is used as the molding material for the resin molding, one having a fiber diameter in the range of 3 to 60 μm can be used. Among these, it is preferable to use a fiber having a fiber diameter smaller than the width (W) of the groove of the marking pattern 5 formed on the bonding surface 1a of the metal molded body 1, for example.
When a fibrous filler having a fiber diameter smaller than the width (W) of the groove of the marking pattern 5 is used, a part of the fibrous filler enters the groove of the marking pattern 5 of the metal molded body. A composite molded body is obtained, which is preferable because the bonding strength between the metal molded body and the resin molded body can be increased.
 <第3の製造方法>
 第3の製造方法におけるレーザー照射工程は、金属成形体の接合面に対して、複数の独立した凸部を形成するようにレーザー照射(レーザースキャン)する工程である。
 このレーザースキャン工程では、樹脂成形体との接合面となる金属成形体10の表面に対して、図5に示すような複数の独立した凸部41が形成されるようにレーザー照射する。
 このような複数の独立した凸部41を形成するためには、凸部41を形成しない金属成形体10の表面に対してレーザースキャンして凹部(溝)を含む金属除去面42を形成する。
 このような所定高さの凸部41(及び金属除去面42)を形成するには、金属成形体10の接合面に対して、複数回レーザースキャンする方法を適用することができる。
 スキャン回数を増加させると凸部高さ(h)が相対的に高くなり、スキャン回数を減少させると凸部高さ(h)が相対的に低くなる。
<Third production method>
The laser irradiation step in the third manufacturing method is a step of performing laser irradiation (laser scanning) so as to form a plurality of independent convex portions on the joint surface of the metal molded body.
In this laser scanning step, laser irradiation is performed so that a plurality of independent convex portions 41 as shown in FIG. 5 are formed on the surface of the metal molded body 10 which is a joint surface with the resin molded body.
In order to form such a plurality of independent convex portions 41, the metal removal surface 42 including the concave portions (grooves) is formed by laser scanning the surface of the metal molded body 10 on which the convex portions 41 are not formed.
In order to form the convex portion 41 (and the metal removal surface 42) having such a predetermined height, a method of performing laser scanning a plurality of times on the joint surface of the metal molded body 10 can be applied.
When the number of scans is increased, the height (h) of the convex portion is relatively high, and when the number of scans is decreased, the height of the convex portion (h) is relatively low.
 独立した複数の凸部41は、図5に示すように隣接する凸部41同士の間に所定間隔をおいて形成する。
 隣接する凸部41同士の距離(Dis)は40~250μmが好ましく、80~200μmが好ましい。
 隣接する凸部41同士の距離(Dis)は同一に設定することが好ましいが、部分的に異ならせることができる。例えば、正方形の面にレーザースキャンするときは、各辺に沿ってドット状の孔を直線状に形成するときは等間隔のピッチとし、角部に沿ってレーザー照射するときは、ピッチを狭くすることができる。
 隣接する凸部41同士の間隔(W)は、30~200μmが好ましく、50~150μmがより好ましい。
 凸部41の幅は、例えば図5に示すように凸部41の平面形状が正方形であるときは、幅(1辺の長さ)は30~200μmが好ましく、50~150μmがより好ましい。
The plurality of independent convex portions 41 are formed with a predetermined interval between adjacent convex portions 41 as shown in FIG.
The distance (Dis) between the adjacent convex portions 41 is preferably 40 to 250 μm, more preferably 80 to 200 μm.
The distance (Dis) between the adjacent convex portions 41 is preferably set to be the same, but can be partially different. For example, when laser scanning is performed on a square surface, a uniform pitch is used when forming dot-shaped holes along each side, and a narrow pitch is used when laser irradiation is performed along corners. be able to.
The interval (W) between adjacent convex portions 41 is preferably 30 to 200 μm, and more preferably 50 to 150 μm.
For example, as shown in FIG. 5, when the planar shape of the convex portion 41 is a square, the width (length of one side) is preferably 30 to 200 μm, and more preferably 50 to 150 μm.
 独立した凸部41は、例えば、図6(a)、(b)に示すような断面形状を有するものである。
 凸部41の高さ(h)は、金属成形体10の強度を維持するため、金属成形体10の厚さの50%以内になるように調整することが好ましい。
 複数の独立した凸部41は、隣接する凸部41同士の距離(Dis)と凸部41の高さ(h)との比(h/Dis)が1.0~10の範囲の範囲のものであり、好ましくは1.2~8、より好ましくは1.5~5の範囲のものである。
 (h/Dis)を前記範囲に調整することで、レーザー照射範囲を従来よりも狭くした場合であっても、金属成形体と樹脂成形体との接合強度を高めることができるようになる。
The independent convex part 41 has a cross-sectional shape as shown in FIGS. 6 (a) and 6 (b), for example.
The height (h) of the convex portion 41 is preferably adjusted to be within 50% of the thickness of the metal molded body 10 in order to maintain the strength of the metal molded body 10.
The plurality of independent convex portions 41 have a ratio (h / Dis) between the distance (Dis) between the adjacent convex portions 41 and the height (h) of the convex portions 41 in the range of 1.0 to 10. And preferably in the range of 1.2 to 8, more preferably 1.5 to 5.
By adjusting (h / Dis) to the above range, even if the laser irradiation range is narrower than before, the bonding strength between the metal molded body and the resin molded body can be increased.
 レーザー照射する工程では、金属成形体10の接合面に対して独立した多数の凸部を形成するようにレーザー照射するが、凸部全体として直線(点線)、曲線(点線からなる曲線)、直線及び/又は曲線からなる図形等を形成するようにしてマーキングすることができる。
 例えば、断面が円形の丸棒の端面(金属成形体の接合面)にレーザー照射するとき、凸部全体として直径の異なる複数の同心円を形成するようにレーザー照射したり、凸部全体として渦巻きを形成するようにレーザー照射したり、凸部全体として多数の水玉模様状にレーザー照射したりすることができる。
 その他、金属成形体の接合面の形状(三角形、四角形、六角形、楕円形、不定形等)に応じて、上記した円形のものと同様にしてレーザー照射することができる。
In the laser irradiation step, laser irradiation is performed so as to form a large number of independent protrusions on the joint surface of the metal molded body 10, but the entire protrusion is a straight line (dotted line), a curve (curved line), a straight line. And / or marking can be performed so as to form a figure made of a curve.
For example, when laser irradiation is applied to the end face of a round bar having a circular cross section (joint surface of a metal molded body), laser irradiation is performed so as to form a plurality of concentric circles having different diameters as the entire convex portion, or spirals are formed as the entire convex portion. Laser irradiation can be performed so as to form, or laser irradiation can be performed in the form of a number of polka dots as the entire convex portion.
In addition, laser irradiation can be performed in the same manner as in the circular shape described above, depending on the shape (triangle, square, hexagon, ellipse, indeterminate shape, etc.) of the joint surface of the metal molded body.
 第3の製造方法におけるレーザースキャン工程を適用する金属成形体は特に制限されるものではなく、用途に応じて公知の金属からなる成形体を適宜選択することができる。例えば、鉄、各種ステンレス、アルミニウム又はその合金、銅、マグネシウム及びそれらを含む合金から選ばれる成形体を挙げることができる。 The metal molded body to which the laser scanning step in the third production method is applied is not particularly limited, and a molded body made of a known metal can be appropriately selected according to the application. For example, the molded object chosen from iron, various stainless steel, aluminum or its alloy, copper, magnesium, and an alloy containing them can be mentioned.
 第3の製造方法のレーザースキャン工程では公知のレーザーを使用することができ、例えば、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。 A known laser can be used in the laser scanning step of the third manufacturing method, for example, a YAG laser, a semiconductor laser, a glass laser, a ruby laser, a He—Ne laser, a nitrogen laser, a chelate laser, or a dye laser is used. be able to.
 第3製造方法のインサート成形工程は、第1の製造方法と同じ方法を適用することができる。
 樹脂成形体の成形材料として繊維状充填剤を使用したときは、繊維径が3~60μmの範囲のものを使用することができる。これらの中でも、例えば金属成形体10の接合面に対して形成される凸部同士の間隔(W)より小さな繊維径のものを使用することが好ましい。
 このようなマーキングパターン5の凸部同士の間隔(W)より小さな繊維径の繊維状充填材を使用したときには、金属成形体のマーキングパターン5の凸部同士間に繊維状充填材の一部が入り込んだ状態の複合成形体が得られ、金属成形体と樹脂成形体の接合強度が高められるので好ましい。
実施例
The same method as the first manufacturing method can be applied to the insert molding step of the third manufacturing method.
When a fibrous filler is used as the molding material for the resin molding, one having a fiber diameter in the range of 3 to 60 μm can be used. Among these, for example, it is preferable to use a fiber having a smaller fiber diameter than the interval (W) between the protrusions formed on the joint surface of the metal molded body 10.
When a fibrous filler having a fiber diameter smaller than the interval (W) between the convex portions of the marking pattern 5 is used, a part of the fibrous filler is present between the convex portions of the marking pattern 5 of the metal molded body. A composite molded body in an intruded state is obtained, which is preferable because the bonding strength between the metal molded body and the resin molded body is increased.
Example
 <測定方法>
 (1)孔径(D)、溝幅(W)及び凸部同士の距離(Dis)
 レーザー照射して加工した金属接合面の上から、CCD(キーエンス社製のデジタル顕微鏡VHX,レンズVH-Z450)を用いて、レンズ倍率450倍で凹凸の上面に焦点が合う状態で像を撮影した。
 孔径(D)については、画像上で焦点が合っている部分のDの寸法を15点測定し、その平均値を求めた。
 溝幅(W)については、同様にWの寸法を15点測定し、その平均値を求めた。
 凸部同士の距離(Dis)についても同様にDisの間隔を15点測定し、その平均値を求めた。測定に使用した顕微鏡写真の一例を図10に示す。
<Measurement method>
(1) Hole diameter (D), groove width (W), and distance between protrusions (Dis)
An image was taken from above the metal joint surface processed by laser irradiation using a CCD (Keyence's digital microscope VHX, lens VH-Z450) in a state where the top surface of the uneven surface is in focus at a lens magnification of 450 times. .
With respect to the hole diameter (D), the dimension of D in the portion in focus on the image was measured at 15 points, and the average value was obtained.
For the groove width (W), the W dimension was similarly measured at 15 points, and the average value was obtained.
Similarly, for the distance (Dis) between the convex portions, 15 points of the Dis interval were measured, and the average value was obtained. An example of a photomicrograph used for the measurement is shown in FIG.
 (2)孔の深さ(Dep)、溝の深さ(Dep)及び、凸部の高さ(h)
 複合成形体をダイヤモンドワイヤソー(メイワフォーシス(株)製のDWS3242)で切断した。
 切断は、ダイヤモンドワイヤソーの刃(円形の刃)を18°ずつ回転させて切断することで、合計で10個の試験片に切断した。
 それぞれの試験片の切断面をエポキシ樹脂で包埋した後に、断面を研磨機(ムサシノ電子製のMA-200D)で研磨した。
 その後、研磨した断面を走査型電子顕微鏡((株)日立ハイテクノロジーズ社製のS-3400N)で50倍の倍率で観察して断面画像を得た。
 それぞれの断面画像について、2mm以上の視野で凸部の底面(凹部)の2点以上を通る線1を引き、凸部の頂点を2点以上通りかつ線1に対して平行になるように線2を引いた。
 線1と線2間の間隔を測定し、その中で最も間隔が大きいものを孔の深さ(Dep)、溝の深さ(Dep)及び凸部の高さ(h)とした。測定に使用した顕微鏡写真の一例(実施例4)を図11に示す。
(2) Hole depth (Dep), groove depth (Dep), and convex part height (h)
The composite molded body was cut with a diamond wire saw (DWS3242 manufactured by Meiwa Forsys).
The cutting was performed by rotating a diamond wire saw blade (circular blade) by 18 ° and cutting it into 10 test pieces in total.
After the cut surface of each test piece was embedded with an epoxy resin, the cross section was polished with a polishing machine (MA-200D manufactured by Musashino Electronics).
Thereafter, the polished cross section was observed with a scanning electron microscope (S-3400N manufactured by Hitachi High-Technologies Corporation) at a magnification of 50 times to obtain a cross-sectional image.
For each cross-sectional image, a line 1 passing through two or more points on the bottom surface (concave part) of the convex part is drawn with a visual field of 2 mm or more, and the vertex of the convex part passes through two or more points and is parallel to line 1 2 was subtracted.
The distance between the lines 1 and 2 was measured, and the one with the largest distance was defined as the hole depth (Dep), the groove depth (Dep), and the height of the convex part (h). An example (Example 4) of the micrograph used for the measurement is shown in FIG.
 実施例1、2(第1の製造方法)
 金属板(SUS304)又はアルミニウム板(AL A5052)とポリアミド66からなる複合成形体を製造した。
Examples 1 and 2 (first manufacturing method)
A composite molded body made of a metal plate (SUS304) or aluminum plate (AL A5052) and polyamide 66 was produced.
 図7に示す金属板(SUS304又はAL(A5052))(幅15mm,長さ60mm,厚み1mm)の示すレーザー照射エリア(接合面)15(40mm2〔4mm×10mm〕)に対して、YAGレーザーを使用して、金属板10の接合面15に対して90度の角度で(真上から)レーザー照射した。レーザー照射条件は、表1に示すとおりである。多数の孔からなるマーキングパターンは図8(a)である。 YAG laser for laser irradiation area (bonding surface) 15 (40 mm 2 [4 mm × 10 mm]) indicated by metal plate (SUS304 or AL (A5052)) (width 15 mm, length 60 mm, thickness 1 mm) shown in FIG. Was used, and laser irradiation was performed at an angle of 90 degrees with respect to the bonding surface 15 of the metal plate 10 (from directly above). The laser irradiation conditions are as shown in Table 1. A marking pattern made up of a large number of holes is shown in FIG.
 金属板10の接合面15にレーザー照射した後、下記の方法でインサート成形して、図9で示す金属板10と樹脂成形体20が接合一体化された複合成形体30を得た。但し図9は、引張試験用のスペーサ40(スペーサ40は、本発明の方法で得られる複合成形体には含まれない)を取り付けた状態で示している。 After irradiating the joining surface 15 of the metal plate 10 with laser, insert molding was performed by the following method to obtain a composite molded body 30 in which the metal plate 10 and the resin molded body 20 shown in FIG. However, FIG. 9 shows a state in which the spacer 40 for the tensile test (the spacer 40 is not included in the composite molded body obtained by the method of the present invention) is attached.
 <インサート成形(射出成形)>
 樹脂:GF60%強化PA66樹脂(プラストロンPA66-GF60-01(L9):ダイセルポリマー(株)製)
 樹脂温度:320℃
 金型温度:100℃
 射出成形機:FUNAC ROBOSHOT S-2000i-100B
<Insert molding (injection molding)>
Resin: GF60% reinforced PA66 resin (Plastotron PA66-GF60-01 (L9): manufactured by Daicel Polymer Co., Ltd.)
Resin temperature: 320 ° C
Mold temperature: 100 ° C
Injection molding machine: FUNAC ROBOSHOT S-2000i-100B
 図9で示す複合成形体30を用いて、引張試験を行った。結果を表1に示す。
 <引張試験条件>
 試験機:テンシロンUCT-1T
 引張速度:5mm/min
 チャック間距離:50mm
 引張方向:図7~図9に示す白矢印方向。試験は、n数5で行い、それらの平均値を求めた。
A tensile test was performed using the composite molded body 30 shown in FIG. The results are shown in Table 1.
<Tensile test conditions>
Testing machine: Tensilon UCT-1T
Tensile speed: 5mm / min
Distance between chucks: 50mm
Tensile direction: White arrow direction shown in FIGS. The test was performed by n number 5, and the average value was calculated | required.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例3(第2の製造方法)、比較例1、2
 実施例1の方法に準じて、表2に示すレーザー照射条件でレーザースキャンした。
 その後、実施例1と同様にしてインサート成形して図9で示す複合成形体30(引張試験用のスペーサ40付き)を成形し、さらに実施例1と同様に引張試験を行った。結果を表2に示す。
Example 3 (second manufacturing method), Comparative Examples 1 and 2
According to the method of Example 1, laser scanning was performed under the laser irradiation conditions shown in Table 2.
Thereafter, insert molding was performed in the same manner as in Example 1 to form a composite molded body 30 (with a tensile test spacer 40) shown in FIG. 9, and a tensile test was further performed in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1、2は、簡単に剥がれたため、測定できなかった。
 実施例3と比較例1、2の引張強度の対比から、dep/W比を制御することによって金属成形体と樹脂成形体の接合強度が高められることが確認された。この事実は、スキャン範囲が同じ場合であれば、本発明の製造方法(レーザースキャン工程)を実施することで接合強度が高められることを示している。
Comparative Examples 1 and 2 could not be measured because they were easily peeled off.
From the comparison of the tensile strength between Example 3 and Comparative Examples 1 and 2, it was confirmed that the bonding strength between the metal molded body and the resin molded body can be increased by controlling the dep / W ratio. This fact indicates that if the scanning range is the same, the bonding strength can be increased by performing the manufacturing method (laser scanning step) of the present invention.
 実施例4~7(第3の製造方法)
 図7に示す金属板(AL(A5052))(幅15mm,長さ60mm,厚み1mm)の示すレーザー照射エリア(接合面)15(40mm2〔4mm×10mm〕)に対して、YVO4レーザー(バナジウムレーザー)を使用して、金属板10の接合面15に対して90度の角度で(真上から)レーザースキャンした。レーザースキャン条件は、表3に示すとおりである。多数の凸部からなるマーキングパターンは図5である。凸部は、低面が1辺が70μmの正方形である四角柱とし、Wが70μmとなるように条件設定した。その他の詳細条件設定は、表3に示す。レーザー加工設定条件と実際に形成された凸部の寸法形状は若干異なっており、その寸法については、CCDデジタル顕微鏡(図10;実施例4)や走査型電子顕微鏡観察(図11;実施例4)により測定した。
 その後、実施例1と同様にしてインサート成形して図9で示す複合成形体30(引張試験用のスペーサ40付き)を成形し、さらに実施例1と同様に引張試験を行った。結果を表3に示す。
Examples 4 to 7 (third manufacturing method)
The YVO4 laser (vanadium) is applied to the laser irradiation area (bonding surface) 15 (40 mm 2 [4 mm × 10 mm]) indicated by the metal plate (AL (A5052)) (width 15 mm, length 60 mm, thickness 1 mm) shown in FIG. The laser was scanned at an angle of 90 degrees with respect to the bonding surface 15 of the metal plate 10 (from directly above). The laser scanning conditions are as shown in Table 3. A marking pattern composed of a large number of convex portions is shown in FIG. The convex portion was a quadrangular prism whose lower surface was a square with a side of 70 μm, and conditions were set so that W was 70 μm. Other detailed condition settings are shown in Table 3. The laser processing setting conditions and the dimensions of the actually formed convex portions are slightly different, and the dimensions are determined by CCD digital microscope (FIG. 10; Example 4) and scanning electron microscope observation (FIG. 11; Example 4). ).
Thereafter, insert molding was performed in the same manner as in Example 1 to form a composite molded body 30 (with a tensile test spacer 40) shown in FIG. 9, and a tensile test was further performed in the same manner as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (12)

  1.  金属成形体の接合面に対して、ドット状の独立した複数の孔を形成するようにレーザー照射する工程と、
     ドット状の独立した複数の孔を形成した金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程を有する複合成形体の製造方法であって、
     レーザース照射工程において1つの孔を形成するとき、前記孔の開口部径(D)と前記孔の深さ(dep)との比(dep/D)が1.0~10の範囲になるようにする、複合成形体の製造方法。
    A step of irradiating a laser so as to form a plurality of independent dots in the shape of a joint on the metal molded body,
    A method for producing a composite molded body comprising a step of placing a portion including a joining surface of a metal molded body in which a plurality of independent dots are formed in a mold, and insert molding a resin to be the resin molded body. There,
    When forming one hole in the laser irradiation process, the ratio (dep / D) of the opening diameter (D) of the hole to the depth (dep) of the hole is in the range of 1.0 to 10. A method for producing a composite molded body.
  2.  前記(dep/D)が1.2~8.0の範囲になるようにする、請求項1記載の複合成形体の製造方法。 The method for producing a composite molded body according to claim 1, wherein the (dep / D) is in the range of 1.2 to 8.0.
  3.  孔の開口部径(D)が30~200μmで、孔の深さ(dep)が金属成形体の厚さの50%以内である、請求項1又は2記載の複合成形体の製造方法。 The method for producing a composite molded body according to claim 1 or 2, wherein the opening diameter (D) of the hole is 30 to 200 µm, and the depth (dep) of the hole is within 50% of the thickness of the metal molded body.
  4.  レーザー照射する工程が、金属成形体の接合面に対してドット状の独立した複数の孔を形成するようにレーザー照射して、前記複数の孔から形成される直線、曲線及びそれらからなる所望形状にマーキングする工程である、請求項1~3のいずれか1項記載の複合成形体の製造方法。 Laser irradiation is performed so that a plurality of dot-like independent holes are formed on the joint surface of the metal molded body, and a straight line, a curve formed from the plurality of holes, and a desired shape made of them. The method for producing a composite molded body according to any one of claims 1 to 3, wherein the method is a step of marking on the surface.
  5.  金属成形体の接合面に対して、複数の孔からなる溝が形成されるようにレーザー照射する工程と、
     前記溝が形成された金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程を有する複合成形体の製造方法であって、
     レーザー照射工程において前記溝を形成するとき、前記溝の幅(W)と前記溝の深さ(dep)との比(dep/W)が1.0~10の範囲になるようにする、複合成形体の製造方法。
    A step of irradiating a laser so that a groove composed of a plurality of holes is formed on the joint surface of the metal molded body,
    A method for producing a composite molded body comprising a step of placing a portion including a joining surface of a metal molded body in which the groove is formed in a mold, and insert molding a resin to be the resin molded body,
    When forming the groove in the laser irradiation step, the ratio (dep / W) of the groove width (W) to the groove depth (dep) is in the range of 1.0 to 10. Manufacturing method of a molded object.
  6.  前記(dep/W)が1.2~8.0の範囲になるようにする、請求項1記載の複合成形体の製造方法。 The method for producing a composite molded body according to claim 1, wherein the (dep / W) is in the range of 1.2 to 8.0.
  7.  溝の幅(W)が30~200μmで、溝の深さ(dep)が金属成形体の厚さの50%以内である、請求項1又は2記載の複合成形体の製造方法。 3. The method for producing a composite molded body according to claim 1, wherein the groove width (W) is 30 to 200 μm and the groove depth (dep) is within 50% of the thickness of the metal molded body.
  8.  レーザー照射する工程が、金属成形体の接合面に対して溝を形成するようにレーザースキャンして、前記溝からなる直線、曲線及びそれらからなる所望形状にマーキングする工程である、請求項5~7のいずれか1項記載の複合成形体の製造方法。 The laser irradiating step is a step of performing laser scanning so as to form a groove on the joint surface of the metal molded body and marking a straight line, a curved line made of the groove, and a desired shape made of the groove. 8. The method for producing a composite molded body according to any one of 7 above.
  9.  金属成形体の接合面に対して、複数の独立した凸部を形成するようにレーザー照射する工程と、
     前記複数の独立した凸部を形成した金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂をインサート成形する工程を有する複合成形体の製造方法であって、
     レーザース照射工程において凸部を形成するとき、隣接する凸部同士の距離(Dis)と凸部の高さ(h)との比(h/Dis)が1.0~10の範囲になるようにする、複合成形体の製造方法。
    A step of irradiating a laser so as to form a plurality of independent protrusions on the joint surface of the metal molded body,
    A method for producing a composite molded body comprising a step of placing a portion including a joint surface of a metal molded body having a plurality of independent protrusions in a mold and insert molding a resin to be the resin molded body. And
    When forming convex portions in the laser irradiation process, the ratio (h / Dis) between the distance between adjacent convex portions (Dis) and the height (h) of the convex portions is in the range of 1.0 to 10. A method for producing a composite molded body.
  10.  前記(h/Dis)が1.2~8.0の範囲になるようにする、請求項9記載の複合成形体の製造方法。 The method for producing a composite molded body according to claim 9, wherein the (h / Dis) is in the range of 1.2 to 8.0.
  11.  前記隣接する凸部同士の距離(Dis)が40~250μmで、凸部の高さ(h)が金属成形体の厚さの50%以内である、請求項1又は2記載の複合成形体の製造方法。 The composite molded body according to claim 1 or 2, wherein the distance (Dis) between the adjacent convex portions is 40 to 250 µm, and the height (h) of the convex portions is within 50% of the thickness of the metal molded body. Production method.
  12.  レーザー照射する工程が、金属成形体の接合面に対して複数の独立した凸部を形成するようにレーザー照射して、前記複数の独立した凸部から形成される直線、曲線及びそれらからなる所望形状にマーキングする工程である、請求項9~11のいずれか1項記載の複合成形体の製造方法。 Laser irradiation is performed so that a plurality of independent convex portions are formed on the joint surface of the metal molded body, and a straight line, a curve formed from the plurality of independent convex portions, and a desired shape made of them. The method for producing a composite molded body according to any one of claims 9 to 11, which is a step of marking a shape.
PCT/JP2012/079883 2011-11-21 2012-11-19 Composite molding manufacturing method WO2013077277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280057291.7A CN103946005A (en) 2011-11-21 2012-11-19 Composite molding manufacturing method
KR1020147014049A KR20140095514A (en) 2011-11-21 2012-11-19 Composite molding manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-253751 2011-11-21
JP2011253751A JP5848104B2 (en) 2011-11-21 2011-11-21 Method for producing composite molded body

Publications (1)

Publication Number Publication Date
WO2013077277A1 true WO2013077277A1 (en) 2013-05-30

Family

ID=48469722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079883 WO2013077277A1 (en) 2011-11-21 2012-11-19 Composite molding manufacturing method

Country Status (4)

Country Link
JP (1) JP5848104B2 (en)
KR (1) KR20140095514A (en)
CN (1) CN103946005A (en)
WO (1) WO2013077277A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159642A1 (en) * 2014-04-16 2015-10-22 住友ベークライト株式会社 Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition
US10588225B2 (en) 2017-01-23 2020-03-10 Hewlett-Packard Development Compnay, L.P. Casings of electronic devices
DE102021132222A1 (en) 2020-12-18 2022-06-23 Yasa Limited Stator housing for an axial flow machine

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004800A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
JP2014004801A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
JP5843750B2 (en) * 2012-12-14 2016-01-13 ポリプラスチックス株式会社 Metal part manufacturing method and composite molded body
JP6000910B2 (en) * 2013-07-10 2016-10-05 三井化学株式会社 Metal / resin composite structure
JP6199655B2 (en) * 2013-08-07 2017-09-20 アイシン精機株式会社 Composite molded product
JP6326782B2 (en) * 2013-11-22 2018-05-23 Dic株式会社 Metal resin joint molding
CN104742308B (en) * 2013-12-30 2017-01-18 富泰华精密电子(郑州)有限公司 Metal-resin complex and manufacturing method thereof
JP6510296B2 (en) * 2014-08-19 2019-05-08 ダイセルポリマー株式会社 Method of roughening metal molded body
JP6455021B2 (en) * 2014-08-22 2019-01-23 オムロン株式会社 Manufacturing method of bonded structure
US10449698B2 (en) 2014-08-22 2019-10-22 Omron Corporation Bonded structure and method for producing bonded structure
JP6417786B2 (en) 2014-08-22 2018-11-07 オムロン株式会社 Manufacturing method of bonded structure
JP6287897B2 (en) * 2014-08-22 2018-03-07 オムロン株式会社 LIGHTING DEVICE, ELECTRONIC DEVICE, FRAME STRUCTURE, AND METHOD FOR MANUFACTURING FRAME STRUCTURE
CN105522780B (en) * 2014-11-28 2017-08-04 比亚迪股份有限公司 A kind of metal-resin composite and preparation method thereof
JP2016159577A (en) * 2015-03-04 2016-09-05 オムロン株式会社 Joint structure
JP2017039274A (en) * 2015-08-20 2017-02-23 トヨタ自動車株式会社 Joining structure
JP6688113B2 (en) * 2016-03-18 2020-04-28 大豊工業株式会社 Surface processing method for sliding bearing and sliding bearing
JP6441295B2 (en) * 2016-12-26 2018-12-19 本田技研工業株式会社 Junction structure and manufacturing method thereof
JP6844279B2 (en) * 2017-01-27 2021-03-17 Dic株式会社 Metal / resin composite structure and its manufacturing method
WO2018139034A1 (en) 2017-01-27 2018-08-02 Dic株式会社 Metal/resin composite structure and method for manufacturing same
JP6928454B2 (en) * 2017-02-01 2021-09-01 大豊工業株式会社 Manufacturing method of sliding member, sliding member, swash plate for compressor using sliding member
JP6902950B2 (en) * 2017-07-20 2021-07-14 ポリプラスチックス株式会社 Metal resin composite molded product and its manufacturing method
JP6729535B2 (en) * 2017-11-07 2020-07-22 Dic株式会社 Method for manufacturing metal-resin-bonded molded product
TWI823935B (en) * 2018-05-11 2023-12-01 日商大賽璐塑膠股份有限公司 Composite body and method of manufacturing the composite body
KR102203714B1 (en) * 2018-07-17 2021-01-18 한국철도기술연구원 Insert type intergrated roller for enhancing strength in injection molding process
DE102018133553A1 (en) * 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Object with a metal substrate and a channel in the metal substrate and method for its production
US11810713B2 (en) 2018-12-25 2023-11-07 Daicel Miraizu Ltd. Rare earth magnet precursor or rare earth magnet molded body having roughened structure on surface and method for manufacturing same
JP7255465B2 (en) * 2019-12-03 2023-04-11 いすゞ自動車株式会社 METAL MEMBER FOR JOINING WITH RESIN COMPOSITION, METHOD FOR MANUFACTURING METAL-RESIN JOINTED BODY, AND METAL-RESIN JOINTED BODY
JP7255466B2 (en) * 2019-12-03 2023-04-11 いすゞ自動車株式会社 METAL MEMBER FOR JOINING WITH RESIN COMPOSITION, METHOD FOR MANUFACTURING METAL-RESIN JOINTED BODY, AND METAL-RESIN JOINTED BODY
US20230323088A1 (en) * 2020-12-23 2023-10-12 Nitto Boseki Co., Ltd. Metal-glass fiber-reinforced thermoplastic resin composite material
JP2023059624A (en) * 2021-10-15 2023-04-27 日本軽金属株式会社 Metallic component, metal resin conjugate and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341515A (en) * 2005-06-09 2006-12-21 Denso Corp Bonded body and method of bonding
JP2009051131A (en) * 2007-08-28 2009-03-12 Toyoda Gosei Co Ltd Composite body of metal and resin, and method of manufacturing the same
JP2010167475A (en) * 2009-01-26 2010-08-05 Yamase Denki Kk Metallic material joined with different kind of material and having airtightness in boundary therebetween, and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341515A (en) * 2005-06-09 2006-12-21 Denso Corp Bonded body and method of bonding
JP2009051131A (en) * 2007-08-28 2009-03-12 Toyoda Gosei Co Ltd Composite body of metal and resin, and method of manufacturing the same
JP2010167475A (en) * 2009-01-26 2010-08-05 Yamase Denki Kk Metallic material joined with different kind of material and having airtightness in boundary therebetween, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159642A1 (en) * 2014-04-16 2015-10-22 住友ベークライト株式会社 Brake piston, disc brake, method for manufacturing brake piston, and thermosetting resin composition
JP2015203473A (en) * 2014-04-16 2015-11-16 住友ベークライト株式会社 Brake piston, disc brake, method of manufacturing brake piston, and thermosetting resin composition
US10588225B2 (en) 2017-01-23 2020-03-10 Hewlett-Packard Development Compnay, L.P. Casings of electronic devices
DE102021132222A1 (en) 2020-12-18 2022-06-23 Yasa Limited Stator housing for an axial flow machine

Also Published As

Publication number Publication date
JP2013107273A (en) 2013-06-06
JP5848104B2 (en) 2016-01-27
CN103946005A (en) 2014-07-23
KR20140095514A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
WO2013077277A1 (en) Composite molding manufacturing method
JP5798535B2 (en) Method for producing composite molded body
JP6317064B2 (en) Composite molded body and manufacturing method thereof
JP5889775B2 (en) Composite molded body and manufacturing method thereof
JP5701414B1 (en) Method for producing composite molded body
JP5788836B2 (en) Composite molded body and manufacturing method thereof
JP5774246B2 (en) Method of roughening a metal molded body
KR101643114B1 (en) Layered substrate and method for manufacturing same
WO2012090671A1 (en) Method for manufacturing composite molded body
JP5932700B2 (en) Method for producing composite molded body
JP6329598B2 (en) Method for producing composite molded body
JP6055529B2 (en) Method for producing composite molded body
JP6787648B2 (en) How to manage the unevenness of the surface of the metal molded body
JP5798534B2 (en) Method for producing composite molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147014049

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12851171

Country of ref document: EP

Kind code of ref document: A1