US20220403841A1 - Rotary pump - Google Patents

Rotary pump Download PDF

Info

Publication number
US20220403841A1
US20220403841A1 US17/774,151 US201917774151A US2022403841A1 US 20220403841 A1 US20220403841 A1 US 20220403841A1 US 201917774151 A US201917774151 A US 201917774151A US 2022403841 A1 US2022403841 A1 US 2022403841A1
Authority
US
United States
Prior art keywords
rotor
rotary pump
pump according
sliding
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/774,151
Inventor
Shoichi Takada
Masato Uozumi
Makoto Nakabayashi
Eiichi Kobayashi
Kazuaki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Assigned to SUMITOMO ELECTRIC SINTERED ALLOY, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD. reassignment SUMITOMO ELECTRIC SINTERED ALLOY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKEDA, KAZUAKI, TAKADA, SHOICHI, UOZUMI, MASATO, KOBAYASHI, EIICHI, NAKABAYASHI, MAKOTO
Assigned to SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC SINTERED ALLOY, LTD. reassignment SUMITOMO ELECTRIC INDUSTRIES, LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEES' ADDRESS PREVIOUSLY RECORDED ON REEL 059807 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: IKEDA, KAZUAKI, TAKADA, SHOICHI, UOZUMI, MASATO, KOBAYASHI, EIICHI, NAKABAYASHI, MAKOTO
Publication of US20220403841A1 publication Critical patent/US20220403841A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/802Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts

Definitions

  • the present disclosure relates to a rotary pump.
  • a rotary pump described in PATENT LITERATURE 1 has been known as a rotary pump that performs suction and discharge of fluid by rotating a pump rotor.
  • the rotary pump described in PATENT LITERATURE 1 includes a pump rotor, and a housing that rotatably houses the pump rotor.
  • a clearance for allowing rotation of the pump rotor is set between sliding surfaces of the housing and the pump rotor. If this clearance is large, a leakage amount of fluid increases and a discharge amount of a pump decreases. Therefore, the clearance between the sliding surfaces of the housing and the pump rotor is preferably small. However, if the clearance is too small, seizure is likely to occur between the housing and the pump rotor. Therefore, the clearance between the sliding surfaces of the housing and the pump rotor is usually set to several tens of micrometers or more.
  • the inventors of the present application have developed a rotary pump in which a clearance between sliding surfaces of a housing and a pump rotor can be set to be extremely small while avoiding seizure between the housing and the pump rotor, and proposed a rotary pump disclosed in PATENT LITERATURE 2.
  • the rotary pump disclosed in PATENT LITERATURE 2 includes a pump rotor, and a housing that rotatably houses the pump rotor.
  • One or both of the housing and the pump rotor are coated with crosslinked fluororesin. Since crosslinked fluororesin has a low coefficient of friction and a high wear resistance, if one or both of the housing and the pump rotor are coated with crosslinked fluororesin, seizure between the housing and the pump rotor can be avoided over a long period of time even when the clearance between the sliding surfaces of the housing and the pump rotor is set to be extremely small.
  • PATENT LITERATURE 1 Japanese Laid-Open Patent Publication No. 2014-47751
  • PATENT LITERATURE 2 Japanese Laid-Open Patent Publication No. 2014-173513
  • a rotary pump according to an aspect of the present disclosure is a rotary pump including:
  • FIG. 1 is an exploded perspective view of a rotary pump according to a first embodiment of the present disclosure.
  • FIG. 2 is a front view of the rotary pump shown in FIG. 1 .
  • FIG. 3 is a cross-sectional view taken along a III-III line in FIG. 2 .
  • FIG. 4 is a cross-sectional view take along a IV-IV line in FIG. 3 .
  • FIG. 5 is an enlarged view around the pump rotor shown in FIG. 3 .
  • FIG. 6 is a cross-sectional view taken along a VI-VI line in FIG. 2 .
  • FIG. 7 illustrates a process of manufacturing a side cover shown in FIG. 5 .
  • FIG. 8 is an exploded perspective view of a rotary pump according to a second embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view showing the rotary pump of FIG. 8 corresponding to FIG. 5 .
  • FIG. 10 is an exploded perspective view of a rotary pump according to a third embodiment of the present disclosure.
  • FIG. 11 is an enlarged cross-sectional view showing the rotary pump of FIG. 10 corresponding to FIG. 5 .
  • FIG. 12 shows a rotary pump according to a fourth embodiment of the present disclosure corresponding to FIG. 4 .
  • FIG. 13 is a cross-sectional view taken along an line in FIG. 12 .
  • FIG. 14 is an enlarged view around a pump rotor shown in FIG. 13 .
  • the inventors of the present application have advanced in-house development of the rotary pump in which at least one of the housing and the pump rotor is coated with crosslinked fluororesin as described in PATENT LITERATURE 2, and considered mass production of a rotary pump in which a housing is coated with crosslinked fluororesin.
  • the housing is composed of a housing body, and a cover member fixed to the housing body by a bolt.
  • the housing body has an opening in the axial direction, and a fiat flange surface formed around the opening.
  • the housing body rotatably houses the pump rotor in the opening.
  • the cover member has a flat mating surface that is fixed while being pressed against the flange surface around the opening of the housing body, by fastening of a bolt; and a flat sliding/guiding surface that slides and guides a flat side surface (rotor side surface) in the axial direction of the pump rotor.
  • the mating surface and the sliding/guiding surface are a contiguous flat surface.
  • the inventors have produced an in-house prototype in which one surface of the cover member made of a metal (i.e., the contiguous flat surface including the mating surface to the housing body and the sliding/guiding surface that slides and guides the rotor side surface of the pump rotor) is coated with a crosslinked fluororesin coating, and evaluated pump performance, with the cover member of the prototype being fixed by a bolt to the housing body housing the pump rotor. Then, the inventors have found that a torque for rotationally driving the pump rotor sometimes becomes larger than expected.
  • the inventors have investigated the cause of the torque, for rotationally driving the pump rotor, becoming larger than expected, and found the following. That is, when the cover member is fixed to the housing body by the bolt, the crosslinked fluororesin coating formed on the mating surface, to the housing body, of the cover member is compressed and deformed due to bolt fastening force, and the compressive deformation causes the thickness of the crosslinked fluororesin coating to be reduced by about 1 ⁇ m to about 10 ⁇ m, whereby the position of the sliding/guiding surface of the cover member is slightly shifted in the axial direction.
  • a clearance in the axial direction between the cover member and the pump rotor becomes slightly smaller than a design value, and the torque for rotationally driving the pump rotor is more likely to be larger than expected, particularly when the clearance is set to an extremely small size not larger than 20 ⁇ m.
  • an object of the present disclosure is to provide a rotary pump which allows accurate control of a clearance in the axial direction between a cover member and a pump rotor, when a sliding/guiding surface, of the cover member, for the pump rotor is formed of crosslinked fluororesin and the cover member is fixed to a housing body by a bolt.
  • a rotary pump according to an aspect of the present disclosure is a rotary pump including:
  • the sliding/guiding surface, of the cover member, for the pump rotor is formed of the crosslinked fluororesin, even when a clearance between the cover member and the pump rotor is set to be extremely small, seizure between the cover member and the pump rotor can be avoided over a long period of time.
  • the mating surface, of the cover member, to the housing body is formed on the metal body as a component of the cover member, fastening force of the bolt can be supported with rigidity by the metal body, thereby preventing the positions of the sliding/guiding surface of the cover member from being shifted in the axial direction due to the fastening force of the bolt. Therefore, when the cover member is fixed to the housing body by the bolt, a clearance in the axial direction between the cover member and the pump rotor can be accurately controlled.
  • the cover member is preferably a plate-shaped side cover that is fixed by being sandwiched between the housing body and a cover body disposed so as to oppose the flange surface of the housing body.
  • the rotary pump according to the aspect of the present disclosure can be obtained by additionally incorporating the plate-shaped side cover between a housing body and a cover member of an existing rotary pump.
  • the recess preferably has a shape obtained by recessing, in the axial direction, also an area corresponding to a part of the mating surface such that the crosslinked fluororesin filled in the recess is in contact with the flange surface in an annular area contiguous, without a break, around the opening.
  • the crosslinked fluororesin filled in the recess is in contact with the flange surface in the annular area contiguous, without a break, around the opening of the housing body, the contact surfaces of the cover member and the housing body can be sealed with the crosslinked fluororesin, thereby avoiding leakage of fluid.
  • the crosslinked fluororesin forming the mating surface is contiguous with the crosslinked fluororesin forming the sliding/guiding surface, production cost can be suppressed.
  • the mating surface and the sliding/guiding surface may be a contiguous machined surface having a surface roughness not greater than a ten-point average roughness Rz JIS of 6.3 ⁇ m.
  • the pump rotor may be composed of: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor having, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
  • the pump rotor may be composed of: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
  • FIG. 1 to FIG. 6 show a rotary pump according to a first embodiment of the present disclosure.
  • the rotary pump includes: a pump rotor 2 rotationally driven by a rotation shaft 1 ; a housing body 3 that houses the pump rotor 2 ; a first cover body 4 a and a first side cover 5 a disposed on one side in the axial direction of the housing body 3 ; and a second cover body 4 b and a second side cover 5 b disposed on the other side in the axial direction of the housing body 3 .
  • the pump rotor 2 is composed of: an inner rotor 7 having, at an outer periphery thereof, a plurality of outer teeth 6 ; and an annular outer rotor 9 haying, at an inner periphery thereof, a plurality of inner teeth 8 that mesh with the outer teeth 6 .
  • the inner rotor 7 and the outer rotor 9 are rotatably housed in an opening 10 , in the axial direction, formed in the housing body 3 .
  • the inner rotor 7 has an axial hole 11 into which the rotation shaft 1 is inserted.
  • the rotation shaft 1 and the axial hole 11 are fitted to each other such that the rotation shaft 1 and the inner rotor 7 integrally rotate.
  • Fitting of the rotation shaft 1 and the axial hole 11 is not limited to width-across-flat fitting shown in FIG. 3 .
  • Spline fitting, key groove fitting, or a fitting with an interference between cylindrical surfaces may be adopted.
  • the outer rotor 9 has an outer peripheral cylindrical surface 12 .
  • the outer peripheral cylindrical surface 12 is fitted to an inner periphery of the opening 10 of the housing body 3 with a gap therebetween, and this fitting rotatably supports the outer rotor 9 ,
  • the outer rotor 9 is supported to be rotatable around a position eccentric from a center position of the inner rotor 7 (i.e., a rotation center position of the rotation shaft 1 ).
  • a center position of the inner rotor 7 i.e., a rotation center position of the rotation shaft 1 .
  • the rotation direction of the inner rotor 7 is the clockwise direction in FIG. 4 .
  • the number of the inner teeth 8 of the outer rotor 9 is larger by one than the number of the outer teeth 6 of the inner rotor 7 .
  • a plurality of chambers 13 (spaces for containing fluid) demarcated by the respective outer teeth 6 and the respective inner teeth 8 are formed between the outer periphery of the inner rotor 7 and the inner periphery of the outer rotor 9 .
  • the plurality of chambers 13 are configured such that the volume of each chamber 13 changes with rotation of the inner rotor 7 and the outer rotor 9 . That is, the volume of each chamber 13 is maximum at an angular position (upper position in FIG.
  • the volume of the chamber 13 gradually increases and thereby a fluid suction effect occurs.
  • the inner rotor 7 has: a flat first inner rotor side surface 14 a facing one side (left side in FIG. 5 ) in the axial direction; and a flat second inner rotor side surface 14 b facing the other side (right side in FIG. 5 ) in the axial direction.
  • the first inner rotor side surface 14 a and the second inner rotor side surface 14 b are parallel flat surfaces facing opposite to each other in the axial direction.
  • the outer rotor 9 has a flat first outer rotor side surface 15 a facing one side in the axial direction, and a fiat second outer rotor side surface 15 b facing the other side in the axial direction.
  • the first outer rotor side surface 15 a and the second outer rotor side surface 15 b are parallel flat surfaces facing opposite to each other in the axial direction.
  • a width dimension in the axial direction of the inner rotor 7 from the first inner rotor side surface 14 a to the second inner rotor side surface 14 b is equal to a width dimension in the axial direction of the outer rotor 9 from the first outer rotor side surface 15 a to the second outer rotor side surface 15 b.
  • the first inner rotor side surface 14 a and the first outer rotor side surface 15 a are flush with each other, and the second inner rotor side surface 14 b and the second outer rotor side surface 15 b are also flush with each other.
  • Both the inner rotor 7 and the outer rotor 9 are formed of a sintered parts.
  • the sintered parts is a member obtained by compression-molding an iron-base powder material by using a mold to form a powder molded body, and heating the powder molded body at a high temperature equal to or lower than a melting point.
  • the axial hole 11 into which the rotation shaft 1 is inserted is a through-hole penetrating through the inner rotor 7 in the axial direction.
  • the rotation shaft 1 is inserted into the axial hole 11 so as to have a portion protruding from the inner rotor 7 to one side (left side in FIG. 3 ) in the axial direction, and a portion protruding from the inner rotor 7 to the other side (right side in FIG. 3 ) in the axial direction.
  • the portion, of the rotation shaft 1 , protruding to one side in the axial direction of the inner rotor 7 is rotatably supported by a first bearing 16 a mounted to the first cover body 4 a, and the portion, of the rotation shaft 1 , protruding to the other side in the axial direction from the inner rotor 7 is rotatably supported by a second bearing 16 b mounted to the second cover body 4 b.
  • the portion, of the rotation shaft 1 , protruding to the other side in the axial direction from the inner rotor 7 (portion supported by the second bearing 16 b ) is connected to a rotation driving device (electric motor or the like) which is not shown.
  • the first cover body 4 a, the first side cover 5 a, the housing body 3 , the second side cover 5 b, and the second cover body 4 b are fixed to each other while being fastened in the axial direction by a common bolt 18 inserted through bolt insertion holes 17 formed in the respective components.
  • the first cover body 4 a, the first side cover 5 a, the housing body 3 , the second side cover 5 b, and the second cover body 4 b are positioned in a direction perpendicular to the axial direction by a common knock pin 20 being inserted through knock-pin insertion holes 19 formed in the respective components.
  • the housing body 3 has: an opening 10 that is opened at one side (left side in FIG. 5 ) and the other side (right side in FIG. 5 ) in the axial direction; a flat first flange surface 21 a formed around the one side in the axial direction of the opening 10 ; and a flat second flange surface 21 b formed around the other side in the axial direction of the opening 10 .
  • the first flange surface 21 a and the second flange surface 21 b are parallel flat surfaces facing opposite to each other in the axial direction.
  • the first cover body 4 a is disposed so as to oppose the first flange surface 21 a of the housing body 3 , and the first side cover 5 a is sandwiched between the first cover body 4 a and the housing body 3 .
  • the second cover body 4 b is disposed so as to oppose the second flange surface 21 b of the housing body 3 , and the second side cover 5 b is sandwiched between the second cover body 4 b and the housing body 3 .
  • the first flange surface 21 a is flush with the first inner rotor side surface 14 a and the first outer rotor side surface 15 a.
  • the second flange surface 21 b is flush with the second inner rotor side surface 14 b and the second outer rotor side surface 15 b.
  • a width dimension in the axial direction of the inner rotor 7 and the outer rotor 9 is slightly smaller than a width dimension in the axial direction of the housing body 3 , and a difference therebetween is set to be not larger than 20 ⁇ m (preferably, not larger than 15 ⁇ m, and more preferably, not larger than 10 ⁇ m).
  • the first side cover 5 a and the second side cover 5 b are symmetrical with each other across the housing body 3 . Therefore, only the first side cover 5 a will be described, and description of the second side cover 5 b will be omitted while the corresponding components are denoted by the same reference signs or reference signs having the alphabetical suffix “b” instead of “a”.
  • the first side cover 5 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of the bolt 18 ; and a flat sliding/guiding surface 23 that slides and guides the first inner rotor side surface 14 a and the first outer rotor side surface 15 a.
  • the first side cover 5 a is a plate-shaped member having a uniform thickness not larger than 5 mm (preferably, not larger than 4 mm).
  • the first side cover 5 a is formed of a crosslinked fluororesin 24 and a metal body 25 .
  • a material of the metal body 25 steel or an aluminum alloy can be adopted.
  • the metal body 25 includes: the mating surface 22 formed of a metal; and a recess 26 obtained by recessing an area corresponding to the sliding/guiding surface 23 , in the axial direction with respect to the mating surface 22 .
  • the recess 26 is a flat recess having a uniform depth throughout.
  • the depth of the recess 26 can be set to be not larger than 0.5 mm (preferably, not larger than 0.3 mm, and more preferably, not larger than 0.2 mm).
  • the recess 26 has a contour within which a contour of the opening 10 of the housing body 3 is included (in FIG. 5 , a circular contour having a larger diameter than a circle forming the contour of the opening 10 ).
  • the recess 26 is filled with the crosslinked fluororesin 24 , and the crosslinked fluororesin 24 forms the sliding/guiding surface 23 that is flush with the mating surface 22 .
  • the mating surface 22 and the sliding/guiding surface 23 are a contiguous machined surface having a surface roughness not greater than a ten-point average roughness Rz JIS of 6.3 ⁇ m (preferably, not greater than Rz JIS of 3.2 ⁇ m).
  • the ten-point average roughness Rz JIS is a parameter defined in “Appendix JA (reference) for ten-point average roughness” of Japanese Industrial Standard JISB0601:2013 “Geometrical Product Specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters”.
  • the ten-point average roughness Rz JIS is defined as follows. That is, a reference length is extracted from a roughness curve in a direction of an average line thereof, and, in the extracted portion, a sum of an average height of five profile peaks from the highest one and an average depth of five profile valleys from the deepest one is calculated as the ten-point average roughness Rz JIS .
  • the crosslinked fluororesin 24 is obtained by crosslinking molecules of chain polymers forming a fluororesin.
  • the crosslinked fluororesin has extremely high wear resistance as compared to general fluororesin (non-crosslinked fluororesin) while having a coefficient of friction as low as that of general fluororesin.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the first side cover 5 a can be formed as follows, for example.
  • a recess 26 is formed at a surface of a plate-shaped metal body 25 having a uniform thickness.
  • a coating of the crosslinked fluororesin 24 is formed at the surface, of the metal body 25 , on the recess 26 side.
  • the recess 26 is filled with the crosslinked fluororesin 24 , and the periphery of the recess 26 is covered with the crosslinked fluororesin 24 .
  • the crosslinked fluororesin 24 is ground until the metal around the recess 26 is exposed.
  • the metal around the recess 26 and the crosslinked fluororesin 24 in the recess 26 are ground.
  • the surface of the metal around the recess 26 corresponds to the mating surface 22
  • the surface of the crosslinked fluororesin 24 in the recess 26 corresponds to the sliding/guiding surface 23 .
  • the mating surface 22 and the sliding/guiding surface 23 formed as described above are a contiguous machined surface having the same surface roughness.
  • the coating of the crosslinked fluororesin 24 shown in the intermediate portion of FIG. 7 can be formed as follows, for example. First, a dispersion liquid obtained by dispersing fine particles of a fluororesin (e.g., PTFE) in water is applied to the surface, of the metal body 25 , on the recess 26 side.
  • a fluororesin e.g., PTFE
  • the applied dispersion liquid is dried to form a layer of the tine particles of the fluororesin on the surface, of the metal body 25 , on the recess 26 side.
  • the metal body 25 and the layer of the fine particles of the fluororesin are heated to a temperature equal to or higher than the melting point of the fluororesin to bake the fine particles of the fluororesin, whereby the fine particles of the fluororesin are fused to each other.
  • radiation e.g., electron beam
  • the radiation applied at this time also causes chemical bonding between the surface of the metal body 25 and the molecules of the chain polymers forming the fluororesin, and the chemical bonding causes the coating of the crosslinked fluororesin 24 to be adhered to the metal body 25 with extremely high adhesion.
  • the coating of the crosslinked fluororesin 24 shown in the intermediate portion of FIG. 7 is formed.
  • the first side cover 5 a is provided with: a first suction port 30 a opened at a surface opposing the first inner rotor side surface 14 a and the first outer rotor side surface 15 a; and a first discharge port 31 a opened at a distance in the circumferential direction from the first suction port 30 a.
  • the second side cover 5 b is provided with: a second suction port 30 b opened at a surface opposing the second inner rotor side surface 141 ) and the second outer rotor side surface 15 b; and a second discharge port 31 b opened at a distance in the circumferential direction from the second suction port 30 b.
  • each of the first suction port 30 a and the first discharge port 31 a is opened in an arc shape centered around the rotation shaft 1 .
  • each of the second suction port 30 b and the second discharge port 31 b is opened in an arc shape centered around the rotation shaft 1 .
  • the first suction port 30 a and the second suction port 30 b are opened in the same shape at symmetrical positions with the inner rotor 7 and the outer rotor 9 sandwiched therebetween.
  • a pressure that the first inner rotor side surface 14 a and the first outer rotor side surface 15 a receive from the fluid in the first suction port 30 a is balanced with a pressure that the second inner rotor side surface 14 b and the second outer rotor side surface 15 b receive from the fluid in the second suction port 30 b, thereby preventing the inner rotor 7 and the outer rotor 9 from being inclined.
  • first discharge port 31 a and the second discharge port 31 b are opened in the same shape at symmetrical positions with the inner rotor 7 and the outer rotor 9 sandwiched therebetween.
  • a pressure that the first inner rotor side surface 14 a and the first outer rotor side surface 15 a receive from the fluid in the first discharge port 31 a is balanced with a pressure that the second inner rotor side surface 14 b and the second outer rotor side surface 15 b receive from the fluid in the second discharge port 31 b, thereby preventing the inner rotor 7 and the outer rotor 9 from being inclined.
  • the first suction port 30 a and the second suction port 30 b are in communication with each other via a communication path 32 formed at a position spaced apart from the opening 10 , of the housing body 3 , which houses the pump rotor 2 .
  • the first suction port 30 a is in communication with a suction port 33 opened at an outer surface of the first cover body 4 a
  • the first discharge port 31 a is in communication with a discharge port 34 opened at an outer surface of the first cover body 4 a.
  • the sliding/guiding surfaces 23 of the first side cover 5 a. and the second side cover 5 b are formed of the crosslinked fluororesin 24 . Therefore, even when a clearance between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b (i.e., a difference between an inner width dimension between the sliding guiding surface 23 of the first side cover 5 a and the sliding/guiding surface 23 of the second side cover 5 b, and a width dimension in the axial direction of the inner rotor 7 or the outer rotor 9 ) is set to an extremely small size (not larger than 20 ⁇ m, preferably, not larger than 15 ⁇ m, and more preferably, not larder than 10 ⁇ m), seizure between the pump rotor 2 , and the first side cover 5 a and the second side cover 5 b can be avoided over a long period of time.
  • an extremely small size not larger than 20 ⁇ m, preferably, not larger than 15 ⁇ m, and more preferably, not larder
  • each of the first side cover 5 a and the second side cover 5 b shown in FIG. 5 is replaced with a side cover in which the entirety of one surface of the metal body 25 (i.e., the entirety of a contiguous fiat surface, of the metal body 25 having no recess 26 , which includes the mating surface 22 to the housing body 3 and the sliding/guiding surface 23 for the pump rotor 2 ) is coated with crosslinked fluororesin.
  • the coating of the crosslinked fluororesin formed on the mating surface 22 , of the side cover, to the housing body 3 is compressed and deformed by fastening force of the bolt 18 , and the compressive deformation causes the thickness of the crosslinked fluororesin coating to be reduced by about 1 ⁇ m to about 10 ⁇ m, whereby the position of the sliding/guiding surface 23 of the side cover is slightly shifted in the axial direction.
  • a 50 ⁇ m thick crosslinked fluororesin coating is reduced in thickness by about 1.6 ⁇ m
  • a 150 ⁇ m thick crosslinked fluororesin coating is reduced in thickness by about 4.8 ⁇ m
  • a 250 ⁇ m thick crosslinked fluororesin coating is reduced in thickness by about 8.0 ⁇ m due to compressive deformation caused by fastening force of the bolts 18 .
  • a clearance in the axial direction between the side cover and the pump rotor 2 becomes slightly smaller than a design value, which may cause a problem that, particularly when the clearance is set to an extremely small size not larger than 20 ⁇ m, a torque for rotationally driving the pump rotor 2 becomes larger than expected.
  • the mating surfaces 22 , to the housing body 3 , of the first side cover 5 a and the second side cover 5 b are formed on the metal bodies 25 of the first side cover 5 a and the second side cover 5 b. Therefore, the fastening force of the bolt 18 can be supported with rigidity by the metal bodies 25 , thereby preventing the positions of the sliding/guiding surfaces 23 of the first side cover 5 a and the second side cover 5 b from being shifted in the axial direction due to the fastening force of the bolt 18 .
  • the rotary pump according to the embodiment can be obtained by additionally incorporating the first side cover 5 a and the second side cover 5 b into an existing rotary pump, which realizes cost reduction.
  • the recess 26 to be filled with the crosslinked fluororesin 24 is formed not in the second cover body 4 b to which the second bearing 16 b is mounted but in the metal body 25 which is a member separate from the second cover body 4 b, machining of the recess 26 and filling of the recess 26 with the crosslinked fluororesin 24 are facilitated as compared to the case where the recess 26 is directly formed at the surface of the second cover body 4 b and filled with the crosslinked fluororesin 24 .
  • the mating surface 22 and the sliding/guiding surface 23 are simultaneously subjected to finish machining, the mating surface 22 and the sliding/guiding surface 23 are formed as a contiguous machined surface having a surface roughness not greater than a ten-point average roughness Rz JIS of 6.3 ⁇ m (preferably, not greater than Rz JIS of 3.2 ⁇ m), which realizes cost reduction.
  • a clearance between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b i.e., a difference between the inner width dimension between the sliding/guiding surface 23 of the first side cover 5 a and the sliding/guiding surface 23 of the second side cover 5 b, and the width dimension in the axial direction of the inner rotor 7 or the outer rotor 9 ) can be controlled with extreme accuracy.
  • FIG. 8 and FIG. 9 show a rotary pump according to a second embodiment of the present disclosure.
  • the second embodiment is different from the first embodiment only in the configurations of the first side cover 5 a and the second side cover 5 b, and the other components are the same as those of the first embodiment. Therefore, the parts corresponding to those of the first embodiment are denoted by the same reference signs, and description thereof is omitted.
  • the first side cover 5 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of the bolt 18 ; and a flat sliding/guiding surface 23 that slides and guides the first inner rotor side surface 14 a and the first outer rotor side surface 15 a,
  • the metal body 25 includes: the mating surface 22 formed of a metal; and a recess 26 obtained by recessing an area corresponding to the sliding/guiding surface 23 , in the axial direction with respect to the mating surface 22 .
  • the recess 26 has a shape obtained by recessing, in the axial direction, also an area corresponding to a part of the mating surface 22 such that the crosslinked fluororesin 24 filled in the recess 26 is in contact with the first flange surface 21 a in an annular area contiguous, without a break, around the opening 10 of the housing body 3 . That is, the first side cover 5 a is formed such that a part of the mating surface 22 (a part surrounding the periphery of the bolt insertion hole) is formed on the metal body 25 while a remaining portion of the mating surface 22 is formed of the crosslinked fluororesin 24 filled in the recess 26 .
  • the second side cover 5 b is configured similarly to the first side cover 5 a.
  • FIG. 10 and FIG. 11 show a rotary pump according to a third embodiment of the present disclosure.
  • the parts corresponding to those of the aforementioned embodiments are denoted by the same reference signs, and description thereof is omitted.
  • the rotary pump includes: a pump rotor 2 rotationally driven by a rotation shaft 1 ; a housing body 3 that houses the pump rotor 2 ; a first cover body 4 a disposed on one side (left side in FIG. 11 ) in the axial direction of the housing body 3 ; and a second cover body 4 b disposed on the other side (right side in FIG. 11 ) in the axial direction of the housing body 3 .
  • the first cover body 4 a, the housing body 3 , and the second cover body 4 b are fixed to each other while being fastened in the axial direction by a common bolt 18 inserted through bolt insertion holes 17 formed in the respective components.
  • the first cover body 4 a, the housing body 3 , and the second cover body 4 b are positioned in the direction perpendicular to the axial direction by a common knock pin 20 inserted through knock-pin insertion holes 19 formed in the respective components.
  • the first cover body 4 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of the bolt 18 ; and a flat sliding/guiding surface 23 that slides and guides the first inner rotor side surface 14 a and the first outer rotor side surface 15 a.
  • the first cover body 4 a is formed of a crosslinked fluororesin 24 and a metal body 25 .
  • a material of the metal body 25 steel or an aluminum alloy can be adopted.
  • the metal body 25 includes: the mating surface 22 formed of a metal; and a recess 26 obtained by recessing an area corresponding to the sliding/guiding surface 23 , in the axial direction with respect to the mating surface 22 .
  • the recess 26 is filled with the crosslinked fluororesin 24 , and the crosslinked fluororesin 24 also forms the sliding/guiding surface 23 that is flush with the mating surface 22 .
  • the second cover body 4 b is configured similarly to the first cover body 4 a.
  • the sliding/guiding surfaces 23 of the first cover body 4 a and the second cover body 4 b are formed of the crosslinked fluororesin 24 . Therefore, when a clearance between the pump rotor 2 and each of the first cover body 4 a and the second cover body 4 b (i.e., a difference between the inner width dimension between the sliding/guiding surface 23 of the first cover body 4 a and the sliding/guiding surface 23 of the second cover body 4 b, and the width dimension in the axial direction of the inner rotor 7 or the outer rotor 9 ) is set to an extremely small size (not larger than 20 ⁇ m, preferably, not larger than 15 ⁇ m, and more preferably, not larger than 10 ⁇ m), seizure between the pump rotor 2 , and the first cover body 4 a and the second cover body 4 b can be avoided over a long period of time.
  • an extremely small size not larger than 20 ⁇ m, preferably, not larger than 15 ⁇ m, and more preferably, not larger than 10 ⁇ m
  • the mating surfaces 22 , to the housing body 3 , of the first cover body 4 a and the second cover body 4 b are formed on the metal bodies 25 of the first cover body 4 a and the second cover body 4 b. Therefore, the fastening force of the bolt 18 can be supported with rigidity by the metal bodies 25 , thereby preventing the positions of the sliding/guiding surfaces 23 of the first cover body 4 a and the second cover body 4 b from being shifted in the axial direction due to the fastening force of the bolt 18 .
  • FIG. 12 to FIG. 14 show a rotary pump according to a fourth embodiment of the present disclosure.
  • the fourth embodiment is different from the first embodiment only in the configuration of the pump rotor 2 , and the other components are the same as those of the first embodiment. Therefore, the parts corresponding to those of the first embodiment are denoted by the same reference signs, and description thereof is omitted.
  • the pump rotor 2 is composed of: a rotor body 36 having, at an outer periphery thereof, a plurality of vane-containing grooves 35 ; and a plurality of vanes 37 contained in the respective vane-containing grooves 35 so as to be slidable in the radial direction.
  • a radially outer end of each vane 37 is slidably in contact with an inner periphery of a cam ring 38 disposed on the housing body 3 .
  • An opening 10 that rotatably houses the pump rotor 2 is formed inside the cam ring 38 .
  • a plurality of chambers 39 (spaces for containing fluid) demarcated by the vanes 37 are formed between the outer periphery of the rotor body 36 and the inner periphery of the cam ring 38 .
  • the inner periphery of the cam ring 38 is configured such that the volume of each chamber 39 changes with rotation of the rotor body 36 , and a fluid discharge effect is caused by reduction in the volume of the chamber 39 while a fluid suction effect is caused by gradual increase in the volume of the chamber 39 .
  • the first side cover 5 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of a bolt 18 (see FIG. 12 ); and a flat sliding/guiding surface 23 that slides and guides flat side surfaces, facing in the axial direction, of the rotor body 36 and the vanes 37 .
  • the second side cover 5 b is configured similarly to the first side cover 5 a.
  • a width dimension in the axial direction of the rotor body 36 is equal to a width dimension in the axial direction of each vane 37 .
  • the sliding/guiding surfaces 23 of the first side cover 5 a and the second side cover 5 b are formed of the crosslinked fluororesin 24 . Therefore, even when a clearance between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b (i.e., a difference between the inner width dimension between the sliding/guiding surface 23 of the first side cover 5 a and the sliding/guiding surface 23 of the second side cover 5 b, and the width dimension in the axial direction of the rotor body 36 and each vane 37 ) is set to an extremely small size (not larger than 20 ⁇ m, preferably, not larger than 15 ⁇ m, and more preferably, not larger than 10 ⁇ m), seizure between the pump rotor 2 , and the first side cover 5 a and the second side cover 5 b can be avoided over a long period of time.
  • an extremely small size not larger than 20 ⁇ m, preferably, not larger than 15 ⁇ m, and more preferably, not larger than 10 ⁇ m
  • the mating surfaces 22 , to the housing body 3 , of the first side cover 5 a and the second side cover 5 b are formed on the metal bodies 25 of the first side cover 5 a and the second side cover 5 b. Therefore, the fastening force of the bolt 18 can be supported with rigidity by the metal bodies 25 , thereby preventing the positions of the sliding/guiding surfaces 23 of the first side cover 5 a and the second side cover 5 b from being shifted in the axial direction due to the fastening force of the bolt 18 .

Abstract

A rotary pump includes: a pump rotor having a flat rotor side surface facing in an axial direction; a housing body having an opening in the axial direction and a flat flange surface formed around the opening, the housing body rotatably housing the pump rotor in the opening such that the rotor side surface is flush with the flange surface; and a cover member having a flat mating surface that is fixed while being pressed against the flange surface by fastening of a bolt, and a flat sliding/guiding surface that slides and guides the rotor side surface. The cover member is formed of a crosslinked fluororesin and a metal body. The metal body is provided with the mating surface, and a recess obtained by recessing an area corresponding to the sliding/guiding surface, in the axial direction with respect to the mating surface.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a rotary pump.
  • BACKGROUND ART
  • A rotary pump described in PATENT LITERATURE 1 has been known as a rotary pump that performs suction and discharge of fluid by rotating a pump rotor. The rotary pump described in PATENT LITERATURE 1 includes a pump rotor, and a housing that rotatably houses the pump rotor.
  • Generally, a clearance for allowing rotation of the pump rotor is set between sliding surfaces of the housing and the pump rotor. If this clearance is large, a leakage amount of fluid increases and a discharge amount of a pump decreases. Therefore, the clearance between the sliding surfaces of the housing and the pump rotor is preferably small. However, if the clearance is too small, seizure is likely to occur between the housing and the pump rotor. Therefore, the clearance between the sliding surfaces of the housing and the pump rotor is usually set to several tens of micrometers or more.
  • The inventors of the present application have developed a rotary pump in which a clearance between sliding surfaces of a housing and a pump rotor can be set to be extremely small while avoiding seizure between the housing and the pump rotor, and proposed a rotary pump disclosed in PATENT LITERATURE 2.
  • The rotary pump disclosed in PATENT LITERATURE 2 includes a pump rotor, and a housing that rotatably houses the pump rotor. One or both of the housing and the pump rotor are coated with crosslinked fluororesin. Since crosslinked fluororesin has a low coefficient of friction and a high wear resistance, if one or both of the housing and the pump rotor are coated with crosslinked fluororesin, seizure between the housing and the pump rotor can be avoided over a long period of time even when the clearance between the sliding surfaces of the housing and the pump rotor is set to be extremely small.
  • CITATION LIST Patent Literature
  • PATENT LITERATURE 1: Japanese Laid-Open Patent Publication No. 2014-47751
  • PATENT LITERATURE 2: Japanese Laid-Open Patent Publication No. 2014-173513
  • SUMMARY OF THE INVENTION Solution to Problem
  • A rotary pump according to an aspect of the present disclosure is a rotary pump including:
      • a pump rotor having a flat rotor side surface facing in an axial direction;
      • a housing body having an opening in the axial direction and a flat flange surface formed around the opening, the housing body rotatably housing the pump rotor in the opening such that the rotor side surface is flush with the flange surface; and
      • a cover member having a flat mating surface that is fixed while being pressed against the flange surface by fastening of a bolt, and a flat sliding/guiding surface that slides and guides the rotor side surface, wherein
      • the cover member is formed of a crosslinked fluororesin and a metal body,
      • the metal body is provided with the mating surface, and a recess formed by recessing an area, of the metal body, corresponding to the sliding/guiding surface, in the axial direction with respect to the mating surface, and
      • the crosslinked fluororesin is filled in the recess so as to form the sliding/guiding surface flush with the mating surface.
    BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an exploded perspective view of a rotary pump according to a first embodiment of the present disclosure.
  • FIG. 2 is a front view of the rotary pump shown in FIG. 1 .
  • FIG. 3 is a cross-sectional view taken along a III-III line in FIG. 2 .
  • FIG. 4 is a cross-sectional view take along a IV-IV line in FIG. 3 .
  • FIG. 5 is an enlarged view around the pump rotor shown in FIG. 3 .
  • FIG. 6 is a cross-sectional view taken along a VI-VI line in FIG. 2 .
  • FIG. 7 illustrates a process of manufacturing a side cover shown in FIG. 5 .
  • FIG. 8 is an exploded perspective view of a rotary pump according to a second embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view showing the rotary pump of FIG. 8 corresponding to FIG. 5 .
  • FIG. 10 is an exploded perspective view of a rotary pump according to a third embodiment of the present disclosure.
  • FIG. 11 is an enlarged cross-sectional view showing the rotary pump of FIG. 10 corresponding to FIG. 5 .
  • FIG. 12 shows a rotary pump according to a fourth embodiment of the present disclosure corresponding to FIG. 4 .
  • FIG. 13 is a cross-sectional view taken along an line in FIG. 12 .
  • FIG. 14 is an enlarged view around a pump rotor shown in FIG. 13 .
  • DETAILED DESCRIPTION Problems to be Solved by the Present Disclosure
  • The inventors of the present application have advanced in-house development of the rotary pump in which at least one of the housing and the pump rotor is coated with crosslinked fluororesin as described in PATENT LITERATURE 2, and considered mass production of a rotary pump in which a housing is coated with crosslinked fluororesin.
  • The housing is composed of a housing body, and a cover member fixed to the housing body by a bolt. The housing body has an opening in the axial direction, and a fiat flange surface formed around the opening. The housing body rotatably houses the pump rotor in the opening. The cover member has a flat mating surface that is fixed while being pressed against the flange surface around the opening of the housing body, by fastening of a bolt; and a flat sliding/guiding surface that slides and guides a flat side surface (rotor side surface) in the axial direction of the pump rotor. The mating surface and the sliding/guiding surface are a contiguous flat surface.
  • The inventors have produced an in-house prototype in which one surface of the cover member made of a metal (i.e., the contiguous flat surface including the mating surface to the housing body and the sliding/guiding surface that slides and guides the rotor side surface of the pump rotor) is coated with a crosslinked fluororesin coating, and evaluated pump performance, with the cover member of the prototype being fixed by a bolt to the housing body housing the pump rotor. Then, the inventors have found that a torque for rotationally driving the pump rotor sometimes becomes larger than expected.
  • The inventors have investigated the cause of the torque, for rotationally driving the pump rotor, becoming larger than expected, and found the following. That is, when the cover member is fixed to the housing body by the bolt, the crosslinked fluororesin coating formed on the mating surface, to the housing body, of the cover member is compressed and deformed due to bolt fastening force, and the compressive deformation causes the thickness of the crosslinked fluororesin coating to be reduced by about 1 μm to about 10 μm, whereby the position of the sliding/guiding surface of the cover member is slightly shifted in the axial direction. As a result, a clearance in the axial direction between the cover member and the pump rotor becomes slightly smaller than a design value, and the torque for rotationally driving the pump rotor is more likely to be larger than expected, particularly when the clearance is set to an extremely small size not larger than 20 μm.
  • Therefore, an object of the present disclosure is to provide a rotary pump which allows accurate control of a clearance in the axial direction between a cover member and a pump rotor, when a sliding/guiding surface, of the cover member, for the pump rotor is formed of crosslinked fluororesin and the cover member is fixed to a housing body by a bolt.
  • Effects of the Present Disclosure
  • According to the present disclosure, it is possible to accurately control a clearance in the axial direction between a cover member and a pump rotor, when a sliding/guiding surface, of the cover member, for the pump rotor is formed of crosslinked fluororesin and the cover member is fixed to a housing body by a bolt.
  • Description of Embodiment of the Present Disclosure
  • (1) A rotary pump according to an aspect of the present disclosure is a rotary pump including:
      • a pump rotor having a flat rotor side surface facing in an axial direction
      • a housing body having an opening in the axial direction and a flat flange surface formed around the opening, the housing body rotatably housing the pump rotor in the opening such that the rotor side surface is flush with the flange surface; and
      • a cover member having a flat mating surface that is fixed while being pressed against the flange surface by fastening of a bolt, and a flat sliding/guiding surface that slides and guides the rotor side surface, wherein
      • the cover member is formed of a crosslinked fluororesin and a metal body,
      • the metal body is provided with the mating surface, and a recess obtained by recessing an area corresponding to the sliding/guiding surface, in the axial direction with respect to the mating surface, and
      • the crosslinked fluororesin is filled in the recess so as to form the sliding/guiding surface flush with the mating surface.
  • In the above configuration, since the sliding/guiding surface, of the cover member, for the pump rotor is formed of the crosslinked fluororesin, even when a clearance between the cover member and the pump rotor is set to be extremely small, seizure between the cover member and the pump rotor can be avoided over a long period of time. Moreover, since the mating surface, of the cover member, to the housing body is formed on the metal body as a component of the cover member, fastening force of the bolt can be supported with rigidity by the metal body, thereby preventing the positions of the sliding/guiding surface of the cover member from being shifted in the axial direction due to the fastening force of the bolt. Therefore, when the cover member is fixed to the housing body by the bolt, a clearance in the axial direction between the cover member and the pump rotor can be accurately controlled.
  • (2) The cover member is preferably a plate-shaped side cover that is fixed by being sandwiched between the housing body and a cover body disposed so as to oppose the flange surface of the housing body.
  • With the above configuration, the rotary pump according to the aspect of the present disclosure can be obtained by additionally incorporating the plate-shaped side cover between a housing body and a cover member of an existing rotary pump.
  • (3) The recess preferably has a shape obtained by recessing, in the axial direction, also an area corresponding to a part of the mating surface such that the crosslinked fluororesin filled in the recess is in contact with the flange surface in an annular area contiguous, without a break, around the opening.
  • In the above configuration, since the crosslinked fluororesin filled in the recess is in contact with the flange surface in the annular area contiguous, without a break, around the opening of the housing body, the contact surfaces of the cover member and the housing body can be sealed with the crosslinked fluororesin, thereby avoiding leakage of fluid. Moreover, since the crosslinked fluororesin forming the mating surface is contiguous with the crosslinked fluororesin forming the sliding/guiding surface, production cost can be suppressed.
  • (4) The mating surface and the sliding/guiding surface may be a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm.
  • In the above configuration, since the mating surface and the sliding/guiding surface can be simultaneously subjected to finish machining, cost reduction is achieved. Moreover, since the surface roughness of the mating surface and the sliding/guiding surface is not greater than RzJIS of 6.3 μm, a clearance in the axial direction between the cover member and the pump rotor can be controlled extremely accurately.
  • (5) The pump rotor may be composed of: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor having, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
  • (6) The pump rotor may be composed of: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
  • Details of Embodiment of the Present Disclosure
  • Hereinafter specific examples of rotary pumps according to embodiments of the present disclosure will be described with reference to the drawings. The present invention is not limited to these examples and is indicated by the claims, and is intended to include meaning equivalent to the claims and all modifications within the scope of the claims.
  • FIG. 1 to FIG. 6 show a rotary pump according to a first embodiment of the present disclosure. The rotary pump includes: a pump rotor 2 rotationally driven by a rotation shaft 1; a housing body 3 that houses the pump rotor 2; a first cover body 4 a and a first side cover 5 a disposed on one side in the axial direction of the housing body 3; and a second cover body 4 b and a second side cover 5 b disposed on the other side in the axial direction of the housing body 3.
  • As shown in FIG. 1 and FIG. 4 , the pump rotor 2 is composed of: an inner rotor 7 having, at an outer periphery thereof, a plurality of outer teeth 6; and an annular outer rotor 9 haying, at an inner periphery thereof, a plurality of inner teeth 8 that mesh with the outer teeth 6. The inner rotor 7 and the outer rotor 9 are rotatably housed in an opening 10, in the axial direction, formed in the housing body 3.
  • As shown in FIG. 3 , the inner rotor 7 has an axial hole 11 into which the rotation shaft 1 is inserted. The rotation shaft 1 and the axial hole 11 are fitted to each other such that the rotation shaft 1 and the inner rotor 7 integrally rotate. Fitting of the rotation shaft 1 and the axial hole 11 is not limited to width-across-flat fitting shown in FIG. 3 . Spline fitting, key groove fitting, or a fitting with an interference between cylindrical surfaces (shrinkage fitting or press fitting) may be adopted.
  • As shown in FIG. 4 , the outer rotor 9 has an outer peripheral cylindrical surface 12. The outer peripheral cylindrical surface 12 is fitted to an inner periphery of the opening 10 of the housing body 3 with a gap therebetween, and this fitting rotatably supports the outer rotor 9, The outer rotor 9 is supported to be rotatable around a position eccentric from a center position of the inner rotor 7 (i.e., a rotation center position of the rotation shaft 1). When the inner rotor 7 is rotated, the outer rotor 9 rotates together with the inner rotor 7 due to meshing of the inner teeth 8 with the outer teeth 6. The rotation direction of the inner rotor 7 is the clockwise direction in FIG. 4 .
  • The number of the inner teeth 8 of the outer rotor 9 is larger by one than the number of the outer teeth 6 of the inner rotor 7. A plurality of chambers 13 (spaces for containing fluid) demarcated by the respective outer teeth 6 and the respective inner teeth 8 are formed between the outer periphery of the inner rotor 7 and the inner periphery of the outer rotor 9. The plurality of chambers 13 are configured such that the volume of each chamber 13 changes with rotation of the inner rotor 7 and the outer rotor 9. That is, the volume of each chamber 13 is maximum at an angular position (upper position in FIG. 4 ) at which the center of the inner rotor 7 and the center of the outer rotor 9 are most distant from each other, and gradually decreases as the chamber 13 approaches an angular position (lower position in FIG. 4 ) at which the center of the inner rotor 7 and the center of the outer rotor 9 are closest to each other. Therefore, when the inner rotor 7 and the outer rotor 9 rotate, on a side (right side in FIG. 4 ) where the chamber 13 moves from the angular position at which the center of the inner rotor 7 and the center of the outer rotor 9 are most distant from each other, toward the angular position at which the center of the inner rotor 7 and the center of the outer rotor 9 are closest to each other, the volume of the chamber 13 is reduced and thereby a fluid discharge effect occurs. Meanwhile, on a side (left side in FIG. 4 ) where the chamber 13 moves from the angular position at which the center of the inner rotor 7 and the center of the outer rotor 9 are closest to each other, toward the angular position at which the center of the inner rotor 7 and the center of the outer rotor 9 are most distant from each other, the volume of the chamber 13 gradually increases and thereby a fluid suction effect occurs.
  • As shown in FIG. 5 , the inner rotor 7 has: a flat first inner rotor side surface 14 a facing one side (left side in FIG. 5 ) in the axial direction; and a flat second inner rotor side surface 14 b facing the other side (right side in FIG. 5 ) in the axial direction. The first inner rotor side surface 14 a and the second inner rotor side surface 14 b are parallel flat surfaces facing opposite to each other in the axial direction. The outer rotor 9 has a flat first outer rotor side surface 15 a facing one side in the axial direction, and a fiat second outer rotor side surface 15 b facing the other side in the axial direction. The first outer rotor side surface 15 a and the second outer rotor side surface 15 b are parallel flat surfaces facing opposite to each other in the axial direction.
  • A width dimension in the axial direction of the inner rotor 7 from the first inner rotor side surface 14 a to the second inner rotor side surface 14 b is equal to a width dimension in the axial direction of the outer rotor 9 from the first outer rotor side surface 15 a to the second outer rotor side surface 15 b. The first inner rotor side surface 14 a and the first outer rotor side surface 15 a are flush with each other, and the second inner rotor side surface 14 b and the second outer rotor side surface 15 b are also flush with each other. Both the inner rotor 7 and the outer rotor 9 are formed of a sintered parts. The sintered parts is a member obtained by compression-molding an iron-base powder material by using a mold to form a powder molded body, and heating the powder molded body at a high temperature equal to or lower than a melting point.
  • As shown in FIG. 3 , the axial hole 11 into which the rotation shaft 1 is inserted is a through-hole penetrating through the inner rotor 7 in the axial direction. The rotation shaft 1 is inserted into the axial hole 11 so as to have a portion protruding from the inner rotor 7 to one side (left side in FIG. 3 ) in the axial direction, and a portion protruding from the inner rotor 7 to the other side (right side in FIG. 3 ) in the axial direction. The portion, of the rotation shaft 1, protruding to one side in the axial direction of the inner rotor 7 is rotatably supported by a first bearing 16 a mounted to the first cover body 4 a, and the portion, of the rotation shaft 1, protruding to the other side in the axial direction from the inner rotor 7 is rotatably supported by a second bearing 16 b mounted to the second cover body 4 b. The portion, of the rotation shaft 1, protruding to the other side in the axial direction from the inner rotor 7 (portion supported by the second bearing 16 b) is connected to a rotation driving device (electric motor or the like) which is not shown.
  • As shown in FIG. 5 , the first cover body 4 a, the first side cover 5 a, the housing body 3, the second side cover 5 b, and the second cover body 4 b are fixed to each other while being fastened in the axial direction by a common bolt 18 inserted through bolt insertion holes 17 formed in the respective components. Moreover, the first cover body 4 a, the first side cover 5 a, the housing body 3, the second side cover 5 b, and the second cover body 4 b are positioned in a direction perpendicular to the axial direction by a common knock pin 20 being inserted through knock-pin insertion holes 19 formed in the respective components.
  • The housing body 3 has: an opening 10 that is opened at one side (left side in FIG. 5 ) and the other side (right side in FIG. 5 ) in the axial direction; a flat first flange surface 21 a formed around the one side in the axial direction of the opening 10; and a flat second flange surface 21 b formed around the other side in the axial direction of the opening 10. The first flange surface 21 a and the second flange surface 21 b are parallel flat surfaces facing opposite to each other in the axial direction.
  • The first cover body 4 a is disposed so as to oppose the first flange surface 21 a of the housing body 3, and the first side cover 5 a is sandwiched between the first cover body 4 a and the housing body 3. Likewise, the second cover body 4 b is disposed so as to oppose the second flange surface 21 b of the housing body 3, and the second side cover 5 b is sandwiched between the second cover body 4 b and the housing body 3.
  • The first flange surface 21 a is flush with the first inner rotor side surface 14 a and the first outer rotor side surface 15 a. The second flange surface 21 b is flush with the second inner rotor side surface 14 b and the second outer rotor side surface 15 b. A width dimension in the axial direction of the inner rotor 7 and the outer rotor 9 is slightly smaller than a width dimension in the axial direction of the housing body 3, and a difference therebetween is set to be not larger than 20 μm (preferably, not larger than 15 μm, and more preferably, not larger than 10 μm).
  • The first side cover 5 a and the second side cover 5 b are symmetrical with each other across the housing body 3. Therefore, only the first side cover 5 a will be described, and description of the second side cover 5 b will be omitted while the corresponding components are denoted by the same reference signs or reference signs having the alphabetical suffix “b” instead of “a”.
  • The first side cover 5 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of the bolt 18; and a flat sliding/guiding surface 23 that slides and guides the first inner rotor side surface 14 a and the first outer rotor side surface 15 a.
  • The first side cover 5 a is a plate-shaped member having a uniform thickness not larger than 5 mm (preferably, not larger than 4 mm). The first side cover 5 a is formed of a crosslinked fluororesin 24 and a metal body 25. As a material of the metal body 25, steel or an aluminum alloy can be adopted. The metal body 25 includes: the mating surface 22 formed of a metal; and a recess 26 obtained by recessing an area corresponding to the sliding/guiding surface 23, in the axial direction with respect to the mating surface 22. The recess 26 is a flat recess having a uniform depth throughout. The depth of the recess 26 can be set to be not larger than 0.5 mm (preferably, not larger than 0.3 mm, and more preferably, not larger than 0.2 mm). The recess 26 has a contour within which a contour of the opening 10 of the housing body 3 is included (in FIG. 5 , a circular contour having a larger diameter than a circle forming the contour of the opening 10). The recess 26 is filled with the crosslinked fluororesin 24, and the crosslinked fluororesin 24 forms the sliding/guiding surface 23 that is flush with the mating surface 22. The mating surface 22 and the sliding/guiding surface 23 are a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm (preferably, not greater than RzJIS of 3.2 μm).
  • The ten-point average roughness RzJIS is a parameter defined in “Appendix JA (reference) for ten-point average roughness” of Japanese Industrial Standard JISB0601:2013 “Geometrical Product Specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters”. The ten-point average roughness RzJIS is defined as follows. That is, a reference length is extracted from a roughness curve in a direction of an average line thereof, and, in the extracted portion, a sum of an average height of five profile peaks from the highest one and an average depth of five profile valleys from the deepest one is calculated as the ten-point average roughness RzJIS.
  • The crosslinked fluororesin 24 is obtained by crosslinking molecules of chain polymers forming a fluororesin. The crosslinked fluororesin has extremely high wear resistance as compared to general fluororesin (non-crosslinked fluororesin) while having a coefficient of friction as low as that of general fluororesin.
  • As a fluororesin to be crosslinked, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or the like can be adopted. It is preferable to adopt crosslinked PTFE as the crosslinked fluororesin 24. When the crosslinked PTFE is adopted, pump efficiency can be effectively improved because the crosslinked PTFE has a particularly low coefficient of friction among the above fluororesins and is excellent in wear resistance, and therefore, is hardly worn.
  • The first side cover 5 a can be formed as follows, for example.
  • As shown in an upper portion of FIG. 7 , first, a recess 26 is formed at a surface of a plate-shaped metal body 25 having a uniform thickness. Next, as shown in an intermediate portion of FIG. 7 , a coating of the crosslinked fluororesin 24 is formed at the surface, of the metal body 25, on the recess 26 side. At this time, the recess 26 is filled with the crosslinked fluororesin 24, and the periphery of the recess 26 is covered with the crosslinked fluororesin 24. Thereafter, as shown in a lower portion of FIG. 7 , the crosslinked fluororesin 24 is ground until the metal around the recess 26 is exposed. Furthermore, the metal around the recess 26 and the crosslinked fluororesin 24 in the recess 26 are ground. The surface of the metal around the recess 26 corresponds to the mating surface 22, and the surface of the crosslinked fluororesin 24 in the recess 26 corresponds to the sliding/guiding surface 23. The mating surface 22 and the sliding/guiding surface 23 formed as described above are a contiguous machined surface having the same surface roughness.
  • The coating of the crosslinked fluororesin 24 shown in the intermediate portion of FIG. 7 can be formed as follows, for example. First, a dispersion liquid obtained by dispersing fine particles of a fluororesin (e.g., PTFE) in water is applied to the surface, of the metal body 25, on the recess 26 side. Next, the applied dispersion liquid is dried to form a layer of the tine particles of the fluororesin on the surface, of the metal body 25, on the recess 26 side, Subsequently, the metal body 25 and the layer of the fine particles of the fluororesin are heated to a temperature equal to or higher than the melting point of the fluororesin to bake the fine particles of the fluororesin, whereby the fine particles of the fluororesin are fused to each other. Thereafter, radiation e.g., electron beam) is applied under a predetermined high-temperature, oxygen-free atmosphere to cause covalent bonding between the chain polymers forming the fluororesin, thereby crosslinking the molecules of the chain polymers. The radiation applied at this time also causes chemical bonding between the surface of the metal body 25 and the molecules of the chain polymers forming the fluororesin, and the chemical bonding causes the coating of the crosslinked fluororesin 24 to be adhered to the metal body 25 with extremely high adhesion. Thus, the coating of the crosslinked fluororesin 24 shown in the intermediate portion of FIG. 7 is formed.
  • As shown in FIG. 6 , the first side cover 5 a is provided with: a first suction port 30 a opened at a surface opposing the first inner rotor side surface 14 a and the first outer rotor side surface 15 a; and a first discharge port 31 a opened at a distance in the circumferential direction from the first suction port 30 a.
  • Likewise, the second side cover 5 b is provided with: a second suction port 30 b opened at a surface opposing the second inner rotor side surface 141) and the second outer rotor side surface 15 b; and a second discharge port 31 b opened at a distance in the circumferential direction from the second suction port 30 b.
  • As shown in FIG. 1 , each of the first suction port 30 a and the first discharge port 31 a is opened in an arc shape centered around the rotation shaft 1. Likewise, each of the second suction port 30 b and the second discharge port 31 b is opened in an arc shape centered around the rotation shaft 1.
  • The first suction port 30 a and the second suction port 30 b are opened in the same shape at symmetrical positions with the inner rotor 7 and the outer rotor 9 sandwiched therebetween. Thus, a pressure that the first inner rotor side surface 14 a and the first outer rotor side surface 15 a receive from the fluid in the first suction port 30 a is balanced with a pressure that the second inner rotor side surface 14 b and the second outer rotor side surface 15 b receive from the fluid in the second suction port 30 b, thereby preventing the inner rotor 7 and the outer rotor 9 from being inclined.
  • Likewise, the first discharge port 31 a and the second discharge port 31 b are opened in the same shape at symmetrical positions with the inner rotor 7 and the outer rotor 9 sandwiched therebetween. Thus, a pressure that the first inner rotor side surface 14 a and the first outer rotor side surface 15 a receive from the fluid in the first discharge port 31 a is balanced with a pressure that the second inner rotor side surface 14 b and the second outer rotor side surface 15 b receive from the fluid in the second discharge port 31 b, thereby preventing the inner rotor 7 and the outer rotor 9 from being inclined.
  • As shown in FIG. 4 and FIG. 6 , the first suction port 30 a and the second suction port 30 b are in communication with each other via a communication path 32 formed at a position spaced apart from the opening 10, of the housing body 3, which houses the pump rotor 2. As shown in FIG. 2 and FIG. 6 , the first suction port 30 a is in communication with a suction port 33 opened at an outer surface of the first cover body 4 a, and the first discharge port 31 a is in communication with a discharge port 34 opened at an outer surface of the first cover body 4 a.
  • As shown in FIG. 5 , in the aforementioned rotary pump, the sliding/guiding surfaces 23 of the first side cover 5 a. and the second side cover 5 b are formed of the crosslinked fluororesin 24. Therefore, even when a clearance between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b (i.e., a difference between an inner width dimension between the sliding guiding surface 23 of the first side cover 5 a and the sliding/guiding surface 23 of the second side cover 5 b, and a width dimension in the axial direction of the inner rotor 7 or the outer rotor 9) is set to an extremely small size (not larger than 20 μm, preferably, not larger than 15 μm, and more preferably, not larder than 10 μm), seizure between the pump rotor 2, and the first side cover 5 a and the second side cover 5 b can be avoided over a long period of time.
  • Moreover, in this rotary pump, when the first side cover 5 a and the second side cover 5 b are fixed to the housing body 3 by the bolt 18, positional shift of the sliding/guiding surfaces 23 due to fastening of the bolt 18 hardly occurs. Thus, the clearance in the axial direction between the pump rotor 2 (the inner rotor 7 or the outer rotor 9) and each of the first side cover 5 a and the second side cover 5 b can be accurately controlled.
  • It is assumed that each of the first side cover 5 a and the second side cover 5 b shown in FIG. 5 is replaced with a side cover in which the entirety of one surface of the metal body 25 (i.e., the entirety of a contiguous fiat surface, of the metal body 25 having no recess 26, which includes the mating surface 22 to the housing body 3 and the sliding/guiding surface 23 for the pump rotor 2) is coated with crosslinked fluororesin. In this case, when the side cover is fixed to the housing body 3 by the bolt 18, the coating of the crosslinked fluororesin formed on the mating surface 22, of the side cover, to the housing body 3 is compressed and deformed by fastening force of the bolt 18, and the compressive deformation causes the thickness of the crosslinked fluororesin coating to be reduced by about 1 μm to about 10 μm, whereby the position of the sliding/guiding surface 23 of the side cover is slightly shifted in the axial direction. For example, in a case where four bolts 18 are fastened each by a torque of 11 Nm, a 50 μm thick crosslinked fluororesin coating is reduced in thickness by about 1.6 μm, a 150 μm thick crosslinked fluororesin coating is reduced in thickness by about 4.8 μm, and a 250 μm thick crosslinked fluororesin coating is reduced in thickness by about 8.0 μm due to compressive deformation caused by fastening force of the bolts 18. As a result, a clearance in the axial direction between the side cover and the pump rotor 2 becomes slightly smaller than a design value, which may cause a problem that, particularly when the clearance is set to an extremely small size not larger than 20 μm, a torque for rotationally driving the pump rotor 2 becomes larger than expected.
  • Regarding the above problem, in the rotary pump according to the embodiment of the present disclosure, the mating surfaces 22, to the housing body 3, of the first side cover 5 a and the second side cover 5 b are formed on the metal bodies 25 of the first side cover 5 a and the second side cover 5 b. Therefore, the fastening force of the bolt 18 can be supported with rigidity by the metal bodies 25, thereby preventing the positions of the sliding/guiding surfaces 23 of the first side cover 5 a and the second side cover 5 b from being shifted in the axial direction due to the fastening force of the bolt 18. Therefore, when the first side cover 5 a and the second side cover 5 b are fixed to the housing body 3 by the bolt 18, the clearance in the axial direction between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b can be accurately controlled.
  • Moreover, the rotary pump according to the embodiment can be obtained by additionally incorporating the first side cover 5 a and the second side cover 5 b into an existing rotary pump, which realizes cost reduction.
  • Moreover, in this rotary pump, since the recess 26 to be filled with the crosslinked fluororesin 24 is formed not in the first cover body 4 a to which the first bearing 16 a is mounted but in the metal body 25 which is a member separate from the first cover body 4 a, machining of the recess 26 and filling of the recess 26 with the crosslinked fluororesin 24 are facilitated as compared to the case where the recess 26 is directly formed at the surface of the first cover body 4 a and filled with the crosslinked fluororesin 24. Likewise, since the recess 26 to be filled with the crosslinked fluororesin 24 is formed not in the second cover body 4 b to which the second bearing 16 b is mounted but in the metal body 25 which is a member separate from the second cover body 4 b, machining of the recess 26 and filling of the recess 26 with the crosslinked fluororesin 24 are facilitated as compared to the case where the recess 26 is directly formed at the surface of the second cover body 4 b and filled with the crosslinked fluororesin 24.
  • Moreover, in the rotary pump, since the mating surface 22 and the sliding/guiding surface 23 are simultaneously subjected to finish machining, the mating surface 22 and the sliding/guiding surface 23 are formed as a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm (preferably, not greater than RzJIS of 3.2 μm), which realizes cost reduction. Since the surface roughness of the mating surface 22 and the sliding/guiding surface 23 is not larger than RzJIS of 6.3 μm (preferably, not larger than RzJIS of 3.2 μm), a clearance between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b (i.e., a difference between the inner width dimension between the sliding/guiding surface 23 of the first side cover 5 a and the sliding/guiding surface 23 of the second side cover 5 b, and the width dimension in the axial direction of the inner rotor 7 or the outer rotor 9) can be controlled with extreme accuracy.
  • FIG. 8 and FIG. 9 show a rotary pump according to a second embodiment of the present disclosure. The second embodiment is different from the first embodiment only in the configurations of the first side cover 5 a and the second side cover 5 b, and the other components are the same as those of the first embodiment. Therefore, the parts corresponding to those of the first embodiment are denoted by the same reference signs, and description thereof is omitted.
  • The first side cover 5 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of the bolt 18; and a flat sliding/guiding surface 23 that slides and guides the first inner rotor side surface 14 a and the first outer rotor side surface 15 a, The metal body 25 includes: the mating surface 22 formed of a metal; and a recess 26 obtained by recessing an area corresponding to the sliding/guiding surface 23, in the axial direction with respect to the mating surface 22. The recess 26 has a shape obtained by recessing, in the axial direction, also an area corresponding to a part of the mating surface 22 such that the crosslinked fluororesin 24 filled in the recess 26 is in contact with the first flange surface 21 a in an annular area contiguous, without a break, around the opening 10 of the housing body 3. That is, the first side cover 5 a is formed such that a part of the mating surface 22 (a part surrounding the periphery of the bolt insertion hole) is formed on the metal body 25 while a remaining portion of the mating surface 22 is formed of the crosslinked fluororesin 24 filled in the recess 26. The second side cover 5 b is configured similarly to the first side cover 5 a.
  • In this rotary pump, since the crosslinked fluororesin 24 filled in the recess 26 is in contact with the first flange surface 21 a and the second flange surface 21 b in the annular area contiguous, without a break, around the opening 10 of the housing body 3, the contact surfaces of the first side cover 5 a and the second side cover 5 b with the housing body 3 can be sealed with the crosslinked fluororesin 24, thereby avoiding leakage of fluid. Moreover, since the crosslinked fluororesin 24 forming the mating surface 22 is contiguous with the crosslinked fluororesin 24 forming the sliding/guiding surface 23, production cost can be suppressed.
  • FIG. 10 and FIG. 11 show a rotary pump according to a third embodiment of the present disclosure. The parts corresponding to those of the aforementioned embodiments are denoted by the same reference signs, and description thereof is omitted.
  • The rotary pump includes: a pump rotor 2 rotationally driven by a rotation shaft 1; a housing body 3 that houses the pump rotor 2; a first cover body 4 a disposed on one side (left side in FIG. 11 ) in the axial direction of the housing body 3; and a second cover body 4 b disposed on the other side (right side in FIG. 11 ) in the axial direction of the housing body 3.
  • As shown in FIG. 11 , the first cover body 4 a, the housing body 3, and the second cover body 4 b are fixed to each other while being fastened in the axial direction by a common bolt 18 inserted through bolt insertion holes 17 formed in the respective components. Moreover, the first cover body 4 a, the housing body 3, and the second cover body 4 b are positioned in the direction perpendicular to the axial direction by a common knock pin 20 inserted through knock-pin insertion holes 19 formed in the respective components.
  • The first cover body 4 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of the bolt 18; and a flat sliding/guiding surface 23 that slides and guides the first inner rotor side surface 14 a and the first outer rotor side surface 15 a.
  • The first cover body 4 a is formed of a crosslinked fluororesin 24 and a metal body 25. As a material of the metal body 25, steel or an aluminum alloy can be adopted. The metal body 25 includes: the mating surface 22 formed of a metal; and a recess 26 obtained by recessing an area corresponding to the sliding/guiding surface 23, in the axial direction with respect to the mating surface 22. The recess 26 is filled with the crosslinked fluororesin 24, and the crosslinked fluororesin 24 also forms the sliding/guiding surface 23 that is flush with the mating surface 22. The second cover body 4 b is configured similarly to the first cover body 4 a.
  • In this rotary pump, as in the aforementioned embodiments, the sliding/guiding surfaces 23 of the first cover body 4 a and the second cover body 4 b are formed of the crosslinked fluororesin 24. Therefore, when a clearance between the pump rotor 2 and each of the first cover body 4 a and the second cover body 4 b (i.e., a difference between the inner width dimension between the sliding/guiding surface 23 of the first cover body 4 a and the sliding/guiding surface 23 of the second cover body 4 b, and the width dimension in the axial direction of the inner rotor 7 or the outer rotor 9) is set to an extremely small size (not larger than 20 μm, preferably, not larger than 15 μm, and more preferably, not larger than 10 μm), seizure between the pump rotor 2, and the first cover body 4 a and the second cover body 4 b can be avoided over a long period of time.
  • Moreover, in this rotary pump, the mating surfaces 22, to the housing body 3, of the first cover body 4 a and the second cover body 4 b are formed on the metal bodies 25 of the first cover body 4 a and the second cover body 4 b. Therefore, the fastening force of the bolt 18 can be supported with rigidity by the metal bodies 25, thereby preventing the positions of the sliding/guiding surfaces 23 of the first cover body 4 a and the second cover body 4 b from being shifted in the axial direction due to the fastening force of the bolt 18. Therefore, when the first cover body 4 a and the second cover body 4 b are fixed to the housing body 3 by the bolt 18, the clearance in the axial direction between the pump rotor 2 and each of the first cover body 4 a and the second cover body 4 b can be accurately controlled.
  • FIG. 12 to FIG. 14 show a rotary pump according to a fourth embodiment of the present disclosure. The fourth embodiment is different from the first embodiment only in the configuration of the pump rotor 2, and the other components are the same as those of the first embodiment. Therefore, the parts corresponding to those of the first embodiment are denoted by the same reference signs, and description thereof is omitted.
  • As shown in FIG. 12 and FIG. 13 . the pump rotor 2 is composed of: a rotor body 36 having, at an outer periphery thereof, a plurality of vane-containing grooves 35; and a plurality of vanes 37 contained in the respective vane-containing grooves 35 so as to be slidable in the radial direction. A radially outer end of each vane 37 is slidably in contact with an inner periphery of a cam ring 38 disposed on the housing body 3. An opening 10 that rotatably houses the pump rotor 2 is formed inside the cam ring 38. A plurality of chambers 39 (spaces for containing fluid) demarcated by the vanes 37 are formed between the outer periphery of the rotor body 36 and the inner periphery of the cam ring 38. The inner periphery of the cam ring 38 is configured such that the volume of each chamber 39 changes with rotation of the rotor body 36, and a fluid discharge effect is caused by reduction in the volume of the chamber 39 while a fluid suction effect is caused by gradual increase in the volume of the chamber 39.
  • As shown in FIG. 14 , the first side cover 5 a has: a flat mating surface 22 that is fixed while being pressed against the first flange surface 21 a by fastening of a bolt 18 (see FIG. 12 ); and a flat sliding/guiding surface 23 that slides and guides flat side surfaces, facing in the axial direction, of the rotor body 36 and the vanes 37. The second side cover 5 b is configured similarly to the first side cover 5 a.
  • The inner periphery of the cam ring 38 is coated with a crosslinked fluororesin coating 40. A width dimension in the axial direction of the rotor body 36 is equal to a width dimension in the axial direction of each vane 37.
  • In this rotary pump, as shown in FIG. 12 , the sliding/guiding surfaces 23 of the first side cover 5 a and the second side cover 5 b are formed of the crosslinked fluororesin 24. Therefore, even when a clearance between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b (i.e., a difference between the inner width dimension between the sliding/guiding surface 23 of the first side cover 5 a and the sliding/guiding surface 23 of the second side cover 5 b, and the width dimension in the axial direction of the rotor body 36 and each vane 37) is set to an extremely small size (not larger than 20 μm, preferably, not larger than 15 μm, and more preferably, not larger than 10 μm), seizure between the pump rotor 2, and the first side cover 5 a and the second side cover 5 b can be avoided over a long period of time.
  • Moreover, in this rotary pump. the mating surfaces 22, to the housing body 3, of the first side cover 5 a and the second side cover 5 b are formed on the metal bodies 25 of the first side cover 5 a and the second side cover 5 b. Therefore, the fastening force of the bolt 18 can be supported with rigidity by the metal bodies 25, thereby preventing the positions of the sliding/guiding surfaces 23 of the first side cover 5 a and the second side cover 5 b from being shifted in the axial direction due to the fastening force of the bolt 18. Therefore, when the first side cover 5 a and the second side cover 5 b are fixed to the housing body 3 by the bolt 18, the clearance in the axial direction between the pump rotor 2 and each of the first side cover 5 a and the second side cover 5 b can be accurately controlled.
  • REFERENCE SIGNS LIST
  • 1 rotation shaft
  • 2 pump rotor
  • 3 housing body
  • 4 a first cover body
  • 4 b second cover body
  • 5 a first side cover
  • 5 b second side cover
  • 6 outer teeth
  • 7 inner rotor
  • 8 inner teeth
  • 9 outer rotor
  • 10 opening
  • 11 axial hole
  • 12 outer peripheral cylindrical surface
  • 13 chamber
  • 14 a first inner rotor side surface
  • 14 b second inner rotor side surface
  • 15 a first outer rotor side surface
  • 15 b second outer rotor side surface
  • 16 a first bearing
  • 16 b second bearing
  • 17 bolt insertion hole
  • 18 bolt
  • 19 knock pin insertion hole
  • 20 knock pin
  • 21 a first flange surface
  • 21 b second flange surface
  • 22 mating surface
  • 23 sliding/guiding surface
  • 24 crosslinked fluororesin
  • 25 metal body
  • 26 recess
  • 30 a first suction port
  • 30 b second suction port
  • 31 a first discharge port
  • 31 b second discharge port
  • 32 communication path
  • 33 suction port
  • 34 discharge port
  • 35 vane-containing groove
  • 36 rotor body
  • 37 vane
  • 38 cam ring
  • 39 chamber
  • 40 crosslinked fluororesin coating

Claims (20)

1. A rotary pump comprising:
a pump rotor having a flat rotor side surface facing in an axial direction;
a housing body having an opening in the axial direction and a flat flange surface formed around the opening, the housing body rotatably housing the pump rotor in the opening such that the rotor side surface is flush with the flange surface; and
a cover member having a flat mating surface that is fixed while being pressed against the flange surface by fastening of a bolt, and a flat sliding/guiding surface that slides and guides the rotor side surface, wherein
the cover member is formed of a crosslinked fluororesin and a metal body,
the metal body is provided with the mating surface, and a recess obtained by recessing an area corresponding to the sliding/guiding surface, in the axial direction with respect to the mating surface, and
the crosslinked fluororesin is filled in the recess so as to form the sliding/guiding surface flush with the mating surface.
2. The rotary pump according to claim 1, wherein
the cover member is a plate-shaped side cover that is fixed by being sandwiched between the housing body and a cover body disposed so as to oppose the flange surface of the housing body.
3. The rotary pump according to claim 1, wherein
the recess has a shape obtained by recessing, in the axial direction, also an area corresponding to a part of the mating surface such that the crosslinked fluororesin filled in the recess is in contact with the flange surface in an annular area contiguous, without a break, around the opening.
4-6. (canceled)
7. The rotary pump according to claim 2, wherein
the recess has a shape obtained by recessing, in the axial direction, also an area corresponding to a part of the mating surface such that the crosslinked fluororesin filled in the recess is in contact with the flange surface in an annular area contiguous, without a break, around the opening.
8. The rotary pump according to claim 2, wherein
the mating surface and the sliding/guiding surface are a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm.
9. The rotary pump according to claim 3, wherein
the mating surface and the sliding/guiding surface are a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm.
10. The rotary pump according to claim 7, wherein
the mating surface and the sliding/guiding surface are a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm.
11. The rotary pump according to claim 2, wherein
the pump rotor comprises: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor having, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
12. The rotary pump according to claim 3, wherein
the pump rotor comprises: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor haying, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
13. The rotary pump according to claim 7, wherein
the pump rotor comprises: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor having, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
14. The rotary pump according to claim 8, wherein
the pump rotor comprises: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor having, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
15. The rotary pump according to claim 2, wherein
the pump rotor comprises: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
16. The rotary pump according to claim 3, wherein
the pump rotor comprises: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
17. The rotary pump according to claim 7, wherein
the pump rotor comprises: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
18. The rotary pump according to claim 8, wherein
the pump rotor comprises: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
19. (canceled)
20. The rotary pump according to claim 1, wherein
the mating surface and the sliding/guiding surface are a contiguous machined surface having a surface roughness not greater than a ten-point average roughness RzJIS of 6.3 μm.
21. The rotary pump according to claim 1, wherein
the pump rotor comprises: an inner rotor having, at an outer periphery thereof, a plurality of outer teeth; and an annular outer rotor supported to be rotatable around a position eccentric from a center of the inner rotor, the outer rotor having, at an inner periphery thereof, a plurality of inner teeth meshing with the outer teeth.
22. The rotary pump according to claim 1, wherein
the pump rotor comprises: a rotor body having, at an outer periphery thereof, a plurality of vane-containing grooves; and a plurality of vanes contained in the respective vane-containing grooves so as to be slidable in a radial direction.
US17/774,151 2019-12-24 2019-12-24 Rotary pump Abandoned US20220403841A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050625 WO2021130858A1 (en) 2019-12-24 2019-12-24 Rotary pump

Publications (1)

Publication Number Publication Date
US20220403841A1 true US20220403841A1 (en) 2022-12-22

Family

ID=76575792

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/774,151 Abandoned US20220403841A1 (en) 2019-12-24 2019-12-24 Rotary pump

Country Status (5)

Country Link
US (1) US20220403841A1 (en)
JP (1) JPWO2021130858A1 (en)
CN (1) CN114585815A (en)
DE (1) DE112019008001T5 (en)
WO (1) WO2021130858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754050A (en) * 1950-04-22 1956-07-10 Gen Motors Corp Rotary blower
WO2015159715A1 (en) * 2014-04-16 2015-10-22 住友ベークライト株式会社 Pump and resin composition
DE202018004820U1 (en) * 2018-10-18 2018-11-19 Doris Korthaus Rotary lobe pump with wear elements for pumping solid media
US20220389925A1 (en) * 2019-12-24 2022-12-08 Sumitomo Electric Sintered Alloy, Ltd. Rotary pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622486U (en) * 1979-07-27 1981-02-27
JP6452124B2 (en) * 2013-05-22 2019-01-16 住友電工焼結合金株式会社 Oil pump
JP6163111B2 (en) * 2014-01-21 2017-07-12 株式会社ショーワ Vane pump unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754050A (en) * 1950-04-22 1956-07-10 Gen Motors Corp Rotary blower
WO2015159715A1 (en) * 2014-04-16 2015-10-22 住友ベークライト株式会社 Pump and resin composition
DE202018004820U1 (en) * 2018-10-18 2018-11-19 Doris Korthaus Rotary lobe pump with wear elements for pumping solid media
US20220389925A1 (en) * 2019-12-24 2022-12-08 Sumitomo Electric Sintered Alloy, Ltd. Rotary pump

Also Published As

Publication number Publication date
CN114585815A (en) 2022-06-03
JPWO2021130858A1 (en) 2021-07-01
WO2021130858A1 (en) 2021-07-01
DE112019008001T5 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US9494239B2 (en) Sliding parts
EP2752602B1 (en) Sliding component
WO2012036141A1 (en) Rotary compressor
US20190178250A1 (en) Polymeric composite insert component for a scroll compressor
WO2013121813A1 (en) Shaft-sealing device
EP2610493A1 (en) Stator seal structure for single-shaft eccentric screw pump
US20220403841A1 (en) Rotary pump
US20220389925A1 (en) Rotary pump
CN104110380A (en) Compressor and roller structure thereof
EP3037663A1 (en) Variable displacement pump
US11725655B2 (en) Oil pump
JP2006329054A (en) Trochoid pump
US6695604B1 (en) Automotive fuel pump gear assembly having lifting and lubricating features
JP7290751B2 (en) Manufacturing method of crosslinked fluororesin coated rotor
US11149735B2 (en) Polymeric composite insert component for a scroll compressor
US20220389928A1 (en) Crosslinked fluororesin-coated pump rotor manufacturing method, crosslinked fluororesin-coated pump rotor, crosslinked fluororesin-coated pump cover manufacturing method, and crosslinked fluororesin-coated pump cover
US7086845B2 (en) Vane pump having an abradable coating on the rotor
JP4291089B2 (en) Scroll type fluid machine
WO2017104420A1 (en) Fuel pump
CN111094763A (en) Actuator bearing arrangement
US7563087B2 (en) Pump rotor seal apparatus and method
US11480172B2 (en) Gear pump
EP3521621B1 (en) Internally rotating gear pump
US8066497B2 (en) Pump with side surface coating
JP2022542034A (en) scroll pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKADA, SHOICHI;UOZUMI, MASATO;NAKABAYASHI, MAKOTO;AND OTHERS;SIGNING DATES FROM 20220303 TO 20220308;REEL/FRAME:059807/0001

Owner name: SUMITOMO ELECTRIC SINTERED ALLOY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKADA, SHOICHI;UOZUMI, MASATO;NAKABAYASHI, MAKOTO;AND OTHERS;SIGNING DATES FROM 20220303 TO 20220308;REEL/FRAME:059807/0001

AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEES' ADDRESS PREVIOUSLY RECORDED ON REEL 059807 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:TAKADA, SHOICHI;UOZUMI, MASATO;NAKABAYASHI, MAKOTO;AND OTHERS;SIGNING DATES FROM 20220303 TO 20220308;REEL/FRAME:060385/0687

Owner name: SUMITOMO ELECTRIC SINTERED ALLOY, LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEES' ADDRESS PREVIOUSLY RECORDED ON REEL 059807 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:TAKADA, SHOICHI;UOZUMI, MASATO;NAKABAYASHI, MAKOTO;AND OTHERS;SIGNING DATES FROM 20220303 TO 20220308;REEL/FRAME:060385/0687

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION