JP2012062763A - Rotary type compressor - Google Patents

Rotary type compressor Download PDF

Info

Publication number
JP2012062763A
JP2012062763A JP2010205183A JP2010205183A JP2012062763A JP 2012062763 A JP2012062763 A JP 2012062763A JP 2010205183 A JP2010205183 A JP 2010205183A JP 2010205183 A JP2010205183 A JP 2010205183A JP 2012062763 A JP2012062763 A JP 2012062763A
Authority
JP
Japan
Prior art keywords
synthetic resin
resin coating
cylinder
rotor
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010205183A
Other languages
Japanese (ja)
Inventor
Shingo Goto
真吾 後藤
Keno Masamura
賢生 正村
Masanori Akizuki
政憲 秋月
Hiroshi Kanemitsu
博 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2010205183A priority Critical patent/JP2012062763A/en
Priority to CN2011800438985A priority patent/CN103097736A/en
Priority to PCT/JP2011/070787 priority patent/WO2012036141A1/en
Priority to KR1020137003261A priority patent/KR101356600B1/en
Priority to US13/813,017 priority patent/US20130129552A1/en
Priority to EP11825143.8A priority patent/EP2592279A4/en
Publication of JP2012062763A publication Critical patent/JP2012062763A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/802Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/20Resin

Abstract

PROBLEM TO BE SOLVED: To provide a rotary type compressor 1 of a low production cost capable of preventing a seizure of end faces 6A, 6B of a rotor 6.SOLUTION: The rotary type compressor 1 comprises a pair of closing members 11, 12 for closing opening parts in the front and back sides in the axial direction of a cylinder 5, and a rotor 6 rotated by a motor stored in the cylinder 5. Recesses 11C, 12C of the same depth are formed on the inner wall surfaces 11A, 12A of the closing members 11, 12 so that the recesses 11C, 12C are filled with a synthetic resin coating 22. Thereby, the synthetic resin coating 22 surface and the outward position adjacent thereto (left side in the drawing) of the inner wall surfaces 11A, 12A are on the same surface.

Description

本発明はロータリ型圧縮機に関し、より詳しくは、回転または揺動可能なローターを収容する円筒状のシリンダと、該シリンダにおける軸方向の両端の開口部を閉鎖する一対の閉鎖部材とを備えたロータリ型圧縮機に関する。   The present invention relates to a rotary compressor, and more specifically, includes a cylindrical cylinder that houses a rotatable or swingable rotor, and a pair of closing members that close openings at both ends in the axial direction of the cylinder. The present invention relates to a rotary compressor.

従来、略円筒状に形成されたシリンダと、該シリンダにおける軸方向の両端の開口部を閉鎖する一対の閉鎖部材と、シリンダ内に収容されて、駆動軸に連動して回転または揺動されるローターとを備えたロータリ型圧縮機は知られている(例えば特許文献1〜特許文献3)。
こうした従来のロータリ型圧縮機においては、ローターの軸方向寸法はシリンダの軸方向寸法よりも僅かに短く設定されており、ロータリ型圧縮機の構成部材の組み付け完了時においては、上記ローターの軸方向の両端面と、それらの箇所に近接する上記各閉鎖部材の内壁面(スラスト面)との間に僅かな隙間が確保されるように意図されている。
そして、従来のロータリ型圧縮機においては、シリンダ内の圧縮空間に冷媒ガスが吸入・吐出される際に、冷媒ガスとシリンダや閉鎖部材等との間で受熱放熱作用が行われるが、その受熱放熱作用によってロータリ型圧縮機の体積効率が低下するという欠点があった。そこで、例えば特許文献2においては、シリンダ内の圧縮空間に臨む箇所、すなわち、一対の閉鎖部材の内壁面(スラスト面)を合成樹脂によって被覆することが提案されている(図11参照)。そのような構成を採用することで、特許文献2の圧縮機においては、圧縮空間内に給排される冷媒ガスと一対の閉鎖部材の内壁面と間の受熱放熱作用を抑制して、圧縮機の体積効率を向上させるように意図されている。
ところで、上記特許文献2の圧縮機においては、前後一対の閉鎖部材の内壁面である端面全域にわたって合成樹脂被覆が施されているために、次のような問題があった。すなわち、図11に示すように、シリンダにおける軸方向前後の開口部を一対の閉鎖部材で閉鎖して、シリンダと両閉鎖部材を締結ボルトで一体に組み付けた際に、両閉鎖部材の内壁面の合成樹脂被覆が軸方向に圧縮されるので、ローターにおける軸方向の両端面とそれに近接する内壁面(合成樹脂被覆)との間の隙間αが当初意図した程度に確保されない場合がある。このように、組み付け完了後において、ローターの両端面とそれに近接する内壁面(合成樹脂被覆)との隙間が意図した程度に確保されない状態では、その後、ローターが回転された際に、ローターの軸方向の両端面とそれに摺接する内壁面(合成樹脂被覆)に焼付きが生じるという問題がある。
そこで、特許文献3の圧縮機においては、ローターの両端面と両閉鎖部材の内壁面との焼付きを防止するために、シリンダの軸方向の両端面と当接する箇所では、両閉鎖部材の内壁面の合成樹脂被覆を省略している(図12参照)。より詳細には、図12に示すように、特許文献3においては、シリンダの内周面における軸方向の前後の縁部(両方の端面の内周縁)に環状の切欠き部を形成するとともに、両閉鎖部材の合成樹脂被覆の半径方向寸法は、上記環状の切欠き部内に収容される寸法に設定されている。そのように構成することで、図12に示すようにシリンダと両閉鎖部材を締結ボルトで組み付けた際に、切欠き部内に両合成樹脂被覆の外周縁が収容されるので、それらの外周縁が軸方向に圧縮されることはない。そのため、特許文献3の圧縮機においては、組み付け完了後において、ローターの軸方向の両端面と、それらに近接する閉鎖部材の内壁面(スラスト面)との間に僅かな隙間αが確保されるようになっている。
Conventionally, a cylinder formed in a substantially cylindrical shape, a pair of closing members for closing openings at both ends in the axial direction of the cylinder, and housed in the cylinder and rotated or rocked in conjunction with a drive shaft A rotary compressor including a rotor is known (for example, Patent Documents 1 to 3).
In such a conventional rotary compressor, the axial dimension of the rotor is set slightly shorter than the axial dimension of the cylinder, and when the assembly of the components of the rotary compressor is completed, the axial direction of the rotor is It is intended that a slight gap is secured between the both end surfaces of each of these and the inner wall surfaces (thrust surfaces) of the respective closing members close to those portions.
In the conventional rotary type compressor, when the refrigerant gas is sucked / discharged into the compression space in the cylinder, a heat receiving / dissipating action is performed between the refrigerant gas and the cylinder, the closing member, etc. There was a drawback that the volumetric efficiency of the rotary compressor was reduced by the heat dissipation action. Thus, for example, Patent Document 2 proposes that a portion facing the compression space in the cylinder, that is, an inner wall surface (thrust surface) of the pair of closing members is covered with a synthetic resin (see FIG. 11). By adopting such a configuration, in the compressor of Patent Document 2, the heat receiving and radiating action between the refrigerant gas supplied to and discharged from the compression space and the inner wall surfaces of the pair of closing members is suppressed, and the compressor It is intended to improve the volumetric efficiency.
By the way, in the compressor of the said patent document 2, since the synthetic resin coating was given over the whole end surface which is an inner wall face of a pair of front and rear closing member, there existed the following problems. That is, as shown in FIG. 11, when the opening portions in the axial direction of the cylinder are closed with a pair of closing members, and the cylinder and both closing members are assembled together with fastening bolts, Since the synthetic resin coating is compressed in the axial direction, the gap α between the axial end surfaces of the rotor and the inner wall surface (synthetic resin coating) adjacent thereto may not be ensured to the extent intended at the beginning. Thus, after the assembly is completed, in a state where the gap between the both end faces of the rotor and the inner wall surface (synthetic resin coating) adjacent to the rotor is not secured to the intended extent, There is a problem that seizure occurs on both end surfaces in the direction and the inner wall surface (synthetic resin coating) in sliding contact therewith.
Therefore, in the compressor of Patent Document 3, in order to prevent seizure between the both end faces of the rotor and the inner wall surfaces of both closing members, the inner parts of both closing members are placed at positions where they are in contact with both end faces in the axial direction of the cylinder. The synthetic resin coating on the wall surface is omitted (see FIG. 12). More specifically, as shown in FIG. 12, in Patent Document 3, an annular notch is formed on the front and rear edges (inner edges of both end faces) in the axial direction on the inner circumferential surface of the cylinder, The radial dimension of the synthetic resin coating of both the closing members is set to a dimension that can be accommodated in the annular notch. With such a configuration, when the cylinder and both closing members are assembled with fastening bolts as shown in FIG. 12, the outer peripheral edges of both synthetic resin coatings are accommodated in the notches, so that the outer peripheral edges are There is no axial compression. Therefore, in the compressor of Patent Document 3, after the assembly is completed, a slight clearance α is ensured between both axial end surfaces of the rotor and the inner wall surface (thrust surface) of the closing member adjacent to them. It is like that.

特許第3742848号公報Japanese Patent No. 3742848 特開昭57−49084号公報JP 57-49084 A 特開2010−133346号公報JP 2010-133346 A

しかしながら、上記特許文献3の圧縮機においても、次のような欠点が生じている。すなわち、上記環状の切欠き部の深さ(軸方向寸法)は、そこに収容される合成樹脂被覆の厚さよりも僅かに大きい事が前提となるが、特許文献3においては、切欠き部の深さや合成樹脂被覆の厚さは実際には数μmに設定されているので、圧縮機の構成部材の製造工程において、上記環状の切欠き部の寸法(深さ、外径)と合成樹脂被覆の寸法(厚さ、外径)に関する寸法管理が極めて煩雑であった。しかも、製造過程において上記切欠き部や合成樹脂被覆の寸法関係を数μm単位で調整する必要があるので、その分だけ圧縮機の製造コストが高くなるという欠点もあった。
また、上記環状の切欠き部は、合成樹脂被覆の外周縁を収容可能な深さと外径を備えるように形成されるので、環状の切欠き部とそこに収容される合成樹脂被覆の外周縁との間には、半径方向と軸方向において僅かな間隙Xが生じる(図12参照)。このような間隙Xが生じると、組み付け完了後にローターが回転されてシリンダ内の圧縮空間が拡縮される際に、上記間隙Xを介して冷媒ガスが高圧空間から低圧空間側へ漏洩することになり、それによって、圧縮機が作動された際の圧縮効率が悪くなるという欠点がある。
さらに、特許文献3の圧縮機においては、本来の閉鎖部材の内壁面(端面)よりも合成樹脂被覆の外周縁は盛り上がって段差が生じている。そのため、シリンダと両閉鎖部材とを組み付ける過程において、先ず、シリンダと両方の閉鎖部材との軸心合せをする必要がある。その際に、合成樹脂被覆の外周縁である段差がシリンダ側の環状の切欠き部に引っ掛かることがあり、そのために、シリンダと両閉鎖部材の軸心合わせ作業が煩雑になっていた。そして、環状の切欠き部内に合成樹脂被覆の外周縁の全域が完全に収容されずに、合成樹脂被覆の外周縁の一部が環状の切欠き部よりも外方に位置ずれしたままで組み付けが完了する場合もある。この場合には、シリンダ内に吸入・吐出される冷媒ガスの漏れが生じることで圧縮機の性能の低下が生じることになり、さらに、合成樹脂被覆とローターの端面とが摺動する際に異常摩耗が生じて、焼付きが発生するという欠点があった。
However, the compressor of Patent Document 3 also has the following drawbacks. That is, it is assumed that the depth (axial dimension) of the annular notch is slightly larger than the thickness of the synthetic resin coating accommodated therein. Since the depth and the thickness of the synthetic resin coating are actually set to several μm, in the manufacturing process of the component parts of the compressor, the dimensions (depth and outer diameter) of the annular notch and the synthetic resin coating The dimensional management related to the dimensions (thickness, outer diameter) was extremely complicated. In addition, since it is necessary to adjust the dimensional relationship between the notch and the synthetic resin coating in units of several μm in the manufacturing process, there is a disadvantage that the manufacturing cost of the compressor increases accordingly.
In addition, the annular notch is formed to have a depth and an outer diameter that can accommodate the outer peripheral edge of the synthetic resin coating, and therefore the annular notch and the outer peripheral edge of the synthetic resin coating accommodated therein A slight gap X is generated between the two in the radial direction and the axial direction (see FIG. 12). When such a gap X occurs, the refrigerant gas leaks from the high-pressure space to the low-pressure space side through the gap X when the rotor is rotated after the assembly is completed and the compression space in the cylinder is expanded and contracted. As a result, there is a drawback that the compression efficiency is deteriorated when the compressor is operated.
Further, in the compressor of Patent Document 3, the outer peripheral edge of the synthetic resin coating rises more than the inner wall surface (end surface) of the original closing member, resulting in a step. Therefore, in the process of assembling the cylinder and both closing members, first, it is necessary to align the cylinder with both closing members. At that time, a step, which is the outer peripheral edge of the synthetic resin coating, may be caught by an annular notch on the cylinder side, which makes the operation of aligning the axis of the cylinder and both closing members complicated. Then, the entire outer peripheral edge of the synthetic resin coating is not completely accommodated in the annular notch, and the part of the outer peripheral edge of the synthetic resin coating is assembled with the position being shifted outward from the annular notch. May be completed. In this case, leakage of the refrigerant gas sucked and discharged into the cylinder causes deterioration of the performance of the compressor. Further, when the synthetic resin coating and the end face of the rotor slide, abnormalities occur. There was a drawback that seizure occurred due to wear.

上述した事情に鑑み、請求項1に記載した本発明は、ケーシング内に配置された円筒状のシリンダと、該シリンダにおける軸方向の前後の開口部を閉鎖する一対の閉鎖部材と、上記シリンダと一対の閉鎖部材によって形成された圧縮空間と、上記圧縮空間内に収容されるとともに駆動軸に連動して可動されるローターとを備えたロータリ型圧縮機において、
上記各閉鎖部材の内壁面における上記圧縮空間に臨む領域に凹部を形成するとともに、該凹部内に合成樹脂コーティングを埋設して、この合成樹脂コーティングの表面とその半径方向外方となる上記閉鎖部材の本来の内壁面とが同一面となるように構成したものである。
In view of the circumstances described above, the present invention described in claim 1 includes a cylindrical cylinder disposed in a casing, a pair of closing members for closing front and rear openings in the axial direction of the cylinder, and the cylinder. In a rotary compressor including a compression space formed by a pair of closing members, and a rotor accommodated in the compression space and movable in conjunction with a drive shaft,
A recess is formed in a region of the inner wall surface of each closure member facing the compression space, and a synthetic resin coating is embedded in the recess, so that the closure member becomes a surface of the synthetic resin coating and a radially outer side thereof. The original inner wall surface is configured to be the same surface.

上述した構成によれば、両閉鎖部材を製造する過程において凹部や合成樹脂コーティングの寸法管理を容易に行うことができる。そして、上記凹部内に埋設された合成樹脂コーティングが内壁面と同一面になることにより、ローターの端面とスラスト面となる合成樹脂コーティングの焼付きを防止できるとともに、従来と比較して製造コストが安価なロータリ型圧縮機を提供するができる。   According to the configuration described above, it is possible to easily manage the dimensions of the recess and the synthetic resin coating in the process of manufacturing both the closing members. And since the synthetic resin coating embedded in the concave portion is flush with the inner wall surface, seizure of the synthetic resin coating that becomes the end surface of the rotor and the thrust surface can be prevented, and the manufacturing cost is lower than the conventional one. An inexpensive rotary compressor can be provided.

本発明の一実施例を示す縦断面図。The longitudinal cross-sectional view which shows one Example of this invention. 図1のII―II線に沿う要部の断面図。Sectional drawing of the principal part which follows the II-II line | wire of FIG. 図1の要部の拡大図。The enlarged view of the principal part of FIG. 図3の要部の拡大図。The enlarged view of the principal part of FIG. 本発明の第2実施例を示す要部の水平断面図。The horizontal sectional view of the important section showing the 2nd example of the present invention. 図5に示す第2実施例における要部の縦断面図。The longitudinal cross-sectional view of the principal part in 2nd Example shown in FIG. 本発明の他の実施例における要部の断面図。Sectional drawing of the principal part in the other Example of this invention. 本発明の他の実施例における要部の断面図。Sectional drawing of the principal part in the other Example of this invention. 本発明の他の実施例を示す要部の縦断面図。The longitudinal cross-sectional view of the principal part which shows the other Example of this invention. 本発明の他の実施例を示す要部の正面図。The front view of the principal part which shows the other Example of this invention. 特許文献2に開示された従来技術を示す断面図。Sectional drawing which shows the prior art disclosed by patent document 2. FIG. 特許文献3に開示された従来技術を示す断面図。Sectional drawing which shows the prior art disclosed by patent document 3. FIG.

以下図示実施例について本発明を説明すると、図1ないし図2において、1はロータリ型圧縮機1であり、このロータリ型圧縮機1は家庭用または業務用エアコンに主に用いられるものであり、図5、図6および図8は自動車用エアコンに主に用いられるものである。
ロータリ型圧縮機1は、密閉ケーシング2内の上部に収納された駆動源としてのモータ3と、密閉ケーシング2内の下部に配置されるとともに上記モータ3によって回転されて冷媒ガスを吸入・吐出する圧縮機構4とを備えている。
圧縮機構4は、密閉ケーシング2の内面に嵌着された円筒状のシリンダ5と、このシリンダ5内に収容されて外周面6Cの一部がシリンダ5の内周面5Aと常時接触する円筒状のローター6と、シリンダ5の半径方向のガイド溝5Bに摺動自在に嵌合されて、バネ7によって先端部がローター6の外周面6Cに常時接触するベーン8と、上記シリンダ5の軸方向の開口部となる端面5C、5Dを閉鎖する上下一対の閉鎖部材11、12とを備えている。
The present invention will be described below with reference to the illustrated embodiments. In FIGS. 1 and 2, reference numeral 1 denotes a rotary compressor 1, which is mainly used for home or commercial air conditioners. 5, 6 and 8 are mainly used for an air conditioner for automobiles.
The rotary compressor 1 is disposed at the upper part in the sealed casing 2 as a drive source and disposed at the lower part in the sealed casing 2 and is rotated by the motor 3 to suck and discharge refrigerant gas. And a compression mechanism 4.
The compression mechanism 4 includes a cylindrical cylinder 5 fitted on the inner surface of the hermetic casing 2 and a cylindrical shape that is accommodated in the cylinder 5 and a part of the outer peripheral surface 6C is always in contact with the inner peripheral surface 5A of the cylinder 5. The rotor 6, the vane 8 that is slidably fitted in the radial guide groove 5 </ b> B of the cylinder 5, and whose tip is always in contact with the outer peripheral surface 6 </ b> C of the rotor 6 by the spring 7, and the axial direction of the cylinder 5 And a pair of upper and lower closing members 11 and 12 for closing the end surfaces 5C and 5D serving as openings.

一対の閉鎖部材11、12は、シリンダ5の上下の端面5C、5Dを上下から挟持した状態で配置されており、これらのシリンダ5と両閉鎖部材11、12は、円周方向の複数箇所を締結ボルト13によって気密を保持して一体に連結されている。これによって、シリンダ5と両閉鎖部材11、12とによって囲繞される空間が圧縮空間14となっており、圧縮空間14に面する両閉鎖部材11、12の内壁面11A、12A(スラスト面)はローター6の端面6A、6Bに近接した状態となっている。そして、シリンダ5の圧縮空間14は、ベーン8とローター6の外周面6Cとによって隣り合う2つの空間部に区画されており、一方の空間部が吸入室15となり、他方の空間部が圧縮室16となっている。
上下の閉鎖部材11、12の中央部には貫通孔11B、12Bが穿設されており、モータ3の駆動軸3Aを両閉鎖部材11、12の貫通孔11B、12Bに気密を保持して貫通させるとともに、上記ローター6にも貫通させている。この両閉鎖部材11、12の貫通孔11B、12Bによって駆動軸3Aが回転自在に軸支されている。また、ローター6内に位置する駆動軸3Aは、本来の駆動軸3Aの軸心よりも半径方向に軸心をずらした大径偏心部3Bとなっており、この大径偏心部3Bはローター6の内周面と円周方向に摺動するようになっている。
上記モータ3の駆動軸3Aが所定方向に回転されると大径偏心部3Bも回転されるので、この大径偏心部3Bの回転に連動されてローター6はシリンダ5の内周面5Aに沿って回転されるようになっている。その際には、ローター6の外周面6Cの一部はシリンダ5の内周面5Aとの接触状態を維持して摺動されるとともに、バネ7に付勢されたベーン8の先端はローター6の外周面6Cと接触状態を維持して摺動されるようになっている。このようにローター6が回転されることで吸入室15と圧縮室16の容積が拡縮されるので、冷媒ガスが吸入口17を介して吸入室15に吸入されてから圧縮され、その後、圧縮室16から吐出口18を介してシリンダ5の外部(密閉ケーシング2の外部)へ吐出されるようになっている。
なお、密閉ケーシング2内の下部には潤滑油21が貯溜されており、上記ローター6が回転される際には、駆動軸3Aの下端部内に形成された図示しない油通路を介してローター6の内周面6Dと外周面6Cの摺動部分に潤滑油21が供給されるようになっている。このようなロータリ型圧縮機1の構成は、例えば特許文献1により公知である。
The pair of closing members 11 and 12 are arranged in a state where the upper and lower end surfaces 5C and 5D of the cylinder 5 are sandwiched from above and below, and these cylinders 5 and both the closing members 11 and 12 have a plurality of positions in the circumferential direction. The fastening bolts 13 are integrally connected while maintaining airtightness. As a result, the space surrounded by the cylinder 5 and the both closing members 11 and 12 is a compression space 14, and the inner wall surfaces 11A and 12A (thrust surfaces) of the both closing members 11 and 12 facing the compression space 14 are The rotor 6 is close to the end faces 6A and 6B. The compression space 14 of the cylinder 5 is partitioned into two adjacent space portions by the vane 8 and the outer peripheral surface 6C of the rotor 6. One space portion serves as the suction chamber 15, and the other space portion serves as the compression chamber. It is 16.
Through holes 11B and 12B are formed in the center of the upper and lower closing members 11 and 12, and the drive shaft 3A of the motor 3 is penetrated through the through holes 11B and 12B of both the closing members 11 and 12 while maintaining airtightness. And also penetrates the rotor 6. The drive shaft 3 </ b> A is rotatably supported by the through holes 11 </ b> B and 12 </ b> B of both the closing members 11 and 12. Further, the drive shaft 3A located in the rotor 6 is a large-diameter eccentric portion 3B in which the shaft center is shifted in the radial direction from the axis of the original drive shaft 3A, and the large-diameter eccentric portion 3B is the rotor 6 It slides in the circumferential direction with the inner peripheral surface of the.
When the drive shaft 3A of the motor 3 is rotated in a predetermined direction, the large-diameter eccentric portion 3B is also rotated, so that the rotor 6 follows the inner peripheral surface 5A of the cylinder 5 in conjunction with the rotation of the large-diameter eccentric portion 3B. To be rotated. At this time, a part of the outer peripheral surface 6C of the rotor 6 is slid while maintaining a contact state with the inner peripheral surface 5A of the cylinder 5, and the tip of the vane 8 biased by the spring 7 is The outer peripheral surface 6C is slid while maintaining a contact state. Since the volumes of the suction chamber 15 and the compression chamber 16 are expanded and contracted by rotating the rotor 6 in this way, the refrigerant gas is sucked into the suction chamber 15 through the suction port 17 and then compressed, and then the compression chamber. 16 is discharged through the discharge port 18 to the outside of the cylinder 5 (outside of the sealed casing 2).
Lubricating oil 21 is stored in the lower part of the hermetic casing 2, and when the rotor 6 is rotated, the rotor 6 passes through an oil passage (not shown) formed in the lower end of the drive shaft 3A. Lubricating oil 21 is supplied to the sliding portion between the inner peripheral surface 6D and the outer peripheral surface 6C. Such a configuration of the rotary compressor 1 is known, for example, from Patent Document 1.

しかして、本実施例は、シリンダ5に連結された両閉鎖部材11、12の内壁面11A、12Aを改良することで、ローター6の両方の端面6A、6Bとスラスト面である内壁面11A、12Aの焼付きを抑制するように構成したことが特徴である。
すなわち、図3ないし図4に拡大して示すように、両方の閉鎖部材11、12の内壁面11A、12Aには、その中心側の貫通孔11B、12Bから締結ボルト13に近接する外周側の領域にわたって、深さが浅い円形の凹部11C、12Cが形成されている。これらの凹部11C、12Cの外径は同一に設定されており、また、これらの凹部11C、12Cの深さは同一寸法に設定されている。具体的には、凹部11C、12Cの深さは、例えば、1μm〜100μmに設定されており、好ましくは5μm〜50μmに設定されている。
複数の締結ボルト13によってシリンダ5と両閉鎖部材11、12を連結した際には、凹部11C、12Cの外周縁11D、12Dは、シリンダ5の内周面5Aよりも半径方向外方に位置して、シリンダ5の端面5C、5Dと重合するようになっている。
Thus, in this embodiment, by improving the inner wall surfaces 11A and 12A of the closing members 11 and 12 connected to the cylinder 5, both end surfaces 6A and 6B of the rotor 6 and the inner wall surface 11A which is a thrust surface, It is characterized by being configured to suppress seizure of 12A.
That is, as shown in an enlarged view in FIGS. 3 to 4, the inner wall surfaces 11A and 12A of both the closing members 11 and 12 are arranged on the outer peripheral side close to the fastening bolt 13 from the through holes 11B and 12B on the center side. Circular recesses 11C and 12C having a shallow depth are formed over the region. The outer diameters of the recesses 11C and 12C are set to be the same, and the depths of the recesses 11C and 12C are set to the same dimension. Specifically, the depth of the recesses 11C and 12C is set to, for example, 1 μm to 100 μm, and preferably 5 μm to 50 μm.
When the cylinder 5 and the closing members 11, 12 are connected by the plurality of fastening bolts 13, the outer peripheral edges 11 </ b> D, 12 </ b> D of the recesses 11 </ b> C, 12 </ b> C are positioned radially outward from the inner peripheral surface 5 </ b> A of the cylinder 5. Thus, it overlaps with the end faces 5C and 5D of the cylinder 5.

そして、両方の閉鎖部材11、12の凹部11C、12C内の全域には、該凹部11C、12Cの深さに見合う厚さで合成樹脂コーティング22、22が施されている。それにより、合成樹脂コーティング22、22の表面は、その凹部11C、12Cの隣接外方となる本来の閉鎖部材11、12の内壁面11A、12Aと同一面となっている。
さらに、本実施例においては、図4に示すように、上記合成樹脂コーティング22の表面に、半径方向において所定ピッチで同じ深さと幅の環状溝22Aを同心状に形成している。つまり、これらの隣り合う環状溝22Aとそれらの隣接位置となる環状突起22Bとによって、合成樹脂コーティング22の表面に規則的な凹凸が形成されている。
そして、各環状溝22Aの隣接位置の環状突起22Bが合成樹脂コーティング22の実質的なスラスト面となり、該スラスト面は本来の内壁面11A、12Aと同一平面となっている。本実施例では、上記環状溝22Aの幅は、20μmから500μmに設定されており、好ましくは50μm〜300μmに設定されている。環状溝22Aの深さ(環状突起22Bの高さ)は、1〜20μmに設定されており、好ましくは2〜10μmに設定されている。
また、合成樹脂コーティング22の材料としては、熱硬化性合成樹脂に、グラファイト、カーボン、PTFE、MoSのうちの少なくとも1種類を加えたものを用いている。なお、合成樹脂コーティング材料としてはこのような材料を用いるが、材料の強度を高めるために、上述した材料にさらにアルミナ等の硬質物を添加してもよい。また、環状溝22Aは合成樹脂コーティング22の表面だけでなく、合成樹脂コーティング22の半径方向外周の内壁面11A、12Aの一部もしくは全面にも形成してもよい。
And the synthetic resin coatings 22 and 22 are given to the whole area in the recessed parts 11C and 12C of both the closing members 11 and 12 by the thickness corresponding to the depth of these recessed parts 11C and 12C. Accordingly, the surfaces of the synthetic resin coatings 22 and 22 are flush with the inner wall surfaces 11A and 12A of the original closing members 11 and 12 that are adjacent to the outer sides of the recesses 11C and 12C.
Furthermore, in this embodiment, as shown in FIG. 4, annular grooves 22A having the same depth and width are formed concentrically on the surface of the synthetic resin coating 22 at a predetermined pitch in the radial direction. That is, regular irregularities are formed on the surface of the synthetic resin coating 22 by the adjacent annular grooves 22A and the annular protrusions 22B at the adjacent positions.
The annular protrusion 22B adjacent to each annular groove 22A becomes a substantial thrust surface of the synthetic resin coating 22, and the thrust surface is flush with the original inner wall surfaces 11A and 12A. In the present embodiment, the width of the annular groove 22A is set to 20 μm to 500 μm, preferably 50 μm to 300 μm. The depth of the annular groove 22A (the height of the annular protrusion 22B) is set to 1 to 20 μm, preferably 2 to 10 μm.
The synthetic resin coating 22 is made of a thermosetting synthetic resin to which at least one of graphite, carbon, PTFE, and MoS 2 is added. In addition, although such a material is used as the synthetic resin coating material, in order to increase the strength of the material, a hard material such as alumina may be further added to the above-described material. Further, the annular groove 22A may be formed not only on the surface of the synthetic resin coating 22, but also on part or the whole of the inner wall surfaces 11A and 12A on the outer periphery in the radial direction of the synthetic resin coating 22.

以上のように、本実施例においては、閉鎖部材11、12における内壁面11A、12Aに深さが浅い凹部11C、12Cを形成した上で、それらの凹部11C、12C内を合成樹脂コート22で埋め尽くして被覆している。
このような構成となっているので、閉鎖部材11、12の製造工程において、閉鎖部材11、12に上記凹部11C、12Cを形成する際、およびそれらの凹部11C、12Cに合成樹脂コーティング22、22を埋設する際に、凹部11C、12Cの寸法(深さ、外径)や合成樹脂コーティング22の厚さ等の寸法管理を容易に行うことができる。換言すると、上述した特許文献3の場合のように、凹部の寸法や合成樹脂被覆の厚さに関して煩雑な寸法管理を行うことなく、凹部11C、12C内に合成樹脂コーティング22を埋設することができる。
As described above, in the present embodiment, the recesses 11C and 12C having shallow depths are formed on the inner wall surfaces 11A and 12A of the closing members 11 and 12, and the insides of the recesses 11C and 12C are covered with the synthetic resin coat 22. Filled and covered.
Since it becomes such a structure, in the manufacturing process of the closure members 11 and 12, when forming the said recessed parts 11C and 12C in the closure members 11 and 12, and synthetic resin coatings 22 and 22 to those recessed parts 11C and 12C When embedding, the dimensions such as the dimensions (depth and outer diameter) of the recesses 11C and 12C and the thickness of the synthetic resin coating 22 can be easily performed. In other words, as in the case of Patent Document 3 described above, the synthetic resin coating 22 can be embedded in the recesses 11 </ b> C and 12 </ b> C without performing complicated dimension management regarding the dimensions of the recesses and the thickness of the synthetic resin coating. .

このような本実施例によれば、シリンダ5およびローター6の軸方向寸法を所要寸法に設定して、上述した各構成部材を組み付けた際には、ローター6の端面6A、6Bとその近接位置となる合成樹脂コーティング22(スラスト面)との間に僅かな隙間αが維持される(図3参照)。そして、ローター6が回転される際の圧縮工程においては、高温高圧の冷媒ガスと、上記ローター6の摺動部分の摺動発熱により各構成部品が熱膨張差を持つことになる。それによって、組み付け時の上記隙間αが狭くなって、ローター6の端面6A、6Bとスラスト面である上記合成樹脂コーティング22が接触する状況になっても、多数の凹部としての環状溝22Aが形成されているので合成樹脂コーティング22の潤滑油の保持性は良好であり、かつ端面6A、6Bと合成樹脂コーティング22のなじみ性も良好である。そのため、ローター6の端面6A、6Bとスラスト面である上記合成樹脂コーティング22が接触する状況になっても、合成樹脂コーティング22側は、環状溝22Aの隣接位置にある環状突起22Bが実質的なスラスト面としてローター6の端面6A、6Bと接触することになる。つまり、合成樹脂コーティング22全域が平坦面である場合と比較すると、スラスト面の摺動面積が小さいことになる。そのため、ローター6の端面6A、6Bと合成樹脂コーティング22の焼付きを良好に防止することができる。
また、合成樹脂コーティング22は、複数の環状溝22Aによる潤滑油の保持性が高いので、潤滑油の冷却性能より摺動発熱を低減することができる。 このように摺動発熱を低減できることにより、各構成部品の熱膨張差を低減できることになり、上述したローター6の端面6A、6Bとスラスト面としての合成樹脂コーティング22との初期設定の隙間を狭く設定することができる。これにより、圧縮空間14内における高圧側から低圧側への冷媒ガスの圧縮もれを抑制して、圧縮効率を向上させることができ、ひいてはロータリ型圧縮機1の作動効率を向上させることができる。
また、上述したように、合成樹脂コーティング22の潤滑油の保持性によって摺動発熱を低減できるので、冷媒ガスの吸入側(低温)である吸入室15における熱交換を抑制することができ、吸入室15に熱が伝わることによる体積効率の低下を防止することができる。この点においても、ロータリ型圧縮機1の作動効率を向上させることができる。
さらに、上記合成樹脂コーティング22にMoSを添加した場合には、合成樹脂コーティング22の潤滑油の保持性がさらに向上するので、摺動発熱とMoSの低摩擦により焼付きを防止することができる。
また、ロータリ型圧縮機1は、特に昼夜の寒暖差による冷媒ガスの液化現象によってスラスト面が液状冷媒に晒されることが多い。液状冷媒は潤滑油を洗浄する作用があるため、スラスト面が液状冷媒に晒されると、潤滑油が欠乏したドライ環境になり、従来では、このような場合に圧縮機の起動時に潤滑油が無いことによるスラスト面の焼付現象が起こることがあった。しかしながら、本実施例においては、スラスト面は合成樹脂コーティング22によって被覆されているので、潤滑油不足のドライ環境下であってもスラスト面、すなわち合成樹脂コーティング22の箇所の焼付きを防止することができる。
さらに、合成樹脂コーティング22として、上述した材料にPTFEを添加することにより、上述したドライ環境下におけるスラスト面(合成樹脂コーティング22)の摺動特性を高めることが可能であり、上述したドライ環境下であってもより高い摺動特性を確保することができる。
また、合成樹脂コーティング22として、上述した材料に例えばグラファイトのような硬質の添加物を使用することが可能であり、それにより、合成樹脂コーティング22の環状溝22Aとその隣接位置の環状突起の剛性を向上することができ、それによって良好な摺動特性を得ることができる。
また、スラスト面として合成樹脂コーティング22がない場合には、金属製のローター6の端面6A、6Bと金属製の閉鎖部材11、12の内壁面11A、12Aとの間に異物が侵入すると、それが原因となってローター6の端面6A、6Bに焼付きが起こるが、本実施例ではスラスト面として合成樹脂コーティング22が存在するので、異物は合成樹脂コーティング22内に埋収される。このように合成樹脂コーティング22は異物の埋収性があるので、この点においても本実施例によればローター6の焼付きを防止することが可能である。
According to such a present Example, when the axial direction dimension of the cylinder 5 and the rotor 6 is set to a required dimension and each of the above-described constituent members is assembled, the end faces 6A and 6B of the rotor 6 and their proximity positions A slight gap α is maintained with the synthetic resin coating 22 (thrust surface) (see FIG. 3). In the compression process when the rotor 6 is rotated, each component has a thermal expansion difference due to the high-temperature and high-pressure refrigerant gas and the sliding heat generation of the sliding portion of the rotor 6. As a result, the gap α at the time of assembly is narrowed, and even when the end surfaces 6A and 6B of the rotor 6 and the synthetic resin coating 22 which is a thrust surface come into contact with each other, a large number of annular grooves 22A as concave portions are formed. Therefore, the lubricating resin retainability of the synthetic resin coating 22 is good, and the conformability between the end faces 6A and 6B and the synthetic resin coating 22 is also good. Therefore, even when the synthetic resin coating 22 that is the thrust surface is in contact with the end faces 6A and 6B of the rotor 6, the annular protrusion 22B at the position adjacent to the annular groove 22A is substantially on the synthetic resin coating 22 side. As a thrust surface, the end surfaces 6A and 6B of the rotor 6 are brought into contact with each other. That is, the sliding area of the thrust surface is smaller than when the entire synthetic resin coating 22 is a flat surface. Therefore, seizure of the end surfaces 6A and 6B of the rotor 6 and the synthetic resin coating 22 can be prevented satisfactorily.
Further, since the synthetic resin coating 22 has high lubricating oil retention by the plurality of annular grooves 22A, it is possible to reduce sliding heat generation from the cooling performance of the lubricating oil. By reducing the sliding heat generation in this way, the difference in thermal expansion of each component can be reduced, and the initial setting gap between the end surfaces 6A and 6B of the rotor 6 and the synthetic resin coating 22 as the thrust surface is narrowed. Can be set. Thereby, the compression leak of the refrigerant gas from the high pressure side to the low pressure side in the compression space 14 can be suppressed, and the compression efficiency can be improved. As a result, the operation efficiency of the rotary compressor 1 can be improved. .
Further, as described above, sliding heat generation can be reduced by retaining the lubricating oil of the synthetic resin coating 22, so heat exchange in the suction chamber 15 on the refrigerant gas suction side (low temperature) can be suppressed, and suction A decrease in volumetric efficiency due to heat being transferred to the chamber 15 can be prevented. Also in this point, the operating efficiency of the rotary compressor 1 can be improved.
Further, when MoS 2 is added to the synthetic resin coating 22, the retention of the lubricating oil in the synthetic resin coating 22 is further improved, so that seizure can be prevented by sliding heat generation and low friction of MoS 2. it can.
In addition, the rotary compressor 1 is often exposed to a liquid refrigerant by a liquefaction phenomenon of refrigerant gas due to a difference in temperature between day and night. Since the liquid refrigerant has the effect of washing the lubricating oil, if the thrust surface is exposed to the liquid refrigerant, it becomes a dry environment in which the lubricating oil is deficient. Conventionally, in this case, there is no lubricating oil when starting the compressor. The seizure phenomenon of the thrust surface may occur. However, in this embodiment, since the thrust surface is covered with the synthetic resin coating 22, it is possible to prevent seizure of the thrust surface, that is, the portion of the synthetic resin coating 22, even in a dry environment where the lubricating oil is insufficient. Can do.
Furthermore, by adding PTFE to the above-described material as the synthetic resin coating 22, it is possible to improve the sliding characteristics of the thrust surface (synthetic resin coating 22) in the dry environment described above. Even so, higher sliding characteristics can be ensured.
Further, as the synthetic resin coating 22, it is possible to use a hard additive such as graphite for the above-described material, and thereby the rigidity of the annular groove 22A of the synthetic resin coating 22 and the annular protrusion at the adjacent position thereof. Can be improved, and thereby good sliding characteristics can be obtained.
Further, in the case where the synthetic resin coating 22 is not provided as the thrust surface, if foreign matter enters between the end surfaces 6A and 6B of the metal rotor 6 and the inner wall surfaces 11A and 12A of the metal closing members 11 and 12, For this reason, seizure occurs on the end faces 6A and 6B of the rotor 6. However, in this embodiment, the synthetic resin coating 22 exists as a thrust surface, so that the foreign matter is buried in the synthetic resin coating 22. Thus, since the synthetic resin coating 22 has a foreign substance burying property, the seizure of the rotor 6 can be prevented according to the present embodiment also in this respect.

次に、図5ないし図6は本発明を適用した第2実施例のロータリ型圧縮機1の要部を示したものであり、この第2実施例は、ベーン式のロータリ型圧縮機1に本発明を適用したものである。
すなわち、ベーン式のロータリ圧縮機1は、円筒状のシリンダ5と、その内部に収容されてモータの駆動軸3Aによって回転される円柱状のローター6と、このローター6の外周部に放射方向に設けられた3枚のベーン8と、シリンダ5の前後の開口となる端面5C、5Dを閉鎖する一対の閉鎖部材11、12とを備えている。シリンダ5と両閉鎖部材11、12は、複数の締結ボルト13によって気密を保持して連結されており、シリンダ5内の圧縮空間14は、ローター6の外周面と3枚のベーン8によって3つの作動室15に区分されている。
ローター6と同軸に配置された駆動軸3Aが回転されると、ローター6が回転されるので、3枚のベーン8の先端がシリンダ5の内周面5Aに接触しながら移動されるので、3つの作動室15が拡縮されるようになっている。それに伴って、吸入口17から作動室15に吸入された冷媒ガスが圧縮されてから吐出口18を介してシリンダ5の外部へ吐出されるようになっている。このような第2実施例の基本構成は、例えば上述した特許文献3のものと変わりはない。
そして、図6に示すように、この第2実施例においても、両閉鎖部材11、12には上述した第1実施例と同様の凹部11C、12Cが形成されており、かつこれらの凹部11C、12C内には上述した第1実施例と同様に合成樹脂コーティング22が設けられている。さらに、図面は省略するが、上記図3に示した第1実施例と同様に、この第2実施例の合成樹脂コーティング22の表面にも多数の環状溝が形成されている。
なお、この第2実施例においては、上記第1実施例と対応する部材には同一の部材番号を付している。このように構成された第2実施例のロータリ圧縮機1であっても、上記第1実施例と同様の作用・効果を得ることができる。
Next, FIG. 5 to FIG. 6 show the main part of the rotary compressor 1 of the second embodiment to which the present invention is applied. This second embodiment is applied to the vane rotary compressor 1. The present invention is applied.
That is, the vane-type rotary compressor 1 includes a cylindrical cylinder 5, a columnar rotor 6 accommodated in the cylinder 5 and rotated by a drive shaft 3 </ b> A of the motor, and a radially outer portion of the rotor 6. The three vanes 8 provided and a pair of closing members 11 and 12 that close the end surfaces 5C and 5D that are the front and rear openings of the cylinder 5 are provided. The cylinder 5 and the closing members 11 and 12 are connected to each other by a plurality of fastening bolts 13 so as to be hermetically sealed, and the compression space 14 in the cylinder 5 is divided into three parts by the outer peripheral surface of the rotor 6 and the three vanes 8. It is divided into working chambers 15.
When the drive shaft 3A arranged coaxially with the rotor 6 is rotated, the rotor 6 is rotated, so that the tips of the three vanes 8 are moved while being in contact with the inner peripheral surface 5A of the cylinder 5. One working chamber 15 is expanded and contracted. Accordingly, the refrigerant gas sucked into the working chamber 15 from the suction port 17 is compressed and then discharged to the outside of the cylinder 5 through the discharge port 18. Such a basic configuration of the second embodiment is not different from that of Patent Document 3 described above, for example.
And also in this 2nd Example, as shown in FIG. 6, the recessed parts 11C and 12C similar to 1st Example mentioned above are formed in both the closure members 11 and 12, And these recessed parts 11C, 12C is provided with a synthetic resin coating 22 as in the first embodiment described above. Further, although not shown in the drawings, a large number of annular grooves are formed on the surface of the synthetic resin coating 22 of the second embodiment as in the first embodiment shown in FIG.
In the second embodiment, members corresponding to those in the first embodiment are given the same member numbers. Even if it is the rotary compressor 1 of 2nd Example comprised in this way, the effect | action and effect similar to the said 1st Example can be acquired.

また、上記第1実施例では、円筒状のローター6と平板状のベーン8が別体となったロータリ圧縮機1に本発明を適用した場合を説明したが、図7に示すように、外周部にベーン8が一体に固定されたローター6を備えて、該ローター6をモータの駆動軸3Aとその偏心大径部3Bによってシリンダ5内で揺動させるように構成したロータリ型圧縮機1にも本発明を適用することができる。このような構成のロータリ型圧縮機1は上記特許文献2で公知であるので、詳細な説明は省略する。この図7に示したロータリ型圧縮機1のシリンダ5とその軸方向前後の端面を閉鎖する一対の閉鎖部材として、上記図3に示した構成を採用することができる。なお、この図7に示す実施例において、上記第1実施例と対応する部材には同じ部材番号を付している。   Further, in the first embodiment, the case where the present invention is applied to the rotary compressor 1 in which the cylindrical rotor 6 and the flat vane 8 are separated has been described. However, as shown in FIG. The rotary compressor 1 is provided with a rotor 6 having a vane 8 fixed integrally therewith, and the rotor 6 is oscillated within the cylinder 5 by a motor drive shaft 3A and its eccentric large diameter portion 3B. The present invention can also be applied. Since the rotary compressor 1 having such a configuration is known from the above-mentioned Patent Document 2, detailed description thereof is omitted. The configuration shown in FIG. 3 can be adopted as a pair of closing members for closing the cylinder 5 of the rotary compressor 1 shown in FIG. In the embodiment shown in FIG. 7, members corresponding to those in the first embodiment are given the same member numbers.

また、上記図5および図6に示した第2実施例は、シリンダ5の内周面5Aが円筒状であって、かつ、ローター6の外周面6Cにベーン8が3枚配置されたロータリ型圧縮機1に本発明を適用しているが、図8に示すように、ローター6の外周部にベーン8を5枚備えるとともにシリンダ5の断面が楕円形となるロータリ型圧縮機1にも本発明を適用することができる。この図8に示したロータリ型圧縮機1のシリンダ5とその軸方向の開口部である端面を閉鎖する一対の閉鎖部材として、上記図3に示した構成を適用することができる。なお、この図8に示す実施例において、上記第2実施例と対応する部材には同じ部材番号を付している。
なお、上記図5ないし図8においては、3枚または5枚のベーン8を備えたロータリ圧縮機1に本発明を適用した実施例を開示しているが、ベーン8を1枚以上備えるベーン式のロータリ圧縮機1であれば本発明を適用することができる。
The second embodiment shown in FIGS. 5 and 6 is a rotary type in which the inner peripheral surface 5A of the cylinder 5 is cylindrical and three vanes 8 are arranged on the outer peripheral surface 6C of the rotor 6. Although the present invention is applied to the compressor 1, as shown in FIG. 8, the present invention is also applied to the rotary compressor 1 having five vanes 8 on the outer peripheral portion of the rotor 6 and the cylinder 5 having an elliptical cross section. The invention can be applied. The configuration shown in FIG. 3 can be applied as a pair of closing members for closing the cylinder 5 of the rotary compressor 1 shown in FIG. 8 and the end face that is the opening in the axial direction thereof. In the embodiment shown in FIG. 8, members corresponding to those in the second embodiment are given the same member numbers.
5 to 8, the embodiment in which the present invention is applied to the rotary compressor 1 having three or five vanes 8 is disclosed. However, the vane type having one or more vanes 8 is disclosed. The present invention can be applied to any rotary compressor 1.

次に、図9は本発明のさらに別の実施例を示したものである。端的にいえば、この図9に示した実施例は、上記図7の構成を上下に2段備えたロータリ型圧縮101に本発明を適用したものである。
すなわち、ロータリ圧縮機101の圧縮機構104は、密閉ケーシング102内に嵌着された上方の閉鎖部材111と、この閉鎖部材111の内壁面111A(下面)によって上方開口を閉鎖された第1シリンダ105と、この第1シリンダ105の下方開口を閉鎖した円板状の中間閉鎖部材120と、この中間閉鎖部材120の下面によって上方開口を閉鎖された第2シリンダ105’と、さらに該第2シリンダ105’の下方開口を閉鎖する下方の閉鎖部材112とを備えている。
第1シリンダ105と閉鎖部材111および中間閉鎖部材120とによって囲まれる空間部が第1圧縮空間114となっており、その中に第1ロータ106が収容されている。この第1ロータ106内にはモータ103の駆動軸103Aにおける第1大径偏心部103Bが円周方向に摺動自在に嵌合されている。
また、中間閉鎖部材120と第2シリンダ105’および下方の閉鎖部材112とによって囲まれた空間部が第2圧縮空間114’となっており、その中に第2ロータ106’が収容されている。この第2ロータ106’内には上記駆動軸103Aにおける第2大径偏心部103B’が摺動自在に嵌合されている。
上下の両閉鎖部材111、112と中間閉鎖部材120および両シリンダ105、105’は、複数の締結ボルト113によって一体に連結されている。このような多段式のロータリ型圧縮機101の構成は、例えば特開2008−280485号公報等で公知なので、これ以上の詳細な説明は省略する。
そして、このような構成におけるロータリ圧縮機101における、両圧縮空間114、114’に臨む箇所にも上記図3および図4と同様の構成が採用されている。つまり、上方の閉鎖部材111における内壁面(下面)111Aおよび中間閉鎖部材120の上面120A(内壁面)には、上記図4と同様の凹部とそれを埋める樹脂コーティングが設けられている。また、中間閉鎖部材120の下面120B(内壁面)と下方の閉鎖部材112の内壁面112A(上)にも、図4と同様の凹部とそれを埋める樹脂コーティングが設けられている。なお、この図9に示した実施例では、上記図1および図7と対応する各部材には、それぞれ100を加算した部材番号を付している。このように、多段式のロータリ圧縮機1における両閉鎖部材111、112および中間閉鎖部材120にも図3ないし図4に示した本発明の構成を適用することができる。
Next, FIG. 9 shows still another embodiment of the present invention. In short, the embodiment shown in FIG. 9 is one in which the present invention is applied to a rotary type compression 101 having the configuration of FIG.
That is, the compression mechanism 104 of the rotary compressor 101 includes an upper closing member 111 fitted in the hermetic casing 102 and a first cylinder 105 whose upper opening is closed by an inner wall surface 111A (lower surface) of the closing member 111. A disc-shaped intermediate closing member 120 in which the lower opening of the first cylinder 105 is closed, a second cylinder 105 ′ in which the upper opening is closed by the lower surface of the intermediate closing member 120, and the second cylinder 105 And a lower closing member 112 that closes the lower opening.
A space surrounded by the first cylinder 105, the closing member 111, and the intermediate closing member 120 is a first compression space 114, in which the first rotor 106 is accommodated. In the first rotor 106, a first large-diameter eccentric portion 103B of the drive shaft 103A of the motor 103 is fitted so as to be slidable in the circumferential direction.
A space surrounded by the intermediate closing member 120, the second cylinder 105 ′ and the lower closing member 112 is a second compression space 114 ′, in which the second rotor 106 ′ is accommodated. . A second large-diameter eccentric portion 103B ′ of the drive shaft 103A is slidably fitted in the second rotor 106 ′.
The upper and lower closing members 111, 112, the intermediate closing member 120, and both cylinders 105, 105 ′ are integrally connected by a plurality of fastening bolts 113. The configuration of such a multistage rotary compressor 101 is well known in, for example, Japanese Patent Application Laid-Open No. 2008-280485, and a detailed description thereof is omitted.
And the structure similar to the said FIG.3 and FIG.4 is employ | adopted also in the location which faces both compression space 114,114 'in the rotary compressor 101 in such a structure. That is, the inner wall surface (lower surface) 111A of the upper closing member 111 and the upper surface 120A (inner wall surface) of the intermediate closing member 120 are provided with the same concave portion as in FIG. 4 and a resin coating filling it. Also, the lower surface 120B (inner wall surface) of the intermediate closing member 120 and the inner wall surface 112A (upper) of the lower closing member 112 are provided with a recess similar to that shown in FIG. 4 and a resin coating filling it. In the embodiment shown in FIG. 9, each member corresponding to FIG. 1 and FIG. As described above, the configuration of the present invention shown in FIGS. 3 to 4 can be applied to both the closing members 111 and 112 and the intermediate closing member 120 in the multistage rotary compressor 1.

なお、上述した各実施例においては、合成樹脂コーティング22の表面に複数の環状溝22Aを設けることで多数の凹部を形成しているが、図10に要部の正面図として示すように、合成樹脂コーティング22の表面に縦横の格子状突起22Cを形成することで、それら格子状突起22Cの隣接位置に規則的な方形の凹部22Dを形成するようにしても良い。この場合には、各格子状突起22Cが実質的なスラスト面となる。
さらに、上記複数の環状溝22Aはピッチを異ならせた同心円状に形成しても良く、あるいは環状溝の代わりに螺旋状溝を形成しても良い
また、上述した各実施例において、上記合成樹脂コーティング22の表面における多数の環状溝22Aを省略して、合成樹脂コーティング22の表面全域を平坦面としても良い。
In each of the above-described embodiments, a plurality of recesses are formed by providing a plurality of annular grooves 22A on the surface of the synthetic resin coating 22. However, as shown in FIG. By forming vertical and horizontal grid-like projections 22C on the surface of the resin coating 22, regular rectangular recesses 22D may be formed at positions adjacent to the grid-like projections 22C. In this case, each lattice-like protrusion 22C becomes a substantial thrust surface.
Further, the plurality of annular grooves 22A may be formed in concentric circles having different pitches, or may be formed in a spiral groove instead of the annular groove. A large number of annular grooves 22A on the surface of the coating 22 may be omitted, and the entire surface of the synthetic resin coating 22 may be a flat surface.

1‥ロータリ型圧縮機 2‥密閉ケーシング
5‥シリンダ 6‥ローター
11、12‥閉鎖部材 11C、12C‥凹部
14‥圧縮空間 22‥合成樹脂コーティング
DESCRIPTION OF SYMBOLS 1 ... Rotary type compressor 2 ... Sealed casing 5 ... Cylinder 6 ... Rotor 11, 12 ... Closure member 11C, 12C ... Recessed part 14 ... Compression space 22 ... Synthetic resin coating

Claims (4)

ケーシング内に配置された円筒状のシリンダと、該シリンダにおける軸方向の前後の開口部を閉鎖する一対の閉鎖部材と、上記シリンダと一対の閉鎖部材によって形成された圧縮空間と、上記圧縮空間内に収容されるとともに駆動軸に連動して可動されるローターとを備えたロータリ型圧縮機において、
上記各閉鎖部材の内壁面における上記圧縮空間に臨む領域に凹部を形成するとともに、該凹部内に合成樹脂コーティングを埋設して、この合成樹脂コーティングの表面とその半径方向外方となる上記閉鎖部材の本来の内壁面とが同一面となるように構成したことを特徴とするロータリ型圧縮機。
A cylindrical cylinder disposed in the casing; a pair of closing members for closing front and rear openings in the cylinder; a compression space formed by the cylinder and the pair of closing members; And a rotary compressor including a rotor that is moved in conjunction with a drive shaft,
A recess is formed in a region of the inner wall surface of each closure member facing the compression space, and a synthetic resin coating is embedded in the recess, so that the closure member becomes a surface of the synthetic resin coating and a radially outer side thereof. A rotary compressor characterized in that the original inner wall surface is the same surface.
締結手段によって上記シリンダと一対の閉鎖部材が連結された時には、上記合成樹脂コーティングの外周縁および上記凹部の外周縁は、上記シリンダの内周面よりも半径方向外方に位置するとともに上記シリンダの軸方向の端面と当接することを特徴とする請求項1に記載のロータリ型圧縮機。   When the cylinder and the pair of closing members are connected by the fastening means, the outer peripheral edge of the synthetic resin coating and the outer peripheral edge of the recess are located radially outward from the inner peripheral surface of the cylinder and The rotary compressor according to claim 1, wherein the rotary compressor is in contact with an end face in the axial direction. 上記合成樹脂コーティングの表面には、半径方向において同一ピッチで同心状の多数の環状溝が形成されていることを特徴とする請求項1又は請求項2に記載のロータリ型圧縮機。   3. The rotary compressor according to claim 1, wherein a plurality of concentric annular grooves are formed at the same pitch in a radial direction on a surface of the synthetic resin coating. 合成樹脂コーティングの表面には、格子状の突起が形成されており、それによって合成樹脂コーティングの表面に規則的な多数の凹部が形成されていることを特徴とする請求項1又は請求項2に記載のロータリ型圧縮機。   3. The surface of the synthetic resin coating is formed with lattice-like protrusions, whereby a large number of regular recesses are formed on the surface of the synthetic resin coating. The described rotary compressor.
JP2010205183A 2010-09-14 2010-09-14 Rotary type compressor Pending JP2012062763A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010205183A JP2012062763A (en) 2010-09-14 2010-09-14 Rotary type compressor
CN2011800438985A CN103097736A (en) 2010-09-14 2011-09-13 Rotary compressor
PCT/JP2011/070787 WO2012036141A1 (en) 2010-09-14 2011-09-13 Rotary compressor
KR1020137003261A KR101356600B1 (en) 2010-09-14 2011-09-13 Rotary compressor
US13/813,017 US20130129552A1 (en) 2010-09-14 2011-09-13 Rotary compressor
EP11825143.8A EP2592279A4 (en) 2010-09-14 2011-09-13 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205183A JP2012062763A (en) 2010-09-14 2010-09-14 Rotary type compressor

Publications (1)

Publication Number Publication Date
JP2012062763A true JP2012062763A (en) 2012-03-29

Family

ID=45831600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205183A Pending JP2012062763A (en) 2010-09-14 2010-09-14 Rotary type compressor

Country Status (6)

Country Link
US (1) US20130129552A1 (en)
EP (1) EP2592279A4 (en)
JP (1) JP2012062763A (en)
KR (1) KR101356600B1 (en)
CN (1) CN103097736A (en)
WO (1) WO2012036141A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071956A (en) * 2013-10-02 2015-04-16 大豊工業株式会社 Rotary type fluid machine
JP2015140732A (en) * 2014-01-29 2015-08-03 大豊工業株式会社 Rolling piston member and rotary type fluid machine
JP2015158144A (en) * 2014-02-21 2015-09-03 大豊工業株式会社 rolling piston and rotary type fluid machine
WO2015159715A1 (en) * 2014-04-16 2015-10-22 住友ベークライト株式会社 Pump and resin composition
CN110905801A (en) * 2019-11-14 2020-03-24 中国航发西安动力控制科技有限公司 Gear pump with fixed axial gap
JP7159153B2 (en) 2016-09-15 2022-10-24 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Compressor mechanism with integrated motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094731A2 (en) * 2012-12-18 2014-06-26 Ixetic Bad Homburg Gmbh Axial housing impingement surface
JP6012574B2 (en) * 2013-09-27 2016-10-25 大豊工業株式会社 Scroll member and scroll type fluid machine
JP6225045B2 (en) * 2014-02-21 2017-11-01 大豊工業株式会社 Rotor and rotary fluid machinery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084788U (en) * 1983-11-18 1985-06-11 日産自動車株式会社 rotary compressor
JPH01173482U (en) * 1988-05-23 1989-12-08
JP2006161801A (en) * 2004-11-11 2006-06-22 Taiho Kogyo Co Ltd Sliding device
WO2009066413A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433166A (en) * 1967-09-11 1969-03-18 Itt Rotating vane machine couplings
US3552895A (en) * 1969-05-14 1971-01-05 Lear Siegler Inc Dry rotary vane pump
US3918137A (en) * 1973-07-05 1975-11-11 Ford Motor Co Wear-resistant coating for rotary engine side housing and method of making
DE2336307A1 (en) * 1973-07-17 1975-01-30 Bosch Gmbh Robert PUMP UNIT
JPS5358807A (en) * 1976-11-09 1978-05-27 Nippon Piston Ring Co Ltd Rotary fluid pump
JPS5749084A (en) 1980-09-08 1982-03-20 Matsushita Electric Ind Co Ltd Compressor
JPS59153995A (en) * 1983-02-21 1984-09-01 Mitsubishi Electric Corp Pump
WO1995000761A1 (en) * 1993-06-17 1995-01-05 Giovanni Aquino Rotary positive displacement device
JP3742848B2 (en) 1995-10-16 2006-02-08 ダイキン工業株式会社 Swing compressor
CN100451332C (en) * 2004-11-11 2009-01-14 大丰工业株式会社 Slider
JP5217234B2 (en) 2007-05-14 2013-06-19 ダイキン工業株式会社 Resin composition for coating sliding parts
JP2010133346A (en) 2008-12-05 2010-06-17 Panasonic Corp Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084788U (en) * 1983-11-18 1985-06-11 日産自動車株式会社 rotary compressor
JPH01173482U (en) * 1988-05-23 1989-12-08
JP2006161801A (en) * 2004-11-11 2006-06-22 Taiho Kogyo Co Ltd Sliding device
WO2009066413A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071956A (en) * 2013-10-02 2015-04-16 大豊工業株式会社 Rotary type fluid machine
JP2015140732A (en) * 2014-01-29 2015-08-03 大豊工業株式会社 Rolling piston member and rotary type fluid machine
JP2015158144A (en) * 2014-02-21 2015-09-03 大豊工業株式会社 rolling piston and rotary type fluid machine
WO2015159715A1 (en) * 2014-04-16 2015-10-22 住友ベークライト株式会社 Pump and resin composition
JP2015203389A (en) * 2014-04-16 2015-11-16 住友ベークライト株式会社 Pump and resin composition
JP7159153B2 (en) 2016-09-15 2022-10-24 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Compressor mechanism with integrated motor
CN110905801A (en) * 2019-11-14 2020-03-24 中国航发西安动力控制科技有限公司 Gear pump with fixed axial gap
CN110905801B (en) * 2019-11-14 2021-12-03 中国航发西安动力控制科技有限公司 Gear pump with fixed axial gap

Also Published As

Publication number Publication date
KR20130027565A (en) 2013-03-15
EP2592279A1 (en) 2013-05-15
CN103097736A (en) 2013-05-08
WO2012036141A1 (en) 2012-03-22
EP2592279A4 (en) 2015-01-14
US20130129552A1 (en) 2013-05-23
KR101356600B1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP2012062763A (en) Rotary type compressor
JP5657144B2 (en) Vane type compressor
US7722341B2 (en) Scroll compressor having variable height scroll
US11441566B2 (en) Rotary compressor having roller with dimple portion
JP2006022789A (en) Rotary fluid machine
JP2005194956A (en) Compressor
JP5836867B2 (en) Screw compressor
JP2009047040A (en) Scroll type fluid machine
JP6409910B1 (en) Scroll compressor
US11428223B2 (en) Rotary compressor with wear avoiding portion
JP5814606B2 (en) Screw compressor
WO2023045270A1 (en) Pump body and compressor
US6186759B1 (en) Helical blade type compressor and a refrigeration cycle apparatus using the same
JP4530875B2 (en) Vane pump
JP2023531782A (en) Pump assembly and fluid machinery
JP2010242656A (en) Single screw compressor
WO2018117276A1 (en) Screw compressor
JP5253445B2 (en) Rotary compressor
JP2014190176A (en) Rotary compressor and refrigeration cycle device
JP2012097574A (en) Rotary compressor
JP2006009576A (en) Scroll compressor
JP7118917B2 (en) rotary compressor
WO2023190048A1 (en) Screw compressor and freezer
EP4310296A2 (en) Scroll compressor and oldham ring and mating component for scroll compressor
JP2007077813A (en) Pump assembling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106