WO2015159562A1 - Cooling roller and manufacturing device for amorphous alloy foil strips - Google Patents

Cooling roller and manufacturing device for amorphous alloy foil strips Download PDF

Info

Publication number
WO2015159562A1
WO2015159562A1 PCT/JP2015/050687 JP2015050687W WO2015159562A1 WO 2015159562 A1 WO2015159562 A1 WO 2015159562A1 JP 2015050687 W JP2015050687 W JP 2015050687W WO 2015159562 A1 WO2015159562 A1 WO 2015159562A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
cooling
amorphous alloy
alloy foil
cooling roll
Prior art date
Application number
PCT/JP2015/050687
Other languages
French (fr)
Japanese (ja)
Inventor
駿 佐藤
吉男 中村
Original Assignee
Saco合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saco合同会社 filed Critical Saco合同会社
Publication of WO2015159562A1 publication Critical patent/WO2015159562A1/en
Priority to US15/293,559 priority Critical patent/US20170029924A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Definitions

  • the present invention relates to a cooling roll for producing an amorphous (amorphous) alloy foil strip, and an apparatus for producing an amorphous alloy foil strip.
  • the present invention relates to an apparatus for manufacturing an amorphous alloy foil strip provided with a water cooling type cooling roll.
  • thick amorphous alloy foil strips are manufactured at low cost industrially, application to not only wound core type transformers / reactors but also to piled iron cores and motors becomes possible.
  • the working efficiency of the iron core processing step is improved and the space factor is increased. This reduces the volume of the core, and thus the coil containing the winding.
  • the hysteresis loss is reduced, and in the commercial frequency range, the reduction effect of the iron loss which is more than offsetting the increase of the eddy current loss can be expected.
  • Thickening the foil can not only reduce power loss but also increase strength. With a motor that rotates at high speed, it is possible to realize an unprecedented product that can withstand strong centrifugal force acting on the rotor.
  • the most common method of producing an amorphous alloy is to contact the molten metal of the alloy with the outer peripheral surface of the roll through a nozzle while rotating a cooling roll made of metal or alloy having high thermal conductivity.
  • This is a so-called single roll liquid quenching method in which a molten alloy is rapidly cooled and solidified into a foil band.
  • the single roll liquid quenching method is a method of rapidly quenching the molten metal by moving the heat of the molten metal to a cooling roll at high speed, and solidifying the molten metal before it crystallizes to produce an amorphous alloy foil strip.
  • amorphous alloy includes a double phase alloy in which 50% or more of the volume ratio is amorphous and the balance is amorphous and the nano-sized crystallites are dispersed and precipitated.
  • the manufacturing apparatus and method of the present invention can be used to control crystal grains. Specifically, it is effective for controlling the grain size of a permanent magnet containing neodymium boron.
  • the temperature of the cooling roll increased with the production of the amorphous alloy foil strip, and the heat received from the molten metal and the heat discharged from the cooling roll to the cooling water were balanced. By the way, we reach equilibrium. If the surface temperature of the cooling roll in this equilibrium state is low enough to solidify the molten metal in a supercooled state, it is possible to continuously produce an amorphous alloy foil strip. However, amorphous foil strips can only be produced within a finite time if the cooling rate before the roll temperature overheats and passes the glass transition does not reach the predetermined cooling rate during casting .
  • the amount of heat proportional to the thickness of the foil must be transferred to the cooling roll.
  • the amount of heat that can be discharged to the cooling water in contact with the inner surface of the cooling roll is limited.
  • the cooling structure of the water-cooled roll so far is configured by the outer peripheral surface of the roll and the cooling water channel flowing along the circumferential direction as shown in the known examples (patent documents 1, 2 and 3).
  • the patent document 4 has arrange
  • the flow path which contributes to cooling of a roll has an inadequate heat removal capacity only in the flow path on the concentric circle of outermost periphery. It is.
  • the flow path located on the second concentric circle from the outer periphery is provided for temperature control and has no cooling device.
  • the conventional cooling roll has a limitation in the amount of heat per unit time that the cooling water can discharge. The reason is that the area of the cooling channel above the area corresponding to the outer peripheral surface of the roll could not be obtained. For this reason, there is a limit to the thickness obtained in the amorphous state under a constant width.
  • Patent No. 5114241 gazette Patent No. 5270295 gazette Patent No. 5329915 gazette JP, 2012-086232 gazette
  • An object of the present invention is to provide an apparatus for producing an amorphous alloy foil strip, which enables production of an industrial scale (100 kg or more per charge) using a thick amorphous alloy foil strip and a single cooling roll. It is.
  • the thickness of the thick amorphous alloy foil marketed today was limited to 30 ⁇ m or less. It is an object of the present invention to propose a technique for continuously producing an amorphous foil strip thicker than 30 ⁇ m by breaking this limitation.
  • the present invention specifies the structure of the cooling water flow path of the cooling roll in order to continuously produce a thick amorphous alloy foil strip using a single cooling roll. Specifically, in order to obtain an amorphous alloy having a desired thickness, a cooling roll structure capable of securing the surface area of the in-roll cooling water passage is provided.
  • an apparatus for producing an amorphous alloy foil strip capable of producing a thick amorphous alloy foil strip on an industrial scale can be realized.
  • the production cost can be reduced, and the miniaturization of applied products can be realized by the improvement of space factor.
  • core loss iron loss
  • core loss iron loss
  • annealing is performed on a magnetic core used by winding and stacking, uniformity of the temperature in the core can be realized. Heat flows from the edge to the inside from the interlayer. Annealing conditions can be optimized because temperature uniformity can be realized. Since the temperature across the core is equal within a narrow range, optimum conditions are achieved for each part of the core and optimum characteristics can be easily achieved.
  • FIG. 1 It is a perspective view which illustrates the manufacturing device of the amorphous alloy foil strip concerning a 1st embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS (a) Front view and (b) Side view which illustrate the apparatus of 1st Embodiment.
  • (A) is a schematic diagram which saw the apparatus concerning the modification of 1st Embodiment from the front of a cooling roll,
  • (b) is the through-hole entrance part which attached collar-like protrusion from the side of a cooling roll It is a view.
  • FIG. 1 is a front view of an apparatus illustrating a twin cooling roll method used in producing a large thickness amorphous alloy foil strip that can not be achieved with a single roll of the present invention.
  • FIG. 1 is a perspective view illustrating an apparatus for manufacturing an amorphous alloy foil strip according to the present embodiment
  • FIG. 2 is the front view which illustrated the (a) cooling roll and the cooling channel of the manufacturing apparatus which concerns on this embodiment, (b) It is a side view of a cooling roll.
  • a cooling roll 11 As shown in FIG. 1, in the apparatus 1 for manufacturing an amorphous alloy foil strip according to the present embodiment, a cooling roll 11, cooling water supply means 12 for circulating cooling water in the cooling roll 11, and a cooling roll 11.
  • the driving means 13 (including the draining means) for rotating the metal and the molten metal supply means 17 for supplying the molten metal to the outer peripheral surface 11 a of the cooling roll 11 are provided.
  • the molten metal supply means 17 is provided with a melting furnace 14 for melting the alloy, a crucible 15 for holding the molten metal A, and a nozzle 16 attached to the bottom of the crucible 15 for discharging the molten metal in the crucible 15 downward. There is.
  • the manufacturing apparatus 1 is an apparatus for manufacturing the amorphous alloy foil strip S.
  • amorphous alloy is a double phase in which 50% or more of the volume ratio is amorphous, and the remaining part is amorphous and used as a matrix to disperse and deposit fine crystals of nanometer (nm) size. Contains alloys.
  • the operation of the apparatus for producing an amorphous alloy foil strip constructed as described above, that is, the method for producing an amorphous alloy foil strip according to the present embodiment will be described.
  • the alloy to be the raw material of the amorphous alloy foil strip S is melted and the molten metal A is poured into the crucible 15.
  • the molten metal A contains 70 atomic percent to 95 atomic percent in total of at least one of Fe, Co, and Ni, and at least one of semimetals B, Si, C, and P other than the three ferromagnetic metal elements.
  • At least one of Cr, V, Nb, Mo, W, Ta, Cu, and Sn may be added in a range of 0.01 atomic% to 5 atomic% to part of the ferromagnetic elements described above. Needless to say, the total content of constituent elements must be 100%, excluding unavoidable impurities.
  • Cu is an essential element in producing an amorphous foil and then crystallizing by annealing to produce a so-called nanocrystalline material consisting of fine crystal grains in the range of several nanometers to 100 nanometers. It is an element. Even if the material is not a nanocrystal material, Cu alone (Fe, Co, Ni)-(B, Si) is used to promote partial crystallization by partially promoting crystallization in order to improve high frequency magnetic properties. It is also within the scope of the present invention to add to the (C, P) alloy in the range of 0.1 at% to 2.5 at%.
  • Sn segregates in a thin layer on the surface of the foil and acts to suppress crystallization, so it is effective in producing an amorphous foil strip of a Fe-based alloy containing a high content of Fe.
  • An alloy containing 82 atomic% or more of Fe is likely to undergo surface crystallization due to annealing, and magnetic properties such as iron loss and magnetic permeability are significantly degraded, but containing 0.1 mass% to 1 mass% of Sn No crystallization occurs after annealing, maintaining the original excellent soft magnetic properties.
  • the addition of a small amount of S (sulfur) also acts in the same manner as Sn.
  • the amount of S added is preferably in the range of 0.003 to 0.5% by mass.
  • the driving means (which also serves as a drainage means) 13 rotates the cooling roll 11 while the cooling water supply means 12 circulates the cooling water W through the flowing water path 21 in the cooling roll 11. In this state, the molten metal A of the alloy poured from the melting furnace 14 into the crucible 15 is discharged from the nozzle 16 to the outer peripheral surface 11 a of the cooling roll 11.
  • the molten metal A forms a paddle between the outer peripheral surface 11 a of the cooling roll 11 and the nozzle 16.
  • the portion in contact with the roll surface 11a of the paddle cooled by the cooling roll 11 by the rotating cooling roll 11 becomes a highly viscous supercooled liquid, which is drawn out in the rotational direction of the roll and quenched by the cooling roll 11 for supercooling Solidify in liquid form.
  • a strip-like amorphous alloy foil strip S is formed.
  • the amorphous alloy foil strip S moves to a predetermined position along with the outer peripheral surface 11 a of the cooling roll 11, and then is induced in a direction away from the cooling roll 11 and wound up.
  • the heat transferred from the molten metal A to the cooling roll 11 is transferred to the cooling water flowing inside the cooling roll and then discharged to the outside of the cooling roll 11 by the cooling water W flowing in the flowing water path 21.
  • FIG. 2 (a) shows one of the embodiments of the present invention.
  • the cooling roll 11 is formed with through holes 21a, 21b and 21c penetrating through the side surfaces. It is provided at equal intervals on a plurality of concentric circles whose center C is the roll rotation axis shown in FIG.
  • the side view of the cooling roll 11 of FIG. 2 (b) exemplifies a state in which the through holes are arranged at equal intervals on three concentric circles. The diameter of the through holes is the same size on the same concentric circle.
  • FIG. 2 shows an example in which the cooling water is sent from the water supply side and the cooling water having passed through the through holes is flowed to the opposite side, as shown in FIG. It is also possible to drain water through a double pipe after passing through the center of the roll and passing through the through hole from the back side after hitting the cover 23b installed on the opposite side to the cooling water supply side after passing through the center of the roll. In the latter case, air is less likely to remain, and water is likely to flow evenly through the through holes.
  • a semicircular shape as shown in FIG. 3 (b) is provided at the end (the side far from the rotation axis) of the through hole inlet on the surface opposite to the water supply side in FIG.
  • the collar-like projections 26 are provided, the flow of water becomes smooth and it is easy to equalize the amount of water flowing through the through holes.
  • a collar is not required on the outlet side of the through hole. However, if it is difficult to balance the roll rotation, a collar may be provided on the outlet side.
  • FIGS. 2 and 3 it is convenient to provide a valve 27 on the cover 23 for air removal. Air may remain in the cooling channel. The residual air balances the cooling water passing through the through holes and reduces the cooling efficiency of the roll.
  • the cooling water is allowed to flow slowly and the roll is slowly rotated to open the valve provided on the cover (may be provided on one cover) to purge air and then close it. By repeatedly opening and closing the valve while rotating slowly, the air remaining in the flow path of the roll can be brought close to zero as much as possible.
  • FIG. 4 illustrates the arrangement of through holes penetrating through the side surface of the cooling roll shown in the first embodiment.
  • FIG. 2B adjacent through holes on concentric circles are connected by a metal U-shaped pipe.
  • An example is shown.
  • Fig.4 (a) is a front view of the cooling roll which illustrates 2nd Embodiment
  • (b) is a side view of a cooling roll.
  • FIG. 4C is a view showing a flow path of the cooling water provided concentrically closest to the outer periphery of the roll when viewed from the front of the device.
  • FIG. 4A shows the cooling water channel provided on the second concentric circle from the outer periphery of the roll.
  • 62a, 62b, and 62c are, in order from the side of the roll, the coolant flow path closest to the outer periphery, the second concentric flow path from the outer periphery, and the third concentric circle flow path from the outer periphery Is shown.
  • FIG. 4 illustrating the second embodiment shows that U-shaped pipes 64 connect adjacent through holes concentrically. Thereby, the through holes on the same concentric circle form one flow path branched from the main pipe flow path 21.
  • FIG. 4 shows three examples of concentric circles, so there are three flow paths 21a, 21b and 21c. Each end is coupled to a rotary diverter rotary joint 63 provided along the axis of rotation of the roll. As a result, even while the roll is rotating, a branched flow path is connected to the water supply and drainage main pipes (not shown) along the rotation axis.
  • the flow control valve 65 is provided in each of the flow paths 62a, 62b and 62c branched from the main flow path. If there is a flow control valve in each flow path, optimal flow distribution can be performed according to the plate width and plate thickness of the foil strip to be cast. For example, when the plate width and the plate thickness are relatively small, the cooling water may be supplied with emphasis on the flow path closest to the roll outer peripheral surface. As the plate thickness and plate width increase, the water distribution is also increased in the second and third concentric channels. As a result, even if the plate thickness and plate width increase, the cooling capacity does not occur.
  • amorphous alloy foil strip having a thickness of 30 ⁇ m 90% or more of cooling water may be supplied with emphasis on the flow path closest to the roll outer periphery.
  • the heat which can not be removed in the first channel is absorbed by the second and third channels at almost 100%.
  • the part that wraps the cooling channel of the roll is not a mechanical joint of multiple rings or sleeves by shrink fitting method, etc., and there is no heat resistant part, so the heat flow is the original of Cu alloy. High thermal conductivity can be utilized.
  • FIG. 5 is a side view illustrating the cooling roll in the present modification.
  • the through holes 67 see FIG. 4A
  • the U-shaped pipe 64 see FIG. 4A
  • the through holes 21a to 21c which are flowing water paths, are broken. It shows by.
  • the water flow path of each stage is divided into three.
  • the number of pipes (channels) collected at the rotary joint is increased (three times in the illustrated example) compared to the second embodiment described above, the temperature rise of the cooling water can be suppressed. It is possible to more effectively enhance the heat removal capacity of the cooling roll. This is because the pressure loss in the cooling channel is reduced.
  • the diameter and width of the cooling roll used in the present invention will be described. These depend on the strength of support mechanisms such as the roll rotation shaft, bearings, etc. that support the weight of the roll. If the diameter is too large, the cooling capacity is improved but the load on the support mechanism is increased. In addition, if the diameter is too small, the number of branches of the flow channel will be insufficient and the cooling capacity will be insufficient.
  • the diameter should be determined according to the desired board thickness. For example, for a plate thickness of 30 to 60 ⁇ m, a diameter of 40 to 60 cm is sufficient, and for a plate thickness of 60 to 90 ⁇ m, a diameter of 60 to 80 cm is appropriate. 80 to 100 cm is preferable at 90 to 110 ⁇ m.
  • the width of the cooling roll As for the width of the cooling roll, the larger the width, the higher the cooling capacity. However, the effect of increasing the width is small compared to the conventional one-stage cooling roll.
  • heat is transferred in a two-dimensional manner to a wide range of cooling water by increasing the thickness of the roll (the distance between the roll surface and the cooling water channel).
  • the multistage cooling water channel proposed in the present invention water channels disposed on two or more concentric circles
  • most of the heat quantity flows in one dimension (the temperature gradient is large in the radial direction of the roll), so The effect of widening is limited.
  • the width of the roll may be somewhat larger than the width of the foil band.
  • the size of the through hole will be described. Basically, it is sufficient that the total surface area of the through holes is sufficient to absorb all the heat transferred from the molten metal to the cooling roll into the cooling water. Details will be described later.
  • the size of the through hole the easiness of drilling and the processing cost are important points.
  • the pressure for circulating the cooling water should be in an appropriate range. Taking these into consideration, the diameter of the through hole is preferably 20 to 50 mm.
  • the nozzle used in the present invention is basically a multiple slit nozzle.
  • An example of a double nozzle is shown in FIG.
  • a single slit nozzle is generally used, but even if the width of the nozzle (dimension measured in the roll movement direction of the rectangular opening) is increased, the thickness of the foil remains at a constant value. It does not become more than. According to our experiments and calculations based on them, it was found that the thickness of the foil depends on the heat transfer coefficient of the molten metal and the cooling roll.
  • the width of each double nozzle is preferably in the range of 0.2 to 0.8 mm.
  • the width of the bridge can be increased, which is advantageous from the viewpoint of the strength and the wear resistance of the bridge portion.
  • the plate thickness is increased according to the multiplicity of the nozzles, so it is preferable to use triples at 60 to 80 ⁇ m and quadruple or five-fold nozzles for 80 to 110 ⁇ m. It has been confirmed that an alloy foil strip in an amorphous state can be produced up to at least five folds.
  • the surface temperature of the cooling roll is low at the beginning of casting.
  • the Cu or Cu alloy roll used due to the high thermal conductivity is not compatible with the Fe-based alloy.
  • the equilibrium phase diagram of the Cu-Fe alloy shows, the ratio of melting each other is small at low temperatures (including normal temperature). Since we dislike each other, it is difficult to transmit the heat transmitted by lattice vibration.
  • the heat transfer rate is low. If the heat transfer coefficient is low, it does not solidify even if the molten metal is supplied. That is, the thickness does not increase. The excess supply of molten metal is only splashed around in the form of hot water balls. No stable paddles (pools held between the nozzle and the roll) are formed.
  • the discharge pressure is set to a lower value at the beginning of casting, and the amount of molten metal corresponding to the heat transfer coefficient is supplied. Then, the paddle is stabilized, and all heat released during solidification or solidification of a highly viscous supercooled liquid is absorbed by the roll, and the temperature of the roll rises. This increases the heat transfer coefficient and receives more heat. That is, the thickness of the foil can be increased.
  • the method illustrated in FIG. 4 is effective to accelerate the temperature rise of the cooling roll at the beginning of casting as described above. For example, when casting is started, water is not supplied to the outermost channel. Close the flow control valve 65 of the corresponding flow path. Then, the outer peripheral temperature of the roll rises rapidly. The discharge pressure is increased accordingly. Since the heat transfer coefficient is high, the solidification speed is increased and the plate thickness is increased. When the desired plate thickness is reached, water is also supplied to the outermost peripheral flow path. At this point, the heat balance is balanced because the temperature of the outer peripheral surface of the roll is high. That is, the amount of heat absorbed by the roll and the heat removal capacity of the roll are equal.
  • the plate thickness is greater than a certain value, the heat can not be taken away only by the flow path at the outermost periphery.
  • the heat that can not be taken up is absorbed by the water flowing through the second water channel from the outer periphery.
  • the water of the third flow path takes over.
  • the number of channels may be increased according to the desired thickness.
  • the three stages of flow paths shown in FIGS. 4 and 5 are not limited to this, and may be adjusted according to the plate thickness.
  • the arrangement of the through holes ie, the distance from the outer peripheral surface of the roll, must be determined.
  • the thickness of the roll becomes important, but can not be specified in the present invention.
  • Cu or Cu alloy with high thermal conductivity thermal conductivity of 70% or more of pure Cu
  • the total surface area of through holes penetrating through the side of the roll absorbs the amount of heat input to the roll per unit time It is not necessary to specify the wall thickness if possible.
  • the amount of heat transferred to the cooling water can be estimated using the sum of the surface area of the cooling water flow path and the forced convection heat transfer coefficient of the water (1.2 to 5.8) ⁇ 10 3 W / kg.
  • the heat transfer rate described above reference was made to “How to learn graphic heat transfer engineering” Ohmsha (published on January 10, 1985), edited by Nishikawa Kenji and Kitayama Kokoku.
  • the number of channels viewed from the side of the roll may be four or more. As the number of channels increases, the diameter of the roll must be increased. If the roll becomes too large, problems occur in the strength of the support mechanism such as the rotating shaft and the bearings that support the roll. In such a case, two rolls are used side by side as shown in FIG.
  • the specific example of the device and the method of operation are already disclosed in Patent Document 1 and thus the description is omitted here. The modification is shown by patent document 2 and patent document 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

This cooling roller (11) is characterized in that flow passages (21a, 21b, 21c), which pass through side surfaces of the cooling roller along the direction of a rotating shaft of the cooling roller, are arranged equidistantly on at least two concentric circles centered on the rotating shaft. This manufacturing device (2) for amorphous alloy foil strips is characterized by comprising the cooling roller (11). It is thus possible to manufacture thick amorphous alloy foil strips on an industrial scale.

Description

冷却ロールおよび非晶質合金箔帯の製造装置Apparatus for manufacturing cooling roll and amorphous alloy foil strip
 本発明は、非晶質(アモルファス)合金箔帯を製造するための冷却ロール、および非晶質合金箔帯の製造装置に関する。特に、水冷式の冷却ロールを備えた非晶質合金箔帯の製造装置に関する。 The present invention relates to a cooling roll for producing an amorphous (amorphous) alloy foil strip, and an apparatus for producing an amorphous alloy foil strip. In particular, the present invention relates to an apparatus for manufacturing an amorphous alloy foil strip provided with a water cooling type cooling roll.
 従来、トランスやモータの鉄心に電力損失が少ない鉄基非晶質合金を用いることが検討され、トランスについては実用化が進んでいる。しかしながら、積鉄心トランスへの適用は未だ報告されておらず、積鉄心を採用しているメーカーでも非晶質材料の採用には二の足を踏んでいる。また、モータについては実用化がほとんど進展しておらず、従来の薄い(板厚30μm以下)箔帯を、工夫を凝らして応用する例が散見される程度である。 Conventionally, it has been studied to use an iron-based amorphous alloy with low power loss for the iron core of a transformer or a motor, and the practical use of a transformer has been advanced. However, the application to piled iron core transformers has not been reported yet, and even manufacturers that adopt piled iron cores have a second leg to adopting amorphous materials. Further, with regard to motors, there has been little progress in commercialization, and there are some cases where conventional thin (plate thickness of 30 μm or less) foil strips are applied by devising devices.
 厚い非晶質合金箔帯が工業的に低コストで製造されれば、巻鉄心型のトランス・リアクトルなどに限らず、積鉄心やモータへの適用も可能になる。箔帯の厚肉化により、巻鉄心型トランスにおいては鉄心加工工程の作業能率が向上するとともに、占積率が高まる。これにより、鉄心したがって巻線を含むコイルの体積が縮小する。厚肉化によりヒステリシス損が低減し、商用周波数域では、渦電流損の増加を相殺して余りある鉄損の低減効果が期待できる。箔帯の厚肉化は、電力損失の低減のみならず、強度を高めることができる。高速回転するモータにおいては、ローターに働く強い遠心力に堪えるこれまでにない製品を実現できる。 If thick amorphous alloy foil strips are manufactured at low cost industrially, application to not only wound core type transformers / reactors but also to piled iron cores and motors becomes possible. By increasing the thickness of the foil strip, in the wound iron core type transformer, the working efficiency of the iron core processing step is improved and the space factor is increased. This reduces the volume of the core, and thus the coil containing the winding. By thickening, the hysteresis loss is reduced, and in the commercial frequency range, the reduction effect of the iron loss which is more than offsetting the increase of the eddy current loss can be expected. Thickening the foil can not only reduce power loss but also increase strength. With a motor that rotates at high speed, it is possible to realize an unprecedented product that can withstand strong centrifugal force acting on the rotor.
 非晶質合金の最も一般的な製造方法は、熱伝導率が高い金属または合金製の冷却ロールを回転させながら、合金の溶湯を、ノズルを介してロールの外周面に接触させることにより、該合金溶湯を急速に冷却して箔帯状に凝固させるいわゆる単ロール液体急冷法である。単ロール液体急冷法は、溶湯が持つ熱を冷却ロールに高速移動させることによって溶湯を急冷し、溶湯が結晶化する前に凝固させて、非晶質合金箔帯を製造する方法である。ここで、「非晶質合金」とは、体積率で50%以上が非晶質であり、残部が非晶質を母相としてナノサイズの微結晶が分散析出した複相の合金を含む。また、50%以上が結晶である材料においても、結晶粒を制御するために本発明の製造装置および製造方法を使うことができる。具体的には、ネオジム・ボロンを含む永久磁石の結晶粒径制御に有効である。 The most common method of producing an amorphous alloy is to contact the molten metal of the alloy with the outer peripheral surface of the roll through a nozzle while rotating a cooling roll made of metal or alloy having high thermal conductivity. This is a so-called single roll liquid quenching method in which a molten alloy is rapidly cooled and solidified into a foil band. The single roll liquid quenching method is a method of rapidly quenching the molten metal by moving the heat of the molten metal to a cooling roll at high speed, and solidifying the molten metal before it crystallizes to produce an amorphous alloy foil strip. Here, the term "amorphous alloy" includes a double phase alloy in which 50% or more of the volume ratio is amorphous and the balance is amorphous and the nano-sized crystallites are dispersed and precipitated. In addition, even in a material in which 50% or more is crystalline, the manufacturing apparatus and method of the present invention can be used to control crystal grains. Specifically, it is effective for controlling the grain size of a permanent magnet containing neodymium boron.
 単ロール液体急冷法においては、非晶質合金箔帯の製造に伴って冷却ロールの温度が上昇し、溶湯から冷却ロールが受け取る熱量と冷却ロールから冷却水に排出される熱量とがつり合ったところで平衡状態に達する。この平衡状態における冷却ロールの表面温度が、溶湯を過冷却状態のまま凝固させられるような低い温度であれば、非晶質合金箔帯を継続的に製造し続けることができる。しかし、鋳造中にロール温度が過熱してガラス転移点を通過するまでの冷却速度が所定の冷却速度に達しない場合、非晶質の箔帯は、有限の時間内でしか製造することができない。 In the single roll liquid quenching method, the temperature of the cooling roll increased with the production of the amorphous alloy foil strip, and the heat received from the molten metal and the heat discharged from the cooling roll to the cooling water were balanced. By the way, we reach equilibrium. If the surface temperature of the cooling roll in this equilibrium state is low enough to solidify the molten metal in a supercooled state, it is possible to continuously produce an amorphous alloy foil strip. However, amorphous foil strips can only be produced within a finite time if the cooling rate before the roll temperature overheats and passes the glass transition does not reach the predetermined cooling rate during casting .
 厚肉非晶質合金箔の製造にあたり、その板厚に比例する熱量を、冷却ロールに移動させなければならない。しかし、冷却ロールの内面と接触する冷却水に排出できる熱量には制限があった。これまでの水冷ロールの冷却構造は、公知例(特許文献1、2、3)に示されるように、ロールの外周面、周方向に沿って流れる冷却水路で構成されていた。 In the production of a thick amorphous alloy foil, the amount of heat proportional to the thickness of the foil must be transferred to the cooling roll. However, the amount of heat that can be discharged to the cooling water in contact with the inner surface of the cooling roll is limited. The cooling structure of the water-cooled roll so far is configured by the outer peripheral surface of the roll and the cooling water channel flowing along the circumferential direction as shown in the known examples ( patent documents 1, 2 and 3).
 また、特許文献4は、ロールの側面を貫通する冷却流路を配しているが、ロールの冷却に寄与する流路は、最外周の同心円上にある流路のみで排熱能力が不十分である。外周から2番目の同心円上にある流路は温度調節のために配設されたもので、冷却装置がついていない。 Moreover, although the patent document 4 has arrange | positioned the cooling flow path which penetrates the side of a roll, the flow path which contributes to cooling of a roll has an inadequate heat removal capacity only in the flow path on the concentric circle of outermost periphery. It is. The flow path located on the second concentric circle from the outer periphery is provided for temperature control and has no cooling device.
 従来の冷却ロールは、冷却水が排出できる単位時間あたりの熱量に制限があった。それは、ロールの外周面に相当する面積以上の冷却水路面積が取れなかったためである。そのため一定の板幅のもとで、非晶質で得られる板厚に制限があった。 The conventional cooling roll has a limitation in the amount of heat per unit time that the cooling water can discharge. The reason is that the area of the cooling channel above the area corresponding to the outer peripheral surface of the roll could not be obtained. For this reason, there is a limit to the thickness obtained in the amorphous state under a constant width.
 これまで制限のあった板厚(現状の市販材では25~30μm)を大幅にこえる板厚の非晶質合金箔帯の製造方法(工業生産規模、例えば、1チャージ100kg以上)が特許文献(1,2,3)に提案されている。 The method for producing an amorphous alloy foil strip having a plate thickness exceeding the plate thickness (25 to 30 μm in the current commercially available material) which has been limited so far (industrial production scale, eg, 100 kg or more per charge) is patent document 1, 2, 3).
 これらの方法は、従来の非晶質合金箔の板厚限界(工業生産規模)30μmをこえる板厚の非晶質箔帯を連続的に製造する方法である。しかし、これらの方法は冷却ロールを複数個使うため、設備が大型になる問題がある。また、溶湯注湯を2つの冷却ロールで交互に繰り返す煩雑さがあり作業を複雑にする。 These methods are methods for continuously producing an amorphous foil strip having a thickness exceeding 30 μm of the thickness limit (industrial production scale) of conventional amorphous alloy foils. However, since these methods use a plurality of cooling rolls, there is a problem that the equipment becomes large. In addition, it is complicated to repeat the molten metal pouring alternately with two cooling rolls, which complicates the operation.
 最近、合金溶湯を冷却ロールの外周面に吐出するために、耐久性の高いノズル材料が見出された。このノズルを使えば、数時間、連続して鋳造が可能である。特許文献1~3の交互鋳造法に依存せず、単一冷却ロールでも厚肉非晶質合金箔帯が連続的に製造できる可能性が生まれた。 Recently, a highly durable nozzle material has been found to discharge the molten alloy onto the outer peripheral surface of the cooling roll. Using this nozzle, continuous casting is possible for several hours. The possibility of continuously producing thick amorphous alloy foil strips even with a single cooling roll has emerged, without depending on the alternating casting method of Patent Documents 1 to 3.
特許第5114241号公報Patent No. 5114241 gazette 特許第5270295号公報Patent No. 5270295 gazette 特許第5329915号公報Patent No. 5329915 gazette 特開2012-086232号公報JP, 2012-086232 gazette
 本発明の目的は、厚い非晶質合金箔帯を、単一冷却ロールを用い、工業的な規模(1チャージ100kg以上)の製造を可能にする非晶質合金箔帯の製造装置を提供することである。今日市販されている厚肉非晶質合金箔の板厚は30μm以下に限られていた。この制限を突破して30μmより厚い非晶質箔帯を連続的に製造する技術を提案することが本発明の目的である。 An object of the present invention is to provide an apparatus for producing an amorphous alloy foil strip, which enables production of an industrial scale (100 kg or more per charge) using a thick amorphous alloy foil strip and a single cooling roll. It is. The thickness of the thick amorphous alloy foil marketed today was limited to 30 μm or less. It is an object of the present invention to propose a technique for continuously producing an amorphous foil strip thicker than 30 μm by breaking this limitation.
 本発明は、単一の冷却ロールを用い、連続的に板厚の大きな非晶質合金箔帯を製造するために、該冷却ロールの冷却水流路の構造を特定するものである。具体的には、所望の板厚の非晶質合金を得るために、ロール内冷却水路の表面積を確保できる冷却ロールの構造を提供する。 The present invention specifies the structure of the cooling water flow path of the cooling roll in order to continuously produce a thick amorphous alloy foil strip using a single cooling roll. Specifically, in order to obtain an amorphous alloy having a desired thickness, a cooling roll structure capable of securing the surface area of the in-roll cooling water passage is provided.
 本発明によれば、厚い非晶質合金箔帯を工業的な規模で製造することができる非晶質合金箔帯の製造装置を実現することができる。その結果、生産コストが低減でき、占積率向上による応用製品の小型化が可能になった。また、コアロス(鉄損)が低減され省エネルギーに寄与する。巻回、積層して用いる磁気鉄心においてアニールする場合、コア内温度の均一性が実現できる。熱は層間よりエッジから内部に流れるからである。温度の均一性が実現できることにより、アニール条件の最適化が図れる。コア全体の温度が狭い範囲で同等なので、最適条件がコアの各部分で達成され、最適特性を容易に達成できる。 According to the present invention, an apparatus for producing an amorphous alloy foil strip capable of producing a thick amorphous alloy foil strip on an industrial scale can be realized. As a result, the production cost can be reduced, and the miniaturization of applied products can be realized by the improvement of space factor. In addition, core loss (iron loss) is reduced, which contributes to energy saving. When annealing is performed on a magnetic core used by winding and stacking, uniformity of the temperature in the core can be realized. Heat flows from the edge to the inside from the interlayer. Annealing conditions can be optimized because temperature uniformity can be realized. Since the temperature across the core is equal within a narrow range, optimum conditions are achieved for each part of the core and optimum characteristics can be easily achieved.
第1の実施形態に係る非晶質合金箔帯の製造装置を例示する斜視図である。It is a perspective view which illustrates the manufacturing device of the amorphous alloy foil strip concerning a 1st embodiment. 第1の実施形態の装置を例示する、(a)正面図、および(b)側面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) Front view and (b) Side view which illustrate the apparatus of 1st Embodiment. (a)は、第1の実施形態の変形例に係る装置を冷却ロールの正面からみた模式図であり、(b)は、つば状の突起をつけた貫通孔入口部を冷却ロールの側面からみた図である。(A) is a schematic diagram which saw the apparatus concerning the modification of 1st Embodiment from the front of a cooling roll, (b) is the through-hole entrance part which attached collar-like protrusion from the side of a cooling roll It is a view. 第2の実施形態における冷却ロールの冷却水路構造を例示する模式図である。(a)は、第2の実施形態における非晶質合金箔帯の製造装置を例示する模式的正面図であり、冷却水路系統の1つを示す。(b)は、この冷却ロールおよび近傍を例示する模式的側面図であり、(c)はこの冷却ロールの別の冷却水路系統を示す正面図である。It is a schematic diagram which illustrates the cooling channel structure of the cooling roll in 2nd Embodiment. (A) is a schematic front view which illustrates the manufacturing apparatus of the amorphous alloy foil strip in 2nd Embodiment, and shows one of a cooling channel system. (B) is a schematic side view illustrating the cooling roll and the vicinity thereof, and (c) is a front view showing another cooling channel system of the cooling roll. 第2の実施形態の変形例に係る非晶質合金箔帯の製造装置を例示する側面図である。It is a side view which illustrates the manufacturing device of the amorphous alloy foil strip concerning the modification of a 2nd embodiment. 図1において合金溶湯が冷却ロールと接触するノズル先端部の様子(パドル)を例示する側面図である。本発明で基本とするダブルスリットノズルとパドル近傍を示す概念図である。It is a side view which illustrates the appearance (paddle) of the nozzle tip which a molten alloy contacts with a cooling roll in FIG. It is a conceptual diagram which shows the double slit nozzle and paddle vicinity which are based on this invention. 本発明の単一ロールで達成できない大きな板厚の非晶質合金箔帯を製造する際に用いるツイン冷却ロール法を例示する装置の正面図である。FIG. 1 is a front view of an apparatus illustrating a twin cooling roll method used in producing a large thickness amorphous alloy foil strip that can not be achieved with a single roll of the present invention.
 以下、図面を参照しつつ、本発明の実施形態について説明する。
 先ず、第1の実施形態について説明する。
 図1は、本実施形態に係る非晶質合金箔帯の製造装置を例示する斜視図であり、
 図2は、本実施形態に係る製造装置の、(a)冷却ロールと冷却水路を例示した正面図、(b)冷却ロールの側面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
FIG. 1 is a perspective view illustrating an apparatus for manufacturing an amorphous alloy foil strip according to the present embodiment,
FIG. 2: is the front view which illustrated the (a) cooling roll and the cooling channel of the manufacturing apparatus which concerns on this embodiment, (b) It is a side view of a cooling roll.
 図1に示すように、本実施形態に係る非晶質合金箔帯の製造装置1においては、冷却ロール11と、冷却ロール11内に冷却水を流通させる冷却水供給手段12と、冷却ロール11を回転させる駆動手段13(排水手段を含む)と、冷却ロール11の外周面11aに対して溶湯を供給する溶湯供給手段17とが設けられている。溶湯供給手段17においては、合金を溶かす溶解炉14、溶湯Aを保持する坩堝15と、坩堝15の底面に取り付けられ、坩堝15内の溶湯を下方に向けて吐出するノズル16とが設けられている。ノズル16は、冷却ロール11の上方に、冷却ロール11の外周面11aから僅かな隙間を隔てて配置されている。製造装置1は、非晶質合金箔帯Sを製造するための装置である。ここで、「非晶質合金」とは、体積率で50%以上が非晶質であり、残部が非晶質を母相としてナノメートル(nm)サイズの微結晶が分散析出した複相の合金を含む。 As shown in FIG. 1, in the apparatus 1 for manufacturing an amorphous alloy foil strip according to the present embodiment, a cooling roll 11, cooling water supply means 12 for circulating cooling water in the cooling roll 11, and a cooling roll 11. The driving means 13 (including the draining means) for rotating the metal and the molten metal supply means 17 for supplying the molten metal to the outer peripheral surface 11 a of the cooling roll 11 are provided. The molten metal supply means 17 is provided with a melting furnace 14 for melting the alloy, a crucible 15 for holding the molten metal A, and a nozzle 16 attached to the bottom of the crucible 15 for discharging the molten metal in the crucible 15 downward. There is. The nozzle 16 is disposed above the cooling roll 11 with a slight gap from the outer circumferential surface 11 a of the cooling roll 11. The manufacturing apparatus 1 is an apparatus for manufacturing the amorphous alloy foil strip S. Here, “amorphous alloy” is a double phase in which 50% or more of the volume ratio is amorphous, and the remaining part is amorphous and used as a matrix to disperse and deposit fine crystals of nanometer (nm) size. Contains alloys.
 次に、上述の如く構成された非晶質合金箔帯の製造装置の動作、すなわち、本実施形態に係る非晶質合金箔帯の製造方法について説明する。
 先ず、溶解炉14で、非晶質合金箔帯Sの原料となる合金を溶解して溶湯Aをるつぼ15に注入する。溶湯Aは、Fe、Co、Niのうち、少なくとも1種類を合計70原子%から95原子%含み、該3種類の強磁性金属元素以外は半金属B、Si、C、Pのうち少なくとも1種類の元素を5原子%~30原子%含む。さらに左記の強磁性元素の一部にCr、V、Nb、Mo、W、Ta、Cu、Snのうち少なくとも1種類を0.01原子%~5原子%の範囲で加えても良い。言わずもがな、構成元素の含有率の総和は、不可避的不純物を除けば、100%でなければならない。
Next, the operation of the apparatus for producing an amorphous alloy foil strip constructed as described above, that is, the method for producing an amorphous alloy foil strip according to the present embodiment will be described.
First, in the melting furnace 14, the alloy to be the raw material of the amorphous alloy foil strip S is melted and the molten metal A is poured into the crucible 15. The molten metal A contains 70 atomic percent to 95 atomic percent in total of at least one of Fe, Co, and Ni, and at least one of semimetals B, Si, C, and P other than the three ferromagnetic metal elements. Containing 5 atomic% to 30 atomic% of the elements of Furthermore, at least one of Cr, V, Nb, Mo, W, Ta, Cu, and Sn may be added in a range of 0.01 atomic% to 5 atomic% to part of the ferromagnetic elements described above. Needless to say, the total content of constituent elements must be 100%, excluding unavoidable impurities.
 上記の添加元素のうちCuは、非晶質箔を作製したのち、アニールにより結晶化させ、数ナノメートルから100ナノメートルの範囲の微細結晶粒からなる、いわゆるナノ結晶材料を作製するさいの必須元素である。ナノ結晶材でなくても、高周波磁気特性を向上させるために、結晶化を部分的に促進して磁区の細分化を図るため、Cuを単独で(Fe,Co,Ni)-(B,Si,C,P)合金に、0.1原子%~2.5原子%の範囲で添加することも本発明の範囲である。 Among the above-mentioned additive elements, Cu is an essential element in producing an amorphous foil and then crystallizing by annealing to produce a so-called nanocrystalline material consisting of fine crystal grains in the range of several nanometers to 100 nanometers. It is an element. Even if the material is not a nanocrystal material, Cu alone (Fe, Co, Ni)-(B, Si) is used to promote partial crystallization by partially promoting crystallization in order to improve high frequency magnetic properties. It is also within the scope of the present invention to add to the (C, P) alloy in the range of 0.1 at% to 2.5 at%.
 Snは箔の表面の薄い層に偏析して結晶化を抑える作用をするので、高含有量のFeを含むFe基合金の非晶質箔帯を製造する際に有効である。82原子%以上のFeを含有する合金はアニールによって表面結晶化が生じやすく、鉄損、透磁率などの磁気特性が大幅に劣化するが、0.1質量%から1質量%のSnを含むとアニール後も結晶化は起こらず、本来のすぐれた軟磁気特性を維持する。またS(硫黄)の微量添加もSnと同様の作用をする。S添加量は、0.003~0.5質量%の範囲がよい。 Sn segregates in a thin layer on the surface of the foil and acts to suppress crystallization, so it is effective in producing an amorphous foil strip of a Fe-based alloy containing a high content of Fe. An alloy containing 82 atomic% or more of Fe is likely to undergo surface crystallization due to annealing, and magnetic properties such as iron loss and magnetic permeability are significantly degraded, but containing 0.1 mass% to 1 mass% of Sn No crystallization occurs after annealing, maintaining the original excellent soft magnetic properties. The addition of a small amount of S (sulfur) also acts in the same manner as Sn. The amount of S added is preferably in the range of 0.003 to 0.5% by mass.
 本実施形態の製造装置1の機能について説明を続ける。冷却水供給手段12が冷却ロール11内の流水経路21に冷却水Wを流通させながら、駆動手段(排水手段を兼ねる)13が冷却ロール11を回転させる。この状態で、ノズル16から、冷却ロール11の外周面11aに対して、溶解炉14から坩堝15に注がれた合金の溶湯Aを吐出する。 The description of the function of the manufacturing apparatus 1 of the present embodiment will be continued. The driving means (which also serves as a drainage means) 13 rotates the cooling roll 11 while the cooling water supply means 12 circulates the cooling water W through the flowing water path 21 in the cooling roll 11. In this state, the molten metal A of the alloy poured from the melting furnace 14 into the crucible 15 is discharged from the nozzle 16 to the outer peripheral surface 11 a of the cooling roll 11.
 このとき、溶湯Aは、冷却ロール11の外周面11aとノズル16との間でパドルを形成する。回転する冷却ロール11によって、冷却ロール11によって冷却されたパドルのロール表面11aに接触した近傍は高粘度の過冷却液体となり、ロールの回転方向に引き出されると共に、冷却ロール11によって急冷され、過冷却液体構造のまま凝固する。これにより、ストリップ状の非晶質合金箔帯Sが形成される。非晶質合金箔帯Sは、冷却ロール11の外周面11aと共に所定の位置まで移動した後、冷却ロール11から遠ざかる方向に誘導され、巻き取られる。一方、溶湯Aから冷却ロール11に伝達された熱は、冷却ロール内部を流れる冷却水に移動した後、流水経路21内を流れる冷却水Wによって冷却ロール11の外部に排出される。 At this time, the molten metal A forms a paddle between the outer peripheral surface 11 a of the cooling roll 11 and the nozzle 16. The portion in contact with the roll surface 11a of the paddle cooled by the cooling roll 11 by the rotating cooling roll 11 becomes a highly viscous supercooled liquid, which is drawn out in the rotational direction of the roll and quenched by the cooling roll 11 for supercooling Solidify in liquid form. Thereby, a strip-like amorphous alloy foil strip S is formed. The amorphous alloy foil strip S moves to a predetermined position along with the outer peripheral surface 11 a of the cooling roll 11, and then is induced in a direction away from the cooling roll 11 and wound up. On the other hand, the heat transferred from the molten metal A to the cooling roll 11 is transferred to the cooling water flowing inside the cooling roll and then discharged to the outside of the cooling roll 11 by the cooling water W flowing in the flowing water path 21.
 本発明の非晶質合金箔帯製造装置をより具体的に説明する。図2(a)は、本発明の実施形態の1つを示している。冷却ロール11には側面を貫通する貫通孔21a、21b、21cが形成されている。図2(b)に示すロール回転軸を中心Cとする複数の同心円上に等間隔で設けられている。図2(b)の冷却ロール11の側面図は、貫通孔が3つの同心円に等間隔に並んでいる様子を例示している。貫通孔の直径は同じ同心円上では同じ大きさである。 The apparatus for producing an amorphous alloy foil strip of the present invention will be described more specifically. FIG. 2 (a) shows one of the embodiments of the present invention. The cooling roll 11 is formed with through holes 21a, 21b and 21c penetrating through the side surfaces. It is provided at equal intervals on a plurality of concentric circles whose center C is the roll rotation axis shown in FIG. The side view of the cooling roll 11 of FIG. 2 (b) exemplifies a state in which the through holes are arranged at equal intervals on three concentric circles. The diameter of the through holes is the same size on the same concentric circle.
 冷却ロール11の側面は両側ともそれぞれカバー23a、23bで覆われている。カバーは冷却水を外部に逃がさず、貫通孔に冷却水を送り、または受ける役割をする。図2では給水側から冷却水を送り、貫通孔を通過した冷却水を反対側に流す例を示したが、図3(a)のように本流路を2重管構造にして本管24のロール中心部を水が通過したのち冷却水供給側と反対面に設置されたカバー23bに当たったのち裏側から貫通孔を通過した後、2重管を通して排水することも可能である。後者のほうが空気が残留しにくく、水が貫通孔を均等に流れやすい。 The side surfaces of the cooling roll 11 are covered with covers 23a and 23b on both sides respectively. The cover does not release the cooling water to the outside, but serves to send or receive the cooling water to the through holes. Although FIG. 2 shows an example in which the cooling water is sent from the water supply side and the cooling water having passed through the through holes is flowed to the opposite side, as shown in FIG. It is also possible to drain water through a double pipe after passing through the center of the roll and passing through the through hole from the back side after hitting the cover 23b installed on the opposite side to the cooling water supply side after passing through the center of the roll. In the latter case, air is less likely to remain, and water is likely to flow evenly through the through holes.
 第1の実施形態の変形例として、図3(a)において給水側と反対側の面の貫通孔入口の端部(回転軸から遠い側)に、図3(b)のような半円形のつば(ひさし)状の突起26をつけると、水の流れがスムースになり、貫通孔を流れる水量を均等化しやすい。貫通孔の出口側には、つば(ひさし)は不要である。しかし、ロール回転中のバランスを取りにくい場合は出口側にも、つばを設けても良い。 As a modification of the first embodiment, a semicircular shape as shown in FIG. 3 (b) is provided at the end (the side far from the rotation axis) of the through hole inlet on the surface opposite to the water supply side in FIG. When the collar-like projections 26 are provided, the flow of water becomes smooth and it is easy to equalize the amount of water flowing through the through holes. A collar is not required on the outlet side of the through hole. However, if it is difficult to balance the roll rotation, a collar may be provided on the outlet side.
 なお、図2、図3において、空気抜きのために、カバー23に弁27を設けると便利である。冷却流路に空気が残留することがある。残留空気は、貫通孔を通過する冷却水の均等化をはばみ、ロールの冷却効率を低下させる。鋳造開始前に、冷却水を流してゆっくりとロールを回転しながらカバーに設けた弁(1つのカバーに複数設けても良い)を開けて空気を抜き、そして閉じる。ゆっくり回転させながら弁の開閉を繰り返すことにより、ロールの流路に残留する空気を限りなくゼロに近づけることができる。 In FIGS. 2 and 3, it is convenient to provide a valve 27 on the cover 23 for air removal. Air may remain in the cooling channel. The residual air balances the cooling water passing through the through holes and reduces the cooling efficiency of the roll. Before casting is started, the cooling water is allowed to flow slowly and the roll is slowly rotated to open the valve provided on the cover (may be provided on one cover) to purge air and then close it. By repeatedly opening and closing the valve while rotating slowly, the air remaining in the flow path of the roll can be brought close to zero as much as possible.
 次に、第2の実施形態について説明する。
 図4は、第1の実施形態で示した冷却ロールの側面を貫通する貫通孔の配置を例示する図2(b)において、同心円上にあり隣り合う貫通孔を金属製のU字形パイプで結んだ例を示している。図4(a)は、第2の実施形態を例示する冷却ロールの正面図であり、(b)は冷却ロールの側面図である。また、図4(c)は、装置の正面からみた、最もロールの外周に近い同心円上に設けられた冷却水の流路を示す図である。なお、図4(a)はロール外周から2番目の同心円上に設けられた冷却水路を示している。
Next, a second embodiment will be described.
FIG. 4 illustrates the arrangement of through holes penetrating through the side surface of the cooling roll shown in the first embodiment. In FIG. 2B, adjacent through holes on concentric circles are connected by a metal U-shaped pipe. An example is shown. Fig.4 (a) is a front view of the cooling roll which illustrates 2nd Embodiment, (b) is a side view of a cooling roll. Further, FIG. 4C is a view showing a flow path of the cooling water provided concentrically closest to the outer periphery of the roll when viewed from the front of the device. FIG. 4A shows the cooling water channel provided on the second concentric circle from the outer periphery of the roll.
 図4において、62a、62b、62cはロール側面からみて順に、最も外周に近い冷却水の流路、外周から2番目の同心円上にある流路、そして外周から3番目の同心円上にある流路を示している。 In FIG. 4, 62a, 62b, and 62c are, in order from the side of the roll, the coolant flow path closest to the outer periphery, the second concentric flow path from the outer periphery, and the third concentric circle flow path from the outer periphery Is shown.
 第2の実施形態を例示する図4は、同心円上にあり隣り合う貫通孔をU字型パイプ64で結ぶことを示している。これにより同一同心円上にある貫通孔は本管流路21から分岐した1つの流路を形成する。図4は、同心円が3つの例をあげているので、3つの流路21a、21b、21cが存在する。それぞれの端部は、ロールの回転軸に沿って設けられた、回転分流装置ロータリージョイント63に結合されている。これによってロール回転中も、回転軸に沿った給水、排水の本管(図示せず)に分岐した流路が接続されている。 FIG. 4 illustrating the second embodiment shows that U-shaped pipes 64 connect adjacent through holes concentrically. Thereby, the through holes on the same concentric circle form one flow path branched from the main pipe flow path 21. FIG. 4 shows three examples of concentric circles, so there are three flow paths 21a, 21b and 21c. Each end is coupled to a rotary diverter rotary joint 63 provided along the axis of rotation of the roll. As a result, even while the roll is rotating, a branched flow path is connected to the water supply and drainage main pipes (not shown) along the rotation axis.
 第2の実施形態では、本流路から分岐した、流路62a、62b、62cのそれぞれに流量調節弁65が設けられている。各流路に流量調節弁があると、鋳造する箔帯の板幅、板厚に応じて最適な流量配分をすることができる。例えば、板幅、板厚が比較的小さい場合、ロール外周面に最も近い流路に重点をおいて冷却水を供給すればよい。板厚、板幅が大きくなるに応じて、2番目、3番目の同心円上の流路にも給水配分を多くする。これによって、板厚、板幅が大きくなっても、冷却能力不足を生じない。 In the second embodiment, the flow control valve 65 is provided in each of the flow paths 62a, 62b and 62c branched from the main flow path. If there is a flow control valve in each flow path, optimal flow distribution can be performed according to the plate width and plate thickness of the foil strip to be cast. For example, when the plate width and the plate thickness are relatively small, the cooling water may be supplied with emphasis on the flow path closest to the roll outer peripheral surface. As the plate thickness and plate width increase, the water distribution is also increased in the second and third concentric channels. As a result, even if the plate thickness and plate width increase, the cooling capacity does not occur.
 より具体的に示すなら、板厚30μmの非晶質合金箔帯を製造する際、ロール外周に
最も近い流路を重点に90%以上の冷却水を供給すればよい。箔の板厚が増加するに応じて2番目、3番目の流路に流れる冷却水の流量を増やしていけば50μm、75μm、100μmの板厚の非晶質箔帯の製造が可能になる。1番目の流路で取りきれない熱は、2番目、3番目の流路によってほぼ100%で吸収される。ロールの冷却流路を包む部分は、複数のリングあるいはスリーブを焼嵌め法などで機械的に接合したものでなく、1体ものなので、熱抵抗部分がないので、熱の流れはCu合金本来の高熱伝導率を生かすことができる。
More specifically, when producing an amorphous alloy foil strip having a thickness of 30 μm, 90% or more of cooling water may be supplied with emphasis on the flow path closest to the roll outer periphery. By increasing the flow rate of the cooling water flowing through the second and third flow channels as the thickness of the foil increases, it becomes possible to produce amorphous foil strips having thicknesses of 50 μm, 75 μm and 100 μm. The heat which can not be removed in the first channel is absorbed by the second and third channels at almost 100%. The part that wraps the cooling channel of the roll is not a mechanical joint of multiple rings or sleeves by shrink fitting method, etc., and there is no heat resistant part, so the heat flow is the original of Cu alloy. High thermal conductivity can be utilized.
 次に、第2の実施形態の変形例について説明する。
 図5は、本変形例における冷却ロールを例示する側面図である。なお、図5においては、便宜上、貫通孔67(図4(a)参照)及びU字形パイプ64(図4(a)参照)は図示を省略し、流水経路である貫通孔21a~21cを破線で示している。
Next, a modification of the second embodiment will be described.
FIG. 5 is a side view illustrating the cooling roll in the present modification. In FIG. 5, for convenience, the through holes 67 (see FIG. 4A) and the U-shaped pipe 64 (see FIG. 4A) are not shown, and the through holes 21a to 21c, which are flowing water paths, are broken. It shows by.
 図5に示すように、本変形例における冷却ロール61aにおいては、各段の流水経路が3つに分かれている。これにより、前述の第2の実施形態と比較して、ロータリージョイントに集合するパイプ(流路)の本数が増えるものの(図示の例では3倍)、冷却水の温度上昇を抑えることができ、冷却ロールの排熱能力をより効果的に高めることが可能になる。これは冷却水路の圧損が低減するからである。 As shown in FIG. 5, in the cooling roll 61 a in the present modification, the water flow path of each stage is divided into three. As a result, although the number of pipes (channels) collected at the rotary joint is increased (three times in the illustrated example) compared to the second embodiment described above, the temperature rise of the cooling water can be suppressed. It is possible to more effectively enhance the heat removal capacity of the cooling roll. This is because the pressure loss in the cooling channel is reduced.
 本発明の側面貫通孔を配した非晶質合金箔帯の製造装置において、給水路の途中に冷却水を冷却する装置を設けると排熱効果が向上する。 In the apparatus for manufacturing an amorphous alloy foil band having side through holes according to the present invention, if an apparatus for cooling the cooling water is provided in the middle of the water supply passage, the heat removal effect is improved.
 本発明において用いる冷却ロールの直径、幅について説明する。これらは、ロールの重量を支えるロール回転軸、軸受けなどの支持機構の強度に依存する。あまり直径が大きいと冷却能は向上するものの支持機構の負荷が大きくなる。また、直径が小さすぎると、流路の分岐数が不足して、冷却能が不足する。所望の板厚に応じて直径を決めるべきである。例示すると、板厚30~60μmでは40~60cmの直径があれば十分で、板厚60~90μmでは直径60~80cmが適当である。90~110μmでは80~100cmがよい。 The diameter and width of the cooling roll used in the present invention will be described. These depend on the strength of support mechanisms such as the roll rotation shaft, bearings, etc. that support the weight of the roll. If the diameter is too large, the cooling capacity is improved but the load on the support mechanism is increased. In addition, if the diameter is too small, the number of branches of the flow channel will be insufficient and the cooling capacity will be insufficient. The diameter should be determined according to the desired board thickness. For example, for a plate thickness of 30 to 60 μm, a diameter of 40 to 60 cm is sufficient, and for a plate thickness of 60 to 90 μm, a diameter of 60 to 80 cm is appropriate. 80 to 100 cm is preferable at 90 to 110 μm.
 冷却ロールの幅についても、幅が広くなるほど冷却能力は高くなる。しかし、従来の1段冷却ロールにくらべて幅を広げる効果は小さい。1段冷却の場合、ロールの肉厚(ロール表面と冷却水路の距離)を大きくすることにより、熱は2次元的にながれ広い範囲の冷却水に伝わる。しかし、本発明で提案する多段式の冷却水路(2以上の同心円上に配設された水路)では、熱量の多くは一次元的に流れる(温度勾配がロールの半径方向で大きい)のでロールの幅を広げる効果は限定的である。極言すれば、ロールの幅は、箔帯の幅をある程度上回っていればよい。 As for the width of the cooling roll, the larger the width, the higher the cooling capacity. However, the effect of increasing the width is small compared to the conventional one-stage cooling roll. In the case of one-stage cooling, heat is transferred in a two-dimensional manner to a wide range of cooling water by increasing the thickness of the roll (the distance between the roll surface and the cooling water channel). However, in the multistage cooling water channel proposed in the present invention (water channels disposed on two or more concentric circles), most of the heat quantity flows in one dimension (the temperature gradient is large in the radial direction of the roll), so The effect of widening is limited. In other words, the width of the roll may be somewhat larger than the width of the foil band.
 つぎに、貫通孔の大きさについて説明する。基本的には、溶湯から冷却ロールに移った熱がすべて冷却水に吸収される十分な貫通孔の総表面積があればよい。詳しくは後述する。貫通孔の大きさは、孔あけ加工のしやすさ、加工コストなどが重要なポイントとなる。また、冷却水を流通させる圧力が適正な範囲でなければならない。これらを勘案すると、貫通孔の直径は、20~50mmが好ましい。 Next, the size of the through hole will be described. Basically, it is sufficient that the total surface area of the through holes is sufficient to absorb all the heat transferred from the molten metal to the cooling roll into the cooling water. Details will be described later. As for the size of the through hole, the easiness of drilling and the processing cost are important points. In addition, the pressure for circulating the cooling water should be in an appropriate range. Taking these into consideration, the diameter of the through hole is preferably 20 to 50 mm.
 本発明において用いるノズル(合金溶湯を冷却ロールに吐出するための開口部)は基本的に多重スリットノズルである。ダブルノズルの例を図6に示す。従来、一般に、単一スリットノズルが用いられているが、ノズルの幅(矩形状開口部のロール移動方向に測った寸法)を大きくしても、箔の板厚は一定の値に留まり、それ以上にならない。本発明者らの実験とそれらに基づく計算によれば、箔の板厚は溶湯と冷却ロールの熱伝達率に依存することが判明した。ダブルノズルの幅は、それぞれ、0.2~0.8mmの範囲が好ましい。また、上流側のスリット幅を大きくすると、ブリッジの幅を大きく取れるので、ブリッジ部の強度と耐摩耗性の観点から有利である。板厚は、ノズルの多重度に応じて厚くなるので、厚さ60~80μmではトリプル、80~110μmでは4重あるいは5重のノズルを用いるとよい。少なくとも5重までは、非晶質状態の合金箔帯が製造できることを確認している。 The nozzle used in the present invention (the opening for discharging the molten alloy to the cooling roll) is basically a multiple slit nozzle. An example of a double nozzle is shown in FIG. Conventionally, a single slit nozzle is generally used, but even if the width of the nozzle (dimension measured in the roll movement direction of the rectangular opening) is increased, the thickness of the foil remains at a constant value. It does not become more than. According to our experiments and calculations based on them, it was found that the thickness of the foil depends on the heat transfer coefficient of the molten metal and the cooling roll. The width of each double nozzle is preferably in the range of 0.2 to 0.8 mm. Further, if the upstream slit width is increased, the width of the bridge can be increased, which is advantageous from the viewpoint of the strength and the wear resistance of the bridge portion. The plate thickness is increased according to the multiplicity of the nozzles, so it is preferable to use triples at 60 to 80 μm and quadruple or five-fold nozzles for 80 to 110 μm. It has been confirmed that an alloy foil strip in an amorphous state can be produced up to at least five folds.
 すなわち、鋳造初期において冷却ロールの表面温度は低い。熱伝導率が高いことにより用いられるCu、あるいはCu合金ロールは、Fe系合金となじみが悪い。Cu-Fe合金の平衡状態図が示すように互いに溶けあう比率は低温(常温を含む)ではわずかである。お互いに嫌っているので、格子振動で伝える熱も伝わりにくい。熱伝達率が低いのである。熱伝達率が低ければいくら溶湯を供給しても凝固しない。すなわち、板厚は厚くならない。供給過剰の溶湯は周辺に湯玉となって飛び散るだけである。安定なパドル(ノズルとロールの間に保持される湯溜まり)は形成されない。 That is, the surface temperature of the cooling roll is low at the beginning of casting. The Cu or Cu alloy roll used due to the high thermal conductivity is not compatible with the Fe-based alloy. As the equilibrium phase diagram of the Cu-Fe alloy shows, the ratio of melting each other is small at low temperatures (including normal temperature). Since we dislike each other, it is difficult to transmit the heat transmitted by lattice vibration. The heat transfer rate is low. If the heat transfer coefficient is low, it does not solidify even if the molten metal is supplied. That is, the thickness does not increase. The excess supply of molten metal is only splashed around in the form of hot water balls. No stable paddles (pools held between the nozzle and the roll) are formed.
 熱伝達率をあげるために、ロール温度を上げる必要がある。そのために、鋳造初期は吐出圧を低めに設定し、熱伝達率に見合った量の溶湯を供給する。すると、パドルは安定し凝固あるいは高粘度の過冷却液体化する際に放出される熱はすべてロールに吸収され、ロールの温度が上昇する。これにより熱伝達率は高まり、さらに多くの熱量を受けいれる。すなわち箔の板厚を厚くできる。 In order to raise the heat transfer coefficient, it is necessary to raise the roll temperature. Therefore, the discharge pressure is set to a lower value at the beginning of casting, and the amount of molten metal corresponding to the heat transfer coefficient is supplied. Then, the paddle is stabilized, and all heat released during solidification or solidification of a highly viscous supercooled liquid is absorbed by the roll, and the temperature of the roll rises. This increases the heat transfer coefficient and receives more heat. That is, the thickness of the foil can be increased.
 これまで多重スリットノズル法で厚肉箔ができないという声を聞く。それは、冷却ロールの温度が低いにも関わらず、ロールの熱吸収力をこえた溶湯を供給するからである。溢れた溶湯は飛び散り、安定したパドルが形成されない。熱がロールに吸収されないからロールの温度はいつまでたっても上がらず、厚い箔は形成されない。極めて当たり前のことであるが一般には認識されていないようである。 We hear that we can not thick-foil by the multiple slit nozzle method until now. The reason is that although the temperature of the cooling roll is low, the molten metal having the heat absorbing ability of the roll is supplied. The overflowing molten metal splashes and a stable paddle is not formed. Since the heat is not absorbed by the roll, the temperature of the roll never rises and a thick foil is not formed. It seems quite commonplace but not generally recognized.
 上述のように鋳造初期に冷却ロールの温度上昇を早めるために、図4に例示する方法は効果的である。たとえば、鋳造をスタートさせるときは、最外周の流路には給水しない。該当する流路の流量調節弁65を閉じておく。すると速やかにロールの外周温度は上昇する。それに応じて吐出圧を高める。熱伝達率が高い状態なので凝固速度が高まり板厚は大きくなる。所望の板厚になった時点で最外周の流路にも給水する。この時点で、ロール外周面の温度は高くなっているので熱の収支はバランスがとれている。すなわち、ロールが吸収する熱量とロールの抜熱能力が等しくなっている。 The method illustrated in FIG. 4 is effective to accelerate the temperature rise of the cooling roll at the beginning of casting as described above. For example, when casting is started, water is not supplied to the outermost channel. Close the flow control valve 65 of the corresponding flow path. Then, the outer peripheral temperature of the roll rises rapidly. The discharge pressure is increased accordingly. Since the heat transfer coefficient is high, the solidification speed is increased and the plate thickness is increased. When the desired plate thickness is reached, water is also supplied to the outermost peripheral flow path. At this point, the heat balance is balanced because the temperature of the outer peripheral surface of the roll is high. That is, the amount of heat absorbed by the roll and the heat removal capacity of the roll are equal.
 板厚が一定以上、厚くなると最外周の流路だけでは熱を奪えない。取りきれない熱は、外周から2番目の水路を流れる水が吸収する。さらに板厚が厚くなる場合は3番目の流路の水が受け持つ。このように、所望の板厚に応じて流路を増やしていけばよい。図4および図5に示した3段の流路は、これに限らず、板厚に応じて加減してよい。 If the plate thickness is greater than a certain value, the heat can not be taken away only by the flow path at the outermost periphery. The heat that can not be taken up is absorbed by the water flowing through the second water channel from the outer periphery. Furthermore, when the plate thickness is increased, the water of the third flow path takes over. Thus, the number of channels may be increased according to the desired thickness. The three stages of flow paths shown in FIGS. 4 and 5 are not limited to this, and may be adjusted according to the plate thickness.
 本発明を実施する際、貫通孔の配置、すなわち、ロール外周面からの距離を決めなければならない。しかし、従来のように最外周のみに冷却水路を設定した場合は、ロールの肉厚が重要になるが、本発明においては特定できない。熱伝導率の高いCuあるいはCu合金(熱伝導率が純Cuの70%以上)を用いる限り、ロールの側面を貫通する貫通孔の表面積の総和がロールに単位時間あたりに入熱する熱量を吸収できれば肉厚を指定する必要はない。冷却水の流路の表面積の総和と水の強制対流熱伝達率 (1.2~5.8)×10 W/kgを使って冷却水に伝わる熱量を見積もることができる。上記の熱伝達率は、西川兼康監修・北山直方著「図解 伝熱工学の学び方」オーム社刊(昭和60年1月10日発行)を参照した。 In the practice of the present invention, the arrangement of the through holes, ie, the distance from the outer peripheral surface of the roll, must be determined. However, when the cooling water passage is set only at the outermost periphery as in the prior art, the thickness of the roll becomes important, but can not be specified in the present invention. As long as Cu or Cu alloy with high thermal conductivity (thermal conductivity of 70% or more of pure Cu) is used, the total surface area of through holes penetrating through the side of the roll absorbs the amount of heat input to the roll per unit time It is not necessary to specify the wall thickness if possible. The amount of heat transferred to the cooling water can be estimated using the sum of the surface area of the cooling water flow path and the forced convection heat transfer coefficient of the water (1.2 to 5.8) × 10 3 W / kg. For the heat transfer rate described above, reference was made to “How to learn graphic heat transfer engineering” Ohmsha (published on January 10, 1985), edited by Nishikawa Kenji and Kitayama Kokoku.
 非常に厚い非晶質合金箔帯を所望の場合、ロール側面からみた流路の数は4つ以上になることがある。流路の数が大きくなると、ロールの直径を大きくしなければならない。ロールが大きくなりすぎると、ロールを支持する回転軸および軸受けなどの支持機構の強度に問題が生じる。そのような場合、図7のように2つのロールを並べて使う。装置の具体例および操作法はすでに特許文献1に開示されているのでここでは説明を省く。変形例は、特許文献2と特許文献3に示されている。 If a very thick amorphous alloy foil strip is desired, the number of channels viewed from the side of the roll may be four or more. As the number of channels increases, the diameter of the roll must be increased. If the roll becomes too large, problems occur in the strength of the support mechanism such as the rotating shaft and the bearings that support the roll. In such a case, two rolls are used side by side as shown in FIG. The specific example of the device and the method of operation are already disclosed in Patent Document 1 and thus the description is omitted here. The modification is shown by patent document 2 and patent document 3. FIG.
 本発明の冷却ロールと特許文献1、2、3のいずれかと併用すると、ロール交換にいたる時間が長くなるので生産性が高まる。作業能率も改善される。 When the cooling roll of the present invention is used in combination with any one of Patent Documents 1, 2 and 3, productivity increases because the time to roll change becomes long. Work efficiency is also improved.
 本発明によれば、単一ロールを用いて厚い非晶質合金箔帯を工業的な規模で製造することができる非晶質合金箔帯の製造装置を実現することができる。 According to the present invention, it is possible to realize an apparatus for producing an amorphous alloy foil strip capable of producing a thick amorphous alloy foil strip on an industrial scale using a single roll.
1、2、3、4、5:製造装置、11:冷却ロール、11a:外周面、12:冷却水供給手段、13:駆動手段、14:溶解炉、15:坩堝、16:ノズル、17:溶湯供給手段、18:溶湯供給装置の移動手段、21a、21b、21c:貫通孔、26:突起、61a:冷却ロール、62:本管から分岐した冷却水路、62a:ロール最外周の冷却水路、62b:ロール外周から2番目の冷却水路、62c:外周から3番目の冷却水路、63a:給水側ロータリージョイント、63b:排水側ロータリージョイント、64:U字形パイプ、65:流量調節弁、67:貫通孔、71a、71b:冷却ロール、72a、72b:冷却水供給手段、73:駆動手段、74a、74b:給水管、75a、75b:排水管、77:レール、81:スリット、A:溶湯、C:回転軸、P:パドル、S:非晶質合金箔帯 1, 2, 3, 4, 5: manufacturing apparatus, 11: cooling roll, 11a: outer peripheral surface, 12: cooling water supply means, 13: driving means, 14: melting furnace, 15: weir, 16: nozzle, 17: Molten metal supply means, 18: moving means of molten metal supply device, 21a, 21b, 21c: through holes, 26: projections, 61a: cooling roll, 62: cooling water channel branched from the main pipe, 62a: cooling water channel at the outermost periphery of the roll, 62b: second cooling water passage from the roll periphery, 62c: third cooling water passage from the outer periphery, 63a: water supply side rotary joint, 63b: drainage side rotary joint, 64: U-shaped pipe, 65: flow control valve, 67: penetration Hole 71a, 71b: Cooling roll, 72a, 72b: Cooling water supply means, 73: Driving means, 74a, 74b: Water supply pipe, 75a, 75b: Drain pipe, 77: Rail, 81: Slip Preparative, A: molten, C: rotary shaft, P: Paddle, S: amorphous alloy foil strip

Claims (2)

  1.  冷却ロールの側面に回転軸方向に貫通する流路を、前記ロールの回転軸を中心とする2以上の同心円上に等間隔に配設したことを特徴とする非晶質合金箔帯製造用の冷却ロール。 A flow passage penetrating in the rotational axis direction on the side surface of the cooling roll is disposed at equal intervals on two or more concentric circles centering on the rotational axis of the roll. Cooling roll.
  2.  請求項1記載の冷却ロールを備えた非晶質合金箔帯の製造装置。 The manufacturing apparatus of the amorphous alloy foil strip provided with the cooling roll of Claim 1.
PCT/JP2015/050687 2014-04-18 2015-01-13 Cooling roller and manufacturing device for amorphous alloy foil strips WO2015159562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/293,559 US20170029924A1 (en) 2014-04-18 2016-10-14 Cooling roll and manufacturing apparatus of amorphous alloy strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-086139 2014-04-18
JP2014086139A JP5953618B2 (en) 2014-04-18 2014-04-18 Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/293,559 Continuation US20170029924A1 (en) 2014-04-18 2016-10-14 Cooling roll and manufacturing apparatus of amorphous alloy strip

Publications (1)

Publication Number Publication Date
WO2015159562A1 true WO2015159562A1 (en) 2015-10-22

Family

ID=54323781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050687 WO2015159562A1 (en) 2014-04-18 2015-01-13 Cooling roller and manufacturing device for amorphous alloy foil strips

Country Status (3)

Country Link
US (1) US20170029924A1 (en)
JP (1) JP5953618B2 (en)
WO (1) WO2015159562A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788037A (en) * 2018-07-20 2018-11-13 芜湖君华材料有限公司 A kind of amorphous magnetic material conduction oil circulating cooling system
CN111097186A (en) * 2019-12-25 2020-05-05 中天电气技术有限公司 Cooling crystallizer
CN112059131A (en) * 2020-09-16 2020-12-11 浙江师范大学 Non-winding high-efficiency amorphous thin belt preparation device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105665666B (en) * 2015-12-31 2018-05-04 安泰科技股份有限公司 A kind of cooling roller device uniformly cooled down prepared for amorphous band and method
CN108555259A (en) * 2018-06-29 2018-09-21 王春龙 A kind of chill roll and equipment producing amorphous band
WO2020196608A1 (en) * 2019-03-26 2020-10-01 日立金属株式会社 Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
CN111299527A (en) * 2019-12-12 2020-06-19 云南大泽电极科技股份有限公司 Condensation crystallization technology for cast-rolled lead alloy plate strip
JPWO2022107237A1 (en) * 2020-11-18 2022-05-27
CN113600766B (en) * 2021-08-16 2022-10-28 江苏国能合金科技有限公司 Amorphous crystallizer with uniform cooling effect
CN113714475B (en) * 2021-08-16 2023-04-11 江苏国能合金科技有限公司 Amorphous crystallizer copper sheathing
DE112022002930T5 (en) 2021-08-17 2024-03-21 Hilltop Corporation METHOD FOR PRODUCING AN FE-SI-B BASED, THICK-LAYERED, QUICKLY SOLID ALLOY STRIP

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946048A (en) * 1972-09-08 1974-05-02
JPH01177055U (en) * 1988-06-07 1989-12-18
JP2014091157A (en) * 2012-11-06 2014-05-19 Saco Llc Apparatus and method for producing amorphous alloy foil strip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307771A (en) * 1980-01-25 1981-12-29 Allied Corporation Forced-convection-cooled casting wheel
AUPP331698A0 (en) * 1998-05-04 1998-05-28 Bhp Steel (Jla) Pty Limited Casting steel strip
WO2012051646A1 (en) * 2010-10-18 2012-04-26 Bluescope Steel Limited Twin roll continuous caster

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946048A (en) * 1972-09-08 1974-05-02
JPH01177055U (en) * 1988-06-07 1989-12-18
JP2014091157A (en) * 2012-11-06 2014-05-19 Saco Llc Apparatus and method for producing amorphous alloy foil strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788037A (en) * 2018-07-20 2018-11-13 芜湖君华材料有限公司 A kind of amorphous magnetic material conduction oil circulating cooling system
CN111097186A (en) * 2019-12-25 2020-05-05 中天电气技术有限公司 Cooling crystallizer
CN111097186B (en) * 2019-12-25 2021-11-09 中天电气技术有限公司 Cooling crystallizer
CN112059131A (en) * 2020-09-16 2020-12-11 浙江师范大学 Non-winding high-efficiency amorphous thin belt preparation device
CN112059131B (en) * 2020-09-16 2022-03-25 浙江师范大学 Non-winding high-efficiency amorphous thin belt preparation device

Also Published As

Publication number Publication date
US20170029924A1 (en) 2017-02-02
JP2015205290A (en) 2015-11-19
JP5953618B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2015159562A1 (en) Cooling roller and manufacturing device for amorphous alloy foil strips
JP6263512B2 (en) Wide iron-based amorphous alloys are precursors of nanocrystalline alloys
KR20140047738A (en) Iron-based amorphous alloy broad ribbon and its manufacturing method
JP4310480B2 (en) Amorphous alloy composition
TWI454324B (en) A manufacturing apparatus for an amorphous alloy foil tape, and a method for producing an amorphous alloy foil tape
JP5329915B2 (en) Apparatus for producing amorphous alloy foil strip and method for producing amorphous alloy foil strip
JP6195693B2 (en) Soft magnetic alloy, soft magnetic alloy magnetic core and method for producing the same
JP2018167298A (en) METHOD FOR PRODUCING Fe-Si-B-BASED NANOCRYSTAL ALLOY
WO2013137118A1 (en) Amorphous alloy thin strip
JP6881249B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
CN105397044A (en) Amorphous Alloy Ribbon
SE448381B (en) SET TO MAKE A THIN BAND OF SILICONE, THIN BAND AND APPLICATION
US20100096045A1 (en) Fe-based amorphous alloy excellent in soft magnetic properties
JP6283417B2 (en) Magnetic core manufacturing method
CN109825781A (en) A kind of method that iron-based amorphous thin band is continuously prepared
JP3830697B2 (en) Method for producing composite roll for rolling
JP5114241B2 (en) Amorphous alloy foil strip manufacturing apparatus and amorphous alloy foil strip manufacturing method
WO2022196672A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
JP2018144084A (en) Method for producing ferrous boron-based alloy
CN107002212A (en) Amorphous alloy band and its manufacture method
JP4969808B2 (en) Manufacturing method and manufacturing apparatus for iron-based amorphous ribbon with excellent magnetic properties
JP6855054B2 (en) Method for manufacturing Fe-Si-B-based quenching solidification alloy strip
CN114515822A (en) Amorphous nanocrystalline alloy strip and preparation method thereof
JP5270295B2 (en) Apparatus for producing amorphous alloy foil strip and method for producing amorphous alloy foil strip
WO2020066989A1 (en) METHOD FOR MANUFACTURING FE-BASED NANOCRYSTALLINE ALLOY STRIP, METHOD FOR MANUFACTURING MAGNETIC CORE, Fe-BASED NANOCRYSTALLINE ALLOY STRIP, AND MAGNETIC CORE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779590

Country of ref document: EP

Kind code of ref document: A1